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1. Introduction

The switched reluctance motor is a very old motor, but only a couple of decades
ago it was almost unknown. In the last years the motor has been ’reborn’,
and has been implemented in an increasing number of applications. One of its
many advantages relative to other more common motors, as the DC and AC
drives, is the low manufacturing cost. One of the problems with the motor is
its nonlinear characteristics, which makes control hard. The torque tends to
ripple very much. The usual strategy to obtain smooth torque is to measure
the instantaneous current and then implement a current controller. This is
an expensive approach, since the current controller and the sensor need to be
very fast. In this thesis a cheaper solution is discussed, which does not require
the instantaneous value of the current.

A model is developed in Simulink, and the design of the controller is based
on results from simulations on this model.

In the second chapter the motor is described. First a brief introduction is
given, and after that a more detailed description of its characteristics follows.
A short description of the converter and the speed sensor is also covered in
this chapter.

The model is presented in chapter three. First the development of the
model is described, and then the control loop is shown. Finally the implemen-
tation in Simulink is described.

In Chapter four the control strategy is introduced. Here we will also see
how the controller used today works. The control strategy is based on shaping
the voltage in order to get a smooth torque.

In the fifth hapter some simulation results are shown. For comparison some
simulations are done with the controller that is used today.

In the last chapter conclusions are given. A number of suggested improve-
ments are also listed here.



2. The Switched Reluctance
Motor

2.1. Introduction

This chapter gives a description of the switched reluctance motor, and some
of its characteristics needed to understand the control strategies presented in
Chapter 4. For further reference, see [5], and [6].

History

The first switched reluctance motor (SRM) was built already in 1838, in Scot-
land by Davidson. The motor was used to propel a locomotive on the Glasgow—
Edinburgh railway. It was not a complete success; the top speed was less than
what could be achieved by one man pushing. The development of the mo-
tor was interrupted with the invention of the DC motor which was superior
as an electro magnetic energy converter. In the mid 1960’s the research was
continued, but only in the last 15 years, with the development of power elec-
tronics and computer aided electro magnetic design, the commercial potential
has been realized. Today the performance of the SRM is comparable, and in
many aspects even better than the classical DC and AC drives.

A Brief Description

The SRM is one of the simplest motors today. Fig. 2.1 shows the cross section
of a 6-4 motor, which means that it has six stator poles and four rotor poles.
6-4 and 8-6 are the most usual setups, others exist, but are less common.
The poles are salient and only the stator poles (normally) are winded. The
windings are arranged in couples, called phases, so that two opposite windings
always carry the same current. This means that the 6-4 motor has three
phases. The two windings in a phase should cooperate in such a way that the
produced fluxes flow in the same direction through the rotor. Both the stator
and the rotor are laminated to decrease the eddy currents.

In Fig. 2.1 some useful notation is defined, which will be used more or
less frequently throughout the thesis. The position of the rotor is denoted
0. This is defined separately for each phase. In the picture, the angle, 8 for
phase 1 is shown. A more detailed description of the how the angle is defined
follows in Section 2.2. The terms aligned and unaligned are used separately
for each phase. In Fig. 2.1 the rotor is in the aligned position for phase 1.
In the unaligned position the stator pole should be exactly midway between
two rotor poles. Neither for phase 2 nor phase 3 is the rotor in the unaligned
position.

The simplest form of a reluctance motor is shown in Fig. 2.2.

When current is forced into the winding the rotor tends to align with the
stator, where the reluctance is minimized. Minimized reluctance is equal to
maximized inductance. The direction of the current does not matter as long
as the two windings cooperate. In this case the rotor would move clockwise
until it reaches the aligned position (vertical) where it would stop. If we look



o.: Rotor pole arc

B : Stator pole arc

¥: Rotor inter polar arc

8 : Stator inter polar arc

N, : Number of rotor poles = 4

N; : Number of stator poles = 6

q: Number of phases =3  (numbered)
6 : Rotor angle

Figure 2.1 Cross section of a 6-4 SRM.

Winding

Figure 2.2 Simplest form of a SRM.

at Fig. 2.1 again we can see what happens if we force current into the different
windings. If current flows in phase 1 where the rotor already is in the aligned
position, the current does not produce any torque if the rotor is standing
still. If it rotates however, the current produces a torque that brakes the rotor
(whichever direction it moves in). If current flows in phase 2 or phase 3 a
torque is produced that tends to move the rotor in the anti clockwise and
clockwise direction respectively. If the different phases are turned on and off



in the appropriate order, the rotor will rotate continuously.

Comparison

A lot of work has been done to compare the SRM with other electro magnetic
drives. Because of the recent commercial break-through there is still a lot of
research on the motor. It is very hard to make a fair comparison, because the
most advantages give corresponding drawbacks. Of course the application is
essential, in order to determine which motor should be used for a certain task.
Some of the most important advantages of the SRM are the following :

o The motor is very simple, and has therefore a low manufacturing cost.

o In most applications the major losses take place in the stator (the rotor
carries no winding), which is easy to cool.

The motor is brushless, which reduces the maintenance costs.

The torque/moment of inertia-ratio is high.

The speed range is very broad.
The two most important disadvantages are :

e The torque ripple is very high. For a narrow speed range it can be
limited, but especially for high speed, the minimization of torque ripple
is hard.

e The noise is high, especially for large machines.

To make a fair comparison the converter should also be included. Con-
verters for the SRM (see Section 2.4) can be made simple, since the torque is
independent of the direction of the current.

2.2. The Theory of the Motor

In this section we will go more into detail with the operation of the motor.
First we are going to look at some useful definitions. Then we will approach
the motor from the electrical point of view. After that we will look at the
mechanical characteristics. Then we put the theory together and look at the
torque production. We will also see how the speed of the rotor affects the
torque. Then we will have a look at the efficiency and the effectiveness of the
SRM. Finally, we will look at the losses in the motor.

All simulations done in this chapter are based on the model described in
Chapter 3. The motor is run at a speed of 0.8 X nominal speed. The units in
the graphs are explained in Section 2.3. Time and angles are in seconds and
radians, but other quantities are not in SI-units.

Definitions

Here we explain some useful quantities, which will be used in the thesis.



The Position of the Rotor 0 is used to describe the position of the rotor.
Each phase has its own angle, 8, defined. When we use 8, we have to know
whether it is the electrical angle or the mechanical angle. The mechanical
angle, Omech, ranges from 0, when one rotor pole is aligned with a stator
pole, to 27 when the same rotor pole again is aligned with the same stator
pole. That means that 0,,..;, ranges from 0 to 27 in one revolution. In the
electrical case, the angle ,; ranges from 0, at the aligned position, over =, at
the unaligned position to, 2r at the aligned position for the next rotor pole.
All for the same phase. That is

et = (NpOmech) mod 27

where N, is the number of rotor poles. The value of § always lies between 0
and 2.

The relation between the angles for different phases in a motor with 3
phases is as follows:

27
0phaae2 = ophaael - ?

2T
0phaae3 = gphaael + ?

When speed is mentioned, it is always the angular velocity, that is meant.
This is denoted w, and the nominal angular velocity is denoted w,. The speed
can, as the position, also be defined from the electrical or mechanical point of
view. For each mechanical revolution all rotor poles passes a certain phase.
For each rotor pole passing a certain phase one electrical lap is fulfilled. This
means that the electrical speed is N, times the mechanical speed. This will
be explained more carefully in Section 2.3.

Where not explicitly noted the electrical speed and position is meant.

The Phases The number of phases for a motor is denoted ¢. This is equal
to the number of stator poles divided by two.

Where not specially noted we will look at only one phase at a time. The
mutual effects between the phases are then neglected.

The Inductance When the rotor turns, the inductance for a specific phase
changes. The smallest inductance appears when the rotor is in the unaligned
position, and the largest when the rotor is in the aligned position. These two
inductances are named L, and L, respectively.

Electrical Equivalent Scheme

Before we go into detail with the SRM, let us look at a separately excited
DC-motor. Fig. 2.3 shows the equivalent scheme of such a motor.
Here R and L are constants and ug depends on the speed of the rotor.

dé
Ug = kv—

dt

where k, is a constant. This gives the differential equation :



‘ < o

Figure 2.3 Equivalent scheme of a separately excited DC-motor.

) di dé
u=1R+ Ldt +kua
If we multiply both sides with 4, the first term represents the electrical losses,
the second term the energy that is stored in the inductor per unit of time and
the third term the power that produces torque. The stored energy returns to
the source when the source is shut off.
The SRM has a slightly different equivalent scheme. One phase is illus-
trated in Fig. 2.4.

Figure 2.4 Equivalent scheme of a SRM.

Here ¥ is the flux linkage, which is the total flux through the two poles. ¥
has the unit Vs, and thus the time derivative, ¥, is a voltage. The equation
becomes:

d¥(0,i) _, o, 0U(0:0) di  0U(8i) db

u=il+—g 5 a8 @

(2.1)

Fig. 2.5 shows the relation between ¥ and i for different angles, §. These
curves are the magnetization curves for the motor. The slope of the curves
decreases as the flux increases. This is due to the saturation of the iron. When
the iron saturates it looses its magnetical characteristics, and for total satu-
ration, the iron behaves like vacuum (from the magnetical point of view). For
angles near 7 (at the unaligned position) the air gap is large, and the magnet-
ical characteristics for the air dominate the total magnetical characteristics.
This explains why these curves are almost flat.

The definition of the instantaneous inductance is :

!The data needed to plot this is taken from the model described in Chapter 3
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Flux linkage versus current for different angles

25 T
Angles from pl {unaligned) 0
to 0 (aligned)
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o
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Current

Figure 2.5 The relation between ¥ and 1.

L 09(8,17)

Lo,8) = —5;—
That means the slope of the ¥ — i curve. There is also another form of the
inductance that is interesting. This is the global inductance, which is defined

as .

¥(6,1)

]

L(9,1) =

In (2.1) we could also replace the time derivative of the angle by the angular
velocity, w.
The equation now becomes :

u:i-R+L(0,i)-%+-a‘I’a(+z)-w

(2.2)
This is a general expression and could be used in the saturated case. If we look
at the linear, non-saturated case, the curves in Fig. 2.5 become straight lines.
This means that the instantaneous inductance and the global inductance are
the same. Also, the inductance does not depend on the current anymore. We
get the equation:

d

u:i-R+L(0)-d—:+i-dL(0)

db

‘W (2.3)

The third term in (2.2) and (2.3) is the electro motoric force (EMF), built
up by the movement of the rotor. This term is like uy for the DC motor
except that it depends not only on the speed, but also on the position of the

11



rotor and the current. Equation (2.2) is very hard to solve analytically in the
saturated case, Equation (2.3) however, is solvable if we do some further small
approximations. Let us say that L grows linearly with  from the unaligned
(6 = m) to the aligned position (§ = 2r) (which is almost true for small
currents), and w is constant. We introduce the slope of the inductance kg,
and the minimal inductance L, for the unaligned position. ¢ is replaced by %,
and % by %w. The interesting case starts at the unaligned position, where
6 = w. This means that 6 should be replaced by § — w. The differential

equation becomes :

L kL. - 0>n
dd " w(kp(0—7)+ L,)  w(kp(6—7)+ Ly,) -
with the solution
i(6) = = (((0 = m) + b = ) (0 — 7) + ) 0>
where
e
a, krw
L
b=
kg
_R + kpw
- kLw

and () is set to zero.
The step response for the current when the voltage is turned on at 8 = «
is shown in Fig. 2.6.

Step responss tor the current

current — full

1 voltage - dashed

Ampltude
o
o

Figure 2.6 The step response for the current.

The values of the parameters are taken from the motor RRA-90L, explained
in Section 2.3. The motor is driven at rated duty.

The Mechanical Characteristics

Already in Section 2.1 we could see how torque was produced. Now we are
going to calculate how much. From the torque, the speed is easy to calculate.
In this section, only mechanical quantities are used.

12



Flux linkage versus current for different angles

25 T T T
Angles from pi (unaligned) 0
2 to 0 (allgned) TN
.. 2pil3
o151 |
]
x ey
1F K
Wi__..' \ .
pi
0.5F W
0 Kokt L 1 ' s 1 1 L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Current

Figure 2.7 The relation between ¥ and i.

Calculation of the Torque As in the electrical description we will look
at only one phase at a time. To get the total torque we will just sum up the
torque from the different phases.

To calculate the torque we use the coenergy. The instantaneous torque is
given by :

ow'’
r= W {=const (24)
where W' is the coenergy defined as :
W' = / ¥ di (2.5)
0

The first equation is the most general expression for the torque. Both equa-
tions are valid in the case with saturation.

As in the previous chapter we will look at the i — ¥ diagram, shown in
Fig. 2.7. The area under the curve is the coenergy at a given angle.

If we neglect the saturation the curves become straight lines with the slope
L(0). This gives us:

¥ = L(6)-
and

W' = %Liz
therefore

13



_ 1.,dL(0)

T2 de

Note that this formula is valid only if the current is constant and the iron does
not saturate.

There is another interesting energy, the stored field energy, Wy. This
returns to the source when the voltage is shut off.

v
Wy = / i d¥
0
W} is also shown in Fig. 2.7.
Calculation of the Speed 'To get the acceleration of the rotor we use the
following equation :
J-6=T

Here, J is the moment of inertia for the axis and load (if any) and T is the
total torque after the load torque is subtracted. Often the load is proportional
to the speed. In that case we get the differential equation :

J-6+d-6=T (2.6)

where d is called the viscous damping. The speed can be obtained by solving
this differential equation.

Torque Production

Here we will put the electrical and mechanical characteristics together.

The Inductance We start to look at the inductance L as a function of 8
for the linear case. See Fig. 2.8

L

Tolal overlap begins -\

L, 1
Overlap begins
\ Aligned position
L, ) = \\
Unaligned position —
+ 0 mod 27w

ﬁ 0 n 0

Figure 2.8 L as a function of @ in the linear case

Only one phase is plotted. The other phases look exactly the same but
are displaced by :l:%’l. The other phases also have their own angles defined in

14



the same way as the plotted phase with § = 7 in the unaligned position. The
dwells around the aligned and unaligned position come from the geometry of
the poles. The rotor poles are often made a little wider than the stator poles,
which explains the upper dwell. Around the aligned position the overlap is
total over a range equal to the difference between the rotor pole width and
stator pole width, and therefore the inductance is constant. The lower dwell
exists because of the inter polar arc of the rotor is bigger than the polar arc
of the stator. The overlap does not begin immediately after the unaligned
position, and the inductance is assumed to be constant and very small when
there is no overlap. Between the dwells the inductance is assumed to be a
linear function of the angle.

The problem in the nonlinear case is that the inductance depends not
only on the position, but also on the current. Fig. 2.9 shows the inductance
for currents ranging from 0 to 2.2 X rated current. The graph is derived by
numerical derivation in a matrix (see Section 3.1) and is therefore not very
accurate. For high currents the iron gets totally saturated when the rotor is
near the aligned position, and the iron behaves like air magnetically. This can
be seen in the graph. We can also see that for low currents, the assumption
that the inductance is linear is almost true. In this graph there is no upper
dwell, and that is because the motor from which the model is taken, has equally
wide stator and rotor poles. There is only total overlap in one position (the
aligned).

The instantaneous inductance for different currents

currents ranging from 0 to 2.2"rated current

ilow

Inductance

i high

3
Theta (rad)

Figure 2.9 L as a function of 8 in the nonlinear case.

Instantaneous Torque with Ideal Current From the previous subsec-
tion we know that in the ideal case, i.e. linear characteristics and constant
current, the torque can be expressed as :

1,dL
T=3"%

This means that when the inductance is increasing a positive torque can be
produced, and when the inductance is decreasing the motor can work as a

15



generator. The ideal current waveform for motoring is therefore a constant
current for 6 ranging from the beginning of overlap until the beginning of total
overlap, and zero current for other angles. This gives constant torque. The
current and inductance are shown in Fig. 2.10

L,

Lot
|

0 mod 27

Figure 2.10 The ideal current for motoring in the ideal case.

It is essential that we have an overlap of increasing inductance between the
phases. If not, the motor will not produce torque during the whole lap, and
it would fail to start for some rotor angles.

If we want to calculate the torque for the nonlinear case we will have to use
expression (2.4) from the previous subsection. The problem is that we need ¥
as a function of ¢ to calculate W'. This relation is not described analytically.
Therefore the torque can only be ’calculated’ graphically. Fig. 2.11, illustrates
the energy converted during a small change in §. Together with (2.7) we get
the instantaneous torque.

Flux linkage versus current for different angles
T T T T T

25
Angles from pi (unaligned) L @
to 0 (aligned) ARt LY
2_
. 2pl/3
o 15[ dw :
o
g
[=
= 1
E] |
'S ]
1 |
1
|
oy PR |
05 f
I
|
]
]
0 ) 1 i il 1 i 1 L

Current

Figure 2.11 Ilustration of the energy converted during a small change in 6.

T~ — (2.7)

i=conat
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where

A0 - 02 - 01
AW =W}, - W,

Note that the current must be held constant.

If we simulate the instantaneous torque production with the ideal constant
current, the torque will not be linear. This can be understood when we look
at the model described in Chapter 3.

Average Torque with Ideal Current Often the average torque is more
interesting than the instantaneous. The average torque can be obtained in a
similar way as the instantaneous. If we plot ¥ and ¢ continuously as the rotor
turns (i.e. for increasing ), we get a loop in the ¢ — ¥ diagram. This loop is
called the energy conversion loop. In Fig. 2.12 the energy conversion loop is
plotted for the ideal current shown in Fig. 2.10.

Flux linkage versus current for different angles

25 T ¥ T T
Angles from pi (unaligned) et 0
1o 0 (afigned) Sttt
2.
.. 2pif3
015 1
o
g
=
*
=1
o
1 =
oer® o
0.5
0 1 1 I i 1 i | i i
0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Current

Figure 2.12 Illustration of the energy converted in one cycle with the ideal cur-
rent.

The loop is plotted for one phase during one cycle. This means that 6
ranges from 0 to 2. Normally, only a part of this range is needed to get a
closed loop (6 ranging from the beginning of the overlap to the beginning of
total overlap). Outside this range ¢ and ¥ should both be zero. The area inside
the closed loop represents the energy that is converted. To get the torque we
just divide this energy by the change in ypech. Here we must use p,ecp instead
of 6 (we want the 'mechanical’ torque). We use

bet = (Omech Ny) mod 27
where

0o =27

17



and N, is the number of rotor poles, to convert it. Note that this is the torque
produced by one phase. To get the total torque we have to multiply this by
the number of phases. This gives us:

_ N,
T = Wq__’
2T
where W is the energy and ¢ the number of phases. This formula is also valid
for other current profiles. In the case with ideal current, W can be obtained
from Wy, . o+ total overtap — Whegin of overlap: 10 Fig- 2.12, we can see that if we
have current also in the dwells, we win a little extra torque. In the non ideal

case the inductance is not constant in the dwells (as we have already seen).

From Voltage to Torque The ideal current is of course impossible to pro-
duce. As the voltage is limited and the circuit contains an inductor, the rise
and fall time of the current is also limited. Let us instead see what we get if
we hold the voltage constant in the motoring region. From Equation (2.1 we
can see that the flux linkage can be derived from the voltage and current as :

¥ - / ‘(u— Ri) dt (2.8)

If we neglect the term Ri (can be done if u 3> Ri, which usually is the case),
the flux linkage will be equal to the voltage-time surface in a t — u diagram.
If the speed is constant, the voltage—angle surface can be used instead. The
instantaneous current can then be achieved from the magnetization curves. A
problem appears when we turn the voltage off, which we do when we leave
the motoring region. The flux-linkage, and the current will not return to
zero. To make the current return to zero, we have to use negative voltage
during a certain time. The time is chosen so that the surface with negative
voltage equals the surface with positive voltage. To avoid a non zero current in
the generating region (which would result in a negative torque) both surfaces
should lie in the motoring region (m < § < 27). Then the flux linkage and
the current returns to zero before the generating mode is entered. The torque
can be calculated as before, but when we calculate the instantaneous torque
we have to choose small Af in (2.7) so that the current can be considered
constant during this interval. The average torque, can be calculated just as
before. In Fig. 2.13 the voltage is plotted in the § — L diagram together with
the current. The corresponding energy conversion loop is also plotted.

If we look at the current and compare it with what we got in Fig. 2.6,
which is only valid for the linear case, we can see a clear difference in the end
of the range with positive voltage. This is due to the saturation, which gives
a higher current for a certain flux.

The instantaneous torque that corresponds to the case in Fig. 2.13 is shown
in Fig. 2.14 for each phase.

We can see that the torque ripple is extremely large. The total torque is
almost zero at certain times. In Section 4.3 we will see what can be done to
decrease the ripple.

Speed Dependency of the Torque

In the previous section we could see the torque produced when a square wave
shaped voltage was applied in the motoring region. The simulation was done
with a constant speed of 0.8 X wy, (wn, = nominal angular velocity).

18



Voltage, Current, Flux and Inductance versus Theta
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Figure 2.13 The voltage and current together with the induction, and the energy
conversion loop.

Torque for the three phases vs Time
Phaset = full
Phase2 = dashed ]
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Figure 2.14 The instantaneous torque for all three phases.

Torque Production at Low Speed Let us see what happens if we decrease
the speed, but keep the same voltage. Fig. 2.15 shows the voltage, the current

and the flux, with the corresponding torque for one phase at two different
speeds, w = 0.8 X w, and w = 0.73 X wp,.

As we can see the torque increases when the speed decreases. The reason

for this is the flux, which becomes higher for a lower speed (this can be hard
to see in the graph). The flux is proportional to the voltage-time surface,
which (of course) becomes larger as speed decreases. When the flux increases,
the current will also increase, as we know from the magnetization curves (see
Fig. 2.5). As the flux and current increase, the energy conversion loop spreads
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Figure 2.15 The torque produced at slightly different speeds

out, and more energy is converted, for the same change in §. If we want the
same amplitude of the torque for a lower speed we simply decrease the voltage.

So far we have only had a positive voltage during the first half of the
motoring region. The reason for this is that the flux (and the current) must
return to zero before the generating region begins. It is the voltage-time
surface that gives a certain flux. This means that if the amplitude of the
positive voltage is lower than the amplitude of the negative voltage, we can
have a positive voltage during more than half of the motoring region. In
all simulations this far, the maximum amplitude, which is the same for the
positive and the negative voltage, has been used. The maximum voltage is
denoted V..

If we decrease the voltage to get less torque, the shape of the torque will
change as well as the amplitude. In Fig. 2.16 we can see that we can only get
the same amplitude of the torque if we decrease the speed (the speed in the
right graph is only 0.5 X wy,). The shape of the torque then also changes. This
is a problem when we want to control the motor as we will see later.

As we have positive voltage over a long time the total overlap is almost
reached before the voltage is switched. When the rotor is in (or near) the
region of total overlap and the current is not too low, the inductance will be
small (the iron is saturated). This means that a small increase in flux results
in a large increase in current. This can be seen in the upper right diagram in
Fig. 2.16. This can also be understood if we look at the magnetization curves.

Torque Production at High Speed Let us increase the speed above 0.8 X
wy,. Fig. 2.17 shows the voltage, current, flux and torque for one phase, with
w = 0.8 X wy, and w,, = 1.4 X w, respectively.

The shape of the current for the higher speed looks very much like in the
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Figure 2.16 The torque produced at different speeds with different voltages

linear case (see Fig. 2.6). The reason for this is that the flux is always so low
that the iron never saturates.

As we could expect the torque decreases as we increase the speed. The
time with a positive voltage is shorter which means that the flux is smaller.
This means that the current decreases, and the energy conversion loop shrinks.
Less torque is produced.

Now we have a problem. The voltage is already maximized, and we need
larger torque.

Advancing the Conduction Angle The angle for which the voltage is
turned on is called the conduction angle or 6,,,. Until now this angle has been
exactly where the overlap of the poles begin. Before the overlap begins, the
inductance is very low due to the large air gap between the rotor and the
stator. Still (2.8) for the flux is valid :

\Il:/:(u—Rz')dt

where R is the resistance of the copper windings, which is very small.

If we turn the voltage on before overlap, the current will rise very fast as
the inductance is very low. The current only ’sees’ the small resistance, R.
Now two things can happen : if i-R becomes comparable with u, the increase in
flux slows down, which makes the increase in current smaller. If however, the
overlap is reached before the current gets large enough, the current will start
to fall as the inductance becomes large. This is what happens in Fig. 2.18
where the conduction angle is set to w, and V = Vy4.. The speed is again
1.4 . w,. The graph also shows where the overlap begins.
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Figure 2.17 The torque produced at different speeds

For the highest value of the current in this example, the product i - R is
less than 10% of u, which explains why the flux is almost linear.

What we can see is that the torque is much larger than it was before with
the same speed. It is even larger than it was in the slower case. This is because
the current is already large when the overlap begins. What we have lost is
efficiency. The torque produced before the overlap is very small. And as the
positive and negative voltage-time surfaces must be equal, the voltage must
be switched to negative earlier than before. This means that the voltage is
shifted towards smaller angles (to the left in the graph). We use current where
we do not need it, and we use less current where it really produces torque.
Another problem is that the shape of the torque is changed again which makes
the control harder.

The maximum advance of the conduction angle, if we do not want to get
negative torque, is a conduction angle of 7 (as in the example above). If we
turn the voltage on earlier we will get negative torque. At this time the rotor
pole that was the last to pass the stator pole for the phase that is about to
be turned on, is still nearer the stator pole than the next rotor pole is. If
the previous rotor pole has reached an angle where it does not overlap the
stator pole anymore, the negative torque will be very small. If it however, still
overlaps the stator pole the negative torque will be substantial. If we again
look at the inductance plot, Fig. 2.19, for the linear case we can see where
different torques are possible.

Note that a negative torque for one phase does not mean that the total
torque is negative. For the 6-4 motor there is always at least one (sometimes
two) phases that can give positive torque.

In Fig. 2.20 the simulations have been done with very high speed (w =
1.76 X wy, is the rated top speed) and low voltage. Still we get a large torque.
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Figure 2.18 The Voltage, Current and Flux for 6on =7
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Figure 2.19 Angles where negative and positive torque production is possible.

In the case with the earliest conduction, the current does not rise as before.
This is because the inductance is still high (the previous rotor pole still overlaps
the stator poles) when the voltage is turned on.

Delayed Turn-off Until now we have always switched the voltage to a
negative value in time so the flux and current reaches zero before the generating
mode is entered. The angle where the switching takes place is called 6,54, and
the angle where the flux and current reach zero is called feng. In Fig. 2.21 we
can see how it looks when we switch later than what would be needed to avoid
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Figure 2.20 Simulation at very high speed and very early conduction.
V = 0.55 - Vg.. The vertical dash-dotted lines represent the end of overlap for
the previous rotor pole, the unaligned position and the begin of overlap respectively.

negative torque.

The current and torque almost look like before (compared with Fig. 2.17,
right), but if we zoom in when the current starts to drop we can see a clear
difference. The two currents, and the corresponding torques (with and without
delayed 6,5¢) are shown in Fig. 2.22.

The current in the case without delay of course starts to drop before the
current in the case with delay (The drop starts when the voltage is turned
negative). The shapes of the currents are also different. After the aligned
position, the current in the case with delayed 0,¢; first drops very slowly,
and then faster and faster until it reaches zero. This is due to the inductance.
Near the aligned position it is very high. This stops the current from changing
fast. As the rotor turns, the inductance decreases, allowing a faster change in
current.

For the non delayed case we can see something we did not see before. The
current becomes zero slightly before the aligned position. This is due to the
term R in the calculation of the flux, see (2.8). This means that the rate of
change in flux is a little less than u, when u is positive, and a little greater
negative when u is negative. The flux rises slower than it falls, which makes
it reach zero before the aligned position.

The difference in torque is that in the delayed case it is (of course) positive
longer. After the aligned position it gets negative as expected. The shape is
also changed slightly. As when we advanced the conduction angle we loose
efficiency also when we delay 0,4¢.
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Figure 2.21 Simulation at high speed with 8¢n4 = 7.68, which gives 8,55 = 5.76.
The vertical dash-dotted lines represent the unaligned position, the beginning of
overlap, and the aligned position respectively.
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Figure 2.22 Zoom in of the current and torque from Fig. 2.17 and Fig. 2.21. The
full curve is the current without delayed o5, and the dashed is the current with
delayed 8o4¢. The vertical dash-dotted line represents the aligned position.

Efficiency and Effectiveness

There are two quality measurements with respect to power: efficiency and
effectiveness. Efficiency is the quotient of the output mechanical power and
the input electrical power. For motors (in general) this is :
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The effectiveness is a measurement of how much of the input power that is
converted to energy compared with the power that returns to the source after
each cycle. All of this current does not result in losses. Some of it is lost as
extra Ri2-losses, but the worst thing is that the converter must be dimensioned
for higher power. As we will see the effectiveness depends on whether the iron
saturates or not. Fig. 2.23 tries to explain how the saturation affects the
effectiveness. The curves are the magnetization curves for different cases. The
surfaces in the graph represent energy. This is explained in the beginning of
the section, see Fig. 2.11.

Linear case Typical practical case Case with extreme saturation
¥ ¥
¥
aligned aligned AW, aligned
AY A9
A0
............. N A6
AY

~unaligned unaligned ""\—z’n’:;ligned
- i i i

aw, = L aw, AW, > % AW, AW, & AW,

Figure 2.23 Definition of energies for a small step in 6. Left: The linear case.
Middle: Typical practical case. Right: Idealized case with extreme saturation.

It is assumed that the current is constant over the step in 8. AW, rep-
resents the energy that is taken from the source during the step in 8. AW,
(shaded) represents the energy that is converted to mechanical work during
the same step. Effectiveness is defined as the quotient :

AWm
AWg

Note that the input energy W, is the net energy, after the losses are sub-
tracted (except for the extra Ri% losses). For the linear case, only half of
the input energy is converted. The surface representing the input energy is
a rectangle, and the surface representing the converted energy is a triangle
with the same base and height. For the case with very high saturation (right
in the graph), almost all the energy is converted to mechanical work. For
the practical case the effectiveness is something in between. This means that
saturation is essential to get a high effectiveness.
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Losses

The losses from a complete SRM drive system consist of motor losses and
converter losses. More details can be found in [7] and [2]

Motor losses The motor losses can be divided into :

e Copper losses in the stator windings.
o Iron losses (hysteresis and eddy current losses).
e Friction and windage losses.

e Stray load losses.

The copper losses, which only occur in the stator windings, are recognized
as RI%-losses. These can be seen already in (2.2) for the voltage, in the R - -
term. After multiplying both sides with i we get the power on the left side,
and the Ri%-losses on right.

The iron losses consist of two different parts, the hysteresis losses, and the
eddy current losses. The hysteresis losses come from the energy needed to
remagnetize the iron. The surface encapsulated by the curves in Fig. 3.1 (see
next chapter) represents the energy lost in one magnetic cycle. These losses
are neglected in the model. The eddy currents are induced in the iron by the
changing flux. These losses are limited by the laminations, but not completely
eliminated. These losses are not included in the model either. The friction
and windage losses depend highly on the application. Normally these losses
are proportional to the speed, but in some cases, for example for fans, they are
proportional to the speed square. In the mechanical model these are included
as d in the Gppech-block (see Section 3.3) . Here they are assumed proportional
to the speed. Stray load losses are included in the model as Load.

Converter losses The converter losses are negligible compared to the mo-
tor losses. In thermal design however, it is necessary to estimate them.

Control Problems

In this section we are going to have a short look on what problems come up
when we want to control the speed of the motor. We especially want to obtain
two objectives with the controller:

e Small torque ripple
e High efficiency

Both should be valid over a broad speed range, and for different loads. As we
have seen in the previous sections there is a trade off between the two demands.
As we will see in Chapter 4, most of the work done when implementing our
controller is concentrated on minimizing the torque ripple. The efficiency is
not taken into account.

The problem with the controller to be implemented is that the instanta-
neous current is not measured. The reason for this is that controlling the
current demands a very fast controller, and a fast measurement device for the
current. The only measured data is the speed, the position and the mean of
the current. To minimize the torque ripple, a suitable shape of the voltage
must be determined. With the speed sensor explained in Section 2.5 and a
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normal moment of inertia coupled to the motor, there is no chance of esti-
mating torque ripple from the speed. This means that the shape controller
will work as a feed forward controller (without feedback). The appropriate
shape could be determined from the speed and the mean of the current. Note
that the shape of the voltage does not only mean the angles for turning it on
and off, together with the amplitude. We should also be able to change the
amplitude ”inside” a cycle. In Chapter 4 the control strategy will be discussed
in detail.

2.3. The RRA-90L

The RRA-90L is a switched reluctance motor developed by Emotron AB, in
1988. The model used for the simulations is based on this motor. It is a three
phase motor, with four rotor poles. Each stator pole carries a winding of 252
turns. The windings are coupled in parallel between the poles for each phase.

In Appendix A the motor data, the normalization factors and the normal-
ized parameters are given. The design of the motor looks like in Fig. 2.1, but
the stator pole width is equal to the rotor pole width.

The Conversion of Quantities

When the rotor turns one fourth of a lap (there are four rotor poles), the
change in the 'mechanical’ angle is 7 /2, but the change in the ’electrical’
angle is 27. After this everything repeats itself. This means that the speed is
different for the two definitions of a revolution. From the electrical point of
view everything runs four times faster (four rotor poles). This can be seen as
a gear from mechanical quantities to electrical. Fig. 2.24 shows how it can be
seen. Not only the speed has two definitions. Also the torque and the moment
of inertia will be different at the different sides of the gear. The power and
energy must be the same on both sides. This means that :

P = ThechWmech = Tawer
1
E = 5 mech"‘-’vmzch.2 = EJelwelz
where P is the power and E is the energy. We already know that we is four
times Wyeen. This leads to :

1

Tel = ZTmech
1

Jel b R‘Imech

Now all quantities are defined from the electrical point of view.

Normalization

In the model (see Chapter 3) all quantities are normalized so they get unit free.
The new ’unit’ we call PU (Per Unit). The advantage of this is that if we
use the same motor, but change one parameter, for example the number of
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SI-units ? PU

mechanical s_ electrical !

Opase = D mechn * K
Toase = Timech k2

J base = JmechN ' k3

Omech : Oel = Opech * Ky W= W /‘Dbase
Tmech Tel = Tmech * k2 i T= Tel/ Tbase
Jiech Jel = Jimech - k3 i I= Jel /Jbase

kl = R/r

k,=r1/R

ky=(r/R)

Figure 2.24 The conversion between electrical and mechanical quantities can be
seen as a gear. The suffix N denotes nominal.

turns/winding, we can still use the same model. We only have to change the
normalization factors. The factors are chosen so that the nominal (electrical)
speed becomes 1 PU. The factors are given in Appendix A.

In Fig. 2.24 the conversion between SI-units and PU are shown. If we
for example want to convert a mechanical torque of 10 Nm to PU we do the
following :

_ T _ %Tmech _ %10
h Tbaae B Tbaae - 5.6

When we go between units on the mechanical side to PU we must go via
the electrical side.

Every time an integration takes place in the model, the quantity (which is
in PU) to be integrated is multiplied with a time (in seconds). The result then
comes out with the unit seconds. To go back to PU, we have to multiply the
quantity with a normalization factor with the unit s™1. wpg,e is used for this.
Integration takes place on three places in the model (see Section 3.3). After
all these integrations, the result is multiplied with wpese. The block doing this
is called PUConv.

From now on all quantities are in PU unless noted.

Tpu PU =0.45 PU

2.4. The Converter

Between the controller and the motor we need a power circuit. The controller
asks for a voltage between —Vy. and +Vy., and as the power source only
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supplies the constant voltage +Vy., we need a converter. The converter for
one of the phases (the others look exactly the same) is illustrated in Fig. 2.25.

+Vy ©
T, -
|
D, /A
C== L(e,i) 3 Phasel
D, /\

T

Qe

Figure 2.25 The converter circuit for one phase. L represents the inductance for
phase 1.

The voltage Vg is easy to obtain. We simply open the two transistors T3
and T5.

If we want a voltage between 0 and V., we have to chop it. This is done by
keeping one of the transistors open and switching the other one on and off at
a certain frequency, f,. The duty cycle, d, is the time the switched transistor
is open divided by the switching time, ?1: d is then chosen so that

d= Vdeaired
Vdc

Negative voltage can only be achieved when a current flows through the
windings. By closing both transistors the current continues to flow back to
the source through D; and D,. The current can never be negative (i.e. flow
backwards through the windings) because of the diodes. Normally (in motor-
ing applications) a voltage between —Vj. and 0 is not interesting, because the
reason for having a negative voltage is only to remove the current. In most
cases this should be done as fast as possible. As we will see later however,
there will be cases where it could be useful with a voltage between —Vj. and 0.
This can be achieved by leaving one transistor open, and switching the other
one on and off.

The chopping method where all three values +Vj., 0 and —Vjy. are used as
above, is called soft chopping. Another chopping method that only uses +Vg
and —Vj. can also be used. This is called hard chopping. Here however, only
soft chopping will be used.

The capacitor, C, is used for stabilizing V..
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2.5. The Speed Sensor

The speed sensor is based on the Hall-effect. The stator is equipped with three
Hall-elements, each between two stator poles as shown in Fig. 2.26.

——— Hall-element
(Phase 2)

——— Hall-element
(Phase 3)

\ Hall-element
(Phase 1)

Figure 2.26 Placement of the hall-elements.

Each element gives a logic high when a rotor pole passes, which is at the
unaligned position for each phase. This is reset to low when rotor pole reaches
the aligned position. The signal from the three elements at constant speed is
shown in Fig. 2.27.

/ Ist rotor pole / 2nd rotor pole / 3rd rotor pole / 4th rotor pole

Phase 1

unaligned aligned unaligned aligned

Phase2

Phase 3

' One mechanical lap !

Inductance - dotted
Hall-element signal - full

Figure 2.27 The signal from each of the three hall-elements together with the
inductance for the corresponding phase. The rotor rotates at constant speed.

As we see each phase generates four pulses during one mechanical lap.
When we sum up the pulses from the elements we get a pulse train as shown
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in Fig. 2.28.

CA I O Y Y Y e Y e e e s o N e O

One mechanical lap

Figure 2.28 The pulse train when the pulses from all elements are summed up.

From the frequency of these pulses, we get the speed. From the speed,
together with the position for certain angles (at the unaligned, and the aligned
position) the position (at any time) can be derived.

Included in the sensor is also a filter after the speed signal.
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3. The Model

In this chapter the model used in the simulations will be presented. The
measurements and calculations to obtain the model were made on the RRA-
90L by the Department of Industrial Electrical Engineering and Automation,
(IEA), at Lund Institute of Technology.

3.1. The IEA Model

The model was acquired in the following way. The rotor was fixed in a cer-
tain position (angle, 8). An alternate voltage of 50 Hz was applied over the
windings for one phase. The amplitude of the voltage was chosen so that
the current peaks almost reached 20 A which is the maximal current allowed.
When the voltage and current were stabilized they were measured 600 times
during 3 periods. That is, with an interval of 7, = 0.1 ms. The flux was then
calculated using (2.8) in the following way:

U =T, 1+ (uk — Rik)T, k=1,...,600.
Wy chosen arbitrary

where R is the resistance of the windings.
When all calculations were made the mean of ¥ was subtracted from all
¥-values. The magnetization curves are shown in Fig. 3.1.

Figure 3.1 The magnetization curve for the motor at a certain angle.

The lap was run through three times. For negative values of the flux, the
curve was first folded in the ¢ axis, and then in the ¥ axis. To eliminate the
hysteresis, the mean of the 12 curves was calculated.

This was repeated for 30 angles ranging from unaligned to aligned (i.e. from
7 to 2m). The curves were then folded in § = 7 to cover the whole electrical
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Figure 3.2 ¥ = f(3,0).

revolution. All measurements and calculations were made in SI-units, which
afterwards were converted to PU. Fig. 3.2 shows ¥ as a function of ¢ and 6.
The magnetization curves from Fig. 2.5 are recognized here.
In the MatLab Simulink-Model the current as a function of flux and angle
is used instead (as we will see later). This function is plotted in Fig. 3.3.

Current

0.5+

Theta (rad) 0 o

Psl

Figure 3.3 = f(¥,0).

As we have seen before the magnetization curves can also be used to cal-
culate the instantaneous torque. This is however, very complicated and the
precision could be lost when derivating and integrating in the matrices. The
torque was instead computed as a function of the current and the angle us-
ing a program called ACE, developed by ABB. This program uses Maxwell’s
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equations and the finite element method to calculate the torque from the
magnetization curves. This calculation was also done by IEA. The function is
shown in Fig. 3.4. In Fig. 3.5 the same function is shown in 2-D for r < § < 27
for six different currents.

10~

o 1
A

R
\

A
S

ALLTLI AL

0
Theta (rad) 0 Current

Figure 3.4 T = f(3,9).

-

3.5 4 4.5 5 5.5 6

Figure 3.5 T = f(0) for six different constant currents.

The graphs show us that even if we could achieve the ideal current described
in Section 2.2, Fig. 2.10 the torque would not be linear.

Now we have three matrices (256 x 256), from which T = f(i,0) and
i = f(¥,0) will be used in the MatLab Simulink-Model.
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3.2. The Control Loop

Before we look at the Simulink implementation we will have a look at the

control loop.
Fig. 3.6 shows the whole control loop. The blocks (¥, 8) and T'(7,0) are
the nonlinear functions described as matrices in the previous section.

[Fhied Load
F{mmz Disturbance
hisa 1
T
T 1 i Hy—{ 16,0 [ —HH® G [958+ L |8
R
Filter iz
i
U1 Controller
Wper

Figure 3.6 The control loop

G'mech is the mechanical transfer function described by (see (2.6)):

1
Js+d

Gmech —

where J is the moment of inertia and d is a load proportional to the speed, i.e.
viscous damping (friction). Load disturbances are added to the total torque
directly.

The inner loop represents the equation for the flux, see (2.8). The current
times the resistance, R, is subtracted from the voltage and integrated. From
the integrator comes the flux which gives the current through the #(¥,8)-
function. The torque is then obtained through the T'(7,8)—function. To get
the total torque, the torques from the different phases are summed up.

The current is filtered through a low pass filter and connected to the con-
troller (the instantaneous current is assumed not to be measured). The filtered
current can be used as a measurement of the load.

3.3. The Implementation in MatLab Simulink

This chapter gives a description of the whole system implemented in MatLab
Simulink. For details about MatLab Simulink see [3].

Fig. B.1 shows the block diagram of the system with the process and the
controller. The speed sensor and the converter circuit are considered ideal and
are therefore not included in the system. The controller will not be described
here, but in Section 4.4.

36



The controller uses the speed, w, the desired speed, wyey, the position, 6,
and the mean of the current, 1, as shown in the control loop. It also gets the
instantaneous current which was supposed not to be measured. The reason for
this will become clear later. The controller delivers a voltage for each phase
to the process. Here the three inner loops are hidden in the ’Process’ block.
From this block comes the total torque, the filtered current and instantaneous
current for each phase. The currents are directly fed to the controller, and the
torque is connected to the mechanical transfer function, Gypecp, after the load
disturbance is subtracted. In Gech the speed is calculated, which is fed to
the controller, and also used in the computation of the position. The position
is fed to the controller and the process.

Here follows a brief description of the blocks.

The Process Block

The process block is shown in Fig. B.2. This block contains the three inner
loops (one for each phase), and the computation of the torques. The inputs
are the voltage and the position angle, . The voltage, which contains the
voltage for all three phases are connected to their respective phase. @ is re-
calculated for each phase and also connected. Each 'Phase’ block delivers the
instantaneous torque, which is added to the total and fed to the out-port. The
"Phase’ blocks also deliver the instantaneous currents which are summed up,
filtered and sent out. The instantaneous currents are also fed to the out ports.

The ’Phase’ Block The 'Phase’ block for one phase is shown in Fig. B.3.
As in the control loop, the inner loop represents the equation for the flux,
see (2.8). The current times the resistance, R, is subtracted from the voltage
and integrated. From the integrator comes the flux which immediately is
converted to PU with the 'PUConv’ block (as explained in Section 2.3). To
get the current we use the matrix, that was presented in the previous section,
together with the flux and the angle. First however, we must scale both of
them, to know which column and row to look in. The flux ranges from 0 to
something greater than zero in PU. The angle ranges from 0 to 2. They
are both scaled to range from 1 to 256 (the matrix dimension is 256 x 256).
The 'Look up table’-block automatically interpolates linearly for non integer
values. The current is used both to calculate the flux for the next sample, and
to calculate the torque. The torque is computed from the scaled current and
the angle in the same way as the current above.

The Scaling Blocks The 'Theta Scaling’ block is shown in Fig. B.4. This
block is used to scale the real value, 8, to a row or a column in a matrix. The
real value is first scaled to a value between 0 and 255. Then 1 is added to
make the value fit as a row or column in the 256 x 256 MatLab matrix. The
"Psi Scaling’ and 'Curr Scaling’ blocks look the same.

The Mechanical Transfer Function Block

The 'Gpecn’ block is shown in Fig. B.5. This block represents the transfer
function described above. It computes the speed from the net torque. After
the integrator we must go back to PU (see Section 2.3). This is done with the
"PUConv’ block.
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The ’Speed to Position’ Block

The 'Speed to Position’ block is shown in Fig. B.6. This block integrates the
speed to get the position. After the integrator we must again go back to PU
(=radians) using the block 'PUConv’ (see Section 2.3). The position must
be made periodic ranging from 0 to 2w. This is done by the "Theta Periodic’
block.

The Controller Block

The controller block takes the speed, the current (instantaneous and filtered)
and the position, and delivers the voltage for each phase. This block will be
explained in Section 4.4.

3.4. Approximations in the Model

Then model is based on measurements on the motor, and calculations using the
commercial program ACE, developed by ABB. When generating the ¥ — -
curves the hysteresis effects are eliminated. The copper losses are included
with the inner loop. The effects of the delay of the current one sample can be
neglected. The matrices are generated by interpolation, using the 5th order
spline algorithm. The two major approximations are that the converter, and
especially the speed sensor are considered ideal.
The time constant of the inner loop is :

where the inductance depends on the position of the rotor and the current.
For the worst case (the smallest time constant), we should use the inductance
for the unaligned position, L,. The time constant becomes :

L, 015-107°

———— = . . -5
7 T4 s=8.15-10""s

The sample time, 7, should be about a tenth of this. A sample time of
about 10~° has proved to be good. The integrations done in the simulations
use a fifth order Runge-Kutta algorithm. The inner loop (the current feed-
back) is made discrete, and the outer (T — w, w — 6§ and the controller) is
made continuous. In reality it is the other way around. The inner loop is
made discrete to have control of the sample time. Even if it had been made
continuous in the model, it would have been sampled in the simulations. The
controller is in reality event based. It should be sampled every time a new
cycle begins. This means that the sample time would change with the speed.
MatLab Simulink does not provide such blocks, therefore a continuous block
is used instead.
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4. The Control Strategy

4.1. Motor Control in General

In this section we will discuss the usual way to control the speed of a motor.
Fig. 4.1 shows the control loop.

Speed controller Torque model Cuirent controller Power clectronics  Molor+ mech. model
, of T . i o Vv [0))
Lt . G, i=f(T) »ﬁo—~ G, G G,
1

Figure 4.1 The normal way to control the speed of a motor.

The first controller computes the torque needed to get the appropriate
speed. A model is then used to calculate the current that corresponds to the
torque. For the DC machine this is just a constant, but for the SRM it is a
nonlinear function, that depends also on the position. The calculated reference
current is then compared with the measured value, and the difference is fed
to the current controller. This controller computes a reference value to the
power electronics which produces the appropriate voltage.

This type of controller is used for all kinds of electrical motors. For the
SRM however, there is a problem. The model used to determine the torque
from the current is nonlinear and depends on the position of the rotor. In our
case the current is supposed not to be measured, which means that the inner
current loop is lost. For more details see [4]

4.2. The Controller Used Today

There are two different controllers that are used to control the SRM, one with
current feedback, and one without.

The controller with current feedback works as an on/off-controller. When
the current exceeds an upper level the voltage is turned negative, and when
it drops below a lower level the voltage is turned positive. The levels change
with the position so that the optimal current is used for a specific task (for
example minimal torque ripple). Two controllers, one using hard chopping (as
above), and one using soft chopping (see Section 2.4) are implemented. These
controllers works good, but requires that the current is measured. As the
current changes fast, the controller must work with a high sampling frequency.

The controller without current feedback consists of two separate controllers,
one for the level of the voltage, and one for the turn on angle (6,,,). The turn
off angle is computed so that the current reaches zero at the aligned position.
The level controller is a PI-controller that uses the measured speed, and the
reference speed, to calculate the level. To avoid wind-up, the PI controller
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is equipped with anti-reset wind-up. The 6,,-controller is a P-controller that
only uses the speed. The faster the rotor turns the earlier the voltage should
be turned on. The torque ripple for this kind of controller is very high.

In the following sections we are going to try to make the controller without
current feedback better (minimize the torque ripple).

4.3. Shaping the Voltage

In this section we are going to find out how to obtain a smooth torque, without
using the current. In the first section we will see which current shape gives the
optimal torque. After that we will try to shape the voltage to get the specific
current shape.

The Optimal Current

In the simulation model, we can of course use the current we wish. Let us see
which current gives a torque, without ripple. This current can be derived from
the torque matrix (see Section 3.1). This is a 256 x 256 matrix which contains
the values for the torque for a specific rotor position and a specific current.
This could be transformed to contain the current as a function of rotor angle
and torque. Fig. 4.2 shows this function.

Current as a function of torque and rotor position

Current (PU)
Pl

0.5+

it

(I ?m'n
' biad A
'ﬂu’:’:’?f'f“'fﬁ‘

i i
! I’ﬂfffl%m/tlml‘

Torque (PU) =10 0

Theta (rad)

Figure 4.2 The current as a function of torque and rotor position.

As we could expect, several setups of angle and torque have no finite cor-
responding current.

Let us see what current we need if we choose a certain constant level of the
torque. Fig. 4.3 shows the current needed for five different values of constant
torque.

As we can see only a part of the motoring region (7 < 6 < 27) can be used
to produce torque with finite current. The part needed to obtain torque the
whole lap is %’”rad (because of the three phases). Instead of making an abrupt
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Demanded current for different levels of constant torque
1.8 T T T T T r

Current for flve levels of torqus

1.6F
Torque ranging from 0.25 PU
& to 2.0 PU

Current (PU)
o o e =
[ o - n o
T T T

o
S

0.2F

1

L=

3
Theta (rad)

Figure 4.3 The current needed for one phase to produce.five different values of
constant torque. When the curves end, there is no finite current that can produce
the desired torque.

transition from one phase producing torque to the next, the transition should
allow two phases to produce torque at the same time. The current needed for
such a transition is easier to achieve, and a small displacement of the torque
for one phase does not result in a too large drop (or rise) of torque. Fig. 4.4
shows a possible way to change from one phase producing torque to the next.

T

Phase 3 Phase 1

21/3

Figure 4.4 A soft transition.

The torque envelop should of course be placed so it can be obtained from
a finite current. In Fig. 4.5 it is placed between 3.84 rad and 6.24 rad (overlap
begins at about 3.84). The two other ’rings’ are chosen at 4.14 rad and 5.94
rad. The corresponding current is shown in the upper graph. The lower graph
shows a simulation with the calculated current. As we see the torque becomes
quite smooth.

As we can not control the current (no current feedback), the voltage profile
that gives the desired current shape, must be computed. This will be done in
the next section.
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Calculated current to obtain constant torque
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Figure 4.5 Desired torque with calculated corresponding current (upper). Simu-
lation with the pre-calculated current (lower).

The Optimal Voltage

Now that we have the current that gives a smooth torque, we have to find
the corresponding voltage. Given the current, the voltage can be derived from
(2.8). The voltage becomes.

d¥(t,ip(t))
dt

where g is the pre-computed current for a certain desired torque. It is hence
a given function that only depends on 6. If we assume steady-state (w is
constant), ¢t can be replaced by %. Now we can express u, ¢ and ¥ as functions
of 6 (we use the same notation for the new functions).

ult) = R -io(t) +

w() = R - ig(6) + 220> 10(6)) 0

6 dt
= B-io(0) + w2200
o 0%(0,i0(0)) dio(6)  OT(8,i0(6))
"R"°(0)+“’( 9, d0 T a0 )

A program in MatLab was written to calculate the voltage from the above
equation. The derivatives are calculated by taking differences in the matrices.
The results are therefore not very accurate. The first term, R - i is easy to
calculate when we know the current. The terms %—‘f.' and %‘g are derived by
taking differences in the ¥ — i—matrix (See Section 3.1).

Fig. 4.6 shows the voltage calculated from the current in Fig. 4.5. The
equation for the voltage contains the speed, w, which must be given. Here we
have chosen w = 0.5 - w,,.
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Calculated voltage to obtain constant torque. Omega=0.5*"OmegaN
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Figure 4.6 Desired torque (=0.5 PU) with corresponding current and voltage
(upper). Simulation with the pre-calculated voltage (lower). w = 0.5 - wp.

As we see the torque is slightly larger than it should be. This is due to
the errors we get from derivating in the matrices. Especially the high peaks
in the beginning of the cycle causes errors for the whole cycle, because of the
integration. The errors from the numerical differentiation also explains why it
has a jagged form.

The voltage can also be calculated directly from the torque, using only
the matrix shown graphically in Fig. 4.2. The results from those calculations
are not better than the results obtained above, but they differ slightly. This
indicates that we have numerical problems.

Optimal Voltage at a Low Speed Fig. 4.7 shows the same as Fig. 4.6 but
at a lower speed, w = 0.1 - wy,.

There is one problem so far. The maximum amount of voltage allowed
(positive or negative) is V3. = 1.05 PU. The negative voltage in the end of
the cycle exceeds this by far. The negative voltage is about -10 PU in both
cases above (this is not shown in the graph). This means that the voltage
must be turned negative earlier, or we have to allow a non-zero current in the
generating region.

If we turn the voltage negative earlier, the region of torque production
will shrink, and the total torque will drop between the phases. To avoid this
we must advance the conduction angle, 0,,. If we turn the voltage on before
the beginning of the overlap the torque will not behave like before. As the
inductance is small and almost constant in this region, the current will rise
fast, and the torque production will be very low. This changes the shape of
the torque, which has to be compensated.

If we instead allow a non-zero current in the generating region, the torque
will be negative after the aligned position. This must be compensated by a
larger torque at the beginning of the cycle for the following phase.
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Calculated voltage to obtain constant torque. Omega=0.1*OmegaN
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Simulation with calculated voltage. Omega=0.1*OmegaN
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Figure 4.7 Desired torque with corresponding current and voltage (upper). Sim-
ulation with the pre-calculated voltage (lower). w = 0.1 : wy.

Using one of these methods means that the shape of the voltage has to be
changed. For small loads (desired torque) at low speed the changes are small,
whichever method we use.

Optimal Voltage at a High Speed Let us consider what happens if we
increase the speed. Fig. 4.8 shows a simulation (as above) with a speed of
1.5 wy.

Now we have another problem. The positive voltage also exceeds Vg.. To
avoid this we have to turn the voltage on earlier so that the current can start
to rise before the overlap begins. This means that the current is already
high when the torque production begins (at begin of overlap). Unfortunately
we get a small torque before the beginning of the overlap, which has to be
compensated by a lower torque in the end of the cycle. Hence, when we want
to run the motor at a high speed we can not use the approach to analytically
calculate the optimal voltage profile.

Optimal Voltage at a Large Load If we increase the desired torque, we
get the same problem. Fig. 4.9 shows the same simulation with a higher desired
torque.

In this case there is also another problem. The iron saturates totally at
# ~ 5.5 rad, and the current reaches its maximum (imez = 1.76 PU). This
is due to the flux which is built up continuously during the cycle. At a cer-
tain level, and for a certain position, the iron gets totally saturated, and the
current rises very fast. This is only a problem when the load/speed ratio is
high. For high speeds the time to build up the flux is smaller, and therefore
this does not occur.

For small loads at a low speed, the analytical approach seems to be success-
ful. As we will see later, speeds above 0.5 PU, and loads greater than 0.5 PU
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Calculated voltage to obtain constant torque. Omega=1.5"OmegaN
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Figure 4.8 Desired torque with corresponding current and voltage (upper). Sim-
ulation with the pre-calculated voltage (lower). w = wa.
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Figure 4.9 Desired torque with corresponding current and voltage (upper). Sim-
ulation with the pre-calculated voltage (lower). w = 0.5+ wn. Tdcsirea = 1.5 PU

demand another approach. In the simulations above, the generated torques
look good for higher speeds and greater loads, but problems arise when we
limit the voltage. The analytical approach also gives a very jagged voltage
due to numerical errors in the derivations of entries in the numerical matri-
ces. Such voltage profiles would be hard to generate. We will derive suitable
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approximative voltage profiles in the next section.

4.4. The Controller

The controller consists of two parts, the level controller, and the shape con-
troller. The level controller takes the reference value for the speed and the
measured speed, and computes at which level the voltage should be. The
shape controller takes the speed and the torque, and computes the shape of
the voltage. Since the torque is not measured this can not be used. Instead we
use the filtered current as a measurement of the average torque production.

The Shape Controller

Defining Operating Points As we could see above the shape of the volt-
age should change as we change the speed and the torque demand, in order
to obtain a smooth torque. To make control possible we can not have an
optimal shape of the voltage for every setup of load and speed. We have to
define operating points, at which certain voltage shapes can be used. Between
the operating points the shapes should be derived in a way that gives smooth
torque also here. The operating points depend on the application the mo-
tor should be used in. Emotron has suggested that the 12 operating points
presented in Table 4.1 should be used :

Speed (PU)
0.10 0.25 0.50 1.00
025 | OP1 OP 2 OP3 OP4

0.50 | OP5 OP 6 OP7 OP 8

Torque (PU)

075 | OP9 OP10 | OP11 OP 12

OP = Operating Point

Table 4.1 The operating points.

Dividing the Cycle We have to define a voltage shape that can be defined
by a finite number of parameters. This can be done by dividing the cycle
in regions where the level of the voltage is constant. By varying the regions
(angles that define where a region begins and ends) and the level in each
region, a shape that looks like the optimal can be obtained. The number
of parameters depend on the number of regions. Six regions including the
negative in the end of the cycle has proven to be a good choice. Fig. 4.10
shows how the cycle is divided.

Each part has a level-parameter which determines the level of the voltage
(in relation to each other). These are called, levell-level4 and NegLevel.
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Voltage
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NegLevel - (-V4.) = level between . and 6,

Figure 4.10 The cycle divided into six regions.

The angles where the parts start (and end) are on, 6103, Ooff, Ooff2 and
@eng. As the surfaces above and below the horizontal-axis must be the same
(see Section 2.2), all parameters can not be chosen arbitrarily. Normally all
parameters are chosen except for f.,q. When the current returns to zero, the
voltage is automatically switched off, which means that f¢nqg does not have two
be pre-calculated. The level for the last part with negative voltage (between
0of¢2 and Oena), is fixed to —Vg.. The number of shape parameters are thus
twelve, from which eleven are chosen.

Before the level of the voltage for a certain position is sent to the motor,
the level is multiplied with the output value of the level controller. This is
not the case with NegLevel. NegLevel is given as parts of —Vy,, for example
NegLevel = 0.5 means that the actual level in the region is —Vg./2.

Defining Voltage Shapes for the Operation Points In the simulations
used to find a good voltage profile for a certain operating point, the model in
Fig. 4.11 is used.

w=0 1 (]
3
T
Yievel of y-ghaper U ® JS— ¥ i=f(0¥) i T=1£(8,i) LP-Filter -T
i
-R LP-Filter — 1

Figure 4.11 One phase of the model used to find an optimal voltage shape.
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Note that only one phase is shown in the figure. The other two phases look
exactly the same. The model is fed with a constant speed and a voltage level,
Uleyel. This voltage level comes from the level controller in the normal case.
This is the level that the voltageis shaped around. The real voltage at a certain
angle (position) becomes ujeye; times the level for the region corresponding to
the angle. The torque and current is measured, both the instantaneous values
and low pass filtered. The voltage level is set so that the filtered torque
becomes what it should be for a specific operating point.

First the optimal voltage shape is computed using the approach described
above (Section 4.3). Then the eleven shape parameters are set so that the
voltage is close to the optimal. A simulation is run, and if the torque ripple is
too high, the parameters are adjusted, and a simulation is run again. This is
done for all operating points. Fig. 4.12 shows the results for OP 2.
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Figure 4.12 The results for OP 2 (T = 0.25 PU, w = 0.25 PU). The upper graph
shows the calculated voltage. The lower shows a simulation using a voltage defined
by eleven parameters.

As we see the torque is quite smooth except during the transitions between
the phases. Complete elimination of the ripple requires more parameters.

This approach works good for the operating points : 1,2,3,5 and 6. For
OP 5 and 6 we have to allow a small current in the generating region, but we
do not need to advance the conduction angle. For these OPs we can therefore
start with the calculated optimal voltage profiles, and improve them by making
small adjustments. If we advance the conduction angle, we get a totally new
torque profile. This is the case for OP 4,7,8,9,10,11 and 12. Here we have to
use another voltage profile with advanced conduction angle. For all cases the
conduction angle, f,, is chosen to 3.22, and levell is increased with speed, and
torque demand. The reason for the need of advancing the conduction angle,
is that the current can not rise infinitely fast. The voltage-time surface before
the overlap is practically only used to build up a sufficient current before the
overlap begins. The torque produced before this is very small. Fig. 4.13 shows
a simulation at OP 8.
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Voltage shape defined by 11 parameters
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Figure 4.13 The results for OP 8 (T = 0.5 PU, w = 1.0 PU). The vertical lines in
the upper graph represents (from left) : the end of the overlap for the previous rotor
pole, the unaligned position, the beginning of the overlap and the aligned position.

The torque is also here quite smooth. The operating points for which it
is difficult to get a smooth torque are those with low speed, and high torque
demand. Fig. 4.14 shows a simulation at OP 10.

We can see that the torque ripple is more evident than for OP 2 and OP 8.

Scheduling the Shape Parameters If we want to change the speed or
the load during runtime, we need to switch between the voltage profiles to
get a smooth torque. The first thing we have to do is to find out in which
operating point we are. This is determined by the torque, and the speed. The
problem is that we do not measure the torque. The average (e.g. filtered)
current, 7, however, can be used as a measurement of the torque. As we also
measured the filtered current when we searched the optimal voltage profile
(see Fig. 4.11), we can define the operating points from this instead of the
torque. Fig. 4.15 shows how the operating points can be defined from the
average current instead of the torque. We can see that 7 depends not only on
T, but also on w.

The switching can be done in many ways. The easiest way of doing it is
simply to switch when we are midway between two operating points (the dot-
ted lines in the figure). A better way could be to interpolate the parameters
between the operating points. As we have eleven parameters and twelve op-
erating points, this would be hard. One way of getting around this, is to keep
some of the parameters constant for all OPs. Which these should be must be
decided before the parameters are determined. The torque ripple at the OPs
would probably be larger with this approach.

If we allow switching during step responses the speed will get jagged. An-
other problem is when the reference speed is close to a switching border. This
could make the system oscillate. A solution to both problems is to determine
the shape according to the desired (reference) speed, instead of the actual
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Voltage shape defined by 11 parameters
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Figure 4.14 The results for OP 10 (T = 0.75 PU, w = 0.25 PU). The vertical lines
in the upper graph represents (from left) : the end of the overlap for the previous
rotor pole, the unaligned position, the beginning of the overlap and the aligned
position.
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Figure 4.15 The operating points defined from the speed and the filtered current.

measured speed. If the torque load is close to a border, this will not help.
A solution to this is to introduce hysteresis between the operating points.
This means that we will have different borders depending on if we are inside
or outside an OP. In this thesis the easiest way of switching is used, with-
out hysteresis, but with the reference speed instead of the actual speed. The
scheduling of the shape parameters is thus based on the average current and
the reference value of the speed.
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The Level Controller

The level controller should solve two different tasks. It should control the
speed at, and close to, each operating point, and it should also control the
speed during a transition from one operating point to another.

Let us first concentrate on controlling the speed around an operating point.
We will use the same operating points as for the shape controller. We linearize
the system around each operating point, and then design a PI-controller by
the pole-placement method.

Linearization Around the Operating Points In Fig. 4.16 the inner
loop, together with the voltage shaper and the mechanical transfer function,
is shown.

e M S LYoo i T(.0) L Gpeon [——
- R
N Vg 4
H(u,0)

Figure 4.16 The inner loop together with the mechanical transfer function and
the voltage shaper.

What we need to do is to approximate the nonlinear system marked as H
in the figure. This system depends on both the voltage (shape, and level) and
the position, 8. The dependency of 8 is periodic, so by taking the average over
one period, this dependency is eliminated. As the averaging and linearization
is done around each operating point, the shape parameters are kept constant.
This means that we do not have to take the dependency of the shape into
account. This is also the reason for the name voltage shaper instead of shape
controller in Fig. 4.16. The linearization is done by simulating the uj.ye to
T dependency using the model in Fig. 4.11, for constant shape and speed.
Ujevel 18 increased and decreased up to 10% from the level that would give
the demanded torque for the operating point. By measuring the average (e.g.
filtered) torque, the 8 dependency is eliminated. Fig. 4.17 shows the results
for OP 8.

The slope of the curve is in this case 2.45. This means that the system
H can be replaced by the constant 2.45, when we are in the neighborhood of
operating point 8. The same simulations are done for all operating points, and
K varies from 1.29 to 21.9. What we have done here is not only a linearization,
but a simplification of the inner loop, together with the voltage shaper.

Implementation of a PI-Controller After the simplification above, the
control loop with a PI-controller looks like in Fig. 4.18.
With a PI Controller the closed loop transfer function becomes :

o _GeKGmeeh _ K.KT;s + K. K
T 1 ¥ G.KGeeh  JT;82 + (Tid+ K.KTi)s + K.K

51



The produced torque around the operating point OP8
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Figure 4.17 T as a function of uepe1 for OP 8 (T = 0.5 PU, w = 1.0 PU).

Simplified Mechanical
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Figure 4.18 The simplified control loop with a PI-controller.

where G, is the controller transfer function, K is the Aujepe;-AT gain around
the operating point and Gj,ech is the mechanical transfer function.
This gives us the denominator polynomial :

d+K.K K.K
2 c c
St St

which should be compared with the desired polynomial :

8% + 2{wos + Wi

This gives us :

_ 2](&)0—(1
“ K

. K.K
P Jwd
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If we assume that we have no load disturbance (i.e. all the torque losses are
proportional to the speed), d can be derived from

Tload
w

d=

where w is the speed. The moment of inertia, J, can be chosen three times
the moment of inertia of the axis. This is a realistic value for axis and load.
To get a well damped system ( is chosen to 1.0. To determine wy we want to
know the location of the open loop pole, so. This is given by :

_d
S9 = J

As d varies for different operating points, so will also vary. To speed up
the system, wg should be chosen larger than the value of sg. In order to obtain
uniform dynamic response over the whole operation range, wg should not vary
too much between the operating points. In Table 4.2, sp, and appropriate
choices of wp are presented together with d, K, and the calculated values of

K. and T;. wp is given in rad/s.

o (PU)
OP1 OP2 OP3 OP4
K =733 K = 3.64 K =197 K = 129
d =25 d =10 d =05 d =025
025 5o = 142 sg= 57 sy = 28 sp= 14
wp = 150 wg = 100 wg =75 gy = 50
K¢ = 0377 K¢ = 0.690 Kg= 1.083 K¢ = 1167
T; = 0.007 Tj = 0.0143 T; = 0.0216 T; = 0.0343
OP5 OP6 OP7 OP8
S K = 120 K = 639 K = 4.64 K = 245
d =350 d =20 d =10 d =05
& 050 | - 28 sy = 114 5= 57 5= 28
—~ g = 250 wg = 150 ®y = 100 wy =75
K.= 0316 K¢ = 0237 K¢ = 0541 K¢ = 0871
T; = 0.0034 Ty = 0.0086 T; = 0.0143 T; = 0.0216
OoP9 OP10 OP11 OP12
K =219 K =125 K = 659 K =243
d =175 d =30 d =15 d =075
075 8y = 426 so= 170 sp= 85 sp= 43
wy = 400 g = 250 wy = 150 g = 100
K¢ = 0299 Kq,= 0332 K,= 0572 K¢ = 1136
T; = 0.0023 T; = 0.0057 T, = 0.0095 T; = 0.0157

Table 4.2 K, d, 3o, wo, K. and T; for the different operating points.

Fig. 4.19 shows the response to reference changes around OP 2, together
with the response for the linear system shown in Fig. 4.18 with F' = K = 2.45.
All parameters are chosen according to Table 4.2.

Gain Scheduling When the motor states enter a new operating point the
parameters should be changed. As for the shape controller the switching could
be done in many ways. As it is only two parameters that changes, K, and
T;, a linear interpolation is used. The average current, and the speed could
be used to determine in which operating point we are. In order to decrease
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Step response for OP2, Motor model Step response for OP2, Linear model
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Figure 4.19 Response to reference changes in the motor model (left), and in the
linear system (right) around OP 2. The lower graphs show the corresponding control
signals, wieset. The dotted curves are the results when wrong parameters are used,
in this case K. = 0.299 and 7; = 0.0023. These are the parameters for OP 9.

the sensitivity to the measurement noise in the speed, the speed should also
be filtered. The same filter as for the current is used. This means that the
gain scheduling is based on 7 and @. To make interpolation easier it would
be better to use the average torque instead of the average current. This is
because there are fewer levels of torque (3) defining the operating points than
the levels of average current (9). The average torque is easy to determine if we
have the average speed and the average current. When we have the average
torque we can use this together with the average speed to determine K, and
T; using interpolation between the OPs. Fig. 4.20 shows how the scheduling
works.

Interpolation

-+

—=  Torque :
Estimation Calculation | K. T

[7- of Kcand T;

el —

Figure 4.20 The scheduling of the parameters based on 7 and @.

For more detailed information of gain scheduling in general see [1].

Anti-Reset Windup As the voltage is limited to +Vjy., anti-reset windup
is implemented to avoid windup in the integral part of the controller. The
difference between limited voltage and the voltage from the controller (*u gen-
erator’ in the model) is fed back to the controller. If it is negative (i.e. the
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voltage is cut), no updating of the integral takes place. The level from the
controller should never be negative. Negative voltage is only used to eliminate
the flux at the end of each cycle, and this is not handled by the PI-controller.
Therefore the signal immediately after the controller must be limited and sent
back as above. Normally more than one phase is active (has non zero volt-
age) at a time, and if the voltage for any phase is cut, the integral is not be
updated.

The Complete Controller

Fig. 4.21 shows the complete controller in block diagram form.

r'I‘_L] : ’JLI_I ’_1; Shape parameters _
u +V“”"/ sal Voltage b Shape !

Generator Scheduler | Oper

{3 )

Ypevel

\1’
(nnll-windup signal
for u>V,

-1

Pl PI
v Controller Scheduler

el

I e=Upy(- @

Pl g}
e

anti-windup signal
for Ujeye < 0

MIN

Figure 4.21 The complete controller.

A close—up of the PI-Controller is shown in Fig.4.22. First K. and T; are
scheduled based on the filtered current, and the filtered speed.

u
level @ K e

L -

anti-windup signal
if <0 then down
if >0 then up

Figure 4.22 The PI-Controller block.

Then the speed error is calculated from wye¢ and w, and is immediately mul-
tiplied with K.. This signal is then sent to the integral part of the controller.
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If the voltage is between its limits (greater than zero from the controller, and
less than Vg, from the u generator), the integrator is updated. The output
from the integrator is then added to the error times K. and sent to the limiter.
This only checks if the voltage is greater than zero.

The level of the voltage is fed to the shape controller, but is not really
used here. For conveniency, the level is added to the shape parameters. The
shape parameters are determined when the OP is known. This is derived from
wrey and 7. The shape parameters are sent to the voltage generator together
with the position. There is one voltage generator for each phase (only one is
plotted in the graph). The voltage generator compares the position (angle),
with the angles in the shape parameters (f,n—0,7f2), and then delivers the
right voltage.

Implementation in MatLab Simulink

In Section 3.3 the implementation of the motor in Simulink was explained.
Now we are going to see how the controller is implemented. The controller
block is shown in Fig. B.7. We can see that it consists of three parts, the
shape controller, the PI-controller, and the u generator.

The Level Controller Block The task of the level controller is to put the
voltage on the appropriate level according to the speed error. The PI-controller
described above is used for this. Fig. B.8 shows how this is implemented. It is
easier to make interpolation if we use the average torque instead of the average
current. This is because there are fewer levels of torque (3) than of current (9).
To calculate K, and T;, we first calculate the average torque from the filtered
current and the filtered speed. This is done in a look-up table, which uses
interpolation. Then this is used together with the filtered speed to calculate
K. and T;. This is done using the same type of look-up table. The values of
K. and T; are limited before they are used. The rest of the flow of information
is described in above.

The Shape Controller Block The shape controller, explained in the be-
ginning of this section, is used to give the voltage a certain shape. Fig. B.9
shows how this looks in Simulink. The block ’'OPGen’ determines the oper-
ation point, and the block ’ShapeGen’ delivers the shape parameters. Both
blocks are S-functions (see [3]), which contains if-then statements.

The ’u generator’ Block The "u generator’ block gets the shape param-
eters, the position and the instantaneous current. A close-up of this block is
shown in Fig. B.10. Here we can see that the block is divided in three parts,
one for each phase. The difference between this block and the shape controller
is that the shape controller determines an appropriate amplitude of the voltage
for each position (independent of which phase), while the 'u generator’ block
feeds out the instantaneous amplitude of the voltage for each phase contin-
uously, taking the shape parameters and the position into account. Here we
must also recalculate the position for each phase.

Let us go even deeper and see what is under the 'u generator’ for a certain

phase. Fig. B.11 shows a picture of this. Again we have three parts, the 'Inner
u-shaper’, the "Outer u-shaper’ and the ’Current check’.
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The 'Inner u-shaper’ sets the voltage amplitude for angles between 0,,, and
0ot72. Fig. B.12 shows the details of this block. It simply compares the posi-
tion with the positions determined by the shape controller (6;-6,¢¢) and sets
the voltage to levels computed by the shape controller and the PI-controller.

The 'Outer u-shaper’ sets the amplitude for angles smaller than 6,, and
greater than 0,¢4,. This means that it delivers the voltage computed by the
'Inner u-shaper’, V. or 0, depending on the position. As we can see the in-
stantaneous current is used here. This is because we need to know when to
turn the negative voltage off, which should be done when the flux and current
returns to zero. In the real motor this is done by itself. The current does
not have to be measured. When the current becomes zero the voltage can not
be negative anymore (see Section 2.4). Fig. B.13 shows a close-up of this block.

The third block, the 'Current Check’, is a safety device which also uses the
current. Fig. B.14 shows a close-up of this block. It should save the motor
from overload. If the current exceeds a certain amount, the voltage should be
switched off. When the current then returns to a lower amount, the voltage
should be switched on again. The actual switching takes place outside the
block, in the ’Safety Switch’. This is also implemented in the real motor.

Before the voltage is sent to the process it is limited between —Vy, and
+V4.. The converter can not produce a voltage outside this range. The differ-
ence is sent back to the PI-controller which uses the information to determine
whether the integral part should be updated or not.
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5. Simulation Results

In this chapter some simulation results will be presented. All simulation are
done on the model described in Chapter 3.

In the first simulation, the torque ripple for the new controller is compared
with what we should get if we used the voltage controller used today. The
comparison is made in OP 1. Fig. 5.1 shows the result. We can see that
even as the voltage profiles are almost the same, there is a big difference in
the torque ripple. This means that the torque is very sensitive to changes in
the voltage profile, and robustness could be a problem. The small negative
voltage in the ”optimal” voltage profile is very important. The result for OP 8
shows an even greater difference, see Fig. 5.2. This is due to the higher speed.
We can see that the difference is now very big also between the two voltage
profiles. The level of the voltage before the beginning of the overlap is very
important. It is also of great importance, that we allow a non-negative current
in the generating region.

The next simulation shows how the controller works inside an operating
point. In Fig. 5.3 a step response inside OP 4 is shown. We can see that
a change in the reference speed is no problem for the PI-controller. We can
also see that the torque ripple is smallest when we are in the middle of the
operating point. The same simulation on the linear system (see Section 4.4)
Fig. 4.19 would look almost the same.

In Fig. 5.4 we can see how the torque looks when we make a step in the
reference speed far away from the center of an operating point. We can see
that the torque ripple is very bad. This is because we are midway between
two operating points, as we can see in the trajectory plot. This is one of the
worst cases we can get if we are inside the working area (i.e. w < 1.0 PU
and Tjoqq < 0.75 PU). The vertical movement in the trajectory plot is because
when we increase the speed, the load increases as d is constant. Fig. 5.5 shows
how the torque looks when we make a step in the torque load far away from
the center of an operating point. The torque is better than in the previous
case. This is because we are closer to the center of the OPs, and OP 3 and
OP 6 are not as sensitive as OP 8 and OP 4.

The results for these simulations are not perfect, but the results with the
old controller would be even worse.

In the next simulation, the process is run in 1.05 seconds. Steps in the
reference speed and in the viscous damping are done, to cover as much of the
operating area as possible. Fig. 5.6 shows the result. We can see that we
get a lot of torque ripple in the beginning. Here we are in OP 9, which is
the OP that gives the most ripple. It is hard to find a voltage shape for low
speeds when the load is high. In the other operating points, the torque ripple
is acceptable.
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"Optimal” voltage profile for OP1 Voltage profile used today
0.1} ¢ : : : :

: : : 0.1

2 o— | l f 2 o

@ : ) ; Py

© b

2 2

£_01 a-01

g [

< : : <

-0.2r ! : : -0.2
3 4 5 6 7 3 4 5 6 7
Position (rad) Position (rad)

Simulation with the voltage profile Simulation with the voltage profile

<)
w

o

w

s [ W W =)
202 i : 202
Q oy
hel © h
2 2 o ;
801 r _ 50.1 : ;
E (T | 3 eSS i
< e | < 1 X
. I s
oF—— i 0f— R
! |
L I
0.1 0.12 0.14 0.16 0.1 0.12 0.14 0.18
Time (s) Time (s)

Figure 5.1 Top left : The voltage shape we should get with the new controller.
Bottom left : The total torque (full) and the torque for each phase (dotted), together
with the voltage (dashed). Top right : The voltage profile that would be used with
the old controller. Bottom right : The total torque (full) and the torque for each
phase (dotted), together with the voltage (dashed).
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Figure 5.2 Top left : The voltage shape we should get with the new controller.
Bottom left : The total torque (full) and the torque for each phase (dotted), together
with the voltage (dashed). Top right : The voltage profile that would be used with
the old controller. Bottom right : The total torque (full) and the torque for each
phase (dotted), together with the voltage (dashed).
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Figure 5.3 Upper : The speed (full) and the reference speed (dashed). Middle :
The produced torque. Lower : The trajectory path.



Speed response to change in reference speed
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Speed and the Level of the Voltage
0.4 T T T T T T ) )

0.35f 1

o
w
T
i

e N
[
]
1

Amplitude (PU)
e

—— i e e e ——

0.15F .

0.1 1 1 1 1 1 1
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Time (s)
Produced and Demanded Torque

Amplitude (PU)

1

1 1 L I} L
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

Time (s)
11
Tepiectory plot
0.6 T . L T T
9 :
0.55}
0.5+ : 7
0.45/ : 6
= 8 ;
% 0.4}
5035 1
°
3
s oaf 4 & 1
E . H
0.25} 1
0.2} 4
0.15}- : R
0.1 : L . + :
0 0.1 0.2 0.3 0.4 0.5
Omega (PU)

Figure 5.5 Upper : The speed (full) and the control signal #evet (dashed). Middle
: The produced torque (full) and the torque load (dashed). Lower : The trajectory
path.
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Speed response to change in reference speed and load
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Figure 5.6 Upper : The speed (full) and the reference speed (dashed). Middle
: The produced torque (full) and the torque load we would have if the speed was
equal to the reference speed (dashed). Lower : The trajectory path.
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6. Conclusions and Suggested
Improvements

Here follows conclusions of what has been presented in the thesis. A discussion
of what can be improved is also given here.

This thesis starts with a short introduction to the switched reluctance
motor, and several typical characteristics are verified by short simulations
done on the model of the motor. This model is presented in Chapter 3.

Then we derive a control strategy which is based on changing the shape
of the voltage according to the speed and the torque in order to get a smooth
torque. Operating points are defined from these variables. As the torque is
not measured, we use the filtered current instead. A parameterization of the
torque is presented, that uses piecewise constant levels to define the shape.
The shape controller is a feed forward controller, which does not take the
speed error into account. A PI-controller is implemented that uses the speed
error to determine the level the voltage should be shaped around. To obtain
good control characteristics for all operating points, gain scheduling is used.
The PI-controller is also equipped with anti-reset windup.

The simulation experiments in Chapter 5 shows that the control strategy
works well. There are however, some things that could be improved :

o The switching of voltage shapes between the operating points is made
as easy as possible. Switching takes place when we are midway between
two operating points. A lot can be done to improve the switching.

1. We can uses hysteresis to avoid oscillations when we are close to a
switching point.

2. Another thing is to use interpolation when we are between the
operating points. This switching could be made linear or of a higher
order. One way of implementing this is to use fuzzy logic.

3. We could also use another parameterization of the shape. If we
want to use interpolation we should try two minimize the number
of parameters. A completely other parameterization, where we do
not use piecewise constant levels to define the shape, is also possible.

e One way to determine the shape is to use neural networks. The network
could take the position, the speed and the filtered current, and compute
the level. The ”optimal” profiles presented in Section 4.3 could be used
as training data.

The operating points cover most of the possible working area for the
motor. In certain applications it could be possible to limit this area, or
to concentrate on a smaller region. The operating points should then be
concentrated to this region in order to increase the quality of the torque.

o Efficiency is not discussed at all in this thesis. Of course the efficiency is
affected by the shape of the voltage. This should be investigated before
a possible implementation.

One big problem with the shape controller is that it is a feed forward
controller. This causes robustness problems. A robustness analysis of
the controller is essential if it should be implemented.
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e An analytical approach is not discussed in this thesis. The magnetization
curves can easily be approximated with analytical functions. If this is
done, the optimization problems can be solved analytically.

If these statements are taken into account, implementation of the controller
for the motor could probably be done. Of course a lot of new problems will
come up if this is done. This thesis should be seen as an introduction of how
a controller without current feedback could be implemented.
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A. The Data of the RRA-90L

The Motor Parameters in SI-units

Voltage (Vi) =311V

Rated current (I,,) = 6.55 A

Maximum current (Ipmqz) =20A

Impedance (R) =1840Q

Nominal speed (n,) = 1420 rpm

Nominal angular velocity (w,) = 148 rad/s (594.8 rad/s electrical)
Maximum speed (nmaz) = 2500 rpm

Rated Torque (T3,) = 11.2 Nm

Moment of inertia (J) = 8.816-10~* kgm?

The Normalization Factors

Tpope = ZmezSN4 v — (4937 Vs

1420-2 'NE . —
Whase . 60" S 1= 5H94.8 s 1

1/'baae = wbaae\pbaae =293.7V
Thase =1I,v/3=1134A
Zhase = 7222 = 25.90 O

base -

Pyoye = Viaselbase = 3331 W

Tbase = —M&fb“e = 5.6 Nm
Joase = issy = 1583107 kgm®
where

Bpoex = 20T is the maximum flux density

8} = 2.0515-1073 m? is the surface of a stator pole seen from
the direction of the flux

N = 252 is the number of turns/phase of the winding

q = 3 is the number of phases

I, = 6.55 A is the rated current

The Motor Parameters in PU

Vae = 1.06
I, = 0.58
Tnae = 1.76
R = 0.071
Wn =1

T, =05
J = 3.48
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B. The MatLab Simulink
Model

Here follows pictures of all the Simulink blocks described in Section 3.3 and
4.4.

Thela
i i (filtared)
Fie Gmech Speed->Position
> i (inst) Torque->Speed
Procass
{(inner loop)
h
= E >
< OmegaRef |
Controller OmegaRef

Figure B.1 The system implemented in MatLab Simulink.
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E ¥ Demux p Instantansous
u Im“ 2 Curtant
o ut
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Theta i hd] v |
T%] g > = Fifarod
a Phasal . tarworth urrel
carl':‘m 1R LP Fitar
2
uzl.
bl 1 I~ T
Thata2 T2 3
<H o) » | - 1]
i 1
o Ll g Tore
Caonstam2 Tomue
W r— B
Thatad 13
<Hi (i ]
Sumd ramd Phased
Constantd

Figure B.2 The process.
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F
I3
2
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Cumrent
Figure B.3 The inner loop for one phase.
[i}—f> <
Theta Theta Sum Scaled
Gain El Theta
Const=1
Figure B.4 The 'Theta Scaling’ block.
[¢]
d
(viscous damping) r—}’_
|
Product
= Pi1/s P 1
Sum Speed Omega
Torque 1 PUConv Integrator 9

Figure B.5 The Gmecn block.
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Figure B.6 The ’Speed to Position' block.
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Figure B.7 The control block.
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Figure B.8 The PI-controller.
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Figure B.9 The shape controller.
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Figure B.10 The 'u generator’ block.
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Figure B.11 The 'u generator’ phasel block.
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Figure B.12
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The ’Inner u-shaper’ block.

ThataOn Rsiopt Product
_n.l:]
ThetaOlf RokOp2 l-
D LogOps
4
Thata I@
LogOpd
B = B0
| LogOpd
Relopa ogOp EE
LogOp2
Congl=0 BAND,
LogOpd
Thelaita RelOpd
7} ¥
Neglevel _Vdo

Figure B.13 The ’Outer u-shaper’ block.
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Figure B.14 The 'Current Check’ block.



Notation

CIEIRICICICE

Moment of inertia

Instantaneous inductance

Global inductance

Inductance for the aligned position

Inductance for the unaligned position

Number of rotor poles

Number of stator poles

Number of phases

Torque

Maximum amount of voltage from the converter
Coenergy. Surface under a magnetization curve
Field energy. Surface above a magnetization curve
Angular velocity of the rotor (electrical or mechanical)
Nominal angular velocity (electrical or mechanical)
Flux linkage

Angle of the rotor position (electrical or mechanical)

Oena Angle where the flux and current should be zero

0,77 Angle where the voltage should be switched negative

Oon

Conduction angle. Angle where the voltage should be turned on
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