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1 Introduction

Diagnosis is becoming a more and more important part of control systems. One
way of designing the diagnosis system is to use the four degree of freedom
controller. It is a controller with an extra output - the alarm output. If the process
to be controlled is uncertain, i.e. there is a mismatch between the model and reality,
the controller has to be designed to be robust against this uncertainty. One design
method that incorporates uncertainties is H_ -synthesis.

In the design of a control and diagnostic module some tradeoffs have to be done.
For example diagnostics and control performance have to be traded off against
each other. The goal of this master thesis is to:

e Get an understanding of how H_ -synthesis works.

¢ Explain the steps of a design of a control and diagnostic module using the four
degree of freedom controller and H_ -synthesis.

e FElucidate the tradeoffs taken.

The designs in this thesis have been made in MatLab and the toolbox p-tools. All
simulations have been made in Simulink.

Chapter 2 contains a short introduction to on-line monitoring and diagnosis. In
Chapter 3 the four degree of freedom controller and a way of setting up the control
and diagnosis problem as a standard problem are described. Chapter 4 contains a
short presentation of H_- and p-synthesis. A design example is thoroughly
discussed in Chapter 5. In Chapter 6 some designs on the inverted pendulum are
presented. Appendix A is a short description of the pi-tools commands used in this
thesis, and an example of a complete design is shown in Appendix B.



2 On-Line Monitoring and Diagnosis

On-line monitoring and diagnosis is becoming an increasingly important part of
modern control systems. One reason for this is that the demands on reliability and
safety are getting higher.

A number of different approaches have been suggested and research within the
area is performed in several different research communities, for example control
engineering, artificial intelligence, signal processing, chemical engineering and
mathematical statistics. Monitoring and diagnosis methods are either symptom- or
model-based.

2.1 Symptom-based diagnosis

The symptom-based approaches are based on direct associations between faults
and their symptoms. The associations can be represented as rules, tables, or
decision trees. The knowledge underlying the associations is often of a purely
heuristic nature, gathered from the experience of a human expert in the problem
domain, for example the process operator or the process designer.

Symptom-based diagnosis has several drawbacks. The knowledge acquisition
process is not easy. It is difficult to get a complete system without knowledge
gaps. The diagnosis system will thus inherit the misconceptions of the human
expert and suffer from the same shortcomings. Also, a complete system can
contain a large number of rules, often up to several thousands. The maintenance of
a system like this is quite difficult. A major reason for this is that the process
structure - the process components and their interconnections - not is explicitly
represented in the diagnosis module. Instead, information about a specific process
component and its connections may be spread out over a number of rules. Small
changes in the process can therefore influence very large parts of the module.

2.2 Model-based diagnosis

Model-based diagnosis is based on a model of the process. The basic idea is to use
the model to predict the normal, fault-free behaviour (the nominal behaviour) of
the process. A residual is created by comparing the signals from the process model



with the observed signals. Deviations in the residuals indicate faults. The situation
is shown in Figure 1.

Prediction Observation

Model Process

residual

Figure 1: The general idea behind model based diagnosis

The model-based diagnosis techniques have their origin in control engineering and
Artificial Intelligence. Within control engineering, on-line diagnosis goes under the
name of Fault Detection and Isolation (FDI). The methods used are based on the
analytical redundancy inherent in dynamic process models on for example state-
space form.

The task of a model-based diagnosis method is to be sensitive to faults at the same
time as it is insensitive - robust - to some different non-ideal circumstances in the
actual process. These circumstances include modeling errors between the actual
system and the mathematical model, disturbances and system and measurement
noise. The situation is depicted in Figure 2. The modeling errors and the noise are
often combined into a vector of unknown inputs according to Figure 3.

Faults
Measurement
Modeling noise
errors
u r + r r L 4 y
Actuators Plant Sensors

System noise

Figure 2: Representation of a system with noise, faults and modeling errors.
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Figure 3: Simplified system representation

The three main approaches that are used in FDI are

e observers
e parity space equations, and
e parameter identification

The basic idea behind the observer approach is to reconstruct the output of the
system from the measurements using observers or Kalman filters, where the
estimation error or innovation is used for the detection and isolation of the faults.
The basic configuration is shown in Figure 4.

Actual
d s System

A :
» Nominal #.25 Residual
*_model : generation

State :
i estimator ;

v &=

Figure 4: Residual generation through state estimation

Several alternative approaches exist. It is possible to use linear or non-linear, full or
reduced-order observers in the deterministic setting or Kalman filters in the
stochastic setting. The approaches also differ with respect to the number of process
outputs driving the estimator. One can use only one output (the most reliable) to
drive the estimator, or the full output vector. It is also possible to use a set of



estimators, an estimator bank, where the different estimators are driven by different
subsets of the output vector.

The parity space approach is based on calculation of the so called parity equations.
These are formed from the equations in the dynamic state space models. It has
been shown that the parity space approach is equivalent to the observer approach
when the appropriate filters are used.

The parameter identification methods are based on on-line estimation of process
parameters through recursive identification. It is suitable for detection of faults that
are seen as changes in physical parameters such as friction, mass, resistance,
capacitance, etc.

All three approaches mentioned above can be summarized as in Figure 5. Based on
a priori knowledge and experience of the real process the following models are
used:

e amodel of the nominal process
e a model of the observed process
e models of the faulty process.

Since all methods rely on the detection of changes in comparison to the normal
status the nominal model must be known and tracked with high precision. The
models of the faulty process show the effects of the faults on the analyzed
quantities. These effects are called fault signatures.

Basically, there are two different ways of generating fault-accentuated signals using
analytical redundancy. One way is to use parity checks or observer schemes. These
two methods all use state estimation techniques. The other way is parameter
estimation. The resulting signals are used to design decision functions as norms or
likelihood functions.

The basis for the decision on if there is a fault or not is the fault signature. In most
applications the FDI process is completed when the fault location and time are
identified. Sometimes it may be important to gain more insight about the situation
than is given by just fault location and time. For this purpose deeper knowledge
about the nature of the process, for example degree of aging, operational
environment, used tools, previous faults and history of operation and maintenance.
This task is therefore often tackled with the aid of an expert system.
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Figure 5: General architecture of a diagnosis system.



The approaches also differ with respect to which types of faults they are best suited
for. Faults differ with respect to where in the process they occur. For example, a
fault may occur in the actuators, in the process components or in the sensors.
Faults can also be of different type. An additive fault is a simple addition of an
offset to a sensor or actuator signal. In a multiplicative fault some process signal is
multiplied by a fault signal. Parameter identification methods are claimed to be
especially suitable for multiplicative faults and additive faults on the input and
output signal. It can also detect very small changes which makes it possible to
handle slowly developing faults. Observer based methods are claimed to be best
suited for additive faults.

A drawback with most of the work in FDI is that it does not consider the
interaction between the feedback control algorithm and the diagnosis algorithm.
The approach taken in the 4 DOF (4 degree of freedom) controller method is to
view the design of the controller and the design of the diagnosis method
simultaneously. This is done by translating the entire problem into a multi-variable
control problem. Using this formalism modern control design methods developed
for design of robust controllers can be used for an integrated design of both
controller and diagnosis system. This is the topic of the remaining chapters of the
report.



3 Four degree of freedom controllers.

The last twenty years a lot of work has been done on designing filters for
monitoring and detecting system faults. Most of the papers presented have been
focused on how to design three different modules: a control module, a diagnostic
module and a reconfiguration module. When the diagnostic module detects a fault,
the reconfiguration module computes a strategy for the control module, in order to
achieve reliable control performance under changing conditions. One significant
problem with the methods presented in the papers is that they all design the control
and design modules independently, neglecting the interaction between them. In
addition, the methods are most often not applicable to plants with uncertainty,
since they are unable to incorporate norm bounded uncertainties, which are
common in control synthesis.

To avoid the first problem Jacobson and Nett introduced the four degree of
freedom, or four parameter controller, in [7]. This controller makes simultaneous
design of the two modules possible. In [8] Tyler and Morari showed by rewriting
the system that the four degree of freedom controller is a special case of the
general interconnection structure used by most modern control synthesis methods.
Thus it is possible to use results from H_ -, H,- and [-synthesis methods to design

the integrated control and diagnostic module.

In the same paper Tyler and Morari showed that designing an optimal control
module, and then designing an optimal diagnostic module, is equivalent to
designing the two modules simultaneously, if a nominal model (without
uncertainty) is considered. If, however, the model contains uncertainty, the two
models should be designed simultaneously, in order to take the interaction between
the modules into consideration.

3.1 The general idea
A general multi-input, multi-output system G can be written as:
Z Gu Gn|d
olen el
where d represent uncontrolled inputs, u# controlled inputs, z unused outputs (to be

minimized, for example control errors) and y the outputs used by the control
algorithm. The uncontrolled input d is

d= [fT, n.T]T



where f is process faults, such as errors in actuators or sensors, or in the process
itself and n is process and measurement noise and different disturbances (for
example load disturbances).

In controllers as we are used to see them, we have two degrees of freedom (thus
called two degree of freedom or two parameter controller, 2DOF). One is used to
specify the feedforward of reference signals, and the other to specify the feedback
from the system outputs. The result is a control signal to stabilize the system. In a
four degree of freedom (4DOF) controller another output is added: the alarm or
diagnostic output a. This means that we get two new parameters. These
parameters say how much of and how the system measurements and reference
signals go into the alarm signal. The resulting controller K can be written as:

u K, K,y
If K,,and K ,of the 4DOF controller are equal to zero, so is the alarm signal a,
and the controller is turned into a 2DOF controller. This shows that the 4DOF is a

direct extension of the 2DOF.
The system and controller then look like

_d .

G

K

Figure 6: Process and four degree of freedom controller.

3.2 Stability properties

The diagnostic signal a is not part of the closed loop, and does not affect the
closed loop stability of the system. Of course K, and K,,should be chosen stable.

The feedforward term K, also has no effect on the closed loop stability. Hence it is
K,, that determines the stability.

10



If a nominal plant G is stabilized by a 4DOF controller X, the perturbed plant G,
is stable if and only if

0 O

0 K,

is a stabilizing controller for G, . This means that stability robustness with the four
parameter controller can be analyzed using standard stability robustness tests.

3.3 Tradeoffs

The signal a is used to detect and isolate different faults that can occur in the
process. In Figure 7 input faults (actuator faults) are modeled by f;, and output

(sensor) faults by f,. Except for the faults there are input and output noises
(n,and n, respectively) and a disturbance w .

Figure 7: Plant consisting of the process G and a four degree of freedom controller
and noise, disturbances and faults.

The diagnostic objective is to track or identify the faults with the diagnostic signal
a. This also means that all other system inputs shall be rejected at a. With the

transfer function to the signal x from the signal y written as 7, , the control and

diagnostic objectives can be summarized as :

e Achieve closed loop stability, considering plant uncertainties.
e Make T,~1, T, T, and T, small in some sense.

yn b

e Make Z,f—l, T

an?

T, and T, small in some sense.

These objectives have to be satisfied simultaneously, and are constrained by the
sizeof T,,T, and T, .

ur? “un

11



3.3.1 C-parametrization

All stabilizing four parameter controllers K for the plant G can be parametrized in
a simple way. For a stable plant, one can do as in Figure 8. The left part of the
figure is the controller, and the right part the plant. All the C; are stable transfer

matrices and can be called “free parameters. The stable transfer matrix C is

defined as:
C=[Cll C12]
C21 C22
L G 4’(?
Cu Cy -G G
. a x
;‘_&CIZ Aé y
controller plant

Figure 8: The C-parametrized controller and the (stable) plant it is designed for.

For every stable C there is a corresponding K for G and vice versa. Formulas that
relate K and C are given by:

{Cll CIZG(I+C22G) C21 C|2(1+GC22) :|

(I+C,G) "' Cy, (1+C,G)'C,
C |:KII+K12(I GKZZ) GKZI Kl2(I GKZZ) ]
(1 KZZG) (I- K22G)

In the C-parametrization it is clearly seen that any stabilizing four parameter
controller contains an implicit internal model of the plant it is stabilizing (the block
-G in Figure 8). The model is implicit in that it need not be realized, and run in
parallel with the plant, but is contained in the four parameter controller.

When there is no uncertainty (i.e. no modeling errors, noise, disturbances or faults)
the residual x in Figure 8 is zero, and there is no feedback or feedforward from x.

12



In the presence of uncertainty, x is no longer zero, and there is both feedforward
and feedback. This can be viewed as a means of deducing uncertainties.

3.3.2 The nominal case

Using the definitions

S,=(-GK,,)"' H,=-GK,S,=-S,GK,,
S, =(1-K,G)" H,=-K,GS,=-SK,G
where S, and H, are the output and complementary output sensitivity transfer

matrices, and S, and H, the input and complementary input sensitivity transfer
matrices, the notation will be simpler. These definitions lead to the relations

H+S, =1 H+S8=1I

which indicate that the transfer matrices are not independent.
Table 1 shows expressions for the nominal closed loop transfer matrices in terms of

K and C.

Table 1: Nominal closed loop transfer matrices

T, K-form C-form
];‘!' So GK 21 GCZI
Tyn,, _Ho GC22
T, S,G,GS, G(C,,G+1)
T, S, GC,, +1
T, K, + KIZT;'n;KN G,
szi KIZGSi C12G
T:m ’TZIW K12S0 C12
e Since T, =T, =T, sensor fault diagnosis has to be done on differences in

frequency content of the fault, noise and disturbance. This means that sensor
diagnostic performance and noise and disturbance rejection have to be traded

off against one another.
e Since T,, =T, the limitations on the sensor fault diagnosis also go for the

actuator fault diagnosis.

13



e Since

T, =K,GS =K,S,G=T,G,

sensor

and actuator

performance have to be traded off against one another.

e Since T, = C,,G, with C, stable, the right half plane zeros of G must be in T,

in a stable closed loop system. If G is non-minimum phase, this imposes
limitations on the achievable actuator diagnostics.

3.3.3 The perturbed case

In this part the sensitivity of the nominal transfer matrices to perturbations in the
plant are discussed. The sensitivity relations of the transfer matrices in Table 1 are

given in Table 2. The uncertainties are best described in Figure 9.

Table 2 : Sensitivities of the closed-loop transfer matrices

G T;‘. ol
G(I+A) (I+HA)'T, un,, un,, uw, ur
G(I+A)" T, (1+4s)" an;, yn,
T, -7, (1+4S) AT, ar
(I+A)G 7;;(1+AH0)—1 W, un,, uw, an,, aw
(I+A)'G (1+S,A)"'T, YR, Y, yr
T,-T, AI+S,A)'T, ar
el rlah—
(I+a)c G(I+A)
—nG —'@‘L —@‘L G —

(J+A)'G

G(I+A)"

Figure 9: Different uncertainties

diagnostic




Excluding T, the sensitivities are wholly determined by the sensitivity and the

complementary sensitivity transfer matrices. This means that the sensitivities of the
control and diagnostic nominal performance to modeling errors are linked.
Some interesting points can be made about T, :

e Since T,, = C,,this nominal transfer matrix can, and often will, be designed to be
0. Therefore a relative sensitivity analysis is inappropriate for this transfer
function. The expressions for 7, in Table 2 therefore reflect an absolute
sensitivity analysis.

e The two expressions for Tar given in the table both involve a) one of the two
sensitivity transfer matrices, determined by K,,or C,,, b) a “nominal control
transfer matrix* determined by K,, or C,,, and ¢) a “nominal diagnostic transfer
matrix“ determined by K,or C,. This implies that nominal control

performance, nominal diagnostic performance, and the sensitivity of the
control/diagnostic interaction have to be traded off against one another.
e If we assume that T, =0, I +AS, =1, and I+S,A =1, some insight can be

gained. These assumptions do not impose any significant loss of generality.
Under these assumptions the expressions for 7, become

~

T, =T, AT,

7:1 z-T;lfiA ur> “ar

r

and the tradeoffs between nominal control performance, nominal diagnostic
performance and the sensitivity of the control/diagnostic interaction become a
little clearer. (e.g.if the transfer matrix T, is “large®, which is exactly what

is wanted if actuator faults are to be tracked, so will the sensitivity of
the control/diagnosis interaction to uncertainties be) .

3.4 The standard problem

To make a unified treatment it is now common practice to study the so called
“standard problem®. This setup was introduced around 1980 as a unified
representation of a large collection of different problems in control and signal
estimation. The setup is shown in Figure 10.

15



[}

Figure 10: The setup in the standard problem

The signals defined in the figure are:

u=control inputs

y =measured outputs

fixed commands
disturbances

w=exogenous inputs=<
noise

(tracking errors
control inputs
z =regulated outputs =1 measured outputs

states

In H_-synthesis the regulated outputs z are to be minimized and contain in this

thesis for example the difference between an alarm signal @ and a fault that is to be
detected.

The open loop system G(s) is given by

2=G, (s)w + Gy, (s)u
y= Gy (s)w+ Gy, (s)u

or in state space form

x=Ax+Bw+ Bu
z=Cx+D,yw+D,u
y=Cx+D,w+D,,u

16



The closed loop system if u = K(s)y is then given by
-1
=T, (s =(G,, +GoK(I- G,,K) ' Gy Jw.
3.4.1 An equivalent system

A four degree of freedom problem can easily be translated to a standard problem.
One way is to rewrite the plant as

(o}

1l
o ~ o o
==
A==

21 2

where I denotes an identity matrix of appropriate dimensions, and G; come from

the original process. The controller stays exactly the same as before.

I 2 i

I

Figure 11: The four degree of freedom controller as a standard problem.

Now all inputs and outputs are to the system are inputs and outputs of G, and it is
possible to use results from (for example) H_,H, and L, to design integrated

control and diagnostic systems. In my master thesis I have used H_—and p-
synthesis for the design.

17



4 H . - Control

When a model based approach is used to design a controller there is a problem of a
mismatch between the model and reality. This mismatch can, for example, be due
to wear or tolerances. To improve the model can be difficult or costly. Sometimes
it can be desirable to work with a smaller (less complex) model, accepting that
there is a slight mismatch.

To address these uncertainties Zames and others formulated what is now called the
H_ - problem. Here the plant uncertainty is directly incorporated in the synthesis,

and the obtained controller is optimally robust in a rather restricted sense. During
the last ten to fifteen years this has been a very popular research area, and there is a
number of papers and books (see for example [3] or [5]) on the subject. Two
MatLab toolboxes for robust control also exist - the Robust Control Toolbox and

p-Tools [1]. I have used p-Tools in this thesis.
The following sections contain a short presentation of the general ideas of H_ -

control. Proofs are therefore omitted. The presentation follows [2] closely.
4.1 Basic definitions

The energy of a signal is defined as:
Energy = '“u(t)|2 dt

and the L,-norm as

% 2 .
b= Jl | [ fogoyao

The last equality says that the energy can be evaluated both in the time domain and
in the frequency domain. This is Parseval’s theorem. The L,-norm is (with some

changes) also known as the RMS-value (Root-Mean-Square). The H_-norm of a
stable system with transfer function G(s) is now defined as the maximal RMS-
gain:

12

Gu
(61, = supdC¥ _ qupjcud,

w0 |,  w=

18



4.1.1 Single-input single-output systems

If g(s) is a stable, linear, single-input single-output (SISO) system, then the
H_ -norm equals the largest value of the amplitude of the transfer function on the
imaginary axis (s = j©).

g(jo)

Decibel 4

20T

_f\— ”g”m

\’0)
20T

Figure 12: The norm is given by the maximum of the amplitude diagram

This can be written as:
lel.. =suplg(joo)
(]
The H_ -norm has some interesting characteristics:

|7+l <l71. +lel
|72l <171 lel..

The last expression is called the submultiplicability of the H_-norm. The
submultiplicability separates the H_-norm from many other norms and makes it
possible to use the H_-norm to guarantee robustness properties. This is described
later in this section.

4.1.2 Multivariable systems

For multivariable systems there is an extra problem of interactions, which means
that the different inputs influence not only one output, but two or more. The ideal
would be to be able to treat a multivariable system as several unrelated SISO

19



systems and make the design for each separately. This is not always easy to do. A
good analysis tool must therefore be able to handle interactions.

One way to do this is to use singular values. The singular values of a matrix A are
defined by

o,(4)=(r,(4°4))",

where A, denotes the ith largest eigenvalue and A" is the complex conjugate
transpose of A. The largest singular value ¢, satisfies

la
b

0 ,(A)=max

From this it can be shown that

6,(A+B)<o,(A)+0,(B)
6 (4B)<0,(A)o(B).

If G(s) is a stable linear multivariable system then
|Gl =sup(o (G (jo)))

which means the maximum of the largest singular value.

4.2 H o0 and robust control
There are many ways of modeling uncertain elements in a control loop. In many
cases the perturbed plant can be represented as the nominal plant G, with a

feedback loop with A which contains all uncertain elements. This situation is shown
in Figure 3.

Gy

Figure 13: Nominal control system with uncertainty.
All uncertain blocks are included in A.

20



Many different assumptions can be made on the matrix A. One common setup is a
block diagonal A:

A=diag(A,, A, Ayy)

Here A, is a diagonal matrix containing real scalar elements, A, is a diagonal
matrix containing complex scalar elements, and A, is a full complex matrix

containing dynamic elements.
The optimal robustness problem is now to choose K(s) such that the loop around

G, is stable against as large A as possible. In H_ -control theory only one block,
A,y » 18 present.

Theorem 1: Small Gain Theorem

Let G, be a stable system. Then the loop in Figure 13 is stable for all stable A(s)
with |G,A| <1. Because of the submultiplicability of the H_ -norm the condition is
automatically satisfied if |G|_JA]l. <1.

The theorem is not conservative, meaning that there exists a complex matrix A
with |A], =||G|_ that destabilizes the loop. Therefore, to maximize robustness

against unstructured perturbations means to:

Find a controller K such that min"GK” is achieved.
K L

4.2.1 Examples of uncertainties

Theorem 1 can be used in a number of ways. G often has the interpretation of

some function of the nominal closed loop system and A can be either additive,
multiplicative, uncertainty in the feedback etc. If the theorem is used on the system
in Figure 13, and the nominal plant is disturbed by an additive model uncertainty,
so that the actual system is G+ Ainstead of G, then the system will be robust

against as large A as possible if the H_-norm of K(I-GK )_l is minimized. This
is shown in Figure 14.
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Figure 14: Additive uncertainty and the transfer function to be minimized.

An alternative to additive uncertainty is multiplicative uncertainty, where G is
changed to (I+A)G if the uncertainty is on the output and to G(I+A) if the

uncertainty is on the input. Figure 15 shows the situation with a multiplicative
uncertainty on the input. Depending on how the uncertain elements occur different
transfer functions are to be minimized. In the case of multiplicative input

uncertainty it is (I — KG)™ KG . Of course there is a lot of different ways to model
the uncertainty.

Q

:
:
:
:

K I« S V.
:
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Figure 15: Multiplicative input uncertainty and the transfer function to be minimized.

4.2.2 Robust performance or robust stability?

The H_-theory solves a robust stability problem. This means that the system is

guaranteed to maintain stability for a certain set of model perturbations. Most
control systems can however become useless when much smaller system variations
occur without causing instability.

The goal of a robust controller design is to achieve good performance in face of
plant uncertainty. This is called robust performance. To achieve robust
performance is much harder than to achieve robust stability. One reason for this is
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that there is no explicit formula for good performance - it takes engineering skills
to specify what is “good”. The robust stability problem is closer to pure
mathematics.

The standard H_ -problem gives equal weight to all frequencies. In a real design it

is often desirable to emphasize different aspects at different frequencies. This is
done by adding weights or filters when formulating the problem. These filters must
be stable, proper transfer functions (not W =1/s or W =s). This does not impose

any larger limitations, since it is easy to move the poles or zeros a little bit into the
left half plane.

4.3 How to compute the norm and the controller

So far only the definitions and interpretations of the H_-norm have been

discussed. The following' two sections give some information about how to
compute the norm and the controller.

4.3.1 The norm

The first way to compute the H,,-norm that comes to mind is to plot &,(G(je o)

for a sufficiently large number of ®,, and find the peak value. This method of
course has some drawbacks - it can be quite slow. A faster way is as follows:
Given G(s)=C(sI — A)™ B, where A is stable, and y >0 the matrix G, is formed

as.
A 'BB”
GY = -1 T Y i
- 7'C’C  -A

It is then possible to show that

IGl.<y ¢ G, hasnoimaginary eigenvalues
Thus we can check if |G|, <y by forming G, and computing its eigenvalues. The

condition can also be expressed in terms of the existence of a real, positive definite
solution to an algebraic Riccati equation, or in terms of a linear matrix inequality.
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4.3.2 The controller

Following the setup in the standard problem presented above we have

x=Ax+Bw+B,u
z2=Cx+Dw+D,u
y=Cx+D,w+ D,,u

For simplicity D, =0 and D,, =0 is assumed. It is very difficult to find the
controller that minimizes the H_-norm directly. The easiest way is to find a

controller such that "TZ _ <Y (the sub-optimal problem) for a given vy. The value

W

of yis then decreased until no such controller exists. This is called y-iteration.

If the system is given as above and the conditions

(A1) (A, B,) is stabilizable and (C,, A) is detectable
(A2) D, and D, have full rank
A-jol B
(A3) I: J 2
C] D12
A-jol B
C2 DZl

} has full column rank for all ®

(A4) l: } has full row rank for all ®

are satisfied, then there is a controller K(s) such that |T,,[_ <y if and only if the
Riccati equations
0=XA+A"X+C"C -X(B,B," -y BB )X
0=AY+YA"+BB" -Y(C,C,-y7C C)Y
have positive definite solutions X and ¥ such that y?Y™' — X >0 and such that

A-(B,B,” —y”BB")X and A" -(C,”C,-yCC)Y are stable. One such
controller (“the central®) is given by

X=AR+Bu+yYCTCE+YC (y- C,3)
u=-B,"X(I-y¥x) .

The conditions in (Al) are weaker forms of controllability and observability
conditions, respectively. That D,, has to have full rank and (A3) means that all
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control signals have to be punished at all frequencies (no zero on the imaginary
axis), and that no roll off is allowed at high frequencies. Correspondingly, the
condition on D,, and (A4) means that all measurements used in the control have to

be noisy at all frequencies. Not satisfying one of the last two conditions would
mean that the control signal could be unlimited at some frequency, or that a
disturbance of a certain frequency would pass undetected.

4.4 Structured singular values and DK-iteration

In H_ -control only the full block uncertainty A, is present. This often causes the

controller to be very conservative, meaning that it is designed to be robust against
uncertainties that are not going to appear. Figure 16 shows a plant with input
uncertainty. If this uncertainty is in the actuators (for example uncertain actuator
gain), it is reasonable to assume that there are no cross terms in A. This can be

expressed as:
= Ay 0 |n - &
v, 0 A,y u,

5

A
u, L o

U, & ’

—_—

1
2
Figure 16: Plant with input uncertainty

In pure H_-control the controller would allow for cross terms to be present. This

means that the design algorithm assumes that the actuators influence each other
directly. To be able to handle uncertainties which are not full blocks one can use
structured singular values and DK-iteration [1].

4.4.1 Structured singular values

The structured singular value is a matrix function denoted p(-). In the definition of

(M), where M € C™, there is an underlying structure A, which is a prescribed
set of block diagonal matrices as mentioned in section 4.2. In this case the two
blocks A, and A,, are present. With these blocks we define A < C™ as
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A ={ diag[Ac, Afull] }

Here the scalar block comes first for notational reasons. The blocks can come in
any order - even mixed. For M € C™", u,(M) is defined

1
min{o,(A):A € A, det(I - MA)=0}

ILA(M)=

unless no A € A makes /- MA singular, in which case p,(M)=0.
To interpret the definition of w,(M) the feedback loop shown in Figure 17 can be

useful. Here M e C™" is given.

A

Figure 17: Feedback loop used to interpret the definition of W(M).

This figure is meant to represent the loop equations

u=My

v=Au.

As long as - MA is non-singular the only solution u,v to the loop equations is
u=v=0. If I-MA is singular there are infinitely many solutions, and the
norms|u| and ||v| can be arbitrarily large. With an abuse of convention the system
is then called “unstable”. Similarly the system is called “stable’ when the only
solution is identically zero. This means that p,(M) is a measure of the smallest
structured A that causes “instability* of the feedback loop in Figure 17. Note that
W is not a norm, since it does not satisfy the triangle inequality. However, for any
o €C, p(oM) =|o|u(M), so in some sense it is related to how “big* the matrix is
in a norm sense.

i, (M) is very hard to compute exactly. Instead an upper and a lower bound are
used. These bounds are
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max p(QM) < i, (M)s info, (DMD™),

where p(QM) is the spectral radius of QM, D commutes with A (DA = AD) and
QeQ, 0= {Q eA: Q'Q=1 } For a more thorough definition see [1].

4.4.2 DK-iteration

The idea behind DK-iteration is to minimize the upper bound of W, that is to find

minsupc, (DMD™).

This is done as follows:;
1. Fix D and find K with H_ -theory

2. Fix K and optimize D(jo) (the D-scales) for every ®
3. Approximate these D(j®) with a dynamical system
4. Include D(s) and D7'(s) into G

Iterate these steps until B converges orp < 1. If the resulting p>1 robust control
has not been achieved.

4.4.3 Interpretation

The DK-iteration scheme can be interpreted with the help of Figure 18.

|—'A— M A

D

;: D D
LG G |t

a b

Figure 18: Two identical loops showing the idea behind the D-scales.

In Figure 18a D™'D=1 has been inserted in the loop. In Figure 18b D has been
moved to the other side of A. This is allowed, since D and A commute. D is then a
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scaling that drives the unstructured block uncertainty underlying the H_-design

towards a A with the wanted structure. This can not be done in one step - hence
the iteration.

4.5 Limitations

The design methods discussed above have some drawbacks. One is that the
resulting controllers often are of very high order. Therefore some model reduction
techniques are required. Also the speed of the poles and zeros of the controllers
vary a lot - differences of an order of 10" in magnitude are not unusual. This
makes the controllers hard to simulate and implement. As mentioned above the
H_ -controllers alone can be very conservative, which led to the DK-iteration. The
controllers which are the result of a DK-iteration can also be somewhat
conservative. This since all elements of the uncertainty are allowed to be complex.
Sometimes it is reasonable to assume that the uncertainty does not have any
imaginary part, for example when the gain in an actuator is uncertain. There exists
theory for real parameters, but it was not supported in the software used in this
thesis.
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5 An example

Most papers on H_ concentrate on proving and elucidating certain properties of
the norm and the resulting controllers. Only few provide descriptions of examples
or complete designs. One exception is [8], which describes the design of an
integrated control and diagnostic module using the four degree of freedom
controller. The plant in the paper is a two input two output plant, with a 10%
uncertainty in the gain of each input channel. The diagnostic objective is to detect
faults in the actuators.

The first part of this thesis was a thorough investigation of this example with the
aim to reproduce the results and to understand the tradeoffs made.

5.1 The setup in the article

The process presented in the article is a first order two input two output process.
The state space description is as follows:

+
~0.1583 -0.5311[ |-01719 -0.0166
[0.1301 —0.0210}
y= x

. [—0.1536 0.1914] [—0.2290 0.1701]
= X u

0.2538 -0.1714

The transfer functions of the process are shown in Figure 19.

The first step was to recreate the filter (weight) and process configuration. Figure
20 shows the control and diagnostic configuration as presented in the paper.

To be able to use H_ —and [ - synthesis the design problem must be formulated as
a standard problem. This means that all external inputs and outputs should be
inputs and outputs of the process, not of the controller. Therefore the reference
command r is fed through the interconnection and is viewed as a measurement for
the controller.

For the same reason the alarm signal @ must be fed through the interconnection
and is viewed as a control signal. Since all control signals must be punished (see
chapter 4.4.2, conditions A2 and A4) also a must be punished, which is why the
weight W is included in the interconnection shown in Figure 21.

W, is there to emphasize the reference tracking, and W, to make sure that the

alarm signals track the faults at the right frequencies. An uncertainty of 10% in the
gain of each input channel is assumed. This assumption is modeled as

W, =0.11,A, = diag(A,,A,), where A andA, are scalar parameters and
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A

u

| . <1. Any other weights are not mentioned in the paper. The resulting
interconnection is shown in Figure 21.

0 input 1 » input 2
10 10 -
-1
10
- 10
a10°
3 107
107°
-4 -4
10 10
107 10° 10° 1072 10° 10°
10° 10°
107" 107"
[4V]
3107 107
5
(o]
107° 107
-4 -4
10 10
107 10° 10° 107 10° 10°

Figure 19: The transfer functions of the process in the example

. : T .

If 7, is the transfer function from [f”,n", rT] to y-r, T, the transfer function
from the same inputs to a-f and 7, the transfer function from the same inputs to a,
then the design objective can be expressed as follows: Find a stabilizing K such that

W.T,
W,T)| <1forall A, such that|A,[ <1
Wl
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Figure 20: Control and diagnostic configuration as in the article. Note
how n comes in.
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Figure 21: Interconnection of weights and process. y and r are seen
as measurements. The other outputs are to be minimized.

The next step was to approximate the weights which were given in a figure in the
paper. All signals shown in Figure 21 are vectors of length 2. Therefore all weights
are diagonal two input two output filters and have - in this example - the same
weight on both components.

W. is a first order low pass filter, with a low frequency gain of 10 and a

c

bandwidth of 107 radians per second. W, is a first order high pass filter, with a

high frequency gain of 1 and low frequency gain of approximately 5*107. W, is a
band pass filter with peak value at frequencies just above the process bandwidth.
The approximated filters are shown in Figure 22. In the H_ -synthesis, the outputs

from W,,W, and W, are to be minimized. The outputs y and r (r is fed straight
through from the input to the output) are measurements for the controller.
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Minimizing the output from W, (with W, chosen as in Figure 22) means that

higher frequencies of the alarm signal a are punished. Since a is a control signal, it
has to be punished at all frequencies.
W. says that the control error y-r is to be minimized. As mentioned in chapter 4,

the H_-norm of a system can be interpreted as the maximal RMS-gain of the
system. If the L,-norm of the inputs and the achieved H_-norm of the system are
both less than 1, the norm of the output from W, will also be less than 1. Since the
output from W, is the control error multiplied by 10 at low frequencies, a steady
state error of less than 10% is achieved. If this steady state gain of W, is raised, the
steady state control error will get smaller, but it will be harder to achieve a H_-
norm of less than 1 for the system. If the breakpoint of W, is moved to a lower
frequency, the control will be slower. Thus W, strongly influences the control

performance.

The alarm signal a is supposed to track the fault f at the frequencies where W, is
large. What a is supposed to be at other frequencies is not defined. Therefore a
will contain “undefined* information, which has to be removed in order to get a
clean alarm signal. To do this, « is filtered with W, .

10" ¢

10°

Figure 22: The approximated performance weights. Wa is dash-dotted,
We dashed and Wd solid.
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After some iterations on the DK-scheme a p-value of 3.92 is achieved for this
interconnection. If a fourth order fit is used for approximating the D-scales the
controller will be of order 30. Simulation results of this design are shown in Figure
23 and Figure 24.

The reference is a step change from 0 to -1 at t=10 in the reference for output two.
The fault is added to the control signal of input 1. It is a ramp from O to 1, starting
at t=100 and stopping at t=200.

The outputs are shown in the top half of Figure 24 (output 1 is shown solid, and
output 2 dash-dotted). The control is slow, and sensitive to actuator faults. The
bottom half of the same figure shows the alarm signals. Alarm 1 (solid) is supposed
to track actuator one faults, and alarm 2 (dash-dotted) actuator two faults. It is
clearly seen that a false alarm is generated on alarm 2 when the fault on actuator
one occurs.

Reference and Fault
1 .5 T L] T T T T T T T

0.5 7

e e s e S R e e e e e

-1.5 1 ! L 1 L ! i | L
0 100 200 300 400 500 600 700 800 900 1000

Figure 23: Reference signal (dash-dotted) and fault (solid) used in the simulations
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Outputs
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Figure 24: Outputs and alarm signals achieved with the setup from the article. Top: Output 1
(solid) and output 2 (dash-dotted). Bottom: The alarm signal supposed to track the fault on
actuator 1 (solid) and the alarm signal for actuator 2 (dash-dotted).

5.2 The correct setup

The simulations presented in the article show a much better behaviour on both
control and diagnostics than I could achieve using the given information. This
indicated that I had misinterpreted the setup in the article or that it was not
complete. After some communication with Matthew Tyler, he sent a copy of the
MatLab code he had used. This code showed some parts that, for some reason, are
not mentioned in the article:

e A weight on the fault, Wf .

¢ A weight on the noise, W,. It is also a pure measurement noise, and does not
enter W_.

¢ A different state space description of the process.

The interconnection really used in the article is shown in Figure 25 and the
additional weights in Figure 26.
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Figure 25: The complete interconnection. y and r are seen
as measurements. The other outputs are to be minimized.

Additional filters

Figure 26: The additional weights. Wf is solid and Wn dash-dotted.
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Figure 27: The simulation results as presented in the article.
The faults and reference signals are the same as before.

-0.2 L
0

The weight W is there to describe the frequency content and amount of

measurement noise. The decrease of the noise level at low frequencies as shown in
Figure 26 is not necessary to achieve a H_-norm of less than 1 in this example.

W, “exaggerates the influence of the fault on the process. This makes the

controller concentrate more on the faults than it would do otherwise, and the
resulting system should turn out to be less sensitive to faults.

The simulation result for the complete setup is shown in Figure 27. Here both the
control and the diagnostics are better. There are no false alarms on the reference
change and the fault on actuator 1 only causes alarm signal 1 to get large. This
means that the control and diagnostic  objectives are  met.

36



6 The inverted pendulum

This chapter contains some examples of integrated control and diagnosis using the
four degree of freedom controller. The process for which the designs are made is
the inverted pendulum. The inverted pendulum was found to be very suitable to do
the designs on since it is a multivariable process, where the two outputs influence
each other strongly and have very different characteristics.

Figure 28: The inverted pendulum

Figure 28 shows a simple sketch of an inverted pendulum. A DC-motor is mounted
in a shaft. A horizontal arm is attached to the motor spindle. At the end of this arm
the actual pendulum is attached. At the end of the pendulum there is a small
weight. The point where the arm and the pendulum are connected is called the
pivot point. When a voltage is fed to the motor, the pivot point will accelerate with
an acceleration proportional to the voltage. The angle 6 between the pendulum
and the vertical line and the angle ¢ between the arm and a fixed horizontal line

are measured. The control task is to balance the pendulum in the upright position
and to keep the arm at a certain angle to the fixed horizontal line.

6.1 The mathematical model

With the state variables

x, =6
X, =% =0
X3 =0
X, =¢

the process model becomes (see for example [9]):
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X = X,
. omgl ml
%, =—Lsinx, +—tucosx,
|7 J
P r
X3 =X
1
Xy=—u
4
la

where m is the mass of the weight at the end of the pendulum, J ) the moment of
inertia, g the gravity, /, the length of the pendulum and /, the length of the arm.
The control signal u is in m/s” . The first two states describe the movement of the
pendulum and the two last the position of the arm.

Linearizing the model given above around [0 0 O O]T , which is the upright position
with zero speed, gives the following state space model:

o

X =X

. mgl ml

Xy =—Lx +—tu
{ I, T,

X, =x,

.1

Xy =—1U

(1]

The linear model is needed for the synthesis. All simulations have been made with
the non-linear model.

6.2 Different designs

A number of designs were made for different setups of uncertainties and faults on
the inverted pendulum. Here only the fault and uncertainty setup and the simulation
results are presented. For a more exact description of the chosen weights see the
MatLab files.

6.2.1 Fault and uncertainty on the input

The first design is for an uncertainty of 10% on the input gain and an actuator
fault. In comparison with the example of Chapter 5, all weights first were moved
up in frequency, so that the relation between process bandwidth and the weights
was roughly kept. The control errors to be minimized are the pendulum angle and
the difference between the arm angle (arm position) and its reference value. The
weights for these two control errors are not the same, which reflects the fact that
the most important task is to balance the pendulum - if it falls it is not interesting to
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keep the arm at a certain position. Therefore the weight on the pendulum angle is
larger. Since the only input to the pendulum is the pivot point acceleration (or
motor voltage), the uncertainty and the fault occur on only one signal.

Angle and Position

0 10 20 30 40 50 60

Alarm

0.04

0.02

-0.02

-0.04

._005 1 1 1 L L
0 10 20 30 40 50 60

Figure 29: Simulation results of the pendulum with an uncertainty of 10%
on the input and an actuator fault. Top: pendulum angle (solid, multiplied by 1000)
and arm position (dashed). Bottom: alarm signal.

In Figure 29 the simulation results are shown. The simulation is made with an extra
gain of 1.1 on the input. The fault is a ramp from O to 1 starting at t=5 and
stopping at t=15. The reference for the arm position is a step from O to 1 at t=35.
Note that the pendulum angle has been multiplied by 1000 in the figure. Otherwise
the angle variations would not be visible.

The control is all right - the pendulum does not sway too much, and the arm
follows the reference nicely. The alarm signal is only large when there is a change
in the fault and not when there is a reference change. If the control is weighted
more false alarms on the reference change will occur. This is shown in Chapter 6.4.
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6.2.2 Fault and uncertainty on the input II

In comparison with the previous design, the only difference made here is that the
diagnostic weight W, is moved down in frequency and made a bit smaller, which

causes the alarm signal to look a bit different than before.

Angle and Position
1 .5 I 1 T T T
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0] 10 20 30 40 50 60

Figure 30: The pendulum with a 10% input uncertainty and actuator fault. The diagnosis
is made at lower frequencies than before. Top: Pendulum angle (solid, multiplied by 100)
and arm position (dashed). Bottom: Alarm signal.

If the weights on the control in this design are made larger, there will not - unlike
in the previous design - occur any false alarms on reference changes, which implies
that the trade-offs between control and diagnostic performance must not be too
large if the diagnostics are made at the right frequencies.

6.2.3 Fault on the input and uncertainty on the output
This design is for an uncertainty of 10% in the sensor gain and an actuator fault.

The main difference to the design in Chapter 6.2.1 is that an extra weight, W,, is
introduced to model the uncertainty. Since all control signals have to be punished,
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the weight W is still there, but is made smaller. The weight on the pendulum angle
is made smaller and the weight on the arm position larger. W, is almost the same
as in the first design.

Angle and Position
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Figure 31: Simulation of pendulum with sensor uncertainty (10%) and actuator fault.
Top: pendulum angle (solid, multiplied by 100) and arm position (dashed).
Bottom: alarm signal.

Figure 31 shows simulation results of this setup. The used fault is the same as in
the previous design. The reference change is at t=30. Also here the control
performance and alarm signal are quite good.

6.2.4 Uncertainty on the input and sensor faults

In the two previous designs actuator faults were considered. In both designs the
weighting on the fault, W, was quite large in order to make the system robust

against as large faults as possible. It turned out to be much harder to make the
system robust against sensor faults, why W, is made much smaller in this design.

Since the fault is smaller the diagnostic weight W, is made larger. Another change
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is that a no longer tracks the faults f . Instead it tracks the “amplified” fault
80+ f, . The control also had to be weighted less and the uncertainty is only 5%.

Angle and Position
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Figure 32: Simulation with 5% uncertainty on the input and sensor faults.
Top: pendulum angle (solid, multiplied by 100) and arm position (dashed).
Bottom: alarm for sensor 1 (solid) and for sensor 2 (dashed).

In Figure 32 a simulation of this setup is shown. Two faults have been used. The
first is a ramp from O to 1 at t=2 to t=12 in sensor 1. The other is a ramp from O to
1 at t=25 to t=35 in sensor 2. A step reference change from O to 1 is made at t=55.

The simulation shows the actual pendulum angle and arm position - not the
measured ones. The controller manages to balance the pendulum despite of the
fault in sensor 1. However, it does not manage to compensate for the fault in
sensor 2. This is not surprising - the last two states in the state space description of
the pendulum build a double integrator, and a bias (which is exactly what the fault
is) on a double integrator is not observable.

The control is as expected slower than in the previous designs. Alarm signal 1 (for
sensor 1 faults) shows a nice behaviour, but alarm signal 2 shows a large false
alarm for faults in sensor 1. This could however be taken care of by some special
decision logic.

In the first setup, where a was filtered by W, a bias was added to both alarm

signals when a fault on sensor 1 occurred. On alarm signal 1 this is good, but for
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alarm signal 2 it is not acceptable. Therefore a is filtered by a special filter which
behaves like W, at the interesting frequencies and suppresses low frequencies

more.
Moving W, to lower frequencies as in the design in Chapter 6.2.2 renders the

alarm signals useless.

Some attempts were made with both uncertainty and faults on the output. This
turned out to be very hard. The pendulum could be kept upright, but good position
control seemed impossible. The alarm signals also showed a strange behaviour.
This indicates that an unstable process with uncertain, faulty measurements is hard
to control.

6.3 Numerator-Denominator uncertainties.

The uncertainties underlying the designs presented so far have all been in the
sensor or actuator gain. An alternative way of modeling uncertainties - the
numerator-denominator perturbation model - is presented in [10]. It represents
perturbations in the form

Ny _, p_NotAy
D, D, +A,

where N, and D, are the nominal numerator and denominator of the process

transfer function, respectively.
The transfer function of the linearized pendulum (omitting the arm position) is
given by

ml,

o _mel,

9 =

P

Letting the parameters m,/, and J, be perturbed to

l
i
JP

can then be modeled as in Figure 33. The block g is there in order to get the same
perturbation in both numerator and denominator.
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Figure 33: Model of a Numerator Denominator perturbation.

This setup turned out to be easier to both control and to make diagnosis on - even
with an uncertainty of 30%.

6.3.1 Low frequency diagnosis

Another thing in common for the three design examples above is that the
diagnostic weight W, is a rather steep band pass filter, just above the process

bandwidth. One idea is to let W, be a low pass filter and a track the fault at all

times - not just when there is a high frequent change. This turned out to be very
hard when the uncertainty was on the input or output. To get a good alarm signal
at low frequencies the control performance had to be made quite bad.

The numerator-denominator uncertainty turned out to work well with low
frequency diagnosis. In the following example there is an uncertainty of 30% in
the “combined” parameter ml,/J,. The weight on the control errors has been

made faster. This also goes for the weight on the fault, which means that the
resulting system is robust against larger errors. Figure 34 shows simulation results
of this setup. The inputs to the system are the same as in the previous simulations
of the pendulum with the fault on the input. The control is relatively fast and
insensitive to faults. The alarm signal tracks the fault very good.

Tracking a fault on the pendulum angle sensor at low frequencies turned out to
work just as good as tracking the actuator fault. As expected, a low frequency
tracking of a fault on the arm position sensor was not possible. Therefore the
“band pass approach* has to be used for this fault. A combined diagnosis, i.e. using
the band pass for arm sensor faults and low frequency detection for the pendulum
angle sensor, did not work well - it was difficult to avoid false alarms on the alarm
signal for the arm position.
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Figure 34: Simulation result of pendulum with 30% numerator-denominator uncertainty
and low frequency diagnosis. Top: Pendulum angle (solid, multiplied by 100)
and arm position (dashed). Bottom: Alarm.

6.4 Choosing weights

In Chapters 5 and 6 the different weights have been discussed a lot - moving them
to higher or lower frequencies, changing the bandwidth or the gain: This section is
a short summary of the ideas and thoughts behind the weights.

W is the weight on the (unfiltered) alarm signal a. Throughout this thesis it has

been roughly unchanged. It is not allowed to skip it totally, since a is a control
signal and must be punished. Choosing W, to be a small constant does not alter the

simulation results received in this thesis very much. The raise of W, at higher

frequencies used here is there to suppress high frequency noise in the alarm signal.
This can also be achieved by filtering the high frequencies of a harder. W, is not

allowed to roll off at high frequencies.

W. is the weight on the control performance. It specifies how fast the control is
supposed to be, and the size of the steady state error. An integrator can be
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introduced in the controller by letting W, get a higher and higher gain at low

frequencies. Achievable control bandwidth and steady state error are limited by the
uncertainty - an uncertainty on the output imposes large limitations, while the
numerator-denominator uncertainty imposes smaller. The diagnostics also impose
limitations on the control performance. If the control is emphasized too much, false
alarms on reference changes will be the case. An example of this is shown in . The
weights used in this design are, with the exception of W, which is made faster and

larger, the same as in the design in Chapter 6.2.1. The alarm signal shows a large
false alarm on the reference change.
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Figure 35: Simulation results of the pendulum with a 10% input uncertainty and
actuator fault. The control is emphasized too much - thus the false alarm at t=35.
Top: pendulum angle (solid, multiplied by 10) and arm position (dashed).
Bottom: Alarm signal.

W, is the diagnostic weight. It can primarily be chosen in two ways: as a low pass

filter, making the alarm signal track the fault at low frequencies, or as a band pass
filter making the alarm signal detect changes of higher frequencies in the fault.

The band pass approach can be used with all of the uncertainties and faults used in
this thesis. Depending on where the fault occurs W, can be placed at different

frequencies - when the fault was on the input W, could be moved to lower
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frequencies, but when the fault was on the output W, had to be chosen more high

frequent.

The low pass approach can only be used with uncertainties that are not too severe,
like the numerator-denominator perturbation. When the low pass approach was
used on a pendulum with a 10% input uncertainty, the trade-off between control
and diagnosis for uncertain plants became apparent - either control or diagnostic
performance had to be to be made worse. One other condition that has to be
fulfilled in order for the low pass approach to work is that the fault must be
observable.

L

system to be more robust against faults. In this thesis W, has been a first order low

is a weight on the incoming fault. Making W, larger causes the resulting

pass filter. It is possible to let it be a constant gain, but this makes it harder to
achieve robust performance. When the fault is on the input W, can be chosen to

have a large static gain. If the fault is on the output W, must be chosen smaller.

W, specifies the amount of and frequency content of measurement noise. This
weight is not allowed to roll off at high frequencies.

W, is the weight on the control signal, and must always be present. It also sets the

u

limit of the input uncertainty. (e.g. W, =0.1 gives a 10% uncertainty)

W, is used as a limit on (if there is any) the output uncertainty, and a weight W,

is used for the numerator-denominator uncertainty.

It is not only the absolute value of the weights that decide the resulting
performance. The relative size is just as important. If (e.g.) a design shows a nice
control behaviour but a somewhat poor alarm signal, raising W, can result in poor

control. This trade-off and other that have to be taken show up automatically when
designing a control and diagnostic module. It turned - for example - out to be
impossible to get a good diagnosis on both sensors and the actuator at the same
time. The alarm signal also had to traded off against the size of the uncertainty. A
large uncertainty makes it hard to get good diagnosis without false alarms.
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6.5 Limitations

One limitation in this thesis is that the controllers have not been sampled. Sampling
the controllers would make it easier to make simulations with noise. Simulating
continuous systems with noise is very hard. Some attempts were made to do this,
but without any greater success.

To be able to sample the controllers they would have to be reduced with some
model reduction technique. Also here some unsuccessful attempts were made - the
reduced controllers did not become small or accurate enough. Trying to reduce the
controllers I experienced some numerical problems in p-tools - the command
szeros which is supposed to compute the transmission zeros of a system gave
different results when called twice consecutively.
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"7 Conclusions

The four degree of freedom controller can be used to design integrated control and
diagnostic modules for plants with uncertainties, but the design procedure is very
difficult - a lot of different weights have to be chosen.

The achievable control and diagnostic performance is limited by the uncertainty
and depends on where and how the faults occur in the plant. The limits vary
considerably with respect to the uncertainty. The faults that can be detected are
mainly additive - multiplicative faults should preferably be detected with some
other method, for example parameter identification.

The H_ - synthesis provides an optimally robust controller for the formulated

problem, but there is no guarantee that the control and diagnostic performance is
optimal, or even good. The results will-never be better than the chosen weights,
why a lot of work has to be done on choosing them so that all requirements are
met. To do this takes a lot of knowledge about the plant and the faults that are
likely to occur. One other problem is that the obtained controllers often are of very
high order, and have to be reduced before they are implemented. It is also possible
that some other norm could be used for the design, i.e. H, or L.
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Appendix A

The MatLab toolbox p-Tools provides commands for H_ - and [l-synthesis. It also

provides several commands for connecting different subsystems to a larger
interconnection structure, and commands for analyzing the resulting controllers
and control loops. This appendix is only meant to be a short presentation of the
commands used in the thesis. For a more thorough presentation see [1].

In p-Tools a system can be represented in two ways:
e as a SYSTEM matrix, or
¢ as a VARYING matrix.

Also there is the possibility of storing things as an ordinary matrix - a CONSTANT
matrix.

A system described by the state space representation

x=Ax-+ Bu
y=Cx+Du

is represented as a SYSTEM matrix as

A B nx
C D 0
0 0 -Inf

where nx is the number of states, and -Inf indicates to the p-Tools functions that
the matrix is a SYSTEM matrix.

A VARYING matrix is a time or frequency response of for example a SYSTEM
matrix, and is represented as

[(.;1 ] Xy

G]

0

[G,] O
0-0N Inf]
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where Inf in the bottom right corner indicates that this is a VARYING matrix. G,
is the response at point i and x, — x,, is the independent variable. N indicates how
many points are represented.

Building an interconnection

The following commands are used to create an interconnection for the design of a
control system.

sys = pck(A, B, C, D)

creates the SYSTEM matrix sys of the matrices A, B, C and D from the
state space representation.

[A, B, C, D] = unpck(sys)

returns A, B, C and D.

sys = nd2sys(num, den, gain)

converts a SISO numerator/denominator transfer function to a SYSTEM
matrix. num and den are vectors containing the parameters of the
respective polynomials.

sys = zp2sys(zeros, poles, gain)
converts zeros and poles of a SISO transfer function to a SYSTEM matrix.
zeros and poles are vectors containing the wanted zeros and poles
respectively.

sys = daug(mat1, mat2, ... , matN)
is best described by Figure 36. daug takes smaller systems and puts them in

a bigger SYSTEM matrix. This can be very helpful when building larger
MIMO systems.
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.................

Figure 36: daug(matl, mat2, ..., matN)

out = minv(sys)

calculates the inverse of the matrix sys, which can be a CONSTANT,
VARYING or SYSTEM matrix.

out = mmult(mat1, mat2, .. matN)

sysic

multiplies the matrices mat1-matN according to Figure 37.

Figure 37: mmult(matl, mat2, .., matN)

forms linear interconnections of SYSTEM and CONSTANT matrices, by
writing the loop equations. To use sysic one has to set up several variables
in the MatlLab workspace. The following is a list of the required variables.

e systemnames is a character string containing the names of the matrices

used in the interconnection. Each named system must exist in the
MatLab workspace before sysic is run. The names are limited to 10
characters, and should be separated by spaces or tabs.

inputvar is a character string containing the names of the external inputs
that are present in the final interconnection. The names are separated by
semicolons, and the entire list is enclosed by square brackets []. A
multivariable input is defined by a number enclosed by curled brackets.
For example noise{3} means that the input noise is a vector of three
signals.

outputvar is a character string describing the outputs of the
interconnection. The outputs are formed of linear combinations of the
outputs of the subsystems and the external inputs. For multivariable
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systems, arguments within parenthesis specify which outputs are to be
used and in what order.

e input_to_sys is a character string which defines the input to the
subsystem sys. If the subsystem name is redlight, then the variable must
be called input_to_redlight. There must be such a string for every
subsystem in the interconnection. It is specified in the same manner as
outputvar. Separate channels are separated by semicolons, and the
order of the inputs in the variable should match the order of the inputs in
the system itself.

e sysoutname is an optional character string which defines what the
resulting interconnection is supposed to be called. If sysoutname does
not exist, then the interconnection is called ic_ms.

e cleanupsysic is an optional character string. If it is set to ‘yes’ the
variables mentioned above will be cleared when sysic is finished. The
default value is ‘no’. The subsystems used in the interconnection are not
cleared.

Commands for analyzing a system

out = frsp(sys, omega)

calculates the frequency response of the system in the SYSTEM matrix sys
for the given vector of frequency points omega (for example created with
logspace). The output matrix out is a VARYING matrix.

vplot(‘axis’, vmat1, vmat2, ...)

plots multiple VARYING matrices in the same graph. The optional
argument axis specifies the plot type, and can for example be

e ivd matrix vs. independent variable

e livm magnitude vs. log independent variable

o liv,m log magnitude vs. log independent variable
* nyq Nyquist plot

e bode Bode plot.
The default value of axis is iv,d.

out = spoles(sys)

54



calculates the eigenvalues of the SYSTEM matrix sys.

out = szeros(sys)

calculates the transmission zeros of the SYSTEM matrix sys.

see(sys)

displays the SYSTEM matrix sys by showing the A, B, C and D matrices.

Commands for controller synthesis

[k, g, dfin, ax, ay, hamx, hamy] = hinfsyn(p, nmeas, ncon, gmin, gmax, tol)

[bnds,

calculates a H_-control law which achieves the H_-norm gfin for the
interconnection structure p. The control law K stabilizes the system matrix
p and has the same number of states as p. The closed loop is returned in g.
ax, ay, hamx and hamy is information about the solutions of the two
Riccati equations mentioned in chapter 3. nmeas is the number of
measurements the controller uses and ncon the number of control signals.
gmin and gmax are the upper and lower limits for the y-iteration. The
iteration stops when the relative difference between test <y-value and
previous ‘y-value is less than tol. Except for those arguments there are three
optional ones : ricmethod, epr and epp. They are not described here.

dvec, sens, pvec] = mu(matin, blk, options)

computes the upper and lower bounds for the structured singular value p of
the VARYING matrix matin. The underlying uncertainty structure is blk.
options lets the user decide which methods are to be used for the
calculations. The output bnds contains the upper and lower bounds of .
dvec contains the D scaling matrices that have produced the upper bound
in bnds. sens is a sensitivity measure of the maximum singular value of
dleft*matin*dright ™ with respect to dleft and dright. It is mainly used in
musynfit. pvec contains a perturbation matrix A which makes I-matin*A
singular.
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[dleft, dright] = unwrapd(dvec, blk)

The D scales contain a lot of zeros, and are stored in vector form (in dvec)
to save memory. They are “inflated* to their proper size with unwrapd.

[dsysL., dsysR] = musynfit(pre_dsysL, dvec, sens, blk, nmeas, ncon)

approximates the D scales in dvec with stable minimum phase SYSTEM
matrices dsysL and dsysR. The first time it is run pre_dsysL must be set
to the character string ‘first’, and then the previous dsysL. sens is the
sensitivity mentioned above and blk is the underlying uncertainty structure.
nmeas and ncon are the same as in hinfsyn.
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Appendix B

% Defines weights, creates the interconnection and iterates.

% The linear pendulum model is assumed to be present in the SYSTEM
% matrix “Process®. There is an uncertainty of 10% on the input. The fault
% is also on the input.

% This is the weight for the control signal. It is also the limit for the uncertainty.
Wu=0.1;

% For punishing the alarm signal
Wa=nd2sys([1000, 1],[1, 1000], 0.0005);

% Reference tracking/control performance

Woctheta=nd2sys([50}], [100, 1]); % For the pendulum angle
Wcphi=nd2sys([1], [100, 1]); % For arm position
We=daug(Wctheta, Wcphi); % Put them together to one weight.

% Diagnostic filter

Wd=zp2sys([-.08+.03", -.08-.03"i, -.00001}, {-14, -15, -15, -1, -1, -1], 6000);

% A band pass filter with poles and zeros at the specified locations.

[WdA, WdB, WdC, WdD]=unpck(Wd); % The post-filter for the simulations.

% Noise filter
Wn=.01"eye(2); % Static gain for the noise

% The fault filter
Wif=nd2sys(10, [1 .01]); % Low pass filter for the fault.

systemnames ="' Process Wa Wc Wd Wu Wf Wn";
% Specifies which blocks are in the interconnection.

inputvar ='[pertin{1} ; f{1} ; n{2}; r{1}; a{1}; u{1}]"
% Specifies the inputs and their order.

outputvar ='[Wu ; W¢ ; Wd ; Wa ; r;Process + WnJ';
% Specifies the outputs and their order.

input_to_Process="Tu +Wf + pertin ]';
input_to_Wi="[f1;

input_to_Wn='[nT;

input_to_ Wu="Tul,

input_to_Wc = '[Process(1);Process(2)-r]';
input_to_Wa="1al;

input_to_Wd ='[ a-Wf ]}

% Specifies the inputs to each block.

sysoutname='System’; % The wanted interconnection name.

cleanupsysic='yes"; % Remove unnecessary variables.
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sysic; % Create the interconnection.

o/
/0

% DK-iteration.

% Variables for the DK-iteration

Nmeas=3; % Number of measurements
Ncon=2; % Number of control outputs
blk=[11 ;4 4]; % Uncentainty structure.
omega=logspace(-3, 3, 30); % A vector of frequencies

[Knew, Gnew]=hinfsyn(System, Nmeas, Ncon, 90, 110, 0.1);
%Compute the first controller

Gnewg=frsp(Gnew, omega);
%Compute response of closed loop.

[bndsnew, dvec, sens, pvecl=mu(Gnewg, blk);
% Compute the D-scales.

[dsyslnew, dsysr]=musynfit(‘first', dvec, sens, blk, Nmeas, Ncon);
% Fit the D-scales with a dynamic system

muic=mmult(dsyslnew, System, minv(dsysr));
% Incorporate the dynamic system in the interconnection.

o/
/o

% Perform second iteration

[Knew, Gnew]=hinfsyn(muic, Nmeas, Ncon, .5, 2, .01);
Gnewg=frsp(Gnew, omega);

[bndsnew, dvec, sens, pvec]=mu(Gnewg, blk);

[dsysInew, dsysrl=musynfit('first', dvec, sens, blk, Nmeas, Ncon);

muic=mmult(dsysinew, System, minv(dsysr));

o/
/0

% Compute the last (final) controller

%[Knew, Gnew]=hinfsyn(muic, Nmeas, Ncon, .1, 1, .1);

[kA, kB, kC, kD]=unpck(Knew);

% Put the controller on the workspace in a form that can be used by

Simulink.
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