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1. Introduction

This thesis deals with problems that occur in manual control of unstable
systems with saturating actuators. Such a system can always be driven
unstable with disturbances that are sufficient large. The system runs open
loop when the actuator saturates. The unstable state will then diverge. If
this state is sufficiently large it is impossible to recover with the limited
control actions. To control the systems manually it is necessary to provide
them with a stabilizing feedback. It is then interesting to find out if the
manual control actions may drive the system unstable, or if it is possible
to find a control system which maintains stability and admits manual
control. These problems are fundamental when dealing with dangerous
systems where loss of stability has dramatic consequences. The key task
is to assure that no manual input will drive the system to a configuration
from where the limited control actions are unable to recover it.

As the stability of the system is increased the maneuverability is de-
creased. The idea used in this thesis is to give priority to manual control
when the condition of the system are safe, and decrease the maneu-
verability as the region where controllability is lost is approached. This
is achieved with an hybrid strategy. First several independent control
strategies are designed, then they are patched together so that more au-
thority is given to one or to another one depending which region the
system is. A key problem is the shaping of the regions where the differ-
ent strategies act. The results that are achieved in this way give good
results from simulations. The problem that arises when dealing with hy-
brid controllers is that is very difficult to investigate on the behavior of
the system. Particular attention must be payed to the way of mixing
controllers, and the switching from one to the another. The problem of
saturations of actuators in unstable dangerous system appear in the con-
trol of high performance military aircrafts. A typical example is the JAS
39 Gripen. In this case the essential limitations are due to rate satura-
tions in the hydraulics. In the JAS program much effort was devoted to
the allocation of control authority between manual control and stabiliza-
tion Rundqwist (1996). The multivariable nature of the problem gave rise
to additional difficulties. In this thesis we will investigate the problem of
level saturation which is a little simpler. We will also restrict ourselves
to single input systems.

In chapter 2 the control of a simple unstable system is effectued with a
hybrid strategy. The simplicity of the problem make it possible to capture
the main features of the hybrid strategy. . It turns out that many of the
fundamental problems can be discussed using this example. In chapter
3 the strategy is applied to the control of a classical unstable non linear
system: the inverted pendulum. This problem is nice because it also al-
lows easy verification in the laboratory. The problem is investigated and
control strategies are designed by combining several different strategies
using the hybrid approach. Flight dynamics is discussed in Chapter 4.




This chapter gives the basic equations for flight dynamics. The mecha-
nisms that lead to instability are also investigated. In Chapter 5 we make
a preliminary attempt at applying the ideas to the flight control problem.




2. Mixing control strategies

When controlling unstable system such us inverted pendulum we have a
number of conflicting goals to be reached. To obtain a control strategy
that will allow the manual control of the inverted pendulum and at the
same time will stabilize it we will mix different control laws.

The concept that will lead the way of mixing the strategies is that priority
must always be given to the stability of the system. Is complicate to
understand how the pendulum controlled by the hybrid strategy behaves.
To capture the fundamental issues of the hybrid strategy we will apply
it to a simpler system. The system that we will analyze is a second order
linear unstable system.

2.1 A simplified problem

Consider the system

dﬂ)l
o -
diBz
— 2 =
dt
[ul < um

The porpoise of the control is to stabilize the state z; at the equilibrium
point z; = 0, and to permit the manual control of the variable z,. We
will also assume that the control variable is limited |u| < up,.

Control design

We will now design control strategies for the problem. For simplicity we
will only consider two strategies:

-A stabilizing strategy

-A strategy for controlling the variable z,.

These strategies will be designed based on linear theory.

The stabilizing strategy

In this strategy we will focus on the first equation. We will simply design
a strategy that stabilize z;. This can be accomplished by:

Uy = k,ml (21)

The closed loop system becomes

d
%+(k8~1)m1:0

To obtain a stable system we must choose k, > 1.




A stabilizing strategy that admit the control of z;

Now we will derive a control strategy that stabilizes the first state and
admits set point control of the second state. This can be accomplished
with:

ue = hzy + lL(zs — 1) (2.2)

where r is the command signal. Introducing this control strategy into
equations (2.2) and making the Laplace transform we get:

(5 -1 + ll).X]_(S) + lzXz(S) = lzR
—LX1(s) + (s — 1) Xa(s) = LR

Elimination of Xi(s) gives:

lz(S - 1)
32+S(l1—‘12—1)+l2

X3(2) = R

Choosing a design that gives the closed loop characteristic polynomial:
2+ 2Cs+w?=0
we get

L =w?+ 2w +1

lzzwz

Combining the strategies

The question is now how the control strategies (2.2) and (2.1) should be
combined.It is intuitively clear that highest priority must be given to the
stabilizing strategy (2.1). If there is a danger that the system becomes
unstable all effort should be concentrated on stabilization. This is of
course particularly critical if the state variable z; approaches |21| = Um,
because the system will be lost if |z1| > um. The state variable z; will
then diverge no matter what control actions are taken.

One possibility is to arrange a system as follows:

Where v and u, have the following expression:

v = (l1 - k,)iﬂl + lg((I}z - r)

u, = k,21
The control signal from the outer loop is limited to
—Um S v S Um

where v,, represents the control authority assigned to the regulation task.
As a result of the hybrid strategy represented by figure 2.1 five different
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Figure 2.1 An hybrid strategy

regions can be identified in the plane z;, ;. In each region a different
linear controller is acting:

Qo u = liz1 + lhzy [us +v| < Up v < v
Qf U= kyz1 + U [us + vm| < um V> Uy
Qr U= ks21 — VU [ty — V| < U v < —Upy
QF U = Uy, Us +V > Uy

Q5 U= —Upy Uy +v < —Up,

In the region o the sum of the signal given by the outer loop and the
inner loop gives the control strategy to control the position of #;. The
controllers active in regions Q;+ and Q] are designed to give priority to
the stabilization of #; and at the same time to bring the system in the
region (Jg. Let’s take in consideration the behavior of the system in Qf,
the results for Q] are symmetrical. The control signal that we have in
this case is given by:

U = ks1 + U (2.3)

Applying (2.3) to (2.1) gives :
$-1 = —(ka - 1)(1)1 - Um (24)
ilfz = ksil}]_ + VU (25)

Note that the value of v depends only upon z;, thus the equation (2.4)
describing the behavior of z; is independent from (2.5). The system rep-
resented by (2.4) has an equilibrium point 2§ which is the one that gives
z; = 0, hence

(2.6)



The equation (2.4) can then be written as:
1151 = (ka - 1)(&31 - iB;) (27)

Since we choose k, > 1 the equation (2.7) represent an asymptotically
stable system that converge toward the point z$. It is obvious that if
we have |z¢| > u,, the controller (2.3) will probably bring the system
towards instability. Hence when designing the hybrid strategy it must
payed attention that the following condition is respected:

Om o<k —1 (2.8)

Um

It also possible to obtain (2.8) imposing that u given by (2.3) is within
the saturation limit for z; = =, in fact

|vm + ko3| < Um

gives (2.8) when using for z§ the expression (2.6).
For z; = z¢ equation (2.5) becomes:

(2.9)

In the plot 2.2 are reported the trajectories for a system which has u,, =
1. For this system it has been chosen a position controller characterized
by w = 0.5 and ¢ = 0.9 that give:

L=1[215 0.25]
For the stabilizing strategy it has been chosen k, = 2 hence:
K,=[2 0]

and v,, as been set to 0.5. In the plot are also shown the different regions
where the different controllers act.

From the figure is clear how the trajectories are driven from the re-
gions Qf and Q7 into the region Qo following the lines z; = z7. Once
the system is in €y is brought to the origin by the positioning strat-
egy.Note that |zf| = 0.5 < up.

More graphics related to the evolution of the system having initial con-
ditions 2% = 0.9 and zj) = 7 are reported in figure 2.3. In this particolar
example the system goes from Q to QF and from here to . Note that
when z; reaches z§ = 0.5 the velocity of @, is constant and negative as
shown by formulae (2.9). It is also possible to see how when v is within
the saturation limit the signal control u coincide with the signal u..

In the next plot is shown an example in which the condition (2.8) is not
respected. The numerical values used are the same as for the precedent
example except for v,, = 0.8 and k, = 1.7. The strategy is still working
for same initial conditions with a low 3. When the initial conditions are
more far from Qo the strategy bring the system toward the instability.
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Figure 2.2 Phase-plots of the system controlled by the hybrid strategy
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3. Stabilization and Control of
an Inverted Pendulum

A characteristic features of the flight control problems discussed in Chap-
ter 1 is to do manual control of an unstable process with actuator hm-
itations. A key difficulty with such a system is that the feedback loop
is broken when the actuator saturates. The system will then diverge be-
cause of the instability. For such systems it is always possible to find a
disturbance which drives the system unstable. It may also be possible to
drive the system unstable by inappropriate manual control actions.

Since it is difficult to make experiments with aircrafts we will in this
chapter discuss a problem with similar features which can be used more
readily for experimentation. The system is the classical inverted pen-
dulum which is used in many control laboratories. We will consider the
problem of manual control of the pivot of the pendulum while maintaining
the pendulum in the upright position. In particular we will investigate if
it is possible to find control strategies which are safe in the sense that the
pendulum will remain upright in spite of any manual control input. This
problem has several similarities to the flight control problem but there
are of course also differences. The dynamics is different. In the flight con-
trol problem the actuators are rate limited for the inverted pendulum the
main limitation is that the acceleration of the pivot is limited.

In this chapter we will first derive a simple mathematical model for
the pendulum and we will then discuss the problem of formulating safe
control strategies.

3.1 Mathematical models

Assume that the mass of the cart is negligible with respect to the mass
of the pendulum and that the motion of the pivot is free of friction.
With these assumptions the motion of the cart is described by the simple
equation

T=a

where m is the mass of the pendulum, and @ is the position of the pivot
in the coordinate system of the figure.

To derive the equations of motion of the pendulum we will use a
coordinate system fixed to the cart. In this coordinate frame the position
of the pendulum is described by the angular deviation ¢ of pendulum
from the vertical. The angle 8 is positive in the clock-wise direction. Let
the moment of inertia with respect to the center of mass be J and let [ be
the distance from the pivot to the center of mass. To obtain the equation
we will calculate the expression of the potential and Kinetic energy of

11




the pendulum in the frame fixed to the pivot.
The coordinates of the center of mass of the pendulum are
z =Isinf

y =lcosl
The potential energy is thus
V = mulsin 6 + mgl cos 6

To obtain the kinetic energy we need the velocity of the center of mass.
This is obtained by differentiating the position with respect to time. We
get

& =lfcosf
Y= —10sin
The kinetic energy is

1 ., 1 . : 1 : 1.
T = §J92 + Em(:vz + y2) = E(J + ml2)92 == —2—Jp92
where J, is the moment of inertia of pendulum with respect to its pivot
point. To obtain the equation of motion we form the Lagrangian L =

T — V. The equation of motion is then given by

d9L 0L _
dt 8g Oq
We have
OL _ 14
o8
and
oL )
= mgl sin § — mal cos 6

The equation of motion thus becomes
J,0 —mglsin§ + malcosf = 0 (3.1)

Normalization

The model given by Equation (3.1) has five parameters, the moment of
inertia J,, the mass m, the length [, the acceleration of gravity g and the
maximum acceleration of the pivot %mq,. Normalized variable are useful
way to characterize the properties of a system.

Introducing

mgl
Wy = e U =

Jp

|
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Where wy is the natural frequency of small oscillations around the down-
ward position. The equation of motion then becomes.

6 = w2(sin 6 — ucosh) (3.2)

Without loss in generality we can choose wy = 1. As emphasized in
Astrém and Furuta (1996), the properties of the system is thus essentially
characterized by one parameter, the maximum acceleration of the pivot

Uo = Gmaz/9-

Problem Statement

Summarizing we find that the model can be described by the equations

40
7} =gsinf —ucosf
P
Frat e
lu| < ug

The problem is to find a control strategy that stabilizes the pendulum in
the upright right position and admits manual control of the variable z.
It is easier to deal with the linearized problem which is described by.

d*6
a0
e
a9
lu| < uo

A useful way for many applications to represent a linear system is the
state space form:

¢ = Az + Bu (3.3)
For the linear model of the pendulum the matrices became:
g 0 1 0
r = . A = 9 B = 9
6 ws 0 —w
If a linear strategy is used to control the system (3.3) we have :

the closed loop system is then described by:

& =(A— BK) (3.5)

13




3.2 A Hybrid Strategy

A hybrid strategy will be developed to solve the problem. The idea is
to find a control strategy which puts high priority on stabilization of
the pendulum and admits manual control of the pivot, provided that
it does not violate the stabilization of the pendulum. The strategy will
be obtained by patching several control laws together in the spirit of
heterogeneous control, see .

The Energy Controller

The pendulum can always be brought to the upright position by energy
control. This strategy is given by

u = uosign(E0 cos 6) (3.6)

where E is the total energy of the pendulum.
1.5
E=1-cosf+ 5(9)

See Furuta and Astrdm (1996).

The energy controller is considered as a last resort. It will always
bring the pendulum to the upright position, but there will always be
initial conditions such that the pendulum swings by the position where
it is straight down, i.e. § = w. We will therefore consider the system
” out-of-control” whenever the state § =  is reached.

Next we will develop a stabilizing controller. This controller will keep
the pendulum upright, while disregarding the position of the pivot. To
obtain this controller we will first determine the region of attraction, i.e.
a region where the pendulum can be brought to the upright position
without passing the state § = 0. We will then find a smaller region where
there is a linear stabilizing strategy. We will also determine a region of
attraction for this linear strategy.

The Region of Attraction

The region of attraction is defined as the region where the upward posi-
tion, 8 = 0, can be reached without passing through the position 0=m.
The rand of the region is given by the trajectories where the acceleration
of the pivot has the extreme values. This can be determined as follows.
Let the extreme value of the control signal be ug. The equation of motion
for the pendulum becomes.

d*6

—— —=gsinf —ucosb

dt?

Multiplying this by df/dt and integrating we get

9é:ésin9——u0éc039
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Hence
1., .
—2-9 = —cosf —ugsinf + K (3.7)

where K 1is a constant. With extreme values of the acceleration it is
possible to keep the pendulum at the equilibrium 6, where

fy = arctan ug

Since this equilibrium must be on the boundary of the region of attraction
we find that one boundary of the region of attraction is given by

1.
592 = —cosf —ugsind + K

_ __cos@cosﬁg—}—sinGSin@o LK

cos fy
_cos(f—65)—1

cos f

where the constant K was chosen to give 6 = 0 for 6 = 6,. One boundary
of the region of attraction for |§] < T is thus given by:

é:i\/zl—cos(ﬂ—eo)

cos

For |§] > Z to have the maximum control action the sign of the maxi-
mum acceleration must be reversed, the equation of the boundary thus
becomes:

é:i\/zl—cos(9+ﬂg)+K

cos Gy

Where K must be calculated imposing the continuity between the curves.
In the same way we find that the other boundary which goes through
§ = —6p and § = 0 for |§| < T is given by

é:i\/21—cos(0+90)

cos B

and for |§] > 7

0::!:\/21—COS(6—90) -|—K

cos 8,
A plot of the absorbing regions for different values of vy are shown in
Figure 4.1. As expected it is possible to see from the Figure 4.1 that as
we increase the value of vy the region in which is possible to control the
pendulum increases.

15
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Figure 3.1 Regions of attraction for vo = 1, 1o = 3 and vo = 5

A Linear Stabilizing Strategy

There are many ways to obtain a linear stabilizing strategy. Since we are
also interested in finding the region where it stabilizes the system it is
natural to use LQG theory. For linear systems the solution of the Riccati
equation automatically gives a Lyapunov function that determines the
shape of the region of attraction associated with the optimal controller.
The limitations of the control signal determines the size of the region. We
can deal with the nonlinear equations as in the previous section by eval-
uating the derivative of the Lyapunov function along the true nonlinear
equation.
Given the linear model
dj;i = Az + Bu

of the pendulum, the LQG theory gives the linear controller that mini-
mize the following cost function:

J:/ (2T Qz + uT Ru)dt
0

Where Q and R are definite-positive symmetric matrices. The optimal
controller is given by the state feedback

K =R7'B'S (3.8)

where S is the steady-state solution of the Riccati Equation
ATS + SA+Q—SBR'BTS =0 (3.9)

The matrix S can be used to form a Lyapunov function

V =278z

16



To be a Lyapunov function the function V(z) must have the proper-
ties

V(0)=0
V(z) > Oforz # 0
V() <0

the first condition is clearly satisfied. The matrix S must be positive
definite to satisfy the second condition. The following calculations shows
how the third requirement can be fulfilled.

The steady-solution of the Riccati equation S is a positive definite
symmetric matrix, this automatically satisfy the first condition. Also the
second condition is automatically satisfied, in fact:

V(z) = 2TSz + 2752
using for # the expression given by (3.5) we have:
V(z) = 2*(ATS + SA - KTBTS — SBK)z
eliminating ATS+SA and K using (3.9) and (3.8) the equation becomes:
V(z) = —27(Q + (BS)'RTBS)z (3.10)

The matrix @ was assumed to be positive definite and the matrix (BS)TR™TBS
is positive semidefinite. The matrix (Q +(BS)TR™'T BS) is definite posi-
tive because is obtained as the sum of a positive matrix ¢ and a positive
semidefinite matrix

The existence of a Lyapunov function not only proves that the closed
loop system is stable but it also proves that a trajectory starting on the
boundary of the set |V (z) < ¢ remains in the set.

The set 2|V (z) < cis thus a region of attraction for the linear system.
We can take the limits on the control signal into account by choosing the
parameter c so that the control signal given by w = — Lz is less than the
saturation limit. This gives

k18 + kafl| < g (3.11)

The shape of the Lyapunov surfaces €, depend on the choice of the
matrices () and R.

The idea to have a stabilizing region that has a shape similar to
the one of the region of attraction leads to the choice of a matrix Q that
represent an ellipse with inclined axes. The () matrix is obtained rotating
thediagonal matrix @, with the angle ¢. The matrix ¢),, representing an
ellipse with orthogonal axes that form the angle ¢ with the z-axis.

Q = NTQnN

17




Where
A I et

We will determine the parameters a, b and ¢ so that we obtain an
ellipsoid that is well aligned with the region of attraction that was de-
termined in the previous section.

The Nonlinear Model

There is of course no guarantee that the Lyapunov function found for
the linear model will also work for the nonlinear system since we have no
guarantee that the conditions (3.10)are satisfied.

To see what happens we introduce

V(0,8) = (51167 + 251288 + 5226°)
Differentiating respect to time
V(8,6) = 2 % (81100 + 512(6° + 68) + 52,00)
from (3.2) and (3.4) with wy = 1 we have:
6 = sin 8 + (k0 + k36) cos 6

Hence

%V(m) = 52(512 — kysg3 cos 0) + 9(3110 + 595 5in 0 + kys13 cos 8 + kysa3 cos 66)

+(81251n 60 + ky512sin 66)

For 6 close to 0 the right hand side is close to the quadratic form (3.10)
obtained for the linearized model.
The constraint give by the saturation of the control signal is

k16 + k2 < ug (3.12)

The region in which (3.12) is satisfied shrinks as we decrease R and it
increases when R increases. The choice of R is thus a compromise.

The problem now is to find some numerical values for the parameters that
characterize the controller that has been described. Several numerical
experiments were made for the system characterized by wo = 1 and
vo = 1. This system is characterized by

=11l 7=
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Figure 3.2 Stabilizing Region  and region of attraction

The values a? = 5, b = 1, ¢ = 45°, and R = 7 gave good results. The
matrices then have the following values

[3 2] _[16.37 15.37

} K=[-22 -22]
2 3 15.37 15.37

In Figure 3.2 shows the region of attraction and the following sets
V(9,6)=3 V(6,8) =0 ker6 + kaf = Fuo (3.13)

The region = {z|V(z) < 3} is the ellipse in the figure. The region where
the control signal saturates is represented by the straight lines. And the
region where V < 01is the dashed region in the figure. The results in the
figure were obtained after some experimentation. The figure shows that
it is possible to find a region inside the region of attraction where a linear
control law can be used.

Some trajectories obtained with the linear control law are shown in
Figure 3.3. In this figure we have computed several trajectories of the
nonlinear system that originate on the boundary of (2. This curve verifies
the calculations given above which shows that trajectories starting on
the boundary remain in the region.

3.3 Controlling the position of the Pivot

The strategies discussed until now stabilize the pendulum without con-
sidering the the position of the pivot. We will now show how to obtain
strategies that stabilize the pendulum and the position of the pivot. Such
strategies were derived for example in Astrém and Furuta (1995) . The
control of the position of the pivot will be done only when the pendulum
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Figure 3.3 Phase-plots of the evolution of the system for #p on the bound-
ary of Q2

is in a region smaller than the region of attraction. In this region the
angle of the pendulum will be close to the origin. Therefore it makes
sense to find a strategy for the linearized model and apply it to the non
linear model as it has already been done to find the stabilizing strategy.
A linear controller will be used hence:

=10+ 1,0 + laz + Lz

The controlled system in then is described by:

a2, - .
= ws(0 — L0 + 1,0 + lzz + 142)
2 - .

d—tf = g(h0 + L + Lz + Liz)

If we apply the Laplace transformation the previous system becomes:
(44wl + Wl — 2)0(s) = —(wBles + 1o)X (o)
(9l2s + gl)O(s) = (s — glas — gla) X (s)
Eliminating ©(s)

(s4 + (wily — gls)s® + (w?,ll — wi — gl3)s® + wiglys + wilsg)X(s) =0

Assume that we want a closed loop system with the characteristic poly-
nomial:

(8% + 2w &+ wi)(8® + 2wa (s + wh) =
st + 2(wiy + wza)s® + (wf 4 41 (wrwy + wy)s? + 2(Gwrw; + Lwawi)s + Wi + w
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Identification of coefficients of equal power of s gives the following linear
system of equations:

woly — gls =2(Crw1 + (awa)
—gls + w0l1 — wo =4(; (wiw; + w1 + w2
w0l4g :2(C1w1wz + Czwzw1)

P) 2 2
wolag =wiw;

The solution gives:

2 2 2,2
Wy Wil (o Wiy
h=l+ 5 +4Ge—5+ 5+ 7
Wo Wo Wo Wo
2 wlwg wyw?
ly =—(G +C2 -I-C1 + (o—=5—)
wo  Wwo wy wy
1 wiw?
l3 == )
g @y
2 wlwz UJ2UJ1
ly :“(C Cz )
g w}
1
0.5
0
-0.5
- | —
0 5 10 15
1
0
-1
-2
-0.2 : —~ -3 : —
0 5 10 15 0 5 10 15

Figure 3.4 Step response of the pendulum controlled by L with a step

T, =5
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Figure 3.5 Simulation of the pendulum controlled by L with a step z, = 10
and initial conditions: zg = 0, €o = 0,0 =0, and 6, = 0

Using this strategy is possible to control the position of the pivot if
the manual control action is limited. In the next two plots is reported
the step response of the system controlled by L for two different values
of the input step. For the controller parameters have been chosen:

wy =2 G=.9 we =1 (,=0.6 (3.14)
This values give :
L=[143 132 .408 0.857]
The initial condition have been set to zero:
§o=0 6o=0 m=5 =0

The simulation in figure 3.3 shows that the strategy works for a step
equal to 5.

Figure 3.3 shows an example of how an elevate step input saturates
the command signal and bring the system towards instability.

3.4 Mixing the strategies

The main task now is to find a strategy that will allow the manual con-
trol and at the same time will keep the system stable. To achieve this the
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authority of the manual control will be limited following the idea already
used in chapter 2 to control a simpler system.

Some consideration on the behavior of the system will lead to modifica-
tion of the Hybrid scheme that will improve the control strategy for high
step input.

The hybrid strategy applied to the pendulum is represented in the figure
3.4 The matrix Ks is obtained with the procedure developed in the sec-

_/ll/_ () _/IV System
v < vl U < [t
g
U K, P
? L-K,

Figure 3.6 Hybrid strategy applied to the pendulum

tion ’A linear stabilizing strategy’ and the matrix L with the procedure
described in the section ’Controlling the position of the pivot’.Also the
numerical value of L and K, used in the simulations in this section are
the same of the ones used in the example in the others sections.

The authority given to the manual control is represented by the satura-
tion wo.

Due to the passage from two to four dimension and to the non linearity
of the problem the analysis of the pendulum controlled by the hybrid
strategy is much more complicate than the one of the case examined in
chapter 2. It will be in particolar not possible to represent a four dimen-
sion region on a paper. Due to the difficulties the analysis will be mainly
done commenting the results of some significative simulations. Is anyway
possible to do some considerations in this case similar to the ones done
for the simpler case.

If both the signal u and v are inside the saturations limits the control
signal is given by L:

if lv] < o and lu +v] < uo = u=ue = 10+ L0 + sz + La

When |v| > vo and |u, £ vo| < uo the control signal is given by:

u:uf:d:vo—l—kﬁ—l—kz@
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Figure 3.7 Phase plot of the pendulum controlled by uf with vo = 0.5

The equation of motion of § when the pendulum is controlled only by ui
is then independent from z:

6 = sin 6 — cos (o + k10 + k,0)

The system represented by the precedent equation has an equilibrium
point 6§, which can be calculated setting f. = 0 and 6. = 0:

0 = sin 8, — cos B(£vo + k10.)

Simulations of the pendulum controlled by ui‘ show that if 6, is inside
the region of attraction Q all the trajectories will converge towards it
without going out Q.

In figure 3.4 are plotted the phase plots for vo = 0.5 which gives . =

—0.445 just on the border of the stabilizing region.

Since the aim of the hybrid strategy is to be able to control the position
of the pivot = keeping (6,0) inside the stabilizing region €, vo will be
chosen to the maximum value that give §, still inside (2.

Figure 3.4 shows the phase plot obtained when the pendulum is controlled
by the hybrid strategy and no command signal is given to z. It is possible
to see how the trajectory in the plane (6, 0) don’t go out Q.

If the value of vp is set to a greater value that 0.5 the trajectories on
the plane (6,8) will go out the stabilizing region and then out of the
region of attraction and hence the system will become unstable. In figure
3.4 is an example of how the system goes out the stabilizing region for
vo = 0.7. The simulations have been stopped to t=300, for grater times
some trajectories were going to infinity.

Until now the simulation were obtained with a zero input on z, we
will now see what happen if we try to control z giving a step command
input.

Figure 3.9 reports the phase plot in planes (6, 6) and (=, &) of the simu-
lation obtained with a step on z equal to 5 and the initial conditions of
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Figure 3.8 Phase plot obtained with v = 0.7 and 29 =0

(6, 9) on the border of 2. It is possible to see that the strategy is able to
bring the system to the condition: 2 = 5,2 =0, = 0,6 = 0.
Simulations with a step up to #; = 1000 have been done and the strat-
egy was always bringing the system to the desired final condition also if
after many oscillations without going out {} . A method to eliminate this
oscillation will be introduced later.

Since we are mainly interested in the response of the system to command
signal on z in the next figures are plotted the state variable and com-
mand signals obtained from several step responses in function of time.
To understand how the hybrid strategy works together with the effective
control signals u are plotted the signal v and the signal u. = Lz.
Confronting the two figures 3.11 and 3.13 which reports the response to
a step of z; = 8 and z; = 30 respectively an important consideration
must be done.

If the control signal » switch from u. to vf like for the case of z; = 30
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Figure 3.9 Phase plot obtained with v = 0.5 and ©; =5

the pendulum reach the final set after many oscillations. If once the sys-
tem enter the region in which v = u, it doesn’t go out the final state is
reached without any oscillation like in the case of a step input equal to
Ly = 8.

To avoid this oscillation has been done a modification of the hybrid
strategy. Since the oscillations appear for elevate value of the input step
it has been introduced a limitation on the error coming from the position
of the pivot of the pendulum and going to the controller like in figure
3.12. The value of z,, is the maximum value of z reached in the step
response to the maximum step that doesn’t cause oscillations. In figure
3.14is reported the responce to a step z; = 30 of the pendulum controlled
by the new strategy. Comparing this simulations with the one reported
in figure 3.13 is evident the improvement. The set point is reached with-
out oscillations and once the two signals u. and u became the same they
don’t diverge anymore. That means that once the system has entered the
region where the controller to position the pivot is active doesn’t go out
anymore.
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Figure 3.10 Step response obtained with vo = 0.5, z; = 30 and initial
conditions: g = 0, €g = 0,0 =0, and 6 = 0
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Figure 3.11 Step response obtained with vo = 0.5, z; = 8 and initial
conditions: zg =0, €0 =0,6 =0, and 6, = 0
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Figure 3.12 Block-diagram used in simulations
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Figure 3.13 Simulation obtained with vo = 0.5, z, = 30 and initial condi-

tions: 29 = 0,29 =0,0 =0, and o =0
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Figure 3.14 Simulation obtained with z, = 11, vo = 0.5, @, = 30 and
initial conditions: zg = 0, € = 0,0 =0, and 6p =0
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Figure 3.15 Phase plot obtained with z,, = 11, v = 0.5 and zo = 30
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4. Unstable aircrafts

In this chapter we will deal with the problems related to the control of
unstable longitudinal aircrafts. First a brief discussion on the motivations
that have lead to the primary importance of automatic control in mod-
ern aeronautic is reported. Then a linear model often used to represent
the longitudinal dynamic of aircraft will be presented. The factors that
contribute to make an aircraft longitudinally unstable will be discussed
while introducing the concept of statical longitudinal stability. To com-
plete the chapter an example of how the change of the position of the
center of gravity affects the stability is presented.

4.1 Longitudinal unstable aircrafts

Flight control system have evolved dramatically over the past few decades.
They started as limited authority analogue system, intended to provide a
bit of stability augmentation for otherwise well-behaved airframes. They
have evolved to full authority digital system, critical to stability and full
envelope performance for otherwise unflyable system. There are several
example of this phenomena both in military and in civil aeronautics
Traditionally, transport airplanes have been designed to have a certain
level of inherent longitudinal stability. This and other control require-
ments dictate the size of the horizontal tail and restrict the permissible
aftmost location of the center of gravity (c.g.). The efficiency of this air-
planes can be improved by decreasing the horizontal tail size and moving
the c.g. aft. The corresponding reductions in weight and trim drag from
the decreased tail size and trim load on the tail can yield a significant re-
duction in fuel consumption . However this airplanes will have unsatisfac-
tory longitudinal stability and control characteristic. Hence a command
and stability augmentation control law is required to provide satisfac-
tionary airplane stability and control characteristic. These problems are
particularly critical in hight performance aircrafts where efficiency and
performance requirements play a central role. This has lead to the real-
ization of highly unstable aircrafts. The role of the control system is in
this cases of priority importance.

4.2 Linearized longitudinal dynamic model

To completely describe the behavior of a rigid aircraft six simultaneous
non-linear equations are needed, three of them describing the longitudi-
nal dynamic and the other three describing the lateral dynamic.

If we assume that the motion of the airplane consists of small deviations
about a steady flight condition we can linearize the equations of motion
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obtaining six linear equations. It is possible then to separate the solu-
tion of the three equations describing the longitudinal dynamics from
the solution of the others if we consider the aircraft to be in straight and
level unaccelerated flight condition and then to be disturbed from this
condition. Making the following assumptions:

u = ug + Au Uy =
w = wy + Aw » we =10
6 =06+ Af 6o =0
Agq = Af

we can obtain the following linear system for the longitudinal dynamic
of the aircraft in the form of the state space notation:

Au M, X, 0 —g7 [ Au X

A:w _ Zo Z U 0| |Aw N Zs 6]

Aq My + MyZy My + MyZ, Mg+ MyU 0 Aq Mgl ™°

Ab 0 0 1 0 Af 0
(4.1)

Where the elements of the matrix are dependent from the stability derivates
through the formulas:

—(Cpu +2Cp,)QS —(Cpo — CL,)QS

Ku = mU Ko = mU
_ —(Cr. +2Cp,)@S _ —(Cpa — Cp,)@S
Dy = Doy =
mU mU
QSec QSc
v = YUmuTr7 Mw = Uma777
M, ¢ Ul, C Ul
¢ QSe ¢ @S¢
= Cmggrr—7— My = Cmagrr 577
Mo =C 12U I, C 20 U,
And for the control surfaces we have:
S S Sec
X5 = —Cxaeg— Zs = —C'zseQ—— M;s = “CMéeQ °
m m ml,

To represent the system (4.1) we will use the state space notation:

%:f- = Az + Bu (4.2)
where z and u are called the state vector and the control vector respec-
tively. The matrix A will have for a conventional aircraft two couples
of complex conjugate eigenvalues with the real part negative. Hence the
longitudinal motion of an aircraft is characterized by two oscillatory sta-
ble modes. One is lightly damped and has a long period and for this is
called long period-mode the other one is heavily damped and has a very
short period and is therefore called short-period.
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4.3 Longitudinal statical stability of aircrafts

The positions of the aerodynamic center and of the center of gravity
are the key elements to determine whether an aircraft is longitudinally
stable or not. An aircraft is statical stable if a perturbation on the angle
of attack creates a pitching moment that rotates the airplane back in the
direction that restore the unperturbated initial flight condition. . Since

we can express the dependence of the pitching moment from the angle of
attack a with

oM 1 ,
Ba = 2PV SCma

the aircraft is statical stable if

Cra <0

The expression of C,,, is given by:

Xcg Xac

de
Oma = CLaw ( z ) + Cmaf - TIVHCLat (1 - %) (43)

c

Where the distances from the wing leading edge to the center of gravity
and to the aerodynamic center are denoted by X, and X,. respectively,
and C is the wing mean aerodynamic chord. As it can be seen from (4.3)
if we move backward the center of gravity we will go towards an unstable
configuration. The point in which the center of gravity has to be placed
to make the airplane neutrally stable it is called neutral point and it can
be calculated by setting C,., equal to zero and solving for the center of
gravity position:

XNP Xac Cma_f CLOL dE
= - |4 Lil—— 4.4
c c OLaw Ve CLaw do ( )
Note that the position of the neutral point depends upon the aerodynam-

ical data of the aircraft, which means that it will be different for different
flight conditions. (e can now be calculated with the formula:

Cma - CLaw (% - Xl_v )

c

(4.5)

This formula shows clearly the dependence of the stability from the posi-
tion of the center of gravity. The position of the neutral point depend on
the flight condition. With this formula it is possible to calculate the po-
sition of the neutral point for a particolar flight condition knowing only
the position of the center of gravity, the mean aerodynamic chord and
the two coefficients Co and Cra, . This data can be found in the table
included at the end of this chapter for four different flight conditions of
the F15. Once Xyp/¢ is calculated (4.5) gives the value of Cpq for a
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particolar flight condition as a function of the position of the center of
gravity.

Both the center of gravity and the center of pressure changes with the
flight conditions. To illustrate this we will consider the pitch dynamics

of the F15.

4.4 Longitudinal Dynamic of the F-15

In this section we will give an example of how the position of the center
of gravity affects the longitudinal stability of an aircraft. Table XX con-
tains the derivates of stability of four different flight conditions of F-15.
With this data and the formulae is possible to obtain the matrix A. All
the four flight conditions are characterized by two couples of complex
eigen-values with the real part positive which means that the F-15 has a
stable longitudinal dynamic in the configurations taken in exam.

The next table contains the value of the natural frequencies and of the
damping ratios of the eigen-values for the four flight conditions.

First Second Third Fourth
Short-Period Damping | 0.3797 0.4115 0.3360 0.2367
Short-Period Frequency | 2.2366 4.5098 3.2638 2.0013
Long-Period Damping | 0.1357 0.5144 0.2718 0.1195
Long-Period Frequency | 0.0780 0.0473 0.0519 0.0572

If we move the center of gravity backward the short period will became
unstable. In the next graphic is plotted the real part of the eigen-values
describing the short period in function of the position of the center of
gravity.

It is possible to see how the two complex roots became real and how one
of them became positive, making the aircraft unstable.

4.5 F-15 DATA

The numerical values of the parameters of the F-15 longitudinal dynamics
for four flight conditions are listed in the following table.
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Figure 4.1 Real part of the eigenvalues of the short period in function of

the position of the center of gravity

h (ft) 20000 | 5000 | 20000 | 40000
v, (fpts) 622.14 | 877.68 | 829.52 | 774.8
M 06| 08| 08 0.8
WT | (Ib) 35900 | 35900 | 35900 | 35900
q (pfs) 9245.2 | 786.9 | 439.9 | 176.1
I, (slut££2) | 25500 | 25500 | 25500 | 25500
cg 2.1| 261| 261| 26.1
C 0.24 | 0.075| 0.135| 0.335
C. 417 | 417| 417|417
Cp 0.05| 0.05| 005| 0.05
Cp. 0.35 0| 021 0.764
Come 029 | -037| -037| -0.37
£ Crma 0 0 0 0
2Crm, -0.0512 | -0.036 | -0.038 | -0.0412




5. Hybrid control of
longitudinal dynamics

In this chapter is developed an hybrid strategy to control the unsta-
ble longitudinal dynamic of an highly manuovrability aircraft. The con-
trollers that will be used in the hybrid strategy have been designed using
multi input multi output optimal control techniques.

5.1 Model

The model that has been chosen for the simulations is the model of F-
15 discussed in chapter one. The control of the longitudinal dynamic is
done controlling the positions of the canards and of the elevators. Both
the control surfaces are affected by saturations on the value and on their
derivate. The dynamic of the control surfaces is described by a first order
linear system characterized by a time constant. To make this model rep-
resentative of a an unstable aircraft the center of gravity has been moved
backward to a position that make the short period become unstable as
showed in chapter one. The the linearized longitudinal dynamic of the
F15 with servo dynamic at 20000 feet and M = 0.8 with the position of
the center of gravity at cg = 0.4(M AC) is reported in 5.1.

z =az + bu (5.1)
where:
[ Au ] [—0.028 —0.021 0 —0.038 0 0
Aa —0.078 —1.220 1.0000 0 —0.717 —0.143
. Aq Ao 0 5.364 —0.972 0 11.42 —7.284
Ab 0 0 1.0000 0 0 0
Aé. 0 0 0 0 —20.00 0
| Ad, | 0 0 0 0 0 —20.00 |
"0 0-
0 0
8, 0 0
v [56} D=14 o
20 0
[0 20

From the analysis of the eigen-values reported in figure 5.1 is clear
that the system is unstable. The couple of complex conjugate poles with
real part negative describe the phugoid mode. The last two poles describe
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Figure 5.1 Eigen values of longitudinal dynamic

the short period, and are the degeneration of two complex conjugate poles
in two reals, one negative and one positive. Other two real eigenvalues
equal to —20 representing the dynamic of the actuator are not reported
in the figure. The actuators are affected by saturation both on their value
and on their derivate:

6, <30 5, < 200
5, < 30 6. < 200

5.2 Control aims

Due to the presence of the unstable pole it is almost impossible to man-
ually pilotate the aircraft hence is necessary to provide the plane with
an artificial stabilizing system.

With the advent of digital control and the availability of multiple sur-
faces there is an interest in designing control modes for precision flight
path control. These modes have the objective of decoupling attitude from
flight path control. These non conventional modes offer precise control
for certain tasks as well as the possibility of new tactics for the advanced
fighters.

The design problem considered here is to decouple the control of the
aircraft pitch angle 8 and flight path angle 7 = 6 — a by the combined
use of trailing edge wing flaps and canards. This is equivalent to find a
controller that is able to give a precise control of § and o .

The controller that will be designed to accomplish these tasks will also
stabilize the response of the aircraft to a direct input on the command
surfaces.
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5.3 Control of longitudinal velocity

To obtain a good strategy to control both # and « it is necessary the
introduction of an automatic system to maintain the longitudinal speed
constant using the variation of the throttle. The necessity of velocity con-
trol is evident if we think that if we want the aircraft to reach a positive
«, the aircraft will start to climb decreasing the velocity. To obtain the
necessary lift with a lower velocity the angle of attack will increase de-
terminating a compulsory value for the pitch angle.

From (5.1) is possible to calculate the transfer function between the lon-
gitudinal velocity and the throttle:

u(s) s(s + 3.4159)(s — 1.2230)

8 (s 3.4164)(s — 1.2259)(s + 0.0156 + 0.06037)(+0.0156 — 0.06031)

As the poles of the short period are practically canceled by the zeros of
the transfer function the control of the speed has no effect on the short-
period mode.

In the figure 5.2 is reported an automatic velocity control system also
called phugoid damping. The time constant for the jet engine is taken
at 8 seconds and maybe excessive:however if the system can be made
to operate with this lag,its performance would be improved if the actual
engine time constant were less. This time lag represents the time required
for the trust of the jet to build up after a movement é; of the throttle.
Also the dynamic of the throttle is represented by a first order system.
The control action consist on a PID controller and a zero on the whose
parameter has been set after several simulations to K, = 3,K; = .5,K; =
.1. In the feedback loop a zero has been introduced to compensate the
time lag caused by the dynamic of the trust. The presence of a derivate
on the feed-back explain the low value of K; in the PID controller. The
main part of the derivate action of the controller has been put on the
feed-back signal to make the system less sensitive to noise of the reference
velocity.

The response to a step of the reference velocity equal to 50 is reported
in Figure 5.3.

5.4 Design of a controller for the pich and the path
angle

If the velocity is kept constant by the automatic control of longitudinal
velocity the system describing the rest of the longitudinal dynamic is the
fifth order linear system obtained taking out the first row and the first
column from (5.1). Now we face the problem of the design of a controller
for a multi input multi output system. Given a system in the state space
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Figure 5.2 Automatic speed control system

PFigure 5.3 Velocity control with phugoid damphing

form:

¢ = Az + bu
y=Cz+ Du
The linear quadratic regulator design for continuous system calculates

the optimal feedback gain matrix such that the feedback low u = —K=z
minimizes the cost function:

J = /(thy + u*Ru)dt

To have a steady state error equal to zero on § and a we must include
an integral action in the control loop. Hence the LQG theory has been
applied to the system which has as state variables the five initial state
variables plus the two integral of the two states that we want to control.
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Defining Iy and I, as:

Ia:/adt Ig:/ﬁdt

The dynamic of the state vectors z is governed by the matrix A :

o] r—1.2204 1.0000 0 —0.7170 —0.1430 0 07
q 53644 —0.9724 0 11.4200 —-7.2840 0 O
g 0 1.0000 © 0 0 0 0
z=|6| A= 0 0 0 —20.0000 0 0 0
de 0 0 0 0 —20.0000 0 O
Io 1 0 0 0 0 0 0

[ ] | L 0 0 1 0 0 0 0

The values of the derivate of the actuators is determinate by the difference
of the real state of the actuators and state requested by the control action
thought the formulas:

§. = —20(6. — 6c4) §. = —20(6 — 6uy)

Using these formulas it is possible to have in the output vector y the
velocity of the actuators defining the matrix C and D as follows:

0 0
R "1 0 0 0 0 0 07
0 0
6 010 0 0 0 0
0 0
q 001 0 0 0 0 -
y=|I.| Cc=]0 0 0 0 0 1 0 D:OO
I, 000 O 0 0 1 -
6, 000 —-20 0 0 0
. 20 0
6, ] 0 00 0 —20 0 Ol
0 20

Using the LQR procedure applied to the system above defined is then
possible to give weights to all the variables of the problem: actuators and
their derivate, pitch and attack angles and their integrals.
From several simulation was clear that while is easy to design a procedure
to control § leaving unchanged the other variable is much more complicate
to control the angle of attack and decouple it from the other variables.
This is mainly due to the indifferent behavior that the pitch dynamic
shows toward different angle § when the velocity is kept cost-ant. While
the system is very sensitive to the value of the angle of attack.

The integral action on 6 can cause undesiderable overshoot to correct
a steady state error that usually is practically zero, for this the integral
action on 6 has been omitted.
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Figure 5.4 Limitation of integral action on «

5.5 Limiting the integral action

The fact that o is difficult to control, leaving unchanged at a steady state
the other variables, makes the integral action on « essential. On the other
hand an integral action can cause overshoots and worsen the response to
the commands on the other variable which may request a fast change in
the angle of attack.

Hence the integral action on o was limited with a dispositive that will
make the integral charge very little when a is far from the set point. To
achieve this we use the fact that generally when a is far from the set
point & — a, varies rapidally and hence the derivate on the error on o is
big. With this consideration is easy to understand how the scheme block
reported in figure 5.4 works. The saturation has been introduced to avoid
that when the slope of the error on « is little the signal to the integral
becomes infinite.

In figure 5.5 are reported the responses of the aircraft to step manual
inputs on # and 4 obtained using the limiter of the integral action and
a Q matrix that can be found at the and of the chapter. The first two
graphics report the response to the commands §; = 10 and v; = 10 which
give a; = 0, the set value of 7 is reached with an overshoot that is caused
by the integral action on a. The overshoot is decreased by the presence
of the limitator of the integral action. The last two graphics report the
response to §; = 10 and ; = 0 which give a; = 10. In this case the set
value of the actuators is different from zero because to keep the aircraft
to a different angle of attack we need the actuators to be deflected. From
this two examples is possible to see how this controller is able to decouple
the control of 4 and 7.

5.6 Stabilizing strategy

The aircraft responses reported on figure 5.5 show a good behavior of the
aircraft to limited manual inputs. As the inputs increase the control ac-
tion saturates the actuators and the system may become unstable. In this
paragraph a controller whose only aim is to stabilize the unstable mode
of the aircraft will be designed. Making a change of variables thought the
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Figure 5.6 Scheme-block used for simulations
transformation:
-1
ZzZ =7 X

where the columns of the matrix v are the eigen-vectors of the state

42




matrix A, we get the equivalent diagonal form of the system 5.1.

21 0 0 0 0 0 T 7217
22 0 1.2259 0 0 0 Z3
Zz3| =10 0 —3.4159 0 0 z3
Z4 0 0 0 —20.0000 0 Z4
| 2 L0 0 0 0 —20.0000] L =25

With the system in this form is possible to concentrate the control action
on the stabilization of the second mode z, which is the unstable one.
This can be done giving practically zeros weight to the control of the
other mode in the LQR procedure. The feedback matrix K; found for
the diagonal system must be transformed with the following equation to
apply it to the original system:

K:Kd*’l)‘l

Since the aim of the stabilizing strategy is to stabilize the unstable mode
with the limited control action it would useful to have the possibility like
in the strategy to control 8 and < to give weights on the actuators and
their derivates. This can be achieved applying the LQR procedure to a
system which has like output the vector y:

yt = [Zl 22 23 5:: 55 6.‘c 5& ]

which is obtained if we define the matrices €' and D as:

0 0
10 0 0 7
0 0
010 0
0 0
00 1 0
0 0
c=10 00 8 0 D=
000 0 .93
0 0
000 —16 0
20 0
0 00 0 —18.
0 20]

Is now possible to design a procedure giving weighs to the actuators
their derivates and the unstable mode. Figure 5.7show how the stabiliz-
ing strategy is able to bring to zero the unstable mode from an initial
condition z, = 100 without going out the limits of the saturation. Since
the the stabilizing strategy was designed giving weights only to the con-
trol of z, and on the actuators and their derivate one of the mode of the
system is not brought to zero.
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5.7 Hybrid strategy

As it has been done for the othe problems after having designed two
control strategies one to stabilize the system and the other one to fulfill
the control objectives the next step is to patch them together so that
no manual input will drive the system outside the controllability region.
The way the two strategies are patched together is reported in the block
diagram 5.7. Confronting the next two plots is possible to see the dif-
ference between the system controlled by the hybrid strategy and the
system controlled by the strategy described in the section ??. The input

44




(2]
Q
(=)
= o 401
~ o
S o
8 £ 30t
el c L
§_ 5 20

. D
:Cg 10
=

-20 . 0 )
0 5 10 0 5 10
time time
80 20
6of %
1] ' "“x (%3]
© 40t .’\_ S
(o]
% . "'ﬁ- S>-)
~ 7 :
-20 ' -20 . —
0 5 10 0 5 10
time time
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to the system is a very large step on 6. While the system controlled only
by L reach the set point with an overshoot and reaching high value of
the unstable mode, the system controlled by the hybrid strategy reach
the set point without overshoot.

5.8 Conclusions

Combining stabilization with manual control is an interesting problem.
The attention to this kind of problematic is driven by the increasingly
use of automatic control in mission critical applications. The reason for
this is the potential benefits and the fact that control engineering is now
able to deal with complex systems. Control of high performance aircrafts
is a typical example. The design of control laws for unstable systems
that make it impossible for the pilot to drive the system unstable while
maintaining good handling qualities is a challenging problem. The idea
followed in the thesis to solve this problem is the safe mixing of differ-
ent control strategies. The same idea was applied to different unstable
systems. The procedures were developed for the specific problems time
by time. It may be interesting to generalize the problem finding some
general features that help to deal with a particolar system.

The main attention was devoted to the limitation introduced by the
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constraints on the value of the control action. Further investigation can
investigate the safe control of system affected by velocity constraints.
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7. Appendix

In this appendix two matlab files are reported. They are the matlab-files
used in the simulations to plot the regions characterizing the action of
the hybrid strategy for the simple problem and for the pendulum.

7.1 Simple example

A=[[1 0];[0 011;

B=[-1 1]’;

C=eye(2);

D=[0 0]’;

h==m—— Controllers

%--Normal controller
omega=0.5;

damp=0.9;
Le(1,1)=2%omega*damp+omega”2+1;
Le(1,2)=omega"2;

YLe(1,1)=2.4;

%Le(1,2)=0.2;

h=mm—= Closed loop system
Ac=A+Bx*Le;

%

%--Safe controller
Kes(1,1)=1.7;

Kes(1,2)=0;

%----Parameters of hybrid strategy
%satl is the saturation introduced by the hybrid strategy
%sat2 is the real saturation of the sistem
sat1=0.5;

sat2=1;

h=————- Regions

figure

hold

%Equilibrium point for x1
thetae=-sat1/(Kes(1,1)-1);
thetamin=(-sat2-sat1)/Kes(1,1);
ximin=-1;

x1lmax=1;

dots=1000;

x2max=15;

x2min=-x2max;

a=0;
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»

0
0;
0;
=0:
0

3

l—h(DFIII..OD"

x1satlpsat2p=(sat2-sati)/Kes(1,1);
x1lsatipsat2n=(-sat2-sat1) /Kes(1,1);
xlsatinsat2p=(sat2+satl)/Kes(1,1);
xisatinsat2n=(-sat2+sat1)/Kes(1,1);
for i= 1:dots+1
x1(1)=x1min+(x1max-x1min)*(i-1)/(dots);
x2 (i) =x2min+ (x2max-x2min) * (i-1) / (dots) ;
x2satip=(sati-(Le(1,1)-Kes(1,1))*x1(i))/Le(1,2);
x2satin=(-sati-(Le(1,1)-Kes(1,1))*x1(i))/Le(1,2);
x2sat2p=(sat2-Le(1,1)*x1(i))/Le(1,2);
x2sat2n=(-sat2-Le(1,1)*x1(i))/Le(1,2);
if abs(Lex[x1(i),x2satlp]’) <= sat2
a=a+l;
x11(a)=x1(i);
x21(a)=x2satlp;
elseif abs((Le-Kes)*[x1(i) x2sat2pl’) <= sati
a=atl; :
x11(a)=x1(i);
x21(a)=x2sat2p;
end
if abs(Le*[x1(i),x2satin]’) <= sat2
b=b+1;
x12(b)=x1(i);
x22(b)=x2sat1n;
elseif abs((Le-Kes)*[x1(i) x2sat2n]’) <= satl
b=b+1;
x12(b)=x1(1);
x22(b)=x2sat?2n;
end
if (Le-Kes)*[xlsatipsat2p x2(i)]’>=satil
c=c+1;
x13(c)=x1satlpsat2p;
x23(c)=x2(i);
end
if (Le-Kes)*[xlsatlpsat2n x2(i)]’>=satl
d=d+1;
x14(d)=x1satlipsat2n;
x24(d)=x2(1);
end
if (Le-Kes)*[xlsatinsat2p x2(i)]’ <= -satl
e=e+l;
x15(e)=x1satinsat2p;
x25(e)=x2(i);
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end
if (Le-Kes)*[xlsatinsat2n x2(i)]’ <=-satil
f=f+1;
x16(f)=x1satinsat2n;
x26(£f)=x2(i);
end
end
plot (x11,x21)
plot(x12,x22)
plot(x13,x23)
plot (x14,x24)
plot (x15,x25)
plot(x16,x26)

stop=200;

theta0=0.95;

for x0 = -10:2:10
[a,b,c]=rk23(’example’,stop);
plot (X(:,1),X(:,2))

end

theta0=-0.95;

for x0 = -10:2:10
[a,b,c]=rk23(’example’,stop);

plot (X(:,1),X(:,2))

end

theta0=0.95;

for x0 = 2:2:10
[a,b,c]=rk23(’ example’,stop) ;
plot (X(:,1),X(:,2))

end

theta0=-0.95;

for x0 = -10:2:-2
[a,b,c]=rk23(’example’,stop);

plot (X(:,1),X(:,2))

end

theta0=0.95;

for x0 = -2:2:2
[a,b,c]=rk23(’example’,stop);
plot (X(:,1),X(:,2))

end

theta0=-0.95;

for x0 = -2:2:2
[a,b,cl=rk23(’ example’,stop) ;

plot (X(:,1),X(:,2))

end
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7.2 Inverted pendulum

clear x
clear V
clear S
clear K
clear N
clear x1
clear x2
clear dVN
clear A
clear B
figure
hold
YUUNAA%%Y PARAMETERS TO CHANGE WAUUAAAAAAAAALAY
h=mm——— System data
% natural frequency of the system
omega=1;
% maximum value of u/g
vo=1;
%----Linear strategy data
% coefficents of the ellipsy
a=sqrt(5);
b=1;
% angle of inclination of the axis of the ellipsy
fi=pi/4;
%i---Weight of v in the loss function
R=6.5;
Y .
AN Yy AN Y S YA YA YA Y Y YA
h=———- Linearized system matrices
A=[[0 1]; [omega 01];
B=[0 -omegal’;
h
%%%% Determination of the region of attraction
n=vo;
thetamax=atan(vo) ;
sup=pi;
inf=-pi;
punti=100;
passo=(sup-inf)/punti;
for i = 26:76

theta(l,i)=inf+passo*(i-1);

theta(2,i)=sqrt (abs((cos(thetamax)+n*sin(thetamax)-cos(theta(l,i)
-n*sin(theta(l,i)))*2));
theta(3,1)=-sqrt (abs((cos(-thetamax) -n*sin(-thetamax)-cos(theta(l,i))
+n*sin(theta(1,i)))*2));
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if theta(il,i) >= thetamax
theta(2,i)=-theta(2,1i);
end
if theta(l,i) <= -thetamax
theta(3,1i)=-theta(3,1i);
end
end
for i= 76:101
theta(l,i)=inf+passo*(i-1);
ra=(cos(pi/2)-n*sin(pi/2)-cos(theta(l,i))+n*sin(theta(l,i)))*2
+theta(2,76)"2;
theta(2,i)=-sqrt(abs(ra))*sign(ra);
ra= (cos(pi/2)+n*sin(pi/2)-cos(theta(l,i))-n*sin(theta(1,i)))*2
+theta(3,76)"2;
theta(3,1i)=-sqrt(abs(ra))*sign(ra) ;
end

for i=1:2b
theta(l,i)=inf+passo*(i-1);
theta(2,i)=sqrt(abs((cos(-pi/2)-n*sin(-pi/2)-cos(theta(l,i))
+n*sin(theta(l,i))) *2+theta(2,26)"2));
ra=(cos(-pi/2)+n*sin(-pi/2)-cos(theta(l,i))-n*sin(theta(1,i)))*2
+theta(3,26)°2;
theta(3,1)=sqrt(abs(ra))*sign(ra);
end

%---Plotting the region of attraction--------—-——-—-——--—-
plot ((theta(l,:)/pi), (theta(2,:)/pi))
plot ((theta(l,:)/pi), (theta(3,:)/pi))

AN Y YA

=== Ellipse matrices

N=[[cos(fi) sin(fi)];[-sin(fi) cos(fi)]1];
Qi=[[a 01;[0 bl];

Q=N’*Q1*N;

%

%--Finding the controller with LQR

[X,S,E] = 1qr(4,B,Q,R);

Wih4% The next two loops that calcolate:

%--- the vectors x1, x2 containing the value of
%----the angle and of the angolar

% velocity in witch are calcolated V and dVN

%----the vectors ximin xlmax

%--- the matrices V and dVN in witch are stored the value of
% the Lyapunov

% function and the differntial of the lyapunov function.

%
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%--- Limit for the angle of the pendulum
minxl=-pi;
maxx1=pi;
h---Limit for the angolar velocity of the pendulum
minx2=max (theta(2,:));
maxx2=min(theta(3,:));
puntil=50;
um=vo;
for i=1:puntil+l
x2(1)=minx2+(maxx2-minx2) /puntil*(i-1);
x1max (i)=um/K(1)-x2(i)*K(2)/K(1);
x1min(i)=-um/K(1)-x2(i)*K(2) /K(1);
for j=1:puntii+l
x1(j)=minx1+(maxxi-minx1)/puntii*(j-1);
V(i,)=[x1(j) x2(i)]*S*[x1(j) x2(i)]1’;
dVN(i,j)=[x2(i) sin(x1(j))I*S*[x1(j) x2(i)]’
+[x1(3) x2(i)1#5*[x2(1) sin(x1(3))]°
-[x1(j3) x2(1)]1*K’*B’*S*[x1(j) x2(i)]’*cos(x1(j))
-[x1(3) x2(i)]1*S*B*xK*[x1(j) x2(i)]’*cos(x1(j));
end
end
%“xv is the point in which a lyapunov surface is tangent to the line
%that delimits the region ni which [v[<vo
xv=vo*[[5(2,2) -5(2,1)1;[-s(1,2) S(1,1)]11*K’/(RKx[[S(1,1)
-5(1,2)1;[-5(2,1) S5(2,2)1] *K’);
“value of the lyapunov function in x=xv
Ve=xv’ %S5%xv;
[v dl=eig(S);
% Normalization of the angle and of the angolar velocity.
x1=x1/pi;
x2=x2/pi;
x1max=x1max/pi;
x1min=x1min/pi;
“Plot of V(x)=Vc
contour(x1,x2,V, [0 Vcl)
plot (x1max,x2)
plot (ximin,x2)
%Plot of the point in which the derivate of V is zero
contour(x1,x2,dvN, [0 0])
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