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Chapter 1

Introduction

Many real processes are nonlinear and time-varying, with different system complex-
ity in different operating points. The adaptive local model networks strategy for
nonlinear control, described in the paper, is intended for such systemns. Despite the
powerfulness, it does not need much more computational effort than conventional
adaptive control, only more memory.

The major parts of the strategy are:

o robust real-time identification of locally valid linear models of order 1 to n,
distributed over the whole space of operation;

» interpolation of the locally valid linear models of order 1 to n to globally valid
local model networks of order 1 to n;

e online model validation to choose the local medel network with the correct
model order in the entire operating space;

o robust real-time model reduction and controller design.

Robust real-time identification of linear models of order I to n are achieved
through a new least squares identification method called the Multipte Model Least
Squares method (MMLS), given by Niu et al [17], and an extended conditional
updating rule. The MMLS method simultaneously gives least squares estimates of
order 1 to n and the corresponding loss functions, to the same computational effort
that the conventional recursive least squares (RLS) algorithm gives the n:th order
estimates.

The locally valid linear models are then interpolated to globally valid local model
networks of order 1 to ». The interpolation can be viewed as a mechanism to get
smooth switching between the locally valid linear models.

Since we have one local model network of each order (order 1 to n), there is al-
ways one local model network with the correct model order in all operating points.
To get the correct model order in all operating points, we use online model vali-
dation. An Akaike Information Criterion (AIC) could, for example, be used as a
validation criteria. The validation tells how good the different local model networks
are in different regimes.

The local model network estimates have, however, the drawback that they have
many parameters to tune up. It means that it might take long time to re-tune all
parameters in the local model networks when the plant’s dynamics has changed.



To get faster adaptation, we take the locally valid models of order 1 to n in the
present regime of operation as candidates to the ‘best’ model., Finally, we also take
fixed local model networks of order 1 to n as candidates for the ‘best’ model. The
fixed models are there for the cause of safety or lower bound performance. With a
suitable switching criteria, the performance of the adaptive strategy will never be
worse than the performance for the fixed local model network.

Bach model has an associated loss-function in all regimes to validate the local per-
formance of that model. The switching rule should be of the type: even though
there is a better model, keep the present model if it is good enough.

The local model networks and the switching between local model networks, can
be viewed as two different kind of switching. The local model networks can be seen
as a kind of structural switching, to capture the known system nonlinearities. The
purpose of the switching between local model networks, on the other hand, is to
automatically choose the correct model order in all operating points, and to achieve
fast adaptation to changes in the plant dynamies, and to imply robustness.

The model produced by the adaptive local model networks strategy is now used
for online controller design. Since the controller design is made online, it is very
important that the design algorithm never breaks down, is fast to compute and
has good numerical properties. To ensure this, we use a model reduction algorithm
that gives a controller solution with condition number less than a specified number,
The algorithm exploits the very special structure of the problem, and is therefore
fast and has good numerical properties, A two degrees of freedom controller is then
computed based on the reduced model, to give the closed loop system the desired
response to the command signal.

The resulting strategy is shown to be very powerful and able to cope with many
different situations. It is easy to adjust the strategy to take the behavior of the
specific plant into account. In spite of the powerfulness, the strategy does not need
much more computational effort than a conventional adaptive control scheme, This
is because only one local model is updated at each time instant, and one controller
design problem is solved at each time instant, i.e. the same as for conventional
adaptive control. The main extra computations are due to the interpolation and
the online model validation. These operations are, however, relatively cheap.

Qutline of the paper

In the second chapter, different aspects of online controller design are discussed.
A two degrees of freedom controller design algorithm and a model reduction al-
gorithm, both suitable for real-time application, are given. Some analysis and an
experiment of the sensitivity to modeling errors are also given. The author’s main
contribution in this chapter is the model reduction algorithm based on the Sylvester
matrix. The method has , however, strong similarities with an algorithm given by
Barnett [3].

The third chapter treats the Multiple Model Least Squares (MMLS) method.
The method given here, differs from the one given by Niu et al by the representation
of the regressor vector. Our regressor vector is mirrored compared to the one used
in Niu’s method, leading to a slightly different method. This modification is due
to the author. A modified updating formula and an extended conditional updating
formula that use the multiple model structure, are also given. Both these formulas
are to our knowledge, new approaches,



Chapter 4 treats the local model networks/local controller networks., Original
contributions to these topics are Johansen and Foss 1992, 1993, Johansen 1084,
Hunt and Johansen 1097 [8, 8, 10, 6].

In Chapter 5 the MMLS algorithm is used to estimate the local models in the lo-
cal model networks. Online model validation and switching are also discussed. The
idea to switch between a set of fixed and estimated models has been used before by,
for example, Narendra et af [15]. Narendra is switching between a set of fixed and
estimated linear models based on online model validation. We are instead switching
between a set of fixed and estimated local model networks of order 1 to n, based
on online model validation. This is to our knowledge a new approach. Adaptive
networks/online controller design are discussed by Wang [18]. The difference of our
approach to the one used in [18] is that we use the MMLS algorithm to estimate
the local models of order 1 to n in the local model networks, while Wang uses one
conventional RLS algorithm to estimate the entire network parameters of order N-n.

In Chapter 6, we compare the control performance of the adaptive local model
networks strategy for control with the control performance of conventional adaptive
control, on a highly nonlinear and unstable plant. It is shown that the adaptive
local model networks strategy can give significantly improved control performance
on such plants.

In Chapter 7, we apply the strategy on the vehicle speed control problem, and
shows that it can give excellent control performance over the complete operational
Tange.

The Work has been done as part of an ESPRIT III project called Neural Adap-
tive Controel Technology.
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Chapter 2

Linear Control: Synthesis,
Analysis and Algorithms

2.1 Introduction

In an adaptive control setting the controller is designed online. It is therefore
very important that the design algorithms are numerically robust and fast. In this
chapter we discuss such control methods and other aspects of real-time control.
An analysis of modelling error sensitivity is also given. These aspects are covered
because the adaptive implementations later uses these algorithms, Pole-placement
design algorithms and the polynomial reduction algorithms based on the Sylvester
matrix can be found in Barnett [3}. The algorithms presented here have, however,
been derived independently of [3].

2.2 Pole Placement Design

Assume that the process being investigated is given by the following difference
equation model:

y(t) +eawy(t — 1)+t ony(t — n) = bjut — 1)+ -+ + bpu(t — n),
(2.1)

where y(t) is the process output and u(t) is the process input. This equation can
be described by the input-output model!

Alg™")y(t) = Blg™ " )ult) (2.2)
where A(q“l) =14ag7 4+ - +a,g ™ and B(q*l) =04bg b bpg ",
A general two-degrees-of-freedom controller with output feedback is given by

R(g™"u(t) = T(q™ Juclt) — S(g™")u(t) (2-3)

where u,(t) is the command signal. R{g~?), S(¢™!) and T'(¢~?) are the controller
polynomials, R{g™!) is monic.

Eliminating ©(f) between the process model eq. (2.2} and the controller eq. (2.3)
gives the closed-loop system

_ B(g~1)T(g™1)
— Alg~YR(g™1)+ B(g™1)S

g ! denotes the delay operator

w) iyl (2.4

1



Pole-placement design is done mainly in two steps [2]:

L. solve the algebraic problem of finding polynomials B(g~!) and S(g~!) which
give the closed-loop system the desired dynamics A,(g™'), i.e. solve the
Diophantine equation A(g™*)R(¢ ")+ B(g71)S(g ') = Aug™")} with respect
to R{g™*) and S(g™);

2. determine the polynomial 7'(g~1) which gives the system the desired response
to command signals, i.e. solve the equation B(g~')T(g ) = Ba(g~!) with
respect to (g~ 1).

Normally, Ac{g™?!) can be factorised into a ‘controller’ polynomial and an ‘observer’
polynomial

Aalg™") = Ac(g7 V) As(g7H). (2.5)
Ba(g~') is then constrained as
Ba(g™") = baB(g NAu(g71). (2.6)

The solution to step 2 is then simply T(g™1) = b, 4,(g !}, where by is chosen to
give the desired static gain. With this solution no process zeros are cancelled. The
response to command signals is given by
bciB(qii)
Y(t) = ————uqt 2.7
( ) Ac(q__l) C( ) ( )
The main computational step in pole placement design using polynomials is thus
to solve the Diophantine eguation.

2.3 The Diophantine Equation

The discussion in the previous section showed that the Diophantine equation plays
the central role in pole placement with polynomials. We will now analyse this
equation. The fundamental mathematical problem is to understand the properties
of the polynomial equation

AX +BY =C, (2.8)

where 4, B and € are known and X and Y are unknown. This is 2 well known
problem in algebra, and is called the Diophantine equation. The problem is usu-
ally solved with a Euclidean-like method, We will here solve if using linear matrix
equations. The main reason for using an Euclidean like method instead of linear
matrix equations is that it is said to exploit the structure of the problem better,
and therefor is faster. We will solve it here with a linear matrix equation method
that exploits the structure as well as the Euclidean algorithm. With this method
it is easy to detect badly conditioned solutions, which will be the case if there are
near common factors between 4 and B.

We will first set up the equations for polynomials of second order and then gen-
eralise to arbitrary polynomials.

Suppose A, B and C are given by

Ale™) = T+ag ' +tag?
Blg7') = 0+4bigt+byg?
Cleg™Y) = l4eg ™ teag 24 eaq feag™?



and suppose we want to find two third order polynomials
X(@™') = 14ewg '+ faag™®
Y{g ') = wo+ung +ye’+ung’

that satisfy the Diophantine equation (2.8). By performing multiplications and
sorting by equal order, equation (2.8) becomes

1+ (a1 + 121 + bigo)g™ + (a2 + axz1 + Log + boyo + by )g ™% +

(a2es + a1@2 + 123 + bays + biy2)a ™2 + (G202 + @123 + baya + brys)g ™ +
(azm3 + baya)g™°

=14 e1g !t +eag % +eag T +egg?

This equation can be rewritten as the equation system

1 = 1
lzi + blyO = o1 —a
apze + leg Fbgyp + by = e2-—az
ax®1 + agze 4+ les + bayy +01ys = e3
apdy + @183+ oy +hys = o
ays+bys = 0
or using matrices
21
1 0 0 b]_ 0 0 0 L3 Ci1 —aq
(5] 1 0 bg b1 0 0 &3 €Cg — Q3
az a1 1 0 b2 b1 ] Yo = c3 (2.9)
0 az a1 O 0 bg bl 11 Cq
0 0 a 0 0 0 b Y2 0
LE;

The matrix on the left-hand side is called the Sylvester matrix. Equation (2.9) has
7 unknown variables. But since we only have 5 equations we can only determine b
or less variables uniquely. A unique minimum degree solution is found by setting
23 = 0, y2 = 0 and y3 = 0. By imposing these conditions equation (2.9) reduces to

1 0 bl 0 By Cj — &1
a1 1 bz bl B2 Cg — G2
= 2.10
az a1 O b2 Yo C3 ( )
0 e © 0 11 C4

The matrix on the left has a very special structure, which will be used to solve the
problem efficiently.

We will now generalise the problem to arbitrary polynomials. Suppose A, B
and (' are given by

Alz™YY = 1+4aigt+ - tang™
E(:Lr:“1 = O04bgt+ b ™
Cle™) = l4eg ™ + 4 camo19” D 4 egng™ ™

Again we want to find a minimum degree solution to the Diophantine equation {2.8)
with X monicand ¥ having g # 0 (this corresponds o a minimum degree controller



without time delay). The X and Y polynomials are then given by
X(@™') = ldeg '+ Hoag™
Y(e™") = wo+ug 4ot yaoag Y

Performing the multiplications in the Diophantine equation (2.8) and sorting by
equal order give the linear system of equations,

The matrix to the left can be divided into four sub matrices with very special
structure. The upper left submatrix is a lower triangular toeplitz® matrix. Since it
has unity diagonal, it has always full rank. The lower left sub matrix is an upper
triangular toeplitz matrix. This matrix has full rank if a,, # 0. The upper right sub
matrix is a lower triangular toeplitz matrix. It has full rank if b; # 0. The lower
right sub matrix is an upper triangular toeplitz matrix. Equation (2.11) can thus
be rewritten as the following matrix equations

L1z Ly z Y b
(= w)()-(5) @12
where Li1, In2, Ro; and Rj; are the sub matrices defined in {2.11) and
L Yo ¢1 — a1 Cn41
&= s ¥ = yhe = 3 by =
Ly Yn—1 Cp — Gp C2n
The problem can be written as
Ll]_iB + ley = bz (213)
Raye + Rapy — by (2.13‘)
Subtracting Rp; L7, times (2.13) from (2.13') results in
Live 4+ Ly =¥, (2.14)
(Raz — Ra1 Ly} Lya)y = by — Ray L31'bs (2.14)
This can always be done since Ly is always invertible and Rp; has full rank (if
a, # 0). We have now separated the problem into two subproblems of half the

dimension of the original problem. The solution is obtained by first solving { 2.14')
for y, and then insert this into (2.14) and solving for x:

y = (Rag — Ro1 L] L1z) ' (by — Ro1L7ihs) (2.15)
e = Li}Hbz — L1ay) (2.15)

2 A bend matrix with constant values on all diagonals.

1 g -~ 0 0 by 0 0 0 0N [ = [ e1—a
ay 1 PN 0 ] bz bl ‘e 0 0 &2 €y — a3z
Gn_3 Gn_3 --- 1 0 Vbaoy By -+ By 0 Zn_1 Cn—t— Qn_1
Gp_-1 Up_2 "'+ G1 1 n b1 o0 by b ki) — Cn ~ Gn
Gn, @n_i '+ G2 @1 0 by - by b Yo o Cntl
1] adp, v @3 QO3 0 0 ver by by Wi Cni2
0 0 e Op @1 g 0 L 0 bn Yn—-2 Can—1
] 0 e 0 Gn f] 0 oo 0 0 / \ Yn—1 ) \ Can

2.11)



It is necessary to compute the inverse of L1;. But since Ly is a lower triangular
toeplitz matrix and the inverse of a lower triangular toeplitz matrix also is a lower
triangular toeplitz matrix, the computation of this can be done very efficiently; only
the first column in the inverse has to be computed. The product of two lower tri-
angular toeplitz matrices is also lower triangular toeplitz, i.e. only the first column
in the product has to be computed.

The result is an algorithm which utilises the siructure of the problem and has
good numerical properties. The matrix Ryo nglLfilLu can however be singular or
badly conditioned due to common factors between polynomials A and B. Therefore
common factors between A and B should be cancelled.

2.4 A Model Reduction Algorithm: Sylvester Ma-
trix Approach

Common factors are a serious problem in control design, The Diophantine equa-
tion (2.8) has a solution if and only if the greatest common factor of 4 and B divides
C [2]. In practice the solution will become numerically sensitive whenever the roots
become close. The analysis/experiment given in Sections 2.5 and 2.6 shows that
model order reduction can give improved robustness to modelling errors.

In an adaptive control setting, the Diophantine equation is solved online using es-
timates of the plant. It is then of highest importance to have a control design
algorithm that is numerically robust and fast to compute,

In this section we present a polynomial reduction algorithm based on the Sylvester
matrix, The method has good numerical properties and exploit the structure of the
problem well. The algorithm gives useful information on how difficult the plant is
to control. This information could be used in the contoller specification.

A proof/derivation of the method is given in Appendix A and is summarised here
as an algorithm.

Algorithm 2.1 (ged(A,B))
Given two polynomials

Alg)=1+eg "+ +ang™”
and

Blg7') =04big7 o+ bag™”
such thatag =1, a, # 0, bp = 0 and b, # 0.

1. Define matrices Ly, iz, Roy and Ray according to

1 0 0 0 b 0 0
as 1 0 0 by by 0
Ly = : Ly = :

Gp_2 Gp-z -~ 1 0 bu_1 ba_z -0 by

@n_1 Gp_z '+ a1 1 by  bp_y -+ b
( Gy Gp_—1 '+ 22 a1 0 bn e b3 bg
0 an 3 1] 0 b4 b3

Ra = : : o : Raz = Lo
0 0 e @p Gp_t g 0 -« 0 b,

\ 0 0 - 0 9@ 8 0 - 8 0



2. LU-factorise as LU = P(Rgs — R21L'1"11L12)T
U7 will then have the structure

w0 e 0 0 o - 0
Uz.1 tz,z 0 0 g .- 0
UT — | Wil Wrezz vt Ureired 0 g --- 0 (2.16)
Ur,1 Uy 2 e Uy r—1 Upr 0 --- 0 )
Ur31,1 Ur41l,2 't Upply—1 g1, |0 -0 O
\ Un1  Unz cc Upso1 Une |0 - 0 )

where r = 2n — k.
3. Calculate & norm on the columns of UT

4. The common factor is found by normalisation of the last column in UT with
nongerc norm (in practice this should be replaced with: the last column of
U7T with norm > epsilon}. That is the common factor Is given by

Urr
1 .
Ur,r

K = gcd(4,B) =

Upn,r

where r is the last column of UT with norm > e.
The polynomial is read as

KlghH=1+ T#q“} et E‘-_fq—(n—f)

T Y,

]
Remark 1

The main work of the algorithm is to
e compute the inverse of Lijy;
¢ compiite the product RglLi—llle;
e compute the LU-factorisation.

Since all matrices have a very special toeplits structure all these operations can be
done very fast and accurate. The inversion of Ly can be done very fast, since the
lower-triangular toeplitz structure is preserved through inversion. It mean that we
only have to compute the first column in the inverse. The product of two lower-
triangular toeplitz matrices is also lower-triangular toeplitz. It means that we only
have to compute the first column in the product. Many elements are zeros as well,
The LU-factorisation can be made fast since we only need the U matrix.

Remark 2

The common factor could be calculated by a LU-factorisation of the transpose
of the full Sylvester matrix. But this does not use the structure of the problem.

Remark 3



Step 2 can be exchanged with:
QR-factorise as QR = (Rgy — Ry LT Ly1g)7
and replace U with R in the steps that follows,

The polynomial reduction is now completed with a simple polynomial division.
Divide polynomials, A(g~!} and B(g~1) with K (¢7) = ged(A(¢~1), B(g~1)).
We demonstrate the algorithm with an example.

Example 2.1 (Find greatest common devisor)

Let A(g7) = (14+2¢ )1 +2¢7 1 +3¢72) = 1+4¢ 1+ 7972+ 6¢7% and B{g~1) =
(I1+2¢ )(0+¢ 1 —¢q2)=1¢g 1 +q %2 —-2¢7%. A(g~!) and B(q~!) have a common
factor K(q') = 1 + 2¢~1. The Sylvester matrix is then defined by

1.00 0.00 0.00| 1.06 0.00 0.00
400 100 0.00| 1.00 100 0.00
( Lyi  Lig ): 7.00 4.00 1.00|-2.00 1.086 1.00 (2.17)
Ra1 Ra: 6.00 7.00 4.00| ¢.00 -—2.00 1.00 )
§.00 6.00 7.00| 0.00 000 —2.00
§.00 0.00 6.00| 000 0086 0.00
Algorithn (2.1) now gives

1.60 6.00 0.00| 0.00 8.00 0.00 1.00 0.00 0.00| 1.00 0.00 0.06
400 1.00 000 0.00 8.00 0.00 0.00 1.00 0.00|-3.00 1.00 0.00
7.0 4.00 1.00| —0.00 0.00 9.00 0.00 0.00 1.00| 3.00 -3.00 1.00
6.00 7.00 4.00( 3.00 8.00 0.00 0.00 0.00 0.00| 1.00 1.00 -1.00
0.00 6.00 T7.00| —-3.00 18.00 0.00 0.00 0.00 0.00| 0.00 1.00 -0.67
0.00 0.60 6.00| —18.00 36.00 0.00 0.00 0.00 000| 0.00 0.00 1.00

The last column in the left matrix is zero. By normalisation of the fifth column we
get

(2.19)

| CC I e R e e R e

which Is equal to the common factor.
O

2.5 Sensitivity to Modelling Errors

When designing a controller we have to have in mind that the design is based on
a model of the system, not the true system. There will always be some modelling-
errors. A study on the sensitivity to modelling errors can be found in [2]. In this
section we will give an alternative study, based on the Sylvester matrix, It will be
shown that the algorithm for solving the Diophantine equation (section 2.3) and
polynomial reduction algorithm (section 2.4) gives useful information on how sen-
sitive the system is to modelling errors. Often it is desireable to approximate the
model by a lower-order model.

Suppose the process is described by H° = ﬁ—ﬁ, and that the control design is

based on the model H = %. We do a control-design by solving the Diophantine

i0

2.18)



equation AR+ BS = A, for R and S. But the closed-loop will have the dynam-
ics A°R + B°S = A., and this is not equal to A.. The roots of A, characterise
the closed-loop system, If any root is outside the unit-circle the system will be un-
stable. To investigate this further we will convert the problem to the matrix domain.

The Diophantine equation in matrix form is Az = b, where A is the Sylvester
matrix (2.11),

74 Qe, — Q1
Tn
a — &
z = s and b= en TR (2.20)
o a'cn-i-l
371"1 aﬂzn

The Diophantine equation is solved by 2 = A~b. With this controller the closed-
loop system will have the dynamics b = A%z = A®. A~1b. If A # A® then b’ #b.
Assuming that the modelling errors are given by 6A, we have A = A®+ §A or that
Al = A — §A. The difference in closed-loop dynamics is then

b-b = Ax— A% = Ax —(A—§A)x =6A-x=6A A 1h, (2.21)
The norm of this is
b~ bl < [ISA] - |47 - [IblL. (2.22)

A reasonable assumption is that the norm of the modelling error is proportional to
the norm of the Sylvester matrix,

i6A]] =oc {|A[]. (2.28)
With this assumption, (2.22) can be written as
b—b _
”Wﬁﬂ oc J1AJ] A1 = w(A). (2.24)

The relative error in the closed-loop polynomial is thus proportional to the condi-
ticnal number of the Sylvester matrix A. The difference between the controllers
based on A or A® is

x—x®= A b - A 'b= (A1 - A" M), (2.25)
Taking the norm of this leads to

- -1 —1
< JJATE— AT AR (2.26)

2.6 Sensitivity to Modelling Errors Experiment

In the previous section we found that the condition-number is an important measure
for how sensitive the system is to modelling errors. We will now exploit this further
by a numerical experiment. We have done the following : the true plant, H?, is of
3rd order. We have a model of this, H, such that the rise-times of the model differ
by random numbers up to 10 percent from the rise-times of H® (by rise-time we
mean the rise-time of a specific pole or zero).

The following has been done:
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1. e compute a controller for the model, i.e. solve

with respect to R and S.
e compute condition number for the Sylvester-matrix.

e compute a controller for the true plant, i.e. solve
AR 4+ BOS0 = A, (2.28)

with respect to R and 59, A, is the same as for the model,
e compare the controllers.

e compute the characteristic equation for the closed-loop system by apply-
ing the controller based on the model on the true plant, i.e. compute

A°R 4+ B°S = A 4. (2.29)

» compute the roots of Alc;.

2. e approximate the 3rd order model with a 2nd order model.
s approximate the 3rd order true system with a 2nd order system.

¢ repeat point 1 for these systems. The closed-loop system is computed as

A°Rang+ B%Szna = 4 . (2.30)

3. ¢ approximate the 3rd order model with a st order model.
¢ approximate the 3rd order true system with a 1st order system.

e repeat point I for these systems. The closed-loop system is computed as

ARyye 4+ B%S1 = 4. (2.31)

The polynomial approximations have been done using the polynomial-reduction al-
gorithm described in section 2.4.

Summary of experiment

The experiment described above was done on a number of models with different fea-
tures. The results of these experiments are given in tables B.1- B.7 in appendix B,
and can be summarised as:

» The condition number gives a useful indication on how sensitive the system
is to modelling errors;

e Control design based on reduced models give in most cases improved robust-
ness to modelling errors;

¢ High condition numbers are due to common factors or very fast poles (stable
or unstable).

We propose that model reduction should be done when the condition number is
greater than = 10%. The control design should be based on the first model having
a conditional number less than =~ 10°.

12



2.7 Youla-Kuéera Parameterisation

The Diophantine equation algorithm discussed in Section 2.3 gave a minimum de-
gree solution to the Diophantine equation. Sometimes we want to have a controller
that contains a specific factor, for example (1 — ¢~ !) in R{g') for integral action.
This could be achieved with help of the Youla-Kuéera parameterisation.

Assume that we have a solution R° and 5° to the equation
AR® + BS® = A, (2.32)
The Youla-Kuéera parametrisation then gives all rational stabilising controllers

S = XS'4+v4 (2.33)
R = XR°-YB (2.34)

where X is chosen as a stable polynomial. The Y polynomial can be chosen com-
pletely free, This will be used to design stabilising controllers with constraints
on the controller polynomials. The closed-loop characteristic polynomial with the
controller {2.33) and (2.34) is then

AR+BS = AXR® -YB)+B(XS°+Y4A)
= X(AR®+ BS%) + (BYA— AY B)
X AY (2.35)

Example 2.2 (Integral action and Nyquist cut-off)

Suppose we want a controller with integral action and zero feedback-gain at the
Nyquist frequency. This Is achieved by constraint the controller polynomials to
include the factors Rg = 1—g~ ' in R(g™') and 84 = 1 + ¢~ in S(¢™?!). These
conditions can be written as R(1) = R'(1)R4(1) = 0 and S(—1) = § (- 1)Ra(~1) =
0. We choose X as a stable polynomial given by X{(¢7') = 1 + 2197 and ¥ as
Y{g ') = yo + y1g~ " where yo and y1 can be chosen arbitrarily. The Youla-Kuéera
parametrisation (2.33) and (2.34) then becomes

X(-1)S*(~1)+ Y(-1A(-1) = S(-1)=
X(DR (1) -¥(1)B(1) = R(1)=0
which lead to
A-Dwo -v) = -X(-1)8°(-1)

B(D(wo+wu) = XQ)R(1).

We have the linear system of equations

A1) A=) Y (% ) _ [ —X(=1)5°(-1)
( B(1)  B(1) ) ( Y ) - ( X(1)RO(1) ) (2.36)
It is easily seen that this is solvable if and only if A(—1) # 0 and B{1) # 0. Solving

for yo and y; gives Y (g~t), and a controller with integral action and Nyquist cut-off
is given by

s X5°+vA (2.37)
R = XR°-YB (2.38)

i
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Remarks

If B(1) is close to zero the solution to (2.36) is badly conditioned. But in this
case the integral action is not needed, because the steady state error will be small
anyway. Equation {2.38) can then be modified to

A-Dyp = —X(-15°(-1) (2.39)
o= 0. (2.40)

The solution to (2.36) is also badly conditioned if A(—1) is close to zero. But in this
case the Nyquist cut-off is not needed, because the feedback gain at the Nyquist
frequency is small anyway. Equation (2.36) can then be modified to

B(l)yo = X(1)R°(1) (2.41)
yr = 0. (2.42)

Finally, if both B(1) and A(—1) are close to zero, either integral action or Nyguist
cut-off is needed.
]

Another way to achieve constraints in the controller polynomials is to include
the constraints in the Diophantine equation. Suppose we want the R-polynomial to
contain a factor Ry and the S-polynomial a factor 5;. This can be done by solving
the following Diophantine equation with respect to R and S

(AR:R + (BS1)S = Aa. (2.43)

The controller polynomials are then
R = RRy (2.44)
S = §5, (2.45)

The solution is, however, badly conditioned if there are close to common factors
between R4 and B or between §; and A. In the adaptive control case the control
design is repeated every time-step using estimates of the plant polynomials. Thus
a test of common factors should be a part of a numerically robust algorithm for
real-time applications.
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Chapter 3

Recursive Multiple Model
Least Squares

3.1 Introduction

Very recently, new improvements has been achieved in system identification. A
Least Squares method that simultaneously produces models of all orders up to a
maximum order n, for the same amount of computation as the conventional least
squares method, has been presented by Niu et @l [17]. Problems associated with
over- and under-parametrisation can be avoided with this method.

The chapter begins with a general discussion of recursive identification, whereafter
the Multiple Model Least Squares method (MMLS) is described. An extended
conditional updating rule, and a modification of the information matrix updating
formula are also presented. In an appendix a proof/derivation of the MMLS method
and the recursive LDLT updating algorithm are given.

Our main contributions to the chapter are the modification of the MMLS method to
work on regressors like (3.4), the distributed conditional updating rule, the medifi-
cation of the information matrix updating formula (3,13}, and the proof/derivation
of the MMLS algorithm for regressors like (3.4) in Appendix C.

3.2 Recursive Identification

In recursive estimation methods the estimates are modified at each time step to take
the new information into account. The standard method for this is the recursive
Least Squares method with forgetting factor, defined by

6(1) = (t—1)+K(@) (y(t);f(t)é(t—l)) (3.1)

K(t) = Pl)e(t) (3.2)
_ 1 Pt~ p(t)e” ()Pt — 1)

re) = g (re-0- T e ) (33)

In the above algorithm the ‘forgetting factor’ A (¢ < A < I} weights the measure-
ments, such that a measurement received n samples ago has a weighting proportional
to A™.

This is a quadratic method and is known to give very fast convergence. But it is
also associated with some potential implementation difficulties:

1, If the algorithm is to remain capable of tracking sudden parameter changes,
the updating gain K (¢} has to be prevented from becoming too small as the
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parameter estimates improve, Moreover, if good data is arriving and K(%)
becomes small, Equation {3.3) implies that P is near singular and roundoff
error over many updating steps may cause the computed P matrix to become
indefinite and the algorithm to break down [5];

2. On the other hand, when A is less than 1 and little new information on § is
brought in by the observations, Equation (3.3) shows that P may increase as
A~t. This is known as the ‘burst phenomenon® or as ‘estimator wind-up’. If
P becomes large in this way then observation noise, or a sudden increase in
information, may induce large spurious variations in 8 [5];

3. 4 can become severely ‘biased’ towards areas of the input-space most recently
visited. Biasing results in that the estimates converge to a local region in the
input space, thereby forgetting other regions which have been learnt. This
problem is particularly problematic when there is miss-match between plant
and model and can lead to severe problems in a nonlinear setting {16].

4. Usually 8 are parameters of a linear transfer function. The order of the transfer
function has to be chosen beforehand. An order higher than the true plant will
lead to parameter divergence. This is known as over-parameterisation. An
order lower than the true plant will, on the other hand, lead to time-varying
parameters and bad convergence.

Many methods have heen proposed to tackle points 1 and 2. One is to adjust
the forgetting factor A as a function of the quality of the present observation in
combination with detection of parameter changes. Another method is to reset the
P matrixin a periodic way or when a change in dynamics is detected. The numerical
difficulties are normally dealt with a factorisation of P that maintain the symmetric
and positive definite properties. Suitable factorisation are P = UDUT, P == LDLT
and P = @DQT. The updating formula (3.3) is then modified to update the factors
(U,D), (L,D) or {Q,D) separately. When the covariance matrix P is factorised in
one of these ways, it is easy to supervise and regularise the positive definite property
by manipulation on the diagonal matrix, D. The (U,D) updating method is known
as the Bierman method. The (@,D) updating method was given by Hagglund.,

A way to tackle point 3 is to use directional forgetting; only forget in the di-
rection of P parallel to the new information vector; do not forget information of P
orthogonal to the new information vector. Algorithms that utilise this idea have
been given by Kulhavy and Hagglund. A simple alternative to these methods is to
use conditional updating; only update when the present observation contains large
enough new information about 8.

Point 4 have traditionally been dealt with trial and error or by estimating mul-
tiple models with different order through multiple estimation algorithms. Very
recently Niu et el {17} has presented a method that gives estimates of all model
orders up to a maximum model order and the corresponding loss functions. This
to approximately the same computational effort as for estimating one model with
the conventional recursive Least Squares method. One of many nice properties of
this method is that estimates of lower order models are independent of estimates of
higher order models. The user chooses a maximum possible model order. The most
appropriate model order can then be easily decided based on the loss functions.
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3.3 Multiple Model Least Squares

The Multiple Model Least Squares method (MMLS) is a Least Squares method
(LS) that simultaneously estimates models of all orders up to a maximum order.
This is done by a single matrix operation, and is therefore no more computational
expensive than the conventional LS method. The method uses factorisation struc-
tures, which gives it improved numerical performance. The main advantage of the
MMLS method is that it is robust against overparametrisation. Singularity prob-
lems occur in the higher order model estimates first. Lower order model estimates
are independent of these singularities,

The fundamental difference between the MMLS and the LS methods is the
arrangement of the data-vector. The MMLS includes the last output measurement
y(t) in the data vector. Another difference is that the data elements have to be
sorted after time. The reason for this will be explained later.

The augmented data vector is defined ! as

p(t) = [~y(®) w(t —1) gyt —1) .. u(t—n) —ylt —n)" (3.4)

The highest order model (™), then satisfies

0" (2) ( é(fl) ) =0

Which can be rewritten in the usual form

y(t) = ¢ ()i

The idea of the MMLS method is to interpret sub-elements of the data vector (3.4)
as regressor vectors for lower order models. The sub-vector composed of element 3
to 2n + 1 serves as regressor vector for the model of order {n — 1),

( —y(t—1) uft—2) —y(E-2) - ult—n) gy(t—n))(é(nl_l)):(]

A sub-vector of this vector will in the same way serve as regressor vector for a model
of order n—2, This can be continued down to the regressor for the first order model,

(at-a=1) ste=m) st g ) =0

The sub-vectors should be regressor-vectors of meaningful causal lower order models.
This Is the reason for the special structure of (3.4). With a data vector defined as
(3.4), the & th order parameter vector is defined as

BB = (b ar - b oa ). (3.5)
Define the augmented data matrix as
5
o (2
d(t) = , (3.6)
o7 ()
1The MMLS method given by Niu uses the augmented data vector
w(t) = [—y(t —n) u(t —n) .. —y(t —1) ult — 1) —y(t)]".

The regressor-vector (3.4) will lead to a slightly different algorithm. The properties of the methods
are however the same.
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and then the augmented information matrix (AIM) as

S(t) = 2T (1)2(t) = Y w(3)e” (4)- (3.7)

i=1
Now decompose the AIM into a U DUT decomposition
S(t) = U®)DH)UT (¢) (3.8)

where U(t) is a upper triangular matrix with unit diagonal, and D(t} is a diagonal
matrix. Least Squares estimates of models of all orders (up to n) are now found in

1 0 0 - 0 0 0)
1 0 .~ 0 0 0
ég’;) : 1 ... 0 0 O©
Q=Uy T = : 9(”’ » : o Co (3.9)
: oY o1 00
S A R
\ JE N I

The diagonal matrix, D(t), is further equal to the loss functions for the different
estimates,

D(t) = diag ( RSP e B e N 1 B 1 1) ) (3.10)
Proofs/Derivations of these results are given in Appendix C.

The subscript X (k) represents the k th order forward model, and X}f;} represents
the & th order backward medel.

n(t)
y(t) ' (t

ur(t) Ty

Plant

usp(t)

Feedback

Figure 3.1: Forward-Backward models.

The forward models are models of the dynamics from (%) to ¥ (t), i.e. the plant,

BFe-1
V()= A(k)gq i () + (1),

where n(t) is a disturbance (see Figure 3.1). The backward models are models of
the dynamics from ¥ (t) to u(t),

B(L)( —-1)

ult LA Up
(t)= iy ¥ () + (1)
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i.e. the feedback, thereof the name. The reference signal, u,(t), can be viewed as a
disturbance for these backward models,

Over parameterisation or insufficient excitation are serious problems in standard
least squares algorithms like (3.1) - (3.3). The problem has it’s origin in that the
information matrix, S(t), becomes rank deficit in these situations, and is therefore
not invertible. The MMLS method avoids these problems, since inversion of S(t)
never take place. S(f) is first factorised into UDU?, whereafter U7 is inverted.
Since U({t) has unitary diagonal, it is always invertible. The singularities emerge as
zeros in D(t). But D(#) never has to be inverted and is easy to regularise,

3.4 Recursive MMLS

The augmented information matrix is given by

t

5@ = e(i)e” (7). (3.11)

i=1
This can be separated into old and new information as
5(t) = S(t - 1) + p(t)p" (2) (3.12)

where
St —1)= Y oli)e" ()

Usually a forgetting? mechanism is incorporated into (3.12). The MMLS method
gives some extended possibilities for this. It is for example possible to use

S() = AS(E ~ 1) + (1~ NplB)7 (1), (3.13)
which has the good property that S(t) will converge to the mean value of (2)7 (1),
lim S() = B{e{e" 1)} (3.14)

which implies that the loss-functions will, independently of the forgetting factor A,
converge to the mean squared prediction error,

lim 3E(e) = Bl (0}, (3.15)

1 < k& < n. This makes inferpretation of the loss-functions simple, which is very
important in a multiple algorithm setting (see Section 5.2).
Further insight is obtained by writing (3.13) in the form?

(@) = AS(0) + (1 - 2) 3 A Do(5)e” (7). (3.16)

P

2The standard recursive Least Squares method with forgetting factor uses

5(t) = AS(t — 1) + w{t)eT(t).
#Conventional recursive Least Squares with forgetting factor leads to

t
5(8) = AtS(0) + D AC=e(7)pT(4).

F=1
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From Equation (3.16) it can be seen that the initial value of the information ma-
trix, S(0), decays as A'. The information which arrived j steps ago are weighted as

(L —X)N.

Define the augmented covariance matrix (ACM) as the inverse of the augmented
information matrix,

C(t) = 571(t). (3.17)

Now insert (3.8) into (3.17) and we have
city = v Tply! (3.18)
= @)D teT(t) (3.19)

The MMLS estimates, ©, can thus be obtained through a LD LT transformation
of C(t}). The L matrix is then equal to ©. The loss-functions are calculated as the
inverse of D',

The goal is to find a recursive updating formula for the MMLS estimates. A the-
orem called the Matrix Inversion Lemma {MIL) takes us one step in that direction.
The matrix inversion lemma states that

(A+ BCD) ' =A"'  A7'B(C™' + DA™'B) ‘DA™, (3.20)

and is valid when A, C and C~14 DA~!B are nonsingular square matrices (a proof
can be found in [2]). Applying the Matrix Inversion Lemma to eq. (3.13) leads to

Clt) = (AS(E—1)+(1— e B)p(t) ™
= 3 (su-n+er )

1 Ly S 1) 1T (B(t)S(E — 1)t
- K(S“‘” T A et SE - D) te(t) )

1 Clt - D" ()p(t)C(t - 1)
= s|op-n-E2
A 25+ o7 (OC0 - D)
where MIL is used to obtain the third equality.
It now remains to LD LT factorise C(¢). This should be done in a way that takes

advantage of the fact that we already have a LZDLT factorisation of C(t —1). Thus
L{t) and D(t) are computed as

L(t) = F(L(t - 1), Dt - 1), p(e)); (3.22)
D(t) = g(B(t — 1), Dt — 1), 9(2)). (3.23)

A derivation of such an algorithm is given in Appendix D.

(3.21)

3.5 An Extended Conditional Updating Rule

As mentioned in Section 3.2 it is necessary to modily the recursive Least Squares
method to prevent ‘windup’ and ‘forgetting’. A simple way to do this is to use
conditional updating. The idea is to only use data that is informative enough,.

Conditional updating is usually implemented as a hard decision rule. Either the
data @(t) is used or it is not used. The MMLS approach offers some extended
possibilities to soften up the decision. Even though ¢{t) is of no use for the model
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of highest order, é("’) , it might carry information valuable for the lower order esti-
mates, 61 ... §(1}, A way to do this is to look at the one step ahead prediction
error for all models.
Small prediction error can be the result of that

¢ the model is good;

¢ the excitation is poor.

Clearly we have no use of a data vector having small prediction error. The condi-
tional updating rule we propose is to only update estimates to models with squared
prediction error larger than a value ¢

One step ahead prediction error for all models are calculated by a single matrix
multiplication,

eft) = 67(t - 1yt (3.24)
The extended conditional updating rule is then:
Update 0) and J*) if and only if
e®%(1) > ¢, (3.25)
where e*) is the one step ahead prediction error for the k’th order model.
Notice that the data vector can be used for the ¢’th order model estimates even

though it is not used for the j°th order model estimates,
The rule described above can be viewed as a kind of directional updating.

3.6 Initialisation

The MMLS method makes it easy to incorporate prior knowledge of the process
into the initialisation. The standard LS method is usually initialised as

6(0) = 6o
P(0) = -1

where ¢ is a constant and [ is the unity matrix. In the MMLS method we can
initialise the whole covariance matrix as

L{0) B (3.26)
Dy = Jt (3.27)

I}

Jo should be chosen as the expected mean squared prediction error of the @q. A
large value of Jy will give @ big influence on the future estimates (see Equa-
tion 3.16). A small value of Jy will in the same way reduce @¢’s influence on future
estimates,

The enhanced possibilities of initialisation can improve the initial convergence speed,
which could be very useful in a covariance resetting scheme.

3.7 Example: Robustness to Over-Parametrisation
The following simulation example illustrates the robustness properties of the recur-

sive MMLS method.
Assume that the process is described by the linear transfer function,
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u(t) 2¢” 4q72 y(t)
1—g—140.5g-2

MMLS l

e 1

and that we do not have knowledge of the true order of the system, only that
the order is less than or equal to three. Thus we set » to 3. The augmented data
vector has then the form

o(t) = (—yt) wlt—1) —ylt—1) u(t—2) -yit-2) u(t-3) -t 3))"

The input and output are shown in Figure 3.2.

2 . .

®

20 =) =)
time

Figure 3.2: Input and output signals.

The system excitation is insufficient large parts of the time, The recursive MMLS
uses forgetting factor A = 0.95, conditional update value e = 1-10~*, initial models

Bi(g™") _ gt

Ai(g™1)  1-09¢7Y

Ba(g™Y) _ g !

Ax(g~1) T 118971408192

Bi(g™h) g?

Az(g~1) T 1-27¢7142.43¢2-0.72¢7%

and initial loss functions J(0) = 5- 107%. We use sample-time h = ls.
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Figure 3.3: Estimates and corresponding loss functions for first, second and third
order models,

The first order model estimates, shown to the left in Figure 3.3, never con-
verge to any constant values. The loss function is relatively large, indicating that
the estimates are bad. The second order model estimates, shown in the middle of
Figute 3.3, on the other hand converges very fast to the correct values. The loss
function is very small, and converges to a value close to the conditional updating
valie €. The third order model estimates, shown to the right in Figure 3.3, also
converges. The 3rd order loss function is however larger then the 2nd order lossfunc-
tion. This is due to the extended conditional updating rule described in Section 3.5.
Since we don’t gain anything by the third order estimates compared to the second
order estimates, the second order estimates are a reasonable choice. If we want a
model with higher accuracy we have to chose a lower value of e,
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Chapter 4

Nonlinear Modelling and

Control using Local
Model/Controller
Interpolation

4.1 Introduction

In this chapter we will describe a nonlinear modelling and control structure consist-

ing of interpolation of local linear models/controllers to a globally valid model/controller.
The interpolation is done on the basis of ‘scheduling’ on a number of physical vari-
ables which are known fo capture the system nonlinearities. We will first discuss

the idea of interpolation.

The basic ideas of interpolating locally valid models/controllers can be found in
Johansen and Foss 1992, 1993, Johansen 1994, Hunt and Johansen 1897, Murray-
Smith and Johansen 1994 [9, 16, 8, 6, 14].

4.2 The Principle of Interpolation
Consider a system of the form
y = f(x).

First order Taylor series expansion about a set of points, x = x; 1 <4 < N, gives
locally valid approximations,

Fi(x) = F(xi) + VT £l (% — %1),

T . .
where x, x; € R® and V = ( 3%1, 3%2, ey, ag—n ). The linearised models
f,(x) are good approximations of f(x) close to the linearisation points x;. Further
away the local functions f;(x) may give poor approximation of f(x). One way
to improve the global approximation properties is to interpolate the locally valid

models to a globally valid model. The new interpolated model] is then

N
) = ) fx), (4.1)
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where p;(x) is a interpolation function (or validity function) associated with the
local model f,(x)

The interpolation functions should be chosen with care, and be dependent on the
nature of f(x). The interpolation functions should have the properties:

e p;{x) should be close to 1 for all x near x; and tend in a smooth fashion to 0
as the ‘distance’ to x; increase;

s The sum of all validity functions should be equal to 1 for all values of x, i.e.
Ticapi(x)=1 Vx.

The following functions are examples of interpolation functions fulfilling the above
properties:

e linear splines;

e normalised Gaussian functions:

~lexg?
gi{x)=e

oi(x
pi(x) = Nx() :

=10 (x)

e cubic splines.

We illustrate the idea of interpolating local models with an example.

Example 4.1 (Interpolation of Local Models)
Consider the system described by y = 2 — e™®. [Linearisation about the points
z1 = 0.5 and 23 = 1.5 gives the locally valid approximations

Fil=) (2 — e %) + e "5(z — 0.5)
falz) = (2—e M) 4+e 15(e - 1.5).

f(w), ﬁ(m) and fz(z)

3
X

Figure 4.1: Exact model f(z) and two local valid approximations, fI(a;) and fg(:c)

It is seen in Figure 4.1 that the linearised functions are close to f(x) near the
points of Iinearisation, We will now use interpolation between these two locally
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valid linearisations to obtain a good approximation for all #. This interpolation can
be written as

f(2) = pi(@)f1(@) + pa(a) fa(w).

We will employ the following functions for the Interpolation,

linear interpolation normalised Gaussian
_lzm=g)®
g — & e 22
)= ———— z) =
=)= — p(E) = —fmp ey
e 2aq,2 _l_ e 20'22
ﬂ—zz 2
L1 — & e_ 2o52
) - — ) =
p2(z) P p22) = o

e 20,2 +e 2052

1 < -
osl 10.2(":’) P?n.ztm
wr g (=)
onl "oy
ozt
| aql
hN
N
o5F
QA
oal
n2r
o1 =
2 0 02 0:4 LX) (=1 12 1:4 18 1.8

Figure 4.2: Examples of validity functions. Piecewise linear interpolation functions
in the left figure, and normalised Gaussian interpolation functions in the right figure.
The normalised gaussian functions have standard deviations o = 0.4 or o = (L2,

In Figure 4.2 it can be seen that both these basis-functions have the properties
that they are close to 1 near the points of linearisation, and that they decrease
smoothly to zero as the distance to the point of linearisation increases.
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Figure 4.3: Approximation capacities of f(z} and %(m). Solid : f(z)
a:zd %(:n), dotted : f}inear(m) and %(m), dash-dotted ! fgaussu_é(a:) and
gﬁfmﬂﬁ—(m), dashed : fgausgu_,($) and g—‘%ﬁ—(z).

The upper plot in Figure 4.1 shows that the interpolation-function with hard

switching, feausso.(®#), gives the best approximation of f(z) for most values of .
The lower plot in Figure 4.1 shows that % fgausso.. (&) is the worst approximation of

4 (), while =2z and d'fs“d%(m) give relatively small approximation errors
of & (x).
O

From this simple example we can see that the choice of basis-functions for (4.1)
is different depending on the approximation criterion. The criteria to choge the
set of basis functions which has the best capacity of approximating f(z) could be
questioned, A good criteria should take the approximation of - f(%) into account.
See Kalkkuhl ef al [12] for discussion.

4.3 Local Model Networks

Consider a nonlinear dynamical system having the form,

y(t) = f(y(t o 1)1 v ,y(‘t o ?’L), u(f' ﬂ 1): s Au(t - n)) + e(t): (4'2)

where u is input, ¥ is outpub and e is noise. The system (4.2) is known as a NARX
model! (Nonlinear AutoRegressive with eXogenous input). To simplify the notation
we define the information vector % to be

Pt — 1) = [yt —1),...,9{t —n)u(t—1),...,u{t —n)" (4.3)
whereafter (4.2) becomes

y(t) = f$(E — 1)) + e(8). (4.4)

!The system (4.2) can be extended to more general model structures.
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Assume that the main nonlinearities of the process can be captured by an operating
vector ¢ € R™. This is a vector which can often be defined on a lower dimensional
subspace of ¥, ¢ = H(z). We divide this operating space into different regimes,
R; C R™$, 1 < i< N. The regimes are chosen in such a way that the dynamics do
not vary too much within a regime. An operating point,

?rb: = [yf,ls e :y;.?,m uz‘,l‘ T ’u?;n]T’ (45)

is associated with each regime. We now linearise the nonlinear system {4.4) around
these operating points,

H) = FE) + VEF()lp=p; (% — ¥5)
F3) + 67 (¥ — ¥7)
= 6y +d; (4.6)

where 8; = [—@i 1, ; =iy bij1y++ , bin]” and di = f(¥]) — 6T ¥}, The principle
is illustrated in Figure 4.4.

Figure 4.4: Local Model Network structure.

Locally, in the neighbourhood of ¢* = H(?), the system (4.4) behaves like a
linear system with offset,

Aela () = Bila™ ult) + di + o{t) (4.7)

The idea is now to interpolate the local valid models to a model valid in the whole
operating space. This can formally be written as

N
y(t) = > pilt — 1) fi(w(t 1)) (4.8)
i=1
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and is known as a Local Model Network (LMN). The locally valid models in (4.8) do
not have their own local state. Rather they share a common ‘global’ state defined
by the information vector .

When the local models are linear the local model network (4.8) becomes

. N N
y(t) =97t 1) (Z pi($(t — 1))91‘) + (Z pil(t -~ 1))di) telt).  (4.9)

‘The LMN (4.9} can be interpreted as a linear system with operating point dependent
parameters and disturbance (see Figure 4.5),

‘L d(¢)
1
A(q"l n‘#)
'U-(t) — B{q-—l‘a) Y t
e +

Figure 4.5: Block diagram of an LMN. The LMN can be interpreted as a linear
system with operating point dependent parameters and disturbance.

where
-~ N -~
Ag™hd) = Dom@Ade™), (4.10)
N
Blg™9) = D m(d)Bi(a), (4.11)

d(¢)

I}

N
Z i ()ds. (4.12)

This linear structure will be used in the control design in the next section.

4.4 Nonlinear Control based on
Local Model Networks

Assume that the process to be controlled is described by the NARX meodel (4.4).
In most cases we do not have exact knowledge of this nonlinear model. Here, we
will describe two control strategies based on the Local Model Network (4.9).

As mentioned in Section 4.3, the LMN (4.9) can be wieved as a time-varying
linear system with operating point dependent parameters and an operating point
dependent disturbance. This enables us to use standard linear control design meth-
ods, which are well understood. The controller parameters should, however, be
made operating point dependent.

Online Control Design

An obvious solution is to recalculate the controller parameters at each time step.
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At time ¢ the process behaviour is characterised by ¢ = §(t). This means that the
system at time instant ¢ behaves like the linear system

_Blah) 1
- Afgt, ¢) O+ Alg~1,4)

Thus we simply do a linear control design based on this model {see Figure 4.6).

y(t) (). (4.13)

yr(t
_—L(—)“‘"‘c' Linear u(t) Nonlinear y(2)
u(t) Controller Plant
u(t) u(t)
- i
. #(t)
Ala™, 4(1)
Real time B(g!, ‘3(5) Local Model Network
Control Design = d(&(t)) Model Bank
]

Figure 4.6: Online Control Design

This online control design strategy gives complete operating point based design.
Model uncertainty and disturbances in specific operating points can thus be taken
into account. We can give the system different rise times in different operating
points. The transparent structure makes it easy to tune the controller online,
Online design has to be augmented with safeguards to make sure that the control
design algorithm does not break down., There has to be a mechanism to find and
cancel common factors. Since the control design can take some time, it is in many
cases reasonable to first compute the control action, uft), based on the controller
parameters at the previous time instant 8% (¢ — 1), and then compute the new con-
troller parameters 8 (¢).

The online control design approach is favourable in an adaptive/selftuning setting.
Here, recalculation of the controller parameters are necessary anyway.

Loeal Controller Network
An alternative to real time control design is to interpolate locally valid controllers.
For each of the locally valid models in the LMN (4.9}, 1 < i < N, a controller 8

is designed. These locally valid controllers are then interpolated to a globally valid
controller,

8% = pi($)67, (4.14)

where ¢ is the same operating point vector as in the LMN (see Figure 4.7).
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Figure 4.7: Local Controller Network.

The local controller network 1s an approximation of the online control design
strategy. This is clear since control design, C(-), is a nonlinear operation,

[»5] '0(31)+£¥2 'G(Gz) #C(al-ﬂl—i—ag-ﬂg). (4.15)

The tesulting system is by construction stable close to points of linearisation. Stan-
dard tocls, such as Bode and Nyquist plots, can be used to analyse stability ,per-
formance and robustness properties for each fixed operating points. If should be
noticed that stability of the local controllers not necessarily leads to stablity in
between two regimes. Analysis and guidelines for the discrete-time local controller
networks are presented in [6]. Often the global stability properties have to be veri-
fied through extensive simulations.

Local controller networks have strong links to gain scheduling control. It can be
viewed as a systematic method for the scheduling procedure. One difference to gain
scheduling is that the linearisation points do not necessarily need to be at equilib-
rium peints in the LCN formulation.
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Chapter 5

Recursive Identification of
Local Model Networks

5.1 Introduction

In this chapter we combine the MMLS algorithm with local model networks and
switching between local model networks with different properties, The MMLS al-
gorithm identifies the locally valid models in the local model networks. Different
ordered local model networks are thus produced simultanously. To cope with time
variations in the process and to automatically get correct ordered models in all
operating points, we switch between fixed and adaptive local model networks with
different properties based on online model validation.

The author’s main contribution to this chapter are the ideas to use the MMLS in
the local model networks setting, and to switch between fixed and adaptive local
model networks based on online model validation. The regressor filter difficulty,
pointed out in section 5.4, is also due to the auther.

5.2 Recursive Identification of multi-order Local
Model Networks

Our goal is to identify the nonlinear dynamical system

() = f(9( - 1)) + e?) (5.1)

in real time (see Section 4.3 for definitions). The function could also vary with time.
In Chapter 4 we showed that the NARX system (5.1) can be modelled by a Local
Model Network (4.9). We will now extend the Local Model Network approach to
provide online tuning of the locally valid models in the local model networks.

Again we assume that the process behaviour at time ¢ is characterised by an oper-
ating vector ¢ = &(t) € R™#. We divide this operating space into different regimes,
R; C R™, 1 <4< N. The regimes are chosen in such a way that the dynamics is
approximately the same within a regime. In each of these regimes we now employ
a tecursive Multiple Model Least Squares algorithm (rMMILS). Thus we identify
locally valid multi-order models @;, 1 < i < N, where © is defined by Equation 3.9.
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a7

Figure 5.1: Regime based recursive Multiple Mode! Least Squares. One recursive
MMLS algorithm is employed in each regime.

The locally valid multi-order models are then interpolated to a globally valid
multi-order model, ®, through

N
0= n(d)o: (52)
i=1

Equation (5.2} can be interpreted as multi-order Local Model Networks. We have
one LMN of each order,

N

00 = 3 a(@i (5.3)
=1
‘ N

i = 3 (™. (5:4)
i=1

This can be very useful, since the plant model order could be different in and in-
between different regimes. With the multiple order structure there is always one
LMN with the correct model order. The LMN with the correct model order could
be chosen by online model validation (see Section 5.3).

The MMLS method has the nice property that it simultaneously gives loss-functions
associated with the models. Thus, we can directly see how good the Local Model
Networks are in specific operating points. If the loss-functions are large in a specific
operabing regime, we can directly carry out more experiments here.

When so many identifiers are working at the same time, it is clearly of greatest
importance to have robust estimation algerithms. We have to deal with all prob-
lems associated with linear estimation, plus some new difficulties associated with
the nonlinear nature of the plant.
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The local tMMLS algorithms can use different forgetting factors, conditional updat-
ing values and initial parameters in different regimes. This allows specific operating
conditions in a regime to be faken into accont. The small modification of the infor-
mation matrix updating formula, described in Section 3.4, can be of great practical
use in these sttuations. With this modification the loss-functions will be equal to
the mean squared prediction error regardless of the forgetting factor A, This makes
the system very flexible and the lossfunctions easy to interprete.

Notice that only one of the multi-order models is identified at a time. It means
that no more computational effort is needed than for a single recursive MMILS
algorithm.

5.3 Switch Between Fixed and Adaptive Local Model
Networks

The purpose of the adaptive local model networks strategy is to control a timevary-
ing nonlinear plant. Many difficult situations can occour in such an environment,
which have to be taken into accout for successful application.

¢ The plant complexity can be different in different operating points. For ex-
ample, the model order can be different in different operating points.

The adaptive local model networks strategy adresses this problem by estimating
Iocal model networks of multiple orders. Provided we chose the maximum model
order high enough, there is always one local model network with correct order in
the entire operating space.

e The recursively estimated local model networks have, however, the drawback
that it can take some time to tune up the entire network estimates. This can
be a problem when there is a rapid change in the plant dynamics.

The locally valid model estimates can adapt fast to these changes. They are not
penalised by neighbouring models that are poorly tuned.

The idea we have investigated is to build up a bank of local model networks with
different orders and properties, and switch between these local model networks on
the basis of on-line model validation. See Figure 5.2,

uft) Nonlinear y(t)
Plant
u(t) y(t)
Online Mgdel Validation
9 e mm - Switeh

Local M%de Network
a

Figure 5.2: Switching Structure. Choose the lowest order model that is good
enough. I no model is good enough, choose the ‘best’ one. n is the maximum
model order.

To cope with different situations we have used the following types of models:
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1. Ormn @ local model network estimates of order 1 to n;
2. OLocal : local estimates of order 1 to n from the present regime of operation;

3. Opiy : fixed local model networks of order 1 to n.

These different types of models complement each other. Orymy will become the best
model when the system has tuned up. Opqca1 can respond quickly to changed plant
dynamics. Opi; is a backup to provide security. The system will never be worse
than for a fixed local model network.

There are a many possible switching rules that could be used. The criteria
should, however, be such that switching only takes place when necessary. Many
models will be good when the system is poorly excited. This motivates the follow-
ing switching rule:

Choose the model with lowest degree that is good enough.
If no model 15 good enough, choose the ‘best’ one.

An Akaike information criterion test {AIC) can, for example, be used as a cri-
teria. The AIC-test has the form [11, 13]

2
AICH(p) = log(6>(6")) + =7 (5.5)
where p is model order, M is the measurement-memory length and 52 is the variance

for that estimate. The estimated variance, %, can be calculated as:

¢

A(p)? 1 5 .
i = g DL 00 (5.6)
=t —M
(n)? 1 : » .
S = 35 2. SOa(®) (5.7)
i=t-M
AL H : ~(p) ;-
68, = o5 D S6E6) (5.8)
i=t— Al

where ¢; is the prediction error for the ©’th order model. All models have associated
loss functions in all regimes (see Figure 5.3).

Regime (r + 1)

Youn Eig
VJmce.l |2
Vrie(t)

Figure 5.3: Separate lossfunctions in different regimes. Vx = [V)((n) . -V_-,(fl)]. X
denotes LMN/Local/Fix model,
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The model’s performances in a specific regime are remembered from the last
time the system were operating in that regime.

5.4 A Local Model Network Estimation Difficulty

Some minor modifications of the estimation algorithm are needed to make the re-
cursive estimation of local model networks work well in a nonlinear setting. The
problem is best illustrated with an example.

Assume that the plant is described by

y(t) = arctan(y(t — 1))+ u(t — 1)

The plant can locally be viewed as a linear system with an operating point dependent
pole.
We divide the system into three different regimes, according to

Ry = {-o0o<yt-1)<-0.86}
R, {-0.86 < y(t - 1) < 0.86}
Ry = {0.86<y(t—1)< oo}

See Figure b.4.

(t)

Sa = i y{t'i 1) il = =

Figure 5.4: NARX model and locally valid linearisations.

In each regime we attempt to estime a locally valid linear approximation of the
systemn, It is then desired that all elements in the local regressors are generated in
that specific regime. Otherwise, the estimator will be confused because some of the
elements in the regressor are generated from a system with different parameters. A
way to tackle the problem is to:
suspend the parameter updating uniil the system has been in the same regime for at
least the order of the model time-sieps,

This is easily implemented by keeping track of the regime of operation over time.

5.5 Regressor Filter

It is common practice to filter the data before they are used for parameter estima-
tion [1].
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The purpose of the regressor filters is to reduce the relative influence of noise and
unmodelled dynamics in the estimation. For control applications it is not necessary
to have perfect knowledge of the process. It is usually enough to have an accurate
model for frequencies around the crossover frequency.

Assume that the process can be described by

y(t) = Glg)ult) + v(t) (5.9)

where u(t) is a disturbance, typically with low and high frequency components.
This will cause difficulties in the parameter estimation; the Least Squares method
works best when the disturbance is white noise. Thus the filter H; should be of
bandpass type. Application of the filter Hy to Eq. (5.9) gives

vy (8} = Gla)up(t) + v2(2) (5.10)

where y;(t) = Hy(g)y(t), us(t) = Hy(q)u(t) and v, (t) = Hy{q)o(?).

The filter will however also have the negative effect that it will spread out the
meagsurement over a longer timeperiod, and therfore make it more difficult to decide
in which regime a measurement is generated; a filter is a weighted sum of the
past measurements. To aveid interactions between regimes it is then necessary to
wait until the transients of the filter have decayed before the data can be used for
estimation. Of course it is desirable to make this time as short as possible.
FIR-filter (Finite Impulse Response filter)

An FIR-filter is a filter of the type

ug(t) = bou(t) + bruf(t — 1) + -+ - + bpu(t — n) (5.11)

The filtered signal is computed as a weighted sum of the n last measurements w(t).
It means that we know that a measurement n -+ 1 time-units ago will not have
any influence on the filtered signal. A possible scheme is thus to suspend the the
parameter updating n + 1 steps after a regime shift. If, however, a filter with high
attenuation is needed, the filter length has to he very long and much data will be
thrown away.

IIR-filter ( Infinite Impulse Response filter)

A TIR-filter has the form

_ Bla)
up(t) = Ale) u(t) (5.12)
With this filter constellation it is possible to obtain high attenuation with moderate
filter length. But since the filtered signal in a recursive way is function of all past
measurement, it might take long time before the influence of a measurement has
decayed. One possibility is to reset the filter when a change of regime is done, and
wait until the filter transients have decayed before using the data for estimation.

37



Estimate Offset

An alternative to filtering is to have a model of the disturbance or parts of it in the
estimation model. Since we know that the major part of the disturbance v(t) is of
low frequency, it could be favourable to have a model of the offset in the regressor.
This is easily obtained by extending the regressor vector with a ‘1’,

y(t) = pl8+d= ( pr 1 ) ( Z ) =@l 8,. (5.13)

‘This removes the necessity for the filter to attenuate the low frequencies. The filter
is then reduced (if necessary at all) to a lower order low-pass filter {o attenuate the
high frequency components of »(t).

The offset d could be used in a feed-forward manner to compensate for the offset
disturbance. But since the estimate could be inaccurate it might be betier to use a
controller with integral action.

5.6 Simulation Example: Recursive Identification
of a NARX System

Assume that the process is described by the first order NARX model,
y(t) = arctan(y(t — 1)) +u(t - 1).

which locally can be viewed as a linear system with an operating point dependent
pole (see Figure 5.4). We chose to schedule on the variable y(t — 1), using the
validity function set shown in figure 5.5.

. 2i(d)

o.05 | B
o.e |- B
o.es |- —
eal 4
o7s| N
o7 |- B
o.es |- B
2 N

o565~ -

o.5
= 1 = %

¥(t=1)

Figure 5.5: Validity function set,

The input and resulting output are plotted below.

u() . ‘ \ ) y(t)
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a5

15 —

S S ) tims [o]

Figure 5.6: Input and output signals.
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The first 200 seconds the input is a step signal with random amplitude. The last
100 seconds the input is a ramp-signal. Recursive MMLS algorithms are used to
estimate locally valid first order ARX models with offsets. The locally valid models
are initiated as:

E‘( q—l) R q—i
= $HY+d(t) = ————
A(q_l)u( )+ ( ) 1— 0.9q*1

The loss-functions are initiated to J(0) = 1-107% The MMLS algorithms uses for-
getting factor A = 0.95, conditional update value e = 1. 10-* and 1 step suspended
updating after regime-shift.

y(t) = u(t) 4 0.

The true and estimated plant parameters are shown in Figure 5.7 and Figure 5.8.
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Figure 5.7: True and estimated plant parameters versus time. The upper plots
shows the true plant parameters, a; to the left and b, to the right. The lower plots
shows the parameter estimates &; to the left and ; to the right.

After some learning time, it can be seen that the estimates can follow the very
fast changes of the parameters, This would have been very difficult to achieve with
a single estimator. The estimates could have been improved even more with a
better validity function set. The validity functions used here are slightly too steep.
Another way to improve the estimates is to increase the number of models,
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Figure 5.8: True plant offset and corresponding estimate versus time. The upper
left figure shows the true offset from the plant. The lower left figure shows the
cstimate. The lower right figure shows the loss function.

The offset estimate is also very good most of the time. It follows the very
fast changes of the plant offset. If we had not had the offset in the estimation
model, this offset would have acted on the system as a disturbance, spanning the
whole frequency range. Thus, offsel estimation is a good idea. The loss function is
shown in the right figure. The loss function is initialised to a low value. The large
fluctnations with respect to time are due to that the plant is operating in different
regimes at different times. From the loss function we can actually see how good
the estimates are as a function of operating point. The loss function is equal to the
mean squared prediction error (see Section 3.4).
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Chapter 6

Adaptive Local Model
Networks Strategy for
Nonlinear Control

6.1 Introduction

Many real systems are difficult and time consuming to model in advance. The pro-
cess is often influenced by external actions. An adaptive system can be very useful
in these situations., An adaptive system is a system that can adapt its behavior
to changes in the environment. Here we will present a so-called indirect adaptive
control system or self-tuning control system. It is called indirect because a model is
first estimated, whereafter a controller is designed based on the identified model [1].

Selftuning Local Model Networks

In Section 4.3 we showed that many nonlinear processes can be modeled with Local
Model Networks (LMN). It can, however, be very time consuming to estimate this
LMN in advance. Often it is difficult to collect enough good data which exploit all
process dynamics in different operating points. We are convinced that Adaptive Lo-
cal Model Networks can be of great practical use in these situations. An Adaptive
Local Model Network is an Adaptive Multi-model Control strategy where a Local
Model Network is estimated in real-time, and a confroller is designed online based
on the Local Model Network. Since all modeling and control design are done online
we can directly see the resulting control performance in different operating points.
If the performance is bad in some operating points we can directly do more experi-
ments here. When we are satisfied with the control performance we can turn off the
identification. A fixed Local Controller Network can then be used to approximate
the controller parameters.

Adaptive Local Model Networks Control Strategy

Many processes are not only nonlinear but also time-varying. The process might
be influenced by the surrounding environment. An Adaptive Local Model Network
combined with switching could be used even in this case. The idea is to build
up a bank of fixed and estimated local model networks, and switch between these
networks based on online model validation.
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6.2 An Adaptive Local Model Networks Strategy
For Nonlinear Control

The full Adaptive Local Model Network Strategy is a combination of recursive
multiple model identification, Local Model Networks, switching and online controller
design. Full treatments of these issues are given in Chapters 2-5. Here, a short
summary is given:

The operating space is divided into disjoint regimes. In each regime a recursive
Multiple Model Least Squares method is employed to identify locally valid linear
models of all orders up to a maximum order n. Only the multiple model that is in
the present regime of operation is updated. The locally valid multiple-order models
are now interpolated to globally valid models of multiple order, valid around the
present point of operation. Online validation can be used to determine the ‘best’
of these models. Candidates for the ‘best’ model are not only the interpolated
multiple order models but also the estimated and initial multiple-order models in
the present regime of operation. An Akaike Information Criterion test (AIC) or
Minimum Description Length test (MDL) gives the model-type and model order
that fit the system ‘best’. A lower order model is chosen if it is good enough, even
though there are better models of higher orders. The ‘winning’ model is now the
basis for online controller design. Model reduction simplifies the model, if necessary,
before control design takes place to give the closed-loop system the desired behavior.

t
‘yr—(}° Linear u(t) Nonlinear y(t)
4(t) Controller Plant
-
8¢ (1) H
#(t)
A(g™1,1) : I
: Real time Identification
. -1 Model Bank
Online | Bla™,8) Inter;olaiion
Control Design cf(t) Switching
i L ————

Figure 6.1: Adaptive Local Model Networks Strategy For Nonlinear Control.

The Adaptive Local Model Networks Strategy is a kind of Multiple Model Adap-
tive Control strategy (MMAC). The main difference between our approach and
other MMAC strategies is that we are interpolating the model estimates and design
one controller based on the interpolated model instead of designing multiple con-
trollers and interpolate the controllers. Another difference is that we only identify
one model at a time. The Adaptive Local Model Network Strategy does not need
much more computation effort than a conventional indirect adaptive control. More
memory is however needed.
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6.3 Simulation Example

In this simulation example we will compare the adaptive local model networks
strategy with conventional adaptive control, and show that it can give significantly
improved control performance of highly nonlinear processes.

Assume that the plant is described by
y(t) = 2tanh(y(t — 1)) + 3u(t — 1) (6.1)

which is & unstable, highly nonlinear process. See Figure 6.2.

y() = Flu(t—1)u(t—1)) w(t—1)=0

o5 Bl 9.5

= —1.6 —1 —8

y(tZ1)

Figure 6.2: Plant dynamics.

Local linearisation of the nonlinear system (6.1) gives that the pole is close to
2 for y(t — 1) near zero and goes to § for |y(t — 1)| — oo. We identify first order
linear ARX models with offsets,
big”?

Y() = T ult) +d (6.2)

The identification algorithms are initialized with parameters b1(0) = 1, 41(0) =
~0.9, d{0) = 0 and J{0) = 1-107%, and usc a forgetting factor equal to A =
0.05. We use online designed two-degrees-of-freedom controllers of second order
(see section 2.2). The model reduction algorithm, described in section 2.4, is used
to cancel common factors. The controller is implemented with integral action and
Nyquist cut-off (see Section 2.7). For simplicity, the controller is specified fo give a
closed loop system with rise-time £ = 10s. We use an observer rise-time £°%* = 3s.
The damping factor is equal to 1 in both cases. The controller is implemented
with anti-windup. The online model validation (see Section 5.3) use 5 sample times
memory AIC test. No disturbances are used in the simulations.
The simulations are performed in Matlab/Simulink (See Figure 6.3).

43



h 4

Mo
. e 4
S wel) P! i Mot
enerzl ) e
; i OnfreDesgesd Y *@ RO Pl NARK
Signat Gen. RST ControZer  Ritiz,) pmsesmimsemmnnds ] E{ 12,1 poesae

ANz with Ant-Windp s (i AR
Bilizi) il mnl},E ]

18t THiz)

=

\?V’¢\

¢ ¥ Y
& regimes LS

MELS

|
5 phl fetffem| bl (1)

Wl
5 step memesy
4 @ v > E c o

"lf
W—E ,
’.L”g o m 7 I

Figure 6.3: Simulink simulation environment,

44



Conventional Adaptive Control!

First, we will attempt to control the plant with coenventional adaptive control,
The output and control signal are shown in Figure 6.4.
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Figure 6.4: Output and control signal.

It can be seen that conventional adaptive control has big difficulties to control
the nonlinear and unstable system (6.1). The output has large overshoots when the
reference step is large. This is because the plant dynamics are extremely different
in different operating points. The model esiimates has no chance to follow these
fast changes. The steady state error is, however, zero.

Y Real-timeidentification of one linear model, and online controller design based on the identified
model,
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Figure 6.5: True plant parameters, a1(t), bi(), and corresponding estimates, &;(2)
and ,(t) (Conventional adaptive control).

It can be seen in Figure 6.3 that the estimates have serious difficulties in following
the very fast changes in true parameters. We have not used any noise in this
simulation. The noise would have detoriated the parameter tracking capability
even more, and by that the control performance.
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Adaptive Local Model Networks Strategy

We will now control the same system with the Adapiive Local Model Networks

Strategy.
We divide the dynamics into 25 disjoint regimes according to

Ry = {-3<yt—1)<-2.75}

[}

By {—3+0.25(k— 1) < y{t ~ 1) < -3 +0.25k}

Ry = {2.75<y(t—-1)<3}

In all these regimes we identify models of structure (7.1}, The identification algo-
rithms are modified to suspend parameter updating until the plant has been in a
specific regime for 2 time-steps (see Section 5.4). The output and control signals
are shown in Figure 6.8.
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Figure 6.6: Output and control signal (Adaptive Local Model Networks Strategy).

In the beginning of the experiment, the output fluctuations are huge. This is
due to many parameters to tune up and badly initialized model estimates, After
some time the output follows the reference nearly perfect in the whole operating
range. Compared to conventional adaptive control in Figure 6.4, this is a signifi-
cant improvement. The performance can be expected to improve even more when
all model estimates have tuned up.

The reason for this great control performance is that the model in a specific op-

47



erating point is remembered from the last visit in that regime. The conventional
adaptive controller forgets this information,
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Figure 6.7: True plant parameter, a;{t), b1(£), and corresponding estimates, &,(t)
and b;(t) (Adaptive local model networks strategy).

In Figure 6.7 it can be seen that it takes some time to achieve good estimates in
all regimes, But after this learning time, the estimates are able to follow the very
fast parameter changes. Compared to the conventional adaptive control estimates,
shown in Figure 6.3, this is a great improvement,
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Figure 6.8: Regime of operation and used model type versus time. local model
networks : 1, local models : 2, fixed models : 3.

The regime of operation and used model type are plotted in Figure 6.8. The
regime of operation plot shows which set of models are updated at different times.
Tt can be seen that some regimes have very few samples, and that some regimes have
no samples at all. The model type plot shows that the switching frequency is very
high at the beginning. The fixed and local sets of models are used most of the time,.
After some time, when the entire networks have tuned up, the estimated local model
networks are used more and more. The different types of models are complementing
each other. The fixed models are securities, used when the estimated models are
bad. The local model estimates can adapt fast to changed process dynamics and give
acceptable initial performance. The local model networks estimates gives excellent
control performance when all parameters have tuned up.
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Chapter 7

Adaptive Vehicle Speed
Control Simulations

7.1 Introduction

Antomatic inter-vehicle distance control systems are currently of great strategic im-
portance in the automotive industry. The specific problem tackled here is the speed
control problem, since a distance controller can be built upon a high-precision speed
control loop. The vehicle dynamics is nonlinear and time-varying; the dynamics is
dependent on the vehicle mass, road incline, rolling resistance, and wind resistance.
It might be necessary to adapt the controller to some of these effects to achieve
good enough control performance. In this section we have investigated the use of
the Adaptive Local Model Networks Controller Strategy for this, The vehicle model
used in the simulations were identified using measured data from an experimental
vehicle, Fritz 1995, Katkkuhl et ol 1997, Hunt et ol 1695 [4, 12, 7].

7.2 Vehicle Dynamics

A vehicle consists of a number of complex subsystems. The system can however be
greatly simplified for the purpose of longitudinal vehicle control.

The system inputs are the throttle position and the brake pressure’. The engine
produces a torque which is dependent upon the throttle angle and engine speed; this
relationship is described by the engine characteristics and is nonlinear. The vehicle
nonlinearities can to a large extent be characterized by a number of measurable
quantities :

1

1. vehicle speed
2. throttle angle
3. gear

This will be used to construct reasonable mode!l structures for the local model
networks,

1Tn the work described here, the brakes are not used. However, since the throttle and brakes
are not simultaneously applied, the throttle-brake combination can be considered as a split-range
input signal, The methods described here are therefore immediately applicable when braking is
included in the control problem.
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7.3  Vehicle Model

The vehicle model used in the simulations were identified using measured data from
an experimental vehicle. The model (denoted as M42) is a local model network, A
model of the antomatic gearbox is also available for the simulations.

The sample time used for system identification and simulation was 480ms.

7.4 Performance Specifications

The vehicle control specification is a trade-off between fast speed tracking response
and passenger comfort, A summary is given here:

1. The closed loop system should give suitably fast disturbance rejection.

2. The design should he insensitive to un-modeled dynamics and measurement
inaccuracies.

3. The closed loop system should have a pre-specified command response.

4. The closed-loop properties should be consistent over a wide operational enve-
lope despite the system nonlinearities.

7.5 Adaptive Vehicle Speed Control Simulations

One recursive MMLS identification algorithm is employed in each regime to identify
first order linear ARX models with offsets,
big~t

M= T

(t)-+d (7.1)

The MMLS algorithms uses forgetting factor A = 0.99, conditienal updating value
-1

€ = 11079, initial loss-function J(0) = 1.107, initial model y(t} = Tohas Tu(t) +0.
We use online designed two-degrees-of-freedom controllers of second order (see sec-
tion 2.2). The model reduction algorithm, described in section 2.4, is used to cancel
common factors. The controller is implemented with integral action and Nyquist
cut-off (see Section 2.7), For simplicity, the controller is specified to give a closed
loop system with rise-time? ¢7 = 10s. We use an observer rise-time £°** = 3s. The
damping factor is equal to 1 in both cases. The controller is implemented with
anti-windup. The online model validation (see Section 5.3} use a 5 sample times
memory AIC test. No disturbances are used in the simulations. The simulation

environment is shown in Figure 7.1.

2The specification should be faster for low gears.
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Figure 7.1: Simulink simulation environment.
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One Model/Gear

Our first experiment is to only schedule on gear, g(t} = gear.

Ry = {g(t) = 1}

Ry = {g(t) = 2}
Ry = {g(t) =3}
Ry = {g(t) =4}

Speed and parameter tracking response to reference-speed profiles are shown in
Figures 7.2-7.10. In Figure 7.2-7.3 the initial performances are plotted. Figure 7.4-
7.5 shows the tracking performance when the networks have tuned up. In Figure 7.6-
7.9, we have zoomed in the characteristic behaviors for tuned networks. Figure 7.10
shows the response to a large reference-speed step.
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Figure 7.10: Large step speed tracking response; wanted response : doited; simu-
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In spite structural model errors (see Figure 7.5), the speed tracking response is
close to the specified most of the time, i.e. 10s rise-time and no overshot or static
errors. Some minor irregularities, due to parameter variations within the regimes
or gear shifts, can be seen in the plots. The 10s rise-time is a bit to fast for the
4'th gear, while a faster response could be used for the lower gears. When using a
faster specification, the structural miss-matches become more obvious.
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Nine Models/Gear

In the previous section, we saw the one model/gear was not enough if we want
fast, high performance control. We will here investigate the use of nine models/gear,

B throttle
where we schedule on throttle and speed according to Figure 7.11, ¢ = speed .
gear

All together we have 36 regimes.

'l‘ “\\\\llll

scheduling variable z2 scheduling variable z1
Figure 7.11: Validity functions. Scheduling variable 2; is throttle, and 2 is speed.

Speed and parameter tracking response to reference-speed profiles are shown in
Figures 7.12-7.20. In Figure 7.12-7.13 the initial performances are plotted. Fig-
ure 7.14-7.15 shows the tracking performance when the networks have tuned up. In
Figure 7.16-7.19, we have zoomed in the characteristic behaviors for tuned networks.
Figure 7.20 shows the response to a large reference-speed step.
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Figure 7.17: Speed tracking test 2. wanted response :
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It can be seen that it takes some time to tune up all models. After this initial
learning time, the speed-tracking rise-time is approximately the same in the entire
space of operation. A comparison of Figure 7,15 with Figure 7.5 shows that the
parameter-estimates are much closer to true parameters in the nine models/gear
setting than in the one model/gear setting. Control with the nine models/gear
overcomes many of the irregularities in the one-model/gear control response. The
response is smooth and nearly exactly the same as the specified response in all
operating points. The model mismatches are, as expected, much less here than in
the one model/gear case (compare Figure 7.5 with Figure 7.15). But since the local
model networks are build np by more local models now, it takes longer time to tune
up the nine models/gear networks.

7.6 Conclusions

We have investigated the use of the adaptive local model networks strategy to
the high performance vehicle speed control problem. The purpose of the adaptive
strategy is to adapt the controller to changed dynamics (change of vehicle mass,
uphill/downhill, wind-resistance or road incline). The one model per gear networks
gives acceptable response when the controller specification is not too fast. If faster
speed tracking responses are wanted, more models are needed. Nine models per gear,
scheduled by speed and throttle position, gives significantly improved response for
fast tracking specifications. The irregularities in the one model per gear response
are reduced in the nine models per gear response. It takes, however, much longer
time to tune up all models in the nine models per gear networks than in the one
model per gear nelworks. Hence, we should use the minimum amount of models
that gives the system an acceptable response at a specified speed tracking response.
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Regimes with few data samples could use fixed models exclusively; no adaptive
models.
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Appendix A

Proof/Derivation of a Model
Reduction Algorithm based
on the Sylvester Matrix

The basic idea of the algorithm is to convert the problem into a standard system
of linear equations, and then investigate the column space of the corresponding
matrices. The following ideas from linear algebra are useful.

Definition A.1 (Column Space)

The Column space {alt. span or vector-space) of A is defined by

R(A) %gf{yeij : y= Ag forsome w¢c R"}

R(A) is the space that can be reached by any combination of the columns in A
a

Definition A.2 (dimension of column-space)
The dimension of the column space of A is written as
dim{R({A)})

0O

Definition A.3 (full rank)
A matrix A € R™*" m > n, is said to have full rank if and only if dim{R(A)) = n
O

Consider the multiplication of two polynomials A(¢~'} and X{g~!}, where X (g~1)
is monic,

Alg X ") (A.1)
This product can be written as
Alg™) +o T Alg e+ Al e+ -+ g Alg e (A.2)

or with matrix notation

1
Eisl

(A(e™) oA™Y ¢TAlTY) o A ))T| (A-3)

Zn

6b



Now think about the polynomials as vectors, where the power of ¢~ determines
the position in the vector.

Suppose the polynomials A and B are given by A(g™!) = 14+ a1 + -+
ang” ", Blg7') =0+ b1g7  + -+ bpg ™. We are inferested in which modes that
can be reached by multiplying these polynomials with two other polynomials X
and Y, given by X(¢) = 1+ 217+ -+ zog ™ and Y{g7') = yo + 197" +

coo 4 Yno1q7 (1, These polynomial-multiplications can be written as matrix-
multiplications with matrices
10 o 0 00 ¢ ?
a1 - 0 0 q~?
Gn-2 Gn_z -+ 1 ) g (-1
- Gp_1 Op_2 *** 1 i g "
A= Zn G:m1 @z @ g~ () (A.4)
0 e, -+ a3 a g~ (n+2)
0 0 Gn Qn_1 g (@n-1)
0 0 0 ap / g"
and
[ b 0 ¢ 0 g
T 0 77
b1 bz - b 0 g~ (1)
bn bn—l b by q—n
B= 0 b, o by by q_(n+1) (AE)
0 0 e b4 ba qﬂ{““}“z)
0 0 e 0 by q—-(Zn—l)
\ 0 6 - 0 0/ g~

The rows in the matrices correspond to a specific polynomial power in the product.
The first and the last row for example corresponds to g~! respectively ¢ 2", The
last Tow in B is all zeros since the highest power in B{g~1)¥ (¢~ ') is g~(*»~1) and
not g 2", The matrix-ranks are in both cases equal to n (if B(¢™') # 0). That is
the there are n independent columns in the matrices, R(A) = A and R(B) = B.
But what is dim{R(A){JR(B)) 7 This corresponds to the reachable space when
the columns of both A and B are used.

A common factor between the polynomials is equivalent to a commeon column
space in R(A) and R{B). A common space gives only rise to one column in
R(A)(JR(B). Thus we have the following:

Theorem A.1 {Dimension of Joint Space)
Twe polynomial of order n given by

Alg™) = 1+ag™ +-+ang™"
B(g7') = O0+big 4 +bag™

1 The polynomials are here given in backward decomposition to be compatible with the control
design, It could equally well be given in forward decomposition. The operator is just seen as an
indeterminate.
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having a common factor of order k,
K@y =1+kig "+ + g ¥,
have dimension of joint space equal to

dim(R(A)|JR(B)) = 2n— k.

Proof.
téim('R(A) UR(B)) = dim{(R(A)) +dim(R(B)) — dim(R(A)NRB)=n+n—k

Our goal is to find the common column space, K. We know that this is a part
of

R(A)JR(B)

The problem is ‘just’ to sort it out.
The following theorem gives a way this can be done,

Theorem A.2 (Space-Invariant to Matrix Multiplication to the right)
Right-multiplication of a full rank matrix does not change the column space. That
is

R(AB) =R(A)
where B has full rank.

Proof.
Matrix multiplication to the right is equivalent to a change of basis. Since the right

matrix has full rank, all columns present in A must also be present in AB.
0

From Theorem A.1 and A.2 we know that the union of A and B has space di-
mension 2n — k and that a matrix multiplication to the right does not change the
column space. As mentioned before, the goal is to find the common space. We will
present a way to do this by basis transformations. We want to find a basis where
the column space is obvious. That is, to find a full rank matrix that transforms the
space to a basis where the k rightmost columns are equal to zero. The following
theorem solves this problem.

Theorem A.3 (Factorisation)
The matrix

( 1 0 0 0 by 0 0 0 \
ay 1 0 0 by b 0 0
Gp..2 Qp-3 **° 1 0 bn,——l n-2 °'° bl 0
| en—1 @a-z - @y 1 by bpo1 o b2 B _{ Ln
[ A B ] - (2% dp_1 =*** G2 a1 0 bn e b3 b2 -
0 gy ‘+* Gz 4dp 0 0 by b3
0 0 Qp  Gp_1 0 8 0 by
0 0 0 an 0 ) 0 0
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can be factorised as

Liyy Lgz Y Ly O I Li}Lis (A.7)
Rot Rye - Rot T 0 LTP )
where L, U and P comes from a LU-factorisation of (Rgz — Rg;Llﬁllle)T. uT

have rank equal to r — n — k, where n is the dimension of the matrix and k the
dimension of the common space. U7 is given by

[ w0 e 0 0 |0 - 0
2,1 Uzz 8 0 0O --- 0
Uy Up_ Cre Up_qg_ ] 0o --- 0
UT — r—1,1 T—1,2 r—1,r—1 (A.S)
Ur1 Ur,2 M X | urr |0 0
Urtr,t Urp1,2 "7 Urpir—1 Wrpeir o0 ..« 0
\ Un,1 Un,2 T Up,r—1 iy, r 0 - 0

Proof,
We will prove this in two steps.

1. Find a full rank coordinate-transformation that makes the upper-right sub-
matrix zero while maintaining the left submatrices.

2. Find a full rank coordinate-transformation that makes the k rightmost columns
in the lower-right submatrix produced in step 1 zero.

Step 1

Find a full rank transformation-matrix X that solves the problem
Ly L2 ) ( Xy Xy _f L O ) (A.9)
Ry Rap KXot Xz Ryy Y ’
One solution to this problem is X33 =— Xg3 = I, X1 = 0 and X2 = ——L'l—llng. Lii

is always invertible. Y will then become Y = Rgs — R21L1_11L12. The inverse of X
Is easily seen to be given by

-1
x-1— ( [:i L11]:1:‘12 ) (A.IU)

This means that the Sylvester-matrix can be factorised as

Ly L2y [/ Lna 0 I Lj}L;
= -1 (A.11)
Ra; Rag Rz1 Rz —Rai1Li7Lys 0 I

Step 2

Find a full rank matrix that makes the k rightmost columns to zeros. This problem
can be solved by an LU factorisation of the submatrix (Raz — R21L1—11L12)T, It
means that we make a factorisation such that LU = P(RzngglLff‘ng)T , where
L is a unitary lower left matrix, U is a upper right matrix and P is a permutation
matrix, By transposing this expression and mulitiply by P to the right we have that
Rgg — R21L1_11L12 pand UTLTP. The matrix

L1t ]
_ A2
( R2: Rz — RaiLii'Lis ) ( )
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can thus be factorised as

L1 0 [ Ly © I o
( Ry1 Raz —~ RaiLiyLie ) - ( Ry UT ) ( 0 LTP ) (A.13)

Combine these two transformations to

Li; Lis _ {Ly © 1 0 I LiLg (A.14)
Ry Ras - R, UT 0 LTp ] 1 )
L 0 I L7'L
- (R: UT)(O Il,li"Pm) (4.15)

Remark
The QR decomposition could have been used instead of the LU decomposition.

O

We now apply Theorem {A.3) on the matrix
(A B) (A.16)

and find that (A.16) can be factorised as

Ly 0 I Li'Li;
( Ry U7 ) ( 0o LTP (A-17)
Theorem (A.2) gives that the space of (AB) is equal to
(L 8 e

The common space can now simply be found as the last nonzerc column of U7,
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Appendix B

Sensitivity to Modelling
Errors Experiment

In section 2.6 we made a sensitivity to modelling errors experiment, were we com-
pared the sensitivity of closed loop systems to modelling errors when the controller
design was based on the unreduced model versus first and second order approxima-
tions. Here, the results of these experiments are presented in the form of tables.
The systems are sorted into tables with equal stability properties,
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Appendix C

Proof/Derivation of the
Multiple Model Least
Squares Identification

Method

In this section we will give a derivation of the Multiple Model Least Squares method.
The method, presented here, differs from the one given by Steve Niu in the represen-
tation of the augmented data vector. The data vector we use is mirrored compared
to the one used by Niu ef af [17]. This means that the algorithm has to be mirrored
as well. Niu uses regressor vectors like

pB)={—ylt—n)ult—n) ... —yE - ult-1) — w7 .
leading to the algorithm,

5(t) = L{DELT(E)
o) = LT
J() = D).

With our definition of regressor vector,
p(t) = [~y(t) ult —1) —3(t 1) . uft —n) —y(t - )", (C.1)

the algorithm will become

S@) = U@)DHUT()
o) = U T
J{t) = D).

The algorithms have, however, the same properties,
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Proof of the Multiple Model Least Squares Method

Represent the augmented data-vector o(2) in the shift-structure,

e} = [ —% w-1 —%-1 w2 - ~Ye(n-1) Yt-n —Yt-n I
T

I
L e

T

I oy

13T

! ‘Pg';r K ]
I oh J
I o5y ]

{(t) has the property that the time index decreases from left to right. The reason
for this special structure is that we want to give the subspace of (%) the meaning

of causal lower order regressors for lower order models. “ff” stands for feed-forward
model and ‘fb’ for feed-back model.

The subvectors of E(t) fulfil that

- n T2 T
0= ()5(2) u(t) = o5y 657
3T pn— 13T n—
w(t— 1) = 3 05 yt—1) = pfy " 65
T, T .
u(t -~ (n 1)) =y 037 y(t — (n— 1)) = o) 0}
T
u(t—n) =gy 6y

and can be interpreted as regressor vectors for models of lower orders.

The augmented data-vector can be writien in the following order recursive fash-
ion,
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Define the augmented information matrix (AIM) as

5(t) = > p(k)e” (k). (C.2)
k=1

Now partitionate §(¢) into lower dimensional sub-matrices,

S(t) = Y e(k)y (k)

k=1
¢ —y(k)
= (k) o) (k)
k=1 995‘1}) (k) ( 1 )

( Yh1 U(k)? —Y ke (h

‘Zk 190f_f (k)y(k) Ek 1‘P (k)‘Pﬁ) (k)

_ NIRRT e (k)
\ — Then 07 (Ru(k) si()

The lower right sub matrix is then the 1nformation matrix for the n:th order feed-

forward model, S;’})(k) Ek -1 go;})(k)ga(n) (k). The following theorem is the key
to the solufion of the MMLS problem.

Theorem C.1 (Decomposition of Partitionated Matrix)
1 A non-negative definite symmetrical matrix 8 can be factorised as

(D BT)_(I BTA-l)(A 0)(1 BTA—l)T
B A 0 I 0 4 0 I (C.3)
where A is a sub matrix of 5, and is assumed to be non-singular, and

A=D-BTA™'B (C.4)

Proof. Direct multiplication of the right-hand side of C.3 gives the left hand side.

Now we apply this theorem on S(¢). Matrices 4, B and D are then
A=Y R T Zso(“) (R)y(k)
k=1

t
2
D= Zy(k)
k=1
INiu uses the decomposition:

4 BN _ I o0\/ 4 o I o\T
BT D JT\ BTA! 1 0 A BTAY I

where A is a sub matrix of S, and is assumed to be non-singular, and

A=D-BT4A 1B,
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BT A-1 becomes then

-1
BTAT = ( er("’) (R)y(k) ) (Z@(“) (Rl ( ))

k=1
T
— ( (z (p("') 9053}) (k) ) ( (n) k)y(k)) )
= 607

We see that BT A~ is equal to the transpose of the negative n:th order feed-forward
parameter-vector, ﬂﬁ(n)(t)T A becomes,

A = p-—BTA'B

= Zy”(k)—( Zyk)w(”} )(—é&’?)
- Zyk)( ) - o5 057

5, o E (y(k) o) (k)e("’) 0}

=3 (o - o0l )

E=1

. Ze(n)
-

Thus A is equal to the loss function for the n:th order feed-forward model, A =
J }’;)(t) Substitution of BT 4~ and A into C.3 gives that the augmented informa-
tion matrix can be factorised as

T
1 8T 3o 1 6T
S(t) = i it if
0 I o si jlo I
The lower right sub matrix, Sg.’}) (t), can be written as
n—1
s = )SHIY(O LID > S 1 rel (O
~ Yo (R)(R) i)
Application of Theorem C.3 on S?}) (t) gives
T
sln—1 n-1 Atn—1
o[ e ) (a0 Y (1 e
b5

0 Tt 0 SHTV SN0 Baas
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This procedure can be repeated until the lower right submatix is a scalar.

7
Aln—1} N7 {(n—1} An—1)
Fb -
[ s ) [ @ \ or \”
gl L1108 ;0 1 —6;/()
i
° & 0 S%’) / 0 I
T
50 0 \ Arg
o () (oo (e
iF

\ 0 AL s 0 L
t

st = S vi(k)
k=1

Together, these transformations define a UDU7T transformation of S(¢) according
to

5(t)

Eyh-1, . gLy T T | -7y
(Uf.f Uss Ufofb)‘D‘(Ufb Uy Uy 7 Uy,
= UDpyT
where D is a diagonal matrix with diagonal elements
: = (r) {n—-1) ln-1} f{n-2) (1) s
diag(D) (J” R P A TR | Jﬂ,)

and U/ is a upper triangular matrix with unit diagonal. Let us take a closer look on
the matrix /. U is a product of matrices of the form

I 0 9
uB =1 ¢ 1 _a® |,
00 I

where z denotes ff or fb and k& the model order. The product of such matrices is
then

— () 3ln-1), 50, 50
U = Uy Up " Upi- U
) 10 0 Iner 00
1 6" o .
= o1 BT Lo o] 0 1 —ERa
0 IZn.
00 Ty 0 0 1

This can be written as

U= (I - extT) - (I - ex8]) (I — eans8y ) - (I = e2n5)
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where e; is a vector which is one in position 4, zero otherwise,

r
ee—(o e 0010 - 0) )

and 9; are augmented parameter-vector with the first ¢ elements zero,

T
ﬁg—(o o 00 aggm(t)’*") -

Direct multiplication of the terms will mix up the parameter-vectors. We will
instead investigate 77, and show that this problem is avoided then.
The following theorems are useful,

Theorem C.2 ()

(ABCY T = A-TB"TC*

Proof.

(ABC)™T = ((ABC)™"1)T = (C™B- 1A YT = A "B~TC-T.
Theorem C.3 ()

(I—ed] ) =T+ et

Proof,

(I—edT) - (I+ e ) =I+edT — e —edf eih] =1
since 9] e; = 0.

T ¢can be written as

By use of these two theorems, U/~
UT = (I-ead) T (I-edy) T (I - ez 102,1) " (I —e2ndy,) ™"
= (I+8;e]) (T+85e5) (I +Fpn_1€5n 1) - (I + Bpueiy).
We now multiply the factors starting from the left
(I+81€]) (I+05e]) = I+8se] 18565 +Dieiqe;
= I+l + 9ze3

where the last equality follows from that ef49, = 0.
Continued multiplication leads to

U™T =I+9€] +95€5 + ++0pn_165,_1 + V2000,

sinee e?ﬁj =0,Vj>1
Thus we have that U~T

vT = I+(191 Py -0 Paaoa i 0)
10 0 o o o)
) 0 0 0 0
(m) 1 6 0 0

- Py

é}r;—l) o1 8 0
8 1o
| : AT
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The model parameter estimates for all model orders can now be read out of U7
as the columns under the diagonal.

If the estimation is done in a recursive manner, it is practical to work with the
inverse of the augmented information matrix,

Ci)=8"1(1).

C(t) can be interpreted as the covariance matrix of the augmented parameter-vector.
C(t) can be factorised as

c) =S = (DT ' =y Tp-y-t = LD 17, (C.5)

where D' = D! and L = U~T. It means that all parameter estimates are found
in L from a LDL7 factorisation of C(), and all loss function in the inverse of the
diagonal matrix D. This is what is going to be used in the recursive version of
MMLS. When the MMLS is used in an off-line manner, it is better to do an 7 DU7T
factorisation of § and then inverse of UT. U7 is always invertible which might not
be the case with S.
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Appendix D

Recursive LD Updating
Algorithm

The goal of this section is to derive an algorithm that update the ZDLT factorisation
of the angmented covariance matrix, C,

L{t) = f(L(t 1), D(t— 1), ¢()),
D(t) = g(L(t—1),D{ — 1), p{t));

in a way that takes advantage of that we have the LDLT factorisation of C(t — 1).
Such an algorithm can be found in [1]. Here, we will present that algorithm in a
bit different way.

The basic idea is to represent the extended covariance matrix in the following
two ways:

1. A decomposition containing the old parameter matrix, L{t — 1}, the old diag-
onal matrix, D{t — 1}, and the new data vector, ().

2. A decomposition containing the new parameter matrix, L(t), and the new
diagenal matrix, D(z).

The parameter updating is then achieved by a transformation from the first form
to the second decomposition.

Let the augmented parameter-vector, §, be Gaussian N (6, C). Assume that a
linear observation is made, and that this satisfies

#(t) = 9" ()8 +e(t)

where e is normal N (0, ¢?). Then joint covariance-matrix of the augmented variable,
z(t}, and the old parameter vector, 8(t — 1}, is then

Cov ) =E . 4 ( #t) 6T(@—1) )

6(t — 1) f(z—1)

R(t)

) B {#t)?} B {0 ¢ 1)} o)

Bl -1)50)} B{fc- 108 E-1)}
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where #(2) = 2(t)— B {z(t)} and §(t— 1) = §(t—1)— E {8}. The covariance matrices
are given by:

E{7(t)5" (1)}

Il

E { ($7 B — 1) +e(t)) ($7 @B 1) + e(t))T}
= ¢TE {8 167t - 1)} olt) + B {e(t)e” (3)}
= PT)00 - Dp(t) + o) (D.2)
Bz0f -1} = B{(s @8- 1)+et) 67— 1)}
= TWE {8 - 1T (- 1)}

= ¢ ([B)C@-1) ».3)
Bloe-1")} = E{z(t)é'T(t—l)}T
= Ct-1)e() (D4)
E{é(t—l)éﬂ’(t_l)} ) (D.5)

The results follow from the assumption that 6{z — 1) and e{t) are independent.
Decomposition 1

Insert (D.2)-(D.5) into (D.1) and the joint covariance matrix becomes

pg - | £1OCE- DR+ STE0E-) o

Ctt - )elt) -1
We have a factorisation of C(i — 1) given by
Clt—1) =Lt - 1)D{t - LTt - 1) (D.7)
Insert (D.7) into (D.8) and we have

o _ T4 o2 T _ — 1T —
R o | FOHE DPECDITE Dpl) 10N FOLE-DDE- DI |

Lt — 1}DE — DLT(t — De(t) Lt —-1)D(E - DL (t-1)

It is now straight forward to partition (1.8) into

T

1 T()L(E-1) ok (t) 0 1 T ()L 1)
R(t) = (D.9)
0 L{t-1) 0 D(t-1) 0 Lit—1)

Decomposition 2

The updated augmented covariance matrix, C(t), is equal to the conditional co-
variance of 8{t — 1) given z(3),

C(t} = cov {8(2)} = cov {8(¢ — 1)|2(2)} (D.10)

This can be seen as the new covariance of # when all information from the latest
augmented variable, z(t), have been absorbed, The variable 8{t — 1}|2(t) fulfils the

86



property that it is independent of z(¢). This will now be used to achieve an equation
for C(t). It can be shown that R(%) can be factorised as

T

2
T3 0 1 0

R(t) = (D.11)

K(t) L() 0 D) X(t) L)

Transformation

It now remains to find the appropriate transformation. A convenient method is
the Dyadic decomposition.

The matrix decompositions defined above are very simular. The main difference
between them are the first row and column of the left and right matrix factors. The

first decomposition has nonzero first row and zero first column, while the second
decomposition has the opposite.

Matrix multiplication of three matrices can be writien as
k13
ADAT = " diA(:, ) A(,9)". (D.12)
i=1

This can be seen as the sum of » rank 1 matrices. Split the sum into the first rank
1 matrix and the sum of the other rank 1 matrices,

ADAT = diA(;, DA, 1)T + id,—A(:, D)A( )T (D.13)

i=2

But this is not a unique representation. The matrix product ADA” can also be
represented as a sum of some other rank 1 matrices,

ADAT = d A(, DA, DT + i di A, DA(, )T, (D.14)

The idea is now to step by step transform ADAT from representation (D.13) to
representation (D.14). At each step two rank 1 matrices are transformed to two
other rank 1 matrices, having the desired properties.
Given vectors
T
Al = ( 1 A(2,1) - Aln,1) ) (D.15)
and

T
Ak,:) = ( A(L, k) A(2,k) - A(n,k)) (D.16)

and scalars dy and dr. The Dyadic decomposition problem is then defined as the
problem of finding new vectors,

AL = ( 1 A2,1) - A"(n,l)) (D.17)

and

T
f’i(k,:):(o A2,k - A(n,k)) (D.18)
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and scalars d; and Jk that satisfies
d1 A, DA, DT 4 dy AG RYAG, BT = diAG, DAC, 1T + deA(, k)AC, £)T (D.19)

That is, to find two other rank 1 matrices that does not change the matrix product,
and have the desired properties,
There are several solutions to the Dyadic decomposition problem. A simple one

di = di+dpA(L,k)? (D.20)
dp = didy (D.21)
dy
Ay k) = A(k) - A(LE)A(L 1) (D.22)
dkfi( k)

A1) = A1)+ /= (D.23)

1

The full transformation from representation {D.13) to (D.14) is obtained through
repeated use of this Dyadic decomposition.

Summary

The L and D matrices can be updated as follows:

1. Represent the old parameter matrix and diagonal matrix, L(¢—1) and D(t—1},
and the new data vector (2} at the form (D.9).

2, Transform this to the form of (D.11) by n Dyadic decompositions, starting
from the end.

3. Extract the new parameter matrix, L{2), and diagonal matrix, D(t), from the
transformed matrices according to form (D.11).
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