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Abstract

Unwanted tones in the output spectrum is a well-known problem in XA
modulation. The actual tones, however, are just one aspect of a complex
problem. A more comprehensive picture is given by considering tones as the
evidence of a modulator diverging from the desired way of function. The
desired, or ideal, modulator function is described by a linearized model,
for which performance and behaviour is easily predicted. A key concept
in the analysis of the tone-problem is the close relationship between limit
cycles in state-space, repeated patterns in the time domain and tones in
the frequency domain.

A commonly used method to linearize the A modulator is to use addi-
tive dither, i.e., to add an independent, random signal to the modulation.
This approach has proved capable of tone suppression. However, the knowl-
edge of dither signals has been rather empirical of nature. On that account,
a modulator model which utilizes Signal Dependent Dithering (SDD) is in-
troduced in an attempt to gain a better understanding of the consequences
of different dither implementations. One objective is to find an optimal
dither signal, which is capable of suppressing tones with minimal impact
on the overall quantization noise of the modulation. As a starting point,
the quantization entropy is used as a measure of tone suppressing ability,
assuming that a high level of uncertaincy will help to break up limit cy-
cles and dissolve unwanted tones. Unfortunately, tone suppression ability
proves a difficult quality to measure and, in particular, the entropy of the
modulation proves inadequate. However, the impact of dither have another
interesting interpretation: For proper choices of dither signals, the actual
quantization is linear in the mean. Moreover, such dither signals also seem
capable of tone suppression.

The use of State-Vector Dependent Dither is discussed as a natural
extension of the Signal Dependent Dither model. Finally, the investigated
methods for tone suppression are evaluated for one specific application. The
application is £A modulation in fractional-N frequency synthesis, for which
it is demonstrated that proper dithering can entail favourable results.






1. Introduction

1.1 XA Modulation

Sigma-Delta modulation is a widespread technique with applications in
several fields. One example is analogue-to-digital conversion: The modula-
tion process attains high resolution for relatively low signal bandwidths,
which makes it especially suitable for speech and audio applications [1].
Another example is fractional-N frequency synthesis, where ZA modulators
can be used to improve frequency resolution with simplicity and reduced
cost [2, 3].

A block diagram of a A modulator system is presented in Fig. 1.1. The
system contains an interpolator and a XA modulator followed by a lowpass
filter and a decimator. The input signal to the modulator, u(n), is usually
oversampled, i.e. the sampling frequency is much higher than the Nyquist
rate. The purpose of the modulation is to produce an output, y(n), which
has low resolution (typically only one bit), yet upon lowpass filtering and
decimation approximates the input, x(n). As the modulator output has low
resolution, oversampling is vital in order to retain the signal information.

LP Filter| (5 )

x(n) t1 u(n) YA y(n)

Figure 1.1 XA Modulation

It is well known that A modulators may suffer from repeated patterns
or "tones" in the modulator output. This phenomenon is particularly com-
mon in the presence of low or moderate amplitude constant input [4, 5, 6].
Tones are basically sinusoidal oscillations caused by limit cycles due to the
circuit nonlinearity and can be extremely disturbing in many applications.
For some time it was generally believed that higher order modulators did
not suffer from unwanted tones. However, later investigations have shown
that this is not the case [6]. Suggested techniques for eliminating tones
in A modulation include the use of dither signals or using chaotic modu-
lators. The discussion in the present thesis will be limited to non-chaotic
methods only. The purpose of dither signals, is to introduce a certain degree
of uncertainty into the modulation and thereby randomize the output se-
quence. However, there is a trade-off between system stability, performance
and tone persistence.



Chapter 1. Introduction

1.2 Overview

The objective of this paper is to investigate the tone problem in A mod-
ulation. In particular, the use of non-chaotic methods for tone elimination
will be examined.

Ch.2 presents the £A modulator as a non-linear dynamical system. Basic
properties of XA modulation are reviewed, supplying necessary tools
and a starting point for the following analysis of tones and tone sup-
pression. The chapter includes a discussion on the linearized modu-
lator model, its utilities and limitations. Other key concepts are limit
cycles and, in particular, their connection to tones in the modulator
output spectrum.

Ch.3 discusses methods for tone-suppression. The starting point is a A
modulator model with Signal Dependent Dither (SDD). It is shown
that tone suppression in general brings about an increased noise-floor
level and that it is necessary to find methods that randomizes the out-
put sequence with minimal impact on the overall quantization noise.
The chapter also includes a discussion on State-Vector Dependent
Dither (SVDD).

Ch.4 is an application example and deals with A modulators in connec-
tion to fractional-N frequency synthesis. The purpose is to evaluate
the methods for tone-suppression discussed in Ch.3.



2. Basic Analysis

2.1 The XA Modulator

A XA modulator is shown in Fig. 2.1. The modulator consists of a quantizer
embedded in a negative feedback loop together with a linear filter, Gg(2).
Although multi-bit quantizers may very well be used, this report deals with
1-bit quantizers exclusively. This means that the quantizer output, y(n),
is restricted to two values only (typically +1).

A XA modulator can be viewed upon as a control system where the
modulator input, u(n), is the desired signal. The controller, Gg(z), is fed
with an error signal, which is the difference between the desired signal,
u(n), and the actual modulator output, y(n). The output from the controller,
e(n), is the input to the quantizer. Basically, the controller acts to keep the
low-pass part of the modulator output equal to the low-pass part of the
input. Clearly, a binary quantizer gives poor resolution as the input may
have an infinite number of amplitudes. However, taken over a large set
of output elements, the modulator will track the input in the mean. The
larger the set, the better the approximation, which explains the trade-off
between speed and resolution.

Quantizer| y(p)

g

u(n)’fz\ GR (Z) e(n)

Figure 2,1 XA Modulator

A more general modulator topology is shown in Fig. 2.2. This model
has two distinct transfer functions, namely the feedback transfer function,
H(z), and the input transfer function, G(z). If the two transfer functions
are equal, this model is equivalent to the one in Fig. 2.1 with Gg(z) =
G(z) = H(z). However, this is not necessarily the case.

Example 2.1 A first order £A modulator is shown in Fig. 2.3.
The linear filter is simply a discrete time integrator, accumulat-
ing the difference between the input signal, x(r), and the binary
output, y(n). This modulator is equal to the one in Fig. 2.1 if

Gr(z) = 1%1_1 Fig. 2.4 shows a simulation of this particular

modulator. O
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Quantizer y(n)

[

u(r) | G(z) —(=) oln)

H(z)

Figure 2.2 Generic XA Modulator

u(n) (" _@ z_.l 3”)__,— y{n)

Figure 2.3 First-order, 1-b £A modulator

State-Space Description of the XA Modulator

Any XA modulator can be characterized by a state-space, S, and two map-
pings, F and O. The state-space is the set of possible states of the systems
and the mapping ¥ describes the next state as a function of the current
state and the system input. The output of the system is determined by the
current state and the system input.

wk+1) = Fx(k),u(k)) = Ox(k) + Au(k) — By(k)
y(k) = O(x(k),u(k)) = sgn(Cx(k) + Du(k)) (2.1)

The mapping ¥ is linear while O is not.

1 - 1
o.8 o.e |t
0.6 o.e - ™ b
LA | o
0.4 e 0.4 {1
0.2 0.2
o o
—o0.2 —o0.2
0.4 ha e —0.4
—0.6 —0.6
—0.8 —0.8
o

7
=

-1 1

o 20 40 60 0o 20 40 60 a0

Figure 24 Input and output from the first-order Sigma-Delta modulator of Ex-

ample 2.1. a) The input signal is a sine with amplitude 0.5 and frequency 0.0104.
b) The same sinusoid with a DC-offset of 0.3.
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2.1 The XA Modulator

Example 2.2 Consider the second order modulator in Fig. 2.5
with multiple feedback and feedforward topology to minimize

T
delay. The state vector is chosen as x(k) = [ x1(k) x2(k) ] )
which results in the following state-space description:

1
1

1

x(h+1) = [1 le(k)+ ,

i ] y(k)

u(k) — [

y(k) = sgn([o 1]x(k))

The feedback transfer function (according to the generic XA
modulator model of Fig. 2.2) is

2z71 2

HE) = gt ee

and the input transfer function is
-1

Z

G =g
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Figure 2.5 Second-order, feedforward A modulator of Example 2.2
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2.1 The XA Modulator

The Linearized Modulator Model

A popular method to analyze the A modulator of Fig. 2.2 is to model
the highly non-linear quantizer as a quantizer gain together with additive
quantizer noise as seen in Fig. 2.6 [1, 4, 5]. This model is generally re-
ferred to as the linearized modulator model. The output of the linearized
modulator can be split into two parts:

Y(z) = Ya(2) + Yy(z) = STFx(2)U(2) + NTFg (2)Q(2)

where
_ KG(2)
STFx@) = 1T xRE
and
NTFk(z) = o
K& =1V KH(z)

are the Signal Transfer Function and the Noise Transfer Function respec-
tively [5]. The indices K for the STF and NTF indicate a model with vari-
able quantizer gain. In the present thesis it will be assumed that K = 1.
For a discussion on this property, refer to [5].

N
wn) | G(z) (22 R (2) y(n)

H(z)

Figure 2.6 Linearized model of a general Sigma-Delta modulator

A common approximation is that the quantization noise is independent
of the linear filter output, e(n), and uniformly distributed in [32, 4], where
A is the quantizer step size. This yields a quantization noise variance of
0'3 e % and the resulting quantization noise in the modulator output
power spectrum is:

2Az

‘I3 (2.2)

Ry, (/%) = NTFy(¢/®)|
In general, H(z) is designed as a low-pass filter, which implies that NT F (z)
is a high-pass filter. This is generally known as noise-shaping and acts to
push as much as possible of the quantizer noise up in frequency and out
of the signal band, where it can be removed by low-pass filtering. Fig. 2.7
displays the (linear model) power spectrum of the modulator output for
U(z) = 0 for the first and second order modulators of Fig. 2.3 and Fig. 2.5
repectively. In the discussion to follow, this linear behaviour will be refered

13
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Figure 2.7 Linearized model output power spectrum for U(z) = 0, for first order
(dashed) and second order (solid) £A modulators.

to as the ideal, or desired, behaviour. The reason for this is simply that a
linear modulator will not exhibit unexpected tones and its behaviour and
performance are easily predictable. The quantization noise in the modu-
lator output is well-defined and, moreover, does not depend on the input
signal.

For the first-order modulator of Fig. 2.3, every doubling of the sam-
pling rate improves the signal-to-noise ratio by 9 dB, providing 1.5 extra
bits of resolution [4]. Higher order modulators provide more quantization
noise suppression over the signal band and more amplification of the noise
outside the signal band.

The Classical Dither Approach

The linearized modulator model has proved valuable for predicting per-
formance and to understand basic properties of XA modulators. However,
the approach has some drawbacks. For instance, the assumption that the
quantization noise is independent of the quantizer input does not capture
the non-linear behaviour of the actual modulator. In fact, the quantization
noise is usually non-white and the modulator may behave rather unpre-
dictable.

An often used method to linearize the modulator, i.e., force the modula-
tor to behave according to the linearized model, is to add a random dither
signal to the signal to be quantized as seen in Fig. 2.8. In the linearized
model, the dither signal, d(n), is added to the signal together with the
quantization noise, g(n), yielding a total quantization noise variance of
0';12 + 0'3, where 0'3 is the variance of the random dither signal. Thus, the

14



2.2 Properties of Non-Linear Dynamical Systems

total noise power spectrum for the dithered modulator is

Ry, (e/*) = [INTF1(d°)- (% + aﬁ) (2.3)

to be compared with the undithered noise power spectrum of Eq. (2.2).
The idea is that the sum of the dither signal and the actual quantization
noise will be sufficiently white for the linear approximation to hold. As
seen in Eq. (2.3), the price to pay for linearizing the modulator is an in-
crease in noise power. For higher order modulators (modulator order > 2),
an increased amount of noise in the modulator loop tend to reduce sys-
tem stability, which in turn requires a reduction in loop gain (K) and a
corresponding increase in baseband quantization noise [5, 6].

d(n)

e(n) Quantizer| ()

uln) 2N Gr(2) (2) s

Figure 2.8 XA modulator with additive dither source

2.2 Properties of Non-Linear Dynamical Systems

In Sec. 2.1, the linearized modulator model was used to describe the de-
sired behaviour of A modulators. In order to explain the origin of tones,
however, the linearized model is not sufficient. The purpose of this section
is to provide a starting point for the investigation of tones in A modu-
lators. Certain characteristics of the non-linear dynamical systems are of
particular interest in this respect. The definitions to follow are reviewed
from Parker and Chua [9] and Risbo [5].

Autonomous Systems

A certain subset of the dynamical systems are the autonomous systems.
Autonomous systems do not depend on time, i.e., they operate without
an external input signal. For instance: Consider the nonautonomous dy-
namical system representation of the XA modulator of Eq. (2.1). If the
modulator input is constantly zero (u(k) = 0,k = 0,1,2,...) the modulator
can be characterized as an autonomous system:

xk+1) = F(a(k)) = Ox(k) — By(k)
y(k) = O(x(k)) = sgn(Cx(k))

15
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The states depend on previous states only. Consequently, the states at a
given time %k can be found by iteratively applying the mapping 7 on the
initial states of the modulator, #(0) € . Likewise, the modulator output,
y(k), is simply the output mapping of the kth iterative mapping of ¥ on
x(0):

x(k+1) F*(x(0))
y(k) = O(F*(x(0))) (2.4)

Definition 2.1 The solution to (2.4), starting at an initial condition x(0),
is the sequence {x(k)}3, = {F*(x(0))}2 . This solution is called the orbit
corresponding to the initial state.

The orbit defines all the states the system visits for a given initial con-
dition.

If the input signal to a nonautonomous system can be generated by an
autonomous system, the nonautonomous system and the input generat-
ing system can be merged into a single autonomous system [5]. Especially,
systems with constant input can generally be described as autonomous.
According to [9], an nth-order time-periodic nonautonomous system can al-
ways be converted into an (n + 1)th order autonomous system. Thus, a ZA
modulator with constant or periodic input can generally be characterized
as autonomous.

Limit Sets

This section aims to characterize the steady state behaviour of non-linear
autonomous dynamical systems from a state-space point of view. The def-
initions of limit sets and limit cycles apply on autonomous systems only.
Steady state refers to the asymptotic behaviour as & — oco.

Definition 2.2 A point y of x(0) is called a limit point if, for every neigh-
borhood U of y, the orbit repeatedly enters U as k — oo. The set L(x(0)),
containing all limit points of x(0), is called the limit set.

The limit set L of an initial condition is the set in S the orbit visits fre-
quently in steady-state.

Definition 2.3 A limit set L is attracting if there exists an open neigh-
borhood U of L such that L(x)=L for all x € U. The basin of attraction
By, of an attracting limit set L is the union of all such neighborhoods U.

Bj is the set of all initial conditions that are asymptotically attracted
to the limit set.

Definition 2.4 A periodic point x, of T is a point for which F*(x,) = x,
for some period k. The least number K for which FX(x,) = %, is called the
prime period of the periodic point and a periodic point with prime period K
is called a period-K point. The closed orbit {x,, F (%), ..., FE(%,)} is called
a limit cycle, which is the limit set of the period-K point.

16



2.2 Properties of Non-Linear Dynamical Systems

Example 2.3 Consider again the first order modulator in Fig. 2.3
with the following dynamical system description:

wk+1) = w(k)+u(k)—y(k)
y(k) = sgn(x(k))

Assuming zero input (u(k) = 0,k = 0,1,2,...) and introducing
polar coordinates:

ro=|w(k)
6 = Zsgn(x(k))
Ar = |x(k) —sgn (x(k)) | — |x(k)|
= /() — sgn(x(k)))? — (k)|
= \/#%(k) — 2x(k)sgn(x(k)) + sgn2(x(k)) — r
= VrP—2ryl-r= \/(r——l)2 -r
—1
A = —;E (sgn (x(k) — sgn(x(k)))) — gsgn(x(k))

-7, if r<l1
0 if r>1

If » > 1, then Ar = —1 and A8 = 0 and the magnitude of r will
decrease with 1. If 0 < r < 1 then Ar is still -1 while A6 = —x.
Eventually, this will force the modulator into a limit cycle be-
haviour, i.e., there exists a steady state periodic solution. In
fact, there are infinitely many solutions; the steady-state de-
pends on the initial condition of the modulator. However, all
solutions have the prime period 2 and are oscillating between «
and (a—1), where the constant a is in the interval [0,1[. Thus; for
practical purposes they are equivalent as they all produce the
same output. The basin of attraction is the whole state space,
i.e., any starting condition will converge towards the limit set.
Fig. 2.9 shows the limit cycle for the modulator simulated with
zero input and x(0) = 0.5. O

Limit Cycle Identification

Exact analysis of higher order modulators is usually extremely difficult.
There may be several coexisting limit cycles and the basin of attraction
can in general not be determined analytically. However, the existence of a
specific limit cycle can be tested by opening the feedback loop. According
to [5], a periodic sequence, y(n), with period % exists as a limit cycle if
the condition y(rn) = sgn(e(n)), where e(n) is the steady-state filter out-
put, holds for all n. Furthermore, e(n) can be found from the linear set of

17
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0.5 -1
041 E
0.3 4
0.2 -1
0.1 N
-0 - -
-0.21 b
-0.3f b
-0.4} =
-0.5f -
-015 -0l4 —0!3 —0l2 —0|1 (') 0I1 olz ols 0I4 0'5
e(n-1)
Figure 2.9 Limit cycle of first order A modulator.
equations:
1 0 - dy - do dj 1T e(0) 1
dl 1 0 i e dN B dz e(1)
0 st dN LA d3 d2 d]_ | N e(k—l) |
0 -« ey - ¢ e1 | v(0) |
Cc1 0 e CN ' Co v 1
(. ) (2.5)
0 cy - ¢ ¢c1 0| [v(k—1) ]

Where d,, and c,, are the coefficents of the loop filter:

_C(2) _ c1izltegz 2+ ey
" D(z)  l+dizl+doz 2+ +dyz N

H(z)

and v(rn) = u(n) — y(n) is the loop filter input. Using symbolic notation,
the solution to (2.5) is:

e =D;Cv (2.6)

Following Risbo [5], to simplify notation, code sequences will be written
as sequences of the symbols ’1’ and ’0’ corresponding to quantizer outputs 1
and -1 respectively. A periodic repetition of a code sequence is indicated by
overlining. For instance, the limit cycle observed in Ex. 2.2 is 10. This limit
cycle is very persistent, especially for low-order modulators and causes a
strong tone at half the sample rate of the modulator.

18



2.2 Properties of Non-Linear Dynamical Systems

Example 2.4 The second order modulator of Fig. 2.5 will be
tested for the existence of the 10 = 1010 periodic sequence as
a limit cycle with zero input. The sequence gives v=[-1 1 —
1 1]7. For this particular modulator, H(z) has a pole at z=1,
which means that the filter has infinite de-gain. The matrix Dy,
is non-invertible and the direct solution, Eq. (2.6), can not be
used because the set of equations has infinitely many solutions.
However, using Eq. (2.5) yields that e = [%+a a %+a a]T is
a solution for any a € R. The limit cycle thereby exists for zero
input, since y(n) = sgn(e(n)) for —2 < a < 0. This corresponds
to any starting condition x(0) = [£0.5 x3]7, where the choice
of xp is arbitrary. A test for the 1001 limit cycle also proved
positive for all initial conditions with x; € {—1,0,1}. Fig 2.10
displays the limit cycles of the modulator for x(0) = [0 0.5]T
and x(0) = [0.25 0.5]T respectively. O

19
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Figure 2.10 Limit cycles of second order feedforward A modulator, a) 1001 limit

cycle b) 11010100 limit cycle.
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2.2 Properties of Non-Linear Dynamical Systems

The Tone Problem

For practical purposes, the tone problem is the presence of unwanted tones
in the modulator output spectrum. That is, instead of the ideal noise spec-
trum of Fig. 2.7, the quantization noise power is concentrated at specific
frequencies. However, there are more aspects to the problem: Recall that
the desired way of function of the modulator is described by the linearized
model of Sec. 2.1. In reality, the modulator is not linear, because of the
non-linear feedback of the 1-b quantizer output. This means that the mod-
ulator risks getting trapped in a limit cycle behaviour. In that case, the
quantization noise is not white and the result is repeated patterns in the
time-domain output and tones in the output spectrum. To sum up: As a
more comprehensive picture of the problem, the origin of tones can be seen
as the result of a modulator diverging from the linearized model, where
the non-linear behaviour is characterized by:

e Limit cycles in state-space

¢ Non-white quantization noise

¢ Repeated patterns in the modulator output
e Tones in the output spectrum

As for the actual output spectrum tones, there are several aspects to
take into consideration, such as:

e The magnitude of the first tone, i.e. the lowest frequency tone.
e The magnitude of the highest tone.

e The location of the tones, e.g., the distance from a low-frequency sig-
nal to the first tone.

For this reason, it can be troublesome to determine whether a method to
eliminate tones is successful or not. The grade of success depends not only
on the method itself, but on the actual application the modulator is being
used for.

Example 2.5 The simple first-order modulator corresponding to
Fig. 2.3 was simulated over 216 samples with a constant input of
1/256 and the quantization levels were +1. Fig. 2.12 shows that
the modulator output spectrum contains several tones. When
the modulator has a small constant input m,, the output will
alter between +1 and —1. From time to time, in order to keep the
mean value of the modulator equal to the dc-bias, the modulator
will typically generate two identical code segments. This pattern
will repeat approximately every 1/m, sample, as the difference
between the modulator input and output accumulates in the
integrator loop, and cause tones.

In the frequency domain, each component of a limit cycle con-
tains a spike at frequency 0 and spikes spaced at integer mul-
tiples of the fundamental frequency f = 1/K [9]. Fig. 2.12
indeed contains such spikes or tones which indicates a limit
cycle behaviour. The spectrum consists of tones located at ev-
ery 128th bin. This corresponds to a fundamental frequency of

7 . . . . . .
= %8 = 2%7; = 5—%2, suggesting a periodic solution with a prime
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period of 512. However, the strong emphasis on tones at inter-
vals of 256 bins indicates a strong correlation between adjacent
groups of 256 samples. A possible interpretation is that the so-
lution is almost 256-periodic. Fig. 2.13 displays the steady-state
space of the modulator, confirming a periodic solution (although
it is difficult to make out that the solution is 512-periodic.) The
emergence of tones can also be seen from a time-domain per-
spective. In Fig. 2.11 the output of the modulator, fed with a
constant input of 1/256, is shown together with the output cor-
responding to zero input. In comparison to the zero-input case,
the modulator with non-zero input displays two distinct pat-
terns: The basic {+1,—1,+1,—1,...} sequence is still obvious,
but when the output is arranged in groups of 256 samples it is
clear that adjacent groups are inverted. Secondly, in every other
group, the last element is inverted. As expected, the period is
512 samples and there is indeed strong correlation between ad-

jacent groups of 256 samples. a
Sample Nbr:
1 2 3 .. 255256 257 258 259 ... 511512 513 514 515 ... 767 768 ...

Output from modulator with zero input:
T I T I T T e e e P A T e R
Output from modulator in Example 2.5:
[+af-afea] = [afea]  [afa]a] - [afea] (] ] ]

~ -

whole group inverted
last element in group inverted

Figure 2.11 Output for the modulator in Example 2.5

For a thorough investigation of quantization noise in single-loop ZA
modulators with dc input, refer to [8].
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2.2 Properties of Non-Linear Dynamical Systems

Example 2.6 The second-order modulator of Fig. 2.5 was sim-
ulated under the same conditions as in Ex. 2.5 and the result-
ing spectrum is showed in Fig. 2.14. Since the space between
adjacent tones is 64 bins, the prime period of the solution is
K = 2%: = 1024. In comparison to the first-order example of
Fig. 2.12, the magnitude of the tones are significantly lower.
However, the distance to the first tone is only half of that of the
first order modulator. Fig. 2.15 displays the orbit of the second-
order modulator plotted in a grey-scale: Points on the orbit that
are visited frequently are lighter than points that are rarely
visited. Points that are never visited are plotted in black. It
is difficult to identify any limit cycle behaviour from the plot.
However, the orbit is seemingly periodic. As for the time-domain
perspectives, second- or higher-order modulators are rather dif-

ficult to analyse; the output patterns are usually quite complex.
O
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Figure 2,12 Magnitude of FFT of first order modulator output of Ex. 2.5. The
spectrum has tones at every 128th bin and the tones of greatest magnitude recur
every 256th bin.
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Figure 2.13 Limit Cycle of the first-order modulator of Ex. 2.5.
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Figure 2,14 Magnitude of FFT of second order modulator output of Ex. 2.6. There
are tones at every 64th bin.
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Figure 2.15 Orbit of the second order modulator of Ex. 2.6.
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3. Methods for
Tone-Suppression

Unwanted tones are produced when the modulator is trapped in a limit
cycle behaviour. This is often characterized by repeated patterns in the
output signal, i.e., there is a close relationship between the periodic out-
put and the limit cycles in state-space [5]. In order to eliminate tones it
is therefore important to consider how to break up, or randomize, these
patterns. This can also be seen as an attempt to linearize the modulation,
i.e., force the modulator to behave according to the linearized model.

The starting point for the analysis is a modulator model, which utilizes
Signal Dependent Dithering (SDD) to linearize the modulation and sup-
press tones. This model is displayed in Fig. 3.1, where the modulator is
equipped with a source D that generates a dither signal, d(n) € {+1,-1}.
As the dither signal affects the filter output, e(n), before quantization, a
—1 bit will alter the output signal in sign. The inversion probability, i.e.,
the probability that a —1 bit is generated, depends on the filter output and
will be used to characterize different SDD methods:

pa(e(n)) = Prob{(d(n) = —1)le(n)}

There are certain advantages with the SDD model:

¢ A general feature of a XA modulator is the low-pass characteristics
of the loop filter, H(z). As a consequence, the (Quantization) Noise
Transfer Function is high-pass and acts to push most of the quanti-
zation noise out of the signal band. Moreover, any modification made
on the signal between H(z) and the quantizer will be shaped accord-
ingly, that is, have minimal impact on the modulated signal from a
low-frequency perspective. In other words: Noise-shaping in the mod-
ulator ensures that the dither signal, d(n), has minimal impact on
the low-pass part of the output signal.

¢ Sign inversions may have a direct influence on limit cycles in state-
space.

e Commonly used methods for tone-suppression, e.g., classical additive
dither, are comprised in the SDD model.

¢ The model helps to understand the effect of different dither methods.

e The expected value of the probability ps(e(n)) is a measure of the
uncertainty of the quantization: Let x = E[py(e(n))] be the expected
value of the inversion probability and let Y = sgn(y(r)) and E =
sgn(e(n)) be stochastic variables. The conditional entropy of the quan-
tization output given the sign of the linear filter output is then:

H(Y|E] = —x-loga(x) — (1 — x) - loga(1 — x),

If x = 0, the uncertainty is 0 bits and for x = 0.5 the uncertainty is
1 bit.
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3.1 Signal Dependent Dither

e The probability pj(e(n)) can be used to estimate the additional noise
power introduced by the dither signal. Moreover, making d(n) signal
dependent can help to reduce the amount of additional noise power
introduced.

It should be pointed out that the following analysis is conducted with a
starting point in the need to randomize repeated patterns in the modula-
tor output. This might seem surprising, since Ch. 2 recommends a more
comprehensive approach to the problem. However, that position is, in many
respects, motivated by the problems encountered in the following analysis.

For the simulations in the present work, the oversampling rate is set
to 32, yielding a signal bandwidth of 0 < f < 6‘12'

d(n)

Quantizer| y(p)

|

Figure 3.1 Sigma-Delta Modulator with Signal Dependent Dithering.

3.1 Signal Dependent Dither

Example 3.1 Consider the case where py(e(rn)) = pi, where
p1 is a constant (which implies that the dither signal is in fact
signal independent). The first order modulator was simulated
for different values of p; and the resulting output spectrums are
shown in Fig. 3.2. Apparently, the noise floor drowns the signal
before the tones are suppressed. In other words: this method is
not capable of linearizing the modulator. O

The signal independent method of Ex. 3.1 has a major drawback: To ran-
domize the output sequence the probability for sign alteration, pi, needs
to be large, and with that, the noise floor rises concurrently. Thus: in order
to successfully suppress tones, it seems necessary to find measures with
minimal impact on the overall quantization noise in the modulator.
Consider a 1-bit modulator, i.e. the quantizer is basically a sign detector.
The quantizer output, y(n), is typically chosen from the set {+Q,—@Q},
where @ is the quantization level and the output is chosen in order to
minimize the quantization error, g(n) = y(n) —e(n). If the magnitude of
e(n) is close to a quantization level the choice of y(n) seems natural since
a different choice of y(rn) would introduce a considerable error. However, if

27



Chapter 3. Methods for Tone-Suppression

Magnitude [dB]
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Frequency normalised to f_

15
x107°

Figure 3.2 PSD of modulator output of Ex. 3.1. The values of p; are a) 0, b)
0.15 and c¢) 0.25. The dashed line is the corresponding linear approximation of the
quantization noise.

le(n)| < @ the choice appears more arbitrary. For example, if e(n) is small
and positive, the additional error introduced by choosing y(n) = —@Q is
relatively benign. The relationship between inverted codes and additional
quantization error is illustrated in Fig 3.3. In Ex. 3.1, no attention was
paid to the actual quantizer input when the output code was inverted: It
was equally likely that elements corresponding to low magnitude input
were inverted as elements corresponding to inputs of magnitudes close to
@. One might guess that this would lead to unnecessary quantization noise
and that a better approach would be to take advantage of the existent filter
output signals when deciding which samples to invert. This is also the basic
idea of the Signal Dependent Dither model of Fig 3.1, which utilizes the
information of the filter output, e(rn), when determining the instantaneous
value of pg.

Inverted Bits and Quantization Noise Power

To explain the benefit of the SDD model, consider Fig. 3.3: The quantization
error can be written as g(n) = go(r) + gq(n), where |qo(n)| = |y(n)| —
le(n)| is the error corresponding to quantization without dither and g4(n)
is the additional quantization error corresponding to an inverted bit. In the
interval 0 < |e(n)| < 1, the magnitude of the additional quantization error
is |gq(n)| = 2|e(n)] and if |e(r)| > 1 then |gq4(n)| = 2. Naturally, inverted
bits contribute to the overall quantization noise power and an intuitive
counter-move is to let py decrease with |e(n)|. This can be achieved in the
SDD model.

Example 3.2 Simulations were made on the first-order mod-
ulator for different pgy(e(n)). For each choice of pg(e(n)), the
modulator was simulated over 212 input samples for 100 ran-
domly chosen constant input signals in [-1,1]. For py(e(n)) =0,
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3.1 Signal Dependent Dither

e(n)

+1+
 Inversion of sign causes large additional error - use smallpy |
Error increases with 2 |e|
Decrease py
04 Inversion of sign will not cause large additional error - use large p
-1+

Figure 3.3 Impact of sign inversion on additional quantization error.

the mean squared quantization noise was -4.77 dB. Secondly
when py(e(n)) = 0.15, the mean squared quantization noise
was as high as 38 dB! and the fraction of the number of in-
verted samples to the total number of samples was 15%. Fi-
nally, ps(e(n)) = 0.45(1 — |e(n)|) also resulted in 15% inverted
bits whereas the mean squared quantization noise was -2.81dB.

O

The remainder of this section will be devoted to an analytical analysis
of different choices of the inversion probability function, pi(e(n)). Two as-
pect are of particular interest. One is the expected value of ps(e(n)), which
is used as a measure of the ratio of inverted samples to the total num-
ber of samples. This quality will be put in relation to the additional noise
power introduced by the method and the basic idea is to find a choice of
pale(n)), which introduces a minimum of additional noise power, yet with
large E[p4(e(n))]. This objective needs to be commented on: First, the ad-
ditional noise power is not the most eligible measure. In reality, only the
low-frequency components of the quantization noise are of interest and it
would be desirable to utilize some sort of weighting function when eval-
uating the impact of this quantity. This, however, requires knowledge of
the quantization noise correlation function, which depends on both the
choice of modulator and the actual input signal. Another obvious question
is whether or not E[pg(e(n))] is a good measure of tone-suppression ability.
This will be investigated in Sec. 3.1.

Recall the linearized modulator model in section 2.1. Let the quantiza-
tion noise consist of g¢ and g4 so that:

Y(z) = STF,(2)U(2) + NTF,(2)(Qo(2) + Qa(2))

For quantization without dither, i.e., no inverted bits, the quantization

'The reason for this very poor result is that the input signals are allowed to be large.
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Chapter 3. Methods for Tone-Suppression

noise is:

_ 1—e(n) if e(n)>0
qo(n) = { —1—e(n) if e(ln)<O0

and the quantization noise power is:

A% 1
Vigo(n)] = 12" 3 (3.1)
Now lets analyse two cases when the signs of some bits are inverted
with probability py(e(rn)). To simplify the analysis, it is assumed that the
quantizer input is uniformly distributed in [-1,1]. The assumption is not
entirely correct. However, it is reasonably accurate for the first-order mod-
ulator with constant input. The assumption will be used throughout the
rest of this chapter. The quantization noise is:

1—e(n), with probability 1—pgy(e(n)), if e(n)>0
—1—e(n), with probability pale(n)), if e(n)>0
), with probability pale(n)), if e(n) <O
—1—e(n), with probability 1—pgle(n)) if e(n) <0

First, consider the signal independent model with py(e(r)) = p;, where
p1 is a constant in [0,1]. The total quantization noise power in this case is:

0
Vigi(n)] = / ((—1—e1)*(1 = p1) + (1 —e1)p1) fE, (e1)des +

+ Am((l — 61)2(1 —p1)+(-1- 61)2p1)fE1(el)del
_ 1 2(1—2p)Efles]] + Ele (32)

Observe that the pdf of the quantizer input is not the same as in the case
where no bits were inverted. In fact, the pdf is shown in Fig. 3.4. The
heights f1,f2... are determined by using a M /M /1 model with 4 = p;
and x4 = 1—p; [12]:2

where

) = 20 = (125) 200

is the probability that i < |e1(r)| < ({ + 1) and

1—2p,
0) =
p(0) 1o

2The time between sign inversions is assumed to be exponentially distributed with
an expected value of % Likewise, the time between two uninverted bits is also assumed
exponentially distributed with an expected value of !%
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3.1 Signal Dependent Dither

It is now possible to determine E|[|e;|] and E[e3]:

Ellei] = Y p() 5(2i+1)
=0

_ %p(O) 3 pi(2i+1)

=0
1 1 d 1
B 5p(0)<1 o 123010 fp)
_ 1 pi
o 2 1—2p1 (33)

B = S p0) s (G+1p2-#)
i=0

o0

= gp(o Z;(o‘ (812 +3i+1)

— 1 (0) 1 +3 d 1 +3 i i_l___

= 3? 1—¢ q)d(ol ® (pd(o (pd(ol—(p

1 P1 p1

37 T—2p1 " (1—2p1) S
Now, Eqns. (3.2) to (3.4) give the variance of the simple method:

1 2p
mu —p1) (3.5)

where the second term is the additional noise power, caused by the inverted
bits. Also, the expected value of py(e(n)) is p1.

Vigi(n)] = Vigo] + Vg, ] =

fE, (e(n))

fo

fi

-3 -2 -1 0 1 2 3 e1(n)

Figure 3.4 PDF for the quantizer input for the signal independent method, where
pale(n)) = p:

Next, consider a refined, signal dependent implementation. For instance:

| pe(@—le(n)]), if le(n)] <1
pale(n)) = { o i Jo(n)|> 1 (3.6)
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Chapter 3. Methods for Tone-Suppression

for some constant 0 < pg < 1. In this case, the probability of sign-inversion
decreases with the magnitude of the quantizer input, which is expected to
entail favourable results. The total noise power of the implementation (3.6)
is determined by using the pdf of the quantizer input shown in Fig. 3.5:

1
Viga(n)] = 2/0 (1 —e2)?(1 — p2(1 —e2)) + (—1 —e2)®pa(1 — e2)) fi, (e2)des +
2
+ 2/1 (1 —e2)?fr,des
1 1
= 2/0 ((1 —e2)(1 — pa(1 —e2)) + (—1 —e3)’pa(1 —e2)) 5 (1 —paez)des +
: i
+ 2/1 (1 —62)2§p2(2 —e2)d62

= %+%(2—p2) (3.7)

Furthermore, the expected value of py(e(n)) is:

1
Elpg,(e(n))] = 2 /O pa(l— e2)fr,des

1
1
= 2/0 pz(l—ez)é(l—pzez)dez

p p
= 52(1 B 32 (3.8)
fE;(e2(n))

e2(n)

Figure 3.5 PDF for the quantizer input for the refined method of Eq. (3.6), where

pale(n)) = pa(1—|e|). The levels in the figure are a = 1, b= 1(1—p;) and ¢ = 1p,

In Table 3.1, the estimated values of the quantizer noise variance and
expected value of p;(e(n)) are compared to simulated values. The simulated
values are the mean values of 50 simulations of the first-order modulator
over 212 samples with random constant inputs in the range [-0.1,0.1]. In this
input range, the estimated values seem reasonable accurate. Fig. 3.6 shows
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3.1 Signal Dependent Dither

a plot of the estimated additional noise power against the estimated value
of El[pg(e(n))] for the signal independent and signal dependent methods.
Apparently, the signal dependent method introduces less noise power to
the modulation than the independent method. In other words; it can invert
more bits than the signal independent one for a certain noise floor level.
Intuitively, a large number of inverted bits increases the chance to dissolve
a limit cycle behaviour. This theory is in agreement with Fig. 3.7 and 3.8,
where the PSD:s of the modulator outputs are plotted for the two methods.

-
o

Additional Noise Power [dB]
o

20

25 Il 1 L
0 0.05 0.1 0.15 0.2

P(invert)

Figure 3.6 Additional noise power vs. E[p;(e(n))] for the signal independent
method (solid line) and the signal dependent method (dashed line).
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Table 3.1 Comparison between estimated and simulated values of noise power
and inversion probability. The simulated values are the mean of 50 simulations

with random constant inputs in [-0.1,0.1}
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Figure 8.7 PSD of modulator output for py(e(n)) = 0 (dotted line),
pale(n)) = 0.20 (solid) and pyle(n)) = 0.5(1 — |e|) (dashed), for constant input
1/256. The total quantization noise power for the methods are -4.8 [dB], 0.8 [dB]
and -2.2 [dB] respectively and the ratio of inverted bits are 0, 19.9% and 21.7%.
The smooth solid line is the corresponding linear approximation of the quantization
noise.
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Figure 3.8 PSD of modulator output for py(e(n)) = 0 (dotted line),

pale(n)) = 0.10 (solid) and pyle(n)) = 0.5(1 — |e|) (dashed), for constant input
1/2-1/256. The total quantization noise power for the methods are -4.8 [dB], 0.6
[dB] and -2.6 [dB] respectively and the ratio of inverted bits are 0, 9.9% and 17.56%.
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Minimizing the Quantization Noise Power

It is easy to see that the inversion probability function that has the lowest
level of additional quantization noise for some fixed E[ps(e(n))] is:

p for le(n)|<b

0 for |e(n)|>b (3:9)

pale(n)) = {

Obviously, p=1 minimizes the noise power: Cheap sign changes are always
made and costly ones are always avoided. However, it is not desirable to
always invert codes, even if they are cheap. The purpose is to randomize
the output sequence and hence, the natural choice is p=0.5. The quantizer
input pdf for this implementation is shown in Fig. 3.9. Furthermore, the
quantization noise power and the expected value of py(e(n)) are:

b
Vigs(n)] = 2/0 (%(1—e3)2+%(—1—e3)2)%de3+
1-b 1+b
+ 2/b (1—63)2%de3+2/1_b (1—83)2ide3
_ % b2 (3.10)
b
Elpg,(e(n))] = 3 (3.11)
[E,(es(n))
o= e 0.5
E I: 0.25
-2 -1 0 b 1 1+b 2 es(n)

Figure 3.9 Approximate pdf for the quantizer input for the method of Eq. (3.9)
with p = 0.5.

Fig. 3.10 shows the estimated amount of additional noise power that
this - seemingly optimal - method produces in comparison with the two
methods investigated previously. Obviously, the method allows the largest
number of inverted bits for any fixed level of quantization noise and is, in
fact, optimal in this sense. However, this does not necessarily mean that
the method is optimal from a tone-suppression point of view.

In Table 3.2, the estimated values of the quantizer noise variance and
pqle(n)) are compared to simulated values. The simulated values are the

36



3.1 Signal Dependent Dither

mean values of 50 simulations of the first-order modulator over 2!? samples
with random constant inputs, this time in the range [-0.5,0.5]. There are
some interesting things to notice:

e The estimates for the signal independent method do not hold - the
simulated values of the noise power are considerably higher.

e The estimates for the signal dependent methods are still reasonable
accurate. However; the simulated values of py(e(n)) are somewhat
lower than the estimated, resulting in less quantization noise power.

In explanation, recall that the quantizer input - and the quantization noise
in consequence - is not white: The quantizer input, e(n), is the sum of the
preceding values of the quantizer input, e(n — 1), the negated quantizer
output, y(n — 1) and the modulator input, u(n — 1). When the quantizer
input is inverted, the number of time steps needed to "recover" (return to
the interval —1 < e(n) < 1) depends on both ps(e(n)) and the magnitude
of the modulator input. If the modulator input has opposite sign to the
quantizer input this will speed up the recovery. Inversely, if the modulator
input has the same sign, recovery will take more time-steps. For instance,
consider the extreme case, where u(n) = 1 and, consequently, the sum of
the modulator input and the negated modulator output is either 0 or 2,
depending on whether or not the quantizer input is altered in sign. If the
quantizer input is altered in sign, the modulator can never recover and in
return, the quantizer noise will increase dramatically. To sum up: Large
modulator inputs may slow down the recovery rate of the modulator. As
a consequence, the quantizer input pdf tends to decrease for small e(n):s
and increase for large e(n):s, resulting in increased quantizer noise for the
signal independent method and lower E[p;(e(n))] for the signal dependent
methods.

The line of arguments above suggests that the inversion probability
should depend on the actual modulator input. That is, p;(e(n)) should
increase with the magnitude of the modulator input, u(n), if u(n) has op-
posite sign to the filter output, e(n). Conversely, the inversion probability
should decrease with u(n), if u(n) has the same sign as e(n). This will be
investigated further in Sec. 3.4.
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Table 3.2 Comparison between estimated and simulated values of noise power

and inversion probability. The simulated values are the mean of 50 simulations

with random constant inputs in [-0.5,0.5]
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Figure 8.10 Additional noise power vs. py{e(n)) for the signal independent
method (solid line) and the signal dependent methods of Eq. (3.6) (dashed line)
and Eq. (3.9) (dotted line).

The Inversion Probability vs. Tone-Suppression

The next question to answer is whether or not the expected value of py(e(n))
is a good measure of tone suppressing ability. As seen, it is possible to
obtain a large number of inverted bits by avoiding to invert bits corre-
sponding to large magnitudes of e(n). However, it may very well be so that
these costly sign changes have a greater influence on limit cycle behaviour
than the inversion of bits corresponding to small values of |e(n)|. Consider
for example Fig. 3.11, which shows the PSD of the method of Eq. (3.9).
In comparison to the method of Eq. (3.6) (which is seen in Fig. 8.7), the
quantization noise power is less and the ratio of inverted bits is higher.
Still, the method does not perform well and is, in fact, not capable of tone-
suppression at all. To all appearances, this means that the expected value
of pg(e(n)) is not a good measure of tone-suppression ability.
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Figure 3.11 PSD of first order modulator output for constant input 1/256. The
dotted line is p;(e(n)) = 0. The dashed line is py,(e(n)) with b=0.5, with a quan-
tization noise power of -2.4 [dB] and a ratio of inverted bits of 25%. The solid line
is the linear approximation of the quantization noise.

3.2 A Comparison with the Classical (Additive)
Dither Approach

The use of additive dither to eliminate unwanted tones in ZA modulators
was described in Sec. 2.1: The dither source generates a random sequence,
which is added to the quantizer input. If the dither signal has opposite
sign to the quantizer input and exceeds it in magnitude, it will alter the
output in sign. It is common to use dither signal with Rectangular Prob-
ability Distribution (RPD) or Triangular Probability Distribution (TPD),
where it is claimed in [6] that RPD dither is to be preferred in £A mod-
ulation. Examples of simulations of the usual first order modulator with
additive RPD dither are displayed in Fig. 3.12, together with the linear
approximation. In this case, RPD dither in [—1, 1] is sufficient to linearize
the modulator. According to Eq. (2.3), the addition of dither should cause
the noise power to increase, whereas in Fig. 3.12, the dithered modulator
quantization noise spectrum seems to be equal to the linear approximation.
One possible explaination is that the additional noise power can be found
at higher frequencies, possibly around —’;ﬁ and that this is caused by the
very persistent 10 limit cycle of the first-order modulator. The total noise
power, however, is in accordance with Eq. (2.3).

RPD and TPD Dither

An obvious question is how the model of Fig. 2.8 with additive dither is
related to the SDD model of Fig. 3.1. To analyse that relationship, consider
a general rectangular probability density function

1 g<dln
fr(d(n)) = { 5= a<d(n)<b

0, otherwise

The dither signal, d(n), alters the sign of an output element if d(n) has

40



3.2 A Comparison with the Classical (Additive) Dither Approach
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Figure 3.12 PSD of first order modulator output. a) no dither. b) RPD dither
with magnitude 1/4. ¢) RPD dither with magnitude 1/2.

opposite sign to e(n) and exceeds it in magnitude. Hence:

pae(n)) = P((ld(n)] > le(n)]) A (sen(d(n)) # sgn(e(n)) (3.12)

In order not to corrupt the mean of the modulated signal, the RPD should
be centered around zero, i.e. @ = —b. This means that the probability that
the dither signal has opposite sign to e(n) is always 0.5 and Eq. (3.12)
becomes:

pale(n)) = P(ld(m)]| > le(n)]) - P(sga(d(n) # sen(e(n)))
= 1p(ld(m)l > () (3.13)

If —b < e(n) < 0 then (refer to Fig. 3.13)

b
patem) = | e(ﬂ)zib dx = (b +e(n) (3.14)

and if 0 < e(n) < b then

pale) = [ g5 de=gr(b—e(m) (3.15)
Combining Eq. (3.14) and (3.15) yields

35(0 —le(n)]), le(n)| <b

0, le(n)| > b (8.16)

Pay(e(n)) = {

for RPD dither in [-b,b]. A similar analysis of additive dither with a trian-
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Figure 3.13 py(e(n)) for RPD

gular probability density function

l_dn

fr(d(n)) = { _l!:Ea -b<d(n)<b

0, otherwise
yields

_ ) b —le()])’, le(n)| <b
pa;(e(n)) = { (2)” e(n)] > b

Example 3.3 The uniform distribution assumption for the quan-
tizer input will be used to compare additive RPD dither to the
signal dependent implementation of Eq. (3.6). To simplify the
analysis, the additive dither is assumed to be in the interval
[-b,b], where 0 < b < 0.5. In Fig. 3.12 it was also seen that
b = 0.5 was sufficient to dissolve tones. The estimated values of
the noise power and the expected value of the inversion proba-
bility are:

(3.17)

1 b2
V[QR] = §+?

Elpa,] = 3

Fig. 3.14 shows the additional noise power plotted against the
expected value of py(e(n)) for the two methods, together with
the, in this sense, optimal method of Eq. (3.9). The implementa-
tion with additive RPD dither is able to invert a larger amount
of bits for a fixed level of quantization noise power and is in-
deed close to the optimal method. In Fig.3.15, the PSD:s for the
two methods are plotted. The SDD implementation of Eq. 3.6
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3.2 A Comparison with the Classical (Additive) Dither Approach

is using pg = 0.5 while the RPD dither is in [-0.5,0.5]. The per-
formance of the RPD method is clearly better than the SDD
method. This is not surprising: The SDD method of Eq. (3.6)
with pg = 0.5 is in fact equal to additive RPD dither in [-1,1],
which can be seen by comparing Eq. (3.6) to Eq. (3.16). To all
appearances, the RPD method is the most suitable of the two
when it comes to linearizing the first-order modulator. |

-5 T T T T T T

Additional Noise Power [dB]
P
[4])
1]

—a0f | - SDD of Eq.(3.6)|
RPD
SDD of Eq.(3.9)

1 ' i 1 1
0.02 0.04 0.1 0.12

0.06
E[p (e(m)]

Figure 3.14 Additional noise power vs. E[py(e(n))] for additive RPD dither and
the SDD implementations of Eq. (3.6) and Eq. (3.9).

Example 3.4 The second-order modulator of Fig. 2.5 was sim-
ulated using RPD dither and the SDD method of Eq. (3.6). In
comparison to Ex. 4.5, the RPD dither magnitude needed to be
larger in order to linearize the modulation. Inversely, the SDD
method required approximately ps = 0.3 to dissolve tones. The
reason for this altered behaviour is basically that the distribu-
tion of the linear filter output is not the same for the second-
order modulator. For instance, the orbit of Fig. 2.15 contains
many points corresponding to a filter output larger than 1,
whereas the first-order modulator filter output is roughly in [-
1,1]. The PSD:s for the two methods are displayed in Fig. 3.16:
The two methods have the same quantization noise power and
seem equally capable of linearizing the modulator. Fig. 3.17
shows the orbit of the modulator with RPD dither in [-0.78,0.78]
to compare with the undithered case of Fig. 2.15. O

Dither with Arbitrary PDF
An additive dither signal with an given, arbitrary, PDF, fp(d(n)) with

43



Chapter 3. Methods for Tone-Suppression
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Figure 3.15 PSD of first-order modulator output for additive RPD dither (dashed
line) and the SDD implementation of Eq. {(3.6) (solid line).

E[d(n)] = 0 and a < d(n) < b corresponds to:

0, b < —e(n)
f_be(n) fo(x)dx, 0<—e(n)<b
fa_e(n) fo(x)dx, a<—e(n)<0
0, —e(n)<a

pa(e(n))(e(n)) = (3.18)

Thus, the SDD model comprises all classes of additive dither pdf:s - it is all
a matter of matching pg(e(n)) to a given pdf, using Eq. (3.18). The opposite
is, however, not true: Taking the derivative of Eq. (3.18) with respect to
e(n) yields:

0, b < —e(n)
dpa(e(n)) _ ) fo(—e(n)), 0<—e(n)<b
de(n) —fo(—e(n)), a<—e(n)<0 (3.19)
0, —e(n)<a

Since fp(x) > 0 for all x, the function pg(x) is always increasing for x < 0
and decreasing for x > 0 for all additive dither implementations. This gives
arestriction on the inversion probability functions that can be implemented
by additive dither.
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3.2 A Comparison with the Classical (Additive) Dither Approach

201
B850 3.6), p,=0.3
-—- RPD, b=0.78
——  Linear Output
_10..
-40f
_70_
100 IR bR n e My BEE VS HE pE S F GG

3 6 9 12 15
Frequency normalised to fs x 107

Figure 3.16 PSD:s of second-order modulator output for additive RPD dither and
the SDD implementation of Eq. (3.6).
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Figure 3.17 Orbit of second-order modulator with RPD dither in [-0.78,0.78].
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Chapter 3. Methods for Tone-Suppression

3.3 Linearized One-Bit Quantization

In Sec. 3.1 it was seen that even if a method introduces a high ratio of
inverted bits, it does not necessarily suppress tones. In fact, neither of
the methods that proved capable of ton-suppression was the one with the
largest E[pgy(e(n))] for a fixed level of noise power. However, the methods in
question have another thing in common; they both have an inversion prob-
ability function that decreases with |e(r)|. Moreover, the inversion proba-
bilities for the successful methods have had an infinite number of possible
values, whereas the unsuccessful methods have had only one or two. This
aspect of the inversion probability function has an interesting interpreta-
tion: The actual 1-bit quantizer takes no consideration to the magnitude of
e(n). A positive value of the quantizer input results in an output of +1, no
matter how big or small the input is. However, the quantizer together with
a proper inversion probability function, may behave linear in the mean.

Assume that the quantizer input is constant, e(n) = % and that the
inversion probability function is p;(&). The expected value of the quantizer
output, y(n), is then:

E [sgn((1—pg(k)) -k +pa(k) - (=k))]
= sgn(k)-(1—2p4(k)) (3.20)

E[y(n)]

Using Eq. (3.20), the expected values of the quantizer outputs for the meth-
ods previously examined are:

E[yi(n)] = sgn(k)-(1—2p1) (3.21)
E[ys(n)] = sgn(k)-(1—2p2(1—|k|)
= sgn(k)-(1—2pg+ 2ps|k|)
2p2k + (1 —2p3)sgn(k) (3.22)
1, e(n)>b
Elys(n)] = 0, le(n)]<b (3.23)
-1, e(n)<-b
Elyr(n)] = sen(k)- (1~ 252 (b |t])
= sgn(k)-(1—1+@)
k
= 3 (3.24)

Fig. 3.18 displays the impact the different methods have on the mean
of the quantizer output. There are some interesting things to notice:

e The method in c¢) is the method that allows the greatest ratio of in-
verted bits. However, from the figure it is clear that what the method
basically achieves is to introduce - in the mean - a third quantization
level. Since modulators with two bit quantizers exhibit tones as well,
this can explain the failure of the method.

e The signal independent method in a) is even worse. In the mean, the
quantizer output is only scaled.
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Figure 3.18 Expected value of quantizer output, ¥, plotted against constant quan-
tizer input, &, for different py(e(n)). a) p1 b) pa(1 —le(n)|) ¢) 0.5 if |e(n)| < b and
otherwise 0 d) additive RPD dither ( 55 (b — [e(n)]) ).

¢ The methods in b) and d) are the ones that proved successful in dis-
solving tones. They also seem to act towards making the quantization
linear in the mean. For instance, in the case when pg = 0.5and b =1
the two methods are equal and the expected value of the quantizer
output is &, i.e., the same as the quantizer input.

Unwanted tones are basically caused by the highly non-linear one-bit quan-
tizer. If the number of quantization levels is large, tones are less likely to
occur in the modulator output. Bearing this in mind, the use inversion
probability distributions making the quantizer linear in the mean is no
doubt appealing.

A possible criterion for linearizing a XA modulator is that a sufficient
ratio of the linear filter output samples are within the interval where the
quantization is linear in the mean. For instance; the RPD method allows
linear quantization in the interval [-b,b]. For the first-order modulator,
the filter output is roughly in [-1,1] and b = 0.5 is sufficient for tone-
suppression. In the second-order case, there are several points on the orbit
outside [-1,1] and, consequently, a smaller ratio of samples within the linear
interval. Hence; the linear interval needs to be increased in order to sup-
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Chapter 3. Methods for Tone-Suppression

press tones. This theory is in agreement with the behaviour of the SDD
method of Eq. (3.6) as well: In this case, there are two linear intervals,
namely [-1,0] and [0,1]. However, the quantization is not linear close to the
origin. The first-order modulator has a very persistent 10 limit cycle, which
means that the orbit frequently moves across the quantization nonlinear-
ity. In order to linearize the modulation, the method requires ps = 0.5, for
which the origin is contained in the linear interval. As for the second-order
modulator, there are several possible limit cycles and the 10 pattern is
not as pronounced. This means less crossings of the origin and, in turn, a
smaller value of pg is required.

3.4 State-Vector Dependent Dither

The signal dependent dither model has been introduced as a method to sup-
press tones in XA modulation. It was seen that the result was improved
when the filter output, e(n), was taken into consideration when determin-
ing pg(e(n)). The attendant question is: Could the result be improved by
using the information of the whole state-space as basis for the decision?
This will be addressed in the following section.

The vector quantizer model of Fig. 3.19 was proposed in [5]. Modulators
which utilize vector quantization is naturally a superset of the SDD model.
The basic idea is to map the entire state space into the binary output
alphabet. It is pointed out in [5] that the dither signal should preferably
be a non-linear projection of the filter states. If a linear projection is used
it will be equivalent to a traditional modulator topology with a modified
H (z) transfer function, i.e., a linear state-space projection can only change
the zeros of H(z). Therefore, the basic ideas from previous sections will
still be used, with the modification that ps(e(n)) may now depend on all
states.

Xr

D
d(n)
u(n) T e(n) Quantizer y(n)
z H(Z) \>_</ _I_

Figure 3.19 XA modulator with vector quantization

In the following, the basic idea is to use the information to predict the
quantization noise in the following time-step, and take this under consid-
eration when deciding upon which bits to invert. Recall again that the
quantization noise is not white; an inverted bit at some time step will af-
fect the quantization noise at following time steps as well. This effect was,
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3.4 State-Vector Dependent Dither

by way of example, seen in Table. 3.2, where the performance of the sig-
nal independent method was dramatically deteriorated when the constant
input signal was large. However, this non-whiteness can also be used to
predict the impact an inverted bit at a cerain time-step will have on the
quantization noise at following time-steps. It should be pointed out that
the following line of arguments is rather intuitive of nature.

Consider the dynamical system model of a XA modulator:

x(k+1) = ox(k)+ Au(k)— By(k)
e(k) = Cx(k)+ Du(k)
y(k) = sgn(e(k))

When a bit is inverted at time-step %, the quantizer input at time-step 2+1
is

e(k+1) = C(Px(k)+ Au(k)— By(k))+ Du(k+1)
= C(®x(k)+ Au(k) + Bsgn(e(k))) + Du(k +1) (3.25)

To simplify the analysis it is assumed that if the sign of the quantization
input is altered, then sgn(e(k+1)) = sgn(e(k)) (where e(k) refers to the true
value of the quantizer input, i.e., before inversion). Moreover, it is assumed
that the sign of the quantizer input at time-step & + 1 is not inverted.
These assumptions are based on the action of the negative feedback of the
modulator: For instance, if the quantizer input at time-step % is positive
and its sign is altered, the negative feedback will most likely cause e(k+1)
not only to have the same sign but also to be greater in magnitude. The
second assumption is, however, only applicable on implementations whose
inversion probabilities decreases with the magnitude of e(k).

Assuming constant input (u(k + 1) = u(k)), the quantization error at
time-step & + 1 is:

qlk+1) = ylk+1)—e(k+1)
(1-CB)—(C®xx(k)+(CA+D)=*u(k)), e(k)>0
—(1—-CB)—(CO +x(k)+ (CA+ D) +u(k)), e(k)<0
(3.26)

That is, given the assumptions above, the quantization error at time-step
k + 1 is known at time-step k£ and it is possible to take this information
into consideration when deciding upon which bits to invert. In fact, the
quantization error can be estimated irrespective of the assumptions, but
the expression will be far more complicated and also depend on pg(e(n)).

Example 3.5 The first order modulator of Fig. 2.3 has only one
state, and the state is equal to the quantizer input. However,
Eq. (3.26) yields:

q(k+1) = —(x(k) + u(k))

That is, the quantization noise at time-step £+ 1 is small if x(k)
and u(k) have opposite signs and are close in magnitude. This
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suggests a modified inversion probability function. An example
is:

p(L— le(®)(L —e(®)u(k), le(k)] < Le(R)u(k) <1
0, otherwise

pa(e(n)) = {
(3.27)

where the last factor causes the inversion probability to increase
or decrease, depending on the signs of e(k) and u(k). Simula-
tions using this particular inversion probability function unfor-
tunately show little improvement: The quantization noise vari-
ance is marginally less, but the difference is negligible. This is
especially the case when the modulator input is small, but even
if the input signal is quite large there are no significant dif-
ferences. Modifications on the last factor of Eq. (3.27), such as

1 —e(k)u(k) or (1—sgn(e(k)) u(k)), gave similar results. O

Example 3.6 Consider the second-order feedforward modulator
of Fig. 2.5. In this case:

0
0

(k)
(k)

where e(k) = x2(k). Apparently, the quantization noise is less
if sgn(xq1(k) + u(k)) # sgn(x2(k)). This fact suggests that the
inversion probability function is modified so that the probability
increases in case the quantization error at the following time-
step is small. For this particular modulator, an example of a
modified inversion probability function is:

k) >
k) <

gk +1) = {_(1+x2(k))—(x1(k)+ (k;)

(1 —xa(k)) — (x1(k) + u(k))

, €
, €

p(L = |x2(k)])(1 — x2 (k) (21 (k) + u(k))),
pale(n)) = ¢ if xa(k)(x1(k) + u(k)) <1and |xg(k)| <1
0, otherwise

When sgn(x1(k) + u(k)) # sgn(xa(k)), the probability of inver-
sion increases with |x1(k) + u(k)| and otherwise, the probabil-
ity decreases. Again, however, simulations show little improve-
ment. [

The analysis of SVD dither in this section is in many respects incom-
plete. There are many possible ways to incorporate the state-vector infor-
mation in the inversion probability function that were never examined. It
is also difficult to estimate the impact of the assumptions made to simplify
the analysis. Another problem is that the reduction of quantization noise is
quite marginal. For that reason it is difficult to judge if there are any true
improvements or if the noise reduction is only accompanied by a reduced
ability to suppress tones. However, the use of SVD dither seems intuitively
sound and should be object for future research.
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4. Application Example:
Fractional-N Frequency
Synthesis

4.1 Introduction

As mentioned in Sec. 2.2, the grade of success of a method for tone sup-
pressing is highly dependent on the actual application the modulator is
being used for. The purpose of this chapter is to put the methods described
in previous chapters into practice, i.e., investigate if the suppresion of tones
can enhance the performance of a particular system. In this case, the ap-
plication is digital frequency synthesis. It should be pointed out that the
system description will be quite brief; the aim is to define a quality mea-
sure and a simulation model, rather than presenting an analysis of the
system.

A model of a frequency synthesizer using a PLL is shown in Fig. 4.1.
Basically, the action of the PLL is to drive the frequency f; to be equal
to the input reference frequency, fi.r, and the output frequency is thus
four = Nf; [2]. The reference frequency is fixed, which means that the
output frequency is controlled by N. It is desirable that NN is an integer,
which would yield a frequency resolution of f,.r. However, by dividing by n
sometimes and by n+1 at other times, it is possible to, on average, divide by
a fractional N such that n < N < n + 1 and by that improve the frequency
resolution. A possible way to control this frequency division is to use a
YA modulator, where the modulator input is the desired fractional offset.
However, tones in the modulator output may deteriorate the performance
of the system and the objective is thus to investigate if proper dithering
can entail a more favourable result.

) f
—-er'- Phase Detector Loop Filter——| VCO ot

fa

~N

K

Figure 4.1 Use of a phase-locked loop for digital frequency synthesis
The simulations to follow are utilizing a linearized model of the fre-

quency synthesizer, showed in Fig. 4.2. The input, x, to the XA modulator is
the desired fractional offset and the reference frequency is f,.r = 13M Hz,
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yielding an output signal with frequency fou: = (x +1)- 13M Hz. G(s) is a
Butterworth low-pass filter of order 3. The cutoff frequency, f., of the low-
pass filter is important for the performance of the system as the choice of
fc entails a tradeoff between noise suppression and system speed. It is de-
sirable to have a fast system, i.e., high cutoff frequency. However, f, must
be sufficiently low, in order to meet system requirements on noise suppres-
sion. The frequency-domain performance requirements on this particular
system are shown in Fig. 4.3, putting an upper limit for the cutoff fre-
quency. This maximum cutoff frequency may vary for different choices of
dither and is a natural quality measure of system performance.

fref

— ZA

4.2 Simulation Results

In the simulations to follow, an output frequency of f,,; = 13.2 MHz was
generated. Simulations were also made for a few different output frequen-
cies with similar results. In an actual application, however, all possible
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Figure 4.2 The linearized simulation model
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Figure 4.3 Performance specification for the frequency synthesizer
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4.2 Simulation Results

output frequencies need to be examined in order to establish the upper
cutoff-frequency limit.

Simulations of the first-order modulator are displayed in Fig. 4.4 and
Fig 4.5. The undithered system is corrupted by tones and fails to meet sys-
tem requirements when the Butterworth filter cutoff-frequency is f, = 60
kHz. However, simulated with RPD dither in [-0.5,0.5], the system require-
ments are met.
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Figure 4.4 System output for first-order, undithered modulator. The Butterworth
filter cutoff-frequency is f, = 60 kHz.
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Figure 4.5 System output for first-order modulator with RPD-dither (b=0.5).
The Butterworth filter cutoff-frequency is f, = 60 kHz.
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Fig. 4.6 displays the output for the second-order modulator system sim-
ulated without dither and a cutoff-frequency of 84 kHz. Again, the per-
formance of the system is corrupted by modulator tones. The use of dither
(Fig. 4.7) proves capable of sufficient tone-suppression. However, it is clear
that the dither signal increase the general noise-floor level in comparison
to the linear approximation.
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Figure 4.6 System output for second-order, undithered modulator. The Butter-
worth filter cutoff-frequency is f, = 84 kHz.
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Figure 4.7 System output for second-order modulator with SVD dither based on
RPD-dither (b=0.7). The Butterworth filter cutoff-frequency is f, = 84 kHz.
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5. Conclusions

The present thesis has investigated the tone problem in A modulators. In
particular, the use of dither signals to suppress tones was examined.

In Ch. 2, basic properties of ZA modulators were reviewed and a com-
prehensive picture of the tone-problem was proposed: The behaviour of the
linearized modulator was described as the ideal way of function and the
tone-problem was considered to be the result of a modulator diverging from
that ideal behaviour.

The Signal Dependent Dither model was introduced in Ch. 3. The objec-
tives were to increase the understanding of the effects of different dither
signals and to find a dither signal capable of tone-suppression, yet with
minimal impact on the overall quantization noise of the modulation. Un-
fortunately, the assumption that the entropy of the modulation was a good
measure of tone-suppression ability proved wrong and an optimal dither
signal could not be found. Of the different dither signals examined, the
classical approach with additive RPD dither was the most promising for
the first-order modulator whereas the results were more ambiguous for
the second-order modulator. This change of behaviour was partly explained
when the impact of sign-inversions was put in relation to the actual quan-
tization. In fact, this perspective gives an important understanding to the
effect of different dither signals: Successful dither signals seem to make
the quantization linear in the mean.

A natural extension of the SDD approach was the State-Vector Depen-
dent Dither model. This model allowed dither signals that utilized the in-
formation of the entire state-space. Some promising tendencies were seen,
however, no significant improvements could be established.

There are several approaches to the tone-problem: The classical dither ap-
proach can be seen as an attempt to whiten the quantization noise and
by that linearize the modulator. In the present work, the investigation
was conducted from a starting point in the need to randomize repeated
output patterns. A third possible approach is to act to dissolve the limit
cycle behaviour of the modulator. The different approaches are naturally
closely related, e.g. when the quantization noise is white there are no limit
cycles and no repeated patterns in the modulator output. However, dif-
ferent perspectives on the problem naturally lead to different measures.
An important conclusion of the present work is that a comprehensive pic-
ture of the tone-problem is necessary for finding successful methods for
tone-suppression.
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