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Preface
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been trying to take into account in this report despite the late notice.

To conclude we would like to wish you a pleasant reading and once again
thank everybody involved who has helped us to accomplish this project.

October 1998
Lund, Sweden
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1. Introduction

In this master thesis we present an experimental study of a new model for
adaptive compensation of periodic disturbances with unknown amplitude and
frequency. This compensation can be of interest in applications such as mo-
tor drives, gears, ball bearings, CD-players and rolling mills. A typical situa-
tion is control of a rotating system with eccentric axis as in our experimen-
tal setup. Models of these disturbances have been made before but has been
time-dependent. The model we are using is position-dependent which has the
advantage of having the same frequency for all velocities.

The primary objective of our investigation is to validate a model developed
by Carlos Canudas de Wit from Laboratoire d’Automatique de Grenoble, and
Laurent Praly from Ecole des Mines de Paris. This is done in simulations as
well as in practical experiments. The results show that the attenuation of the
perturbation is very good, also when the velocity changes.

We have tested the results on a motor with a perturbation consisting of
friction variations due to a wheel with an eccentric axis. In accordance with
the perturbation caused by eccentricity we call the compensation Adaptive
Eccentricity Compensation, later referred to as AEC. A series of experiments
is presented in the later sections with very good results for constant as well as
sinusoidal velocities.

The passage over zero velocity causes a problem in the velocity tracking for
the compensator. Therefore, another compensation method, based on the same
model, is presented in theory. Simulations as well as practical experiments show
that the modified scheme works better.

The results are also compared with regular PI-control. This shows that the
new adaptive system can operate over a much wider range of velocities with
more or less the same error, but that the PI-controller performs well only for
a specific velocity.

The report starts with the presentation of the model in chapter 2. Design of a
compensator is presented in chapter 3 together with analysis. Chapter 4 covers
a brief description of friction with emphasis on the LuGre model. Simulations
are presented and analyzed in chapter 5. A new improved observer is intro-
duced in chapter 6. The experimental setup is presented in chapter 7 and in
chapter 8 we present the real-time experiment results. Finally conclusions of
our work are given in chapter 9.



2. The Model

In this chapter we present the model for the perturbation that we want to
compensate. The model is based on unpublished work of Carlos Canudas de
Wit from Laboratoire d’Automatique de Grenoble, and Laurent Praly from
Ecole des Mines de Paris.

We first present the system and the perturbation we want to compensate.
Then we introduce a spatial operator V. This operator is used to convert the
perturbation between the space- and the time-domain. Finally the internal
system of the perturbation is presented in the space-domain.

An error in the model, which we discovered very late in the project is
discussed together with its consequences.

2.1 Overview

The perturbation model we presented in this thesis is dependent of position,
which differs it from most previous models. We have a system of the form

Ju = u+ d(z); v::i::j—j (2.1)

where z is the angular position of the system, J is the inertia, u is the control
input and d(z) the position-dependent periodic disturbance, defined as

d(z) = Asin(wz + ¢) (2.2)
= a; cos(wz) + ay sin(we) (2.3)

In this thesis we design an internal model and an adaptive observer in the
spatial domain. In most previous works d is considered as a function depending
on time and not on space, of the form

d(z) = Asin(wt + ¢) (2.4)

This is valid only if the velocity is constant so that z(t) is proportional to
time. As soon as the velocity changes the time-dependent model is no longer
valid. As a basic example we can look at the case when velocity is zero, then
the perturbation does not change while time is still running.

2.2 Internal Model

We start by presenting the definition of the V-operator.

Definition
First we introduce the spatial variable s defined as

s(t) = /Ot |v(T)|dT (2.5)

s is thus the distance covered. We then define V as
d 1 d

ds |v]’ b dt (2:6)



2.8 There is Something Rotten in the State of Denmark — Part

We can now apply this definition to our internal model for the perturbation
d, which is given from

y=Jo—u=d(z) (2.7)

where d(z) is defined as in (2.2).
Then y together with the calculation of Vy gives

y \ [ cos(we) sin(wz)) (a1 (2.8)
Vy/b)  \ —sin(wz) cos(wz)/ \a2 '
and the internal model is defined as

Viyg = -wly (2.9)

Let z; = y, and z; = Vy, which gives a s-domain state space realization
for (2.7) as

VE= (—g (1)>Z (2.10)
y=(1 0)z

where 8 = w?, and z = [z z]T.

The model above is based on simple sinusoidal disturbances. We will later
use perturbations, taking into account the non-linearities of friction, first by
introducing the sign-function into the perturbation model

d(z) = Fosign(1 + Asin(wz + ¢)) (2.11)
and later by adding the entire LuGre friction model
d(z) = Frugre sign(l + A sin(wz + <p)) (2.12)

We tried to apply other internal models to these more accurate definitions
of the perturbation. However, these calculations got very complex, and are
maybe without solution, so for time efficient reasons, we decided not to con-
tinue this work. Therefore we use the same observer as defined above. This
explains partly why the problems around zero velocity occur (see chapter 5 and
8), since the observer we use, does not compensate this phenomena properly.

2.3 There is Something Rotten in the State of
Denmark — Part I

A late discovery during the thesis work is an error in the model, which can
be seen when the velocity changes signs. The problem is due to the very basic
definition described in equation (2.6). To explain why we start by the definition
of z and £

t
m:zo-l—/ v(T) dr
0
t
:a:m0+/ lo(r)| dr
0



Chapter 2. The Model

They define the position, ¢, and the distance covered, &, from a certain posi-
tion, zg, at time ¢g. The perturbation is defined in 2.2. The difference between
the true perturbation and our model is that the true perturbation is depen-
dent on # while the model is dependent of &. Let us divide the problem into
two parts. The first is when the velocity is positive. Then we have:

t
z=zo+ [ v(r)dr
to
t
2 =zq + lv(7)| dT =

to

¢

::co+/ v(r)dr==2
ty

This will cause no problem since the two systems are equal. The second part

is when the velocity is negative. The two definitions become:

¢
:c::co-l-/ v(T) dt

to

t
&= :vo-l—/ |v(7)| dr =

to

Here we can clearly see that the two definitions differ. The effect of this can
be shown by putting ¢ and & in the definition of the perturbation (2.2). We
call the perturbation z; and the model of it 2;.

z1 = A cos(wz + )

= A cos (w(zo + /t v(t) dr) + )

2 = Acos(wz + )

= A cos (w(zo — /t'u('r) dr) + ¢)

to

Using the relation cos(—~a) = cos(a) we get:

t
z1 = A cos (w/ v(7) d1) + weo + (p)

to

% = A cos (w /tv('r) dr) — weo — @)

to

From these two equations it can be seen that 2; and 2; have the same evolution
but Z; has a phase shift of 2(wzo + ).

How great this phase shift is can not be predicted. We have performed a
"worst case simulation’ where the compensator is composed only of the primary
system, to show how the model behaves for positive and negative values. The
result is visualized in figure 2.1.

We clearly see that when the desired velocity is positive the estimated
value of the perturbation follows closely to the real perturbation. But as soon



2.3 There is Something Rotten in the State of Denmark — Part
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Figure 2.1 Worst case simulation with the real perturbation and and the calcu-
lated perturbation from the primary model.

as the sign changes to negative the observer gets a phase shift in difference

from the accurate disturbance. This phase shift can be calculated. We have
v(t) = 10sin({5t), w = % and ¢ = —7. ®o can be calculated as

to
Ty = / v(r) dr = @
0 T

and thus the phase shift equals
2(wzo + ) = b7

A phase shift of 3w corresponds to an inversion of the disturbance as can be
seen in figure 2.1. In this case the observer does not contain the correction
terms which will be presented in the next chapter, which is why the error
persists throughout the whole period when v < 0. If we would have run the
real observer we would get a small peak at the sign change, but the observer
would rapidly adjust to correct the error. This can be seen in chapter 5 in
the simulations where the velocity crosses zero. This model error also explains
partly the peaks in the real time experiments in similar situations.

The theory makers, Canudas de Wit and Praly, are presently working on a
way to avoid this problem, which will most likely be presented in their report
to be published later.

We would like to stress the fact that this error was not discovered until after
we had completed all our experiments. Our work has thus been based on the
model. Even if the model is not correct for negative values the compensation
does reduce the error for all velocities.



3. Compensation Design

In this chapter we will derive an adaptive control for the model described in
the previous chapter for the compensation of eccentricity. The idea is due to
Carlos Canudas de Wit from the Laboratoire d’Automatique de Grenoble, and
Laurent Praly from Ecole des Mines de Paris, whose work has not yet been
published.

3.1 Observer Design
First we define the control, supposed to track the desired velocity vg as
u = Jog— ky(t)(v—vg) — 2, (3.1)

where 2; is the output of the following dynamic system

Vi = 55 + ky(z1 — 51) (3.2)
Vig = —03 + ko(z1 — 51) — A5,V (3.3)
Vi = 5 (5 — &) (3.4)
Vb = —yz (21 — 1) (3.5)
with
z1 = JU — u = a; cos(wz) + ay sin(wz) (3.6)

The parameters ki, kg, A, p and v are positive constants, the property of k,(t)
is presented later. The constants k; and k; are used to stabilize the observer
if we set 8 to be constant. They move the poles from the imaginary axis to
the negative half-plane. Note that with the assumption that ¥4 and vg are
bounded and continuous, with this controller we get a closed loop system
whose dynamics are described by an ordinary differential equation of which
the right hand side is continuous. To get the adaption law we observe the error
equations in the closed loop system. We first introduce the error variables.

e=v—1y (3.7)
21 = 21 — 21 (38)
6=0-10 (3.9)

The objective now is to find a transfer function between % and %0 of the
form:

21:(XV){—aé}

where Z; is a filter, and G(V) is defined as:

_ AV +
G(v) = V2 4k V + (kg + 6)

10



3.1 Observer Design

The advantage of this function is that it can be written in the form:

V¢ = A — Bz (3.10)
5 =C¢ (3.11)

where:

A:( 0 : ),B:(O),CT:(’\) (3.12)
—(k2-|-0) -—-kl 1 112

Since A in (3.12) is strictly Hurwitz, i.e. all its poles’ real parts are negative,
for any positive value of k; (note that § > 0) and &, it follows that we can
find a symmetric positive definite matrix, P, such that:

ATP+PA=-1
We then let A and p in C in (3.12) be defined as:
C = PB. (3.13)

According to the Lyaponov theorem the system is stable if we can find a non
negative function V(£) so that its derivate VV'(£) is non positive. if we choose

V =¢TPE+ 47162 (3.14)
the derivate can then be calculated as

VV = —¢T¢ — 2(¢TPB)z,0 +~v~1(V6)d
= —£T£ — 221215 - 7_1(Vé)0.

— _¢Te_ 2 [5121 n 7-1Vé] g. (3.15)

From equation (3.15) we can see that if we set vé = —vZ1%; we get a non
positive function

vV = -¢T¢ (3.16)

which is what the Lyaponov theorem implied.
Now we have three error equations:

Jé=—ky(t)e+ 5 (3.17)
7= G(V) {—zlé} (3.18)
Vo = vz (%) (3.19)

In order to get our observer to correspond to the transfer function G(V) we
get the term —Az; V@ in equation (3.3).

11



Chapter 8. Compensation Design

We have now defined the observer system, but we see that this observer re-
quires the acceleration to be measurable. To avoid this we first transform the
system to the time domain, which gives

21 = |’U| [22 + kl(Jv —Uu-—- 21)]

éz = |'l)l [—éﬁl + kg(.]'v —-u-— 21) . AE;[VB\]

i . (3.20)
b= bl |- 02 - 2)|
0 = |v|[-72.(J0 — u — %)]
Further to avoid v we note that
d i : i1, :
E{lv]v }=(GE+ 1)l e Vi=1,2,3,...
We now introduce the new variables
kiJ
=5~ = lolv
N sz ’)’AJ
Cz =2z — —l | | |'U (321)
61 =21
=0+ %'1|v|v
Deriving the equations above with the definition in (3.20) gives
by =[v] [22 — kx(u + £)]
Ca =0l — (k2 + )2 — kyu — YA (u+ 21) +
+ 77 [0]oz(uz - 1)) (322)

G =lol |~} - 1)

A _ . J _ R

b =lol [yas(u+ 22) - Llolo(us - 2)
where, we can notice that the © dependence is no longer valid. With this
controller we get a closed loop system whose dynamics are described by an
ordinary differential equation whose right hand side is continuous.

3.2 Stability Analysis

In this section present the stability analysis for the system derived above. From
the error equations (3.17 - 3.19) we can see that we have a coupled s-domain
equation since equation (3.18) and (3.19) involves parameters in the t-domain
and equation (3.17) has as an input a signal parameterized in the s-domain.
Figure 3.2 is showing the inter-block connection between these two systems.
We suppose in the analysis that v4 and ¥4 are bounded and continuous.

12



3.2 Stability Analysis

i

@_" G(V) "l Dk,

X|=—

Y
Vv

Z,

Figure 3.1 Block scheme of the coupled s-domain/t-domain system

The Lyaponov function that is presented in equation (3.14) does not show
that the function is asymptotically stable since VV(£) is not strictly negative.
We will here present a theorem with some constraints of vy and k,(t).

Theorem:

Consider the system (2.1)-(2.2). Consider the dynamic feedback
defined by the equation set (3.1- 3.6). Let the control gains k; >
0,k2 > 0, and A, p be defined by (3.13). Then all the internal signal
of the system are bounded and, in addition, the velocity tracking
error e tends to zero, if the desired velocity vy is such that:

(1) J9a(t) + ky(t)va(t) has no limit when ¢ tends to infinity, and
(ii) k, and #4 are bounded.

Proof:

From what we have observed on the closed loop system, to any
initial condition corresponds a unique solution. Let [0,T") be its
right maximal interval of definition in the t-domain. It corresponds
functions in the s-domain defined on an interval [0, Sy,.z) Where:

t
S1nas = lim / ()| dr (< +0) (3.23)

Let us show that 7 must be infinite. Considering equations (3.14)
- (3.16) we conclude that since VV is non positive, V is bounded
on [0, Smaz) and therefore on [0, T) it follows that £, Z; and 6 are
bounded on [0,T) and from (3.17), the same holds for e. Since the
external signals v4, vq4 and z; are bounded, we conclude that all
the functions are bounded. So T must be infinity.

From (3.10) we get that V¢ is bounded on [0, Synqz) and as a result
¢ is uniformly continuous. From Barbalat’s Lemma, this implies
that, if S;,.e = 00, i.e. |v| is not summable in the time domain,
then ¢ and therefore Z; converge to 0 as t goes to infinity. From
(8.17) the same holds for e. So when |v| is not summable in the
time domain, we have:

Jim {o(t) - va(t)} = 0. (3.24)

13



Chapter 8. Compensation Design

It remains to show that Syae = 0o when Jog(t) + ky(t)va(t) has
no limit and k, and ¥4 are bounded. This can be proven by saying
that if Syq, is assumed to be bounded it implies that u+k, (t)v+ 2
and therefore Jv4 + k,(t)vg has a limit (see (3.1)).

First, we observe from (3.1), (3.6) and (3.20) that, if k, and iy
are bounded, then 9 and ¥ are bounded. With Barbalat’s Lemma,
when v is summable, v and ¢ tend to zero. Then, from (3.20), 2,
is summable. This results in that 2; converges. Finally, from (3.6),
since ¥ tends to zero and & converges, u converges. So we do get
that v + k,v + £, converges.

Comments: There are two cases of practical interest where
J04(t) + ky(t)vg(t) has no limit.
o Constant velocity profiles. In this case, it is mandatory to select a time-
varying k,(t) such that k,(t)vg has no limit (i.e. k,(t) = ky + sinwt).

o Constant velocity gain. If k, is constant, thus only time-varying velocity
trajectories vg(t) can ensure that the tracking error goes to zero. Time-
periodic trajectories may belong to this class.

We will consider velocities that vary and therefore we choose k, to be
constant.

3.3 There is Something Rotten in the State of
Denmark — Part 11

The observer that has been presented in this chapter has been proven to be
globally stable with an error that tends towards zero. We would only like to
point out that this is only true if the perturbation is of the form presented in
section 2.2. Since the model is wrong if the velocity is negative, we will get an
error each time the velocity changes signs.

14



4. Friction

To fully understand the disturbance rejection we are presenting here, we have
to get a glimpse of its origin. In our case the disturbance is due to friction
variations caused by the contact between a cylinder and an eccentric wheel.

Friction has been the subject for several research topics over the past years.
A lot of new models have evolved which define friction and its non-linearities.
Yet, friction’s complexity is not entirely defined. We here present a very brief
description of the LuGre model, which is what we have used to model friction
in our experiments.

4.1 The LuGre Model

The LuGre (Lund/Grenoble) model was developed as a joint project between
the Control Department at Lund Institute of Technology and Laboratoire
d’Automatique de Grenoble at ENSIEG during the 1990s, by Karl Johan
Astrom and Henrik Olsson from the former, and Carlos Canudas de Wit and
Pablo Lichinsky from the latter. The model has been presented in Canudas de
Wit et al. (1995) and Olsson (1996)

The model starts from the description of the friction force caused by solid-
to-solid contact. The surfaces’ asperities are described by several elastic bristles
with different lengths, visualized in figure 4.1.

v
-

Figure 4.1 Left: The contact between two solid surfaces in relative movement can
be visualized by bending bristles. Right: The average deflection of the bristles is
denoted z. Source: Olsson (1996).

When the two surfaces are in contact with an applied tangential force the
bristles bend, which provokes the friction force. If the applied force is big
enough the bristles will slip off each other, and come in contact with new
bristles.

The average deflection of the bristles is denoted by z, and modeled by

dz v

= e =L 4.1

i~ )" (4.1)
where v is the relative velocity between the two surfaces and g(v) a function
which is defined later. The first term gives a deflection that is proportional

15



Chapter 4. Friclion

to the integral of the relative velocity and the second term asserts that the
deflection z approaches the value

sss = 9(v)1,; = 9(v)sign() (4.2)

in steady state, i.e., when v is constant.

The friction force is generated by the bending of the bristles, it is pro-
portional to the average deflection and the rate of change of deflection. The
third factor that makes up the friction force is caused by the viscosity of the
lubricant. The total friction force looks like

F=o0¢z+ al(v)% + f(v) (4.3)

where o¢ > 0 is the stiffness and o1(v) > 0 a velocity dependent damping
coeflicient.

The damping coefficient o7 is essential to make the system well behaved in
transitions between sticking and sliding. The simplest parameterization is for
linear damping which may be limiting in some aspects, but in our experiments
we use

o1(v) = o1 (4.4)

The function f in (4.3) depends on the type of friction interface, but is in
general simply linearly dependent on the relative velocity

f('U) = Fyv (45)

where F, is the coefficient of viscous friction.
The steady-state friction force is given when dz/dt = 0, and thus becomes

Fss(v) = oog(v)sign(v) + £(v) (4.6)

We here see the sign-function which in friction in general is referred to as the
Coulomb effect, see figure 4.2, which we will also include in the simulations
later on.

Fc

Figure 4.2 Friction as a function of velocity for Coulomb’s model

The function g(v) is always positive and includes the effect of the lubri-
cant and other material properties. It is determined to adjust to the system.

16



4.1 The LuGre Model

Decreasing g(v) implies that the dynamics are faster. But there are some re-
strictions in order to be coherent with the static models. The steady-state then
determines g(v) to

F(v 1
g(v) = Flv) _ —(F¢ + (Fs + Fg)et®/*s7") (4.7)
(21} g
We have now given a simplified description of the LuGre model which in
a complete form looks like

i, L
da — g(v)
1
g(v) = ;(Fc + (Fs + Fo)e (/%)) (4.8)
0
Frugre = 00z + 0'1'(;_: + Fv

17



5. Simulations

We have now completed the presentation of the new model and shown its
theoretical stability analysis, we will further present the simulations performed
to test the developed observer.

The compensator we evaluate is general and valid for many systems with
periodic disturbances. It finds the period and amplitude of a system perturba-
tion that is dependent of position and compensates it. Therefore simulations
with such a perturbation were tested just to justify the theory. Then, because
we are interested in compensating friction, a second set of simulations were
made with a Coulomb friction model. The last simulations were made to be as
close as possible to reality, with a LuGre friction model and a dynamic friction
compensator added to our eccentricity compensator.

The scheme we used to simulate our system were in a block system made
in SIMULINKT¥ application in MATLABTM | see appendix A. For all simu-
lations we use the following values for the compensator:

kl = 1, kz = 025,

v=1, l‘:]-a
A=2.

The compensation is added to a proportional controller with
k, = 100,
and the system inertia is
J = 0.0022.

All values are chosen to be close to the real time experiments that will be
done after the simulations. For all simulations we let the system work without
compensation the first ten seconds. The proceeding ten we compensate.

5.1 Simulations with a Periodic Perturbation
The system, which the perturbation acts on, is described by
Jo=u—d(z)

In our first simulation we use a simple sinusoidal perturbation which is de-
scribed by

d(z) = A cos(wz + ¢) (5.1)
where
w=02 A=01, @=3

We start by testing the model for positive velocities. According to theory this
perturbation will be compensated by the observer with an error that tends

18



5.1 Stmulations with a Periodic Perturbation
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a) Velocity tracking error, va(t) — v(t) b) Control input, u(t)
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c) Predicted disturbance 21(t) d) The evolution of §(t)

Figure 5.1 Simulation with a periodic disturbance. Reference »s =
30 4+ 10sin(3t) rad/s.

towards zero. A simulation for a sinusoidal positive reference velocity is shown
in figure 5.1.

The result in figure 5.1 clearly shows that the error goes to zero and the
compensator finds the frequency, é goes to 0.04 which is the square of the
perturbation frequency, w, which follows the theory as shown in chapter 2.

The time it takes to find the true value of § can be made faster or slower by
changing the value of v. A higher « gives a better result but is more sensitive
for noise and small system changes. We have performed simulations where v
has been several times bigger, which gives a much faster system, but in the
real-time experiments the results got unstable for higher y-values than are
presented here.

Once we found that the observer was working as predicted for positive ve-
locities, we tested it with a sinusoidal signal which crossed zero, see figure 5.2.
The little peaks we can see during the last ten seconds in the velocity tracking
error in subfigure a) are caused by the sign reversal in the reference signal.
This error has its origin in the problem of the model for negative velocities as
described in section 2.3. However we can still see that the error is a lot smaller
during the last ten seconds when the compensation is on. This means that
the observer is fast enough to make up for the problem and even though not
entirely reject, still reduce the influence of the perturbation. The reasoning in
section 2.3 means however that the size of the peaks may vary depending on
the amplitude, the frequency and the phase lag. This means that the errors
could have been bigger or smaller depending on how we choose these variables.

The parameters do not compose a worst case scenario, nor a best case.
In our simulation zg = 40/7 for the passage from positive to negative, and
zo = 0 for the passage from negative to positive, which together with w = 0.2
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Chapter 5. Simulations
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c) Predicted disturbance 2;(t) d) The evolution of 8(2)

Figure 5.2 Simulation with a  periodic disturbance. Reference
va = 10sin(Ft) rad/s.

and ¢ = 3 corresponds to a phase shift of & —7/2 and ~ 0 respectively. This
is confirmed in figure 5.2 where can see that the peaks are relatively bigger for
t =10, 14 & 18 than for t = 12 & 16.

5.2 Simulations Based on Coulomb Friction

We continue by describing the perturbation more like a cause of friction by
introducing the Coulomb effect described by the sign-function, see figure 4.2.
The perturbation thus looks like

d(z) = A sign(v) cos(wz + ¢). (5.2)

where the oscillating perturbation is treated like a simple model of friction
plus the periodicity introduced in equation (5.1). In the simulation we use a
rate limiter after the sign-function. The purpose of this is to avoid that the
velocity fluctuates between positive and negative values, since sign(0) = e,
where —1 < e < 1.

We expect the compensator to have certain difficulties with the fast changes
introduced by the sign-function, and as we can see in figure 5.3, the output
lags the reference in each such situation. The peaks in the velocity tracking
error are, compared to figure 5.2, a lot more important. This is due to the fact
that the observer misunderstands the change of signs and overcompensates it.
The observer sees the change of signs as a high frequency perturbation and 8
tries to find this frequency. This introduces jumps in 6 at every sign change.
Due to the correction terms in the observer the compensation soon finds its
way back to its periodic behavior again. But we can observe the big jumps in
the control input as well as in the predicted perturbation.
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5.8 Simulations Based on the LuGre Model
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c) Predicted disturbance 21(t) d) The evolution of 4(t)

Figure 5.3 Simulation based on Coulomb friction. Reference
va = 10sin(§t) rad/s.

5.3 Simulations Based on the LuGre Model

The LuGre-friction model was used for the last simulation. This model is closer
to reality than the Coulomb-model and has also the advantage that its first
derivate is not singular. Our friction-model now has the form

d(z) = Frugre (1 + A cos(wz + ¢)). (5.3)

In difference from equation (5.2) the friction is not simplified to the Coulomb
effect but takes into account all the parts of friction discussed in chapter 4.
The friction can be separated into a fixed part, Fr.cre, and a variant part,
Frugre A cos(wz + ). The static part is compensated by the algorithm in
equation (4.8) and the dynamic part is compensated by the AEC. The block-
scheme is presented in appendix A.

In figure 5.4 we show the simulation results for a reference velocity vg =
30 + 10 cos(5t). The effects of that the LuGre-model is richer than previous
models that has been simulated can be observed; 6 has a slightly periodic
evolution and we have a small velocity tracking error because of that the term
Fr.Gre is dependent of velocity. This explains the changes in amplitude in the
predicted disturbance. The steady state function of the LuGre friction model
is the Coulomb friction model.

When the velocity crosses zero, see figure 5.5, we notice the same lags as
for the Coulomb friction. We can also remark that the jumps in 6 are less
significant than in the simulations with the sign-function. This is due to that
the change of signs is ’smoother’.

The problem associated with the velocity reversals caused us to try to find
a possible way to get around this, the result of this research is presented next.
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d) The evolution of 6(2)

Figure 5.4 Simulation including Frugre. Reference v4 = 30 + 10sin( 1) rad/s.
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Predicted disturbance 21 (t)

d) The evolution of 6(t)

Figure 5.5 Simulation including Fr.gre. Reference vg = 10 sin(gt) rad/s.



6. An Improved Observer

We have until now seen that the adaptive eccentricity compensator does not
fully compensate the situations where the velocity changes signs. The esti-
mated perturbation does not follow the change and it lags a bit before it
corrects itself, which can be seen in the peaks in figure 6.1.

] . [ [ 1] (1] (1] Wi " 0

a) Desired velocity vq4(2) b) Perturbation error, d — %

Figure 6.1 Simulation with single observer with d = Acos(wz + &). Reference
va = 10 cos(Ft) rad/s.

The problem is due to several reasons

e the fact that the model is wrong for negative velocities

e because of the non-linearities in friction, also when v = 0

In this section we will present an alternative solution to this problem. The
model error still remains a problem in the observer presented next, but we can
nevertheless see major improvements.

6.1 The Parallel Observer

We use a heuristic idea based on the assumption that the prediction is linear
in the velocity. Therefore we use two observers, one based on vy = v+ Vconstant
and the other based on v_ = v — Vconstant, €ach working in the domains where
we do not encounter the problems with velocity reversals. Then the mean value
of these two observations is taken as the compensation. The new equations look

like:

21y = vyl [B2 + Ba(J94 —u— 214))]

éz.*. = I’U+| [—é+21+ + kz(J’l)+ —Uu-— 21+) - A21+Vé+]
. 1, X (6.1)
Z14 = o] | =5 (2y — 214)

by = oyl [-7204 (o4 —u— 214)]
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Chapter 6. An Improved Observer

F1_ = |v_|[Zo- + Ry (JO_ —u— 5_)]

ég_ = |'U_| [—é_il_ + kg(J’l)_ —UuU-— 21_) — )\Zl_Vé_]
. 1 . (6.2)
o= ool |- 3wa- - 21)

0_ = |v_|[-YE_(Jo- —u — 2_)]

These calculations are executed in parallel with the previous observer, cal-
culating the same equations but for the true v-value. We then use the following
criteria to decide when to apply the new 2;-values.

. 3 |v| > Vlimit
21 = . . (63)
(Z]_+ + 21_)/2 |’U| < Vlimit

where vj;mi is a constant about half of Veonstans. In our simulations we have
used

Veonstant — 20 & Vlimit — 10

In figure 6.2 we observe how the new observer behaves to the perturbation
described by equation 5.1.

a) Desired velocity, vq4(t) b) Perturbation error, d — %

Figure 6.2 Simulation with parallel observer with d = A cos(wz + &). Reference
va = 10 cos(Ft) rad/s.

The error caused by the zero velocity crossing has been reduced substan-
tially. We can still see small errors, these are a consequence of the model error.
A reason why the parallel observer is still performing better is due to the fact
that the correction terms followed by k; and ky; above do keep their influence
in the observer since they are not multiplied by 0 at the crossing of zero.

In figure 6.3 we compare the parallel observer with the single observer,
where the single observer is running during the first 10 seconds, and the parallel
observer is running for the last 10 seconds.

We see that this algorithm still lags but the lags are much more momentary.
The fast change in the perturbation is caught up by the observer immediately.
This can also be explained by the fact that k; and ks are multiplied by veonstant
instead of 0 at zero velocity.

We have studied each of 314, 3,0, and §_ and seen their values are such
that: 2;4 has a smaller and 2, has a bigger amplitude than 2;, both with the
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Figure 6.3 Simulation comparing the single-, first 10 seconds, and the parallel
observer with including Fr.cre. Reference va = 10 cos(3t) rad/s .

same period. é.l_ and 0_ find each a value around 0.02, added together we have
as before 0.04 = §. The behavior of 6, + _ differs a bit from 6, it tends first
to high value and then it goes down 0.04 while 6 first go negative and then
slowly goes up and approaches 0.04.

A statistical study of the values clearly shows the difference between the
single AEC observer and the parallel one. We here present the velocity tracking
error for the two observers in the histograms in figure 6.4. The concentration
around zero error for the parallel observer can be seen very clearly.

ifi

i
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e

__nguannllglﬂ 1

Figure 6.4 Histograms of the velocity tracking error for single (left) and parallel
(right) AEC-observer.
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7. Experimental Setup

We have now given a brief description of the theory which also has been
tested in simulation. What has been presented until now is valid for all kinds
of oscillating perturbations even though parameter values in the simulations
have been adjusted to our specific experiment. The following part of our report
should be seen as a general test of the model, even if it deals with our setup,
where the periodic perturbation is due to friction, and our specific results.
This chapter presents the experimental setup itself and the interface for
the execution of the experiments. The control law used, is also presented.

7.1 The Experimental Setup

To evaluate our results from theory and simulations we have performed a set
of tests on an experimental system at the LAG (Laboratoire d’Automatique
de Grenoble), see figure 7.1.

Figure 7.1 The experimental setup.

The setup consists of a motor taken from a robot that have worked for
Renault in Paris. It is a highly linear motor and that way the experimental
system is very close to the simulation model. The position of the rotor is
measured by a reader with 120 000 values per round. The motor is turning a
metal cylinder which on top has an eccentric wheel that has been visualized
as the perturbation in the model in chapter 3. A simple scheme of the setup
is presented in figure 7.2.

The top wheel is constrained by a constant normal force Fy. The total
force is thus equal to Fy for the average radius of the wheel and is larger
when the larger radius r; is in contact and smaller when the radius r; is in
contact. The total load from the wheel onto the cylinder can be described as

1L — T2
2

Fieod — Fy [1 + cos(wey + (p)] (7.1)

where z; is the load angle position (rad), ¢ is the phase shift (rad), and @ is
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7.1 The Ezperimental Setup
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Figure 7.2 The experimental setup, top: front view, bottom: lateral view.

the dimensionless eccentricity frequency described by

_ R r1+ 72
w=—; =
P 2

In real time experiments the frequency is however not considered as known.
Between the rotor and the cylinder that is turning our eccentric wheel we have
a gear-box that gives a scaling factor of 15.5. (15.5 rounds for the rotor equals
one round for the cylinder).

The control law for the motor drive is given as

__dz

Jo=u— Fy: v=d = (7.2)

where z is the angular position of the motor (rad), J = Jm + Ji/n? is the
total system inertia (motor plus load) (N'm/s?), u is the control torque input
(Nm), and F,, is the motor friction torque at the ball bearings (Nm). Fy, can
be modeled as

load
Fm = [FNm + 1;’,' ]FLuGre(za‘éav) (73)
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Chapter 7. FEzperimental Setup

where Fl,, is the average normal force on the ball bearings, Fr,gre and z are
defined in equation (4.8). In equation (7.3) n is introduced which converts the
forces to the side of the charge.

Model (7.2) can be rewritten as

Jo=u— F — Acos(wz + p) (7.4)
with
Fy7, _ _ .
F= [FN,,l + 7] (Goz + 612 + Fyv) (7.5)
=09z + o1z + F,v (7.6)
@ 1R

_Fyri—m .

= . 2 FLuGre (Z, Z, ’U) (7.8)

where w is the dimensionless frequency on the motor side, which is the same
as the frequency on the load side but divided by the gear ratio n, and A is the
amplitude of the perturbation.

For the model described in equation (2.2) the model is based on A, not as
a variable depending on Fr,qr. (-) but as a constant which we approximate to
the steady state F,qre(ss) = #o sign(v).

r1 — 19 Fy )
: 5 : = Frugre (s5) = Mo - sign(v) (7.9)

where pg replaces the function g(v) in the LuGre friction model. For simplicity
reasons we just use pg which is the Coulomb friction normalized by the Normal
force.

Ax

The parameters for all formulae are taken from the setup and are presented in
table 7.1. The values have been calculated and presented in Canudas de Wit
and Lischinsky (1997)

Friction Motor Wheel & cylinder
parameters parameters characteristics

Fo = 0.38 [Nm] Jm = 0.00196 [Kg/m?] | R = 6.0 [em)]

Fg =0.42 [Nm] Ji =0.0125[Kg/m? |7 =21 [cm]

vo = 0.01 [rad/s] J =0.0022[Kg/m? |7y =1.9][cm]

oo =260.0[Nms/rad] | K¢ = 0.352 [Nm/Amp] | r = 2.0 [em]

o1 = 0.6 [Nm/rad] n =155

oy =0.011[Nms/rad] | P = 200 [Wait]

Table 7.1 Friction, motor and load parameters.

The compensator we try to evaluate is done for perturbations which surround
zero. This results in the fact that we have to compensate for all static friction
before we start to use our eccentricity compensation. To do so we have used a
dynamic compensator made in Lischinsky (1997) using the LuGre model, also
using the values above.
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7.2 The Interface

7.2 The Interface

The control program has been written in C, see appendix B. Since the com-
puter is not fast enough to do the control the compiled C-program has been
transferred to a microcomputer called dSPACE™. To trace signals and com-
mand the system, we have used the softwares TRACE and COCKPIT re-
spectively, that links the computer with dSPACET™. The cockpit interface
allows us to start the experiment and to change variables in the program in
dSPACE™, An image of the interface is shown in figure 7.3. TRACE plots
all variables we want to analyze.

References
W Constv

Y ¥ Sinus v

& with I ] D 1 sin*cos v o i single vel

' . quency B single acc
8 without . D B ZigZag v M double vel

=

Figure 7.3 The cockpit interface, from where the program is launched.
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8. Experimental Results

This chapter presents the experimental testing of the new AEC controller. We
first present experimental results for different velocities showing the validation
of the new model. This is done for constant and sinusoidal velocities and for
sinusoidal velocities crossing zero. A comparative study with a regular PI-
controller is also shown.

For the real time experiments, the sampling time could result in an unstable
discrete time system when the motor is running for high velocities. The prob-
lem with reality is that there are other perturbations added to the one we try
to compensate. In our case we found not only the eccentricity perturbation but
also a high frequency perturbation with almost the same amplitude. There-
fore all experimental results have been filtered by a first order Butterworth
filter with a cut-off frequency at 25 Hz. The filter is chosen in order to remove
only noise without influencing the major frequencies of the perturbation and
resonance frequencies encountered by the system. This gives us a filter which
looks like

H(s) = B(s)  0.0592¢ + 0.0592
 A(s) g-—0.8816

Another problem for the real time experiments which we did not encounter
for the simulations is the scaling factor for the gear-box n, between the motor
and the cylinder. This induced that the ¥ we used in simulations had to be
substantially lower in the real time experiments. A higher 4 implies that the
AEC is faster but also that it is more sensitive. In the real time experiments
we had to lower the v when increasing the velocity, otherwise the results went
unstable. It could have been a good idea to have a changing gamma dependent
on the velocity. This idea was never implemented as an automatic change of
but was done manually, where it varied between 1 and 5. Other than that, all
observer values are the same as presented in chapter 5 about the simulations.

8.1 Validation of the New Model

The first experiments were made to validate the principle of the new model.
We ran the experimental setup for 20 seconds and started the compensation
by the new observer from 10 seconds and on.

In order to get visible and good plots, we did not start the tracing of the
curves from ¢ = 0, but from ¢ = 0.5, so the error should not start from vy.
However this means that we miss the beginning of the raise of 6.

Constant velocity

In figure 8.1 we can see the results for a constant velocity of 10 rad/sec seen
from the rotor, (i.e. 10/15.5=0.6 rad/sec seen from the charge).

We can clearly see the perturbations effect on the output velocity when the
system is running with only a P-controller. When the compensation is started,
after 10 seconds, we see in figure 8.1a that the velocity tracking error, rapidly
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8.1 Validation of the New Model

a) Velocity tracking error, vq4(t) — v(2) b) Control input, u(t)
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c) Predicted disturbance 2; d) The evolution of 6(t)

Figure 8.1 Experimental result for vq4 = 10rad/s.

converts towards zero. The small error we can still see is due to white noise
from the system.

The control input in figure 8.1b is following the perturbation, from the
plots for higher velocities below, one can better see the effect on the command
when the observer in turned on, which increases the input.

In figure 8.1c the prediction of the perturbation is shown, which behaves
periodically in order to counteract the perturbation. The reason why the per-
turbation is not more sinusoidal is due to the rubber tire on the eccentric
wheel, which slips slightly. When the bigger radius is down, the high pressure
on the tire squeezes the tire to an oval shape.

In figure 8.1d we see that the evolution of 6, which even if not as linearly
as in the simulations reaches it predicted value around 0.04.

The same conclusions can be drawn for a higher velocity, 30 rad/sec (equivalent
of 1.94 rad/sec for the charge), in figure 8.2. We still do not compensate until
after 10 seconds.

Also for relatively high velocities, we get good results with the new observer.
In industry the general velocity of robot motions would be somewhere around
3-4 rad/sec. We next show the results from experiments at 50 rad/sec (corre-
sponding to 3.2 rad/sec on the side of the charge), in figure 8.3.

The P-controller alone, can not handle these high velocities, the 0 rises
rapidly from the beginning, but once its influence is included in the command
when we start compensating, we can see that it soon decreases to its normal
value.

We never tried to run the setup for higher velocities than 50rad/sec, due
to its limits, but the trend shows that the observer would deal well also with
higher velocities.
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a) Velocity tracking error, vq4(t) — v(t)
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c) Predicted disturbance 2;

d) The evolution of 6(t)

Figure 8.2 Experimental result for v4 = 30rad/s.

a) Velocity tracking error, v4(t) — (2

c) Predicted disturbance

2 & s " w 1]

d) The evolution of 6(t)

Figure 8.3 Experimental result for v4 = 50rad/s.

Sinusoidal velocity

The same experiments, where we start compensating after 10 seconds, were
executed for sinusoidal velocities. The desired velocity is given by a sinus curve

with an amplitude of 10 rad/sec added to a constant value of 20 rad/sec with
a frequency of 7/2. The same experiment is done where the constant value is
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8.1 Validation of the New Model

of 40 rad/sec. The results are depicted in figure 8.4 and figure 8.5 respectively.
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c) Predicted disturbance 2; d) The evolution of 6(t)

Figure 8.4 Experimental result for vq = 20 + 10sin{w/2 t)rad/s
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b) Control input, u(t)
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a) Velocity tracking error, vq4(t) — v(¢

c) Predicted disturbance 2; d) The evolution of 8(t)

Figure 8.5 Experimental result for vg = 40 + 10sin(7/2 t)rad/s

We can see from the curves that the increased perturbation frequency at
the higher velocities is well followed by the observer, and the error during the
last 10 seconds, with compensation, is basically still close to zero, see subfigure
a.
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Chapter 8. Ezperimental Results

The observer finds the frequencies of z; which is seen in the control input
subfigure b, as well as in the perturbation prediction in subfigure c. The evo-
lution of 8 in subfigure d, is however getting jumpier, but still remains around
the predicted value.

The passage over zero velocity

We have now seen that for constant and varying velocities, but still with
constant sign, the new observer eliminates the perturbation influence. The next
step is to see how it behaves for the difficulties encountered at sign changes of
the reference signal.

In figure 8.6 we can see the system response to a signal of amplitude 10
with a frequency of 7 /2.
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c) Predicted disturbance 2, d) The evolution of é(t)

Figure 8.6 Experimental result for vg = 10sin(w/2 t)rad/s

In figure 8.6a we clearly see the problem of the non-linearities around v = 0,
and even though the result is still highly influenced by the passages over zero,
we notice that the result is distinctively better when we start compensating.
Part of the error is due to the error in the model described in section 2.3.
We also distinguish distinctive jumps at each passage over zero, due to the
non-linearities in friction discussed in section 5.2 and 5.3. The curves return
however rapidly to their proper values and the results still stay stable.

Results with parallel observer

If we perform the same examples as in the section above, but compensate with
the parallel AEC observer, we can improve the passage over zero velocity, see
figure 8.7.

We clearly see that the peaks in the velocity tracking error in subfigure
a, are a lot smaller than for the same signal for the single AEC in figure 8.6.
The jumps at the crossing over zero velocity in the other subfigures are much
cleaner.
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I

5 H 1 A N . L i i
F] ® . . [ (1] [ [ w B ] ‘ [} " 0 [F] i " " E]

) Control input, u(t)

o

(] ’ [ O] " (] 1] M ] [0 » Fl . . & n 1] i ] 1] E]
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Figure 8.7 Experimental result with parallel observer for v¢ = 10sin(w/2 t)rad/s

8.2 Comparison with a PI-Controller

We have now verified that the new observer works well also in practice, and
the next step is to see at what point our compensator is useful. To do this we
compared it with an PI regulator chosen to have the same energy usage in the
command as the AEC + P- controller. To chose a PI that is equivalent to our
compensator is important. The PI must have gains that are in the same range
as our P-controller. If we have a greater gain for the PI we will certainly see
better results but this system will be more sensitive and less stable. The Bode
diagram of the transfer function between the perturbation and the output for
the controllers we have chosen are represented in figure 8.8. For low velocities
we find that the PI works with about the same results as the AEC, but as the
velocity gets higher the AEC is relatively better compared to the PI. This is
not surprising. OQur compensator should compensate the perturbation entirely
no matter what speed. The PI on the other hand has a good perturbation
correlation for low frequencies but as the frequency grows the correlation gets
worse. This can theoretically be proved just by looking at the transfer function
and the Bode-diagram for the perturbation.

1
Js+ JK,

L]

T T2+ JKys + JK;

Gp(s) =

Gpi(s)

where
J =0.0022, K,=40, K,=50and K;=400.

It can be seen in figure 8.9 that the perturbation after compensation is almost
only white noise. The same for the PI regulation for low velocities but as they
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Figure 8.8 The Bode diagram for the P-controller (-) and the PI-controller
(--). The domain in which we work varies between 10/15.5 =~ 0.5rad/sec and
50/15.5 = 3.5rad/sec.

get higher we find a frequency corresponding to our perturbation appearing
in the error.
If we study the characteristics of the response to the input we observe

e that the PI with the same gain filters more high frequency signals.

o with the PI we have a second order that is more oscillating but that has
the advantage of having an error that goes to zero.

If we compare the response to the perturbation we see that the P-controller
works as a low-pass filter and the PI-controller works as a bandpass filter. So,
the PI-controller works well for low and high perturbation frequencies. But
there is a band of frequencies that can not be rejected by a single PI-controller.
To cover desired frequencies, we can move the band to high frequencies by
increasing the gains, but then as said before the system becomes more sensitive
and less stable.

Statistics

From the comparison between the new AEC-controller and the regular PI-
controller we have extracted certain statistics to better visualize the differences
in control of the velocity tracking error vy — v, as well as the cost in form of
the control input, u.

For the statistics we have run the setup for 20 seconds with either AEC-
compensation during the whole time or with a regular PI-controller. The values
shown are - the maximum value, the square value, the mean value of the norm
as well as of the absolute values, the variance and standard deviation of the
velocity tracking error and the control input throughout the 20 seconds.

Table 8.1 shows these statistics for different constant velocities.

For vy = 10 rad/sec we see that the PI-controller performs well even if
the AEC-controller has a smaller error at a slightly lower cost. As we can see
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8.2 Comparison with a PI-Controller

vg = 10 rad/sec | vq = 30 rad/sec vg = 50 rad/sec

AEC PI AEC PI AEC | PI
maz|e(t)] 0.433 0.283 0.145 0.403 0.408 0.842
M ez(t) 17.830 | 27.150 5.048 | 95.519 | 71.036 | 167.042
mean|e(t)| 0.079 0.096 0.040 0.184 0.163 0.246
o 0.094 0.116 0.042 0.219 0.100 0.289
maz|u(t)]| 0.598 0.619 0.716 0.761 0.787 0.836
o, uz(t) 469.343 | 515.921 | 765.964 | 850.220 | 891.413 | 1043.450
mean|u(t)| 0.482 0.505 0.617 0.650 0.666 0.720
o 0.048 0.049 0.049 0.051 0.046 0.051

Table 8.1 Statistical comparison between the AEC-controller and a PI-controller
for different constant velocities.

on the Bode-plot (figure 8.8), the frequency corresponding to 10 rad/sec =
10/15.5 rad/sec = 0.5 is in the domain where we get a good PI-control.

As for vg = 30 rad/sec the velocity tracking error is smaller for the AEC-
controller than for 10 rad/sec which is due to the relatively smaller influence
by noise. The PI-controller gives now a distinctively worse result which is
expected since the perturbation frequency is higher and the PI is designed for
lower frequencies. The cost is still slightly higher for the PI-controller.

For vg = 50 rad/sec the correction of the AEC-controller is getting a
bit worse, and the control input increases as well. This is partly due to a bias
introduced in the velocity error as can be seen in figure 8.11. The PI-controller
however gives even worse results, concluding that also for high velocities the
AEC-controller gives a much better result.

For sinusoidal velocities the same kind of comparison is also made, see table
8.2, and figures 8.12 and 8.13.

vg = 20 + 10 rad/sec | vg = 40+ 10 rad/sec
AEC | PI AEC PI

maz|e(t)| 0.193 0.425 0.503 0.5990
T e2(t) 8.785 |  69.415 |  34.193 | 138.7120
mean|e(t)| 0.052 0.157 0.109 |  0.2250
o 0.061 0.186 0.084 0.2620
maz|u(t)| 0.714 0.754 0.814 0.868
S u?(t) 618.616 | 665.270 | 843.921 | 992.354
mean|u(t)| 0.550 0.570 0.646 0.701
o 0.082 0.088 0.064 0.069

Table 8.2 Statistical comparison between the AEC-controller and a PI-controller
for different sinusoidal velocities.
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c) Control input - AEC d) Control input - PI

Figure 8.9 Comparison AEC- & Pl-controller for v4 = 10 ’ra.d/sec
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Figure 8.11 Comparison AEC- & PI-controller for vq = 50 rad/sec
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a) Velocity tracking error - AEC

c) Control input - AEC

d) Control input - PI

Figure 8.12 Comparison AEC- & Pl-controller for vg = 20 + 10sin(w/2t)rad/s
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d) Control input - PI

Figure 8.13 Comparison AEC- & Pl-controller for va = 40 + 10sin(r/2t)rad/s
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9. Conclusions

We have tested a control scheme called Adaptive Eccentricity Compensation,
AEC, developed by Carlos Canudas de Wit and Laurent Praly. The AEC
attempts to reject oscillating disturbances. There are many areas where this
compensation is useful, e.g. drive systems, rolling mills and robotics. The ba-
sic idea is that it is position-dependent which differs it from previous time-
dependent schemes.

An adaptive observer, which returns an estimate of the periodic distur-
bance has also been developed.

We have validated the system in simulation for a general sinusoidal per-
turbation. The results for velocity tracking have been very good when the
velocity is positive. But an error in the model for negative velocities has been
discovered. The observer does, however, correct this error quite fast.

Once this validation was performed we adjusted the perturbation model
to deal with friction. This was based on the LuGre friction model. The strong
non-linearity of the friction force at zero velocity causes problems but the
method gives satisfactory results even in this case.

A new model with a parallel observer has been introduced and tested for
the passage over zero velocity. The velocity tracking error has been reduced,
even if the error in the initial model is still present.

The model has also been tested in practical experiments on a system con-
sisting of a big cylinder whose velocity is perturbed by the friction from an
eccentric wheel placed on the cylinder.

The velocity tracking error is very small for positive velocities, but with
peaks in the output velocity for each sign change in the reference signal.

A comparative study has been made between the AEC-controller and a
regular PI-controller. The results show that the PI-controller performs well
only for certain velocities but the AEC-controller works well for all velocities
in a range of 1 — 4 rad/sec. The errors are smaller for the AEC with the same
control input.

Further investigation could be proposed in the evolution of the model to
properly cover also negative velocities. The robustness of the model could also
be studied. Comparisons with other models for the same rejection of periodic
disturbances could be evaluated.
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A. Simulink Models

General Simulation Interface
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Figure A.1 The general scheme for the simulations in SIMULINK. f(u) is the
function which calculates the simulated value of d(z) in its different forms described
in chapter 5.
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Figure A.2 Subblock: PD-controller.
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Figure A.3 Subblock: Process.
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Figure A.4 Subblock: Observer. The subblock calculates and returns 2;.

The MATLAB function in the Observer-block contains the following code:
% Function which calculates the derivates of the zeta-parameters
function [y1]=obs3(x)

% constant parameters —=—————=———=—m—mm e — e
w=20.5;

lambda = 2;

ki = 2xw;

k2 = w”2;

gamma = 1;

mu = 1;

J = 0.0022;

h in parameters == == === e e e e
%x1 = zetalhat;

%x2 = zeta2hat;

%x3 = zetalbar;

%x4 = vetahat;

%x5 = u;

%x6 = v;

% calculations ---—=——=—===——————-——— oo ——ee

zlhat = x(1) + kixJ/2*abs(x(6))*x(6);

zlbar = x(3);

z2hat = x(2) + k2%J/2*abs(x(6))*x(6) +
gamma*lambda*J/2%abs (x(6))*x(6) *z1bar*zlbar;

tetahat = x(4) - gamma*J/2+%abs(x(6))*x(6)*zlbar;

abs(x(6))*(z2hat - ki1*(x(5)+z1lhat));
abs(x(6))* (- (k2+tetahat)*zlhat - k2*x(5) -
gamma*lambda*zibar*zibar*(x(5)+z1hat) +
gammaxJ*abs (x(6) ) *x(6) *z1bar* (mu*zibar-zihat));
dot_zetalbar = abs(x(6))*(-1/lambda* (mu*zibar-zihat));
dot_vetahat = abs(x(6))*(gamma*zibar*(x(5)+zihat) -
gammaxJ/2/1ambda*abs (x(6))*x(6) * (mu*zibar-zihat));

dot_zetailhat
dot_zeta2hat

zlhat = x(1) + kixJ/2%abs(x(6))*x(6);
tetahat = x(4) - gamma*J/2*x(3)*abs(x(6))*x(6);
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%out parameters

yi = [0
yi(1) =
yi(2) =
y1(3)
y1(4)
y1(5)
y1(6)

y1 = [y1(1) y1(2) y1(3) y1(4) y1i(5)

0000 0];
dot_zetalhat;
dot_zeta2hat;

= dot_zetalbar;
= dot_vetahat;

tetahat;
zlhat;

General Simulation Interface

y1(6)]1;
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Additions for Sign-Simulations
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Figure A.5 Main blockscheme for the sign-function simulations.
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Additions for the LuGre Stmulations

Additions for the LuGre Simulations
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Figure A.6 Main blockscheme for the LuGre-simulations.
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Figure A.7 Subblock: Regulator.
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Figure A.8 Subblock: Perturbation (F + F*cos). The subblock calculates the
simulated perturbation including the LuGre-friction and the formula for the periodic
perturbation described in chapter 5
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Figure A.9 Subblock: Lugre. The LuGre-friction force itself is calculated here.

The MATLAB function includes:

% Function which calculates the simulated value of the friction
function y=lugre(x)

% constant parameters ~—-—--———-—=-===mm-—- e
sigma0 = 260;

alfa0 = 0.285;

alfal = 0.05;

sigma2 = 0.018;

sigmal = 0.6;

vs = 0.01;

% in parameters ====mmmmmmmm s
%x1 = v;

%x2 = z;

% calculations —------——————-——m—— e
g = alfa0 + alfal*(exp(-(x(1)/vs)~2));

z_dot = x(1) - (abs(x(1))/g)*x(2)*sigmal;

F = sigma0O*x(2) + sigmail*z_dot + sigma2*x(1);

% out parameters =--—=——=——=—=— == —— -

y = [0 0];
y(1) = F;
y(2) = z_dot;

y = [y@) y@1I;

v

s 4—'
o MATLAB | 4

o Demux |« Function 4 Mux 4—@
q 3
F_hat Gain < | :

vd

Figure A.10 Subblock: F_obs. The subblock calculates and returns F , the fixed
part of the perturbation.

The MATLAB function includes:
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Additions for the LuGre Simulations

% Function which calculates the friction compensation
function y=lgfobs(x)

% constant parameters ------—--—-——=————--—=-————————————————————
sigma0 = 260;

alfa0 = 0.285;

alfal = 0.05;

sigma2 = 0.018;

sigmal = 0.6;
vs = 0.01;
k =0.01;

% in parameters -------—--—=-——-—=--—-——— e —— oo oo
%x1=zhat;

%x2=v;

%x3=vd;

% calculations ——-——=—======—=mm—mm— e m o ——m—— oo
g = alfa0 + alfal*(exp(-(x(2)/vs)~2));

zhat_dot = x(2) - (abs(x(2))/g)*x(1)*sigma0 - k*(x(2)-x(3));
Fhat = sigmaO*x(1) + sigmal*zhat_dot + sigma2*x(2);

% out parameters ——-——-——-—-—=== == === - m—— e oo ————————

y = [0 0];
y(1) = zhat_dot;
y(2) = Fhat;

y = [y(1) y(2)];
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Addition for Parallel Compensation
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Figure A.11 General blockscheme for parallel compensation simulations.

Figure A.12 Subblock: Parallel Observer.
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B. Executable Program

#include "stdlib.h"

#include "math.h"

#include "impexc.h" /* includes brtenv.h processor check code....
system_init ..->init() includes ds1002.h */

[ %3k o sk ok ek ok ok o ok ok sk ok ok sk ok ok sk ok skeok ok ok K DECLARATIONS *k¥k kK *kk *%/

float int_res(float);

float crenau(float,float,float);
float dead_zonep(float,float);
float sat(float,float);

int alter(int,int,float);
void lire(void);

void reference(void);

void signaux(void);

void commande (void);

void comp_fr(void);

void comp_hp_fr();

void sorties(void);

void saturation(void);

void envoie(void);

void config(void);

void service_interrupt();

void ds2101(long base, long channel, float value); /* D/A card */
float ds3001(long base, long channel); /* incr. enc. card#/
long cda_[3] = {0x00000003,0x00000004,0x00000005},
/* CDA of the 2101 channel 3,4,5 %/
cad_[3] = {0x00000011,0x00000012,0x00000013},
/* CAD vel. mot., pos. charge and current mot.*/

cod = 0x00000004, /# new coder and the 3001 */

ds2101_base = 0x00000080, /* DS2101 CDA card */

ds3001_base = 0x00000040; /% DS3001 codercard #/
#define frq_e 1000.0 /* sampling frequency : Hz. #*/
#define per_e (1/frq_e) /* sampling period : seconds */

#define te_2 (per_e/2)

#define PI 3.1415926
#define PIf2 (PI*2)

#define np_cod 120000 /* number of points in coder */
#define rap_red 15.5 /* reduction q_moteur/q_charge */
#define res_p (PIf2/np_cod) /* resolution in position *
#define res_ps2 (res_p/2) /* resolution in position / 2 */
#define res_v (res_p*frq_e) /* resolution in velocity */

#define deg_a rad (PIf2/360.0)

#define kq_cm 439.2264877774094 /* PIf2¥pow(2,23)/np_cod resolution:
d=2pi/120000 -> d* 2723 =kq_cm+/

#define VIT_MIN res_v

#define MIN_DBL 1e-10

#define DOWNSAMPL 20 /* parameters for the ponderating error*/
#tdefine FENETRE_POND 4 /# ponderation time in seconds *
#define taille_vec_err (int) ((FENETRE_POND*frq_e/DOWNSAMPL) - 1)

#define kca (3.0%0.353%10.0) /#* gain u %/
float c_tr = 0.0;

float amp_dither = 0.0,
fq_dither = 0.0,
dither = 0.0;

float temps = 0.0; /* time variable */

float sd_[3]
ea_[3]

,0.0}, /* digital exits */
,0.0}; /* analog entries #*/
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Chapter B. FEzecutable Program

/* butter(1,0.25) Fc =

/* position counter on the motor axis */

/* counter of complete tours on the motor axis */

/* position counter on the motor axis (filtered) */

0.25%0.5 Fs #/

filter of estimated position */
estimed speed with q_c */

estimed speed (qp_est filtered) */

butter(1,0.26) Fc = 0.25%0.5 Fs %/

filter of estimated speed */

inertia for system motor axis */

eigenfrequency in closed loop PID */

float q_c = 0.0,
q_c_1=0.0;
int compt_i = 0,
redo = 1,
redo2 = 1;
float qf = 0.0,
qf_1 = 0.0,
qtest = 0.0, /* ea_[2] */
Al_fq = 0.41421356,
BO_fq = 0.29289321,
Bi_fq = 0.29289321, /+#
gp_est = 0.0, /*
qp_est_1 = 0.0,
qpef = 0.0, /%
qpef_1 = 0.0,
acc = 0.0,
acc_1 =0.0,
accf = 0.0,
accf_1 = 0.0,
Al_fv = 0.3249, /*
BO_fv = 0.3375,
Bi_fv = 0.3375; /%
/* Controller */
float J = 0.0025, /* 0.0022 Kg*m~2
Kp = 0.0, /* proportional gain %/
Ki = 0.0, /* integral gain */
Kd = 0.0, /* derivative gain */
Wo = 40.0, /*
Wi = 10.0;

/* Configuration */

int config ref = 8,
config_com = 3,
comp_frott = 12,

app_comp_frott = 1,
comp_on = 0,
comp_mode = 1,
k_qp=1, i_qp=0;

/* Control Input #*/

float wu = 0.0, /* command signal ... %/
ur = 0.0, /* command signal ... %/
u_ord = 0.0; /* command signal in computer units */
/* Errors #*/
float erreur_q = 0.0, /* position error */
erreur_q_1 = 0.0,
erreur_gp = 0.0, /* velocity error */
m_err_qp = 0.0,
max_err_gp = 0.0,
erreur_qpp = 0.0, /* acceleration error*/
err_pond_gp = 0.0, /* ponderated velocity error (4 sec) */
sum_err_qp = 0.0,
vec_err_qpltaille_vec_err], /* vector for calc of ponderated error */
fsaturation = 0.0, /* saturation flag */
float amp = 0.21;
/* Adaptive Controller */
float zp = 0.0, /* d/dt of internal state z  */
z=0.0, /* internal state */
gv = 0.0, /* function of static friction */
v =0.0, /* velocity */
f_z=20.0,
f_zp = 0.0,
f v=20.0,
f_est = 0.0; /* estimated friction */
float ui = 0,
up = 0,
ud = 0,
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uacc = 0;

/* Friction model parametres */
float ALFO = 0.3728,
ALF1 = 0.039,
ALF2 0.0106,
VO = 0.01,
SGMO
SGM1

nmnoiun

=1
k_obs = 1.5, /* tracking error obs. gain */
f=1.0; /* if flag _vitf>0.5 frict-precomp, else frict-comp */

long int cont_ech = 0; /* counter of sampl. for velocity estimation */

/* AEC variables

float zil_m =
z1_hat
z1_hat_
z2_hat
z1_bar
teta_hat
nabla_teta

(=)

=l
NooOl OO %

z1l_view = 0.
teta_view =

vtemp = 0.0
z1_hatp = 0.
z1_hatp_1 =
teta_hatp =

z1_hatn =
z1_hatn_1
teta_hatn
zgl_hatn
zg2_hatn
zgl_barn
tetag_hatn

nno

wun
1ooOo
[=ReRoNol

zgl_hat_p
zg2_hat_p
zgl_bar_p
tetag_hat_p
cc_zl _hat_p
cc_z2_hat_p
cc_zl1l_bar_p
cc_teta_hat_
cc_zl_hat_p_
cc_z2_hat_p_
cc_zl_bar_p_
cc_teta_hat_

monn

nineonrooo
nnnunooooooco

v v v

YRR RrY
[
loocooocCco

.0, /* 2%omega, */
.0, /* omega%omega */
2
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Chapter B. Ezecutable Program

int compt_j
hplugre

/* Creneau de position */

float refq = 0.0,
refq_1 = 0.0,
refqp = 0.0,
refgp_1 = 0.0,
refqpp = 0.0,

consigne_ctte = 10.0,
amp_hp = 10.0,
freq_hp = 1.570796,
tmp = 0.0,
tmpn = 0.0
T_per = 2.0,
refq_add = 0.0
refqp_add =
count_tmp =

™

0.0,
0.0;

/*k#kkkk SATURATION FUNCTION OF THE VARIABLE in WITH AMPLITUDE amp s*¥#k##*/

float sat(float in, float amp)
{
float out;

fsaturation = 0.0;
if (in > amp)
{

out = amp;
fsaturation = 1.0;

else if (in > -amp)

out = in;
else
{
out = —amp;
fsaturation = -1.0;
}

return(out);

/**%**xx FUNCTION FOR READING THE ANALOGUE POSITION OF THE COUNTER k¥ /

void lire(void)

ea_[2] = ds3001(ds3001_base,cod);
qtest = ea_[2];

q_c_1=q_c;
if (qtest > 1 - 0.000004*refqp)
{
if (redo == 1)
{
redo = 0

redo2

=o;
compt_i =

compt_i + 2;

q_c = gq_c_1 + per_e*refqp;

/* position motor counter */

/* when the motor counter is saturated */
/* we extrapolate the position, until */
/* the counter has reached its new */

/* startvalue */

else if (qtest < -1 + 0.000004+refgp)
{

redo2 = 1;

g_c = q_c_1 + per_e*refqp;
}
else if (redo2 == 1)
{

g_c¢ = kq_cm * (compt_i + ea_[2]);

redo = 1;
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(o)

_1 =qf; /% filtered motor position y(k)=qf_1 x(k)=q_c =x(k-1)=q_c_1 */

qf
qf Al_fq*qf_1 + BO_fq*q_c + Bi_fq*q_c_1;

/* calcul de la vitesse */
qp_est_1 = qp_est;
gp_est = (qf - qf_1)*frq_e; /* vitesse moteur estimee */

gpef_1 = qpef; /# vitesse moteur estimee filtree */
qpef = Al_fv*gpef_1 + BO_fv*qp_est + Bi_fv*qp_est_1;

acc_1 = acc;
acc = (qpef - qpef_1)*frq_e; /* acceleration moteur estimee */

accf_1 = acct;
accf = Al_fvxaccf_1 + BO_fv+acc + Bl_fv*acc_1;

/* ea_[0] = ds2002(ds2002_base,cad_[0]);
= kqpm * ea_[0]; vitesse moteur avec le tacho */

qpP

/* ea_[1] = ds2002(ds2002_base,cad_[1]); position potentiometre
q_p = kq_p * ea_[1]; axe de la charge =*/

}

[®Akkkkok ko kokkkkkkkkkk  CALCUATIONS OF REFERENCE SIGNAL  sskkskokdkskkskokskokdkokkokkskkokk/
void reference(void)
if (config_ref == 8) /* constant velocity */
refq = consigne_ctte*temps;
refqp = consigne_ctte;
refqpp = 0;
else if (config_ref == 9) /* sinusoidal velocity */
refq = consigne_ctte*temps + amp_hp/freq_hp*(1-cos(freq_hp*temps)) ;
refqp = consigne_ctte + amp_hp*sin(freq_hp*temps) ;
refqpp = amp_hp*freq_hp*cos(freq_hp*temps) ;
else if (config_ref == 11) /* zig-zag-signal */
T_per = 1/freq_hp;
tmp = fmod(temps,T_per);
tmpn = temps/T_per - tmp;
if (tmp < T_per#0.25)
{

refqp_add = tmp/T_per/0.25;
refq_add = refgp_add+tmp/2;

else if (tmp < T_per*0.75)
{

refqp_add = 1 - (tmp-T_per*0.25)/T_per/0.25;
refq_add = tmp - (tmp*tmp/2-T_per*0.25%tmp)/T_per/0.25 - T_per*0.25;

}
else
{
refqp_add = -1 + (tmp - T_per*0.75)/T_per/0.25;
refq_add = -tmp + (tmp*tmp/2 - T_per*0.75%tmp)/T_per/0.25 +
) T_per*0.75 + 10+T_per/8 ;

refq = consigne_ctte*temps + amp_hp*refq_add;
refqp = consigne_ctte + amp_hp*refqp_add;

}
else if (config_ref == 4) /* double frequency */
refq = consigne_ctte*temps + amp_hp/(1-10%10)*(1/freq_hp*
(1-cos(freq_hp*temps) *cos (10*¥freq_hp*temps) -

10*sin(freq_hp*temps)*sin (10*freq_hp*temps)));
refqp = consigne_ctte + amp_hp*sin(freq_hp*temps)*cos(10*freq_hp*temps);
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refqpp = amp_hp* (freq_hp*cos(freq_hp*temps)*cos(10*freq_hp*temps) -
10*freq_hp#*sin(freq_hp*temps) *sin(10*freq_hp*temps)) ;

[ ®d kR Rk kkokkkkkkkkk CALCULATION OF COMMAND STIGNALS  skskkskskokskokokdokskokkokokokkokkok/

void signaux()

erreur_q_1 = erreur_q; /* valeurs anterieures pour filtrage */
erreur_q = refq - q_c;

= qpef; /*gpef, var. auxiliere de vitesse */

erreur_qp = refgp - v;
m_err_gp = erreur_gp*1l; /* erreur_qp*1000 */

max_err_gp = fabs(m_err_gp);
if (k_qp==DOWNSAMPL) {
k_qp=1;
sum_err_qp = sum_err_qp - vec_err_qpl[0] + max_err_qp;
for (i_gp=0;i_qp<taille_vec_err-1;i_qp++)
vec_err_qgpli_qpl=vec_err_gpl[i_qp+1];

vec_err_qpltaille_vec_err-1] = max_err_qp;
err_pond_gp = (float) (sum_err qp/((FENETRE POND*frq_e) /DOWNSAMPL)) ;

else
k_qp++;
erreur_qpp = refqpp - accf;
}
[Rrskkk ke kdokkdokkkkkokkkkks CALCULATION OF CONTROL LAW *ok /

void commande ()

%f (config_com == 3) /* P velocity */
Kp = Wo;
uacc = J * refqpp;
ud = 0;
up = J *Kp * erreur_qp;
ui = 0;
}
else if (config_com == 9) /* PI velocity */
{
Ki = Wo*W1; /* =400 poles at 10 and 40 */
Kp = Wo + W1; /% = B0 */
Kd = 0;
uacc = 0;
ud = 0;
up = J*Kp*erreur_qp;
ui = J*Ki%erreur_q;
}
ur = uacc+ud+uptui; /* equation for motor torque */
u_ord = ur/kca;
u = ur;

[ ®*kkrkkkkkkkkkkkkkx ESTIMATION OF FRICTION COMPENSATION skskkkskkkokokakokskkokokkokkok/

void comp_£fr()

if (flag_vitf < 0.5) /* friction compensation */
= gpef;
else /* friction precompensation */
v = refqgp;

SGM1 = 2#zet_dyn*sqrt(SGMO*J) - ALF2;
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if (comp_frott == 12) /# dynamic estimation of friction, velocity error */

if (v < 0)
{
ALFO = 0.3040 - 0.002%(fabs(refqp)-10);
ALF2 = 0.0111 - 0.00007*(fabs (refqp)-10);
}
else
{
ALFO = 0.3940 - 0.002#%(fabs(refqp)-10);
ALF2 = 0.0111 - 0.00007#*(fabs (refqp)-10);
}

gv = ALFO + ALF1xexp(-((w*v)/(V0*V0)));
j:.:f (fabs(v) <= VIT_MIN)

zp = 0.0;
v =20;
}

else {
z = (z + te_2%(zp + v + 0.05xk_obs*erreur_qp))/
(1 + te_2#SGMO*fabs(v)/gv);
zp = (v - SGMOxfabs(v)*z/gv + 0.05%k_obs*erreur_qp) ;

_z = SGMOx*z;

_zp = SGMi*zp;

_v = ALF2x%v;

_est = f_z + £f_zp + f_v; /*estimated friction */

H Hh Hh Hh b ad

}

f_est = sat(f_est,kca/b);

if (app_comp_frott == 1) /# if compensation on */
t u_ord += f_est/kca; /* the compensation #*/

u += f_est;

}

/%o kskok ok okok ok ook ok sk kkokkk ok AEC COMPENSATION  seskokokskeskskokokokeskatok ok bk ok sk sk ok ok ok /
void comp_hp_£r()
{

k1 = 2#%omega;
k2 = omega*omega;
v = qp_est;

z1_hat_1 = zi_hat;
z1i_hatp_1 = z1_hatp;
z1i_hatn_1 z1_hatn;
cc_zl_hat_1 = cc_zl_hat;

if ((comp_on == 1) && ((comp_mode ==1) || (comp_mode ==3))) /% AEC on */
{

uhp_comp = ur - zl_hat;
else if ({comp_on == 1) && (comp_mode ==2)) /* Comp with acc-est on %/
{

uhp_comp = ur - cc_z1_hat;

else if (((comp_on == 2) && ((comp_mode ==1) ||
(comp_mode ==3))) && (temps > 10.2)) /* Comp on after 10s */
{

uhp_comp = ur - zl_hat;

else if (((comp_on == 2) && (comp_mode ==2)) && (temps > 10.2))
/% Comp with acc-est on after 10s plot */
{

uhp_comp = ur - cc_z1_hat;

else /% No compensation */

{

55



Chapter B. FEzecutable Program

uhp_comp = ur;

acc=accf;
zl_m = J * acc - uhp_comp; /% real zl */
if (redo == 0) /* counter of the motor is saturated */

if (compt_j == 0)
{

old_gama = gama;

gama = 0;
compt_j = 1;
}
}
else
{

gama = old_gama;
compt_j = 0;

fabs_v = fabs(v);

/** Compensation using acceleration #**/
e_zl = z1l_m - cc_zi_hat;

cc_zl_hat_p = fabs_v*(cc_z2_hat + ki*e_zl);
cc_zl_bar_p = fabs_v*(-1/lambda* (my*cc_zl_bar - cc_zi_hat));
nabla_teta = -gama*cc_z1_bar%e_z1;
cc_z2_hat_p = fabs_v*(-cc_teta_hat*cc_zl_hat + k2*e_zi -
lambdakcc_z1_bar*nabla_teta);
cc_teta_hat_p = -fabs_v#sigma_hp#*cc_teta_hat +
fabs_v#(-gama*cc_zl_bar*e_z1);

cc_zl_hat += per_e*cc_zl_hat_p; /* integration by Euler #*/
cc_z2_hat +=per_e*cc_z2_hat_p ;

cc_zl_bar += per_e*cc_zl_bar_p;

cc_teta_hat += per_ex*cc_teta_hat_p;

if (fabs(cc_zi_hat) > 2.0) /* security measure */
{

cc_zl1_hat = cc_zi_hat_1;

/** Compensation not using acceleration #**/

z1_hat = zgl_hat + ki*J/2*fabs_v#v;
z1_bar = zgl_bar;
z2_hat = zg2_hat + k2xJ/2*fabs_v*v +

gama*lambda*J/2*fabs_v*v#zl_bar*zl_bar;
teta_hat = tetag_hat — gama*J/2+fabs_v*v*zl_bar;

fabs_v#(z2_hat ~ ki*(uhp_comp+zi_hat));
fabs_v#(-(k2+teta_hat)*z1_hat - k2%uhp_comp -
gama*lambda*z1_bar*z1_bar*(uhp_comp+zl_hat) +
gama*J*fabs_viv*z1l_bar*(my*zl_bar-z1_hat));
zgl_bar_p = fabs_v*(-1/lambda*(my*z1_bar ~ zi_hat ));
tetag_hat_p = fabs_v#*(gama*zl_bar#*(uhp_comp + z1_hat) -
gama*J/2/lambda*fabs_v*v*(my*z1_bar - zi_hat));

zgl_hat_p
zg2_hat_p

zgl_hat = zgl_hat + per_e*zgl_hat_p; /* integration by Euler */
zg2_hat = zg2 hat + per_e*zg2 hat_p;

zgl_bar = zgl_bar + per_e*zgl bar_p;

tetag_hat = tetag_hat + per_e*tetag_hat_p;

/** For the parallell observer: if abs(v) > 0.6 then use above values **/
/*%x if abs(v) < 0.6, use values below. *k/
vtemp=v; /* store real v value */
/* Positive part of parallell observer */

v = vtemp + lim_calc;
fabs_v = fabs(v);
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z1_hatp = zgl_hatp + ki*J/2*fabs_v*v;

z1_bar = zgi_barp;

z2_hat = zg2_hatp + k2xJ/2%fabs_v*v +
gamaxlambda*J/2%fabs_v#v#zl_bar*zi_bar;

teta_hatp = tetag_hatp - gama*J/2*fabs_v*v*zl_bar;

zgl_hat_p = fabs_v#(22_hat - ki*(uhp_comptzl_hatp));
zg2_hat_p = fabs_v#(-(k2+teta_hatp)*z1_hatp - k2*uhp_comp -
gama*lambda*z1_bar*zl_bar*(uhp_comp+zi_hatp) +
gama*J*fabs_v¥v*zl_barx (my*zi_bar-zl_hatp));
zgl_bar_p = fabs_v#(-1/lambda*(my*zi_bar - zi1_hatp ));
tetag_hat_p = fabs_vx(gama*zi_bar*(uhp_comp + zl_hatp) -
gamaxJ/2/lanbdaxfabs_vev* (my*z1l_bar - z1_hatp));

zgl_hatp = zgl_hatp + per_e*zgl_hat_p;
zg2_hatp = zg2_hatp + per_e*zg2_hat_p;
zgl_barp = zgl_barp + per_e*zgl_bar_p;
tetag_hatp = tetag_hatp + per_e*tetag_hat_p;

/* Negative part of parallell observer */
v = vtemp-lim_calc;
fabs_v=fabs(v);

z1_hatn = zgl_hatn + ki*J/2*fabs_v*v;

z1_bar = zgi_barn;

z2_hat = zg2_hatn + k2%J/2%fabs_v#v +
gamaxlambda*J/2#fabs_v*v*zl_bar*zi_bar;

teta_hatn = tetag_hatn - gama*J/2*fabs_v*v*zl_bar;

zgl_hat_p = fabs_v#(z2_hat - k1*(uhp_c0mp+zi_hatn));
zg2_hat_p = fabs_v*(-(k2+teta_hatn)*z1l_hatn - k2#uhp_comp -
gama*lambda¥z1_barxzl_bar*(uhp_comp+zl_hatn) +
gamaxJxfabs_vivizl_bar*(my*zl_bar-z1_hatn));
zgl_bar_p = fabs_v#*(-1/lambda*(my*z1_bar - z1_hatn ));
tetag_hat_p = fabs_v*(gama*zl_bar*(uhp_comp + z1_hatn) -
gama*J/2/lambda*fabs_v¥vx(my*zi_bar - zl1_hatn));
zgl_hatn = zgl_hatn + per_e*zgl_hat_p;

zg2_hatn = zg2_hatn + per_e*zg2_hat_p;
zgl_barn = zgl_barn + per_e*zgl_bar_p;
tetag_hatn = tetag_hatn + per_e*tetag hat_p;

v = vtemp; /* return real v value*/

if (fabs(z1i_hat) > 2.0) /* security measure */

z1l_hat = z1_hat_1;
if (fabs(zi_hatp) > 2.0)
z1_hatp = z1_hatp_1;
if (fabs(z1_hatn) > 2.0)

z1_hatn = z1_hatn_1;

if (fabs(refqp) < lim_on) /#* if velocity close to 0 use parallell obs*/

if (comp_mode == 3) /* if parallell observer mode on #*/

z1_hat = (z1_hatp + z1_hatn)/2;
tete_hat = (teta_hatp + teta_hatn)/2;

if ((comp_mode == 1) || (comp_mode == 3)) /* normal or parallell obs */

z1_view = z1_hat;
teta_view = teta_hat;

else if (comp_mode == 2) /* compensation using acc */

z1_view = cc_z1_hat;
teta_view = cc_teta_hat;

}
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if (comp_on == 1)

u=u- zl_view;
u_ord = u_ord - zl_view/kca;

}
else if ((comp_on == 2) && (temps > 10.2))
{

u=u- zl_view;

u_ord = u_ord - zi_view/kca;

1

[ Fkkkdokkkkkkkkkkkk ASIGNATION OF SIGNALS TO D/A CONVERTER  skskkoskokokskkkkkakkokkk/
void sorties()
dither

sd_[0]
}

amp_dither*sin(fq_dither*temps) ;
u_ord + dither; /* the command has to stay in sd_[0] =*/

[Rdkskoksokkkkkkkkks PROTECTION AGAINST TOO BIG EXIT SIGNALS  sokskskskskokskskdkokkokskkskok/

void saturation()

{
u_ord = sat(u_ord,1.0);
u = sat(u,kca);

}

[Hxrkkkkkrkokkkkkskkkkx SEND DIGITAL SIGNALS TO CDA-CARD = x/
void envoie()
int i;

for (i=0;i<1;i++) ds2101(ds2101_base,cda_[il,sd_[il);

JHkk *ok seookkdokksokskkkk CONFIGURATION  okskseskoskokokskskokeskeskok ok sk ok ok sk ok ok sk ok sk ok ok /
void config()
for (i=0;i<taille_vec_err;i++)

vec_err_qp[i]=0.0;

[ Exrksokkkkkkkkkkkkkskkx FUNCTION FOR SERVICE INTERRUPT * ok ok ok kK *x/
void service_interrupt ()
int i;

if (c_tr > 0.4) {
irs_initialize();

temps += per_e; /* updating var. temps */

cont_ech++;

lire(); /* read analogue entries, the counter and signals */
reference(); * calculate reference */

signaux(); /* calculate command signals erreur_q, erreur_qp */
commande () ; /* calculate control law ui, ud, up */
comp_£r(); /* friction and compensation estimation */
comp_hp_£r(); /* eccentricity compensation */
saturation(); /* command security, saturation */
sorties(); /* exits for screen */

envoie(); /% send exits to CDA */

service_trace(); /% call for TRACE30 */

irs_terminate();

}
else {
temps = z = zp = 0.0;

58



compt_i = 0;

redo = redo2 = 1;

old_gama = gama;

err_pond_qp = Sum_err = sum_err_qp = erreur
gc=q.c_1=qf =qf_1 = qp_est = qp_est_1
refq = refq_1 = refqp = refqp_1 = refqpp =
ur = 0.0;

z1_hat = z2_hat = z1_bar = teta_hat = 0.0;
zgl_hat = zg2_hat = zgl_bar = tetag_hat = 0.0;
zgl_hat_p = zg2_hat_p = zgl_bar_p = tetag_hat_p
cc_zl_hat = cc_z2_hat = cc_zl_bar = cc_teta_h
cc_zl_hat_p = cc_z2_hat_p = cc_zl_bar_p = cc_t
zgl_hatp = zg2_hatp = zgl_barp = tetag_hatp
zgl_hatn = zg2_hatn = zgl_barn = tetag_hatn

_q = erreur_qp =
= qpef = qpef_
0.0;

[
1 ©

(]
OO0

for (i=0;i<taille_vec_err;i++)
vec_err_qp[i] = 0.0;

cont_ech = 0;
ds3001_clear_counter (ds3001_base,cod); /* init of encoder */
for (i=0;i<3;i++) sd_[i] = 0.0;
envoie();
/* stop if cockpit off */

/ skokeok ok sk MAIN PROGRAM  skskokoskskokskokokskskoksk skokok ok ok koo ok okskok sk k /
main()
int 1i;

*_error_flag = NO_ERROR;

config(); /* take initial configuration */

while (c_tr < 0.4) /* wait for authorisation from cockpit (on) */
service_cockpit();

system_initialize(); /% initialisation from hardware and call init() */

ds3001_clear_counter(ds3001_base,cod) ; /* init of encoder */

service_trace();

enable_interrupts(per_e) ; /% initialize sampling clock timer */

while (c_tr >= 0.4)
background() ; /* background process service_cockpit */

system_terminate();

for (i=0;i<3;i++) sd_[i] = 0.0; /* reset of analogue exits to zero */
envoie();
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