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Abstract

Friction modelling is a delicate problem which poses several challenges
to control engineers. This work focuses on two recent models which de-
scribe friction with nonlinear dynamical systems: The Lugre model, and
the model of Bliman & Sorine.

Comparisons are made concerning friction phenomena captured, com-
putational issues, identification of model parameters and behaviour at
zero-crossings of the velocity. Properties are illustrated by simulations.
New results on stability and passivity for the Lugre model are presented.
Experiments are carried out to validate the models. Limit cycles are
investigated by describing function analysis. The impact of a dynamic
friction model on friction induced limit cycles is discussed.

Both models give reasonable results in describing function analysis,
and it is concluded that dynamic models are superiour to static models
when it comes to reproducing limit cycles. The Lugre model exhibits a
richer behaviour in terms of friction phenomena. The Bliman & Sorine
model could be problematic to use because of poor damping properties.
The damping problems for the Bliman & Sorine model turns out to affect
overall model behaviour in a complex way.

This work was in part carried out at Laboratoire d’Automatique de

Grenoble, CNRS-INPG-UJF, France.
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1. Introduction

With increasing performance requirements in controlled mechanical systems it
becomes more and more important to have good friction models. Well known
classical static friction models tend to be replaced by modern dynamical fric-
tion models. Two of these modern models are investigated in this work: the
model of Bliman & Sorine, and the Lugre model.

In this chapter a short introduction to friction modelling in general is
given. Friction terminology used in this report is explained. First the physical
mechanisms behind friction are presented. Then some of the phenomena that
friction give rise to are described, followed by some of the difficulties introduced
by friction for the control engineer, and possible solutions to these. Finally
some common simple friction models are presented, and reasons for using
more complex models are given.

The second chapter presents the Bliman & Sorine friction model. Formu-
lations of the model are given. Some interesting properties of the model are
described. Linearization of the model is carried out. A parameter identification
scheme is presented and discussed. Simulations are then carried out followed
by a discussion on the model.

The third chapter presents the Lugre model. The formulation of the model
is given together with physical interpretations. Linearized equations are given.
Some mathematical properties are investigated, such as passivity aspects and
stability of a mass system with Lugre friction. Parameter identification is dis-
cussed. Simulations are presented, and a discussion on the model follows.

The fourth chapter presents the results of experiments carried out on a
DC-servo with friction. Parameter identification is carried out for both models.
Some qualitative behaviours of the real system are compared to those of the
friction models. Comparisons are done between dry friction and wet friction.

In the fifth chapter friction induced limit cycles are discussed. The abil-
ity of the friction models to reproduce limit cycles from the experiments are
investigated. Describing functions for the friction models are computed and
compared. Finally some ideas on limit cycle prediction are discussed.

In Appendix A some definitions concerning passivity are presented for
quick reference, together with a short discussion of physical interpretations
of passivity.

Appendix B gives some definitions and theorems on stability for quick
reference.

Appendix C describes the experimental setup in detail.

1.1 Friction physics

This section is included to give some background knowledge that might help
doing interpretations of the friction phenomena and friction models presented
later on in this report. What we usually call friction between bodies in con-
tact is in fact a complex phenomenon composed of several different physical
phenomena in combination. The relative influence of these components are
depending on contact geometry, the properties of the bulk materials of the
bodies, the presence of contaminations (lubrication) on the junction surfaces
and also on the properties of the relative motion of the bodies.



Since the purpose of this report is to compare two friction models with
respect to their applications in automatic control of mechanical systems, this
chapter will focus on friction between metal surfaces with or without presence
of a lubricating agent.

Contact topography

[1], [13] The contact topography has to be considered both macroscopically and
microscopically. Macroscopically contacts are classified into conformal contacts
and nonconformal (Hertzian) contacts as shown in figure 1.1. Conformal con-
tacts are contacts between bodies with matching radiis of curvature. In these
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Figure 1.1 The macroscopical topography of contacts. Left: conformal contact.
Right: nonconformal contact

contacts the area of the contact surface is determined by the size of the parts,
they are therefore also called area contacts. Nonconformal contacts do not
fulfill the condition of matching radii of curvature. Therefore they ideally ex-
hibit line- or point contacts. In reality though the parts deform to create an
apparent area of contact. The deformation, and therefore also the area of con-
tact, is proportional to the load. Both kind of contacts appear frequently in
machines. The stresses found in conformal contacts seldom exceed 7 MPa,
whereas in nonconformal contacts the stresses can be 100 times greater.
Further one has to consider that a macroscopically flat surface is far from
flat when examined in a microscopic scale. The surface is built up of small
asperities, see figure 1.2. The true contact occurs between these asperities, in

N o D

Figure 1.2 Microscopical asperity junctions of an interface between two bodies
in contact.

what are called asperity junctions. In engineering materials the slopes of the
asperities are typically 5 to 10 degrees, whereas the junction widths typically
are 1-107° m (in steel). The true area of contact is therefore much smaller
than the apparent area of contact and is determined by

load

true area of contact = ———————
yield pressure

where yield pressure is a material property. The asperities deform to generate
the contact area necessary to take up the total load. A rule of thumb says that
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the contact area, A, is approximately given by

T3y’

where W is the load, and Y is the yield strength of the material. I.e.contact
stress is taken to be three times the yield strength of the material. This is is
possible because the asperities are under compression.

Dry friction

[1, 15, 16] Dry friction is friction between two bodies in absence of contami-
nations of the contact surfaces. This is an ideal situation which is not possible
to acheive in a real mechanical system due to the fact that chemical reactions
will occur at the surfaces and create oxide films. However, in this ideal case
the friction characteristics are expected to be determined entirely by models
of solid mechanics. In this context we can define friction as the shear strength
of the asperity junction areas. Friction is then proportional to the true area of
contact as

Friction force = true area of contact - shear force per unit area

where the shear force is a material property. As a result friction is proportional
to the load, and independent of the surface area. A well known property from
basic physics courses. More precisely friction is the force required for the elastic
and plastic deformation of the asperities which follows from a relative motion
of the bodies in contact. This process is described by the stress-strain charac-
teristics of the materials, se figure 1.3

Stress I

Rupture

Strain

Figure 1.3 Stress—strain characteristics of solid materials. The transition from
elastic to plastic region is marked out.

Small applied forces result in elastic reversible ”spring like” deformations
of the asperities. The tangential force can in this regime be approximated by

Fi(z) = — k= (1.1)

where k; is the stiffness of the contact and depends on asperity geometry, ma-
terial elasticity and applied normal force, and z is the relative displacement
away from the equilibrium position. Larger forces induce plastic irreversible
deformation, and even larger forces cause rupture of the asperities. The stress-
strain curve indicates that there is a maximum stress that the material can
bear. When an applied force exceeds this stress, the junctions will break and
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sliding occur. This force is called the break-away force, Fy. To first approxima-
tion it is the break-away displacement, zp, that is constant, and the stiffness is
then given by
kt - E
Tp

The break away displacement in steel junctions is typically 2—5 microns. Small
motions before rupture are refered to as pre-sliding displacement. One should
note that the stress—strain characteristics of a material are obtained by stan-
dardized tests, where the rate of the applicated force is fixed to certain signal
forms, often very slow.

When break-away has not yet occured we say that the system is in stick.
The friction force in stick is called static friction, or in short stiction. When
break-away has occured the system is in slip, and the friction is then called
dynamic friction.

Once sliding has started the friction properties are very much dependent
on the properties of the present contaminations, or the lubrication, in the
interface. The situation where sliding occurs between two clean surfaces will
not be treated here, since it is very unlikely to be found in a mechanical system
to be controlled.

Some sources [15] refer to interatomic forces in the junctions causing adhe-
sion between the surfaces as a significant mechanism behind friction in some
cases. Friction is then the force necessary to break the adhesion.

In [1] it is argued that static friction is not truly a force of friction since it is
neither dissipative, nor a consequence of sliding. Instead the term ”tangential
force” is suggested. The arguments are questionable, however. It is true that
elastic motion is not dissipative, but the plastic deformation of the asperities
give rise to power dissipation. Moreover, historically friction has not been
defined as a consequence of sliding only. E.g. the idea of a force for going from
zero velocity to a small steady state sliding velocity, that is higher than the
force required to maintain the sliding velocity is not new, and has always been
refered to as a friction phenomenon.

It would be interesting to find articles that physically treats rate depen-
dency of the break-away process.

Lubrication

[16, 1] Presence of lubrication between the surfaces influences the sliding char-
acteristics. The lubrication agent creates thin films on the surfaces. The film
thickness increases with velocity according to hydrodynamic lubrication the-
ory, from a sometimes monomolecular layer for zero velocity to a thickness
that exceeds the asperity size for high velocities.

It is common to treat four different regimes separately [1]. The regimes
are defined by steady state sliding velocity and can be seen in figure 1.4.

The first regime: stiction and pre-sliding displacement  This regime
corresponds to the dry friction phenomena before break-away described in the
previous section. Contact is taking place in asperity junctions with only a very
thin film in the junctions. Elastic and plastic deformation of the films are su-
perimposed on the asperity deformations. For sufficiently large displacements
rupture of the asperity junctions takes place and the system goes into sliding
and the second regime.
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Figure 1.4 The generalized Stribeck curve describes the steady state friction, F,,
as a function of steady state velocity, vs4, for lubricated surfaces in contact.

The second regime: boundary lubrication For very low velocities no
fluid film is present between the surfaces, and the forces acting in the interface
is shear forces in the solid boundary films.

The third regime: partial fluid lubrication  In this regime lubricant
is drawn into the junction interfaces, and due to the viscousity some of the
lubricant creates a fluid film between the surfaces. However the film thickness
is thinner that the size of the asperities, and therefore some of the load is
carried by the lubrication film, and some by elastic and plastic deformation of
the asperities. As the velocity increases, the film thickness increases, and the
resulting tangential force decreases since the shear forces of the lubrificant film
are smaller than the shear forces of the asperities. This is denoted the Stribeck

effect.

The fourth regime: full fluid lubrication In this regime a lubricant
film thickness that is thicker than the size of the asperities is maintained.
The friction characteristics are now determined by hydrodynamic (conformal
contacts) or elasto-hydrodynamic (non-conformal contacts) theory. In the hy-
drodynamic case there is only viscous friction. The viscous friction increases
with velocity since the shear rates and the shear strenghts of the fluid film are
proportional to sliding velocity.

1.2 Friction related phenomena in mechanical
systems

Several friction phenomena have been observed long before they have been
explained physically. For most applications it is not necessary to know the
true mechanism behind a phenomenon, but it is enough to have a good model
of the phenomenon. This is the engineering approach to friction.

Pre-sliding displacement

Small motions in the elastic region in stick are refered to as pre-sliding displace-
ment or the Dahl effect. The region in which the motion is elastic is normally
displacements less than 2 micron for steel. The physical process behind this
phenomenon is the stress-strain characteristics of the asperity junctions as
described earlier.
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In all mechanical systems there is a mechanism stiffness present. This stiff-
ness often gives rise to larger displacements than that of the asperity stiffness.
It is not possible to separate these phenomena normally.

Wether or not the pre-sliding displacement is due to frictional stiffness
or mechanism stiffness this effect is important in high precision control and
should be captured by a model.

Stribeck effect

For low velocities the friction decreases with increasing velocity. This is desta-
bilizing in control systems. The physical explanation is given in the section on
partial fluid lubrication. See figure 1.4.

Stick-slip motion

Stick-slip motion means motion that alters between stick and slip, and is
found in frictional systems with stiffness and integrators, generally spoken.
The phenonmenon can be illustrated by drawing a rubber along a table. This
is also the effect that induces vibrations in the string of a violin when you play
it.

The explanation to this phenomenon is a break-away force that is higher
than the sliding force. Starting in stick, the spring force is integrated until the
break-away force is reached, when suddenly the friction force drops and the
system accelerates by means of the energy stored in the spring. When this
energy is consumed by acceleration the system retardates, and goes back to
stick. Then the cycle starts all over again.

The explanation is intendedly held very general. The phenomenon can
be found in many systems such as in uncontrolled mechanical systems with
stiffness and integration (as the rubber on the table above), in velocity control
with a P-regulator or in position control with a PI-regulator.

Frictional lag

In [17] experiments were carried out where the velocity were varied periodically
in time around a bias in unidirectional motion. The experiments were designed
such that all lubrication regimes were covered. It turned out that the friction
force was lower for decreasing velocities than for increasing. The difference
became larger when the variations were faster. See figure 1.5.

N

FA

"

\'
Figure 1.5 Frictional lag, F is friction force and v is velocity.
The phenomenon was explained by a pure time delay, but it is also repro-
duced by some dynamic friction models.

Varying break-away force

Experimental results earlier gave the idea that the break-away force increase
with the time in stick, the so called welding time. Later experiments however
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showed that it is not the time in stick that affects the break-away force, but
the rate of change of the externally applied force. Larger rates give smaller
break-away force, and vice versa.

1.3 The implications of friction on control

The obvious problem that is introduced by friction in control systems is the
non-linear dynamics. It is by far more easy to design regulators for linear
systems. Small non-linearities can often be neglected, or approximated by
linearizations. This is not possible with friction, however, when the working
region of the system involves sign changes of velocity or low velocities. For
control systems with working regions at high velocities friction can be modeled
as a pure damping.

Often the best way to minimize the problem of friction is to simply min-
imize the actual friction. This can be done by choosing lubricant properly.
Often lubricants are chosen to minimize frictional wear rather that to mini-
mize frictional forces. Another way is to introduce vibrations in the system. If
there still is significant friction in the system this has to be concidered by the
control engineer.

If a linear design is carried out in spite of the presence of friction some
unwanted phenomena can occur. If integral action is used limit cycles can
occur in position control. One way to avoid this is to use PD-control with the
result of steady-state errors. In velocity control even PD-control may give limit
cycles. This can be avoided by using high gain. Today it is not well understood
exactly when limit cycles occur in these systems, just that they do in some
cases. Therefore the control strategy is often choosen as a method that can
be proved not to give limit cycles, but that give poorer system performance
than other controllers might give. It would be useful to have tools that help
determine when limit cycles occur in these systems, so that for example normal
gain controllers with integral actions could be used with theoretical support.
See [22].

A better way to cope with friction is to introduce it explicitally in the
system model. If it is possible to model friction accurately, one can estimate
friction from the model and add the friction term to the control signal. How
easy this is depends on where the friction enters the system. If friction enters at
the same place as the control signal the friction is cancelled and the remaining
system can be regarded as linear. If there is dynamics between the control
signal and the friction this has to be invertible.

1.4 Friction modeling

This chapter is included to introduce some concepts used in friction modeling
in general. The contents is more or less a condensed form of [22, chapter 2].

Static friction models

There is a long tradition in static friction modeling reaching back to the days
of Leonardo da Vinci. The terminology used in friction topics is to a great
extent inherited from static friction models. A short overview will here be
given to introduce the most important terminology. The terminology is not
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entirely clear however, in articles the terms are sometimes used with slightly
different meaning, and the use of the terms here shall be regarded as the
authors conception.

Models based on early ideas are often refered to as classical friction models.
Static friction models are classicaly introduced as static maps from velocity
and externally applied force to friction force.

F F
v v
F‘/ F‘\_/
v v

Figure 1.6 Some static friction models. From upper left: Coulomb model,
Coulomb + stiction, Coulomb + stiction + viscous friction, Coulomb + stiction
-+ viscous friction 4 Stribeck effect.

Coulomb friction  Coulomb friction is the simplest form of static friction,
see figure 1.6 and is defined by

F = Fesgn(v). (1.2)

Coulomb friction is also denoted kinetic friction, since it defines friction for
non-zero velocities. For zero velocities the friction from (1.2) depends upon
the definition of the sign function.

Stiction  Experimentally it was early discovered that it is needed a higher
force to bring a system from zero velocity to a steady-state velocity, than to
maintain the steady-state velocity, i.e. the friction force at rest is higher than
the kinetic friction. The most obvious modification of the Coulomb model is
thus to add a term

P F,, ifv = 0and |F,| < F; (1.3)

Fsgn(F,), ifv = 0and |Fe| > Fs. )
We say that the system is in stick when we need an externally applied force
greater than the stiction force to reach a steady state velocity, otherwise the
system is said to be in slip.
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Viscous friction  The friction force in lubricated system has a velocity
dependent term originating from hydrodynamic effects. Often this is modeled
by the linear relation

F = Fyv, (1.4)

but generally this term exhibits a non-linear behaviour like
F = F,|v|*"sgn(v), (1.5)
with &, being 1/3,2/3 or 1 depending on application geometry.

Stribeck effect  The Stribeck effect, see section 1.2, can be included in a
static friction model by modifying the kinetic friction as showed in figure 1.6.

Problems with static models In simulations or control applications the
static models are dependent on detection of zero velocity, since then a switching
between different equations is done. There also exist phenomena that cannot
be modeled with a static friction model, such as the pre-sliding displacement,
varying break-away force and frictional lag.

There exist modern static friction models, e.g. the Karnopp model, which
is a static map from velocity and externally applied force to friction force,
eliminating the use of different equations to model friction for different working
points. However the trend moves towards the use of dynamic friction models
for high precision friction modeling.

Dynamic friction models

The Bliman-Sorine model and the Lugre model, the two friction models inves-
tigated in this work, are dynamic friction models. l.e. they cannot be described
by a static map from system states and inputs to friction force. Instead this
relation is described by a (system) of non-linear differential equations. These
models will be given one chapter each. Here an early dynamic friction model
will be presented, giving somehow the context in which the Bliman & Sorine
model and the Lugre model are introduced.

An early dynamic friction model was the Dahl model [8]. Dahl started with
the relation

dF _9F  0Fds
dt 0t Oz dt

where F, z denotes friction force and displacement respectively. The displace-
ment is measured from an arbitrary origin. Dahl then made the assumption

dF  dFdz

- L (1.6)

The quantity % is supposed to not depend on ¢, which implies stationarity.
It should not depend explicitly on z, which means the behaviour is invariant
by translation. It is positive, yielding a non-linear spring effect. (With % =k
positive and constant the expression can be written as F = kz if integrating
both sides, giving a linear spring model.) It is bounded by — F¢ and +F¢, F¢
being the Coulomb friction force, and |F| — Fc,% — 0 if || — oo. This
means the model behaves as a Coulomb model for large displacements. For
small displacements | F| < Fg and % ~ o, where o is a spring stiffness. The
general Dahl model fulfils these requirements and is written

dF i (1 F ) (L.7)
sgn chgndt . .

P

1 F dz
o o sgn 7
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With ¢ = 1 this simplifies to the simplified Dahl model

dF F dz
== — g1 = =— - 1.
T = ol e, (18)
or
dF ~ o1 F dm)dz (1.9)
a7 FCS RPTRPT '

The Dahl model includes Coulombic friction and pre-sliding displacement.
The two models investigated in this report can both be seen as extensions to
the Dahl model including more friction phenomena.
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2. The model of Bliman and
Sorine

Pierre- Alexandre Bliman and Michel Sorine have in a number of articles [5, 6,
7] proposed dry friction models based on a mathematical framework of hystere-
sis operators. The final model includes stiction force, Dahl pre-displacement,
and hysteretic behaviour. This is acheived by a model which can be described
as filtering of the Coulomb friction model (1.2) in space domain.

Bliman and Sorine first propose a general class of friction models, and then
particularize on the model which is investigated in this work.The main purpose
of their work they summarize as follows:

1. To present a model that exhibits rate independent transient behaviour.
IL.e. the friction force is independent of the velocity |v(t)|, but depends
only upon the covered distance [ |v(t)|dt when sgnuv(t) remains constant.
This according to observed experimental behaviour [15, 12].

2. Since friction dissipates energy the model should be dissipative.
3. It must be easy to perform identification to find model parameters.

4. The friction model together with the equation of motion (including con-
trol feedback) must constitute a well posed set of equations.

5. The model shall include the Coulomb friction as a special case.

6. The model must be simple enough in order to be used in real time
algorithms.

2.1 Formulation in space variable

The Bliman models have their nicest representations in space formulation, in-
stead of time, why this is the form first presented. Generally for this model, the
space formulation is used for mathematical analysis and identification, while
the time formulation is used for simulation and design of friction compensa-
tion.

After having presented a general class of hysteresis operators Bliman and
Sorine present the important subclass of Linear Space Invariant (LSI) dif-
ferential operators. They have the general form A € IRPX?, B ¢ RP*X!, C ¢
R*?, D >0

(2.1)

d;; = Az, + Bu,, z,(0) = 2o € R?P
F(u,) = Czs + Du,

with s being a space variable. A choice of s is given by the following trans-
formation, proposed in [5], which is fruitful for the analysis of several friction
models:

ds = |v(t)|dt, (2.2)
or in integral form

5= /Ot ()| dr. (2.3)
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The variable s is a space variable which is defined as the absolute relative
displacement of the bodies in contact since the last change of sign of velocity.
This means that each change of sign of velocity generates a new origin in
s-space. First a first order friction model is introduced by letting
A=t p_ Bt oy (2.4)
€t €f

and u, = sgn(v)in (2.1). The parameter f; has dimension force and represents
the Coulomb force, and ¢y is a distance related to the pre-sliding displacement.
The space invariance of the system implies rate independency, i.e. that the out-
put of the system is independent of the rate of change of the velocity input. As
a result the friction force generated by (1.8) (or (2.4)) is only dependent on the
displacement from the origin and not on the rate with which this displacement
is done. The model offers a regularization of the Coulomb model (1.2) since
it removes the discontinuity at zero velocity, and it models the Dahl effect
described in section 1.2. In fact the model is a first order filter in space that
works with step inputs defined by sgn(v).

By applying (2.2) on the simplified Dahl model (1.8), which then transform
to

dF F de
— =—0— — 2.5
is = TR T (2:5)
we see that this is identical to (2.4).
A first idea to introduce a higher stiction force would be to introduce a
second state in (2.4), yielding

A:[_OE% %],B:[g],CZ[fc 0].

A representation that clearer shows what we now have is

2

52% + 2(5(2—5 + F = fesgn(v), (2.6)
i.e. the stiction force is modeled by the overshoot of the step response in this
second order system with a damping 0 < ¢ < 1. We now have a friction model
that models Dahl pre-sliding displacement and higher stiction force in a rate-
independent way. In [5, 6] (2.1) is the presented version of the model. As
noted in the refered articles this model is not dissipative, i.e. it can produce
energy during certain conditions, which is an annoying property for any friction

model. (The first order model (2.4) is dissipative though.)
Therefore in [7] the following reformulation of the second order model is

presented.
1[%o0 1| &
[ n = — =
A [01],3 [Tlf],c [1 1]. (2.7)

—J2

This is two first order models in parallell, i.e. the complex poles of (2.1) have
been replaces by real ones. This is the latest version of the model, and the
one that will be regarded in the following. Regard for a moment the Laplace

transform of (2.1), (2.7). Then with Y = L{F} and U = L{sgn(v)} we have

Y:C(sI—A)"lBU:( h )U, (2.8)
egms+1  eps+1
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which clearly shows how the model is built up by two first order models in
parallell. The first of these, with a static gain f;, is faster than the second,
with static gain f,, by a factor 7 in the corresponding space constants'. The
parameters f; and f, have dimension force, ¢4 dimension distance, and 7 is
dimensionless. The only immidiate interpretation of the parameters is that
of fi — fo which is the Coulomb friction force. Correspondance to physical
parameters is given in section 2.8.

The model response becomes that of figure 2.1, where the two first order
responses are plot together with their difference.

0.45 J

0.4 b

0.351 b

0.3F b

F [Nm]

0.2 b

0.15 J

0.1 i

0.051 b

0)]= | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06
s [rad]

Figure 2.1 Bliman model resonse as friction force versus absolute relative dis-
placement. The two first order model responses are plotted together with their dif-
ference.

Rewritings of (2.8) give us
fi —77f25+ fi—F

2
€47 ¥
Y = T I—u. (2.9)
&+ st 5

From this we see that the system is of second order with an output zero.

2.2 Rate dependent friction phenomena

The model (2.7) is rate independent. There are however friction phenomena
that are rate dependent. The most obvious is the viscous friction. In [5] it is
proposed to model all rate dependent phenomena by a memoryless function.
For viscous friction this approach is obvious, and the common way to go.
Either by the usual linear assumption F, = av, a being the viscous friction

!The notation ”space constant” for LSI systems will be used to refer to the equivalence
of time constant for LTI systems.
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coefficient and v the velocity, or by some more general non-linear function.
How to model a phenomenon such as rate-dependent break-away force by a
memoryless function is less obvious, since this corresponds to a term that
should be subtracted from the stiction and Coulomb friction, while the usual
viscous friction is added. This contradiction makes it tempting to include some
rate dependent behaviour in the dynamic friction model.

Another issue that not only makes it tempting, but also necessary to in-
clude rate dependent dynamics is that of frictional lag. Since the Bliman &
Sorine model (2.7) is two simplified Dahl models (1.8) in parallell it inherits
properties from this model. The model (2.7) only models displacement depen-
dent transient behaviour after a sign change of velocity. Frictional lag occurs at
uni-directional motion and cannot be described as a function of displacement.

2.3 Physical interpretation

The physical process the Bliman & Sorine friction model is aimed to model
is the strain-stress characteristics of the junction surface as described in sec-
tion 1.1. For small displacements, less than the pre-sliding displacement, the
junction asperities are deformed elastically, giving a spring-like response to
externally applied forces. The model exhibits an elastic behaviour for this re-
gion. For larger displacements the junction asperities deform plastically. There
is in the transition between these phenomena a region with mixed behaviour.
As soon as plastic deformation is part of the process the friction exhibits an
hysteresis curve in the displacement versus friction plot.

In the Bliman & Sorine friction model these regions are defined by the
parameters s, denoting the pre-sliding displacement, f, denoting the maxi-
mum stiction force, occuring at s., s, denoting the displacement after which
the behaviour is mainly plastic, and fi denoting the kinetic friction, reached
at s,. These points are illustrated in figure 2.2. These parameters are not the
one that parametrize the model equations. The map translating from these
parameters | f; fx Se Sp |, which we denote identification parameters, to
the model equation parameters [ fi f» €; 7 a |, which we denote model
parameters is given in section 2.8. « is linear viscous friction coefficient.

The maximal stiffness of the elastic behaviour for small displacements, k;,
can be expressed in model parameters. Also the extremum of the negative
stiffness, kz obtained after break-away can be described in these parameters.
The expressions are

kp = %(%)m(l_") (2.10)
k;rr = ﬁ(fl_nfz)_kl;'

2.4 Formulation in time

While (2.7)is a good way to write the model in term to simplify the mathe-
matical analysis, it is not suited for simulation purposes when acting as a part
of a connected system. The system (2.1) transforms to

{:i: = |v|Az + Bv

y - Co (2.11)
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Figure 2.2 The points (se, fs), (8p, f) in the saturated hysteretic cyclic motion
are used to determine the parameters in the Bliman & Sorine model.

for s defined by (2.2). The Bliman & Sorine time formulation then simply is
(2.7), (2.11). Written out this is

z = —|v|5%n:n1 + E’;—ln'u
Ty = —|’l)|51—f’132 - Ef—;'v (2.12)
F = z;+z

The following change of variables gives a form which is good for comparison
with the Lugre model later on

_ &M
z21 = 1{1 Z;
VA —_— E_-f
2 = Iy.

(2.12) now becomes

Z = —|v|5}—nzl +v

Z.Z = —|’U|;Zz + v (213)
N i b

F = Ef_lnzl — ﬁZQ.

This form gives state variables with the same dimension as the state in the Lu-
gre model, and the coefficients can therefore be compared with the parameters
in the Lugre model.

2.5 Linearization

Linearisation of (2.13) around an arbitrary equilibrium point zg,vo yields

. 1 1
7 = ——|v zl—}—(l——zlsnv) v

E'fr’| |'U07210 E'fr’ g ( ) V0,210
. 1 1
21 = — —|v z—l—(l——zsnv v
! EfT’| |110,220 2 ef 258 ( ) V0,220
F = —fl z21 — f—222.

€fM Ef
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The above equations are not valid for equilibrium points vg = 0 because of
the sign function, which is not defined for input argument zero. In the case
zg = 0 and wg = 0 there is no problem however, and the equations become

il = v
Z = v (2.14)
F = E’;—lnzl — Z—;Zz,
or with integrated state variables
F=oz, (2.15)
with
fﬁ ﬂfi (2.16)
T

being the stiffness. For a free mass system with Bliman-Sorine friction and
viscous friction the equation of motion then becomes

PR S I ) (2.17)

m meyfn
Comparison with the standard form
i+ 2(wi +w’z =0 (2.18)

yields the natural frequency

fi— ﬂfb (2.19)
me 41 '
and the damping
a Efn
Iy R i/ — 2.20
2\/m(f: - nfo) (2:20)

Note that the damping ( is proportional to the viscous friction a, and that
there is no way to control the linearized damping without changing other
important model properties. With zero viscous friction the damping is zero,
and we can expect oscillatory behaviour from the system.

For an equilibrium point 29 # 0,u9 = 0 we get

Z = (1 — E%ﬂzlsgn(v)) 0,210V

Z1 = (1- izzsgn(v) v, 200 ¥
_ £ ki

F = Ef_lnzl — —;22

Integrating the states for a motion v > 0 gives us

1 1
F = i 1——210 —ﬁ 1——220) T
€fn €fm €f €f
and for a motion v < 0 we have
1 1
F = i 1 + —210 ]| — é 1 + —220) Z.
€fM €fM €t Ef
I.e. the stiffness of each linearized first order system is increased by a direction

dependent factor. The change in stiffness for the total system can not be
described by factors, but is given by the above equations.
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2.6 Asymmetric friction

In real system the friction characteristics are often asymmetric. The kinetic
friction as well as the stiction force might very well be dependent on direction.
It is straightforward to introduce asymmetric friction in the Bliman & Sorine
model. The model is simply used with parameters defined as

le7 07 f | <o,

Les o f Rl = lef vt £ v

(2.21)

From (2.12) we see that the discontinuity of the parameters with respect to v
still give continuous right hand sides of the equations, which means that even
the first derivative of F is continuous. The linearized equations also handle
asymmetric parameters.

2.7 Modeled friction phenomena

There seem to be a confusion in the nomenclature regarding the Stribeck ef-
fect. In [5, 6, 7] the Stribeck effect denotes the negative slope of the friction
force versus velocity plot during the transient of a dynamic motion. It is clear
that there must be a drop in the friction force from the stiction force to reach
the Coulomb force. The Stribeck effect as described in 1.2 is asymptotic and
gives an increase of the friction force with decreasing velocities, as observed
experimentally. In this report the Stribeck effect denotes the steady-state phe-
nomenon described in section 1.2.

For system trajectories with decreasing velocities starting from a state
with the kinetic friction f; — fo the Bliman model does not give an increase
in friction force as predicted by the Stribeck effect.

Otherwise the model includes pre-sliding displacement and stiction. Since
the model after a transient in an uni-directional motion gives a constant fric-
tion force, it can not reproduce phenomena like frictional lag.

2.8 Parameter identification

The authors of the model propose a parameter identification scheme based of
the hysteresis plot of friction force versus displacement during a cyclic motion
with sign changes of velocity. See figure 2.2. After having identified the two
points (s, f,) and (sp, fi) in this plot the parameters are given by the following

map[fs T se Sp]'—)[f1 fo Ef 77]:

mimo+2

fi = (mam ;(pil)z)p‘fk

f» = mzlgfi’f)r fr

€f = %’ (222)
mimo+2

no= m11m22p+2

with m, and my defined as
my = fa - fk’ my = 6336/.9,,,
Tr
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and p > 0 is the solution of

2
mlﬂp =(p—1)Inm,. (2.23)
m11My

This solution exists and is unique if and only if

mim 2
Inm, < Tam2 T 2
mimy

for example when 3s. < s,. This condition imposes constraints on which

physical systems that are possible to model. The condition says that for a

system with a presliding displacement s, the friction force drop must not have

been completed before 3s.. In the section on model validation this problem

becomes real when identification is carried out on an experimental setup.
The inverse of (2.22) is

fe = Hi—-1
Se = 15_"77 ln%
Sp = 3€f.

In section 2.9 this map is further investigated.

In the identification procedure given by (2.22) the viscous friction is not
taken into account, but has to be identified separately. This is fairly straight-
forward. A typical hysteresis curve is given for a simulation of an inertial
system with Bliman & Sorine friction in figure 2.3. A sinusoidal input torque
has been applied. The importance of the viscous friction term is clearly seen

Hysteresis curve in friction force vs. displacement
T T T T T T T T

0.1 1

L L L L L L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
x [rad]

Figure 2.3 Simulated hysteresis curve for simple inertial system with Bliman &
Sorine friction and a sinusoidal input torque.

in figure 2.4, where the upper left of figure 2.3 is seen in detail, and where the
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hysteresis curve with the viscous friction subtracted is shown together with
the original curve. All parameters are taken from a real identification case.

The identification procedure is not free from problems however. The point
(8p, fr) is not very well defined, but up to the user to determine by hand. An
example will illustrate a potential problem. Can small variations in the position
of this point give large variations in parameters or system properties? Identifi-
cation is done from a simulated model response of a mass system with Bliman
& Sorine friction. If the identification procedure works well we of course expect
to get the parameters used in the simulation as result. The correct parameter
valueswere [ fi f» €; m a | =[04224 0.1438 0.0023 0.4999 0.0177 ].
In figure 2.4 (s, f,) has been hold fixed while (s, f) has been identified as
the points 1-6 respectively. The sensitivity of the identified parameters for
these choices is shown in table 2.1. Notice that the identified value best cor-
responding to these parameters is number 3. A point that does not even lie
on the hysteresis curve! In figure 2.5 simulated model responses of the differ-
ent identified parameters corresponding to the different choices of (sp, fi) are
shown. There are differences. It can be discussed if they are of a significant
magnitude though. Most important is probably the differing kinetic friction.
The difference between the extremes is about 5 %.

Different positions of (sp,fk)

0.31

0.295

0.291-

F [Nm]

0.285F

0.275

0.175 0.18 0.185 0.19 0.195 0.2
x [rad]

Figure 2.4 Detail of simulated hysteresis curve for Bliman & Sorine friction, with
and without visous friction term. Different choices of the parameters (sp, fx) are
shown.

A serious drawback of this procedure is the difficulty to introduce opti-
mization. An averaged system response made up of a series of experiments
might be used for the identification, but still it is up to the user to pick the
identification parameters graphically. A non-gradient optimization procedure
such as the simplex method might be used to minimize the square error of
the experimental response and a simulated. Involving four varables and an
integration in each step this seems difficult though.

Another difficulty has also been seen. If a certain model response is de-
manded by means of the identification parameters | fr fs s. $p |, then
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| No. | i Sp | fi f2 €f n |
0.2805 0.0109 | 0.3192 0.0387 0.0036 0.2227
0.2841 0.0084 | 0.3321 0.0480 0.0028 0.2974
0.2842 0.0057 | 0.4139 0.1296 0.0019 0.5185
0.2857 0.0109 | 0.3144 0.0286 0.0036 0.2066
0.2877 0.0085 | 0.3245 0.0368 0.0028 0.2766
0.2790 0.0149 | 0.3076 0.0287 0.0050 0.1500

S O = W N~

Table 2.1 The sensitivity of the identified parameters for the choice of the position
of (sp, fx). (se, fs) is fixed to (0.0037,0.3019).
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Figure 2.5 Sensitivity of identification procedure. Simulated model responses for
the identified parameters obtained by different choices of the parameters (s, fx).

the obtained model response may differ from this. f, s., sp is modeled cor-
rectly, but f, seems to be too small. Even though the map (2.22) has a solution
for the identification parameters we are not guaranteed that the model will
have the properties defined by these parameters when used in simulations.
This problem is further discussed in section 2.9.

Identification of asymmetric friction is straightforward, the above graphical
method is just applied on the hysteresis plot in the parts corresponding to
positive and negative velocity respectively.

2.9 Simulations

In this section some characteristics of the Bliman & Sorine model are high-
lighted by simulations. The corresponding simulations are also done for the
Lugre model later on. Most simulations are done on the model in figure C.2
of the experimental setup described in appendix C. The parameters used for
the two models are matched. Mainly two sets of parameters have been used
for each model. The first is a result of earlier identification experiments of
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the setup decribed in appendix C. From these experiments Lugre parameters
have been identified, and Bliman & Sorine parameters have then been iden-
tified from simulations of the Lugre system. The second parameter set is a
result from the identification experiments carried out in this work. In this case
both the parameters for the Lugre model and the Bliman & Sorine model are
identified directly from experiments.

Integration of the model

In this section we regard either the free friction model with a velocity input,
or the friction model in interconnection with an inertial system and an input
torque.

In a system in rest with zero input force the friction force is zero. For the
Bliman & Sorine model this is equivalent to the sum of the states being zero,

F=0<«= 21+ 29=0.

Note that this does not imply that the states are zero. This means that for a
system in rest with zero input torque, the internal states of the friction model
need not be zero. In simulations starting from rest the states are often chosen
to be zero though. What are the implications of the choice of initial conditions?

Given a certain model parameter set we are promised a certain model
response defined by the identification parameters. This is only valid if the
system is in a cyclic symmetric stick-slip hysteretic motion where the states
are saturated in each period. This kind of motion will in the following be
refered to as saturated hysteretic motion. More precisely the stiction torque
fs, the pre-sliding displacement s. and the plastic displacement s, depend on
initial conditions. f3 is independent of initial conditions.

To understand this, regard the solution of (2.7) for a motion sgn(v) = 1.
Integrating (2.7) with arbitrary initial conditions z1(0) = 10 and z5(0) = 220
gives

]

1(s) = fi+ (20— f1)€_$a

(
2(s) = —fo+ (220 + fz)e_qs
(s) = zus)+ zas).

Looking for a maxima s = s, in (2.25) we write

(2.25)

&

!

1

F(s) = fi+ (210 — fl)e_”%'a — fa+ (220 + fz)e_;s-

Setting F'(se) = 0 we get

z10— f1 e—E;"se Tzt f2e_$-’e
esm et

=0 <=

—210 + f1 _ e—(#—z;n)ae
(z20 + f2)1

bl

leading to
Fill 0 —z10+ f1
1-n (z20+ f2)n

(2.26)

Se =
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The maximum friction torque corresponding to this maxima is given by in-
serting (2.26) in (2.25):

F(s)) = ﬁr-ﬁ+(ﬁ°_ﬁ)<g%i%%?)ﬁq
+ (220 + f) ( Ep—— ) : (2.27)

Remark 1. Note that (2.26) implies that for all initial conditions
[ 210 220 | = B[ -f1 fo],B > 0, the maximum is found at the same

relative displacement f
Tl 1
Se = T ” In o’ (2.28)
The initial conditions corresponding to the sign change of the velocity in the
saturated hysteretic motion fulfills this condition, and consequentely (2.28) is
the expression for s, given by (2.24). Also zero initial conditions fulfills the
condition.

Now regard the saturated hysteretic motion. In this motion the states are
z1 = + f; and 25 = Ff5 at the sign change of velocity, defining the origo of the
absolute relative displacement s. For a motion for which sgn(v) =1 210 = — f1
and zy9 = f2. Equation (2.25) becomes

z1(s) = h (1 - 2e‘$‘")
z3(s) = —fa (1 - 2e_#’ (2.29)
F(s) = zi(s) + z2(s).
The maximum of (2.29) is found at s, given by (2.28). Together with (2.27)
this yields

F(se) = fi — o + 2fs (%) ). (2.30)

This is the expression for f, given by (2.24).
With zero initial conditions we have z19 = 0, g9 = 0. Inserting this in

(2.25) yields
fi(1-eo)

z1(s)
- (2.31)

z5(s) —fa (1—6 Efs)
F(s) = zi(s) + za(s).

The maximum of (2.31) is also found at s, given by (2.28). Together with
(2.27) this yields

1
F(s)) = fi— fot fo (%) (). (2.32)

Equations (2.26) and (2.27) show that different initial conditions give
different friction torque maxima. In particular initial conditions belonging to
the saturated hysteretic motion and zero initial conditions give maxima at
the same relative displacement, but (2.30) and (2.32) shows that the maxi-
mum torques are different. Actually the difference f, — fi differs by a factor
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two. (2.29) and (2.31) shows that they have the same asymptotical response
though, they both approach F(s) = fi — fa = fi for large s. This is the
definition of fi as given by (2.24).

Zero initial conditions are used in most simulations. That means that the
transient response can not be expected to have the properties defined by the
identification parameters. The problem is that the Bliman & Sorine model
is described by two states, and that these states have to be ”in phase” with
each other in a way defined by the saturated hysteretic motion, to give the
behaviour defined by the identification parameters. In other words the states
have to be saturated before each sign change of velocity to give the demanded
model response. A solution to this, at least for the first transient, could be
to start simulations with non-zero initial conditions, as if the system was in
the saturated hysteretic motion. This does not solve the problem completely
though. The model responses discussed above are these of the free friction
model. Connected to a physical system the situation is further complicated.
In simulations of physical systems with Bliman & Sorine friction there are
oscillations in the friction force due to the characteristics of the linearized
equations, see (2.20). The trajectory of the friction model does not normally
in these systems follow the trajectory of a pure saturated hysteretic motion,
and therefore the friction model properties become different from these given
by the identification parameters. The oscillatory behaviour is further treated
in section 2.9.

Some of the above is illustrated by figure 2.6 which shows some model
trajectories for the free friction model with a sinusoidal velocity input, and for
the friction model in a simple physical system, composed of an inertia under
influence of Bliman & Sorine friction and a sinusoidal input force. The input
signals are chosen to give saturation of the states in each period. Model fric-
tion is given by F = 1 + z5. In the plot the level curve z; + #; = 0 have
been plotted. Intersection between this line and the trajectory indicates where
zero friction torque is reached. The maximum stiction torques correspond to
the largest perpendicular distance between the dotted level curve z; + 23 = 0
and the trajectories. (It is not equal to this distance though.) In the left figure
we see the impact of zero initial conditions zg = [ 0 0 |. The first stiction
torque is less than the succeeding. The stiction torque of the physical system
is less than the stiction torque for the free friction model. The oscillations
force the trajectory away from the free model trajectory. In the right plot we
see the situation for initial conditions from the saturated hysteretic motion
2o = [ —fi f2 |. For the free model the trajectory instantaneously follows
the trajectory of the saturated hysteretic motion. In the composed system
large oscillations are present initially, and asymptotically the trajectory ap-
proaches a trajectory inside the free model trajectory. It is veryfied in the
simulations of the free friction model that f, — f; differs a factor two for the
first stiction torque, comparing zero initial conditions with initial conditions
in the saturated hysteretic cyclic motion. For input signals that do not sat-
urate the states in each period the trajectories can show complex behaviour.
We do not illustrate this. Instead we show what can happen when the input
torque amplitude is less than the sticion torque demanded by the identifica-
tion parameters, but greater than the stiction torque of the first transient. An
example is shown in figure 2.7, where an inertial system with Bliman & Sorine
friction and sinusoidal non-biased input torque has been simulated with zero
initial conditions. The result is an asymmetric motion which gives break-away
only in one direction. The stiction torque demanded by the identification pa-
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Figure 2.6 Bliman & Sorine model trajectories for different initial conditions.
Dotted lines: Free friction model with sinusoidal velocity input. Solid lines: Friction
model in inertial system with sinusoidal input torque. Dashed lines: The level curve
z1 + z2 = 0. Left: Zero initial condition. Right: Saturated hysteretic motion initial
condition.

rameters is 0.38 Nm, and the amplitude of the input torque is 0.35 Nm. The
physical relevance of this behaviour can probably be questioned.

In the report zero initial conditions are used consequently, yielding some-
times strange behaviour.

Free model

The figures 2.8 and 2.9 show the response of the free Bliman & Sorine friction
model with sinusoidal velocity inputs. In figure 2.8 we see that the first break-
away force is smaller than the succeeding due to zero initial conditions. The
entity F, — F¢ differs a factor two.

In figure 2.10 the rate of the applied input velocity has been changed,
and the friction force responses versus displacement are plotted. The rate
independecy of the model implies that the response does not change with
input rate, as seen in the figure.

Interconnected model

The system simulated is a simple mass with friction system with an externally
applied sinusoidal force u = asin(wt). The model parameters are

[ f f2 e 7 a]=]04224 01438 0.0023 0.4999 0 ],

i.e. no viscous friction term is used. First the system is simulated with an
amplitude of the input torque a = 0.305, which is just above the break-away
torque. The rate of the sinusoid is w = 5 rad/s. In figures 2.11 and 2.12 the
friction force versus time and displacement plots are shown.

We see that there are some oscillations at the sign change of the velocity.
The origin of these can be found in the linearized equations. Since we have
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Figure 2.7 Simulation of inertial system with Bliman & Sorine friction F and
symmetric non-biased sinusoidal torque input . Upper left: Friction model trajec-
tory, solid lines: friction model in inertial system with sinusoidal torque input, dotted
lines: free friction model with sinusoidal velocity input for comparison. Upper right:
Input torque. Lower left: Non-linear friction torque F (not the viscous part). Lower
right: Angular position of the inertial load.

no viscous friction we have a = 0, and thus the linearised damping is zero
according to (2.20).The predicted period of the oscillations is 18 ms from
(2.19), and the period found in the simulation is 19 ms. From (2.20) we see
that a non-zero damping is introduced by using viscous friction, i.e. @ > 0.

The more realistic case with non-zero viscous friction, a = 0.0177 Nms/rad,
is simulated and plotted in figures 2.13 and 2.14. We see that the oscillations
are diminuished, but do not disappear.

The most serious drawback with this oscillative property of the Bliman &
Sorine friction model is that there is no way to increase the stiction damping,
which is a low velocity property, without changing the large velocity property
of viscous friction. In other words, we lack a degree of freedom.

The oscillations are relatively large in amplitude, and give a behaviour
not reported by friction experimentally. The parameters used in the simula-
tions are realistic. Moreover the oscillations consume computational power in
the simulations. With everything else constant, the number of flops used in
the simulation was reduced by 34% when non-zero viscous friction was intro-
duced, and the oscillations were reduced. This can be compared with the Lugre
model, for which the number of flops increased with 1% under the same cir-
cumstances. For a given system without viscous friction the Bliman & Sorine
model required 254% more flops than the Lugre model for a given simulation.
When viscous friction was introduced the overhead was reduced to 167 % more
for the Bliman & Sorine model than for the Lugre model.

Small displacements

For small displacements the Bliman & Sorine model is expected to behave like
a linear spring. To verify this behaviour we simulate an inertial system with
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Figure 2.8 Simulation of free Bliman & Sorine friction model with sinusoidal
input velocity. Friction force versus time.
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Figure 2.9 Simulation of free Bliman & Sorine friction model with sinusoidal
input velocity. Friction force versus displacement.

Bliman friction and external force u = B+ A sin(wt). The inertiais J = 0.0025
Nms/rad, and the Bliman model parameters are

[fi fo e; n a]=]1.6130 1.0869 0.0201 0.6347 0.0180 | .
Equation (2.16) gives a linear stiffness o = 72 Nm/rad. In figure 2.15 uni-

directional input torques of different magnitudes are applied. We see that
for small input torques we have an almost linear behaviour, while for larger
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Figure 2.10 Simulations of free Bliman & Sorine friction model with sinusoidal
input velocities of different rates. Friction force versus displacement.
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Figure 2.11 Simulation of simple inertial system with Bliman & Sorine friction
and sinusoidal input torque. Zero viscous friction. Friction force versus time.

torques the response becomes non-linear and shows hysteresis. We see that
unidirectional input torques do not take the system back to the initial position.
In figure 2.16 symmetric bi-directional input torques with zero mean are used,
and now the system return to the initial position.
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Figure 2.12 Simulation of simple inertial system with Bliman & Sorine friction
and sinusoidal input torque. Zero viscous friction. Friction force versus displacement.
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Figure 2.13 Simulation of simple inertial system with Bliman & Sorine friction
and sinusoidal input torque. Non-zero viscous friction. Friction force versus time.
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Figure 2.14 Simulation of simple inertial system with Bliman & Sorine friction
and sinusoidal input torque. Non-zero viscous friction. Friction force versus displace-
ment.

0.6

0.51 b

0.2 b

Friction torque [Nm]

0.1F b

_Ol 1 1 1 1 1 1 1
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Position [rad]

Figure 2.15 Bliman & Sorine model responses to input torque » = B + Asin(wt)
for B=0.1 Nm, A =0.1 Nm and B = 0.25 Nm, 4 = 0.25 Nm
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3. The LuGre model

The LuGre model [11] is a friction model proposed by Carlos Canudas de Wit?,
Henrik Olsson? Karl Johan Astrém?and Pablo Lischinsky!. It is a dynamic
model with the relative velocity between the bodies in contact as input, and the
friction force as output. The model is inspired by steady state properties found
experimentally, but none the less it models several dynamic phenomena as well.
It approximates friction as a phenomenon caused by bristles in contact, which
gives the parameters included simple physical interpretations. The model can
be seen as an extension of the simplified Dahl model (1.8).The model has the
following general form

dz _ |v]
{ a = v — Uomz (31)
F = ooz+01(v)% + f(v)

where v(t) is the relative velocity of the bodies in contact. The meaning of
the parameters and the choice of g(v), o1(v) and f(v) will be discussed below.

3.1 Bristle interpretation of friction

As mentioned above the model is inspired by the interpretation of friction as
the force generated by a system of bristles in contact. That is to say that
the asperity junctions of the physical friction interface behaves like bristle
contacts. The elastic deformation is described by the spring like behaviour of
the bristles for small displacements, while the plastic deformation and rupture
are captured by sliding of the bristles at larger displacements. See figure 3.1.
The bristle interpretation was introduced by Haessig and Friedland 1990 [15],
who proposed a model in which one regard the individual bristles. This is
somehow inconvenient, and as an alternative they also presented a model which
regards the aggregate behaviour of multiple bristles. The LuGre model gives a
new formulation of this aggregate behaviour, while adding some extra features.

From this follows that for small displacements the model will behave in a
spring like manner. The parameter o being the stiffness of the bristles, and
o1(v) the damping. The reason for eventually making oy velocity dependent
will be discussed later. For larger displacements sliding will occur. The transi-
tion to sliding dependends on the function g(v) as well as the rate of change of
velocity. Since o¢ and o; parametrize this dynamic behaviour they are refered
to as dynamic parameters.

For constant velocities a steady state friction force

Fsa - g(’l)_,_,)SgIl(’U“) (32)

is reached. Hence the function g(v) is used to model the Stribeck effect. A
choice of g which gives a good approximation of the Stribeck effect while
having nice mathematical properties is

g(v) = ag + age= /") (3.3)

!Laboratoire d’Automatique de Grenoble (CNRS-INPG-UJF)
?Department of Automatic Control, Lund Institute of Technology
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Figure 3.1 The friction interface between two surfaces is thought of as a contact
between bristles. For simplicity the bristles on the lower part is shown as being rigid.

The sum agp + a; then correspond to stiction force and ag to Coulomb friction
force. The parameter vo influences when transition from stick to slip is to
appear. The parameters ag, a; and vy thus models static behaviour, and are
refered to as static parameters.

The term f(v) is the viscous friction, which is important only for higher
velocities, and does not influence the low velocity properties to a large extent.
A common choice is linear viscous friction f(v) = ayv.

The above discussion has lead us to the following particularization of the
model, giving what we shall call the standard parametrization:

|v]

z = U Oogry®
9(v) = gt agel/n? (3.4)
F = 09z+ 012 + ayv

This is the published form of the model and the further analysis shall
mostly regard this parametrization.
Nominal parameters for the model are given in table 3.1.

[N/m] | [Ns/m] | [m/s] | [N] | [N] | [Ns/m]
[Nm/rad] | [Nms/rad] | [rad/s] | [Nm] | [Nm] | [Nms/rad]
| 105 | 2v105 [ o0t [ 05 [ 1 | 04 |

Table 3.1 Nominal Lugre parameters well suited for simulations. Units are given
for parameters in force as well as torque systems.

3.2 Formulation in space variable

It is instructive to reformulate the Lugre model in the space variable s =
J3 |v(t)|dr, denoting absolute relative displacement. This is the distance cov-
ered since the last change of sign of velocity. The standard model (3.4) trans-
forms to . .

{ 2 = sgn(v) - 0 30y 2 (3.5)

F = o’oz+|v|01%+a2v.
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Neglecting for a moment the small displacement damping and the viscous
friction term, i.e. 4y = 0 and ay = 0, we see that the resulting system

dF 1

- = - —F .
I = 00 (sgn(’u) o) ) (3.6)
is a first order order model in space with a velocity dependent coefficient %,
and the sign of the velocity scaled by o as input. In the standard parametriza-

tion g(v) is bounded as ap < g(v) < ag + ;. Thus the output of (3.6) is
bounded by the outputs of

dF 0o
E = O'QSgII(’U) — mF (37)
and IF
_ _%
" oosgn(v) - F. (3.8)

For low velocities (3.6) is close to the first of these bounding systems, while for
higher velocities it becomes close to the second. These bounding systems are
first order space invariant systems. That means that they are rate independent.
The output only depends on the displacement, and not on the velocity. A rate
dependency of the Lugre model is introduced by varying (3.6) in a velocity
dependent way between the bounding systems. The transition between the
two extremes of g(v) is determined by the system velocity v and the model
parameter vg. To model a break-away force higher than the Coulomb friction
force ag this transition needs to take place at a displacement for which the
output of the first of the bounding systems is close to it’s maximum. The earlier
this transition takes place, the less the break-away force will be. This is in line
with experimental observations. The space constant for the system (3.6),

%Z), determines the pre-sliding displacement of the physical system. As the
pre-sliding displacement is the displacement before break-away for velocities
that let F' reach close to it’s maximum, i.e. follows the first bounding system,
we have (assuming ”close” is 90%)

PrOPERTY 3.1
The pre-sliding displacement ¢ for a system with Lugre friction is approxi-

mately given by
ap + o

e = — In(10).

(1]

O

Although taking into account non-zero o; and vy the above interpretations
and results still holds. The o;-term introduces complex properties of the model
though, as we shall see later. Since o7 is multiplied by 2, it gives a addition to
the total friction that is proportional to the rate of change of z with respect to
time. That means that when z increases, the increase in friction force becomes
larger than what is given by (3.6), since 2 > 0, and equivalently a decrease of z
gives a larger total decrease in friction force than given by (3.6) since 2 < 0.In
(3.5) we see that 02 transforms to o1|v|%2, i.e. this term is rate dependent. We
thus have three rate dependencies in the model, the rate dependent variation
of (3.6), the friction term o4 2, and of course the viscous friction term asv.

In figure 3.2 the above properties are illustrated by plotting the bounding
system responses and the response of (3.6) to a sinusoidal velocity input from
zero initial conditions.
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Figure 3.2 Lugre model response and responses of the bounding systems. Friction
force versus displacement at break-away.

figure 3.3 shows how the transition between the bounding systems is de-
pendent on the velocity. In the simulation vg = 0.1 rad/s. At this velocity the
response is in the middle of the transition between the bounding systems.
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Figure 3.3 Lugre model response and responses of the bounding systems. Friction

force versus velocity at break-away.

Further rewritings of 3.5 yield

dz
ds

F

sgn(v) — oy ﬁ

v 3.9
002 (1—0’1%) + (o1 + az)v. (3.9)



From this we can see that the term o712 can be interpreted as an addition
of o1 to the viscous friction, and a velocity dependent scaling of the small
displacement stiffness o by a factor 1—o4 %. We spy here a potential problem
as we see that this factor might become negative for large velocities. We shall
return to this later.

Remark 1. The bounding systems are first order space invariant systems
of the same kind used to form the Bliman & Sorine friction model. While the
Bliman & Sorine model uses two systems of this kind in parallell to model
stiction, the Lugre model uses one first order space variant system, which
is bounded by two first order space invariant systems, to model the same
phenomenon. Thus the Lugre model can describe the same phenomenon with
one less state, while in addition the model becomes variant.

Remark 2. The bounding systems are in fact identical to the simplified
Dahl model (1.8). The relation between the Lugre model and the Dahl model
can be seen here.

3.3 Linearization of the model

In [22] linearization in stiction regime is carried out for the general Lugre
model. Here the results are used on the standard parametrization (3.4) Lin-
earisation around vo= 0 and zy = 0 gives®

dz  _
{dt _ v (3.10)

o0z + (01 + az) v.

|
|

Integrating the first equation in (3.10) yields
F =00z + (01 + ag) v.

For a simple free mass system this gives the following equation of motion for
small displacements

Mz + (01 + az) & + ooz = 0.
which when compared to the general second order differential equation
Mi + 2(we +wlz =0

lets us identify the damping and the natural frequency as
w=4/— (3.11)

and
(3.12)

We see that (3.12) is quite similar to (2.20), but that in (3.12) we have the
additional parameter o to control the damping. I.e. there is a way to modify
the damping without changing explicitely other model properties. Of course

30 in this context does not refer to the Stribeck velocity
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changes in o affects the overall behaviour of the model, but we have one
more degree of freedom in this extra parameter. In simulations with matched
parameters the Lugre model also exhibits a much less oscillatory behaviour
than the Bliman & Sorine model.

Linearization around v = 0 and zp # 0 gives

& = G(v,z)v
{% = o09z+ (01G(v,20) + f'(0))v (3.13)

where

G(v, 20) = L=goh) v>0
14+ g”(%z_") v<0

and allows asymmetry of g(v). The effect is that stiffness and damping are
scaled by a factor G(v, z).

3.4 Properties of the friction model v — F

Some passivity aspects

There are two reasons for wanting the model to be passive. Firstly passivity
results can be used in stability analysis. But also passivity also reflects the
physical property of power dissipation. For an input-output model that de-
scribes a physical process, and that gets all it’s energy from the input, to be
generally accepted, it ought to be passive, since that is how nature works. We
will now take a closer look at some passivity properties, [22], of the standard
parametrization (3.4).

PROPERTY 3.2
The standard model (3.4) is passive from v — 0z with respect to the storage

. 2 .
function V' : z - 0o % for every choice of parameter values. U

Proof. 1t follows directly from the definition A.2 with u = v and y = z that

t t oo
oozvdT = /a’zi—l——’usz
| o0 [ vz + 75sinle)

t t g2
= / o-oz:édT—I—/ 0 |v|2%dr
0 o g(v)

¢ t g2
= 0'0/ zdz—l—/ 0 |v|2%dr
0 o g(v)

2*(t) — 2°(0)
2

v

(4]

PrROPERTY 3.3

Passivity for the mapping v — 09z + 012 holds with respect to the storage
2 4g(v) n

22
2 v~

function V : z — 0¢%- under the sufficient condition o <
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Proof. Definition A.2 with u = v and y = 09z + 012 gives

t t
/ uydr = / v(ooz + o1 2)dT
0 0

= t:& a’ﬂzaz oq1z)dT
AL CEERDE

t
= / o’ozz'—l—(rgﬂz2 + 0122 —I—Ugﬁlﬂzid‘r
0 g9(v) g9(v)

2(4) — 22 t 2

= 0'072 (8) — 2°(0) —|—0'1/ 32 —|—0’0—|v| zz + &—M 22dr
2 0 g9(v) o1 9(v)

2 1) — 2

P07

7o ol oo lol o o0 lol oo ol
* "1/0"‘“2 AR O O Y Ol
2(1) - 2(0)

= ot
> V(t) - V(0)

where a sufficient condition for the inequality to hold is

o1 < 4 |(v|) (3.14)
O

Hence it is clear that the standard parametrization can be made passive
by introducing a velocity dependency on o4 such that

9(v)

o1 (v) < 4222
lv| -

It is clear that a model with constant o; might violate the sufficient con-
dition (3.14) for passivity. Does this mean that the model is not passive under
these conditions though? By simulation this shall be investigated. We start by
regarding the integral expresson of the proof of property 3.3,

t t
/ uydt = / 0pzz + agﬂzz +o13%+ aoalﬂzi dr. (3.15)
0 N——— 2 ——

dl d3

Note that the dimension of this integral is energy. The above integral can in
the general case be divided into one part which can be expressed in the chosen
storage function, and one part that can not, and that has to be positive for
passivity to follow.

We have here four terms, do, which can be expressed in the chosen storage
function V', and dy, dy, d3 corresponding to power dissipation in the system.
For physical reasons we want the power dissipation to be positive in the above
notation. A positive power dissipation with the chosen storage function cor-
responds to the condition d; + dy + ds > 0. Indeed the term d3 causes the
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problem, since d; and dy are positive. Is there another choice of storage func-
tion that includes dy, dy or d3? Since the storage function shall be a function
of the states only this is impossible in this case. However, assume that d; and
dy could be expressed with a storage function. This makes the inequality even
harder to fulfill since we now require dz > 0.

Since it is impossible to separate the dependency of the input v from d;, ds
and d3, there exist no other storage function that better fulfills the passivity
definition than V(z) = 0'0%.

With this in mind we now turn to the simulation results. The friction
model (3.4) with a velocity input v(t) = Asgn(sin(27t))sin(4nt), with A =
0.0005 and the parameters of table 3.2 has been simulated.

[N/m] | [Ns/m] | [m/s] | [N] | [N] | [Ns/m]
[t | 2 [0 ]t]1] o0 |

Table 3.2 Passivity simulation parameters.

See figure 3.4. The corresponding terms dy, d1, ds and d3 has been plotted
together with the sum d; + dy + d3 in figure 3.5. It is seen that the sum
d1 + dy + d3 is negative for some time intervals. Hence with corresponding
choices of initial values, input signal and parameters the inequality in the
passivity definition is shown not to hold.
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Figure 3.4 Simulation of standard parametrization of LuGre model for investi-
gating passivity property. From upper left: input velocity v, g(v), 2, z and F
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Figure 3.5 Simulation of standard parametrization of LuGre model for investi-
gating passivity property. Storage and dissipation terms according to (3.15)

This, together with the claim that there exist no other choice of storage
function for which the passivity definition holds better, show that the suffi-
ciency of the acheived condition above is to be taken seriously.

Another approach to this problem of the standard parametrization is taken
in the section on asymptotical stablility 3.5. The passivity problem arise only
under some very special conditions, when the velocity changes very abruptly.
The model has been shown to work properly for simulations as well as for
friction compensation in spite of this sometimes non-physical behaviour.

Boundedness of the state variable z

From [11] we have the following important property

PROPERTY 3.4—BOUNDEDNESS OF 2
Assume that 0 < g(v) < a. If 09|2(0)| < a then oq|z(t)| < a, Vt > 0. O

This means that starting with bounded initial conditions on the state variable
z according to this property we are guaranteed to have bounded z for all times
t. This implies that the reachable state space of (3.17) then is (a subspace of)

1. (3.16)

ag + oy

R={z=[v z]"veR,z<
(]

3.5 Properties of the physical system u — F

Since the model (3.4) has been found to not fullfill the conditions for passivity
at all time it might be interesting to further investigate it’s stability properties
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while connected to a physical system. We want to show that the problem with
passivity does not imply any problems with stability, although the system
might ”create” energy under certain conditions. Moreover we want to show
that the friction model gives a system with the physical property of coming
to rest when no external forces are applied.

We shall regard a simple mass-force system, where the mass is under in-
fluence of friction according to (3.4). See figure 3.6.

F

Figure 3.6 Physical system, mass with friction and applied force.

We choose as output the mass velocity (position would not be a good choice
since we are not interested in knowing if the mass will return to a certain
position). This defines an origin which corresponds to rest. The system is

mz =u— F.

This system is nonlinear of second order with

v = —1F+Ltu
2 = v-— 0’0%2 ]
g(v) = ao+t aze=(v/ve)
F = 09z + 012 + ayv
or
v = —#(0'1 + az)v + %%z -2z 4 #u
= v— UO%Z (3.17)

y = v

This is a second order non-linear dynamical system of the general form

(V= e (319)

withz=[v =z ]T. In a more general case where the friction parameters are
allowed to vary with time, e.g. due to varying normal load, f and hin (3.18)
becomes dependent of ¢.

Input-output stability

The natural way to examine BIBO stability (definition B.2) of interconnected
nonlinear dynamical systems is to apply the small gain theorem (theorem B.1),
which yields

ProPERTY 3.5—BIBO STABILITY
The system (3.17) is BIBO-stable with the gains of the linear part and the
nonlinear friction respectively equal to

v o= / h(t)dt

ag+ o
Yo = o'1<1-|-70 1)—}—a2

Qg
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if y172 < 1. O

Proof. Designate by H; the mass and by Hjy the friction model. For the small
gain theorem to apply we need to show that there exist a finite gain v and a
constant 8 that satisfies (B.1) for (3.4). H; is a linear system and thus has a
gain 71 = [ hi(7)dr, where hy(t) is the impulse response of the system. We
have

11l llooz + o12]| + czv
ool + o1l 2] + ez|v]]
|v]
ool|2|| + o1||v — Og——2|| + asgl||v
2]l + ol O | + azl|v]|
Oqg01
z||||v]| + as||v
g(v)ll vl + ez|lv]]
0901
2]l + az)||v]]

g(v)

ag + o
< a0+a1+(01-|-0'1¥

(AN

(AN

aol|z]| + oulv]| +

= oo|lz|| + (o1 +

+ az)|[v]]

In the last inequality we have used the boundedness of g(v) and the bounded-
ness of z, property 3.4. Thus

B2 = ap+a;
Y2 = 01(1+7a0+a1)+012

Qg

O

This requires that o; is small enough. The number of inequalities in the

derivation gives us a hint that the result may be rather conservative though.

It does not however give any information on stability of particular solutions,
and therefore we go on with investigating Lyapunov stability of the system.

Asymptotical stability

In this section we regard the autonomous system
¢ = f(t,z,0). (3.19)
For this system we state

PROPERTY 3.6—ASYMPTOTICAL STABILITY
The equilibrium point z = 0 of the system (3.17) with u = 0 is asymptotically
stable for all initial conditions z¢ € R. O

Proof. 1t follows trivially from (3.17) that = 0 is an equilibrium point.
Assume the Lyapunov function candidate
mv? 022
2 2

(3.20)

for which we have V(0) = 0, V(z) > 0,z € IR — {0}. It remains to show
negative semidefiniteness for V' (z).
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We have

V(z) = mod+opzs
1 0o ooy |v] } v
= mvy——(01+ay)v— —2z+ ——2¢ +0gz(v—09g——<2
R R (=0, 0y?)
vl 2 1Vl »
= —(o1+ as 1)2—0'0112+0'00'1—z+0'0vz—0' —Z
(71 + ) 9(v) 9(0)
= —(0’1—|-a2)’l)2—|-0'00'1 v|v|z—0'§ 2] P

g(v)

We can see directly from the above expression that there exists at least
one set of points in the state space for which V(z) > 0, namely {z|v = 0}.
Therefore it does not suffice to use theorem B.2, instead we turn to the results
of invariant sets analysis to show that stability still follows. See [19, LaSalle’s
principle| for an introduction to this framework.

In the following we will refer to the following form of V (z):

v|v|z—a’§ i 22 (3.21)

g(v) g(v)

To get an idea of how V(z) looks we examine the level curves V(z) = 0.
Expression (3.21) equal to zero gives

v (Ul —I_Zazg('v)'v + Dyz - zz) =0.

Ogy 0o

V(z) = (01 + az)v? + oooy

Thus

v = 0,or
21422 g(v)v + ”—(1)'02 -22 = 0. (3.22)
0'0 a

We start by examining the line v = 0, which is surrounded by a set of
points for which V(z) < 0. Setting v = 0, w = 0 in (3.17) however gives

v = —-Zg
. m
z = 0

why no solutions can stay on this line unless z = 0. Thus the origin is the
smallest invariant set and this line causes no stability problems according to
LaSalle’s invariant principle. )

We now carry on with the second domain of V(z) which can cause prob-
lems. This domain is defined by (3.22), and in this domain we have V(z) > 0.
From (3.21) we can see that there can be a problem with negative semidef-
initeness only when v and z have equal signs, and that V(m) is symmetric
regarding signs. Therefore it is enough to regard the case v > 0, z > 0, which
will be assumed below.

We have i

o o1 t+a

22— Lz 5 29(v)v =0
01 o
giving
o1v £ (/02v? — 401 + as)g(v)v
o NG 2( )g(v) (3.23)
0o
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and real solutions for
o2v? > 401 + az)g(v)v. (3.24)

The solution (3.23) with negative sign gives

4 = 2(o1 + az)g(v)v (3.25)

) oo(o1v + \/0'%1)2 —4(01 + az)g(v)v)

Now regard the system with initial conditions zo € RN {z|V(z) > 0}. That is

ag + a1
4]

, from the definition of R,

2 > 2= 2(o1 + az)g(v)v

oo(o1v + \/0'va —4(o1 + az)g(v)v)
necessary condition for V(z) > 0,
v 4 [0

— > — (1 + —) necessary condition for V(z) > 0 from (3.24).
g9(v) o1 01

|| 2(o1 + az)g(v)v
g9(v) oo(o1v + \/a%'vz —4(o1 + az)g(v)v)

2(o1 + az)v
1- v
o1v + \/a'f'uz — 4(o1 + ag)g(v)v

_ —ow+ \/a'f'uz —4(o1 + az)g(v)v — 2a2'uv 0

o1v+ \/a'f'vz —4(o1 + as)g(v)v

since

o0 > \/afvz —4(01 + az)g(v)v <> 0tv® > 0?v® — 4(01 + az)g(v)v.

Thus no solutions can stay in this domain since z will decrease until the system

trajectory has reached the region for which V(z) < 0. That is {z|V(z) > 0}

is not an invariant set. This completes the proof of asymptotical stability. O
Remark 1. Note that the form

V(m) = - (0'1 + ay — ooy sggx(lf)z)z) v? — 03%22

of (3.21) gives a sufficient condition for negative semidefiniteness

[25)

)7

|2 <
g1

and that the fullfillment of this condition does not follow from property 3.4.
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[N/m] | [Ns/m] | [m/s] | [N] | [N] |[Ns/m]
| 260 | 1.2 | 0.1 [0.279]0.0389 | 0.0177 |

Table 3.3 Lugre parameters identified from a real system.

Contour plot of dV/dt
T

10

dv/dt>0

dv/dt<0

dv/dt>0

@

x 10

Figure 3.7 The level curves V(z:) = 0 (solid lines), and the set R (dotted lines).

A plot of the level curves V(z) = 0 for the parameters of table 3.3 is shown
in figure 3.7 together with the set R.

Tt is clear that an intersection exists between R and {z|V(z) > 0}, i.e. that
property 3.4 cannot guarantee negative semidefiniteness of V(:c)

Remark 2. The inequality (3.24) means that there exists a lowest velocity
for which V(z) > 0 given a constant oy and a bounded g(v).

Remark 3. The condition (3.24) can be written as

o1 > 490 4 22y
v o1

which can be compared with the sufficient condition for passivity (3.4).
Remark 4. The solution (3.23) with positive sign

o+ \/afvz —4(o1 + az)g(v)v
zp = 200 — 00 as v — 00,

and the solution (3.25) with negative sign

o2v? — 02v? + 4(01 + az)g(v)v
200(01v + \/O'f'vz —4(o1 + az)g(v)v)
2(01 + as)g(v)
oo(o1 + \/a'f — 4oy + az)g—(vﬂ)
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(o1 + a2)ag
0001

= ﬂ(1—|—ﬂ> as v — 00,

oo g1

which can be seen from figure 3.7.
From the above equation and property 3.4 we get a sufficient condition for
a non-empty intersection between R and {z|V(z) > 0}.

PrOPERTY 3.7

ﬂ<1+%><w:>Rﬂ{m|V(m)>0}#@
0

oo g1

O

Actually the proof of property 3.6 gives global asymptotical stability since
it has been shown that all solutions starting in {z|V(z) > 0} will leave this
region. This is not so important though, since all trajectories starting in R
will remain in R. Anyway we have

PROPERTY 3.8— GLOBAL ASYMPTOTICAL STABILITY
The equilibrium point ¢ = 0 of the system (3.17) with v = 0 is globally
asymptotically stable. O

What happens with unforced trajectories starting in the intersection R N
{:z:|V(:t:) > 0}? Obviously the Lyapunov function will at least initially in-
crease along the solution. This is verified by simulation, see figure 3.8. For
comparison a simulation with initial conditions close to the former, but out-
side R N {z|V(z) > 0} has also been done. See figure 3.9. The Lyapunov
function has the intuitive interpretation as system energy potential as kinetic
energy stored in the state v, and spring potential energy store in the state
z. If V(z) is the complete description of the system energy the increase of
V(z) along unforced trajectories means that the system produces energy. In
the simulation of figure 3.8 the system energy is computed from

t
W:/ Fuvdr. (3.26)
0

The result shows that indeed the model produces energy initially. A strongly
non-physical behaviour in other words. No stability problems are shown by
the simulations though, as expected.

RN {z|V(z) > 0} # 0 gives a non-physical behaviour. This is probably the
same property that gives the problems with passivity. Also here the problem
is fixed by introducing a velocity dependece on o, see (3.24), having the
effect of removing the real solutions of (3.23). The conditions for which the
state trajectories enter this region are rather special though. There is needed
a combination of large v and large z for this to happen, but for increasing
velocities v the state z tends to decrease. It therefore is required that the
system is given an firm impuls from a slow steady state motion to enter this
region.
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Figure 3.8 Simulation with V(:z:) > 0. Initial values taken from figure 3.7 inside
the intersection RN {:z:|V(:z:) > 0} with v = 5.0587, z = 0.001179. From upper left:
phase portrait, energy computed from (3.26) with initial energy defined as zero,
Lyapunov function V and V.

3.6 Velocity dependent damping o,

It has been shown that a velocity dependent o; solves some mathematical
difficulties with passivity and stability. In applications these difficulties have
not implied any problems however. Is it rational to complicate the model by
introducing a velocity dependent o4 if in practice there will be no difference?

The following two velocity dependent o; have been proposed and investi-
gated in [22]:

o1(v) = ope”(¥/7a) (3.27)
and -
o1(v) = 71 (3.28)

(3.27) introduces an additional parameter v4. How shall this be identified?
The identification procedure is non-trivial even with the six parameters of the
standard model. (3.28) requires reformulation of the model which hides the
nice and simple physical interpretation.

Physically it seems motivated to use velocity dependent damping. There is
no reason for the damping to be linear throughout the whole velocity range.
Different physical situations are found at low velocities and high velocities.
Rather it seems rational to use different dampings at different velocities. This
is also supported by simulations compared with experimental results. E.g. it
is shown in [22] that (3.27) gives a better model of frictional lag than the
standard model (3.4).
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Figure 3.9 Simulation with V(:z:) < 0. Initial values taken from figure 3.7 outside
the intersection RN {2:|V(z:) > 0} with v = 5.0587, z = 0.001066. From upper left:
phase portrait, energy computed from (3.26) with initial energy defined as zero,
Lyapunov function V and V.

It is another question if a velocity dependent o gives significantly better
friction compensation. If not there is no reason to abandon the standard model

(3.4).

3.7 Asymmetric friction

In real systems the friction characteristics are often dependent on the sign of
the velocity. There is no problem with introducing such a dependency in the
Lugre model. When an asymmetric model is used the static parameters will
be refered to as af , ay , i, ai, vy, vy with the upper index corresponding
to the sign of the velocity.

Remark 1. In [22] it is noted that the asymmetric parametrization gives a
discontinuous function g(v), but that the right hand side of the first equation
of (3.4) still is continuous at zero velocity.

For the dynamic parameters the dependency is not due to the sign of
the velocity, but to the sign of z. This can be understood by regarding the
linearized equations (3.10). For small displacements which give a negative
sign of the spring like friction force the spring constant oy and the damping
oy are fixed, though the velocity changes sign in the motion. Motions in the
other direction might have other spring characteristics, and other values of the
dynamic parameters are then valid.

For o this is straightforward, though the parameter is discontinuous the
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equations (3.4) and (3.10) still are continuous. A discontinuous oy with re-
spect to sgn(z) will give a discontinuous friction force both in (3.4) and (3.10)
though, why this parametrization should be avoided. It would be possible to
make o7 depend on sgn(v) with maintained continuity of the equations. The
physical interpretation of this is somewhat doubtful though, why it may be
better to leave this parameter symmetric.

The dynamic parameters in an asymmetric model will be refered to as
od,05,07,0;, with the upper index corresponding to the sign of z and the
sign of v respectively.

Remark 1. A model that is asymmetric with respect to the dynamic pa-
rameters impose a challenge to integration routines. If the integration is not
very accurate around z = 0, small jumps in z might introduce large peaks in
the 012 term. Pay attention! Even though real systems may show asymmetry
in dynamic parameters in identification, it might be better to use a symmetric
average in simulations.

3.8 Identification

In [26, 10] an identification procedure on the model of figure C.2 based on
four steps, each involving an experiment, a model reduction and a least squares
identification, is presented. Because of practical reasons this procedure has not
been used here, but instead a simplified procedure based on other experiments
has been carried out. In the procedure used here the inertia J is considered
known apriori. See [18] for an overview as well as in-depth discussions on
system identification in general. Application of the procedure presented here
will be carried out in chapter 4.

The procedure presented here is expected to give reasonable parameter
values, at least for the static parameters. Optimization of all estimates is not
carried out.The procedure can however easily be changed to give least squares
estimates if wanted. Refinements of the procedure is not within the scope of
this work, and as the emphasis of the work lies on qualitative comparisons
rather than quantitative, approximate parameter values are sufficient.

The procedure is based on the following equation

JO=u— ayf—, (3.29)

where u is applied external torque, a0 is the linear viscous part of the friction
torque, and 7 is the friction force given by 3.4 (except for the viscous friction
which is treated separately in this context).

The identification procedure is divided into four steps which will each be
described in a subsection below.

1. Identification of viscous friction coefficient a3 and the coulomb friction
Qq.

2. Identification of a;.
3. Identification of dynamic parameters oy and o7;.

4. Identification of Stribeck velocity vg.
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Step 1, — ag, as

ay, ag are identified from the steady state friction relation
Fys = 9(vss)580(Vss) + 2055
For vss > vo g(vss) = g giving
Fys = aosgn(vss) + agvss. (3.30)

An estimate of the viscous friction can thus be taken the slope of the Stribeck
curve for v,, > wg, whereas the Coulomb friction ag will be found at the
intersection of the extrapolated extension of this line with v,, = 0.

Step 2, — oy

In the chapter on limit cycles it is noted that the control signal amplitude
in any limit cycle is equal to the break-away torque 75. Neglecting the rate
dependency of 7p torque predicted by the Lugre model (limit cycles often are
slow in this sense, why the maximum break-away torque is expected to be
found), and assuming that the 78 = ag + a4, it is possible to estimate a; by
a1 = TB — @, ¢ being given by the preceding step. 7 can easily be found
by introducing a limit cycle in the system and measure the amplitude of the
control signal.

Step 3, — 09, 03

Equation (3.10)and (3.13) gives expressions possible to use for identification
of the dynamic parameters. Rewriting (3.10) as

F = ooz + oqv (3.31)

noting that z(t) = z(t) if 2(0) = #(0) = 0 we get an expression well suited for
identification. This means that £ = 0 corresponds to the steady state position
where the friction force is zero. Very small motions in stiction regime near
z = 0 means that this linearized equation can be used as a regression model
for (least squares) identification if F', z and v are known.

Remark 1. This identification is very difficult to carry out since it is ex-
perimentally very difficult to measure the regressors F, # and v. The other
identification procedure refered to also has problems with identifying the dy-
namical parameters. In fact only oy is identified, whereas o7 is chosen to give
well damped linearized equations.

Step 4, — g

The Stribeck velocity can be found in the Stribeck curve by identifying the
region where the steady-state friction increases with decreasing steady state
velocity. This region is however found at such low velocities that it becomes
experimentally very difficult to maintain the velocity without stick-slip motion.
Another approach will be therefore be used. In the Lugre model vy defines when
a decrease of the friction force shall be present in the motion from stick to slip.
As a result, by starting in stick, and then ramp up an externally applied force
until slip is reached, and during this record velocity and friction torque, it is
possible to plot friction torque T versus velocity 6 and graphically identify vo.
vp will then correspond to the point where the friction force is ag + a1/2, i.e.
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the friction force has made half the drop from the break-away force to the
kinetic friction force.

The graphical approach may not seem to be very rigorous, but will anyway
give an estimate within the correct range. Of course it would be possible to
use an iterative optimization procedure together with simulations to find an
optimal value.

3.9 Modeled friction phenomena

As for the Bliman & Sorine model stiction and pre-sliding displacement are
modeled. The Lugre model rate-dependency also models varying break-away
force. While the Bliman & Sorine model only reproduces a transient Stribeck
effect different from the one described in 1.2, the Lugre model exhibits a
steady state Stribeck effect. While the Bliman & Sorine model because of the
dependency on absolute relative displacement only, impossibly can model a
phenomenon as frictional lag, the Lugre model correctly seems to reproduce
this phenomenon. The reason for this is that the coefficient of (3.6) can vary
with velocity.

3.10 Simulations

In this section we illustrate the properties of the Lugre model by doing some
simulations. See the corresponding section of the chapter on the Bliman &
Sorine model for comparisons and comments on the choices of parameters.

Integration of the model

The problems with break-away force depending on initial conditions found
for the Bliman & Sorine model are not found for the Lugre model. This is
due to the Lugre model being a single state model, and the problems were
due to the fact that two states were "out of phase”. In the Lugre model the
bounding systems always have the same maximum values, but the location
may vary with initial conditions. The break-away force thus is not dependent
on initial conditions, but still is rate-dependent. The pre-sliding displacement
is dependent on initial conditions though, as for the Bliman & Sorine model.

The problems with oscillatory behaviour in interconnection with a mass
system is not found either. From (3.12) it is clear that the linearized damping
is controlled with the parameter oy, which then can be chosen to give good
damping.

Free model

In figures 3.10 and 3.11 we see the response of the free Lugre model to a
sinusoidal input velocity. The main diffrences from the corresponding Bliman
& Sorine simulations are that we now do not have a problem with initial
conditions affecting first break-away, and that there are peaks in friction force
also at the transition from slip to stick.

Figure 3.12 shows what happens if we change the rate of the sinusoidal
input torque. Two simulations are plotted, and the rate dependency of the
friction is clearly seen.
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Figure 3.10 Simulation of free Lugre model with sinusoidal input velocity. Fric-
tion force versus time.
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Figure 3.11 Simulation of free Lugre model with sinusoidal input velocity. Fric-
tion force versus displacement.

Interconnected model

The simulated system is the same inertial system used for the Bliman & Sorine
model simulations earlier. This time with Lugre friction. The Lugre parameters
are

[00 01 vo a a; az |=1]260 1.2 0.1 0.279 0.0389 0 |.
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Figure 3.12 Simulation of free Lugre model with sinusoidal input velocities of
different rates. Friction force versus time. Solid: Slower input rate. Dash-dotted:
Higher input rate.

In figure 3.2 we see the response to an external force u = asin(wt) with
a = 0.32 Nm and w = 1 rad/s. The responce is shown in figure 3.13. Note
that although we have no viscous friction we have a well damped behaviour
in stiction regime. The parameter oy allows us to determine stiction damping
independently of viscous friction. Moreover we see that the Lugre model ex-
hibits a peak in the friction torque also at the transition from slip to stick, in
contrast to the Bliman & Sorine model.

0.4

0.2r i

0.1F b

F [Nm]
£

7 8 9 10 11 12 13
t[s]

Figure 3.13 Simulation of simple inertial system with Lugre friction and sinu-
soidal input torque. Zero viscous friction. Friction force versus time.
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A case with non-zero viscous friction ,ay = 0.0177 Nms/rad, is also simu-
lated and shown in figure 3.14.
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Figure 3.14 Simulation of simple inertial system with Lugre friction and sinu-
soidal input torque. Non-zero viscous friction. Friction force versus time.

The rate dependency of the Lugre model responce is illustrated in fig-
ure 3.15, where the break-away region of the simulation is shown in zoom
together with a new simulation with w = 5 rad/s. We see that the break-away
torque is less in the latter case.
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Figure 3.15 Simulations of simple inertial system with Lugre friction and si-
nusoidal input torques with different rates. Non-zero viscous friction.Friction force
versus displacement. Solid: Higher input rate. Dotted: Lower input rate.
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Just to illustrate the influence of the damping parameter oy we show a
simulation where this parameter is set to zero. The result is shown in figure
3.16 as a plot of friction force versus time. We get a oscillatory behaviour
similar to that of the Bliman & Sorine model. The conclusion is that the
damping term o1z is essential to acheive good behaviour at sign changes of
velocity, while maintaining freedom in the choices of large velocity properties
such as viscous friction.
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Figure 3.16 Simulations of simple inertial system with Lugre friction and sinu-
soidal input torques with different rates. Zero viscous friction. Zero stiction damping
o1. Friction force versus displacement.

Small displacements

For small displacements the Lugre model is expected to behave like a linear
spring. To verify this behaviour we simulate a mass with Lugre friction and
external force u = B 4+ Asin(wt). In figure 3.17 uni-directional input torques
of different magnitudes are applied. We see that for small input torques we
have an almost linear behaviour, while for larger torques the response becomes
non-linear and shows hysteresis. We see that uni-directional input torques do
not take the system back to the initial position. In figure 3.18 symmetric bi-
directional input torques with zero mean are used, and now the system return
to the initial position.
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Small displacements for sinusoidal input torque
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Figure 3.17 Lugre model responses to input torque z = B+ Asin(wt) for B = 0.1
Nm, A =0.1 Nm and B = 0.25 Nm, 4 = 0.25 Nm

Small displacements for sinusoidal input torque
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Figure 3.18 Lugre model responses to input torque u = B + Asin(wt) for B =0
Nm, A=0.2 Nmand B=0Nm, A=0.5Nm
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4. Validation experiments

The experimental setup is described in appendix C. In terms to do model
validation the correct model parameters are needed. The identification proce-
dures used for the Bliman & Sorine model and the Lugre model are described
in sections 2.8 and 3.8 respectively. Other experiments on the same setup is
reported in [10, 26].
In all the following experiments the model of figure C.2 is assumed. This
model is described by ) )
JO =u— ayf —T. (4.1)

where u is applied external torque, a0 is the linear viscous part of the friction
torque, and 7 is the non-linear friction torque, in this section simply refered
to as friction torque.

The experiments will be carried out in open loop or closed loop, in the
latter case a simple PID or PI controller of the form

1
u = (kp—l— —ki—l—skd) e
s

is used. It should be noted here that the controller design is carried out without
taking the viscous friction as into account, although having almost the same
effect as the derivative part of the controller.

The only signals directly available are the control output u and the mea-
sured position §. The velocity § and the acceleration § will be estimated by
filtering the position data. Derivatives will be approximated by forward dif-
ferences 92|, ~ (z(tk+1) — z(tk))/h. Low-pass Butterworth filters are used
for disturbance reduction. The filters are run twice to avoid phase distortion,
resulting in a total non-causal filter of the double order. The friction torque T
is then estimated from (4.1) as

T=u—ayf—Jb. (4.2)

It should also be noted that all experiments have been carried out under
a period of several days, and that the friction characteristics seem to have
slightly changed during this time. The qualitative behaviour remains the same

though.

4.1 Dry friction

In this section identification of the experimental setup described in appendix
C with significant additional frictional load applied will be carried out. The
dominating friction is therefore expected to be dry.

Identification

The procedures described in 2.8 and 3.8 will be used. The identification of
the Bliman model parameters is done from the same experiments used in step
4 in the Lugre identification. An asymmetric model will be identified.

It should be noted that the friction is dependent on the position of the
inertial load element, and that this dependecy is not modeled. The best way
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to carry out the identification would therefore be to assure that the data
sequencies collected represent a position average, i.e. a number of full turns
of the load. This would be very time consuming though, and this position
dependency has simply been ignored instead.

Step 1 The goal of this step is to find the Coulomb friction force ag, and
the viscous friction coefficient as.

Steady state velocity experiments under closed loop high gain PI control
are done to collect data. Velocities in the range 0.1-10.0 rad/s are used in both
directions. The friction force is estimated as an average of the applied control
signal during the experiment. The smallest velocities tend to give stick-slip
motion, why these values are not of good quality. The experimental steady
state relationship between friction and velocity is found in figure 4.1. The
nonlinearity of this relaionship can be seen, however a linear model seems to
be accurate in the velocity range plotted.

Steady state friction
08 T T T T T T

o5 /

0.4 1

0.2+ 4

Friction torque [Nm]
=)
T
L

-0.4F 1
06 /‘/—/\//\ i
_08 L L L L L L L L L

10 -8 -6 -4 -2 2 6 8 10

0
Velocity [rad/s]

Figure 4.1 Experimental steady state relationship between friction and velocity.

The Stribeck velocity could not be found due to the stick-slip motion at
low velocities. The parameter vy will instead be identified in another way.

Polynomial fits have been done on the data to find ag and ay as illustrated
in the figure. The estimated parameters are aj = 0.58 Nm, a; = 0.50 Nm,
af = 0.020 Nms/rad and @, = 0.016 Nms/rad.

Step 2 In this step we identify the break-away force 75 from a limit cycle in
PID position control. The break away force has been estimated as the average
of the control signal at break-away during five periods of the limit cycle. a; is
given as T — ag with o taken from the preceding experiment. The result is
shown in table 4.1

Step 3 We will now try to find the dynamic parameters o9 and o1. The

regression model given in section 3.8 will be used together with least squares
estimation. Small motions are induced by a sinusoidal input torque without

66



8 T | of af
[Nm] [Nm] | [Nm] [Nm]

| 072 0.61 | 0.14 0.11 |

Table 4.1 The resulting break-away forces resulting from the experiment de-
scribed in this section. The upper indices refer to the sign of the velocity during
the slip following break-away.

sign changes u = B + Asin(wt) . The frequency is fixed to w = 2.0 rad/s. The
reason for not changing sign on the input torque is the small backlash present
in the system. The input torque was chosen as B = 0.1 Nm and A = 0.1 Nm
in both directions, which corresponds to a fraction of the earlier estimated
break away torques. For comparison an experiment with larger input torques
corresponding to the whole range from zero to just below break-away was
carried out. It is clear that the spring like behaviour becomes clearly hysteretic
for larger displacements. Se figure 4.2.

Elastic motion for small sinusoidal input torque
0.8 T T T T T

0.7 i

0.4 *
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-0.1 I I I I I I I
-2 0 2 4 6 8 10 12 14
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Figure 4.2 Spring like behaviour for small displacements, becoming hysteresis
for larger displacements. Left: B = 0.35 Nm, A = 0.35 Nm, Right: B = 0.10 Nm,
A =0.10 Nm

The regression model is
F=0gx+o0v+e

where e is assumed to be white noise with variance .. Defining the the output
T
as y = F , the parameter vector as [ 09 0, | and the regressor as ¢ =

[z v ]T,we have

y=1¢"0.
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With the matrices
n
p)

YN |
and r
.
¥s

N

with N being the number of data points we then have

Y = %6.
The least squares estimate
min leTe
[
of the prediction errors
e= (v - )

is then given by the normal equations
. -1
6=(a"s) aTv.

An estimate of the noise variance is given by

T
9 e'e

¢ N-2

and an estimate of the covariance matrix of the predicted parameter vector is
given by

cov[l] = o2 (@T@) - .

See [2, 18] for a detailed description of least squares estimation.

Now to the results. Identification were done in two directions with respect
to an origin with zero friction force. The estimated parameters together with
their estimated variance, the estimated noise variance and the roots corre-
sponding to the linearized equation (3.10) are given below.

of : 460 Nm/rad
oy : 42 Nms /rad
covd : [ 0.39 -0.018 ]
—0.018 0.22
62 : 24-107*
[r1 2] [ =11 —17000 ]
oo : 840 Nm/rad
of : 45 Nms /rad
covh : [ 7.0 0.30 ]
0.30 1.9
62 : 9.2-107*
[r1 2] [ —19 —18000 ]
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Remark 1. With v and F being estimated by forward differences the re-
gression model corresponds to a FIR model with u as output and # as input.
It then becomes important to fulfill the conditions for persistent ezcitation [2]
to be able to solve the normal equations. The position signal here shows a si-
nusoidal form, thereby indicating that it is persistently exciting of order two,
implying that it can be used to estimate two parameters, as in our case.

Remark 2. We see that the spring like characteristics are highly direction
! dependent with respect to oy, whereas o1 seems to be essentially the same
in both directions. This is good news since we are not very happy about in-
troducing a direction dependency in this parameter. (See discussion in section
3.7).

Remark 3. The poles of the linearized equation of motion are real and
of very different magnitude, and will most probably result in stiff equations
badly conditioned for numerical integration. Assuming that oq is the most
important parameter we can therefore choose o7 to give well damped complex
poles which are better suited for simulations.

Step 4 In this step identification of the parameter vg is done. In the Lugre
model vy decides at which velocity a drop in the friction force shall take place,
see section 3.2. For a slowly ramped up input torque this drop take place at
the Stribeck velocity vg, and this will here be used to identify this parameter.
More precisely half the drop has been made at the Stribeck velocity. By doing
this experiment and estimate velocity v and friction force 7, and then plot 7
versus v the velocity v is found graphically.

The same experiment is used to obtain the friction 7 versus position z from
which Bliman model parameters are identified.

A sinusoidal input torque input torque v = B + A sin (wt) with A = 1 Nm,
B =0.06 Nm and w = 0.1 rad/s will be used. The reason for the small bias is
totally practical and is due to the asymmetric friction. The bias corresponds
to half the different break-away torque in the different directions and gives an
almost symmetric motion. This is however not at all required for the results.

Figure 4.3 shows the obtained curve for u > 0. From this we can see that
v = 0.01 rad/s at break-away, and that v =~ 0.1 rad/s at half the drop. A
corresponding plot for u < 0 gives the same values also in this direction.

In figure 4.4 the corresponding plot for friction force T versus position z
is plotted. The Bliman identification parameters are graphically identified as

[ fe fs Se sp | =048 0.70 0.024 0.025 .

The map (2.22) from these parameters to model parameters has no solution
for these values though, whereas the identification becomes impossible. The
problem is that s, is too close to s, which make the condition for the map to
have solutions not to be fulfilled. The friction torque drop after break-away is
too fast, in other words.

A second try, in which we chose s, less close to s, gives a solution to the
map. The identification parameters now become

[ fe fs se sp ] =10.5261 0.7077 0.0297 0.0604 |,
and the model parameters

[ fi fo g4 m]=1]1.6130 1.0869 0.0201 0.6347 |.

!Direction here does not signify the sign of velocity, but on which side of the position
origin corresponding to zero friction force the motion takes place.
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Break—away for sinusoidal input torque, w = 0.1 rad/s
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Figure 4.3 Upper: Part of hysteresis curve for cyclic motion in stick and slip
region induced by a sinusoidal input torque, used for identification of vg. Lower: The
break-away region in zoom.

For completion we also show how the system during this motion behaved
during the transition from slip to stick in the friction force versus position
plot. This is shown in figure 4.5. The increase in friction torque just before
stick is clearly seen.

Remark 1. The identification of the Bliman parameters is complicated by
the fact that there is a backlash present in the system. The identification shall
be done in the hysteresis curve for friction versus position where the distance
from the position corresponding to sign change of velocity to the postion of the
break-away torque shall be determined. In this setup this distance is increased
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Break—away for sinusoidal input torque, w = 0.1 rad/s
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Figure 4.4 Upper: Part of hysteresis curve for cyclic motion in stick and slip
region induced by a sinusoidal input torque, used for identification of vg. Lower: The
break-away region in zoom.

by the backlash magnitude.

Remark 2. Moreover the Bliman model impose conditions on s, and s, to
give a solution to the identification mapping (2.22), e.g. 3s, < sp. This relation
is not fulfilled in this system, which makes the identification impossible. A
possibility would be to pick s, arbitrarily at a point that fulfills the condition,
giving at least a set of parameters, however of doubtful quality.

A conclusion migh be that the Bliman model poorly models dry friction
with relative large pre-sliding displacement, where the points s, and s, tends
to be close but still not very small.
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Slip to stick for sinusoidal input torque, w = 0.1 rad/s
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Figure 4.5 Part of hysteresis curve for cyclic motion in stick and slip region
induced by a sinusoidal input torque.

Remark 3. The friction torque drop after break-away seems to be very
abrupt, and almost discontinuous. Compare with wet friction.

Result A summary of the identification is given in table 4.2. An asymmetric
o9 makes it very important to have good accurancy around z = 0 in simula-
tions. For practical reasons we will therefore use an average of 9. A value of
o1 giving less stiff equations is also wanted. From the linearized equations one
can see that o1 ~ 3 Nms/rad gives a damping around one. (Approximatively
since the asymmetric oy makes the linearized equation ambiguous.)

The parameters above should be seen as initial guesses only since the iden-
tification procedure used not is optimal. The important thing is to look at
simulations of the system and trim the parameters to fit the experimental re-
sults. This is an iterative procedure which requires some feeling for how system
performance changes when a certain parameter is changed.

oo o1 Vo Qo g Qs
[Nm/rad] [Nms/rad] [rad/s] [Nm] [Nm| [Nms/rad]
+ 460 44 0.1 0.58 0.14 0.020
— 840 44 0.1 0.50 0.11 0.016
+ 650 1 0.1 0.58 0.14 0.020
— 650 1 0.1 0.50 0.11 0.016

Table 4.2 Identified Lugre parameters for dry friction case.

Hysteresis for large motions

figures 4.6 and 4.7 shows characteristic hysteresis curves in friction versus
position for motion induced by a sinusoidal input torque. The sharp drop in
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friction torque after break-away is difficult to achieve with the Bliman-Sorine
model if the pre-sliding displacement is significant, see discussion in 2.8.

Remark 1. In figure 4.6 the velocity reached during slip is so large that
the linear model of the viscous friction is no longer valid. Thus the viscous
friction term is over-estimated, and the estimated friction according to (4.2)
becomes too small. The ”waves” visible in figure 4.6 is due to an unmodeled
position dependency of the dynamics of a period 7/2 rad, probably due to
excentricity of a wheel in the gear-box. This dependency is seen in most plots,
except when low-pass filters of very low bandwidth have been used. There is
also a ~135 Hz time periodic disturbance present in the system. Maybe an
aliasing frequency of the 40 kHz puls-width modulated control signal. It might
also be an effect of two samplers with different sampling frequency in series
after the position sensor. This disturbance is filtered away when possible. For
fast motions this is not possible without filter away system dynamics as well.
A velocity dependent torque ripple were expected to be found in addition to
the above mentioned disturbances, but was not.

Stick-slip hysteresis curve for sinusoidal input torque
08 T T T T

0.6 1

0.2 1

Friction torque [Nm]

-0.6 I I I I I I
—-400 -300 —-200 -100 0 100 200 300

Position [rad]

Figure 4.6 Hysteresis curve for cyclic motion in stick and slip region induced by
a sinusoidal input torque. The frequency of the input torque was 5 rad/s.

Rate dependency

Experiments were carried out in which an sinusoidal input torque u = B +
Asin(wt), A = 0.06 Nm, B = 1.0 Nm, gave a stick-slip cycle. Different angular
frequencies w were used to investigate the rate dependency of the break-away
torque. The break-away torque is taken as an average of five break-away points.
The results are given in table 4.3. For the frequency w = 10 rad/s the break-
away peak is no longer distinguishable. As one can see the variances of the
experimental figures are rather high, only five periods were used for the aver-
aging. The trend is clear though, and corresponds well with the Lugre model
response.

In table 4.4 the magnitudes of the friction force peak at the transition from
slip to stick are given for experiments and simulations. The experimental values
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Stick-slip hysteresis curve for sinusoidal input torque
T T T T T

0.5 *

o
IS
T
I

o
w
T

|

Friction torque [Nm]

o
N
T

|

0.1 b

L L L L L L L L L
-360 -359.5 -359 -3585 -358 -357.5 -357 -356.5 -356
Position [rad]

Stick-slip hysteresis curve for sinusoidal input torque
T T T T T T T T T

—

0.5 b

o o
w =
T T
Il Il

Friction torque [Nm]

I
N
T
|

0.1 b

ok 4

L L L L L L L L L L
200 202 204 206 208 210 212 214 216 218
Position [rad]

Figure 4.7 Zooms from figure 4.6. Upper: Break-away region in zoom. Lower:
Slip to stick region in zoom.

have been taken from inspection of representative plots, and no averaging has
been done. The conclusion one can draw though is that the Lugre model well
seems to reproduce the phenomenon.

Figures 4.8, 4.9, 4.10 shows experimental responses together with Lu-
gre model responses to three different rates of sinusoidal input torque. The
Lugre model clearly shows the correct qualitative behaviour. Note that the
Lugre parameters used do not match the kinetic friction, nor the pre-sliding
displacement exactly.
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w Tg Vv [TE ] ut Tg Virg] u~
[rad/s] [Nm] [Nm/s| [Nm] [Nm/s]
Experimental 0.1 0.77 0.0036 0.076 0.58 0.0022 0.070
1.0 0.72 0.013 0.83 0.55 0.0030 0.83

10.0 - - ~ 10 - - ~ 10
Lugre 0.1 0.71 - 0.61 -

1.0 0.69 - 0.59 -

10.0 0.60 - 0.51 -

Table 4.3 Varying break-away torques experimentally and from Lugre simula-
tions. w is angular frequency of the applied input torque. 'rg, Tg are break-away
torques in different directions. V[-] is variance. % is velocity at break-away.

w T+ T
[rad/s] [Nm]| [Nm]
Experimental 0.1 0.63 0.50
1.0 0.62 0.48

10.0 - -
Lugre 0.1 0.62 0.53
1.0 0.59 0.51
10.0 0.58 0.50

Table 4.4 Friction torque peaks at the transition from slip to stick, experimentally
and from Lugre model simulations.

Small displacements

The experimental responses to small sinusoidal input torques u = B+ A sin(wt)
are shown in figure 4.2. The corresponding Lugre model responses are shown
in figure 3.17. The reason for using a smaller amplitude for the larger input
torque in the simulation is that the Lugre model with the parameters used
overestimates the rate dependency of the break-away torque, and thus give
break-away for the torque used experimentally. We can see that the Lugre
displacements are of the correct magnitude though. Also we see that the ex-
perimental system returns to the initial position while Lugre does not. This
might be a qualitatively wrong behaviour. We have to ask ourselves though
what we see in the experimental result. Is it frictional small displacements or
mechanism stiffness? In figure 2.15 the corresponding responses for the Bli-
man & Sorine model are shown. We see that the qualitatively wrong behaviour
is found also here. This is expected since both models have similar linearized
equations. An important difference is the magnitude of the displacements. It
differs almost a factor 10. This can be explained by (2.16), which gives o = 72
Nm/rad, to be compared with oy = 650 Nm/rad for the Lugre model. The
Lugre response shows better accordance with experiments.

In figure 3.18 the Lugre responses with symmetric input torques are shown.
These show the shapes we wanted in the previous figure. The experimental
conditions were not these however. Experimentally input torques without sign
changes were used to avoid the small backlash in the system. Figure 2.16 shows
the corresponding responses of the Bliman & Sorine model. Qualitatively the
same as Lugre, but still differs a factor 10 in magnitude.
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Simulated and real break—away for sinusoidal input torque, w = 0.1 rad/s
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Figure 4.8 Experimental (solid) and Lugre (dashed) model response to input
torque v = B + Asin(wt) for B = 0.06 Nm, 4 = 1.0 Nm, w = 0.1 rad/s.

Simulated and real break—away for sinusoidal input torque, w = 1.0 rad/s
T T T T T T T T T T

0.7 b

Friction torque [Nm]
o o

S o

T T

.
w
T

0.2

0.1r

L L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Position [rad]

Figure 4.9 Experimental (solid) and Lugre (dashed) model response to input
torque v = B + Asin(wt) for B = 0.06 Nm, 4 = 1.0 Nm, w = 1.0 rad/s.

Non-linear viscous friction

As noted above the linear model of viscous friction is only valid in a limited
velocity range. In figure 4.11 this is illustrated by plotting a fast motion with
velocities without the range from within the viscous friction was estimated.
The friction force plotted is estimated from (4.2), and is thus dependent on a
correct estimate of viscous friction. Ideally in this plot friction should be equal
to kinetic friction during slip, and appear as a horizontal straigh line.
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Simulated and real break—away for sinusoidal input torque, w = 10 rad/s
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Figure 4.10 Experimental (solid) and Lugre (dashed) model response to input
torque . = B + Asin(wt) for B = 0.06 Nm, A = 1.0 Nm, w = 10 rad/s.

A motion with low velocity is seen in figure 4.4, where apparently the vis-
cous friction is correctly estimated (after break-away we have constant kinetic
friction).

The conclusion thus is that for motions varying over a large velocity range
non-linear viscous friction modeling seems necessary.

Other non-linearities

In the setup used the friction is distributed in several parts, between which
there exist small backlashes. This gives a complex behaviour at break-away
since different parts start to move at different times. In this system the back-
lash is of a magnitude 2-3 times larger than the pre-sliding displacement.

In figure 4.12 the distributed friction— backlash behaviour is seen at break-
away. The break-away is in fact two break-aways. First a small which is im-
midiately stopped after a distance corresponding to the backlash magnitude
(motion from left to right contact in the backlash). In this position the system
remains in stick until the break-away torque is reached, and slip occurs. The
backlash magnistude is from the plots estimated to approximately 70 mrad,
while the pre-sliding displacement is around 25 mrad.

4.2 Wet friction

Here we carry out experiments on the system without externally applied fric-
tion, resulting in a system with only lubricated, or wet, friction. We want to
investigate if such a system has qualitatively different properties than the dry
friction system. If so, which of the investigated dynamic friction models is best
in each case?
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Break—away for sinusoidal input torque, w = 1.0 rad/s
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Figure 4.11 Failure of linear viscous friction modeling. Upper: Overcompensation
of viscous friction. Friction versus position hysteresis plot and a sinusoidal reference
signal of period 7/2 rad to compare with the position dependent variation. Lower:
Velocity during slip plotted versus posistion. The velocity range from within the
linear model is identified is marked with dotted lines.

Identification

Step 1  The procedure is the same as for dry friction. The obtained steady
state friction force versus velocity plot is found in figure 4.13.

The Stribeck velocity was not found here either, but this time due to the
very low velocities, implying unreasonable long experiments to obtain repre-
sentative data. The parameter vy will instead be identified as in step 4 above.

Polynomial fits gives ag and ay as illustrated in the figure. The estimated
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Break—away for sinusoidal input torque, w = 1.0 rad/s
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Figure 4.12 Backlash and distributed friction.

parameters are ag = 0.36 Nm, oy = 0.24 Nm, a2+ = 0.017 Nms/rad and
a; = 0.017 Nms/rad, which well fits earlier identifications made on the system.

Step 2  The procedure is identical to the one used in the dry friction case.
The result is shown in table 4.5 and figure 4.14.

Step 3 Refer to step 3 in the dry case to learn the procedure. The input
torque has in this case been scaled down appropriately. The experimentally
found friction force versus displacement plots are found in figure 4.15.

Estimated parameters are given below.
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Steady state friction
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Figure 4.13 Experimental steady state relationship between friction and velocity.

s T | of o5
[Nm] [Nm] | [Nm] [Nm]

| 046 0.29 | 0.098 0.050 |

Table 4.5 The resulting break-away forces resulting from the experiment de-
scribed in this section. The upper indices refer to the sign of the velocity during
the slip following break-away.

o : 330 [Nm/rad|
o : 25 [Nms/rad|
covh : [ 0.653 0.0156 ]
0.0156 0.1826
Oe : 1.4-107*
[r1 2] [ —13 —10000 ]
oo : 230 [Nm/rad]
of : 28 [Nms/rad]
covd ] [ 0.0334 0.0020 :|
' 0.0020 0.0266
Ge : 2.1.1075
[ T1 Ty ] : [ —8 —11000 ]

Step 4  Again, same procedure as for the dry case. A sinusoidal input torque
input torque v = B + Asin (wt) with A = 0.5 Nm, B = 0.08 Nm and w = 0.1
rad/s is this time used.

Figure 4.16 shows the obtained curve for u > 0. Here it can be seen that
the break-away region shows a complex structure. As a matter of fact, we have
two break-away points. The former shows no torque peak in the friction force
versus displacement plot. The latter is picked for identification of vg. From
this we can see that v ~ 0.01 rad/s at break-away. The value at half the drop,
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Limit cycle control signal
0.5 T T T T

@ () ® @® ® @ Q Q@

0.3 4

0.11 1

Input torque [Nm]

-0.3 Y © O © O O V) ) O
10 20 30 40 50 60
Time [s]

Figure 4.14 Identified break-away reached in control signal.

Hysteresis for elastic small displacements
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Figure 4.15 Spring like behaviour for small displacements, becoming hysteresis
for larger displacements. Left: B = 0.15 Nm, A = 0.15 Nm, Right:B = 0.05 Nm,
A =0.05 Nm

corresponding to wvp, is not easily seen. We assume v = 0.1 rad/s is a good
value as in the dry case. A corresponding plot for u < 0 gives the same values
also in this direction.

In figure 4.17 the corresponding plot for friction force 7 versus position z is
plotted. The complex break-away region makes the Bliman identification diffi-
cult. Figure 4.18 shows that again we have several partial break-aways preced-
ing the full break-away. The Bliman identification parameters are graphically
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Break—away for sinusoidal input torque, w = 0.1 rad/s
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Figure 4.16 Upper: Part of hysteresis curve for cyclic motion in stick and slip
region induced by a sinusoidal input torque, used for identification of vg. Lower: The
break-away region in zoom.

chosen as
[ fe fs s s, ] =10.3276 0.4183 0.2519 0.6016 |.
The map (2.22) from these parameters to model parameters gives

[ f1i f» e n]=[0.6136 0.2859 0.2005 0.4434 |.

Result A summary of the identification is given in table 4.6. The comments
from the result section in the dry case are still valid.
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Break away for sinusoidal input torque, w = 0.1 rad/s
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Break away for sinusoidal input torque, w = 0.1 rad/s
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Figure 4.17 Upper: Part of hysteresis curve for cyclic motion in stick and slip
region induced by a sinusoidal input torque, used for identification of vg. Lower: The
break-away region in zoom.

From figure 4.15 we see that the experimental behaviour show better corre-
spondence with the Lugre model behaviour in figure 3.17 for the lubricated case
than for the dry. Still the qualitative behaviour is different for the model. Fig-
ure 3.18, which shows the Lugre model response for symmetric input torque,
better corresponds to the experimental results.
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Break—away for sinusoidal input torque, w = 0.1 rad/s
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Figure 4.18 System break-away composed of several partial break-aways.

(] 01 Vo Qo g (23]
[Nm/rad] [Nms/rad] ([rad/s] [Nm] [Nm] [Nms/rad]
+ 330 26 0.1 0.36 0.098 0.017
— 230 26 0.1 0.24 0.050 0.017
+ 280 1 0.1 0.36 0.098 0.017
- 280 1 0.1 0.24 0.050 0.017

Table 4.6 Identified Lugre parameters from wet friction case.

4.3 Conclusions

As emphasized before the purpose of this validation has been to qualitatively
verify model properties. The identification procedure has been rather simple,
and can in no way be expected to give optimal results. Qualitatively both the
Bliman & Sorine and the Lugre model well models the phenomena they are
supposed to. In the case with pre-sliding displacements qualitatively wrong
behaviour is seen for both models. We are not sure that what we see ex-
perimentally is actual frictional pre-sliding displacements. The displacement
magnitudes are too large, and probably we have mechanism stiffness playing
the same role.

In both the dry and the wet friction case the wet friction is the same.
From the identified parameters we see that the additional dry friction does not
add any significant viscous friction. The stiction and the kinetic friction are
larger for the dry case. The only qualitative difference encountered is that the
stiction force peak in the dry case is much sharper than in the wet case. This is
more easy to capture with the Lugre model. The Bliman & Sorine model has
difficulties with such behaviour, at least when the pre-sliding displacement is
relatively large. This may sound contradictory to the purposes of the models.
The Bliman & Sorine model is presented as a dry friction model, and thus
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could be expected to well capture this behaviour. The Lugre model is inspired
by properties introduced by lubrication.

The discrepancies sometimes found between experimental results and sim-
ulated model results might be explained by a poor identification. Efforts have
been made however to manually tune parameters to fit observations, but
changing the parameters change the overall model behaviour in a complex
way why it has been impossible to find one set of parameters that fits all
phenomena. Therefore a good strategy might be to analyze which phenomena
are of most importance in a specific system, and then adapt friction model
parameters to model these in a good way.
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5. Limit cycles

Limit cycles are known to appear in systems with friction controlled by a PID
regulator. Often these are of a stick-slip character, i.e. motion alter between
zero velocity and non-zero velocity due to a difference between stiction force
and kinetic friction. Stick-slip limit cycles can appear as stick-slip motion in
velocity control, or as oscillations around the setpoint in position control. In
this chapter we investigate the ability of the models (2.7) and (3.4) to re-
produce this behaviour in position control from simulation as well as from
describing function analysis. We also take a heuristic approach to limit cy-
cle prediction, where the limit cycles are found by little knowledges of the
system and approximations of the equations of motion. This method is then
generalized by removing the approximations. The results are then validated
by experiments.

For a given system with friction and a PID controller we shall try to give
answers to the following questions:

1. For which controller parameters can there be a limit cycle present?
2. Which are the conditions for the limit cycle to appear?
3. What are then the period and the error amplitude of the limit cycle?

5.1 Limit cycles in experiments

The experimental setup is presented in appendix C.

A PID controller will be used for position control. Assuming that the dis-
crete time PID that is used experimentally is close enough to a continuous
time PID for short sampling periods we choose the system in figure 5.1 for
design and later on simulations.

R U T w 0
& o 2@ #e)

@ |

Tf

Figure 5.1 Model of experimental setup used for design and simulation.

The PID is first designed as for a system without friction, and chosen to
give a closed loop transfer function characteristic polynomial

(8% + 2(cwes + w2) (s + now,). (5.1)

The plant has the transfer function

G()(S) = — (52)
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from torque to position, and the PID control law is
U=G(s)E (5.3)
with E = R — Y, and U having dimension torque.

_ ka8’ thps + ki JEdsz + kps + k;

4
&(s) : : (5.4)
The closed loop transfer function becomes
GG kas? + kys + k;
G.(s) 0 as” + Rps (5.5)

T 1+ GGy B+ kas® + kps + By

Identification of coefficients in (5.1) gives the PID parameters k,, k; and kq.

If linear friction modeling is used and the viscous friction coefficient a is
known, it is certainly better to include this in the design. This is straightfor-
ward, and the resulting design equation becomes

GGy Eész + E;s + l?::
14+ GGy s3—|—(l_e(’1+a)sz—|—];:;,s—|—l_e£'

G.(s) (5.6)

We choose for our investigation a limit cycle from the wet friction case in
the previous chapter. The closed loop design parameters of table 5.1 gives the
PID parameters of table 5.2. A registration of an experimental limit cycle

We Cc | Me
[rad/s]
| 6 |05] 1|

Table 5.1 Design parameters for PID regulator.

k, k; k)
[Nm/rad] | [Nm/rads] | [Nms/rad]
| 72 | 216 | 52 |

Table 5.2 PID parameters used to give limit cycle.

is shown in figure 5.2. A reference step » = 1 rad is given at ¢ = 0 s from
zero initial conditions. We see that the limit cycle is symmetric in position
amplitude, but asymmetric in control signal amplitude. How this can be in-
terpreted is discussed in section 5.4. We also see the pre-sliding displacement
in the position signal. In figure 5.3 the control signal is plotted together with
the estimated non-linear friction. What we see here is the break-away, slip and
the stick of a limit cycle half-period. Ideally we would like the friction to be
constant, equal to the kinetic friction, during slip. Unfortunately position de-
pendent disturbances in the setup spoil this, and instead the estimated friction
decreases with time since this model mismatch is captured in the estimation.
An interesting thing is the increase in friction that is clearly seen at the end
of slip. Figure 5.4 shows the position signal in zoom, and there we clearly can
see the presliding displacement.
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Figure 5.2 Limit cycle from experiments. Upper: Position versus time. Lower:
Control signal versus time.
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Figure 5.3 Half-period of limit cycle from experiments. Solid: Estimated
non-linear friction term. Dotted: Control signal.

5.2 Simulation

Simulations are done on the model of the experimental setup shown in fig-
ure C.2. Since the experimental limit cycle above suggests an asymmetric
friction we use asymmetric friction models for the simulations. Parameters are
chosen to fit experiments. The Lugre and Bliman & Sorine model parameters
are taken from the results in chapter 4 in the section on wet identification,
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Figure 5.4 Pre-sliding displacement. From upper left: experimental, classical
model, Bliman & Sorine model, Lugre model.

but are modified here to best fit observations. The PID regulator is the same
as above, i.e. the parameters are given by table 5.2.

Classical friction model

First simulations is carried out for a classical friction model. A static model
with stiction 7, kinetic friction 75 and viscous friction a is used with parame-
ters as given by table 5.3. Figure 5.5 shows the resulting limit cycle. We see

Ts Tk a
[Nm] | [Nm] | [Nms/rad]
— | 030 | 0.14 0.017

+ | 0.46 | 0.30 0.017

Table 5.3 Static friction model parameters.

that just as for the experimental limit cycle we have symmetry in position, but
asymmetry in control signal. The classical model does not model pre-sliding
displacement, hence this is not present in the result. The transient is slightly
different, but overall the limit cycle is well reproduced by a classical model. In
figure 5.6 a half-period of the control signal and the non-linear friction torque
of the limit cycle is shown in zoom. Figure 5.4 shows the position signal in
zoom, and we see that there is no pre-sliding displacement for the classical
model.

Bliman friction model

For the Bliman & Sorine model the identification parameters of table 5.4 is
used, yielding the model parameters of table 5.5. Note that we have chosen
a pre-sliding displacement s, ~ 5 mrad, and therefore s, = 20 mrad > 3s,.
Figure 5.7 shows the resulting limit cycle. We see that the limit cycle is
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Figure 5.5 Limit cycle from simulation with classical friction model. Upper: Po-
sition versus time. Lower: Control signal versus time.
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Figure 5.6 Half-period of limit cycle from simulation with classical friction model.
Solid: Estimated non-linear friction term. Dotted: Control signal.

asymmetric in position and in control signal. The reason for this is that the
model response does not agree with what is demanded by the identification
parameters. We demand a stiction force of 0.46 Nm for v < 0, but obtain 0.47
Nm, 0.30 Nm for v > 0, but obtain 0.27 Nm. A condition for the limit cycle to
be symmetric in position is that the difference of the static and kinetic friction
is equal in both directions. This is fulfilled for the identification parameters,
where the difference is 0.16 Nm. This is not fulfilled in the obtained model
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fa fk Se Sp
[Nm] | [Nm] | [rad] | [rad]
— | 0.30 | 0.14 | 0.005 | 0.002
+ | 0.46 | 0.30 | 0.005 | 0.002

Table 5.4 Bliman & Sorine identification parameters.

fi f2 £y n a
[Nm] | [Nm] [Nms/rad]
— 1 0.39 | 0.25 | 0.0067 | 0.32 0.017
+ | 0.53 | 0.23 | 0.0067 | 0.25 0.017

Table 5.5 Bliman & Sorine model parameters.

response though. This problem, that the Bliman & Sorine model does not
always give the response demanded by the identification parameters, is also
discussed in section 2.8. Pre-sliding displacement is present in the simulated
limit cycle, as expected. Note that the first break-away torque is lower than
the succeeding. Figure 5.8, where a half-period of the control signal and the
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s 1r 1
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Figure 5.7 Limit cycle from simulation with Bliman & Sorine friction model.
Upper: Position versus time. Lower: Control signal versus time.

non-linear friction is plotted, is essentially the same as figure 5.6, except
for the oscillations. The reason for the oscillations is due to the linearized
model equations, and is discussed in section 2.9. The oscillations give lower
break-away force than expected from the identification parameters. The peak
at the transition from slip to stick found experimentally in figure 5.3 is not
captured by the Bliman & Sorine model. Figure 5.4 shows the position signal
in zoom. It seems the transition from slip to stick is not as abrupt as for the
experimental limit cycle. Also this is due to the oscillations in the friction
torque. The pre-sliding displacement is nicely modeled though.
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Figure 5.8 Half-period of limit cycle from simulation with Bliman & Sorine fric-
tion model. Solid: Estimated non-linear friction term. Dotted: Control signal.

Lugre friction model

The parameters of table 5.6 is used. In figure 5.9 we see the limit cycle. It is

0o 01 Yo Qo Qai Qs
[Nm/rad] | [Nms/rad] | [rad/s] | [Nm] | [Nm| | [Nms/rad]
— 280 1 0.1 0.14 | 0.16 0.017
+ 280 1 0.1 0.30 | 0.16 0.017

Table 5.6 Lugre model parameters.

symmetric in position and asymmetric in control signal, just as the experimen-
tal limit cycle. According to property 3.1 the pre-sliding displacement should
be approximately 2 mrad and 4 mrad in the different directions. We have a
pre-sliding displacement of the predicted magnitude (can be seen when zoom-
ing in the figure). Figure 5.10, that shows a half-period of the control signal
and the non-linear friction torque, shows that we have the increase in friction
force observed experimentally at the transition from slip to stick. Figure 5.4
shows the position signal in zoom. The Lugre model shows the best agreement
with experimental results. The transition from slip to stick is abrupt as in the
experimental case. Also the pre-sliding displacement is correctly modeled.

5.3 The describing function

The describing function analysis DFA applied here is that of a single sinusoid
input describing function [3]. In this approach it is assumed that the system
can be divided into one linear, H(s), and one non-linear part, ¥(-), and that the
limit cycle found in the input signal to the non-linear element has a waveform
close to a harmonic signal with zero mean. See figure 5.11.
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Figure 5.10 Half-period of limit cycle from simulation with Lugre friction model.
Solid: Estimated non-linear friction term. Dotted: Control signal.

For the DF analysis set r = 0. Assume z(tf) = asinf, where we have
introduced the variable § = wt. Note that y is a periodic signal in presence of
a limit cycle, and therefor can be expanded in a Fourier series,

y(0) = Z as cos s8 + b, sin s6, (5.7)

8=0
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Figure 5.11 General system decomposition for describing function analysis.

with
{ a, = 5 [T y(6)cossbdd, (5.8)

b, = =" y(0)sinsodo.

€s = 0 for s = 0,, = 2 for s > 0. The describing function N(a,w) is defined
as the complex ratio of the fundamental component of the output to the sinu-
soidal input. The fundamental output from the nonlinearity is a; cos 8+b4 sin 6,
which means the DF is given by

by +jax
—

N(a,w) = (5.9)
Self sustaining harmonic oscillations with frequency w and amplitude a

requires that
H(iw)N(a,w)= —1.

Thus by plotting H (iw) against —1/N(a,w) in a Nyquist diagram and look for
intersections we can predict limit cycles. Remember though that the assuptions
made are quite strong, that the nonlinearity output can be approximated by
the first harmonic of it’s Fourier series expansion, and that the input can be
regarded as harmonic.

For the dynamic nonlinearity introduced by the Bliman & Sorine model
(2.7) the Lugre model (3.4) the DF N(a,w) becomes dependent of both am-
plitude a¢ and frequency w. Moreover the DF cannot be evaluated analyti-
cally because of the complexity of the model. Instead numerical integration
of the model with sinusoidal input is carried out, which gives the fourier co-
efficients (5.8) of the output fundamental, which then are used in (5.9) to
compute N(a,w).

For a DF dependent only on A it is not so important to have very accurate
values of N(A) since one easily can see if there exist a intersection in the
Nyquist diagram, and thus if there exist a limit cycle or not. For a DF on
the form N(A,w) the way of finding intersections depend on the directions of
the curve set {N(a,Q)|a € IR, Qfixed} with respect to 2, and the direction
of H(iw). Attention has to be payed when interpreting the Nyquist plot. It is
not always clear that a intersection really takes place.

Some different approaches to the DF analysis will be tried. Normally the
system decomposition is done so that the nonlinearity is isolated as much as
possible in one part, and the rest, being all linear, as the other. When doing
analytical calculations of the DF this approach is natural, since no dynamics
are wanted in the nonlinear part then. When computing the DF numerically
we are not bounded by this. Other conciderations can be done though.
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The DF analysis will be made for the classical friction model, the Bliman
& Sorine model and the Lugre model used in the limit cycle simultions above.
Since we use a single sinusoid input DF approach we assume a symmetric
limit cycle in the analysis. Therefore we will use symmetric friction models.
The parameters are given in tables 5.7, 5.8, 5.9 and 5.10. The parameters
are chosen to give limit cycles with the same symmetric position amplitude as
in the experimental case.

Ts Tk a
[Nm] | [Nm]| | [Nms/rad]
| 0.38 | 0.22 | 0.017 |

Table 5.7 Static friction model parameters.

Is Ix Se Sp
[Nm] | [Nm] | [rad] | [rad]

| 0.38 [ 0.22 | 0.005 | 0.002 |

Table 5.8 Bliman & Sorine identification parameters.

fi f2 £y n a
[Nm] | [Nm] [Nms/rad]

| 045 | 0.23 [ 0.0067 | 0.28 | 0.017 |

Table 5.9 Bliman & Sorine model parameters.

Simulations of these symmetric friction models and the model of figure 5.1
with the PID parameters of table 5.2 give limit cycles with properties shown
in table 5.11.

First approach

First we look at the standard decomposition, see figure 5.12, and notice that
the input signal to the nonlinearity becomes the velocity. The velocity signal in
a stick-slip limit cycle has the form of an impulse train. Recall the assumption
made in the DF analysis, that the input signal can be approximated by the
first harmonic of it’s Fourier series expansion. The Fourier coefficients b, of
the impulse train are not decreasing with n. The DF analysis does not look
promising for this decomposition in other words. It will be carried out though,
for comparison. The Nyquist plot of the linear part of this decomposition is
shown in figure 5.13.

Classical model Since the classical model apart from the velocity also
requires the externally applied torque as input, and thus cannot be regarded
as a single input model, this approach is not possible to use.

Bliman € Sorine model In figure 5.14 we see the describing function for
the Bliman & Sorine model. The accuracy is best for small amplitudes. The
Bliman & Sorine model is rate independent and only depends on the absolute
relative displacement s, and this might give the idea that also the DF should
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) o1 Vo Qg (23] Qs
[Nm/rad] | [Nms/rad] | [rad/s] | [Nm] | [Nm] | [Nms/rad]
280 | 1 | 01 [022]017 | 0.017 |
Table 5.10 Lugre model parameters.
T w ay a,
[s] | [rad/s] | [rad] | [rad/s]
Experimental | 6.16 1.0 0.52 | 1.75/2.25
Classical 5.1 1.2 0.50 3.9
Bliman & Sorine | 4.9 1.3 0.52 4.1
Lugre 5.1 1.2 0.49 3.9
Table 5.11 Limit cycle properties from experiment and simulations. T is period,

w angular frequency, ag position amplitude and a. velocity amplitude.

be rate independent. This is not the case however. Since the input ¢ = asinwt
to the DF is the velocity, we have that the the displacement is [ asinwt dt, and
the amplitude of this is a/w, which is rate dependent. The true limit cycle from
simulation of the system has the frequency w = 1.3 rad/s and a, = 4.1 rad/s.
From figure 5.15 we see that no intersection between the negative inverse of
the describing function and the linear Nyquist plot is found.

Lugre model In figure 5.16 we see the describing function for the Lugre
model. The true limit cycle from simulation of the system has the frequency
w = 1.2rad/s and a, = 3.9 rad/s. From figure 5.17 we see that no intersection
between the negative inverse of the describing function and the linear Nyquist
plot is found.

Second approach

A possible modification of the above is to introduce a derivative block as in
figure 5.18, and carry out the decomposition as indicated. This gives two ad-
vantages: the position becomes the input to the nonlinear block. The position
signal is pretty much like a square wave, and therefor better fulfills the as-
sumptions made for the DF analysis. The square wave has Fourier coefficients
b, which are proportional to 1/n. The other advantage is that we get the er-
ror amplitude of the limit cycle from the DF analysis instead of the velocity
amplitude, which is not that interesting. Another way of looking at this is to
say that we just rotate the Nyquist curves 7 /2 rad, and there is no reason this
should increase the quality of the analysis. What is the correct way of think-
ing? Even if the quality would not be better compared to the first approach
we still have a more interesting signal as nonlinearity input. In computing the
describing functions for the Bliman & Sorine and the Lugre model the results
were the same as for approach one, except that the plots were rotated m/2
rad. Therefore the results are not presented here, and we carry on to the next
approach.

Third approach

There exist another signal in the system which is even better suited as input
signal to the nonlinearity of a DF analysis, the control signal. The decom-
position we look at now is given in figure 5.19. The control signal looks like
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Figure 5.12 System decomposition for describing function analyasis, first ap-
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Figure 5.13 Nyquist plot of the linear part, first approach.

a triangle wave, which has Fourier coefficients b,, which are proportional to
1/n?.

The disadvantage of this decomposition is that the the amplitude of the
control signal probably already is known since it is the break-away force. More-
over it is exactly the same for all limit cycles since the break-away force is
constant, or at least almost exactly depending on if there exist a rate depen-
dency in the break-away force, i.e. if the break-away varies with limit cycle
frequency.

The Nyquist plot of the linear part of this decomposition is shown in figure
5.20. This approach was successfully used in [4] together with the Karnopp
model.
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Figure 5.14 Negative inverse of the describing function for the Bliman & Sorine
model, first approach. The DF N(a,w) is evaluated for w € {0.1, 1.0, 10} rad/s and
log(a) € [—4, 1] rad/s. The amplitude a is increasing from right to left.
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Figure 5.15 Nyquist plot of linear part and Bliman & Sorine describing function,
first approach . No intersection.

Classical model In figure 5.21 we see the DF for the Classical model
in the third decomposition, together with the linear part. The amplitude is
increasing to the left. Since the classical model does not have any pre-sliding
displacement for input torques the describing function N (a,w) is zero for these
inputs. That means the negative inverse is infinite. At break-away the system
is discontinuous, and so the DF is discontinuous.

The DF is computed as near the discontinuity at break-away as possible
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Figure 5.16 Negative inverse of the describing function for the Lugre model, first
approach. The DF N(a,w) is evaluated for w € {0.1, 1.0, 10} rad/s and a € [0.1, 10]
rad/s. The amplitude a is increasing from right to left.
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Figure 5.17 Nyquist plot of linear part and Lugre describing function, first ap-
proach. No intersection.

within the numerical limits of the integration routines. Still we can not get an
intersection between —1/N(a,w) and the linear part. If there was an intersec-
tion it would be at break-away, since the amplitude of the control signal in a
limit cycle is the break-away force, and thus the discontinuity would be exactly
at the intersection. Numerically it is difficult to compute N(a,w) close to the
discontinuity though. Other frequencies are also tried but an intersection is

not found.
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Figure 5.19 System decomposition for describing function analyasis, third ap-
proach.

Bliman € Sorine model In figure 5.22 we see the DF for the Bliman
& Sorine model in the third decomposition. The amplitude is increasing from
the left. We have gaps in which the DF is difficult to compute due to pre-
cision limits in the integration routines. The gaps correspond to break-away
regions. While the model is not discontinuous at break-away, the describing
function almost is, and it is required very high precision to resolve this re-
gion. The visible area in this plot corresponds to pre-sliding displacement. For
the classical model this part of —1/N(a,w) was found at infinity. The part
of the curve —1/N(a,w) corresponding to motion at, and after break-away is
found in the upper right corner. While for the Lugre model there is one gap,
or discontinuity, see below, for each curve —1/N(a,), Q fixed, for the Bli-
man & Sorine model there are two. This is due to the phenomenon described
in section 2.9 where it is shown thet a symmetric torque input can give an
asymmetric position output with break-away only in one direction. L.e. in the
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Figure 5.20 Nyquist plot of the linear part, third approach.

Nyquist plot of —1/N(a,w)

Figure 5.21 Negative inverse of the describing function for the Classical model,
third approach. The DF N(g,w) is evaluated for w € {0.1, 1.0, 10} rad/s and
log(a) € [—3, 1] rad/s. The amplitude a is increasing from left to right.

describing funtion in the third approach the Bliman & Sorine model exhibits
two discontinuities. One for the first break-away only in one direction, and an-
other when break-away is acheived in both directions. The amplitude region
for which the motion exhibits break-away only in one direction is approxi-
mately 0.30 — 0.37 Nm. Not very large but still significant, and the region in
N(a,w) corresponding to this interval is quite large.

In the figure the end part of the DF is found in the upper right corner for
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all frequencies. The amplitude difference in the gap region is less than 1012
Nm, still the gap is fairly large. The DF is computed as far as possible within
the numerical limits of the integration routines. In figure 5.23 the region af-
ter break-away is zoomed. The linear part of the system is also plotted. The
second discontinuity for the curve —1/N(a,1.0) is seen. It is difficult to an-
alyze intersections in this plot though. In search for an intersection we plot

Nyquist plot of —1/N(a,w)
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Figure 5.22 Negative inverse of the describing function for the Bliman & Sorine
model, third approach. The DF N(a,w) is evaluated for w € {0.1, 1.0, 10} rad/s and
log(a) € [-3, 1] rad/s. The amplitude a is increasing from left to right. There are
gaps in which the DF could not be computed due to limits in precision.

w € {1.8,1.9, 2.0} rad/s. In figure 5.24 we can see that an intersection exists
at w = 1.9 rad/s. The corresponding amplitude is 0.36 Nm. Here the discon-
tinuities at full break-away in both directions are clearly seen. The amplitude
in the simulation is 0.38 Nm, and the frequency is 1.3 rad/s. Thus the DF
fairly good predicts the amplitude, and fairly good predicts the frequency of
the limit cycle.

Lugre model In figure 5.25 we see the DF for the Lugre model in this
decomposition. The amplitude is increasing from the left. There are gaps in
which the DF is difficult to compute due to precision limits in the integration
routines. The gaps correspond to the regions near break-away, and there seem
to be discontinuities at break-away as for the Bliman & Sorine model though
the model is not discontinuous. Probably what seem to be discontinuities are
just regions in which very high precision is required to resolve the describ-
ing function. In the figure the part of the DF corresponding to motion after
and at break-away is found in the upper right corner for all frequencies. The
amplitude difference in the gap region is less than 107'2 Nm, still the gap
is fairly large. The DF is computed as far as possible within the numerical
limits of the integration routines. In figure 5.26 the region after break-away
is zoomed. The linear part of the system is also plotted. We see that the pre-
cision was not enough to compute the DF close to the linear Nyquist plot for
the given frequencies. Since the frequency of the simulated system is w = 1.2
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Figure 5.23 Zoom on the upper right part of figure
plotted to check for intersections.
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Figure 5.24 Negative inverse of the describing function for the Bliman & Sorine
model, and the linear part, third approach. Zoom in the intersection area, like in
figure 5.23. The DF N(a,w) is evaluated for w € {1.8, 1.9, 2.0} rad/s and a =~ 0.36

rad/s. Intersections are found.

rad/s we try to compute the DF for w = 1.5 rad/s, to see if we now can get
an intersection. The result is shown in figure 5.27, where we see that an in-
tersection exists, however not at the correct frequency. The DF is computed
for a second frequecy w = 2.0 rad/s which gives a second intersection, quite
close in frequency. We have now captured a true intersection with correct

frequency between these intersections. This is true since the intersection of
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Nyquist plot of —1/N(a,w)
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Figure 5.25 Negative inverse of the describing function for the Lugre model,
third approach. The DF N(a,w) is evaluated for w € {0.1, 1.0, 10} rad/s and
log(a) € [—3, 1] rad/s. The amplitude a is increasing from left to right. There are
gaps in which the DF could not be computed due to limits in precision.
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Figure 5.26 Zoom on the upper right part of figure 5.25. The linear part is also
plotted to check for intersections.

—1/N(a,1.5) and G(iw) above G(:1.5), and the intersection of —1/N(1,2.0)
lies below G(22.0). We can say then that there is an intersection with frequency
w € [1.5, 2.0] rad/s, and amplitude a € [0.3809, 0,3831] Nm. The amplitude
in the simulation is 0.38 Nm. Thus DF can correctly predict the amplitude,
and fairly good predict the frequency of a limit cycle.

From the describing function of the Lugre model the rate dependency of
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Nyquist plot of —1/N(a,w)
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Figure 5.27 Negative inverse of the describing function for the Lugre model, and
the linear part, third approach. Zoom in the intersection area, like in figure 5.26. The
DF N(a,w) is evaluated for w € {1.5, 2.0} rad/s and a = 0.38 rad/s. Intersections
are found.

the break-away force is clearly seen in that the amplitude at the gap limits
corresponding to break-away change with frequency. We have ¢ = 0.390, Nm
a = 0.385 Nm and a = 0.349 Nm, for w = 0.1 rad, w = 1.0 rad/s and w = 10
rad/s respectively.

5.4 Heuristic limit cycle prediction

In this section friction is approximated by a static friction model with static,
kinetic and viscous friction. The impact of the pre-sliding displacement on
existence of limit cycles is discussed. The pre-sliding displacement is a property
of dynamic friction models, therefore we may expect that these models behave
qualitatively different than the static models when limit cycles are present.

By some simple heuristic reasoning it is possible to predict error amplitude
and period of limit cycles in the system of figure 5.1 with quite good accuracy.
The limit cycles in this system are due to the stick-slip behaviour of the fric-
tion. While in stick an external torque of the magnitude of the stiction torque
T4, 1s Tequired to get a transition to slip. l.e. when the control signal reaches
this torque 7, the shaft will move until stick is reached again. Then it will stay
in stick until the break-away force is reached again, and so on. It is clear that
all friction induced limit cycles will have the same amplitude in control signal
a,, since the break-away force is constant for all choices of PID parameters.
This is true if the limit cycle periods are of the same magnitude. If the period
varies greatly, the phenomenon of rate dependent break-away torque may be
significant.

The interesting properties of the limit cycles from a control point of view
are the amplitude of the position error, a., and the period T'. The dependency
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of the PI parameters for these properties can be explained roughly as follows:
The proportional part, u, = kpe, will bring down the position error to a certain

level until ke S T4, then the integral part will grow until u, + u; > 7, and slip
occurs. The derivative part kg has influence only during the slip phase of the
limit cycle.

In the following we will assume a symmetric friction model with stiction
torque 7,, which can be easily detected experimentally by finding one limit
cycle and measure the amplitude of the control signal, and the kinetic friction
Tt. In figure 5.28 the signal forms of a steady state limit cycle are shown. The
control signal u is composed of one proportional part u,, one integral part
u; and the derivative part ug. The action of these parts respectively in the
different phases of a cycle can be seen from the picture.

A

0 "Tia|Ti2 3T T t

ukh

0 'T4lTi2 T3TiAl T i

ui

"o W?,TM‘ T t

"o\ T/4 Fﬂz Ta3Tid T t

Figure 5.28 Signal forms in a friction induced limit cycle.

Symmetric static friction + PID control

We will in this section find an approximate expression for error amplitude a,,
and period T in a symmetric limit cycle around a zero setpoint.
With a PID regulator with parameters k, and k; a transition from stick to
slip will occur when
Up + U; = Ty, (5.10)

which gives the following equation

T/2
kZ/ acdt + 2kya. = 27,.
0
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Solving for T gives
4

ki Qe

(Ts - kpae)- (511)

Le. if we know the error amplitude a. we can get the limit cycle period
from (5.11). How can we find the error amplitude then? We start by regarding
the force equation of the system. The forces acting on the system are those of
the controller and the friction,

Jé:up—l—ui—T.

We make here the assumtion that the friction force during the slip period is
equal to 7,. Moreover we neglect the viscous friction term and the derivative
action, see figure 5.29. The approximations may seem restrictive. How valid
they are will be seen when comparisons with simulations are made later.

TF

KTBA ro -
| T T
— e Qe

0

Figure 5.29 Assumption on friction force form during slip in a limit cycle.

The proportional part is u, = —ky0 in the slip phase. The transition from
stick to stick is fast whereas the integral part can be regarded as constant
under this movement (another approximation, which reduces the order of the
equation by one). From (5.10) we have u; = 7, — u, at break-away which gives
u; = T, — kpa. during slip. The equation of motion now is

Jo + kpb = 73 — T, — kpa..
Solving this differential equation with 8(0) = a., 8(0) = 0 gives a harmonic
oscillation of § with amplitude a.. The system comes to rest at ¢ = t;, with
Ts — Tk

0(t1) = —

+ ae,
D

and remains in rest due to stiction. We also requires the limit cycle to be
symmetric, that is (¢,) = —a. and 6(¢;) = 0. This gives

Ts — Tk

= _ 12
a o, (5.12)
Equation (5.12) can be inserted into (5.11) giving
4k, T, + Tk
T=-F : 5.13
k; T, — Tk ( )

In (5.13) we see that ' — oo as 7, — 7. This is intuitive, since we expect
the limit cycle to disappear when the stiction force force is equal to the kinetic
friction. Also in (5.12) a. — 0 as 7, — 7.

Equations (5.12) and (5.13) together give expressions for determining the
approximate error amplitude and frequency of any limit cycle in the system
of figure 5.1, given the stiction torque 7, and the kinetic torque 7.
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PROPERTY 5.1
Limit cycles appearing in a system composed of a double integrator under in-
fluence of symmetric friction defined by stiction torque 7, and kinetic friction

7, and a PID regulator will have error amplitude @, and period T approxi-
mately given by (5.12), (5.13). O

Remark 1. Having neglected derivative action and viscous friction and the
small change of the integral action during slip we can expect to over-estimate
the slip length and thus the the error amplitude, and thus under-estimate the
period.

(5.12) and (5.13) can be written

1 -1 Ts | [ 2kpa.
4kp— Tk; 4kp—|—Tki :| [ Th ] a [ 0 ] ) (5.14)

The determinant of the equation matrix is non-zero for all choices of k;, k, >
0, T, a., why there is a one to one mapping between friction model paramters
and limit cycle characteristics for a given PID regulator. The friction model
parameters are given as the solution of (5.14):

[2]-[6Eea=].

4

(5.15) can thus be used to estimate the friction model parameters from limit
cycle amplitude and period.

Asymmetric static friction + PID control

In this section we extend the analysis of the previous section by introducing
asymmetry in the friction model. We assume periodicity but not symmetry
on the limit cycle. We will refer to the stiction torques as 7,7, 7,”, with upper
index refering to sgn(e), and to the kinetic torques as 7, T,:', with upper
index being sgn(v). We characterize the limit cycle by the error amplitudes in
respective direction as af,a; with upper index denoting sgn(e), and by the
period T = T* + T, with T" being the stick time in a} and T~ the stick
time in a_ . See figure 5.30.

We search expressions for at,a_, 7%, T~ using the PID parameters and
the friction model parameters.

The symmetry condition give us u;(0) = u;(T"). This can be written as

/ ajdt—/ a,dt =0
T+ T-

giving
afTt =a,T". (5.16)
Further on we have u,(0) + u;(0) = —7, for transition from stick to slip
at e = —a_, and u,(T) + u;(T) = 7,7 for transition from stick to slip at

e = af. This gives
w(0) = -7y 4 kpa
wi(TY) = 77+ kpal

From inspection of figure 5.30 we see that

(5.17)

kp(a; +al)+ ki fpoa; = 17471,
kp(ag +af) + ki frraf = 1fF 4717
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Figure 5.30 Signal forms in an asymmetric friction induced limit cycle.

giving
_ 1 _ _
T = e k(o ) 6519
TH = SF(f+10 —kp(ag +af)).
The equation of motion J§ = u—7 during slip from e = —a to e = a7} will
give us an expression for the slip amplitude. Assume as before that the friction
force during slip is equal to the kinetic friction force, i.e. 7 = —7, . Derivative

action in the controller is neglected. Integral action is considered constant
during slip, u;(t) = u;(0) with u;(0) given by (5.17). The proportional action
is up = —ky0. Thus we have the following equation of motion

JO+ kp =17 + kpal + 7 (5.19)

with initial conditions 8(0) = a; ,4(0) = 0 and final conditions 8(t') = —a, §(t') =
0. Solving this gives

a; +af = To " Tk (5.20)
kp

= Tk (5.21)

Equations (5.20) and (5.21) draw us to the sad conclusion that

8

T, —T, = TF - T,:". (5.22)
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I.e. the difference between stiction and kinetic friction has to be equal in both
direction. The condition (5.22) is a necessary condition for a limit cycle of the
assumed form to exist under the given premisses. This result is a little bit
difficult to interpret. In applications and simulations asymmetric limit cycles
of the assumed form has shown to appear without (5.22) to hold. Suggestions
on what is going on here are welcome.
Introduce 74 as
+ ot

TdETs——Tk_:Ts

Then we have
2k, Tk+ +7, +74

Tt —T— =
k; T4 ’

(5.23)
and

- _ ™
a;

= = . .24

We get symmetric limit cycles as in the symmetric friction case. For 7, = T]:-
(5.24) and (5.23) reduces to (5.12) and (5.13).
Set T = 2T+ = 2T, a, = aX = a; . We then have

PROPERTY 5.2

Limit cycles appearing in a system composed of a double integrator under
influence of asymmetric friction defined by kinetic friction 7,4, 7, stiction
T,:" + 74, T, + T4 in positive and negative directions respectively, and a PID
regulator, will result in a symmetric limit cycle with the error amplitude a,
and the period T approximately given by (5.23), (5.24). O

From (5.24) and (5.23) we then derive
T4 = 2kpa., (5.25)

5+ 1 = (kT — 2kyp)a.. (5.26)

In figure 5.9 a limit cycle for the Lugre model is plotted. The model
parameters are those of table 5.6, and give 7,7 = 0.30 Nm, 7, = 0.14 Nm,
7}t = 0.46 Nm and T,;I' = 0.30 Nm. Note that the difference 74 = 7, — 7, = 0.16
is the same in both directions for these parameters. The PID-parameters are
given by table 5.2. Note that several things violate the approximations made
in the analysis in this section. The friction model is not the classical model,
but a dynamic model. We have viscous friction, and we have a derivative part
in the regulator.

The characteristics from the limit cycle measured in the figure are
a; = 0.48rad, af = 0.45rad, T~ = 2.2 s and T = 2.3 5. The characteristics
predicted by property 5.2 are a; = 0.44 rad, af = 0.44rad, T~ = 2.5 s and
T+ = 2.5 s The estimates are rather good.

Now we look at how a truly asymmetric friction model behaves. We use the
model parameters from table 5.12, and the same PID-regulator as above. We
then have 7,7 = 0.35 Nm, 7, = 0.15 Nm, 7;” = 0.45 Nm and le = 0.40 Nm.
The result is shown in figure 5.31. Characteristics of the limit cycle measured
in the figure are a; = 0.70 rad, af = 0.33 rad, T~ = 1.45 s and T* = 3.44
s. In this case we get a limit cycle of the form assumed in the analysis above,
even though the analysis did not result in expressions for these characteristics.

We can conclude that the properties 5.1, 5.2 could be used to find prop-
erties of limit cycles, and that the inverse relations could be used to find
estimates of friction model parameters.
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o9 a1 Vo Qo (23] (23]
[Nm/rad] | [Nms/rad] | [rad/s] | [Nm] | [Nm] | [Nms/rad]
- 280 1 0.1 0.15 | 0.20 0.017

+ 280 1 0.1 0.30 | 0.15 0.017

Table 5.12 Asymmetric Lugre model parameters.
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Figure 5.31 Limit cycle from simulation with Lugre friction model. Reference
step 1 rad. Upper: Position versus time. Lower: Control signal versus time.

Generalized approach

Now we will generalize the above procedure by removing the approximations.
A state space formulation will be used to analyze the same system. The plant
is described by

with
A:[g_l%],B:[g],C:[l 0]. (5.28)

. 1T
and the state vector z = [ g 6 ] . The PID controller can be implemented by

state feedback u = —L¢, introducing an extra state, with L= -1 k, kg |.
We have chosen as the extra state the integral action of the controller, thus the

. 1T
new vector is & = [ u; 6 0 ] . We drop the hat and refer in the following
only to the third order closed loop system. The new system is (5.27) with

0 —k; 0 0

A=|0 o0 1 |,B=|0]|,c=[010]. (5.29)
1 _k _atk 1
7 7 7 J
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During a slip motion the system trajectory is given by
¢
2(t) = etz —I—/ e4(t=2) Brds (5.30)
0

with z(0) = [ 75 + kp0(0) 6(0) 0 |, since u;(0) + up(0) = 7s.

Denote by t, the time at which a slip start, and with ¢, the time when
the slip stops. Thus we have z(tx) = [ 75 + kp0(tx) 60(tx) 0 |. 6(t}) thus is
found by solving

z(th) = eftez(ty) + /Otﬁc e*(t=*)ds B, (5.31)
for the first solution such that z(¢}) = - - 0 |. Introducing
B = T, = | % At 4y (5.32)
we have
z(ty,) = ®pz(tr) + Tre. (5.33)

Without any motion during stick we have 8(tx41) = 0(t},). During stick the
integral term increases, but position remains the same, and velocity is zero. We
havez(t,)=[ - - 0 | and know that (tg11) = [ 75 + kpf(tesr1) O(tk+1) O
This is acheived with the map

m(tk+1) = ékm(t;‘:) + f‘kT_, (5.34)
with
R 0 kp 0 R 1
$,=10 1 0 |,Tp=1{0]. (5.35)
0 0 0 0

The complete map z(tg) — z(tg4+1) thus is given by
m(tk+1) = ék (@km(tk) + Fka) + f‘kTa <

m(tk_|_1) = ékékm(tk) 4+ @k + fk (5.36)

The limit cycle can now be completely described by (5.31), (5.32), (5.35)
and (5.36). No approximations have been made. This is a Poincaré map for
which the asymptotic behaviour in the general case can show very complex
beaviour. Simulation is a good tool to investigate such a map.

This map is general also in the sense that it can be used for investigating
friction induced limit cycles also in other linear systems than that of a damped
double integrator and a PID controller which is treated here.

This generalized approach gives dynamic maps which do not give immidiate
expressions for error amplitudes or periods. By analyzing the equations in
detail for solvability conditions etc. maybe this can be found, at least for some
special cases. Otherwise the map may be used iteratively to find asymptotic
behaviour of a system. As the map is based on integration of the system this
becomes more or less equivalent to a pure numerical simulation of the system
though. Without further analysis this approach does not seem very useful in
other words. The idea is more thoroughly worked through in [22].
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Real friction and existance of limit cycles

We here pose the question when a limit cycle can exist? For a certain sys-
tem with friction there exists a pre-sliding distance e, which defines within
which displacement range the system can be expected to exhibit a spring like
behaviour. I.e. € defines how much the system can move when in stick, with-
out going into slip. For a given initial error e such that e < € no limit cycle
will occur, since the error can be eliminated without taking the system to slip.
Other initial errors e > € might very well gives limit cycles, but not necessarily.
Assume a friction without pre-sliding displacement. In this case a limit cycle
will be present for the reason given in the paragraph above. Assume also that
we can predict the error amplitude e, of this limit cycle. Now introduce the
pre-sliding displacement e. If e, < € no limit cycle will remain asymptotically,
since this error is asymptotically eliminated without going into slip, and the
slip being the reason for the limit cycle.
In short we have

PROPERTY 5.3—TRANSIENT EXISTENCE
For a limit cycle to occur the initial error e(0) must be larger than the pre-
sliding displacement €

e(0) > e. (5.37)
O

and

PROPERTY 5.4—ASYMPTOTICAL EXISTENCE
For a symmetric limit cycle to exist asymptotically the following condition
must be fulfilled:

a. > € (5.38)

where the error amplitude a, is the error amplitude of the corresponding limit
cycle in a system without pre-sliding displacement, and € is the pre-sliding
displacement. O

Remark 1. The approximate expression (5.12) may be used to find e, in
property 5.4.

Remark 2. Tt is not only pre-sliding that have the property of eliminating
limit cycles. If there is any possibility for the system to move without leaving
stiction, the conditions defined by properties 5.4 and 5.3 must be fullfilled
for the limit cycle to appear.

To verify this we look at figure 5.32 where experimental responses to
position reference steps for the dry friction case in chapter 4 is plotted. Two
different PID regulators are used. Their parameters are given in table 5.13.
According to the earlier identification we have 7, = 0.70 Nm, 7, = 0.48 Nm,
and € =25 mrad. Property 5.1 then suggests limit cycles with ¢ = 0.46 rad,
T =82s and a = 0.12rad, T = 4.1 s for PID 1 and PID 2 respectively.
Note that in this system we have a pre-sliding displacement of about 25 mrad,
but also a backlash of about 70 mrad. This means that limit cycles with a
predicted amplitude less than about 100 mrad asymptotically are ”absorbed”.
Limit cycles with larger amplitudes may also very well be aborbed in the same
way if the error in stick suddenly happen to be less than 100 mrad. We can see
that variations of about 100 mrad in limit cycle amplitude can be seen in the
limit cycles of this system. Thus the limit cycles of PID 1 have a big chance
to survive asymptotically due to their large amplitude, if they get a chance to
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start. This we see in the upper plot. According to property 5.3 no limit cycle
will exist if the initial step is small enough. This is illustrated by the middle
plot, where the system with PID 1 is given an initial step of 25 mrad. No limit
cycle occurs, but the system moves within pre-sliding displacement to adjust
the position error. (The backlash was in contact before the step was put on.)
In the lower plot the system with PID 2 is given a input step of 1 rad, resulting
in two slips, and then approaching zero error, according to property 5.4.

k, k; k)
[Nm/rad] | [Nm/rads] | [Nms/rad]
95 250 17

380 2000 34

Table 5.13 PID parameters used in experimental limit cycling system. Upper:
PID 1, giving limit cycles. Lower: PID 2, no limit cycles.
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Figure 5.32 Responses to reference steps r from experiments with dry friction and
position PID-control. Illustration of properties 5.4, 5.3. Upper: PID 1, designed for
we = 3.5 rad/s, ( = 0.58, r = 1 rad. Middle: PID 1, r = 25 mrad. Lower: PID 2,
designed for w, = 8.0 rad/s, { = 0.63, r = 1 rad.

Now we show that the Lugre model reproduces this behaviour, while a
classical model does not. The Lugre model is used with the parameters of
table 5.10. As for the experimental case two different PID regulators are used.
Parameters are given in table 5.14. In figure 5.33 we see the results. In the
upper plot PID 1 and a large reference step of 1 rad is used, and a limit cycle
is induced. Limit cycle characteristics according to property 5.1 are 7' = 5 s
and a, = 0.44 rad. In the middle plot the same system with a small reference
step of 1 mrad does not give a limit cycle. According to property 3.1 the
pre-sliding displacement of the system with the given parameters is about 1.4
mrad. The small step together with a quite small integral action makes it take
quite some time for the system to go to zero error. The phenomenon is still
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illustrated anyway. In the lower plot PID 2 does not give a limit cycle when the
reference step 1 rad is applied. Property 5.1 predicts T = 1.5 s and a, = 0.012
rad. No limit cycle occurs. With a static classical friction model with stiction

k,, k! k!
[Nm/rad] | [Nm/rads] | [Nms/rad]
72 216 5.2

2700 27000 83

Table 5.14 PID parameters used in simulated limit cycling system with Lugre
friction. Upper: PID 1, designed for w. = 6 rad/s, {( = 0.5, giving limit cycles.
Lower: PID 2, designed for w. = 30 rad/s, { = 1 no limit cycles.
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Figure 5.33 Responses to reference steps r from simulations with Lugre friction
and position PID-control. Illustration of properties 5.4, 5.3. Upper: PID 1,7 =1
rad. Middle: PID 1, r = 1 mrad. Lower: PID 2, »r = 1 rad.

and kinetic friction with 7, = 0.38 Nm and 7, = 0.22 Nm the responses are
as in figure 5.34. The regulators are the same as in the Lugre case. In the
upper plot we get the limit cycle as before. In the middle plot we do also get a
limit cycle now. The position of the system is exactly zero while the regulator
integrates the error. When the control signal reaches the break-away torque
the system goes into slip and enters a limit cycle. In the lower plot we see that
no limit cycle is present. The reason for this can not be phenomenon described
by property 5.4, since there is no possibility for the system to move without
going into slip. See [22] for a deeper analysis of the case with limit cycles in
linear systems with classical friction.

In [15] similar results are shown without explicit explanation. Simulations
of classical models without pre-sliding displacements are there shown to give
limit cycles in a case with small reference steps, while dynamic models with
pre-sliding displacement do not.

The conclusion of the above is that one important property from a limit
cycle point of view that is introduced by dynamic friction models is the pre-
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Figure 5.34 Responses to reference steps r from simulations with classical static
friction and position PID-control. Illustration of properties 5.4, 5.3. Upper: PID 1,
r = 1 rad. Middle: PID 1, » = 1 mrad. Lower: PID 2, » = 1 rad.

sliding displacement. It gives conditions on existence of limit cycles, both tran-

sientely and asymptotically, as formulated by properties 5.4 and 5.3.
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6. Conclusions

Two dynamic friction models have been investigated in this report, the model
of Bliman & Sorine and the Lugre model.

In chapter 2 and chapter 3 the models are presented. Both models are
extensions of the Dahl model to include more friction phenomena. The Dahl
model is a first order linear space invariant system where the friction force
depends only upon the displacement relative the last sign change of velocity.
In time domain the model is non-linear time invariant.

The Bliman & Sorine model is roughly speaken two Dahl models in par-
allell. The model thus is a non-linear second order model in time domain.
Stiction is modeled by letting total friction be the sum of two Dahl models
with different signs and different space constants. This means the Bliman &
Sorine model inherits some properties of the Dahl model. As for the Dahl
model the model response only depends upon the absolute relative displace-
ment, and does not include any rate dependency. Thus it can not reproduce
any rate dependent beahaviour such as rate dependent break-away force. The
model response is transient. After a finite displacement the model states have
reached stationary values and the response is constant until a sign change of
velocity occurs. This makes it impossible to reproduce for example frictional
lag which is a phenomenon in uni-directional motion.

The Bliman & Sorine model is parametrized by five parameters including
viscous friction. The identification procedure suggested by the authors of the
model is simple. Four of the parameters are defined by two points in a fric-
tion force versus time plot for saturated hysteretic motion. These points define
stiction force, pre-sliding displacement and kinetic friction. It is not clear how
to introduce optimization in this identification. After having identified the
points there is a map from the points to the model parameters. The map does
not have solutions for all choices of points though. This gives a limitation in
which physical systems the model can model. This also can give problems in
an automatized identification scheme based on these points. It is clear that the
model response only exhibits the given stiction force and pre-sliding displace-
ment under a saturated hysteretic motion. Under other motions the responses
are different.

Some interesting properties of the Bliman & Sorine model connected to a
simple mass system have been found. By linearizing the equations it is dis-
covered that the damping of this system critically depends on viscous friction.
This means that the system can show oscillatory behaviour near zero velocity.
Damping is increased by increasing viscous friction, but this means changing
a high velocity property of the system that not necessarily can be changed
arbitrarily. The oscillations also makes it impossible for the system to follow
the saturated hysteretic motion defining the stiction force and the pre-sliding
displacement. This means that connecting the friction model to a mass system
one does not get the model response defined by the identified points. The os-
cillations bring down simulation efficiency. The Bliman & Sorine model needs
significantly more computation power to simulate a certain system than the
Lugre model.

The Lugre model is obtained by letting the space constant in a Dahl model
vary in a velocity dependent way. Also a damping term is added. Stiction is
modeled by the velocity dependent space constant. The model thus is a non-
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linear first order model in time. It is not linear space invariant as the Dahl
model and the Bliman & Sorine model. This slightly complicates the mathe-
matical analysis. The velocity dependency and the damping term makes it pos-
sible for the model to reproduce rate dependent and non-transient behaviour
such as rate dependent break-away force and frictional lag.

The Lugre model is parametrized by six parameters including viscous fric-
tion. Identification of these is non-trivial, but can be done by means of a
multiple step scheme giving in some sense optimal parameter values.

Linearizing of the Lugre model connected to a mass system gives equations
where the damping can be tuned almost separately from other model prop-
erties. This thanks to the damping term included in the model. This means
that the problems with damping encountered in the Bliman & Sorine model
are not found for the Lugre model.

The damping term gives some mathematical difficulties though. The pre-
sented model is not dissipative, but can under certain conditions produce
energy. The non-dissipativeness of the model does not imply problems with
stability, but still is an annaoying property of a friction model. There exists
several modifications of the model which makes the model dissipative. These
are based on the idea of making the damping term dependent on velocity. A
drawback with this is that this may add another parameter to the model. It
is not entirely clear if a modification is necessary in practice though.

For both models it is straightforward to introduce asymmetries in the fric-
tion.

In chapter 4 experiments were carried out. Two situations were investi-
gated, mixed dry and wet friction and wet friction. In both cases parameter
identification for both models were carried out. We found that the restrictions
of the map used in the Bliman & Sorine model identifiaction is of practical
significance. In the dry case no solution existed for the identified points. There
were no great differences between the dry case and the wet case otherwise. The
friction force peak at break-away was sharper in the dry case. No additional
viscous friction was introduced by the dry friction. Stiction force and kinetic
friction increased with additional dry friction. Nothing unexpected. There were
some difficulties to separate friction phenomena from unmodeled dynamics in
the experimental setup.

When comparing simulated model responses to those of a real system with
friction it is clear that both models give good accordance in terms of stiction
and pre-sliding displacement. The Lugre model exhibits rate dependent break-
away torque found experimentally, while the Bliman & Sorine model does not.
Also the Lugre model shows an increase in friction force found experimentally
at low velocities, that is not captured by the Bliman & Sorine model. Exper-
imentally small displacement motion have other qualitative properties than
what is shown by both models. If these discrepancies are due to unmodeled
dynamics or bad friction model properties can be discussed.

In chapter 5 friction induced limit cycles are investigated. Limit cycles in
PID position control from the experiments are compared to simulated limit cy-
cles using a classical friction model, the Bliman & Sorine model and the Lugre
model. It is found that the properties of the limit cycles do to a great extend
depend only on stiction force and kinetic and viscous friction. Since all three
models includes these phenomena they all give similar limit cycling. Looking
closer at the signal forms in the limit cycles it is seen that the pre-sliding
displacement makes the dynamic models better reproduce the experiments.
The oscillations of the Bliman & Sorine model makes it difficult to accurately
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model asymmetric limit cycles.

A single input describing function analysis of symmetric friction is also
done. Describing functions for the Bliman & Sorine model and the Lugre model
are computed numerically. From the describing functions of the friction models
only it is not possible to predict the limit cycles observed in simulations. In
this analysis velocity becomes the non-linearity input. This signal does not
agree with the presumptions of the analysis. When more system dynamics are
included in the non-linear part of the analysis the Bliman & Sorine and the
Lugre model describing functions can correctly predict limit cycles. In this
case the control signal is the non-linearity input, and this signal better fulfills
the presumptions. The classical model fails under these circumstances though.

An heuristic approach to limit cycle prediction was then taken. Simple
reasoning lead to simple static relations giving limit cycle error amplitude
and period as a function of stiction and kinetic friction, both for symmetric
and asymmetric friction. The relations were shown to fairly good predict the
amplitude and the period of the limit cycle, taking into account the large
approximations done. The inverse formulas can be used to quickly acheive
estimates of friction parameters by looking at a limit cycle. An interesting
difference between the symmetric and the asymmetric case is that there is a one
to one relation between limit cycles and friction parameters in the symmetric
case, but a one to many relation in the asymmetric case. Different friction
parameters thus can give the same limit cycles for asymmetric friction.

Removing the approximations and generalizing the class of linear systems
in the above analysis results in dynamic maps describing the limit cycles.
These are more difficult to interpret, and nothing more than a presentation of
the idea is done.

Maybe the most important property of dynamic friction models that dif-
fer them from classical static ones is the pre-sliding displacement. Finally we
discussed what impact this property has on limit cycles. Two properties were
presented relating pre-sliding displacement to existence of limit cycles tran-
siently and asymptotically.

In this report two friction models have been investigated and discussed.
Certain properties have been highlighted, but several properties remain to
investigate. To the question of which class of systems best are suited for which
model no clear answers are given in this report. Of course if there are significant
rate dependent friction phenomena in the real system the best model would be
the Lugre model since this is the only one handling this kind of phenomena.
Also in terms of simulation efficiency the Lugre model seems to be prefered.
A model based friction compensation requires some kind of observer. Maybe
the Lugre model is then prefered because of the lower order, there is only one
state to observe. No references to model based friction compensation using
the Bliman & Sorine model have been found. The best way to compare two
friction models would be to design friction compensation based on the different
models and apply them on a real system. This would be the ultimate test to
determine which model is best suited to a certain system.
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A. Passivity definitions

Passivity of a system is a mathematical property which can be used for stabil-
ity analysis of coupled systems. But passivity also has an important physical
interpretation in the case when the product of input and output of a system
has the dimension of effect, as it then roughly means that the system con-
sumes energy, or at least does not produce energy by itself. Therefore we often
want a model that represents a physical process without unmodeled energy
supply to be passive. This does not imply though that a non-passive model
necessarily is useless for modeling a physical process. Below some definitions
related to passivity are given together with som comments and interpretation.
For a complete and rigorous treatment of the subject see [25, 9].

Given a nonlinear mapping ¢ : U — Y with state space X, we introduce
th supply rate w = w(u(t),y(t)), v € U,y € Y with fttol |lw(t)|dt < oo.

DEFINITION A.1—DISSIPATIVE SYSTEM

A nonlinear dynamical system is said to be dissipative with respect to the
supply rate w if there exist a non-negative function V : X — IR* such that
for all tg,t; € R, 20 € X,

t1
/ w(t)dt > V(z1) — V(o) (A1)
to

The function V(z) is then called a storage function for the system. O
By restricting the supply rate to a certain function of input and output we get

the following definition:

DEFINITION A.2—PASSIVE SYSTEM
A system is said to be passive if it is dissipative with supply rate w =< u,y >,
and the storage function V satisfies V(0) = 0. O

In other words, a system is passive if there exists a non-negative function

V : X — IR, wich satisfies V(0) = 0 such that

/0 YT (PYu(r)dr > V(=) — V(zo) (A.2)

Note that setting u = 0 in the above shows that V is decreasing in any
unforced trajectory. It follows then that passive systems with positive definite
storage functions are Lyapunov stable.

Some particularizations of the passivity definition can be made:

DEFINITION A.3—LOSSLESS PASSIVE SYSTEM
When equality always holds in the passivity definition the system is said to
be lossless passive

/0 "I (Yu(r)dr = V(z) — V(z0) (A.3)

O
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DEFINITION A.4—STRICTLY PASSIVE SYSTEM
When inequality always holds in the passivity definition the system is said to
be strictly passive

/0 “WT (Yu(r)dr = V(z) — V(o) + /0 " S(a(r))dr (A.4)
]

Note that the storage function V for a system is not uniquely defined from the
definitions. But if we consider systems where the supply rate w =< u,y > has
the dimension effect, and where the systems have physical equivalents there
exist a storage functions corresponding to the energy potential functions. Of
course dissipativity and passivity might be shown for these systems with other
choices of storage functions, but the choice of energy potential functions is very
natural in this case.

The physical interpretation of passivity then is the following: A physical
system ”consumes” energy that is given by the input. The ”consumption”
can be divided into two parts, one that represents energy that is stored in the
system, (e.g. for a mass-spring system energy might be stored as kinetic energy
for the mass or potential energy in the spring), and one part that represents
energy dissipated by the system (e.g. if a damper is present in the system).
Physically no energy is lost of course. What this means is that the energy
given by the input, divides into two parts: one part that increases the energy
potential of the system, and is regained in the output, and one part that not
affects the energy potential, but is transfered elsewhere.

This is described by the following equality, in which the left hand side
represents the total change of energy during the time interval [to,¢;], and
the right hand side shows the division of this energy into stored energy and
dissipated energy.

3 31
/ w(t)dt = V() - V(to) + [ d(t)ds (A.5)
to to

The function d(t) represents the dissipation rate of the system. For (A.1)
to hold it is clear that d(t) > 0, Vt. Note that the change of stored energy
V(t1) — V(to) might be positive or negative depending on which trajectory the
system has followed.
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B. Stability definitions and
theorems

For full explanations of definitions and theorems referred to below see [19].

DEFINITION B.1—INPUT-OUTPUT STABILITY
A mapping H : LE +— LP is L-stable if there exist finite nonnegative constants
v and 8 such that

1 H (w)-|| < 7llur]| + 8 (B.1)
for all w € £E and 7 € [0, o0) O

With £ beeing L., the definition of input-output stability becomes the nota-
tion of bounded input-bounded output stability

DEFINITION B.2—BOUNDED INPUT-BOUNDED OUTPUT (BIBO) STABILITY

A system is L -stable if for every bounded input u(t), the output Hu(t) is
bounded. O

A useful theorem for determining BIBO-stability is the following (given in a
shortened and simlified form).

THEOREM B.1—SMALL GAIN
The feedback connection of two L-stable systems H; : L — LF and Hj :
L +— L with finite gains y; and 7, from (B.1) is L-stable if

7172 < 1. (B.2)

O

DEFINITION B.3—STABILITY
The equilibrium point # = 0 of the autonomous system & = f(z) is stable if
for each € > 0, there exist a § > 0 such that

12(0)]| < & = |j2(t)]| < €,V > 0. (B.3)

DEFINITION B.4—ASYMPTOTIMATHCAL STABILITY
The equilibrium point ¢ = 0 of the autonomous system ¢ = f(z) is asympto-
timathcally stable if it is stable and § can be chosen such that

[2(0)[| < & = lim [[z(2)]| = 0 (B.4)

O

125



THEOREM B.2—LYAPUNOV STABILITY
Let z = 0 be an equilibrium point of # = f(z).Let V : D — IR be a continuosly
differentiable function on a neighbourhood D of ¢ = 0, such that

V(0) 0
0,z € D - {0}

>
V(z) < 0,z€D

then z = 0 is stable. Moreover, if

V(z) <0,z € D - {0} (B.5)

then z = 0 is asymptotimathcally stable. O
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C. Experimental setup

C.1 Description

The experimental setup on which all experiments have been carried out is
a DC-servo, see figure C.1. The servo is connected to a gearbox which has
significant friction. Moreover it is equipped with a load element for applying
additional friction. Control algorithms are implemented in C and are run in
a dSPACE real-time computer system based on a digital signal processor and
AD /DA converters. This is connected to an analog high gain current controller
which controls the DC motor.

DC motor
We have the following general model for the DC motor
Jd(';—it) = kJI(t) — F(¢)
RI(t) = U(t) — kpw(t)
with
J total motor an load inertia [kg/m?]
R :  losses in the magnetic circuit [{]
k. :  motor current constant, identified to 0.352 [Nm/A]
ky, : EFM constant
w(t) : angular velocity [rad/s]

F(t) : Load torque (e.g. friction) [Nm)]
U(t) : input voltage [V]
I(t) : corresponding current [A]
Since the DC motor is current controlled by means of a high gain loop the
above model can be simplified to

dw(t)
5 kI(t) — F(t)

I(t) = ky/U(t)

where kyr =3 A /V is the gain of the voltage/current converter. The assump-
tion is made on kg to be linear.

The current signal fed to the DC motor is pulse width modulated with a
frequency of 20 kHz.

With kp/4 ,ky/r and k. known, we can get a total gain from dimensionless

J

control signal to torque & = 10.59Nm~!. Knowing this we can use a control
signal of dimension torque in the control algoritm, and then multiply the signal
with £=! before putting it on the D/A converter.

Gearbox
The motor is linked to an inertial load by means of a gearbox with ratio
n = 15.5. The inertial load is a metallic homogenous cylindric mass m = 12
kg with a radius r = 5 cm, with inertia J; given by
1
J; = —mr?.

2
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The motor inertia is J,, = 0.00223 kg/m?, and the total inertia on the motor
side is then

J= Tt 2
n

giving J = 0.0023 kg/m?. Identification experiments have verified this figure.

The weels in the gearbox gives a position dependent variation of the system
dynamics clearly visible in the high resolution measurements adopted. These
variations are often of higher frequencies than the phenomena examined and
will therefore be filtered out when possible.

Position measurements

Position measurements are given as angular position of the motor axis. An op-
tical encoder giving up/down pulses with a resolution of 30000 divisions/turn
is connected to an incremental 24-bit encoder board with an internal mech-
anism increasing the resolution by a factor 4. Thus the angular resolution is

A® = 0.52 yrad. 24-bit two-complement form means that the output from the
27223

encoder board has to be denormed by a factor to give true position in

. 4-30000
radians.
MU
1 ] Frictional load
1 9 element
Gearbox DC Motor Position
Sensor
S
E f — = :j
< _ _
-

Cylindric Inertial Load

Figure C.1 Schematic diagram of the experimental setup.

dSPACE real-time computer

The sampling time T is 1 ms. No pre-sampling filter is used, which means that
an alias frequency of the PWM frequency appears in the sampled signal. See
section The control signal with dimension voltage is put on the DA converter,
which has a voltage gain kp,4 = 10 V.

Excentricity

In the measured position a position dependent variation with period m/4 rad
is present. This is assumed to originate from an excentricity of the firt wheel
in the gearbox. See discussion in the section on model validation.

Backlash

From experiments it seems as a backlash of magnitude 70 mrad is present in
the setup. Presumably in the gearbox.
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Friction

The friction in the system is located in different parts. There is friction in the
gearbox, in the motor, in bearrings and of course in the frictional load element.
The friction present in the gearbox may be classified as wet friction because
of the lubrication, whereas the externally applied friction is dry in this sense
since the contact surface between the frictional load element and the inertial
load is not lubricated.

Thus with no externally applied friction all friction in the system is wet. By
applying a relatively large friction with the load element, this friction comes
to dominate the total friction, and the system friction will then be dry.

The load element is composed of both area- and line-contacts representing
a realistic mix often present in applications. The profile of the load element is
shown in figure C.1.

C.2 Digital implementation

The digital implementations of the analog designs of control algorithms carried
out in this work are not taken into account in the analysis. The discrete time
approximations have been shown to be good within the bandwidth of the
(linear) system for the identified parameter values and the sampling time of 1
ms.

C.3 Model approximation

Figure C.2 shows the model of the setup being used throughout this report.
The inertia J will be assumed to known as J = 0.0025 kg/m?2. The friction
in the system is divided into one linear viscous friction azé, and one non-
linear part 9(-). Some different choices of 7(-) are discussed in the report. In
reality the viscous friction is not linear, but the coefficient ay is decreases with
increasing velocities |0| For small velocities the linear approximation is good

though.

Qay

Figure C.2 Block diagram of the continuous part model of the experimental setup.

For more information on the setup see [26].
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