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1. Introduction

Real-world control systems are often affected by a number of non-linear para-
sitic effects. Such effects can include:

e Noise

e Friction

e Backlash

e Hysteresis

e Unmodeled resonances
e Time delay

e Saturation

e Dead-zones

These effects are present to some extent in most systems. Whether they
are significant and what to do about them is often the question. The most
optimistic course is simply to ignore them; a more prudent approach is to
include the parasitic effects that might be troublesome in the simulation model
of the plant and run the simulation enough times to convince yourself that they
are really negligible.

If ,on the contrary, they result to affect in a significant way the control
system performances,there are some general measures that can be adopted, but
the most appropriate remedies are usually tailored to the specific parasitics.

Backlash often occurs in transmission systems. It is caused by the small
gaps which exist in a transmission mechanism. In gear trains, there always
exist small gaps between a pair of mating gears, due to unavoidable errors
in manufacturing and assembly. Figure 1.1 illustrates a typical situation. As
a result of the gaps, when the driving gear inverts its rotation the driven
gear does not move until the two cuts are newly in contact. Therefore, if the




Figure 1.2 A backlash nonlinearity

driving gear is in periodic motion, the driven gear will move along the closed
path shown in Figure 1.2.

A rigorous definition of the backlash is presented in the next chapter; here
we just want to point out some of its main properties in order to understand
the kind of impact it can have on a close-loop system.

A critical feature of backlash is its multi-valued nature. Corresponding
to each input we have a closed interval of possible output values, depending
on the history of the input. Multi-valued nonlinearities, like backlash and
hysteresis usually lead to energy storage in the system. Energy storage is a
frequent cause of instability and self-sustained oscillations.

Another way to figure out this effect is considering its frequency domain
behavior. As already said, the backlash output at a certain ¢ depends on the
input history; in particular a suitable choice for a rigorous backlash definition
is to consider its output as a state. Even if these features are in general
typical of dynamic systems, still the backlash is a static model,in the sense
that a rescaling of the temporal axis for the input results in an equal rescaling
for the output. In particular this is reflected into the backlash describing
function, being the latest frequency independent.

The most dangerous feature of backlash with regard to a control system is
the time delay introduced by the deadzone.lt causes in fact a nonzero phase
shift on the first harmonic of the output (up to 90°) , and this is mainly the
effect that can lead the close-loop system to limit cycles and instability.

In Figure 1.3 are plotted the Nyquist diagrams of a second order system
1/(s?+2€s+1) for growing values of ¢ together with —1/N(A),(where N is the
backlash describing function). It is clear that even for open-loop stable system
with pronounced resonances the backlash can have some kind of impact on the
control performance.

Consider the following open loop system with a stable pole, plus an integral
action: P(s) = K/[s(s+p)]. We can have two different situations, just varying
the gain K. For low gain, we have the phase plane diagram shown in Figure
1.4. Basically the equilibrium point, due to the presence of the backlash dead-
zone has become a segment, and we observe self-substained oscillations with




Figure 1.3 Nyquist diagram of a closed-loop system with backlash

decreasing frequency along this segment ! (see Figure 1.5 ).

If we increase the gain we have stable limit cycles around the origin; the
corresponding phase plane diagram is shown in Figure 1.4. When the open-
loop system is unstable, the situation is always more critical; in general, instead
of achieving asymptotical tracking of constant references, we see stable limit
cycles around the set-up point. In Figure 1.6 is shown this particular effect,
for two different backlash widths (namely equal to the 5% and 15% of the
backlash input amplitude).

It would be interesting to have control algorithms who can provide some
kind of non-linear compensation, in order to improve the performances of
our controller, rather than looking for more accurate mechanical components,
which in general are very expensive.

There are several features of backlash, and of parasitics in general, that
naturally lead to the adoption of an adaptive strategy for the controller. Back-
lash parameters in fact:

e are often unknown or poorly known;

e vary with tear, wear and temperature;

!The Figure is just a section of the states space, since we did not plot the backlash internal
state.
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e vary from component to component.

However most adaptive control results are for linear plants or plants with
differentiable nonlinearities, and are not applicable to nondifferentiable nonlin-
earities. With the present work we intend to propose some possible algorithm
to adaptively control systems with backlash.

oy

c N & O

Figure 1.6 Limit cycles




2. Backlash and Backlash

inverse

Backlash is a complicated phenomenon. Krasnoselsky has developed a mathe-
matical machinery to describe backlash and other hysteresis phenomena (see [4]).

In this chapter we introduce his ideas and try to exploit them to define a left
backlash inverse (see [1], [2]).

2.1. Systems and their properties

Nonlinearities of backlash type can be regarded as a particular kind of system.

System definition

A system is a mathematical model with a variable input v(t) and a variable
output u(t). The evolution of the output of the system is completely deter-
mined when it is known the initial state of the system and the input signal.

Short memory system

If the state of a system can be uniquely determined by the values of
{v(t),u(t)} then the system will be called short memory system. We can use
a simple notation to denote the output dependence from the initial state and
from the input v(t):

u(t) = Blto, vo, uo]v (t)

where vg,up is the system state at tp and B[to,vo,uo] is a functional !
depending on the initial time and state. If the system is a short memory one
then the following semigroup identity is true V tp,t1,t such that o <t <t

B[to,’l)o,’dg]’v (t) = B[tl,'v(tl),B[tO,vo,uo]v (tl)]v (t)

Autonomous system

Assume that the admissibility of the input v(t) (¢ > to) at the state {vg,uo}
implies that the input #(t) = v(t — 7) (¢ > to + 7) is admissible at the same
state and the equality

B[to +T, 'Uo,’U.o]’l—J (t -|— T) = B[to,’l]o,’(bo]’v (t) (t Z to)

holds. Then the system B is called autonomous. In other words, a system is
autonomous if its properties are time-invariant.

1If we denote with V the set of admissible inputs, and with U the set of admissible outputs,
then a system is a function B : V — U. Assume v € V, then B[to,v0,u0]v denotes the
corresponding B(v) € U, it is therefore an output signal, while B[to,vo,uo]v (t) denotes the
output signal evaluated at t.




Static system

A system is called static if it is autonomous and if the following implication is
true Va > 0 :

3

9(t) = v(at + (1 — a)to)

u(t) = Blto,vo, uolv () = 4(t) = u(at + (1 — a)to)

u(t) = Blto,vo, uo]7 (t)

J

In particular, the system will be static in the case of any function u = f(v).

Controllable system

A static, deterministic system B is controllable if for any pair of the feasible
states {vo,uo}, {vi,u1} there exists an input u(t) (o < ¢t < ¢;) which is
admissible at the initial state {vg, uo}, such that v(t) = vo, v(t1) = v; and
B[to, Vo, ’U.o]’l)(tl) = u(tl)

2.2. Backlash definition

Monotonous input

Let us consider the following strip in R
%= {('v,u) € R%uch that v — Cr, <u<wv— Cl}

where C; and C, are two real numbers such that C; < C, (see Figure 2.1).
Y is the set of feasible states for the backlash B(Cj, C,). In order to define
rigorously the backlash output we can first define its output for monotonous
input signals. Let (vo, up) € ¥ with v(t) monotonous and such that v(¢g) = vy,
then we can define

ug Vt such that ug+ C; < v(t) <wuo+ Cr
Blto,vo,uo]v(t) = ¢ w(t) — Ci Vi such that v(t) < ug + C; (2.1)
v(t) — Cr Vit such that v(t) > uo + C-

Notice that this definition satisfies the semi-group identity.

Piecewise monotonous input

For piecewise monotonous inputs, operator B can be defined by using the
semi-group identity. To this purpose, the domain of the input u(t) is to be
divided into intervals [to, t1], [t1,%2],. .., [ti=1,%],... of its monotonicity. On
the interval [tg,¢1] we define the output u(t) by the relation 2.1, next we take
the pair {v(¢1),u(¢1)} as a new initial state and again, by using 2.1 we define
the output on [t1,5].
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Figure 2.1 Beacklash output for a monotonous input.

Continuous inputs

In order to define the backlash output for all continuous inputs we need
some estimates for the operator W, with piecewise monotonous inputs. The
following estimates hold (see [4]):

Lemma 1
Let the input v(t) (to <t < T') be piecewise monotonous and

{v(to),uo} € %, a<v(t)<b (to <t<T).
Then

min{ug, a — C1} < Blto,v(to), uoJv(t) < max{ug,b— C,}

Lemma 2
Assume piecewise monotonous inputs v(t) and w(t) satisfy the conditions

{v(tﬂ)’uﬂ}) {w(to):uO} €X

a<v(t)<b, a<w(t)<b (to £t<T)
Then

[Blto (i) welo(4) = Bito wlte), volu(t)] < swp[o(r) — ()




Proof.
Assume that the assertion of the lemma is not correct, there would exist
To,T1 € [to,T] such that

l2(70) — y(7o)| = Sup () — w(7)| (2.2)
and
|(t) — y(2)| > sp [o(7) —w(r)] (ro<t<m) (2.3)
where

z(t) = Blto, v(to), uolv(t)

y(t) = Blto, w(to), uolw(t)

With no loss of generality one can assume that the functions v(t) and w(t)
are monotonous on [g,7;]. For definiteness, let z(t) > y(t) for 70 < t < 7.
Consider only the case of a non-decreasing input v(t) on [7o; 71 (an analogous
treatment would also apply to the case of a non-increasing input). At first, let
z(710) = v(70) — Cr. Then z(t) = v(t) — C; (70 < t < 71) and, by the obvious
inequality y(t) > w(t) — Cr (70 <t < 71), the estimate

2(t) = 9(t) < o(t) ~w(t) (o<t<m) (2.4)
follows, implying that
|2(t) — ()] < Jo(t) —w(t)] (o<t <) (2.5)

The previous relation contradicts 2.3, thus the inequality @(7o) > v(70) — C.
is true. Consequently, for the values t which are close to 79 and larger, the
output signal z(t) assumes the constant value z(7). By 2.3 and 2.2 it follows
that the function y(t) is non-increasing and for the same range of time instants
t it assumes values less than y(7p). This means that the function w(t) is non-
increasing and y(t) = w(t) — C; (10 <t < 71). Hence, in view of the obvious
inequality z(t) < v(t) — C; (70 < t < 71), the estimate 2.4 follows, yielding
also 2.5 which contradicts 2.3.

O

Let v.(t) (£ > to) be a continuous input and (v.(¢s), %) € E. Consider any
arbitrary sequence v,(t) (¢ > to) of piecewise monotonous continuous inputs
which converge to v,(t) uniformly on any finite interval [to,T] and satisfy the
condition {v, (o), uo} € X. Let

un(t) = Blto, vn(to), uolvn(t) (t>to;n=1,2,...)
Due to Lemima 2 we have
[|un(t) = m ()l < |Jva(t) — vm(t)l|eo

on any interval [to, T]. Therefore u,(t) is a Cauchy sequence and it converges
uniformly to some function u.(t) (to <t < T'). We define

Blto, v(to), to|v«(t) = u.(t)

Figure 2.2 shows the input-output characteristic of backlash.
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Figure 2.2 Backlash

Theorem

The backlash, defined for all continuous inputs,is a short-memory, static
and controllable system.

11




2.3. Backlash inverse

The most damaging effect of backlash on system performance is the delay
corresponding to the time needed to traverse the inner horizontal segment.
This causes a kind of irreversibility which implies that the system cannot be
inverted. In order to achieve the backlash inversion we must basically prevent
it from operating in the dead-zone.

v(t) = uq(t) + w(t) (2.6)

where

C, if ug >0
w(t)=<¢ C if ug <0
w(t-) ifug=0
If we look at the previous definition we see that, whenever the input

derivative changes its sign the output signal jumps with the amplitude
C, — Cj,corresponding to the backlash width. The following Lemma holds:

Backlash inverse lemma

Equation 2.6 defines the inverse BI(.) of the backlash B(.), in the sense
that

B[Bz[ud(to)]] = ui(to) = B|BI[ua(t)]| = ualt) Vt>to

for any piecewise continuos ug(t).

We can define a backlash inverse that handle discontinuities in the following
way.

Let uq(t) be discontinuous at t,, define the sequence of continuous func-
tions

ug(t), t < til

Ly
wa(th) + (¢ — th)2aly=aled 4l <t <y,
Un(t) = 4
ug(th) + (¢ — tr)dall)=valte) — y oy < yr

t )

uq(t), t> 1t

\

where ¢! and t;, are two arbitrary temporal sequences, such that
tho<t, <th, thot,, ot

The following equality holds :

Hm  u,(t) = ug(t)

n—-+00

12




Figure 2.3 Backlash inverse

Then we can define the backlash inverse output as
BI [ud(t)] = n_]_J;{I_noo BI [un(t)}

The backlash inverse characteristic is shown in Figure 2.3.

Notice that the backlash inverse needs the knowledge of the derivative
%g4(t); it is in some sense a kind of non proper system. When we employ the
backlash inverse within a control loop we must be sure that the loop is well-
posed. If the plant is strictly proper, we can easily guarantee well-posedness
assuming to have feedbacks of the same order of the plant. An alternative is
to approximate the derivative operator s with the following filter: 44(¢):

8

ad(t) ~ s +1

ud(t)

S

In the following chapters we will always assume s =

13




Figure 3.1 Plant structure.

3. Adaptive backlash

inversion

Backlash non-linearities in real components are often poorly known, increase with
wear and tear, and vary from component to component. It is therefore appealing
to have some adaptive strategy to recognize and compensate the damaging effects
of backlash on the control loop. In this chapter it is attempted to find control
laws that can deal with a backlash with unknown parameters.

3.1. Plant and Controller structure

The structure of the plant that we consider is shown in Figure 3.1. Here
we have an ordinary backlash, with unity slope. Let C, and Cj respectively
denote the right and left abscissas of the two intersections with the X axis.
The linear part of the plant is described by the strictly causal transfer function
P(s) = K,Z(s)/R(s) where

o Z(s) and R(s) are assumed,without loss of generality, to be monic poly-
nomials,with dR(s) = n, 0Z(s) =m < n

o K, is the high frequency gain

We now turn to consider our controller structure (see Figure 3.2). The dy-
namics of the backlash is canceled by the backlash inverse in front of it, while
the resulting linear plant P(s) is controlled with a model reference approach.
In order to do that we have to make the following assumptions:

e Z(s) is a Hurwitz polynomial;

e the model reference is Wp(s) = Km/Rm(s), where R,(s) is a monic
Hurwitz polynomial; furthermore we define y,,(t) = Wi,(s)r(t)

e the order of R,,(s) is equal to the relative degree of the plant;

If the previous hypotheses are satisfied the controller parameters can be taken
so that the closed-loop transfer function equals the model. Technically this is
done by solving the following Diophantine equation:

0u(5)R(s) + Kpby(5)(s) = A(s) [R(s) = Bom(5)2(5)]

14
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where A(s) is a stable polynomial of degree n. According to standard control
theory if we let 6, = K,/ K, then the following control law:

X0 by (s)
A(s) A(s)

ug(t) ug(t) + y(t) + 0.7(t)

gives a vanishing tracking error, i. e.

lim y(t) - ym(t) = 0

t—+o00

The problem now is that the backlash is a kind of parasitic effect which is
not known a priori, or at least is not exactly known. It is therefore interesting
to have an adaptive algorithm which estimates the backlash width. This im-
plies that we only have an approximate inverse of the backlash in the feedback
loop.

3.2. Backlash inverse estimation

Output error parametrization

In order to develop an adaptive algorithm we have to see how the output
error depends on the error of the backlash parameters estimate. Let us define
some indicator! functions:

o %-(t) = x[ua(t), v(t) on the upward side of BI]

%1(t) = x[ua(t), v(t) on the downward side of BI] 2
x-(t) = x[v(t), u(t) on the upward side of backlash ]
x1(t) = x[v(t), u(t) on the downward side of backlash]
xs(t) = x[v(t), u(t) in the dead zone of backlash] 3

1 m 1 when conditionis true
x[condition] = o
0 when condition is false
() +Ra(t) =1
2x(t) +a(t) + xa(t) =1

15




With this notation it follows that
u(t) = x-(t)[v(t) — Cr] + xa(t)[v(t) — Ci] + X4 (t)us (3.1)

where u, is the value of u(t) when the backlash enters the dead zone. In order
to compute the difference u(t) — u4(t) we must solve for ug(t) the backlash
inverse equation 2.6. After some calculations we get

ua(t) = % (B (t) + Col + 2u(®)[v(?) + C1] (3.2)
From equations 3.1 and 3.2 we obtain
u(t) - wa(t) = % ()[Cr — Co] + Xu(2)[C1 — C1] + do(t) (3.3)

where

do(t) = [xr(t) = X ()][v(2) — Cr] + [xa(t) — Xe(B)][0(2) — Ci] + x(¢)us

Introduce

. C'r x o Cr - Xr(t)
Blt) = ( Ci ) %= ( C ) “rlt) = (Xz(t) )

the equation 3.3 becomes
u(t) - wa(t) = [86(t) — 0" T (t) + do(t) (3.4)

The following proposition holds:

Proposition.

The unparametrizable part do(t) of the control error u(t) —u,4(t) is bounded
for any t.

16




Proof.
There are three different cases to be examined:

1. if xi(t) =1, x-(t) =0, xs(t) =0, then
0 forxi =1, x, =0

do(t) =
Cr~Cy, for xy =0, X = 1;

2. if xa(t) = 0, x-(t) =1, x,(t) = 0, then
0 forxy =0, xr =1

do(t) =
C-Cp,forxu=1, x, =0;

3. if xi(t) = 0, x-(t) = 0, x,(t) = 1, then
u, —v(t)+C, forxi=1, =0

do(t) =
U, —v(t)+Cp, for xy=0, o =1

Since {v(t) — u,} € [C}, C;] it follows that do(t) is always bounded.

O

An upper bound for dy is given by the following inequality:

|do(t)] < |W — W|
where

W=C.-C W=86 -0

It follows from standard control theory that the output error of the closed
loop system can be expressed as

e(t) = H(s)|(Bu(t) - ) w(2) + do(t)] (3.5)

where

17
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Figure 3.3  The structure of the adaptive controller.

Adaptive law

The linear parametrization of the output error given by equation 3.5 allows
us to implement an adaptive law with the augmented error technique. Some
robustification is useful to take care of disturbances. The parameters estimate
can be updated using the following law:

-

¢(t) H(s) [we(?)]
Et) = 6(t)7¢(t) — H(s)[Bo(t) wh(t)
2(t) = 1+ C(8)TC() + £(2)?

() = —T ((t) ﬁ% (3.6)

Since we have the noise dg(t) it is not clear that this algorithm produces
asymptotic tracking or convergence of the estimates to their matching values.
However the boundedness of dy(t) allows us to prove (Key technical lemma)
the boundedness of all the signals in the closed-loop system (see [2]). Some
simulations results will be given to illustrate what may happen.

We are dealing with a non-linear identification problem, so, it is not a
priori clear what kind of “persistent excitation” condition should be imposed
to guarantee that the estimates converge or that the tracking error goes to
zero. Let us consider a simple backlash model with slope & and width 2b. If
the input is a sine wave A sin(wt) the output is the one shown in Figure 3.4.
Let w(t) be the output of the backlash; we can then calculate the phase and
amplitude of the first harmonic of this signal in the following way:

= / " w(2) cos(wt)d(wt) — / " w(t) sin(wt)d(wt)

- T Jn

18
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Figure 3.4 Backlash output for a sine wave input.

Then the describing function of the backlash is

b1 + ja1

N(Aw) = 1

In our case we have

Ak [« (2 2b 2b 2
bl_? —2—~arcsm(j4——1)~(j4—-—1)\/1—(2—1>)

|V (A)| = y/ai + b

a1

[N(A) = arctan (—b;>

Figures 3.5 and 3.6 show the graphs of the amplitude and of the phase shift of
a symmetric backlash with slope and width equal to 1. It is not difficult to see
that the first harmonic of the output signal has all the information required
to estimate the backlash parameters. From the phase shift it is possible to
compute the backlash width. Notice that the phase shift is independent of the
slope k. If the width is already known the slope can be computed from the
amplitude.

The situation is completely different if the input signal is a square wave.
The output is then also a square wave with the same phase as the input signal

19




Figure 3.6 Phase of the describing function of backlash

but with a different amplitude. In particular the amplitude W of the output
signal is given by

W =k (A—b)

Since we do not have any other “phase shift information” we are not able to
explicit the backlash parameters in terms of A and W. This simple observation
clearly shows that a square wave is not a “persistently exciting signal” for the
system we have been considering. This is true whenever you need to estimate
the backlash width together with a static gain.

20




Simulation results

The first algorithm that we have tested is exactly the same suggested by
Kokotovic in [1]; the main difference with respect to the algorithm proposed
in this section is that it estimates both the width and the slope of the
backlash. Without loss of generality we can include the backlash slope in the
high frequency gain of the linear system.

Ezample 1

Hereby we are considering a second order unstable system. In the absence
of a proper backlash compensation we would have limit cycles around the
reference signal. In particular Example 1 refers to the following situation:

Linear plant model P(s) = (;:—1—31)(8—“)
2 w=3
Reference model Wi(s) = PNy £=07
Input signal 2sin(2mygt) vo=0.3

Backlash parameters Cr=2 (Cp=-2 slope=
5 0 0
Adaptive law gain '=|000
0 0 5

Feedback polynomial A(s) = (s+ 3)?

The results are shown in Figure 3.7. The output error, after a brief transient,
tends to zero very quickly and the parameters estimates are tuned to their real
values.Notice that in this first example we have for simplicity chosen a unitary
backlash slope and that the corresponding parameters of the adaptation law
has been initialized to its real value. Besides the gain I' has been set to a low
value in order to let clearly understand from the plottings how do the backlash
and its adaptive inverse operate.

21
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Figure 3.7 Simulation of Ezample 1
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Ezample 2

The second example refers to a different situation, where the backlash width
has been decreased and the signal amplitude has been increased. Besides we

are now estimating also the slope

of the backlash.

Linear plant model

Reference model

Input signal

Backlash parameters

Adaptive law gain

Feedback polynomial

P(s) = o500

Wa(s) = Grayersy

3 sin(27wvot) vo = 0.3
Cr=1 Ci=-1 slope=3
5 0 0
'=]1050
0 0 5

A(s) = (s +3)?

Even with very bad initial values for the backlash and gain estimates the
convergence has proved to be fast and precise (see Figure 3.8). Notice that
as long as we have a phase-shift between the input and the output we are not
able to correctly estimate the slope.

Ezample 3

We have then tried with other wave forms , such as squarewaves, to see if the

convergence was equally achieved; the results are shown in Figure 3.9.

Linear plant model P(s) = (a——li})m
Ref del | W(s) = 52 w=3
eference mode m(s) = FTiteTat =07
Input signal 2.5+ 2.5sign(sin(27rv0t)) vo = 0.1
Backlash parameters Cr=05 (Cp=-05 slope=1
15 0
Adaptive law gain I'= 0 5
0 0 16
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Figure 3.8 Simulation of Ezample 2

Even if there is not analytical proof of the convergence of this algorithm the
simulation results clearly indicates that with sufficient “rich” signals, both
asymptotic tracking and estimates convergence is achieved.
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Figure 3.9 Simulation of Ezample 3
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3.3. Plant and backlash estimate: implicit approach

Output error parametrization

One possible direction in which we can generalize Kokotovic algorithm is to
consider unknown plant and backlash at the same time. One way to deal with
that problem (for the discrete time case) is described in [2]. There are two
main limitations of this approach for continuous time systems:

e the controller has many unknown parameters which sometimes are re-
dundant;

o there are algebraic loops that can give chattering and high frequency
switching of the backlash inverse;

The large number of parameters employed was mainly motivated by the
desire to keep a linear-like parametrization of the output error. Still the
presence of a residual noise due to the intrinsic non-linear nature of this
problem, makes convergence proofs very difficult. The first approach we
have followed can be seen. as a variant of the standard MRAC for linear
plants. The controller structure is the same described in Section 3, with
the difference that the polynomials 8,(s),0,(s) and the scalar gain 0, are
estimated by the adaptation law. If a smaller number of parameters is used
we loose the possibility to have a linear-like output error equation; it still
leads to a pseudo-regression model that had good convergency properties in
most simulations. Let 7, d; denote the solution of the following diophantine
equation:

OTd()R(s) + Ko6La()2(s) = A(s) [R(s) - Rm(s)Z(s)]  (3.7)

where

a(s)=(1ss* ... s"‘l)T

and let 6f = K,,/K,, if we denote with 6,(t),8,(t),0.(t) their estimate
at time t then for a closed-loop linear plant the MRC approach gives the
following output error:

Ky
Rm(s)

e(t) = {[6.(t) - 0217 d(s)u(t) + [6,(t) — HZ]Ta'(s)y(t) +[6:(2) — 62]r(t) }

Our non-linear system can be seen as a linear plant where a noise n(t) enters
the closed loop in front of the block P(s). In particular the noise n(t) can
be expressed as a linear function of the backlash parameters estimates errors
plus a bounded disturbance do(t).

n(t) = [6u(t) — 651 we(t) + do(2)
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Figure 3.10 Linear equivalent of the close loop system.

From the controller structure it follows that

0u(3) 0y(s)
ug(t) = ug(t) + -—=y(t) + 6.(t)r(¢
(6= G20 wlt) + w0 + 000
If we substitute y(t) = (KPZ(s)/R(s)) u(t) into the previous equality we ob-
tain the following expression:

_0u(8) e B()Z(S)] g Bul(8)5(s) r
[1 A(s) KPA(s)R(S)] d(t) KpA(s)R(s) () + 6,7(2)

Deﬁne the errors on the estimates, 0,(s) = 6,(s) — 6%(s) and
0y(s) = 0y(s) — 0;(s) and use the Diophantine equation 3.7 we obtain
the expression

Rum(s) E ; = 0,(s)A(s)uq + Ko y(( )) (( ))ud + Kpinf))g—((—;s)ln+ 6.7 (3.8)
Since u(t) = uq4(t) + n(t) we have
< 0)7(s) OLOIAC 0

A RE O T 3o re) " = 29 YO Ern R

and

Fon(8) Bt (t) = B (5) b ult) = i) o3

If we substitute the last two expressions in equation 3.8 and divide both the
members by R.,(s) we set

Z(s)u 1 éu(s)u 1 G,(s)
2(5) "D = B 4 (s) “OF B A(s)
Z(s) [ Kp;(s) 1

() (Rm<s>A<> JECE By 70

y(t) +
(3.9)
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Using the Diophantine equation now gives

Z(s) Kpb, _ Lo
RM(Mﬂ&@YH)_&H”

The output error is given by

: 4(s) o
e(t) = y(t) — ym(t) = Kpmu(t) - Kpmr(t)

It follows from equation 3.9 the expression of the output error:

e(t) __1

[0(t) — ©T7Q(t) + J(5)[86(t) — 651 wp(t) + T(s)do(t) (3.10)

K, R,.(s)

where we have defined J(s) = H(s)/K,. Further more:

6.,(2) 6 wy(t)
Ot)=| 6,0 eF = g, Q)= | wy(t)
0-(t) ox wy(2)

wlt) = ) (= 0 ()=o)

There are essentially two contributions to the output error. One term is due
to the error of the parameters estimate, which can be computed in the same
way as for linear plants; the other is due to the error of the backlash estimates
which is computed as in the case of a known plant.

Adaptive law

‘Expression 3.10 is not a standard parametrization of the output error since
two different stable transfer functions are involved, namely J(s) and 1/R,,(s).
In addition one of the transfer functions depends on the parameters vector
0%. We can implement an extended stochastic gradient algorithm, with the
augmented-error technique in the following way. Let

1
R.(8)

(t) = Q) Colt) = J(s)wa(t)

where J(s) is the transfer function J(s) with 8% substituted by its estimate
6,(t). Define now the auziliary error £(t) as

1

Bon(o) O(t)T(t) + 85(8)7 Go(t) — T ()85(2) wn(t)

£(t) = 0(1)7¢(t) -
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The augmented error e(t) is given by
e(t) = e(t) + k(2)&(t) (3.11)

Using the normalizing factor z(t) = 1+ ((8)T¢(t) + C()TG(t) + €2(t) the
adaptation law can be chosen as

: : e(t)

@(t) = -—SlgIl(Kp) I‘l C(t) :ZTt—)-

Oy(t) = —sign(K,) T2 (o(t) ;i% (3.12)
TR e(t)

k(t) = —7a&(2) @)

Simulation results

The behavior of the algorithm described in this Section will now be investi-
gated by simulations.

Ezample }
In the first example we have the following data:

Linear plant model P(s) = (_ﬂ—jl?l)m
= 0.
Model reference Win(s) = 37?72%;4——_52— ¢ T
Backlash parameters C.=2 Ci=-2
squarewave
Input signal frequency 0.1H z

amplitude 5

o = —41.05
—4.7

Matching parameters values o* — —156.075
¥\ -132.875

0:=9
Feedback polynomial A(s) = (s + 3)?
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Figure 3.11 Simulation of Ezample 4
plant and model output
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Figure 3.12 Simulation of Ezample 4

Figure 3.11 shows the model and the plant outputs in the transient phase. In
Figure 3.12 we see the same quantities after 858 seconds. . Figures- 3.13 and
3.14 show the evolution of the output error. We can see how the convergence
becomes quite slow after the initial transient. This is mostly due to the slow
convergence of the linear. controller. parameters. Figure 3.15 shows that the
backlash parameters have almost converged, while Figure 3.16 shows that 6,(t)
and 6,(t) have a saturated behavior though quite far from their matching

output error

T 17 1t 1 T 1T 7T 1T 17

T I 1

0 100

T T T ] T T

200 300 400 500

Figure 3.13 Simulation of Ezample 4
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Figure 3.15 Simulation of Ezample 4

values 07, 0;. TFigure 3.17 shows the control signal v(t) and the backlash
output u(t) after the backlash inverse is tuned.

In order to have a faster convergence of the linear controller parameters,
we tried to use input signals with richer harmonic contents. In particular
we have used linear combinations of sine waves as reference signal. Different

Controller parameters
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: ' * = i t T T T :
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Figure 3.16 Simulation of Ezample 4
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Backlash signals
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Figure 3.17 Simulation of Ezample 4
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results were obtained with periodic or quasi-periodic signals: the convergence
speed of the output error to zero was slightly higher for periodic signals, but
this slowed down the convergence rate.

Ezample 5
In this case we have the same data of Example 4. The only difference is in
the reference signal. Here we are using a linear combination of sine wave.

Linear plant model P(s) = (5;_1—51)—(;+—1)
= 0.7
Model reference W(s) = 72_+22i_w ¢
Backlash parameters Cr =2 Cy=-2
vy = 0.05
=0.1
Input signal i, bsin(27y;t) V2 09
vy = U.
Vy = 04

In Figure 3.18 is not plotted the graph of the plant and model output because
on a temporal interval of 900 seconds and with the frequential content of
the reference signal it would have been unreadable. Still if we look at the
controller parameters evolution in Figure 3.18 and the corresponding Figure
3.16 of Example 4, we see that a richer harmonic content does not affect in a
significant way the controller convergence rate.
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Ezample 6

The convergency speed depends critically on the specifications. The conver-
gence is faster if we relax our model requirements by decreasing w. This is
illustrated in the next example, where we have chosen a marginally stable
plant and relaxed our constraints taking w = 2 . The Figures refer to the
following settings:

Linear plant model P(s) = a(a1+1)
=0.7
Model reference W(s) = mﬁm ¢
Backlash parameters C. =05 C;=-05
squarewave
Input signal frequency 0.1Hz
amplitude 1

If we look at the plottings of the plant output or of the output error, we clearly
see how the control system achieves a satisfactory performance within the first
50 seconds of transient. Afterwards the convergence of the controller param-
eters is very slow and the output error becomes almost periodic. However
this residual output error does not compromise the backlash compensation
and only leads to small oscillations of the backlash parameters around their
matching values. Notice also that in this last example we used a different
parametrization® of the backlash, defining a width W and a bias vy as

W =C, - C

;Cr'*‘Cl

Vo )

This can turn out to be helpful for the tuning of the adaptation law gains;
in general it is convenient to have a higher gain for the width parameter and
a low gain for the bias, at least in all the situations in which we expect to
have an almost symmetric backlash. This differentiation of the tuning is not
obviously possible with the parametrization in terms of C; and C, as long as
we wish to have a diagonal gain matrix. This also explain the almost constant
plot of the bias in Figure 3.19.

4 A regressor expression for this new parametrization is given in Section 3.4
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Figure 3.18 Simulation of Ezample 5
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Recursive Least Square version

One possible way to speed up the convergence of the controller parameters
is to use an RLS algorithm. In order to obtain a proper regressor for the
algorithm we have to use the augmented error. In particular, if we refer to the
following error model:

e(t) = Kp > Wi(s) [(6:(t) — 07 ) wi(t)] (3.13)
i=1
we can define the auxiliary errors as

G(2) = Wi(s)[wi(?)]

&i(t) = 6:(t)T G:(t) — Wi(s)[0:(t)  wi(2))
The augmented error becomes
e(t) = e(t) + ¢(t)¢(2)

where

{OEDI0)
=1
The augmented error can also be written as
e(t) = 6T (1)3(¢) (3.14)
where the following notations have been used:

()~ 07 Wi(s) r(t) )
ez(t) — 0; Wz(s) (.Ug(s)
A(t) = ' B(t) =
0,(t) — 6 Wa(s) wa(t)

\ #(t) - Kp / JORY

Equation 3.14 is a regression model for the augmented error. We can now
implement a standard continuous time RLS algorithm with exponential for-
getting in the following way:

O(t) = —sign(K,) P(t) 3(t) e(t) (3.15)

P(t) = aP(t) — P(t) 3(t) 8T (t) P(t)
If we consider the backlash output error expression, it is evident that the

previous laws can be used for our adaptive control. The differences, with
respect to the scheme described so far, are the presence of the disturbance
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do(t) and the dependence of one of the transfer functions on the parameter
0;. Simulation results showed a good convergence both of the backlash
and controller parameters. The major improvement with respect to the
‘gradient’ algorithm is the almost constant convergence rate of ©(t), even
in the presence of a very small output error. Unfortunately the numerical
solution of the differential equations requires a substantial computational
effort. There are also problems with ill-conditioning.

Ezample 7

The simulation results shown in Figure 3.20 refer to data almost equal to
Example 6. The only difference is that we are using a RLS algorithm to
estimate the controller parameters. If we compare Figure 3.19 and 3.20 we see
that a slightly longer transient is seen for the RLS algorithm, probably due to
a more pronounced oscillation of the bias estimate that we could avoid in the
SG algorithm thank to a correct choose of the adaptation gain I'. Afterwards
the tuning of the RLS becomes clearly more accurate, and a smaller output
error is shown.

Linear plant model P(s) = A(:H)
w2 P =0.7
Model reference Wi(s) = e _
Backlash parameters C, = % C = —%
squarewave
Input signal frequency 0.1H z
amplitude 1
—-9.4
0y = o
-1.8
Matching parameters values o — —16
v\ -13.8
0r =4
Feedback polynomial A(s) = (s + 2)?
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Figure 3.20 Simulation of Ezample 7
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3.4. Plant and backlash estimate: explicit approach

Output parametrization

We will now use an explicit approach to the problem. Our aim is to define
an adaptive law to estimate an explicit model of the plant.Afterwards the
estimated model is used to design a controller. Consider the simple plant
structure shown in Figure 3.1.We will use a different notation, since we need a
different parametrization of the plant. Assume that P(s) = B(s)/A(s) where

A(s) = "+ a1t as" i+t a,
B(s) = bps™+b1s™ 4+ by
with m < n. Consider a stable polynomial T(s), with degree > n. Let A;(s)
denote the following transfer functions:
s

(s)

A filtered version of the plant output yr = A,(s)y(t) can be computed with
the following linear regression model:

¥t = — 618 (8)W(8)] — azBnma()W(D)] — - — ando(s)iy(t)] +
+ boAm(8)(t)] + b1 A ($)ulD)] + -+ bin o(s)u(t)]

Aq(s) =

fori=0...n

(3.16)

Consider the expression of the backlash output
u(t) = x (1)[v(t) — Cr] + xa(t)[v(2) — Ci] + xs(t)u,
If the backlash is parametrized in terms of a width W and a bias vy we have

wW=C,-C

. CT+CI

Ug = 2

u(t) = v(t) — vo + Xl(t)—;XT-(t—)W + Xa(t)[us — v(2)]

If we substitute the previous expression for u(t) in eqn. 3.16 we obtain

yr = —a1Qn_1y(t) — azAn_2y(t) — - — axdoy(t) +
+ bW Amp(t) + bW A1 p(8) + -+ + bW Agp(t) + (3.17)
bm’l)o
+ boAmv(t) + - - + b Agu(t) — T0) d(t)

where we defined
p(t) = Xl(t) ; Xf(t)
B(s)

d(t) = T(s) [Xa(ua - 'U(t))]
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Let us notice that p(t) is in general not known. In order to write a linear
regression model of the plant, we need all the quantities in the regressor to be
accessible. Define p(t) as

IO 20

A( 5

Eqn. 3.17 then becomes

Yr = _alAn—-ly(t) - G'ZAn—Zy(t) - anAoy(t) +
+ boWALARE) + BiW A1 5(E) + « - - + b W AQP(L) + (3.18)
+ boAmv(t) + -+ - + b Aov(t) — f’f"—(g% +d(t)
where
a(0) = d(t) + 05 1o = SOV
Introduce the following vectors :
al —An_1[y(?)]
a2 —Ap_2[y(t)]
0, = $a(t) = .
an —Aoly(t)]
bo Am ['v(t)]
b1 Am_l[’l)(t)]
Op=1 . Pu(t) = :
bm Ao[v(2)]
Aml[A(t)]
Am-—l [ﬁ(t)]
0w =W, Pu(t) = .
Aolp(t)]
Let 6 and ¢(t) denote the vectors
0 da(t)
. 0(, . ¢b(t)
6= =
6. ¢(t) bo(0)
S -1
then eqn. 3.18 can be rewritten as
yr = 07 p(t) + d(¢) (3.19)
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Figure 3.21 The structure of the controller

Adaptive law

We have obtained a linear regression model for our plant. The RLS algorithm
with exponential forgetting becomes

Il

200) = P() 9(0) elt)
e(t) = yr(t)—oT(t) 6(2) (3.20)
%P(t) = aP(t) - P(t) 4(t) ¢7(t) P(t)

Control design

The controller must be updated at discrete times according to some direct
synthesis method. First we can choose the backlash inverse parameters in the
following way® :

T(0) »r .,
do = ——b(——) 0T &niami
N . . A _ A 1T A _ A
W = argvx‘rllé%ww W 6,]" Qb — W 6] (3.21)

where @) is an m X m positive definite matrix. Using the previous expression
and equating the derivative to zero we obtain

. 6T Qé,
W= —"T"7F"
07 Q 6
It can be shown that
Jim @(t) =W lim () = vo
6(¢)—0 b(t)—8

®&; is the j-th element of the canonical base. Here 67 (t) €nt2m41 is the last element of
vector 6(t)
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The MRC approach can be used to design a stabilizing controller for the
estimated plant. Introduce

~

A(s) = "+ as" Tt 4 a8 4t i,
B(s) = bos™ 4 bys™ bt b,

the controller parameters are then obtained by solving the following Diophan-
tine equation:

0u(8)A(s) + 8,(s)B(s) = A(s)[A(s) - ié(s)Rm(sn (3.22)

where we have chosen as a reference model Wy, (s) = K;n/Rm(s) . The feed-
forward gain is given by

Kn
<
bo

Simulation results

Ezample 8

Hereby we consider a second-order plant with integral action. In the absence
of a proper backlash inversion this leads to self-substained oscillations or to
limit cycles, according to the closed-loop gain. More in detail we are referring
to the following settings:

Linear plant model P(s) = m}l—_ﬁ
Backlash parameters Ci=-03 C, =07
= 0.7
Reference model Wi(s) = m“iaw ¢ "
w =

Feedback polynomial A(s) = (s + 2)?
Clock interval 3 sec.
Forgetting factor a=0.15
RLS polynomial T(s) = (s + 3)2

The convergence is very fast compared with the corresponding Example 6 of
the previous chapter. This is partially due to the use of an RLS algorithm,
but most it is due to the fact that a different approach is used. Notice that
all the algorithms presented need some aknowledgments in order to prevent
the system to operate with a negative estimate of the backlash width. This is
particularly evident in “width and bias” of Figure 3.22.
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Ezample 9

The convergence speed of this algorithm is essentially independent from the
control requirements. In this example we have in fact chosen a more critical
plant model, with unstable dynamics. We are also considering more severe
requirements, having increased w to 3. Notice that in both simulation we
did not assume to have any a priori information about the magnitude of the
plant parameters. All the estimates are in fact initialized to zero. Still the
convergence was very fast and precise. Figure 3.23 refer to the following
settings:

Linear plant model P(s) = m
Backlash parameters C;=-03 C.=0.7
Reference model | Wp,(s) = 7}7&%@7 Ew::O;
Feedback polynomial A(s) = (s + 2)?
Clock interval 3 sec.
Forgetting factor a=10.15
RLS polynomial T(s) = (s + 3)*

Notice that this last Example can be somehow compared with Example
4, where an implicit approach is used. The only difference is in the backlash
parameters. It is quite evident that the two algorithms really have different
convergence rates. We should not forget at the same time that this is achieved
thank to a bigger computational effort.

Besides we must mention that the explicit approach requires an additional
step, that is the control design block. The convergency speed of the open-loop
plant estimates is therefore filtered by the sensitivities involved in the control
design. This means that even if the plant estimates do not depend on the con-
trol requirements, this dependence is somehow reintroduced when considering
the control loop as a whole. The solution of Diophantine equations leads in
fact to higher sensitivities to parameters variations when we are dealing with
more severe requirements.

The algorithm was convergent, (for low order examples) also with a sinu-
soidal reference. The backlash itself and the discrete updating of the control
law generate higher order harmonics and provide persistent ezcitation to the
system. It should be noticed also that in both examples there were no zeroes
to estimate, and the B(s) polynomial was reduced to a scalar coefficient. It
is possible that some lack of excitation is met when dealing with higher order
models or with zeroes in plant dynamics. '
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Figure 3.22 Simulation of Ezample 8
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Figure 4.1 Backlash inversion through a stably invertible system

4. Adaptive backlash
inversion through a
dynamic system

A more complex situation arises if the backlash nonlinearity is preceded by a
dynamic system. The aim of backlash inversion through a dynamic block is to
some extent similar to the problem of tracking a square wave reference. Therefore,
an exact backlash inversion is not possible for continuous time systems. Still, if
we control the dynamic block to a sufficiently ready model, we can prevent the
backlash from operating in the dead-zone for too long time.

4.1. Backlash inversion through a dynamic block

An interesting point left open by Kokotovic is the backlash inversion through
a dynamical system. If the transfer function of the dynamic block is stably
invertible, an easy way to invert the backlash is shown in Figure 4.1. This
kind of scheme provides asymptotic backlash inversion, i. e.

tliglo u(t) —ug(t) =0

On the contrary if the transfer function of the dynamic block is not stably
invertible even the objective of asymptotic backlash inversion is not achievable.
Let us consider a minimum phase transfer function G(s) = K Z,(s)/Ry(s)
with relative degree > 1.

Since we are trying to invert the backlash dynamics for control aims, what
we are really interested in, is not actually the “backlash inversion”; it will be
sufficient to have a sort of “backlash linearization”. This means essentially
that we would like to have

Jim w(t) = Grn()[wa(?)]

where G, (s) is alinear transfer function. Let us denote with ug(t) the dynamic
backlash inverse input (see Figure 4.2). We define

DBI [ud(t)] = ug(t) + 6(t)
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Figure 4.2 Backlash linearization

Then we have for the backlash output u(t)

u(t) = x-(t)[vs(t) — Cr] + 2 () [vs(t) — C1l + X (t)us

We can now consider the linearization error €(t)

e(t) = u(t) — us(t)

Its expression follows immediately :

e(t) = (xi + x-)G(8)6(t)] = (- Cr + 1) + Xu{wts — G(8)[ua(t)]}

Our aim is to choose §(t) in order to minimize some positive definite func-
tional of €(t). In this way the “backlash linearization” purpose can be seen at
all effects as a tracking problem. As it is known from linear control theory,
whenever the relative degree of our plant is > 1 it is not possible to achieve
asymptotic tracking of discontinuous reference signals (as requested here).

An alternative is to define a reference model G,,(s) of the same relative
degree as the dynamical block G(s) , with unitary static gain. Then we control
via a feedback the block G(s) in order to have a close loop system transer
function equal to G,,(s). Then we can put a backlash inverse in front of the
dynamic block. This kind of backlash inverse would not provide asymptotic
linearization of the backlash, still, if the reference model G,(s) is sufficiently
ready, then it can prevent the backlash from operating in the dead-zone for
too long time. The scheme of the dynamic backlash inverse is shown in Figure
4.3.We have by the time made the assumption that both the G(s) output and
its derivative are accessible. The two feedback blocks are the solutions of the
following Diophantine equation:

0,(s)Ry(s) + Kg0.(s)Zg(s) = QU(s) [Rg(5) — Zg(5)Rgm(s)] (4.1)
with

Kom Kom
Gm(s) = Rgm(s) 051_ = Kg

being 0y; the backlash inverse slope or equivalently a constant gain just behind
it. In this scheme we have a switching mode signal, that toggles when the
derivative of the backlash input crosses zero. An equivalent way to implement
the dynamic backlash inverse is shown in Figure 4.4 where the switching mode
signal action has been replaced by a differential operator cascaded with a sign
non-linearity.
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Figure 4.3 Dynamic backlash inverse

Dynamic backlash inverse

ug(t)

Gs) [+ R

Figure 4.4 Eguivalent of the dynamic backlash inverse

4.2. Plant and Controller structure

Let us consider now the plant structure shown in Figure 4.5. Since the backlash
is preceded by the dynamical block G(s) it is not possible anymore to achieve
an exact backlash inversion; still we can use the dynamical inverse in order to
reduce the backlash impact on the system, and then control the whole plant
with standard linear control techniques. The closed-loop system is shown
in Figure 4.6. If we compute the backlash inverse feedbacks according to
equation 4.1,and we denote with W,,(s) = K,,/Rm(s) our reference model
and let 8, = K,,,/K then the controller parameters are the solutions of

Ou(s)R(s) + KOy(s)Z(s) = A(s) [R(s) — Rm(5)Z(5)] (4.2)

A

e B O e I e I T

Figure 4.5 Plant structure
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Figure 4.6 Closed-loop system

where

R(s) = Rgm(s)Rp(s) Z(s) = Zp(s) K = KgmKp

4.3. Dynamic backlash inversion: implicit approach

Adaptive backlash inverse

We would like now to consider the problem of estimating the backlash in
this new context. First of all it can be of some interest to see whether the
Kokotovic algorithm can still be employed for this purpose. We can control
the G(s) function to some reference model G,,(s) and then use the Kokotovic
algorithm, trying to ignore in the adaptive laws the presence of the dynamic
block G (s).

In Figure 4.7 are shown the estimates of the backlash parameters. The two
different plots refer to two different G,,(s) chosen for the backlash inverse. In
particular we have chosen Gn,1(s) = 5/(s + 5) and Gma(s) = 10/(s + 10) (
backlash parameters: C, = 0.5, C; = —0.5 ), but still the estimates were very
far from their matching values and obviously fluctuating, due to non exact
backlash inversion.

It is quite intuitive that the convergence of Kokotovic algorithm can be
emproved for G,(s) = M/(s + M) just letting M tend to co. Since this way
of inverting the backlash does not make any physical sense we must try to
find out a different adaptive algorithm. Let us consider the scheme shown in
Figure 4.2. We have for the signals involved the following expressions:

ud(t) = Xelva(t) — Gl + Rulva(t) - C1]

u(t) = Xr [vf(t) - Cr] +x [v,f(t) - CI] + XsUs
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Figure 4.7 Fluctuating backlash estimates
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u(t)

Gi(s)

Figure 4.8 Dynamic inverse signals

Then subtracting one equation from the other
u(t) — ua(t) = % [Cr — Ce] + 1[C1 = Ci] + [05(2) — wa(t)] + do(2)

where

do(t) = Xats + (Xr — Xr)[v4(t) = Cr] + (xa — K1) [vs(¢) — Ci]

Since we assumed v¢(t) to be accessible, the quantity [vs(t) — vq(t)] is known;
we could then subtract from the output error the quantity H(s)[vs(t) — v(¢)]
and then use this decreased error to implement the adaptive law. Unfortu-
nately, since we cannot achieve exact backlash inversion, is not true anymore
that do(t) — 0 as 65(t) — 6 . This implies that the estimates would not con-
verge to a point because of adaptive loop excitation due to the noise do(t). If we
want to achieve asymptotic tuning of our estimates we need a parametrization
of the output error that involves only vanishing disturbances. Let us consider
now the scheme in Figure 4.8. The block B(.) is the estimated backlash, then
we have the following relations:

u(t) = xe[vs(t) = Cr] + xi[vs(t) — Ci] + Xotts
at) = Xeolv(t) — Col + Ruslve(t) — Cil + Xabttab
where we denoted with y; the indicators functions of the estimated backlash.

Let us now consider the difference u(t) — uyz(t); we can split it into two con-
tributes, namely u(t) — 4(t) and @(t) — us(t). The last one is known, while the
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Figure 4.9 Eguivalent linear plant

following relation holds for the first one:
u(t) — a(t) = %eb[Cr — Cr] + x[C1 — C1] + du(2)
where the disturbance dy(t) is now given by

di(t) = (Xr — Xeb)[v£(t) — Cr]l + (x0 — Xv)[v£(2) — C1] + (XsuS — RabUsb)

and most of all dy(t) — 0 as 6,(t) — 67 . The control system can be seen as
a linear plant whith a bounded disturbance n(t) = u(t) — us(t) entering the
loop (see Figure 4.9). We can now compute the transfer function H(s) from

n(t) to y(t).

- w3 (1-48)

Then the output error expression is
e(t) = H(s)n(t)

We can then define what we call ideal error subctracting from e(t) its known
component.

ex(t) = e(t) — H(s)[a(t) - uy (1))

Then we have for the ideal error the same expression that we had in Kokotovic
algorithm for the output error, that is

ei(t) = H(s) [ébT(t)w,,(t) + dl(t)]

We can then define the auxiliary error {(t) and the augmented error ¢;(t) in
the standard way

(1) = H(s)ws(?)]
E(t) = Bu(t)T((t) ~ H(s)[G] ()we(t)]
gi(t) = ei(t)+£(2)
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Then we can update the parameters estimate according to the following gra-
dient algorithm.

Ei(t)
1+ ¢T()C(2)

Once again it is not clear if this algorithm would provide asymptotic conver-
gence of the estimates to their real values, but the dependence of the dis-
turbance dy(t) on the estimates error and the simulations suggest that for
sufficient rich signals we will have e;(t) — 0.

B(t) = T (()

Simulation results

Ezample 10

In this example both G(s) and P(s) have unstable poles. Notice that the
reference model for the dynamic block G,,(s) has a bigger bandwidth than
the plant reference model W, (s). This is in general an advisable choice since
the internal control loop must satisfy quite severe requirements if we want to
compensate the backlash in a satisfactory way. The first simulation refers to
the following settings:

Plant transfer function P(s) = (aTlgl)—(?T-ﬁ
Dynamic block function G(s) = 15
Backlash parameters C,r=2 Cy=-2
M —
Plant reference model | W, (s) = (a_l_M)(gI:;ewsz) w=3
£=0.7
Dynamic block model Gm(s) = H}:/\ A=10
Input signal r(t) = 5 sin(27wgt) wp=0.1

As you can see in Figure 4.14 the backlash input is not discontinuous. Still it
can prevent the backlash from operating in the dead-zone for too long time
and the backlash output that results is almost a sinewave. In Figure 4.12
is shown the difference between the ideal error, that tends to zero, and the
output error, that is essentially a filtered version of the backlash linearization
erTor.

Ezample 11
The next simulations diagrams refer to a parameters setting equal to the one

seen in Example 10. The only differences are in the input signal and in the
backlash width.
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Figure 4.10 Simulation of Ezample 10
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Figure 4.11

Simulation of Ezample 10

Input signal

squarewave

frequency 0.1H:z

amplitude

5

Backlash Parameters

C.=05

C;=-0.5

As you can see from Figure 4.16, though the estimates are tuned to their real
values, an ouptut error of a certain entity is still present, due to the non-perfect
inversion of the backlash. In Figure 4.18 is shown the backlash input with the
relative output (dashed line).

output & ideal error
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Figure 4.12 Simulation of Ezample 10
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Backlash parameters

Figure 4.13 Simulation of Ezample 10
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Figure 4.14 Simulation of Ezample 10
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Figure 4.16 Simulation of Ezample 11




Backlash parameters
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Figure 4.17 Simulation of Ezample 11
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Figure 4.18 Simulation of Ezample 11

Unknown plant

We would like now to extend the previous algorithm to unknown plants. Let
us consider at first an intermediate problem. Suppose to know only the trans-
fer function P(s). Since we assumed to have access to the output of the
dynamical system G(s) an adaptive regulator for this part of the plant can
be implemented in a complete standard way with M.R.A.C. techniques, using
a gradient or an R.L.S. algorithm as described in the previous chapter (see
Figure 4.19 ). Once you have chosen a reference model G,,(s) for the backlash
inverse dynamics, then the project of the main loop feedbacks can be carried
out solving as usual the Diophantine equation 4.2, since there are no unknown
coeflicients in it. The adaptive law for updating the backlash parameters can
be implemented without any modification. In fact, the contribute given by
the mismatched values of the controller parameters on the output error is
subtracted and does not appear on the tdeal error used for the backlash esti-
mation. Let us see now in more detail how to implement an algorithm. If we
denote with 8} and 8} the solutions of the following Diophantine equation:

65 @(s)Ry(s) + K6} @(s)Zg(s) = Q(s) [Rg(s) — Rgm(s)Zg()] (4.3)
and let
05 = %
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Figure 4.19 Adaptive dynamic backlash inverse
then according to MRC theory you have for the internal error é(t) = vs(t) —
Gm(s)va(t) the following expression:

K,
Rgm ()

{10 - 031 G000+ 19.00) - 217 §iRos ) + 060 - i)

(4.4)

&(t) =

being 6, (t), 0,(t), 0s;(t) the parameters estimates at time ¢. Define now

6‘0 (t) 0: Wy (t)
Og(t) = | 6.(¢) O;=| 6; Q(t) = | wa(t)
Oei(t) 05 wei (1)

where

a(s) . a(s) () =
“"U( ) ( ) (t) wz(t) - Q(s)vf(t) wbl(t) - vd(t)

With the previous notations we have from eqn. 4.4

&) =

ol IORCARD
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Figure 4.20 P(s) model reference control

Then we can implement an augmented error gradient or RLS algorithm in the
standard way

() = Ejfﬂ (1))

€0 = O3 - 5 OO0
() 2 EO)+ k) (45)
6y = —siga(K) T () 1 e

- £(t)

b= ) e
Suppose now that both G(s) and P(s) are unknown. A straight way to im-
plement an adaptive controller would be to tune the §, and 6, parameters as
already done in the previous chapter, just considering in the adaptive laws
the ideal error instead of the output error. This kind of solution, though very
simple, would lead to a high number of parameters. If we choose a reference
model that admits the following factorization:

Kim Kpm
Rgm('s) Rpm(s)

then we can control separately the two P(s) and G(s) blocks to their reference

models. Let us denote with 5: and 5;‘ the solutions of the following reduced
order (with respect to 4.2) diophantine equation:

éu(s)Rp(s) + Kpéy(s)zp(s) = A(s)[Rp(8) — Rpm(8)Zp(3)] (4.6)

where A(s) is a stable polynomial of degree equal to the plant order. Then we
could control P(s) to its reference model Py, (s) , as shown in Figure 4.20. If
we multiply both the members of 4.6 by Rgm(s)

Rgm(s)

Buls)R(s) + K0y 5) 5 1 2(5) = A(S)IR(S) = B(5) ()]

Win(8) = Gm(8)Pm(s) =
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Figure 4.21 Feedbacks factorization

The previous equation implies that our plant can be controlled to the reference
model K., /R, (s) by the feedbacks shown in Figure 4.21 (with 8, = K,/ K}, ).
With such a factorization we just need to estimate the parameters §, and éy.
If we suppose for a while n(t) = 0, then the output error expression will be

o(0) = 70y {000 - BT L ut) + B0 - B T T2y + 100 - 210}

and recalling the expressions of R,,(s) and K

o(t) = Ky { 5 s 0) — B fu(o)+
Kom

_ * r T « T & ( )
A 60(0) - 671e) + () - T a0}

When n(t) # 0, we must add to the error expression the quantity, H(s)n(t)
as already seen.

e(t) = { Kgm B )[ b (t) — O3] wa () + jggffij[a,(t)._ 07 wn () +
+ gyl - 5:’]T“’”(t)+R,,:.(s)( b ((s)))[ob(t) ob]wa(t)} .

+ H(s)[a(t) — ug(t) + da(t)]
(4.7)

Then an adaptive algorithm can be implemented with the generalized
augmented error technique.

58




0,(t) = ( Zug; ) Oa(t = by (t) Os(t) = 6,(2)
@:é(;‘f) 0; = 7; 0; = 4;
- w“(t) - -
ww=| o Qa(t) = w, (2) Qs(t) = w,(t)
Bi() = 01(t) - O | By(t) = Ox(t) — O | Ba(t) = Os(t) - O3
Wals) = 7zt Wa(s) = m Wals) = R

Notice that Ws(s) depends on the vector §%. This implies that in the adapta-
tion law @, is replaced by its estimate at time t. With the previous notations
the output error expression is

e(t) = Kp { E Wj(S)[@g(t)ﬂj(t)]} + H(s)[a(t) —ug(t) + du(t)]  (4.8)
We define the ideal error as
ei(t) = e(t) — k(t) J(s)[&(t) — uys(t)] (4.9)

where J(s) = H(s)/K,. Then we can define the auxiliary errors in the stan-
dard way

Gi(8) = W;()Q5(t)

forj=1.3
&i(t) = 07 (£)¢;(t) — W;(s)[OF (£)25(2)]
¢i(2)
€= &0 (=] e
j=1-8 ¢a(t)
The augmented ideal error is
ei(t) = ei(t) + k(1)E(2) (4.10)

If we denote with k(t) = K, + ¢(t), and recalling the generalized augmented
error expression, then the following equality holds:

eit) = Kp { > ‘ﬁf(t)Cj(t)} + s0(t){£(t) — J(s)a(t) - uf(t)]} + H(s)du(¢)

7=1.3

(4.11)
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Our adaptive laws for adjusting ®; and ¢ are

= i) GO) Trndey frd =L
(,b - —Ei(t) E(t) — J(s)[ﬁ(t) _ uf(t)] (4.12)

14+ ¢T(2)(2)
Simulation results

Ezample 12

In the algorithm presented in this section two different adaptive controllers
are involved. The inner one is a standard linear MRAC,; its estimates are
shown in the “internal parameters estimates” plot of Figure 4.22 and are
updated according to the internal error é(t). The outer one updates both
the backlash parameters and the feedback gains; its estimates are updated
according to the ideal error evolution and are referred in the plots as “u
feedback”, “y feedback” and “width and bias”. Figure 4.22 refers to the

following model:

Plant transfer function P(s) = a(—aitf)"
Dynamic block function G(s) = 5_10_5
Reference model 1 Pn(s) = ?7?270%?&7 w~: 2
£=0.7
Reference model 2 Gm(s) = ,.{1_20
Backlash parameters Cr=-2 C,=2

RLS for G(s) controller

Adaptive algorithms
SG for Backlash and Plant

As already seen in Example 4 and 5, the convergence of the algorithm becomes
very slow after the initial transient even if the estimates of the feedbacks
parameters are still far from their matching values. Nevertheless the backlash
width and bias estimates converge in general more rapidly and allow at least
a partial backlash compensation.
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Figure 4.22
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Figure 4.23 Non linear observer

4.4. Non linear observer

Deterministic plant observer: known backlash

In the previous paragraphs we always made the assumption that the input of
the backlash was accessible. In order to remove that restriction we have to
design an observer for our plant. In particular if the system G(s) is stable, then
we can observe its output with an open-loop observer. The algorithm described
in the previous paragraphs (for the known plant case) can be directly extended
to this situation. If the transfer function G(s) is unstable or unknown we have
to consider a more general scheme. Let us notice that the aim of asymptotic
state observing is not achievable for an arbitrary input signal. Whenever the
backlash is working in the dead-zone we loose all the information about its
input and about the state evolution of G(s) . Still we can try to design a
linear-like observer, including a backlash in our plant model. The observer
structure is shown in Figure 4.23. We define @(t),04(t) and §(t) as

a(t) = w(t) —a(t) 5500 =vp(t) - 0p(8)  F() = y(t) - 9(2)

Then it follows from the observer scheme

g(t) = P(s) u(t)

a(t) = Blvs(t)] - Bo(t)]

If we denote with d(¢) = B(v) — v + vp, it is easy to see that the following
relationship holds:

()] < b
where 2b is as usual the backlash width and v its bias. Then we have for @(t)

(1) = 5(t) + d(t)
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Then if we write explicitly 9(t) as a function of §(t) we have for the close
loop system the following relation:

G(s)O(s)P(s)

“13G(5)0(s)P(e) Y (4.13)

1 =

Then if we choose O(s) in order to have in 4.13 a stable transfer function we
will have a bounded observation error. The previous equation also suggest a
possible criterion to design a good observer, that is trying to keep |0O(jw)| as
low as possible for w close to the reference frequency. It is quite interesting
to see what kind of behavior we would expect from this observer with a first
harmonic analysis. Let us assume to have

vs(t) = Asin(wt)

o(t) = Asin(wt + ¢)
then, with a fasorial notation ’
9p(t) = A — Aed?
We can use the backlash describing function to compute (t)
a(t) = N(A)A — N(A)Ae™

Then recalling 94(t) = — G(jw)O(jw)P(jw) @(t) we have

A — Aei? ) . .
T N(A)A- N(A)deb G(jw)O(jw)P(jw) (4.14)

It is easy to see that when b — 0 eqn. 4.14 reduces to the classical Nyquist ex-
pression to determine the closed-loop poles of the linear system G(s)O(s)P(s)
with a unitary feedback (since N(.) — 1). Let us now suppose for a while
¢ = 0; we have
A-4A
N(A)A- N(A)A

= G(jw)O(jw)P(jw)

If we pass to the limit for A — A then the previous equation becomes

”Iivl(m‘] = G(jw)0(jw)P(jw) (4.15)
dA

Let us now consider what we have for A = A. If we pass to the limit for ¢—0
then eqn. 4.14 yields

1

¥ G(jw)0(jw)P(jw) (4.16)

We can now see with a practical example what equations 4.15 and 4.16 suggest.

63




[
o
o
42}

T

I
(o]
"
[$}

T

_0.2 1 H 1 1 1 i 1 1 1] 1 1
~1 -0.8 -0.6 -0.4 -0.2 (o] 0.2 0.4 0.6 0.8 1

Figure 4.24 Nyquist diagram of G(s)P(s)
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Figure 4.25 Nyquist diagram of O(s)G(3)P(s)

Let us consider the following transfer functions:

1
s—1

1
P = ine-1s 0=

The system P(s)G(s) has two unstable poles. In order to stabilize it we
have to find an O(s) such that the Nyquist plot of P(jw)G(jw)O(jw) chains
twice the point —1. We have chosen here O(s) = (177s® + 121s — 55)/(s +

11.5s + 58). The resulting Nyquist plot is shown in Figure 4.25. The two

functions —1/N(A) and —1/2[N(A)A] tend to —1 when A — oo, then the
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Figure 4.26 Nyquist plot of —1/&[N(A)A]

system behavior tends to stability whenever the input signals amplitude is big
compared to the backlash width. A rough estimate A of the threshold value
for the signal amplitude to guarantee a small observing error can be obtained
plotting the graphs of the first members of eqns. 4.15 and 4.16 together with
the Nyquist diagram of the loop-gain and choosing for A the value

A = max{A1, A2}

where Al and A2 are the solutions of eqns. 4.15 and 4.16. The two diagrams
are plotted in Figures 4.26 and 4.27. Simulations showed a fast convergence of
the observing error to small values. In Figure 4.28 is shown the error evolution
with a 15% ratio between the backlash width and the signal amplitude.

Adaptive observer: unknown backlash

Let us consider now the problem of estimating the backlash parameters within
the observer scheme. If we substitute a backlash estimate in the observer we
have for the closed-loop signals the following relations:

3(t)

P(s) a(t)
a(t) = Blus(t)] - Blos(t)] (4.17)
9(t) = —G(s)0(s) §(t)

If we recall the expression of the backlash output we obtain

Blog(t)] = xr(t)[vf(2) — Cr] + xa(t)[vs(t) — C1] + xa(t)uts

Blog(t)] %o (8)[6£(t) — Cr] + Rap(8)[0£(£) — C1l + Xab ()it
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Figure 4.27 Nyquist plot of —1/N(A)
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Figure 4.29 The structure of the adaptive controller
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Then it follows for a(t)

@(t) = X (t)(Cr — Co) + % (t)(C1 — C1) + 94(t) + d(2) (4.18)
where d(t) is a bounded disturbance defined as
d(t) = Xstts — Roblls + [Krb — Xr][v4(t) — Col + [ — x1][v£(t) — C1] — XaD#(t)
If we substitute @(t) in 4.17 we have

P(s)
1+ P(s)G(s)0(s)

g(t) = [(66(t) — 65)Tws(t) + d(t)] (4.19)

This parametrization of the observer error allows us to define an adaptation
law for the backlash parameters. We can as usual implement a stochastic
gradient or an RLS estimation law with the augmented error technique, in the
following way:

P(s)
14+ P(s)G(s)O(s)

T(s)

G(t) = T(s) we(?)
Et) = OF()G(t) — T(s)[67 (t)ws(t)]
e(t)y = g(t)+ &(t)

Stochastic Gradient:

%w=—FMﬂ;§%a

Recursive Least Square:

6u(t) = —P(t) Go(t) (2)

P(t) = aP(t) — P(t) Gs(t) ¢ (¢) P(2)

Simulation results

Ezample 13

We are considering hereby a second order unstable system with a first order
unstable dynamics in front of the backlash. The backlash effects are quite
critical with respect to the amplitude of the signals involved.The simulation
in fact showed big limit cycles around the reference in the initial transient,
when there is not a proper backlash compensation. Figure 4.30 refers to the
following settings:
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Plant transfer function P(s) = @Tl)—(l':ﬁ
Dynamic block function G(s)= 5
= 0.7
Plant reference model Wi(s) = (‘_1_5)(825:;6“”_(”2) Gw _3
Dynamic block model Gm(s) = aigﬂ
Feedback polynomials A(s)=(s+2)® Q(s)=s+5
Observer transfer function O(s) = %
Adaptive algorithm Recursive Least Square
Backlash parameters C.=25 C;p=-15

Notice that the residual observation error always present when the dynamics
of G(s) are unstable does not compromise the convergence of the backlash pa-
rameters. Since we need an observer for the signal v¢(t), this kind of approach
is not extendible to the case of unknown plants and dynamics.

4.5. Dynamic backlash inversion: explicit approach

Plant estimate

Let us consider now the plant structure shown in Figure 4.31. We want to de-
sign an algorithm to estimate the whole system. Let us see the new notations?
introduced?:

A(s) = "+ as" T tas™ it ta,
B(s) = bos™+ bis™ 4. b,
C(s) = e e 4. 4e

D(s) = s1+dysT 4 dps? 24 .. 4 d,

!The notations are different from the previous chapters since a new kind of parametriza-
tion for the plants is needed.

?We have assumed without loss of generality D(s) to be monic. It is always possible to
include do as a coefficient in front of B(s), simply rescaling the backlash width.(see Figure
4.32)
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Figure 4.30 Simulation of Ezample 13
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Figure 4.32 Backlash and gain commutation

Our plant equations are
A(s)y(t) = B(s)u(t)
u(t) = Blz(t)] (4.20)
C(s)z(t) = D(s)v(t)

If we write the backlash output in terms of a width W and a bias z,

u(t) = =(t) ~ 2o+ XXy g, - =(0)

and we substitute its expression in eqn. 4.20, then we have the following
equality:

AC(s)y(t) = BD(s)v(t) + BC(s) X’—;ﬁw — 20+ Xl — 2()])|  (4.21)

Since the signal p(t) = ﬁx_zézcﬁ is not assumed to be measurable, we will replace
it with its estimate §(t), where

- . )21_)21'
1) = — 2
pt) = =

We must now consider a stable polynomial T(s), with 8T = p+n. If we divide
the two members by T and exploiting the equality

B(s)C(s) , _ bmep,
T(s) 07 1)

we obtain

T eNe) = TR0 - R+ WL )0 + dlt)

where we defined the bounded disturbance d(t) as
att) = 2 (0w, — 0]+ Wla(t) - 0]
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If we denote with A;(s) the fo]lowing transfer functions:

Ai(s) = fori=0...n+p

T()

and we define the polynomials

A(s)C(s) = s™P 4 AC1s™P1 + ACHs™P72 4o AC 1
B(s)D(s) = BDos™ 1+ BD1s™t ! 4 ... 4+ BDpnyy
B(s)C(s) = BCos™ P + BC1s™P ' + .o+ BCrtp

we have the following expression for yy = An4py(t):

- -AClAn-{-p-—ly - ACZAn+p—2y -t Acn+pA0y +

+ BDoAmiqv + BD1Amyq-1v + -+ -+ BDppgAov +

+ WBCoAmiph + WBC1Amyp-1p+ -+ WBCmyplop+  (4.22)
bmcp20

— d(t

The previous equation is (apart for the disturbance d(t)) a linear parametriza-
tion of the plant output. We can then define the following vectors:

AC —Antp-1[y] \
ACy —Anip—2[y]
ACrip ~Ao[y]
BD, Amq[v]
BD; Amiq-1[v]
8= qb(t) =
BDm1q Ag[v]
WBCo Armilf]
WBC, Amip-1 (4]
W/;ch+p AolA]
\ T Y
Eqn. 4.22 can be rewritten as
yr = 6T () + d(t) (4.23)

We could now implement an RLS algorithm to estimate §. The presence of
the disturbance d(t) would not allow an exact convergence of §(t) to the real
values. If the requirements are not particularly severe it is possible that the
estimates oscillations do not compromise the system behavior®. If we need a
sharper convergence, we must try to observe the noise d(t).

*It should be noticed that if the block G(s) is controlled to a sufficiently ready model
the noise d(t) will be attenuated if it is active the backlash compensation; the residual noise
that we have under matching conditions of the backlash parameters is caused by the inexact
backlash inversion.
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Parameters deconvolution

We need now to compute the plant parameters in order to design the controller
and the observer. Since we assumed C(s) and D(s) to be monic, the two
parameters WBCy and BDg can be seen, the first as an estimate of oW, the
second as an estimate of bg, so we can define the width estimate as

B = WBCo
BD,

(4.24)

It is now quite evident that we can obtain an estimate of the product B(s)C(s)
as

Be; = WBC;

= (4.25)

We have now to figure out a way to compute the estimates of
the polynomials A(s), B(s), C(s), D(s) from the estimates of their
products: AC(s),BC(s),BD(s). One possible solution could be try to cancel
the common factors from the polynomials .AC(s),BC(s) and BC(s),BD(s); it
is not sure whether this way to proceed would lead to good results for our
control purposes, since it is not clear what kind of deconvolution we are per-
forming under non-matching conditions. One different approach is to consider
the following equalities

AC(s)B(s) — BC(s)A(s) =0

BC(s)D(s) — BD(s)C(s) =0

They are clearly satisfied under parameters matching conditions. We can then
define the two polynomials Jy(s), Ja(s) as

J1(s) = AC(s)B(s) — BC(s)A(s)

Ja(s) = BC(s)D(s) — BD(s)C(s)
We can then decide

[A(s), B(s)] = arg min R{2(s)}

(6(s), D(s) = arg _ min R{7:(s))

where N is a positive definite functional. In order to have a close solution to
these problem we can choose a quadratic functional. If we define the poly-
nomial X(s), with 8% > max{9A(s)B(s)C(s),0B(s)C(s)D(s)} in order to
perform a low-pass filter action on J(s), we can set

=[5

(4.26)
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Let us consider the following vectors:

/01

BCs™—1
-Ee—
as _BCs
BC
. a . -5
6, = " p1(s) = AC;E""
bo 5
bl Acazm—l
AC
\ bm \ ¥
With the previous notations we have

Ji(s) _ or BCs™
2(5) - 01 (Pl(s) 2(8
Then our parameters value can be chosen solving the following linear system
oo . , +eo , BCs™
{/ p1(jw)pr(—jw)” dw} 01 = / p1(jw) (E(T)) dw (4.27)
—oo a=—jw

—oC

In the same way we have for J,(s)

Ja(s) 1 _ BDs? — BCs*
2(5) - 02 902(5)

(s)
with the following notations:

(o
Ca

( __BDsr!
b

__BDsP—2

- | ¢ - -5
0z = 902(5) = BCad—1
dy =5
da

BC3s1—2
3]

& ) \ ¥
Let us notice that eqn. 4.27 can be computed according to residues theory.
All the integrals are of the following form:
+co
/ ( Q(s) ) do

Since we have chosen the polynomial ¥ we already know its zeros and we can

easily compute a partial-fraction expansion of the ratio Q(s)/(Z(s)Z(—s)).
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If we have chosen ¥(s) with only simple zeros, we will have the following
expression:

sonty = 2 (5t )

1=1..8%
Integrating the previous equality
e Q(s) )
— dw =7 (ry7 —rf)
/:-oo <2(s)2(—-6) s=jw i=1..0% ’

One possible drawback of the deconvolution discussed so far is the need to
divide in eqns. 4.24 and 4.25 by quantities that we cannot guarantee to be
different from zero. Besides we must be sure not to have over-parametrized
our plant, otherwise we would get in 4.24 a ratio between quantities that may
tend to zero. Whenever it is only known an upper limit for the plant order we
must adopt a different kind of deconvolution. Using the same procedure we
have previously described we can go through the following steps:

1. From AC and WBC = A(s), WB(s)

2. From BD and WBC = D(s), WC(s)

3. We compute the product W2BC = WB x WC

4. Let Q@ > 0 € R (mp+)x(mtr+l)  We define ¢  as

W= arggg£||wzacw — W2BC||3,
It follows from the definition
wisc @ whc
wie' @ whce

w =

Controller and Observer design

Our controller structure is shown in Figure 4.33. The controllers parameters
can be set solving on line the two following Diophantine equations:

Gu(s)A(s) + 0,()B(s) = A(s)[A(s) = Tem(2)Bls))

bo

Q(s)[C(s) ~ Rgm(s)D(s)]

6,(s)C(s) + 62(s)D(s)

Let us notice that the previous equations are the same as 4.6 and 4.1 already
seen (rewritten with the new plant notations). We can then set ,(s) according
to

Rgm(8)8y(s)
0,(s) = -2 Y
y( ) Kgm
The two scalar gains 6, and 6; are computed as
K,m

01': Y ei:Km
b T

*We denote with R(s) the vector (7o,71,... ,7a)7, being R(s) = ros™ + 718" +...41n
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Figure 4.33 Closed-loop system

In order to design a convergent observer we must have stability for the transfer
function

G(s)O(s)P(s)
1+ G(s)O(s)P(s)

If we define O(s) as On(s)/Op(s) then our aim is achieved solving the equation
AC(S)OD(S) + BD(S)ON(S) = Xoba(s)
being xobs(s) the desired polynomial for the observer dynamics.

Adaptive law

We already said that in order to achieve a more accurate convergence it will
be necessary to estimate the disturbance in eqn. 4.23. We can naturally use
its observed version

i) = ) (xafi, — 20) + s - 1)

If we define the ideal error as
ei(t) = yr — $(1)70(t) - d(t)
then we can implement an adaptive algorithm in the following way:
d -
20() = P(t) 8(t) e(t)

(4.28)

ditp(t) = aP(t) - P(t)$(t)é(t)" P(t)
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Figure 4.35 Observed noise

Let us notice that still a residual noise, due to the observation error, can excite
the system. So it can be useful to have some kind of robustification for our
algorithms. Besides whenever the estimated backlash works for too long time
in the dead-zone , the estimated noise d(t) will grow up consistently and this
can provoke a sudden estimates detuning. If we want to avoid this effect we
must decide a threshold over which the updating of § is disabled. A plot of

the residual parametrization noise is shown in Figure 4.35.
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Simulation results

Ezample 14

This example take into consideration a quite critical situation where both the
dynamic block and the plant are unstable. Besides, no a priori knowledge is
assumed for the system poles since the parameters a;, a; and c; are initialized
to zero. Notice that the plant parameters are updated only at discrete time
events, while the width and the convoluted parameters have continuous time
updating. Figures 4.36 and 4.37 refer to the following settings:

: _ 1
Plant transfer function P(s) = a3
Dynamic block function G(s) = =53
Backlash parameters Cr=-05 C, =05
20w £=0.7
Reference model (FR0)(F2Ewate?) g

Feedback polynomial

Forgetting factor

RLS polynomial

A(s) = (s +2)?
a=0.1

T(s) = (s + 0.5)°

Weight polynomial Z(s)=(s+0.5)(s+1)(s+2)(s+3)

Observer polynomial Xobs(8) = (s + 2)°

Notice that in the initial transient both the observer loop and the plant are
unstable. Afterwards the convergence of the parameters becomes more precise
and the observation error drops down quikly. Figures 4.37 also shows that in
the time interval between approximately 10 sec. and 20 sec. the parameters
estimates are constant. This is due to the threshold mechanism described in
this section and illustrated in Figure 4.34.
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A. RLS continuous time
implementation

Let us consider the standard exponential weighted RLS algorithm with for-
getting factor a:

a~

e(t) = y(t) - o (D)

%é(t) = P(t) ¢(t) (T) (A1)
% P(t) = aP(t)- P(t) o(t) ¢ (t) P(t)

The previous equations work properly only if the process is always excited.
There are problems with the forgetting factor if the excitation is poor. If
P(t)p(t) is close to zero for some amount of time, the matrix P(t) will then
grow up exponentially. This means that the estimates can abruptly detune
whenever P(t)e(t) becomes different from zero. In a practical implementation
we should avoid this kind situation. Let us consider the following matrix norm:

1P(&)]] = 4/tx(PTP)

Since our matrix is symmetric we will compute it as
IP(&)I[* = tx(P?)

In order to prevent P(t) from windup we can write separately the equations
of its norm and versor.

d s d
SHIPIP =2 [IPl] 1P (4.2)

If we recall the norm definition we obtain

d 9 .
Etr(P ) = 2tr(PP)

Substituting the expression of P from eqn. A.l we obtain

d 2 2 T p3

ZIIPY? = 2{al Pl - 67 P} (A.3)
Equating eqns. A.2 and A.3 we obtain

¢T PP
|2l

d
S IPIl = allPl] ~ (A.4)

Let us now define the versor @ of the matrix P

P

°=1En
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Deriving the previous equality we obtain

20=11P1{(¢" Q%)@ - @vs™ Q) (4.5)

We should notice here that only the norm equations depends explicitly from
the forgetting factor a. If we want to prevent || P(t)|| from diverging exponen-
tially we can modify eqn. A.4 in the following way:

[
T+ dlPl P

d
Z1IPl| = (A6)

where ¢ is a sufficiently small quantity. In this way even with poor excitation
our matrix norm will grow up linearly with slope equal to 2. Let us notice in
eqn. A.5 that

Q) =1=|lQMII=1 Vi=1

Unfortunately the trajectories of eqn. A.5 with [|Q(¢)|| = 1 are unstable. In
order to have a proper evolution of our algorithm we can modify eqn. A.5 into
the following:

% = HPH{(«’TQBSD)Q - lIQIIzQsosaTQ} (A7)

If we combine eqns. A.6 and A.7 we obtain the RLS algorithm showed below:

e(t) = y(t)—" 8

d -

=0 = |IPIl @ pe(t)
(4.8)
dpy — Pl ¢
ZIIFIl = TJ?_eﬂP—II_((’o Q%p)|| P|?
d
=@ = 1PI{(¢"Q%)Q - IIPI*Qee"Q}
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e

Figure B.1 Dynamic model of backlash (G — o)

Figure B.2 Backlash approzimation by dead-zone

B. Related works and future

research

We would like to point out hereby some of the critical assumptions made
throughout the present work and that, once removed, could constitute possible
topics for a further research.
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e The model of backlash we have considered is a static mathematical de-

scription of backlash phenomena. It is in some sense a zero-order ap-
proximation of what could be modeled in a very natural way as a fourth
order system. A more complex backlash model, taking into account the
inertial behavior of mechanical components is given in [6] (pages 206-
209). Figure B.1 shows the mentioned backlash scheme. Results on how
to approximate a static backlash operator by different non-linearities,
such as dead-zones, are given in [4] (pages 90-93). In particular it is
taken into consideration the backlash scheme of Figure B.2. This model
tends to the static backlash if we let G tend to infinity.

Still in [4] are given results about more general hysteresis operators and
how to represent them in a canonical form via a backlash non-linearity.
Figures B.3 and B.4 show some hysteresis operators and their canonical
representation.

e A definition for multidimensional backlash is also presented in [4].

e In [3] the approach followed for backlash is also applied to other piecewise
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Figure B.3 General hysteresis operators

v(t) u(t)

z=1(u,v) L(t)»

Figure B.4 Ceanonical representation of hysteresis operators

linear input-output characteristics, such as dead-zone or particular kinds
of hysteresis non-linearities.

o It would be also interesting to remove the assumptions on the phase
minimality of the plants and consider the problem of backlash inversion
through non-minimum phase dynamic systems.

e In all the simulations we always assumed to be in the ideal situation in
which therhe were no disturbances. In order to have algorithms that can
possibly work for real systems we should pay a lot of attention to the
robustification of the algorithms presented.
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