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1 Introduction

There is an increasing interest in using mobile robots in more and more
applications. These ranges from automated vacuum cleaners to
unmanned space missions, such as Path Finder[Golombek 1998].

In some of these applications we need an operator. The operator could
inspect that the automation works well, do some operations that are
complicated to program in advance or be called upon when things go
wrong.

It is desirable that the operator is able to control the robot remotely
from a terminal. Then the operator would be able to supervise more
than one robot at a time. Other advantages are that the robot could be
located in environments hazardous to humans, or that we could send
away robots on missions without return.

The robot should contain a set of small primitive functions. These
should all solve a small primitive task. With these functions it is
possible to solve bigger problems by putting them together in a
program. This program could be done with Petri nets, which gives an
easy way of programming sequential algorithms.

We should later add redundant functions to the set of functions. We can
then let the system learn which functions work best at which places
with reinforcement learning. This part is not implemented in this
project, but my design of Centauro is prepared for reinforcement
learning and can be used as soon as it is implemented in the Petri net
executor.

The methodology to use Petri nets and primitive tasks was developed in
[Lima and Saridis, 1996] and [Wang and Saridis, 1993]. A short
description will be given in Chapter 2. In this project, the methodology
was applied to the mobile robot Centauro, see Figure 1.1. Centauro has
a differential drive kinematic configuration with two independent
actuated wheels and two free support wheels. The velocity difference
between the two drive wheels makes Centauro turn. If they are both
running at the same speed Centauro runs straight.

Centauro uses one CCD camera and a mirror. This gives the possibility
of both a distant and an immediate foreground view of Centauro.
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Figure 1.1 Picture of Centauro.

1.1 Goal

The goal is to add remote control to the already existing mobile robot
Centauro. The remote control should be done with Petri nets built up
with primitive actions. It should also be possible for the operator to
control the robot directly with a six degrees of freedom joystick. The
Petri nets should be executed in a stationary computer, which should
send requests to execute primitive tasks in the mobile robot.



2 Modelling robotic primitive tasks with Petri Nets

In all automation there is a need of a tool to sequence the operations in
some way. Often it is also important to be able to make decisions
during the on-line operation, for example to discriminate parts that
doesn’t fulfil the quality requirements. To co-ordinate different
primitive actions at the same time we have to do things in parallel.
There are a lot of different ways to make this happen. One of these is to
use Petri nets.

2.1 Petri-Nets

Petri nets are basically built up by places and transitions. The places are
drawn like circles, each one having a primitive task associated with it.
The place is connected to a transition, which is connected to another
place and so on.

Token
Transition

Hits=3

Condition

Figure 2.1 Petri net with two places and one transition.

In the Petri net there should be one or more tokens running around.
They stay in a place until a transition connected to an outgoing arc
from the place becomes true. In the Figure 2.1 we have the token in
place 8. The token will move from place 8 to place 9 when Hits
becomes equal to 3.

By using weighted transitions, we are able to create and destroy tokens
in an orderly fashion. In Figure 2.2, we must have 3 tokens in place 8
before we are able to fire transition Ball=blue. When firing
Ball=blue, place 8 will lose three tokens and place 10 will gain one
token because of the weights.

In place 10, one token is enough to fire the transition Ball=gone, and
then one token disappears in place 10 and two tokens will appear in
place 11.

After we have gone through Figure 2.2 we have put in 3 tokens in place
8 and we will have 2 tokens in place 11.

To summarise, we must put two additional tokens in place 8 to start the
execution of the net in Figure 2.2. After we have gone through the net,
we will have two tokens in place 11.
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Figure 2.2 Petri net with weighted transitions

Ball=red Ball=blue

Ball=gone Ball=gone

Figure 2.3 Petri net with alternative paths

In Figure 2.3 the token is placed in place 8. The token moves to place 9
if the variable Ball becomes red and it moves to place 10 if Ball



becomes blue. The token continues to place 11 when the variable
equals gone again. In the robot application, alternative paths may for
example be used when Centauro should decide which track to follow.

T1

T3

T4

Figure 2.4 Petri net with parallel paths.

The Petri net in Figure 2.4 is a simple example of how to model
parallel activities. When T1 has fired the branch with the places 9 and
10 will execute in parallel with the branch with the places 11 and 12.
T4 may fire when there are tokens both in place 10 and in place 12.
The parallel branching can be very useful in many automation
procedures. One benefit is the clear representation compared to a
totally sequential modelling. You may also gain in performance, for
example if the times to perform the primitive actions in steps 9 through
12 are unknown or if they are varying. One possible application could
be a large assembly machine where some pieces may be assembled
independently. In the Centauro system, it could be used in the future to
synchronise the robot with events taking place in its environment.

All of the classical real-time problems may be modelled using Petri
nets, for example

e mutual exclusion in critical regions,
e synchronisation of concurrent processes (rendez-vous and so on),
e readers-writers problem,



e producers-consumers problem.

These problems can be solved by using parallel paths and multiple
tokens, see [David and Alla, 1992] for details.

2.2 Primitive actions and primitive tasks

The previous section introduced Petri nets and how they are
constructed. This section will discuss the primitive actions that are
associated with the Petri net places.

A primitive task is a small sub-problem that can’t be divided into
smaller problems, from a functional standpoint. A primitive action is
an implementation of such a primitive task, i.e. a specific way of
solving the primitive task.

The most natural way to divide a complete mission into primitive tasks
is to find clear divisions in the functional behaviour. One way to find
the primitive tasks is to look at a mission, and try to identify what
repetitious procedures that shall be done. You may then divide the
mission into smaller parts where the robot should change focus.

The primitive task to follow a track could be an example of one such
primitive task. This primitive task could be implemented as different
primitive actions. For example, the robot could follow a track using
feedback from a camera or just by following a predefined trajectory in
open loop.

Every primitive task always has one or more primitive actions
associated with it, and every primitive action is always associated with
one primitive task. The different primitive actions associated with a
primitive task are different ways to solve the primitive task.

This architecture can be used for reinforcement learning. A primitive
action can give three different results

e ERROR: it did nothing, or with very poor result (e.g., because it
was trying to follow a path without object detection and bumped
into a large object).

e FAILURE: it did not very well (e.g., specifications not met
completely), but fair enough to allow the continuation of primitive
task execution.

e SUCCESS: it met the specifications of the corresponding primitive
task.

More about how this is supposed to be used can be found in [Lima and
Saridis, 1996].

2.3 Data handling

We have decided not to allow any parameters to the primitive actions.
The knowledge is supposed to be located in Centauro or in a central
database instead. The information is supposed to be down in the bottom
of the architecture and not sent down from the Petri net program to the
primitive  actions. @ For example the  primitive  action
rotate_x_degrees is not allowed. Instead you should have a



function rotate_to_desired_direction, which looks at the
variable desired_direction.

Every separate part of the system has to take care of its own data. It
may send information to other parts by sending updates on variables. It
may also ask other parts of the system what the values are on different
variables. The protocol of this data transfer is described in chapter 3.3.



3 Centauro

Figure 3.1 A picture of Centauro.

3.1 Original purpose

Centauro was built to compete in a robot competition held in 1997. The
main goal in this competition was to follow a track drawn on a gigantic
chessboard as fast as possible. In addition every robot should collect
balls of a specific colour and discriminate ball of another colour placed
on the track. More information is found in [Lima ef al., 1997].

3.2 Hardware

The hardware is built by the students from Instituto Superior Técnico
(IST) in Lisbon and is very much an experimental vehicle. Basically, it
uses a CCD camera, two large electrical motors and a computer. I have
later extended the vehicle with one Ethernet card connected to a radio
modem in order to make it possible to perform remote control. This
chapter describes the hardware configuration briefly. A detailed
description is found in [Lima et al., 1997].

Camera

The camera is an EDC-1000M. It takes 5 frames per second with the
resolution of 324 x 242 with 256 grey scales. You may reduce the
number of lines in order to make it work faster.



Figure 3.2 Illustration of how the camera looks through the mirror

Mirror

Centauro is equipped with a mirror in order to both get a view straight
ahead, and also one of the track underneath the robot.. The mirror
makes the upper half of the video image show what Centauro has right
in front of itself, and the lower half of the image shows what Centauro
can se further away, see Figure 3.2 and 3.3. This concept makes it
possible to have a very good view of the immediate surroundings but
also to be prepared of what will emerge in the near future. The image in
the mirror ranges from 36 cm to 50 cm ahead of the driving wheels.
The width of the image is 53 cm.

Camera

\‘ Virtual camera
— /

Mirror that creates the virtual camera

O

Figure 3.3 Vision system of Centauro

Motors

To cope with the relatively high speed requirements that Centauro
originally had (above 1 m/s), and the considerable weight of the vehicle
(50 Kg), it is equipped with two 12 V, 1750 rpm, 2 Nm Pacific-
Scientific DC motors. They are further described in [Lima, Silva,
Santos and, Cardeira 1997].



Figure 3.4 The two motors of Centauro, each one connected to its
own wheel.

Batteries

There are three batteries of lead type. The computer and the two motors
each have their own battery. This guarantees that the three units will
not affect each other through the power system. A thorough description
of the choice of batteries can be found in [Lima et al., 1997].

Power controller

The power controllers for the motors “NCC Professional 120 Motor
Controller” are built by 4QD. More information is found at
[http://www.argonet.co.uk/users/4qd/].

Interface to the power controller

The interfaces to the power controllers were built at IST. They are
connected to the ISA-bus that was introduced in the early eighties in
the IBM PC. They let you set either desired position, velocity or
acceleration of each motor. You may read the exact position of the
motors. This gives you the possibility to control Centauro.

The interface is programmed by sending the command to the port and
then to wait for the interface to acknowledge the command. This
behaviour makes the communication with the power controller a bit
slow. A lot of time would have been saved if the communication had
used interrupts instead.

Computer on Centauro

The computer on Centauro is a standard PC with a special power
supply. The power supply is connected to one of the 12 V batteries and
gives 5V and 12V.

10



Processor ~ Am486DX4-S

Memory 4MB

Hard disk 52MB

Network 10Mbit Ethernet added to make remote control possible
(0N MS-DOS

3.3 System software

Centauro is a real-time system. It interacts with reality with the control
loop. The movement is fed back from the camera, via the computer and
finally to the motors.

The communication between Centauro and the Petri net executor is of
high importance. Centauro always has to react immediately, especially
when the operator is controlling Centauro directly. The operator is then
sending packets to Centauro with the desired velocity of each wheel.
Centauro has to maintain these velocities until the next packet arrives.
It is therefore of even greater importance that Centauro is able to treat
the packets at the right time so that it doesn’t maintain old velocities.
The safety is always an important issue when working with robots,
especially when working with robots of this strength.

There is an obvious need of a real-time operating system. Centauro has
previously run DOS without any real-time support. All the drivers and
old applications for Centauro have been developed for a standard DOS
operating system.

The solution I found was to write the application in a single thread.
This approach has many drawbacks, but I was able to re-use most of
the old drivers and control routines. The result is a reliable system that
is easy to program.

In chapter 2 I have described how the functionality of the mobile robot
could be divided into primitive tasks and actions. This concept requires
some kind of mechanism in the mobile robot to offer these actions and
primitive tasks to the Petri net executor.

This mechanism is described in the next section. In chapter 2.3 I stated
that no parameters were allowed in the primitive task requests. The data
should instead be spread in a separate structure. This structure is also
described here.

Primitive task server and Data server

Centauro was planned to use the primitive task server and the data
server described in [Veiga and Gracio 1998] that was developed in
parallel with this project. It was not sure that this server would be ready
for use in Centauro when needed, and the decision was then made to
develop a smaller combined task and data server in this project. This
was to be able to finish on time. The new server had to be compatible
in the socket interface. This let me still be able to use their Petri net
executor instead of developing one of my own.

Protocol of the Primitive task server

The primitive task server only uses one socket, which receives
commands and sends acknowledgements. Every primitive task may
have its own socket connections as long as they handle them with care.

11



There are six different commands, identical to the ones in [Veiga and
Grécio 1998].

Name of | Byte | Byte | Byte |Byte | The rest

command |1 2 3 4

INIT MSG ID 0 ‘T 60 bytes of server name

REQ MSG ID 0 ‘R’ 2 bytes action id

ACK MSG ID 0 ‘A’ 2 bytes action id

RES MSG ID 0 ‘S’ 2 bytes of action id and
1 byte of error code

END MSG ID 0 ‘B’ Nothing

USR MSG ID 0 ‘U’ User data

Every packet is filled out to be 64 bytes in total. This will not give any
performance problems since the Ethernet packets are never smaller than
64 bytes.

Protocol of the Data server

The design described in [Veiga and Gricio 1998] that was used, used
different sockets for the data server and the task server. There are
drawbacks to this, the most important being the race condition, since
you do not know which packets that will arrived first on the different
sockets. The race condition can be handled by implementing
semaphores in the Petri net with the primitive actions. This is easily
done since every variable is non-dividable. The data server is only
partially implemented in this project. The protocol of the data server is
further described in [Veiga and Gracio 1998].

Design

The design of the combined primitive task and data server is very
simple. It is basically a loop that checks incoming packets and
translates them into orders. An example of an order sequence could be:

Start primitive action 4
Stop primitive action 8
Change value of variable 5 to A7yex
Stop primitive action 4

The use of a single thread in a real-time system requires some kind of
co-ordination. This is done by the combined server, since it is the only
central server and it has also a natural connection to all the other parts
of the system. The call to the active functions is done by round robin.

3.4 Basic functionality

The basic functionality is offered through the primitive task server
described in the previous chapter. All the primitive actions that are
offered by the primitive task server have to be implemented in a certain
way. This is in order to structure their behaviour so that the combined
primitive task and data server can handle them all.

12



Every primitive action should have the following functions:

e (Create function Allocates resources that will be needed
during all the execution like opening
stream.

e [Initialisation function  Initialises every execution of this
primitive task.

e  Step function Executes one step of the primitive task.

e Exit function Cleans up after every execution of the
primitive task, and send back the
reinforcement learning code. This code
should be success, error or failure as
described in [Lima and Saridis, 1996].

e  Destroy function Cleans up what is left from the Create
function.

Look in Appendix A.5 for a more detailed description. The primitive
actions that are described in this chapter are all solving one specific
primitive task each. They are only covering a minimum of functionality.
It is possible to implement more than one primitive action per defined
primitive task. It is also supposed to be more than one primitive action
per defined primitive task.

DirectControl — Primitive Action

One of the main goals for this project was to make it possible for an
operator to control Centauro manually in real-time by simply moving a
fancy joystick. This part is implemented as a primitive action offered
by the primitive task server. The Space Mouse is further described in
Chapter 5.3.

DirectControl is supposed to react to the movements that the
operator makes on the joystick. The terminal — where the operator is
sitting — sends updates every 250:th millisecond how the operator
wants Centauro to move.

The messages that are received have the format:

Name of field | Size of field | Type of field Comments
Speed 32 bits Float
Rotation 32 bits Float
Time stamp 32 bits Long int Not in use
Reserved Long int Not in use

The system must deal with the unreliable behaviour of Ethernet and
radio connections. DirectControl checks constantly that it is
receiving the “velocity packets” in a steady pace. It stops both motors
as soon as it suspects that a packet is lost or delayed.

DirectControl uses the following algorithm:

1. Wait for connection from Centaur Control
2. Receive a message, reset motors if no message is received in 550ms

13



Decode the message and send the velocities to the motors.
Take a picture with the camera

Extract the track out of that picture

Check current speed

Send back speed and track position to the terminal
Repeat step 2 to 7 until interrupted

© N LA W

DirectControl can only exit on the command from the operator. It
returns success to Centaur Executor and stops the motors when it
receives the command to stop DirectControl.

FollowTrack — Primitive action

To follow the track closely, Centauro must have knowledge of its own
measurements. The FollowTrack-algorithm always tries to center
the track to the point p in Figure 3.5.

Left wheel

)

v

r

MIIA

*P

oINeu)
d

W —

Right wheel < ﬂ, >

Figure 3.5 A Sketch of Centauro and what it can see through the
mirror.

With this information Centauro can move itself in relation to the point
p by rotating around its own axis.

v, =The angular velocity in radians per seconds
v, =The velocity of the point p caused by the rotation of Centauro, v, .

vl’
v, = arctan| —
(04

The point p is located in the most distant part of the image that is seen
through the mirror. Its vertical movement in the Figure 3.5 is only

affected by v, .

Centauro should center the track with a certain velocity but since the
track is not always aligned with Centauro, it also has to compensate for
the drift imposed by the nonalignment.

14



Figure 3.6 The view of the track that Centauro sees, with the
displacement and angle of the track.

Y =v, and Yy makes the track move to the left at a speed of

Viey = tan (Y )Vc

where v, is the velocity ahead (velocity common mode). The controller
tries to center the point p at a given rate by

v =ch

where c is a constant. We want p to move with the velocity v,,.,.. tO

recenter

center the track subtracted by v, to compensate for the non-aligned

track. This gives
Vv, =V

p recenter vdev

Since Centauro is a differential-drive vehicle

vlefl L vright
V.= —2
and
Vs —V,.
s left right
’Y =

B

Out of this we get the desired velocities of left and right wheel to be

arCtan{ vrecenter - va’ev ]B

o

Vigr =V, + >

arctan vrecenter — vdev B
right — vc - 2

v
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The function GetTrack described below obtain A and y . GetTrack
gives the values of 6, and 0, in the formula y=0,+0,x, and from

this it is easy to get the values of A and .

There are two different possibilities for FollowTrack to exit. It
returns success when it finds an end of a track, and it returns error
when it loses the track because of other reasons.

GetTrack

The function Get Track returns the position and direction of the track.
It also detects if the track is not present. It only uses the part of the
image that is viewed through the mirror. This gives enough information
for following the track. It uses every tenth line of the image and gives
back position, direction and error of the estimation.

Centauro knows four rules to recognise a track:

A track is dark on light background.

A track is between 15 and 25 mm wide.

A track has big difference between the track and the background.
A track has the same background on both sides.

= ks e

These four rules give the position of the track on all the tested lines.
The position of the track on every row analysed are put in a ten by one
matrix. This matrix is used to find 8, and 0, in the equation
y=0,+0x

with the least-square-method.

It would be interesting to look at the lower part of the image that shows
the more distant view. In this way Centauro would be able to accelerate
on a straight track and slow down close to an end or a curve. This
should of course be a separate primitive task.

SearchTrack — Primitive actions

The set of primitive actions SearchTrackLeft,
SearchTrackRight, SearchTrackAhead and FollowTrack
are all very important for the navigation of Centauro.
SearchTrackLeft, SearchTrackRight,
SearchTrackAhead and SearchTrackBack will be described in
this section. They are all very similar and are all supposed to be used at
crossroads with 1, 2 or 3 exits like in Figure 3.8.

16
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Figure 3.8 A crossroad with one entrance and three exits. The
entrance is always defined by where Centauro is entering the
crossroad at any specific time.

Centauro is supposed to follow a track into the crossroad. Centauro will
of course find the end of the track in the middle of the crossroad. It will
then have its camera looking at the white center of the cross road. It can
now choose an exit by turning left, right or to go straight ahead.

The SearchTrack primitive actions all work the same way. They are
looking in the mirror and turn the wheels until they can find a track or
they reach a timeout. The velocities that were used in this project can
be found in Table 3.1.

Table 3.1 Check the wheel velocities

Left wheel Right wheel
SearchTrackLeft —20cm/s +20cm/s
SearchTrackRight +20cm/s -20cm/s
SearchTrackAhead +40cm/s +40cm/s
SearchTrackBack —40cm/s -40cm/s

These primitive actions return success as soon as they have found any
track that is recognised by GetTrack (described above) two times in
a row. And they report error if they can not find a track before their
internal timeout is passed. The way these actions work, we do not
know whether the detected track will be centered and/or aligned. This
could be solved by making the actions more complex. However, this
would violate the ambition to make the actions as primitive as
possible. Instead, each successful SearchTrack should be followed
by either of

e TFollowTrack directly
e (CenterTrack and then FollowTrack

17




J CenterAnd_AlignTrack1 and then FollowTrack
e DirectControl

In this way we get a more flexible system where the programmer easily
can change the smoothness of Centauro.

Found track again

Starts rotating in SearchTrackLeft

\]}”t‘)und end of wack

FollowTrack

Nl

-
-

Figure 3.9 Centauro entering a crossroad from below. It chooses
to look for the track to the left and then follows it.

CenterTrack - Primitive action

Even if FollowTrack centers the track while moving forward, it is
usually a good idea to center the track in some way before we run the
FollowTrack primitive action. It may also be useful in other
situations.

This primitive action will constantly look in the mirror to check where
the track is. It will report an error if it looses the track and a success
when the track is within an interval that is defined as the center. It uses
the whole track but centers only the part of the track that is in the most
distant part of the mirror. This is because we get a better behaviour this
way than to center the part of the track that is closer to Centauro.
CenterTrack does not move Centauro in the forward direction, but
it rotates Centauro around the point just between the wheels. The speed
of rotation is proportional to the displacement of the track. This gives a
satisfactory result. Care should be take not to use a proportional
constant that is to high.

CenterTrack turns off the motors and return success when both:

e the track is centered within an internal interval
e the velocity is considered calm enough

! This action is not implemented in this project.

18



This is to prevent Centauro from having any kinetic energy left after
CenterTrack is finished. CenterTrack returns error if it does
not manage to center the track within an internal timeout.

MoveTo_Blend - Primitive action

MoveTo_Blend is just an example of how to implement a primitive
action. This primitive action does not do anything it does just go in and
out. It does always return success. MoveTo_Blend is a good example
to build new primitive actions on though and it is available as a
primitive action offered by Centauro.

SendPhoto — Primitive action

SendPhoto was partly developed to ease the development of the
other primitive actions that Centauro offers. It was especially helpful in
the development of the image recognition routines. The user defined
packets in [Veiga and Gracio 1998] were not used, since they were not
available at the time.

The protocol is really simple. SendPhoto opens a server socket® that
will accept one client. It sends the size of the image after the
connection is established and then sends the image. It closes the socket
as soon as the whole image is transferred.

The modems had some problems with the flow control at high loads.
This features forced me to lower the load, and a reasonable load should
be five lines in each step”.

SendPhoto does always return success after finished transmission.

TakePhoto - Primitive action

TakePhoto is another primitive action that is mostly used during
development of the different other primitive actions. The main area of
future use will be to log pictures at strange occasions, like if non-
foreseen errors would appear or if the operator needs a still picture.
TakePhoto just takes a photo where the entire image is updated. This
photo is taken in one step, which makes it abuse the recommended
maximum time to execute one step. The time it takes to take a picture
0.2 seconds. TakePhoto does always return success after finished
transmission.

TurnLeft - Primitive action

I decided to translate this old function into a primitive action mostly to
demonstrate the position control of Centauro but also since it is an easy
way to turn a bit to the left.

TurnLeft uses position control and turns Centauro a certain number
of degrees to the left. It does not control that the primitive action is

2 Server socket is a socket that clients can connect to. The client and the server are
absolutely equal after the connection is established.

A step is the smallest part of an action that will be run from central scheduler.
This is further defined in Appendix A.5.
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done but instead it waits a certain amount of time before it returns
SUCCESS.

TurnRight - Primitive action

TurnRight is a lot like the primitive action TurnLeft with the big
difference that this primitive action turns to the right.

GoForward - Primitive action

GoForward is also very similar to the two primitive actions described
above. Sets a new desired position on both wheels that is a constant
value greater that the current position.

StopCar - Primitive action

StopCar is also a very primitive action but still a useful one. This
primitive action is executed in one step and stops both motors. That is
done even if some other primitive action is currently using the motors.
This behaviour gives the possibility to paralyse Centauro by sending a
slow stream of requests for the StopCar primitive action. StopCar
has no error control and will always return success.
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4 Communication

Remote control requires some kind of communication. For a mobile
robot it is a good idea to use wireless techniques. But also stationary
robots could be controlled with wireless techniques, just to get rid of
the wires.

Most of the communication will be short packages that we want to
transmit fast with a high reliability.

4.1 Network

All communication is done over the Ethernet network at the
department. This network has been extended with a radio link to
Centauro. Ethernet is not a good protocol for communication in real-
time systems, since there is no guarantee on delivery time or that the
data is delivered at all. These drawbacks are however minimised there
is no other equipment connected to the Ethernet.

The radio link is built up by a radio modem that transmits the signal to
an identical radio-modem that is connected to Centauro. The modem
model is WCL3670 from AAEON. They have the capacity of 2
Mbit/second but no flow-control. The software TCP/DOS from IBM is
also added to Centauro to supply it with the TCP/IP protocols in DOS.

Operator
teminal
Ethernet IEEE 802.3
Radio
modem
L .
N Fixed
\\_// robot
Radio LAN

IEEE 802.11 /—
=

- P Radio
Radio Radio modem
modem i ‘
J X Fixed
Mobile Mobile robot
robot robot

Figure 4.1 Draft of how the communication architecture could be.

4.2 Lost packets and delays

The TCP/IP protocol suite contains the necessary communication
functionality for Centauro. Centauro needs a secure way to send error
free data. The streams that TCP/IP offers should assure that the data
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that is sent will arrive. However, they do not guarantee when the data
will be delivered.

The CSMA/CD and CMSA/CA protocols both imply delays varying
with time. This gives a hazardous situation if the processes running in
Centauro require information at certain times. Special care has therefore
been taken to avoid serious consequences with delayed packages.
DirectControl in Chapter 3.4 does stop immediately when the
packages are not arriving on time and all primitive action that uses the
motors do reset them after use.
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5 Operator console

As described earlier there is a large need of easier ways to remote
control robots remotely. An important part of this is of course the how
the operator interacts with the robot via the terminal. As mentioned in
Chapter 1 the operator can control Centauro in two different modes:

e Centauro executing a Petri net
e Centauro receiving explicit movement commands

The Petri net runs in the program Centaur Executor. Manual control is
done with the program Centaur Control. Both programs are described
in this chapter.

5.1 Centaur Executor

E Executor Front-End I I A |
Execite Plan |
Connect Servers | View Plan | Pause Plan I Stop Plan I
~Esecutor Status ————— e

Executor started... :J

Figure 5.1 The status window from the Petri net executor.

Centaur Executor is the Petri net executor. The operator may follow the
execution of the Petri nets, but should also be able to control the
execution of the Petri nets. It should be possible to:

e Add tokens at places.
e Remove tokens from places.
e Stop the system at an emergency.

The operator can control the execution of the Petri net by moving
tokens between the different places. This lets the operator change the
execution very directly and for example start directcontrol by
moving the token to that place. He can then later put Centauro back in
to its normal program after he is finished with the interference. Centaur
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Executor is further described in [Veiga and Gricio 1998] under the
name Petri net Executor.

5.2 Centaur Control

Centaur Control is the program that the operator should use to control
Centauro directly. It is started from Centaur Executor as soon as
Centaur Executor orders directcontrol from Centauro. The
operator can simply push, drag and rotate the Space Mouse and
Centauro will follow. Basically, this is a control loop where the
operator is the main control algorithm.

When the operator pushes the space mouse away from the operator,
Centauro receives a command to go ahead. The camera takes new
pictures that are decoded into the position and direction of the track (if
it is visible). This information is sent back to the operator console,
where the operator sees what happens and may adjust his commands
via the Space Mouse. Figure 5.2 shows the main window in Centaur
Control.The features are presented as the text to the left. Accuracy is
how much doubt Centauro has about the track. The higher value the
more doubt. Deviation is how many pixels that the track has deviated
from the ideal position. Direction is in what direction the track is
pointing. The vertical line is the ideal position and the sloping line is
the actual position and direction of the track. Vel.left is the velocity that
Centauro has on the left wheel, which is also represented with the small
arrow to the left. Vel.right is the velocity of the right wheel that also is
represented as an arrow. Pos.left and pos.right are the positions that
these wheels report right now.

aﬂ Cube 3D Centaur

Exit About

Accuracy 1
Dewviation 113.259
Direction 0.134

Vel left 3 ]
Vel.right 7
Pos.left 1496

Pos.right -3669

Figure 5.2 The main windows from Centaur Control.
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Centaur Control follows this algorithm:

1. Initiate a timer that sends an empty message every quarter of a
second.

Initiate the Space Mouse to send all updates to Centaur Control.
Connect to DirectControl primitive task in Centauro.

Receive a message from Space Mouse or the timer.

Create a message with current time and desired speed of left wheel
and right wheel from last update from the Space Mouse.

Send the message to directcontrol in Centauro.

Repeat 4,5 and 6 until interrupted

Close connection to directcontrol in Centauro.

Close Space Mouse

SIS

\© 20 = o

5.3 Space Mouse

Space Mouse is developed by SPACE CONTROL in Germany. It is a
six axis joystick which give you the possibility of full 3D control of
objects — translation and rotation.

Figure 5.3 Space Mouse from Space Control in Germany.

Input from the Space Mouse

The vehicle has far less degrees of freedom than the Space Mouse.
Centauro is moving around in the X-Z-plane but can only move in one
direction at the time. It has to rotate to move in another direction. At
every specific time Centauro has full freedom in two dimensions,
rotation around the Y-axis and movement along the Centauro-axis - its
own axis. The Centauro-axis is defined to be in the same direction as
the camera of Centauro is looking. The Centauro-axis is always inside
the X-Z-plane.
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Figure 5.4 Six degrees of freedom

With the full freedom in these two dimensions we are able to move
wherever we want to go in the X-Z-plane and also to rotate in any
direction around the Y-axis. We have found a new degree of freedom,
but we do not have full freedom in all the three degrees of freedom.
This is because the rotation expands the Centauro-axis to the X-Z-
plane. Look in Figure 5.5 for an example.

26



Not possible

Figure 5.5 Examples of what trajectories that are possible and
not possible. The grey line is the track, the black ball is Centauro
and the black arrow is the direction of Centauro.

We have some different ways to transform the movements of the Space
Mouse to desired movements of Centauro. The way I chose was to use
the rotation around the Y-axis and the movements along the Z-axis of
the Space Mouse. Rotation of the Space Mouse makes Centauro rotate
and movements along the Z-axis makes Centauro move along the
Centauro-axis. The more you twist and turn the Space mouse the more
does Centauro twist and turn. Using this transformation of the signal
from the Space Mouse to the vehicle doesn’t cancel any of the degree
of freedom of the vehicle.

Commands at keyboard of Space Mouse

Space Mouse has a small keyboard as Figure 5.3 shows. I have only
chosen to use three of these keys. The keyboard of Space Mouse has
the following functions

Resets the motors of Centauro

Not in use

Not in use

Turns on and off the feature display
Not in use

Not in use

Not in use

Exits Centaur Control

fe = P A= S b
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6 Case study

In LRM* there is a track made up by electrical tape on the light
coloured floor. This track is sketched in Figure 6.1. I have made up a
small mission for Centauro to test the system that I have built up. The
mission is to follow the track from point A to point C. At C the
operator is supposed to control Centauro to perform some kind of
docking and then to give back the control to Centauro after the operator
is done. Centauro should then return to the original position following
the track back.

This is a quite small mission but we must divide it into smaller parts
that match the primitive tasks that Centauro offer. This is quite easily
done after a look at the track.

We assume that Centauro is placed between A and B at the start. It
would be a good idea to first center the track under Centauro and then
follow the track to the turn at B. At B Centauro should search for the
track to the right, center the track and then follow the track until the
end.

At D Centauro should just let the operator perform direct control until
the operator is finished. The instructions to the operator includes that he
should leave Centauro looking at the track in the direction towards C.
Centauro should now center the track and follow it back to A.

B o C

A

Figure 6.1 Sketch of the track that was used for testing
Centauro.

4 LRM (Laboratorio de Robotica Movel) - Research lab at ISR at IST - Lisbon.
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SearchTrack
Leftl

LeaveHome DoYourThing

SearchTrack
Left2

SearchTrack
Rightl

CenterTrack2 TravelHome

V¥V T4 -V T8

Figure 6.2 The Petri net used for control of Centauro

This mission tests most of Centauros capabilities. It shows that the set
of primitive tasks that Centauro offers makes it possible to do simple
operations. It tests if the primitive tasks are defined in a good way, that
is, if my ideas that I presented in chapter 2.2 of how the mission should
be divided into primitive tasks are good. It also tests if the
FollowTrack primitive action is able to follow bended tracks, which
it does. The listings of this mission are available in appendix D.
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7 Conclusions, future work

The goals that were defined for the project were all met. This project
managed to construct a system on Centauro that offers primitive
actions. These primitive actions are later translated to primitive tasks
by the external petri net executor. The architecture was taken from
[Lima and Saridis, 1996].

The case study described in Chapter 6 was defined and done
successfully proving the usefulness of the control system that is built
up in Centauro.

7.1 Future improvements

This project shows that it is possible to build up a robot with primitive
actions and primitive tasks. The goal has not been to build a
commercial mobile robot. I have been forced to just implement a
minimum, enough to test all the tricky parts. There are many new
primitive tasks to be defined for Centauro and yet more primitive
actions to implement. There is no redundancy among the primitive
actions implemented in this project. Every primitive task has exactly
one primitive action implemented. Of course Centauro should offer
many primitive actions for every primitive task that is defined. An
interesting project would then be to extend Centaur Executor to handle
reinforcement learning and to implement a set of redundant primitive
actions for every primitive task that is defined for Centauro.

Besides this Centauro offers an interesting platform to define more
primitive tasks and to implement more primitive actions. A short list of
handy primitive tasks could be:

Align with track

Dock

Advise new safe velocity
Build map

The most interesting of these primitive tasks would in my opinion be
“Advise new safe velocity”. It would be a very neat way of
demonstrating both how to build up parallelism, and also how the data
should flow between the different primitive actions. The primitive task
“Advise new velocity” would then run in parallel with for example
FollowTrack. “Advise new velocity” would constantly calculate the
maximum advisable velocity from lower part of the images taken with
the camera. FollowTrack would read that velocity from a shared
variable.

There is also some more tedious work that should be done to secure
future use of Centauro. The wiring on Centauro is not as reliable as it
should be. The power supply that transforms the battery output to the
computer can sometimes give trouble, see Appendix B. There might
also be other problems that are not yet identified. All this makes it
advisable that the next project on Centauro should start with a general
check of the wiring.
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Further I would like to see Centauro co-operate with other robots. A
parallel project to this one was to build up a set of primitive actions for
the Puma manipulator’. It is of course hard not to see what possibilities
this would give by set Centauro and the Puma to co-operate in the same
Petri net.

Figure 7.1 show an example of how the co-operation between the Puma
and Centauro could be. Here the Puma is picking parts from a central
storage, giving them to Centauro. Centauro delivers the parts to the
three different workstation guided by the tracks

gontlpute]; runntlng Work
‘entaur Executor station 1
| Ethernet
Storage Puma Radio modem
Work
station 3
Centauro with the Track
modem
Work
station 2

Figure 7.1 An example of how the Puma and Centauro could co-
operate delivering parts from a central storage to three different
work stations.

> This puma manipulator is positioned in the Intelligent Control Lab at IST.
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A How to use the source code

Here are some short descriptions on how to use the different source
files that control Centauro.

A1 LM

LM.C contains routines to send and get information from the 4QD-
controllers. It has a mixture of different procedures using different
interfaces but they are all on a very basic level. Add the procedures you
need in the future.

A.2 CAMERA.C

CAMERA.C contains all procedure that relates to the camera and
feature extracting of the camera. Might be divided in two parts when
more feature extraction procedures are implemented.

A.3 CONFIG.C
CONFIG.C Reads configuration files.

A.4 CONSTS.C
Contains constants about Centauro and the world.

A.5 PRIMITIV.C

Contains all the primitive actions. The primitive actions have to be
implemented in a certain way to work with the data and primitive task
server. The header of each function should be like

error MoveTo_ Blend(int * currentstate)
Where the current state can be six different values.

0. Do nothing

1. Initiate the primitive action at program start. Should change the
current state to O after this initialisation.

2. Initiate the primitive action to be executed once. Should change the
current state to 3 after this initialisation.

3. Takes one step of the primitive action. Should do a small part of the
work. Should only change the state when done. When done with the
work the current state should be changed to 4.

4. Should finish the execution of the primitive action and return the
error code in error. The current state should be changed to 0.

5. Should finish the primitive action at program termination. Set the
current state to 0.

The error codes returned when the primitive action finishes should be
as defined in PROTOCOL.H that is imported from Petri net executor.
If the primitive action is not finishing - changing current state from 3 to
four and returning a valid success-code according to PROTOCOL.H —
then it should return 99.
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/*
* ACTION_MOVETO_Blend
']
/* Action Task that implements the Move To function */
/* of the PUMA */
error MoveTo_Blend(int * currentstate)
{
switch (*currentstate)
{
case 0:
break;
case 1:
//create
PrintStr ("MoveTo_Blend CREATED\n") ;
*currentstate=0;
break;
case 2:
//init
PrintStr ("MoveTo_Blend INITIATED\n");
*currentstate=3;
break;
case 3:
//step
PrintStr ("MoveTo_Blend STEPPED\n");
if (...done with the action...)
*currentstate=4;
break;
case 4:
//exit
PrintStr ("MoveTo_Blend EXITED\n");
*currentstate=0;
return __ _LEARN_RESULT__SUCCESS__ ;
/ /break;
case 5:
//destroy
PrintStr("MoveTo_Blend DESTROYED\n");
*currentstate=0;
break;
}
return 99;

I
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B Appendix — Start-up of Centauro

Make sure that you have the following:

Three fully loaded 12V batteries

One Centauro robot with at 3670 radio-modem

One more 3670 radio-modem

One console-computer running Windows 95 or something similar
One space-mouse

Press the emergency button, turn of the computer switch (on the side of
Centauro chassis). Connect all the batteries. Turn on the computer with
the switch on the side of Centauro. Check that the yellow diode on the
modem flashes rapidly. One red diode is shining constantly and that the
other one seems to flash randomly (weakly).

When the boot-sequence is over execute the batch-file C.BAT to start
Centauro. You should get a lot of information on the screen ending
with opening primitive task and data-server. Take a deep breath. Be
prepared to repress the emergency-button while you release it. If
Centauro moves repress the button immediately.

Characteristics What is wrong [ How to correct it

When turning on | The battery | Check that the battery for the
the computer | power doesn’t | computer is connected to the
nothing happens. | reach the | power-supply, that the power-
computer supply is connected to the
motherboard, hard disk, disk
drive and CPU-fan.

When turning on | Probably a [ Touch the cables that go to the

the computer | short-circuit or | most inner part of the power-
almost nothing | a bad | supply and wish that the
happens. connection in | connections will work better.

the battery
power-supply.

When starting | Probably Turn off the computer recheck
C.BAT  nothing | something the cables and move the LM-
happens. wrong with the | board to the right position.
LM-board.

When C.BAT is | Probably Check that the light from the
started it is still | something modems look right. If it
not possible to | wrong with the | doesn’t reboot them until it
connect to | modems. does. The server-modem
Centauro from should always be turned on
another computer. before the client-modems.

Centauro doesn’t | Same as above. | Same as above.
reply to PING.
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C Appendix — How to configure the modems

To configure the modems can be quite hard since there are a lot of
different alternatives and the manual doesn’t say anything about which
that are possible, but it is easy to do with the following instructions.

To configure the modems you need

One modem of model 3670 or 3671

One white cable. Ordinary twisted-pair cable

One power-supply for the modem

One computer with an Ethernet-card

The diskette marked “WaveCell WCL 3670 Security and
Diagnostic Version 5.2”

Please note that you should finish this procedure within one minute,
and also that the security-code should be the same for the modems that
want to talk to each other, that is also for the channel. There should be
exactly one server-modem. The procedure is as follows:

1. Connect modem with the white twisted-pair-cable to the Ethernet-

card

Connect the power-supply to the modem

Start the program “A:\Aaeon_wg.exe”

Chose Control — Config

Press GetID. If you get TimeOut just try again.

Mark the ID you want to change

Change the values

Press either SetClient or SetServer depending on what you want to

do

9. You should get the result “Expected result” from the program. If
you do not get a successive result just disconnect the power from
the modem for a short while and then continue from step 5.

PN U AW

When you have configures the two modems put the server at a hub or
equal with the blue twisted-pair-cable and a power-supply. Remember
to always turn on the server before you turn on the client. Put the client
on Centauro and connect it with a white cable and a keyboard-power-
cable.

The easiest way to test it now is by using PING. Test it in both
directions!
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D Source code of the case study

D.1 SERVERS.CFG

This file defines all servers that may offer primitive actions in this
setup. I have here defined a server called “Centaur” with the IP name
damiao.isr.ist.utl.pt. This is because the system is run in the
isr.ist.utl.pt network. I do also define that all the information that the
Petri net executor knows about Centauro is read from the local file
“centaur.srv”.

:server Centaur Centaur.srv damiao

D.2 EXECUTOR.CFG
This file defines variables that are placed in the Petri net executor.

:data NbPlans int

:data NbTimesExecuted int

:data StatusExecutionCounter int array 3
:data FinishExecution int

:data SUCCESS int

:data ERROR int

:data RESULT int

D.3 CENTAUR.SRV

Here I have declared all the ports, variables and primitive actions from
Centauro. I do also define which primitive actions that solve which

primitive tasks.

:server_name Centaur

:data_port 1600

:primitive task port 1700

:data VarTeste int

:data RT int

:primitive_primitive task MoveTo_Blend
:primitive_action MoveTo_Blend 0
:primitive_primitive task MoveTo_Blend
:primitive_action MoveTo_Blend 1
:primitive_primitive task SendPhoto
:primitive_action SendPhoto 2
:primitive_primitive task TakePhoto
:primitive_action TakePhoto 3
:primitive_primitive task FollowTrack
:primitive_action FollowTrack 4
:primitive_primitive task TurnLeft
:primitive_action TurnLeft 5
:primitive_primitive task TurnRight
:primitive_action TurnRight 6
:primitive_primitive task GoForward
:primitive_action GoForward 7
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:primitive_primitive task StopCar
:primitive_action StopCar 8
:primitive_primitive task DirectComm
:primitive_action DirectComm 9
:primitive_primitive task SearchTrackLeft
:primitive_action SearchTrackLeft 10
:primitive_primitive task SearchTrackRight
:primitive_action SearchTrackRight 11
:primitive_primitive task CenterTrack
:primitive_action CenterTrack 12
:primitive_primitive task RunByKB
:primitive_action RunByKB 13

:primitive _primitive task SearchTrackahead
:primitive_action SearchTrackAhead 14
:primitive_primitive task SearchTrackBack
:primitive_action SearchTrackBack 15
:primitive_primitive task Dock
:primitive_action Dock 16
:primitive_primitive task ReverseTrack
:primitive_action ReverseTrack 17

D.4 CENTAURWHOLE.VPP
This file is the actual program that should be executed.

:signature WholeTrack

:place CenterTrackl CenterTrack

:place LeaveHome FollowTrack

:place SearchTrackRightl SearchTrackRight
:place CenterTrack2 CenterTrack

:place Travell FollowTrack

:place Travel2 FollowTrack

:place DoYourThing DirectComm

:place CenterTrack3 CenterTrack

:place TravelHome FollowTrack

:place SearchTrackLeftl SearchTrackLeft
:place GoHome FollowTrack

:place SearchTrackLeft2 SearchTrackLeft
:place Final null

:transition T1 null

:input CenterTrackl

:output LeaveHome

:transition T2 null

:input LeaveHome

:output SearchTrackRightl

:transition T3 null

:input SearchTrackRightl

:output CenterTrack?2

:transition T4 null

:input CenterTrack?2

routput Travell

:transition T5 null



:input Travell

:output Travel2
:transition THa null
:input Travel2

:output DoYourThing
:transition T6 null
:input DoYourThing
:output CenterTrack3
:transition T7 null
:input CenterTrack3
:output TravelHome
:transition T8 null
:input TravelHome
:output SearchTrackLeftl
:transition T9 null
:input SearchTrackLeftl
:output GoHome
:transition T10 null
:input GoHome

:output SearchTrackLeft?2
:transition T11 null
:input SearchTrackLeft?2
:output Final

:marking InitMark CentexrTrackl
:endplace Final



