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Chapter 1

Introduction

Structural resonances are common in mechanical systems. Control of such
systems is difficult if fast responses are required, because rapid changes in
the control signal may excite the resonant modes. With digital control the
problems become even worse since there will be very rapid changes in the
control signal at the sampling instants. The magnitudes of these changes
can of course be reduced by having a higher sampling rate but that is not
always possible or preferable. Since the problem is the transitions in the
control signal it would be natural to gradually increase the control signal.
This can be achieved with a first-order-hold circuit, which generates a signal
that is linear between the sampling instants. This thesis investigates trade-
offs in control of a typical oscillatory system. The system consists of two
masses connected by a spring. It has three modes represented by one pole at
the origin, one pole on the negative real axis and two oscillatory poles. The
performance that can be achieved with controllers of different complexity
is investigated. First a PI controller is explored. With such a controller
the main limitation on response speed is given by the real non-zero process
pole. With a PID controller this pole can be cancelled. The limits will then
instead be given by the oscillatory poles of the process. Finally a state feed-
back controller, which makes use of more of the knowledge of the process
dynamics, is shown to give even better results. A comparison is also made
between zero-order-hold and predictive first-order-hold sampling, showing
on slightly better behaviour for the latter. The controllers are examined
analytically and by simulations.

The investigated oscillatory system is introduced in chapter 2. A mathe-
matical model of the system is derived. This is used for control design and
simulations throughout the thesis. The chapter also contains a short de-
scription of predictive first-order-hold sampling. Chapter 3 covers PI and
PID control. State feedback control is examined in chapter 4. Chapter 5
contains some conclusions and suggestions for future work on this topic.




Chapter 2

Process model

The plant model used for the simulations throughout this thesis is a model
of the Rectilinear Control System Model 210 from ECP. It is an educational
system and real life applications are for example robot arms with harmonic
drives or the arms of disk drives and cd players. Even seemingly stiff struc-
tures can have resonances because of large accelerations. The problems with
mechanical resonances are in general very common in mechatronic systems.
This chapter gives a short description of the plant and the simulation model.
Sampling of the model is also described and performed for digital control
purposes. Details about the plant can be found in [3].

2.1 Description of the plant

Figure 2.1: Rectilinear Control System Model 210




The process is basically two masses, connected with a spring, moving along a
rail. A dashpot with adjustable damping can also be attached to any of the
masses. There is a picture of the process in Figure 2.1. The first mass can
be accelerated by a motor and the position of each mass can be measured
by a sensor moving along with it. The movement of the masses is limited
at each end of the rail by a bumper. However, there will also be friction
between the masses and the rail which can not be neglected. This can be
modelled as a damping of the masses with a different damping coefficient
for each mass. A model of the process with friction taken into account but
the bumpers neglected is found in Figure 2.2. The dashpot is considered to
be disconnected.

Figure 2.2: Model of the plant

2.2 Simulation model

Newtons Second Law of Motion gives

Ii

mydt + e + k(Y1 — 2) F(t)
mafs + cay2 + k(y2 — 1) = 0

By introducing the vector x as
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the equations can be rewritten on the form

i = Az+ BF(t)
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The x vector could have simply been chosen as the positions and the ve-
locities of the two masses but the velocities have been weighted to avoid
numerical problems due to a badly conditioned matrix A. (See [4].)

Model parameters

The parameters of the plant have been estimated to

k = 175N/m
m; = 279]89
ms = 2.54kg

c; = 3.12Ns/m

¢ = 3.73Ns/m
With a system represented by

i = Az+ BF(t)
y = Cz

the matrices will be given the values

0 7.9198 0 0
A -7.9198 -1.1183 7.9198 0
0 0 0 8.2939
8.2939 0 —8.2939 —1.4662
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Transfer function

For the position of the second mass, which is going to be the primary focus
of the control, the transfer function from the control signal is given by

326
s(s +1.28)(s? +1.3s + 131)

Gp(s) = Ca(sI—A)"'B+ D=

where C, denotes the second row in C. This can be represented by

Kp
s(s + a)(s? + 2¢wps + wf,)

Gp(s) =
where K, ~ 326, a ~ 1.28, w, = 11.5 and (, ~ 0.0567.

Impulse response of the process

The impulse response of the process is shown in Figure 2.3 As can be seen
any impulse from the servo motor or the environment will cause the masses
to oscillate at frequency wp. This will be a problem if a fast controller is to
be designed for the plant and it will be even worse if a control signal that
changes step wise is used, for example a signal obtained from sampling with
a zero-order-hold circuit.

2.3 Zero-order-hold sampling

Zero-order-hold sampling of the system will yield a discrete time state-space
representation on the form

Tpt1 = Pap+ Tug
yr = Cuwp

where the matrices ® and T' can be calculated from

d = A
h

r / At dsB
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Figure 2.3: Impulse response of the plant. Full line is the first mass; dashed
line is the second.

The sampling interval should at least be short enough to give the controller
a chance to discover the oscillations of the process at the natural frequency
wp. To get 20 samples per period of the natural oscillations h will have to

be equal to
T

- 10w,

With w, = 11.5 this gives an h equal to about 27.4 ms. The sampled system
matrices will then be

0.9769 0.2120 0.0231 0.0017
—0.2120 0.9469 0.2120 0.0239

¢ 0.0253 0.0018 0.9747 0.2208
02191 0.0239 —0.2191 0.9357
0.1755
Ly | 1.6029
I= 1071 0.0008
0.0132




Zero-order-hold sampling and the choice of a sampling interval are described
in [1].

2.4 Predictive first-order-hold sampling

A control signal created with zero-order-hold sampling contains a lot of high
frequencies. When controlling a system with poorly damped oscillatory poles
this limits controller performance, especially for fast controllers. This sec-
tion presents some general formulas for predictive first-order-hold sampling,
which, by changing the control signal linearly between the sampling instants,
injects much less high frequencies into the process. The theory presented
here was taken from [1] and [2].

The system to be sampled is assumed to be described by

¢(t) = Az(t)+ Bu(t)
y(t) = Cez(t) + Du(t)
and the sampling interval h is assumed to be constant. With a first-order-

hold circuit the input signal u(t) is linear between the sampling instants.
Integration of the system over one sampling period then gives

(u(kh + h) — u(kh))

o(kh + b) = ®x(kh) + Tu(kh) + T

h
where
_ AR
h
= /eA’dsB
0
h
T, = / e4%(h — 5)dsB
0
®, I and T; satisfy the differential equations
d®(t)
— = @(t)A
dr'(t)
3 = ®(t)B
dl'y(¢)
—— 7 = t
which can also be expressed as
®(t) T(t) Ti(?) B(t) T(t) Ti(t) A B 0
40 I It = o I It 0 0 I
0 0 I 0 0 I 0 0 0




&, T and I'; can finally be calculated from

T Iy | = |I 0 O lezp
| = [100]

o O
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The & and T matrices will be identical to those obtained by ZOH sampling.
Using the value of h calculated in the previous section the discrete time
system matrices will be

0.9769 0.2120 0.0231 0.0017
—-0.2120 0.9469 0.2120 0.0239
0.0252 0.0018 0.9747 0.2208
0.2191 0.0239 -0.2191 0.9357

[ 0.1755
1.6029
0.0008
| 0.0131 |

r = 1072

[ 0.1609 ]|
2.2159
0.0004
| 0.0090 |

r, = 10




Chapter 3

PID control

It is possible to control the system with a PID or even a PI controller.
This will, however, not give a system with a very fast response. In this
chapter design and simulation of continuous time PI and PID controllers is
considered. The PI controller design is limited to placing a single controller
zero and this is done by setting the desired damping of the closed loop
system. For the PID control the design will instead be done from looking
at the root locus for the system. Theory for PI and PID control and the
certain issues discussed in this chapter are described in [5], [6] and [7].

3.1 PI control

Specifications

The plant has four poles; one at the origin, one on the negative real axis and
two oscillatory poles just barely in the negative half plane. The PI controller
adds one pole at the origin and a zero that can be placed anywhere on the
real axis. The location of the zero will determine the locations of the closed
loop poles. The first aim is to move the two poles at the origin into the
complex half plane but any attempt to do so also moves the pole on the
negative real axis towards and eventually past the origin. A reasonable
choice is then to place all three poles at the same distance a from the origin.
The two oscillatory poles of the process will then be almost unaffected.
They will also not particularly influence the behaviour of the closed loop
system. There is more than one way to place the three slow poles at the
same distance from the origin. Two of the three poles will be complex and
can be chosen with different damping ¢. Neglecting the oscillatory poles the
desired closed loop characteristic polynomial will then be

(s + a)(:;2 + 2¢as + az) =g+ (2¢ + 1)cx.<s2 +(2¢ + 1)0:23 +a®
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Controller design

The PI controller can be described by
1
U(s) = K1+ —)(Uls) ~ Y (5))

and the considered part of the process, ie without the oscillatory poles, by

b
s(s+ a)

Y(s)= U(s)

b is K, compensated for the magnitude of the two neglected poles:

Kp

2
“p

b=

where wj, is the magnitude of the poles. The characteristic polynomial will

then be
bK,

T;
which is to be made equal to the desired polynomial. Equating the two
polynomials and solving for K. and T; gives

sz(s +a) + bK (s + %) =% +as? +bK.s+

a2 a?w?
Kc et = p
b(2(+1)  Kp(2(+1)
2
p L @1
a
Note that a will be equal to
_a
YN

thus the speed of the system decreases when the damping increases. The
actual closed loop system still depends on the poles omitted in the design.
GGy K.Ky(s+1/T3)

14+ GGy T K Kp(s+ 1/T;) + s2(s + a)(s? + 2(pwps + w?)

Gcl

The influence of the oscillatory poles causes the locations of the three poles
placed by the design to differ a little bit from the desired locations. This
is crucial if ¢ is chosen close to zero, since the two complex poles will be
pushed into the right half plane, resulting in an unstable system.

11




Nominal design

The two complex poles of the desired closed loop system could be placed
arbitrarily by choosing o and ¢ but this would also affect the real pole.
Placing all three poles at the same distance a leaves the single design pa-
rameter (. For the nominal design ¢ has been chosen to { = 0.5. That
gives an a = 0.6423 and controller parameters equal to K. = 0.3326 and
T, = 3.1140. An analysis of the entire closed loop system, including the
oscillatory poles of the process gives the closed loop poles

—0.6511 +£11.4119:
—0.3211 =£0.5598:
—0.6402

This corresponds to a = 0.6453 and ¢ = 0.4976 which is very close to the
desired values. The oscillatory process poles have been moved very little as
expected. The controller zero is located in z, = —0.3211. A simulation of the
system with the nominal K, and T; is shown in Figure 3.1. The simulation
shows the response to a unit step input at time 0. A load disturbance of
magnitude -0.1 is introduced at time 20 and finally a measurement noise
with the frequency 20 rad/s and the amplitude 0.01 is applied to the system
at time 40. ‘

1.5

Position of the second mass

0.5

20 25 30 35 40 45 50

_0'1 1 L i 1 1 ] 3 1
0 5 10 15 20 25 30 35 40 45 50

Figure 3.1: Simulation of the system with ¢ = 0.5
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T T T T T
Position of the second mass

50

Figure 3.2: Simulation of the system with ¢( = 0.3 (full line), 0.5 (dashed
line) and 0.7 (dashed/dotted line).

Changing (

Figure 3.2 shows the effects of changing (; notice, however, that the true
damping of the system will be slightly smaller than ¢ due to the oscillatory
poles of the process which have been neglected in the design. The figure also
shows that increasing { decreases a which corresponds to the speed of the
response. Table 3.1 shows the corresponding a, location of the controller
zero and controller gain to each ¢ of the figure.

¢ a Ze K.
0.3 | 0.8028 | -0.5018 | 0.4157
0.5 | 0.6423 | -0.3211 | 0.3326
0.7 | 0.6352 | -0.2230 | 0.2771

Table 3.1: (, a, z. and K, for different designs

Robustness

A look at the systems response to a disturbance applied at the output of
the process gives the sensitivity function

s2(s + a)(s® + 2{pwps + wg)

=1 o =
S=1-Ca = g T 1T + 92(s + a)(s% 1 2gps 1 02
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Figure 3.3: Sensitivity of the system with ¢ = 0.3 (full line), 0.5 (dashed
line) and 0.7 (dashed/dotted line).

The Bode plot of the sensitivity function is shown in Figure 3.3 for (=023,
0.5 and 0.7. All three controllers amplify the disturbances above a certain
frequency and this has to be, according to Bode’s integral (See eg (8]).
The highest peak is for the fastest controller, ie the one with ( = 0.3.
This controller is also most sensitive to high frequent disturbances and least
sensitive to very low frequent disturbances. The peak values are shown in
table 3.1.

C Smaa:
03] 23
05| 1.7
07| 15

Table 3.2: Sensitivity function maximum for different (.

Weighting of the reference value

The overshoot of the step response can be reduced by letting only a fraction
B of the reference signal act on the proportional part of the controller.

U(s) = K(8ULs) - ¥ (6) = Z(Uels) = ¥ (o))

14




This means that the controller does not immediately respond fully to a ref-
erence signal change but gradually as the integral part discovers the change.
This is similar to low pass filtering of the reference signal. The effects of
varying § is shown in Figure 3.4.

2 T T T T

T T T T T
Position of the second mass
1.5 N .

0.5r,

40 45 50

0.6 T T T T T T

lControl signal

40 45 50

Figure 3.4: Simulation of the system with # = 0 (full line), 0.5 (dashed line)
and 1 (dashed/dotted line); { = 0.3.

3.2 PID control

With a PID controller there is a possibility to cancel the real pole of the
plant in s=-a by placing a controller zero in the same location. Doing so
gives a greater freedom in placing the closed loop poles and the system can
be made faster.

Specifications

When using a PI controller the speed of the closed loop system was limited by
the real pole of the process at s=-a; when the closed loop poles at the origin
were moved into the negative half plane the pole at s=-a moved towards the
origin. With a PID controller there is one extra zero which can be used to
cancel this pole. The two poles at the origin can now be moved further into
the negative half, limited instead by the oscillatory poles which will move
towards and eventually past the imaginary axis. Instead of giving a desired

15




closed loop transfer function it will be easier to look at the root locus of the
system for different sets of controller parameters.

Controller design

The first step in the controller design is to cancel the process pole in -a. The
PID controller can simplest be described by

U(s) = Ke(1+ -+ sTa)(Uuls) ~ Y ()
1

For the same reason as in the PI controller the influence of the reference
signal on the proportional part of the controller is weighted by the parameter
B. Neither the derivative of the reference signal should fully affect the control
signal and it is therefore weighted with the parameter . 7 should always
be set to zero if the reference signal changes stepwise. In that case the
derivative is infinite in the transitions. To decrease the influence of high
frequent noise the derivative gain can be limited to N at high frequencies by
rewriting the derivative part of the controller as

sTy

Ty —————
R

and the total expression for controller becomes

_ 1 8Ty 1 sTy
U(s) = KB+ 3T + YT TN T sTd/N)Uc(s) - K. (1 + o + T st/ sTd/N)Y(s)

With a zero in -a the part acting on the feedback can also be expressed as

Upte) = A + LA 2y

where s = —zy is the location of the second controller zero. Relating T; to

T4 and N by equating the above expressions gives

T — aly— N
' a(aTy(N +1) - N)

This condition ensures cancelling of the pole in s=-a regardless of how the
parameters K., Ty and N are chosen.

Nominal design

B and v are set to zero to make the proportional and derivative parts of the
controller independent of the reference signal. N is initially set to infinity but
this will later be changed in order to deal with high frequency measurement
noise. If T is set to zero a PI controller with cancelling of the pole in s=-a

16
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Figure 3.5: Root locus for Ty = 0; T; = 1/a.

is obtained. As can be seen in Figure 3.5 it will not be possible to get a
stable system with this controller. Figure 3.6 shows what will happen with
the root locus when Ty is increased. It is interesting to see that increasing
the controller gain will, at least initially, increase both the speed and the
damping of the two complex poles closest to the origin. It will, however, also
push the two oscillatory process poles towards instability. The maximum
stable gains of the systems in Figure 3.6 are shown in Table 3.2 With an

Td Kc—maz
0.1/a| 5.96
0.2/a| 3.19
0.3/a| 218
0.5/a| 1.33

Table 3.3: Maximum gain for different Ty

infinite N the value of T must also not exceed 1/a in order to keep T;
positive. The nominal design parameters have been chosen as Ty3=0.2and
K. = 2.4. A simulation of the system with this controller can be seen in
Figure 3.7. As with the PT controller simulations the input is a unit step at
time 0. A load disturbance of magnitude -0.1 is introduced at time 20 and
a measurement noise with the frequency 20 rad/s and the amplitude 0.01 is
applied to the system at time 40.

17
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Figure 3.6: Root loci for different Tj.

Changing K. and Ty

Increasing K will move the two complex poles closest to the origin away
from the origin making them faster but also better damped (Figure 3.6).
At the same time though, the two far poles will move toward the imaginary
axis, eventually making the system unstable. A simulation of the system
with a K, closer to the stability limit is shown in Figure 3.8. The same
figure also contains the plot of the simulation of the nominal design for
comparison. It can be seen that the step response is better damped but
that the oscillatory behaviour of the process also becomes significant. The
sensitivity to measurement noise seems to be greater with a larger K. as
well, although part of the increased amplitude of the noise in the control
signal is due to the ringing that remains from the setpoint change and the
load disturbance introduction. The effects of changing Ty can be seen in
Figure 3.9. With a smaller Ty the system can be made even faster before
the oscillatory poles start to get significant. This can also be understood by
looking at the root loci in Figure 3.6.

18
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Figure 3.7: Simulation with PID control. K, = 2.4, Ty = 0.2/a.

Changing T;

The value of a cannot be measured exactly. It may also vary a little bit
in time due to nonlinear behavior of the springs and of friction and other
damping in the system. T; can thus not be expected to put a zero in the
exact location of s=-a. An important issue is then how much the behavior
of the closed loop system is influenced by small changes in T;. Figure 3.10
shows simulations of the system with rather larger deviations (£10%) of T;.
A change in a doesn’t seem to be crucial to the behavior in this case.

Limited high frequency gain

As the frequency of the measurement noise is increased the control signal
will be very noisy. For high frequencies there will be considerable problems.
This can be dealt with, as mentioned, by limiting the gain of the derivative
part of the controller to a value N. N is normally set to about 10 and in
this case such a value of N will just barely influence the behaviour of the
system at low frequencies, ie the speed and the damping of the step and
load disturbance responses, but it will effectively keep the amplification low
at high frequencies. An example of this is shown in Figure 3.11. In this
simulation the noise frequency is 200 rad/s. The control signal dependency
on measurement disturbances can also be analysed mathematically. With
a measurement noise v(t) added to the measured output signal y(t) the

19
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Figure 3.8: The effects of increasing K.. K. = 2.4 (left) and K. = 3 (right);
T, = 0.2/a.

transfer function from v to u will be given by

G.
U(s) = mv(s)
K.s%(s+ a)(s® + p15s + p2)(5® + 2(pwps + w2)

K Ky(s% + p1s+p2) + s%(s + a)(s + N/Ta)(s? + 2(wps + wf,)

where
K. = K (1+N)
_ N+
S PO
B N
P2 = Tt W)

The effect of introducing a high frequency gain limitation is very clear in
the bode diagram of Figure 3.12 which shows the same system with different
values of N.
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Figure 3.9: PID control with K. =1, Ty = 0.5/a (left) and K. = 4, Tqg =
0.1/a (right).

Robustness
The sensitivity function for the system with a PID controller is

1

S = 176G,

s(s + a)(s + N/Tg)(s% + 2(pwps + w?)
_K_cKp(sz +p1s+p2)+ (s +a)(s+ N/T)(s* + 2(pwps + wzz,)

A plot of the sensitivity function for K. = 1.0 ,Tg = 0.5/a and N=10
is shown in Figure 3.13. The output signal sensitivity is of course closely
related to the control signal sensitivity discussed in the last section. Notice
the peak in magnitude when the frequency is slightly larger than 10 rad/s.
The peak value is about 10.8dB, ie disturbances with this frequency are
amplified by a factor 3.5.
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Figure 3.10: Simulation with 10% deviation of T}, down (left) and up (right);
K.=24,T;=02/a.
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Figure 3.11: The effect of limiting the derivative gain for high frequencies.
N=10 (left) and infinity (right); K. = 1.0, Ty = 0.5/a
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Figure 3.12: Control signal sensitivity to measurement noise. K. = 1.0,
T4 = 0.5/a, N=10 (left) and 1000 (right).
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Figure 3.13: Sensitivity function with PID control. K. = 1.0, Ty = 0.5/a,

N=10.
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Chapter 4

State feedback control

State feedback control uses more information about the process than PID
control. There is a possibility to measure the positions of both masses and
with proper models of the process dynamics the velocities of the masses and
even some disturbances can be estimated. In this chapter pole placement
design by state feedback is considered. First the process model is modified
in section 4.1 to include disturbances. The basic structure of the controller
is presented in section 4.2. Section 4.3 is on design with zero-order-hold
sampling; a controller with state estimation and feedback and feedforward
control is designed and examined. Section 4.4 covers design with predictive
first-order-hold sampling. The focus is on design and comparisons with
zero-order-hold.

4.1 Process model
The process model used in this chapter is

s(t) = Aa(t)+ Bu(t) + Bek(t)
y(t) = Os(t)+e(t)

where £(t) and e(t) are stochastic disturbances. By is equal to B, ie the
state noise is considered to be entering the system in the same way as the
control signal.

4.2 Controller structure

Both the ZOH and the PFOH designs will use the same basic controller
structure with separate feedback and feedforward parts and an observer that
estimates the four states of the process and any constant state disturbances.
The general structure is presented in Figure 4.1. There will be some minor
changes for the PFOH which are explained in section 4.4.
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Figure 4.1: Structure of the state feedback controller

4.3 Zero-order-hold

Specifications

The controller will be designed with a linear quadratic approach in contin-
uous time. The goal is then to choose the matrices Q1c, Q12c and Q. to
minimize the loss function

J = E { /0 e [mT(t)Qlcm(t) + 22T (£)Q12cu(t) + uT(t)QZCU(t)] dt

+2T (N h)Qoc(Nh)}

This will be translated into its discrete time counterpart

N-1
J = E { 3 [mT(kh)le(kh) + 227 (kh)Qq2u(kh) + uT(kh)Qzu(kh)]
k=0

+2T (Nh)Qoz(Ih)}

which is minimized by choosing the feedback matrix L. L is chosen as the
steady state solution of L(k) to the Riccati equation. An observer will be
used for reconstruction of the states. It is developed as a Kalman filter but
the feedback matrix K is only chosen as the steady state value of the filter
matrix K(k). The design parameters will be the continuous time weighting
matrices Q1c, Q12c and @2, and the approximated disturbance covariances
o2 and 2. Qo. will not influence the steady state solution of the equations
and doesn’t have to be set in the design.

Understanding the design parameters

Setting the design parameters requires at least a basic understanding of the
influence of the weighting and covariance matrices on the LQ and Kalman
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filter equations respectively. From the continuous time loss function equa-
tion it is clear that a large value of @, which is a scalar, will require small
values of the control signal u to keep the loss function small. The same way
of thinking is applicable to Q1c, although it needs some further interpreta-
tion since it is a matrix. The diagonal elements correspond to one each of
the four states of the model in exactly the same way as @3 corresponds to
u. The other elements will influence the allowed differences in value between
the states. For example a large value of the third element of the first row will
give a design that doesn’t allow one of the masses to move unless the other
one follows. Notice that the Q1. matrix has to be symmetric. The elements
of Q1gc will couple the states of the system to the control signal. The values
of the covariances for the filter design, o2 and o2, are in this case not based
on knowledge of the true noise but will be treated in the same way as the
weighting matrices for the control design. Thus a large value of o? will give
an estimator that anticipates insecure measurements and therefore is rather
slow. A large o2 would instead give a faster but more sensitive estimator.
Of course the absolute values of the weighting and covariance matrices have
no meaning, but only the values relative to each other.

Controller design

A simple way of looking at the disturbances £(t) and e(t) in the process
model is as gaussian white noise with zero mean value and covariances 0?
and ¢? respectively. This structure will, however, not be able to eliminate
errors due to constant disturbances. If instead £(t) is considered to be the
integral of a white noise v(t) with zero mean value and the covariance o2
the process model will be

3(1) = As(t)+ Bult) + Bet(t)
) = o)
y(t) = Oz +elt)

where e(t) is still white noise with zero mean and covariance o2. Constant
disturbances can then be eliminated by simply subtracting a term B! B¢£(t)
from the control signal. In this case v(t) is introduced in the same point as
the control signal and B¢ = B, thus the control signal will be compensated
with —£(¢) or rather, as the disturbance can’t be directly measured, by the
estimate —&(t).

Linear quadratic control design

The position and velocity feedback matrix L will be computed as the matrix
L(k) of an LQG controller in steady state. If the weighting matrices @,
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@12 and Q3 are known the Riccati equation

S(k) = [@-TL(k))S(k+1)[® - TL(k)] + Q1 — I (¥)QT; — QuaL(k)
+L7 (k)Q2L(k)

where

L(k) = (Q2 +T7S(k + 1)I) (7S (k + 1)@ + @F)

can be solved or iterated to give the steady state values S and L.

State estimation

The states can be estimated with a Kalman filter. If only the position and
velocity states are reconstructed the filter can be described by

8(k + 1|k) = @& (k|k — 1) + Tu(k) + K(k)(y(k) - C&(klk — 1))

But a value of the disturbance ¢ is also needed as stated above. The state
vector is extended with the £ and the extended state vector is denoted z(t).

2(t)
z(t) =
) [ 10 ]
With this transformation the state-space model becomes

#(t) = A.z(y)+ Byu(t) + B,v(t)

y(t) = C.z(t) + ()
with the matrices

_ [ 4 B
4. = _O Ojl

B

B, - _O]

[0

n o= 1]
c, = [c 0]

Sampling the transformed system without regarding the disturbances gives
a discrete time system

Zg41 = B,z + T ug
e = C.z
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and the Kalman filter becomes

Zppr = Bo2p 4 Toup + Ki(yr — Cig)
K, = ®,P.CT(Ry+C,PCT)?
Poy1 = %,P3T + Ry — 3,P.CY(Ry + C.PCT) ' C. P &7

where R; and R, are the discrete time representations of Ri. and Ry re-
spectively and R;. = Uf,BfBg' and Ry, = o2].

Feedforward

Introduction of the reference signal will be done in terms of a desired state
behaviour and a feedforward control signal. The states of the model are
denoted z,,(k) and the feedforward control signal us¢(k). The first mass is
modelled as a second order system independent of the second mass and with
the reference signal u. as its input. The transfer function from the reference
signal to the position, denoted «T*, is

a2

= ray

where a is a design parameter, setting the speed of the model. Similarly
the second mass will be viewed as a second order system with the position
of the first mass as its input. The second mass position is denoted z3* and
the transfer function from the first to the second mass position is
,32
Gz = ———
N CEOE
where 3 is another design parameter. z}* and 27" are related to the positions
in the same way as in the process model used in the feedback controller. The
feedforward model can then be expressed as a state space system

Ty = Am@m + Bnie

where

0 1/ey 0 0
A = —a?e; —2a 0 0
m 0 0 0 1/eq
| B 0 PP 20

[0

a2c1

B,, = 0

| O
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and
C1 = 4/ EEL
Cy = 4/ 1%2
The feedforward control signal uysy is created from

ml
Uups = 5t

Gp

G, is chosen to be the simplified process model transfer function used in
Chapter 3 for PI control design

5 b

Gp= ———
P s(s+a)

uys can then be expressed in terms of z,, and u. as

a— 2« a?

2
a
m m
Upp = ——a" + —— 2P + —u
11 b1 cra? 2 ¢

b

and the complete state space system for the feedforward model becomes

Zm = AmT;m + Bmuc

ufr = Cpem + Dt

with 4,, and B,, as above and

Cm = [-£ =2 0 0

cio?

2

(81
Dn, = —
b

Nominal design

The sampling interval h is set to 0.0274 s. The weighting matrices Q1. and
Q2. are both set to unity. The state noise covariance o, is assumed to be
1 and the measurement noise covariance o, is assumed to be 0.00001 to get
an observer that is considerably faster than the controller. The parameters
of the feedforward model are set to o = 2 and 8 = 4. A simulation of the
system with this controller can be seen in Figure 4.2. The inputs are the
same as in the previous chapters, ie a unit step at time 0, followed by a load
disturbance of magnitude -0.1 at time 20 and a measurement noise with
the frequency 20 rad/s and the amplitude 0.01 at time 40. How well the
positions follow the feedforward model is shown in Figure 4.3. The poles of
the closed loop system, assuming the states to be directly measured, are

—0.6974 +£11.4475%
—1.4882 +1.1367:
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Mass positions
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Figure 4.2: Simulation of the system with state feedback and zero-order-hold
sampling.

and the poles of the observer are

—9.6679 +18.90981
—3.8795 +£9.0700¢
—20.0756

Compared with the simulations of the PID controllers in the previous chapter
the result is much better from reference signal and load disturbance points
of view. The control signal seems to be more sensitive to measurement noise
though. Other designs could probably be superior to PID control in all the
three contexts.

4.4 Predictive first-order-hold

The sampled system with a predictive first-order-hold circuit and with dis-
turbances taken into account looks like

g1 = P+ Tup + Tive + Tebe
Yk Czp + eg

Il

where
Up41 — Uk

h

and £ and ey are the state and measurement noises respectively.

Vg =
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First mass
1 1
4 45 5

. Second mass
o o5 1 15 2 25 3 35 4 45 5

Figure 4.3: Positions with corresponding model states. Full lines are the
true positions; dotted lines are the reference model positions.
Specifications

As with the zero-order-hold a linear quadratic controller will be designed in
continuous time and then translated to discrete time. The loss function is
the same, ie

Nh
J = E{ /0 {mT(t)Qlcm(t) + 227 (£)Q120u(t) + uT(t)QZCu(t)] dt
+27 (N h)Qoc(Nh)}
In discrete time though, the loss function will be different.

N-1
J = E { 3 [mT(kh)le(kh) + 22T (kh)Q1au(kh) + uT (kh)Qou(kh)
k=0

+207 (kh)Q5v(kh) + 2uT (kh)Q25u(kR) + v (kh)Qav(kh)|
+2T (Nh)Qoz(Nh)}

Again, only the steady state solution will be used for both the feedback
controller and the state estimator.

Controller design

In analogy with the ZOH the state noise £(t) is assumed to be the integral of a
white noise w(t) with zero mean and the covariance o7, Also, e(t) is assumed
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to be white noise with zero mean and the covariance ¢2. The coupling

between uy and vy, has been discussed earlier. If v(t) is the derivative of the
control signal u(t) in continuous time, as is the case with the first-order-hold
between the sampling instants, the system can be described by

£(t) = Az(t) + Bu(t) + Be(t)

u(t) = v(t)

i = wit)

y(t) = Ca(t)+elt)

The discrete time counterpart of this is

tpy1 = Pup+ Tup + Tivp + Tebs

U1 = Ug + hog
b1 = &t wi
y = Crr+teg

Structure

The structure of the controller is the same as for the ZOH with three ad-
ditional inputs to the observer: the feedback and feedforward parts of the
control signal, us, and uys respectively, and the desired states, ©,. Since the
the same calculations are made in the estimator as in the feedback controller
they could very well be integrated into one block.

Linear quadratic control design

For the feedback control design the disturbances can be omitted from the
model. The multiple inputs, u and v, would be a problem though, but this
is solved by the transformation

_ | =@
z(t) = [ ult) }
The transformed system becomes
2(t) = A,z(t)+ B,u(t)
y(t) = C.z(t)

where the matrix coeflicients are equal to

2]
-2

A,

i




The loss function of the transformed system looks like

J = E{ /OthT(t){QOlC QOZ ]z(t)dt
+zT(Nh)[Q5’c g}z(Nh)}

Since v(t) is constant over the sampling intervals, sampling the transformed
system with a zero-order-hold is equivalent to sampling the original system
with a predictive first-order-hold. The discrete time system is then

Zet1 = Q.25+ Tov
w = Cz
with the matrices
T
_ | I

and the loss function

J = E {Nf [zT(kh)lez(kh) + 22T (kh)Q1a,v(kR) + vT(kh)ngv(kh)]

k=0
+2T (N h)Qo2(N k) }

where

Q. = {Q1 Q12]

Ql, Q2
_ | Qs
Q12z - |:Q23:|
QZz = QS

If the Riccati equation yields an L, that consists of L, = [ L 1, ] the
control signal will be computed from

Upt1 = Up+ hog
Vp = L(:Z:Zl — :ﬁk+1) - luUk+1
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which can be rewritten as
Ukt1 = Sug + shL(z} — Ept1)

where

State estimation

State estimation in the PFOH case is not quite as straightforward as with the
ZOH. The state prediction with constant disturbances taken into account is
described by

. n Up4+1 — Ug
Gpr1 = Pdp+ Tup +Tp———

- + Teby + Ko(yn — Cig)

bryr = &+ Ke(yr — Ciy)

To get rid of the ugy; term the calculation of the control signal must be
taken into account in the estimator. The signal consists of three parts; the
feedforward signal uyys, the feedback signal ug, and the compensation for
the disturbance £. The relationship is

b N
Upt1 = u,":f + u,’:+1 — Ek+1

Of these three signals uyy is not a problem because it is outside the control

loop; £ is calculated within the estimator and is also no trouble. ugp, though,
has to be calculated in the estimator in the same way as in the feedback

controller.
b b N
u,’:_l_l = su,{ + shL(z}f — k1)

Substituting this into the observer equation and rearranging yields

1 1 : 1
ii?k+1 = W(@ - K;DC + EI‘IKEC)ék + W(FE - EIH)& + W(I\ - EI‘l)uk

L 1 1
+ Wl + Wil + W(K, — 2TiK)ye + sWT Laf,
fry1 = —KeCop + & + Keyn

where W = (I + sT;L)~!. The estimator can be made as a state-space
system

Tl Ty, b
a et @ ~ + F U
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with £41 and ék+1 as outputs and the matrices

6. — | WE-KC+ iT1K¢C) W(T¢— 4+T1)
E = — K¢ I

Ir — W(K,— 3T1Ke) W( - 3T1) W(£T1) WD sWTLL
E= K; 0 0 0 0

The K matrix consisting of

K
K = “’
[ Ke ]
is calculated as the matrix for an ordinary stationary Kalman filter for the
loop and disturbance parts of the system:

Tr+1 _ we W(I‘E + lusl‘l) A T - lus]."l
] - Tl e
1
+[—,}F1}wk

Tk
= C 0 +e
w= o] g]ra
where wy, is the state noise and ey is the measurement noise.

Feedforward

The feedforward is identical to the one described in Section 4.3. The feed-
forward control signal and the desired states signal will not be one sample
ahead as is the case with the feedback control signal and the estimated
states.

Nominal design

The nominal design parameters are chosen to be exactly the same as for the
ZOH, ie h = 0.0274s, Q1. = I, Q2. = I, 0, = 1, 0. = 0.00001, @ = 2 and
B = 4. The closed loop poles assuming directly mesured states are then

—0.6942 £11.44761
—1.4878 +£1.1387:
—28.8820

and the poles of the observer are

—23.9309 £36.7502¢
—3.8455 £9.0825¢
—36.3741
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Figure 4.4: Reference signal response with ZOH (left) and PFOH (right).
The lines in the position figures are first mass actual position (full line)
and model position (dashed/dotted line) and second mass actual position
(dashed line) and model position (dotted line).

A simulation of this gives roughly the same result as with a ZOH but a closer
examination of the three more revealing parts shows some differences. In
Figure 4.4 the reference signal responses are compared. The main difference
is here in the control signal which is somewhat larger in the beginning for the
ZOH. Another observation from this figure is that the feedforward model is
unrealistic. A sudden load disturbance, as in Figure 4.5, is clearly dealt with
faster with the PFOH and with a smoother control signal during the first
half second. Figure 4.6, finally, shows that at least the first mass is a little
bit better damped with the PFOH when a measurement noise is introduced
and also, except for in the beginning, the control signal oscillation is slightly
smaller in amplitude.
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Figure 4.5: Load disturbance response with ZOH (left) and PFOH (right).

Upper figure full lines are first mass positions; dashed lines are second mass
positions.

38




1.03 — 1.03 ——
Mass positions Mass positions

1.02

1.02}

1.01 1.01
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Figure 4.6: Measurement error sensitivity with ZOH (left) and PFOH
(right). Upper figure full lines are first mass positions; dashed lines are
second mass positions.
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Chapter 5

Conclusions and future work

This thesis has examined control of a typical oscillatory system. Controllers
of different complexity have been designed and tried out on a simulation
model of the system. A simple PI controller gave a slow closed loop sys-
tem with a large overshoot at setpoint changes, but also very insensitive to
noise. With setpoint weighting the overshoot was effectively reduced but
still quite large. The PI controller couldn’t be made fast enough to reveal
the oscillatory behaviour of the system. With PID control a faster system
could be obtained. The oscillatory behaviour of the system became signifi-
cant as the controller gain was increased. The overshoot at setpoint changes
was further reduced but still rather large. Faster responses were obtained
at the price of a larger noise sensitivity. Digital state feedback control gave
remarkably improved results for setpoint changes and response to constant
disturbances. Use of a reference model and feedforward control to deal with
setpoint changes eliminated the overshoot. The price for these improvements
was an increased sensitivity to noise and much more complex controllers. A
comparison of the load disturbance responses of three different controllers
can be seen in Figure 5.1. Although not examined in this thesis it is clear
that state feedback control will give a much greater freedom in choosing
the performance of the system. The noise sensitivity could for example be
reduced considerably with a different design. An important point about the
state feedback control is that it is very dependent on the models that it uses
for the process dynamics. In this thesis the models used for the controller
design and for the simulations have been identical (with one exception in
the PID chapter). In reality there will be differences which will influence the
controller performance, especially for the state feedback controllers. Finally
a comparison was made between zero-order-hold and predictive first-order-
hold sampling when using state feedback control. With the same control
design, the predictive first-order-hold controller gave both a faster response
and less sensitivity to noise than the zero-order-hold. Another great benefit
was a smoother control signal. The predictive first-order-hold is, though,
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Figure 5.1: Load disturbance response for three different controllers; PI
(dashed/dotted line), PID (dashed line) and ZOH state feedback (full line).

even more complex and it also gives less freedom to separate different tasks
in the controller. The estimator has to know the feedback control law and
might thus just as well be integrated with the feedback controller. Pre-
dictive first-order-hold state feedback controllers would also be even more
dependent on a correct model of the plant.

Some important issues are not covered in this thesis. Interesting future
work on the topic could be:

e Refinement of the simulation model including physical limitations like
the bumpers at the ends of the rail and control signal saturation.

e Further investigation of state feedback control, examining the possi-
bilities and the limitations.

e Analytical exploration of sensitivity and robustness for state feedback
control.

e Development of a good feedforward model to improve reference signal
response.

e Experiments on the real plant.
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