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1. Introduction

Linear systems have several desirable properties that ease enormously their analysis and
make it possible to know all the properties of the system through a limited number of tests.

This is why it is often convenient to approximate, whenever possible, a real system with a
linear model; in most cases it is possible to define an operating boundary within which the
system may be considered linear, and linear controllers are designed to keep the system
within these boundaries.

Given for example the frequency response of a linear system to an unitary signal, we are
able to predict the response to any signal, no matter the magnitude it will have.

This is obviously not true with physical systems, we cannot expect for instance that feeding
an electrical engine with an increasing input current will lead to a forever proportionally
increasing output.

In case of general actuators we will have concrete limits of the output that they can
provide; additionally, such output may not be linearly dependent from the input and
sometimes two equal inputs may lead to two different outputs, according to the ‘history’ of
the inputs.

Additionally there can be physical limits to the rate at which we can change the system’s
input due to mechanical limits of the structure. For example fast inputs may produce
resounding frequencies into elastic systems resulting into undesirable vibrations, or simply
an actuator may not be able to instantly provide a certain level of output but must be given
some time to reach it, according to its physical construction, its functioning principle and
the nature of the phenomena used to generate the output.

During the following chapters attention will be focused on two kind of non linear elements,
saturations and rate limiters, which are used to simulate many common features of real
systems. This work explores three control problems related to this.

The impact of a saturation and a rate limiter on a plant controlled with a PID controller is
one problem. Anti-windup techniques provide good solutions for systems with saturation
but unfortunately they may not work so well for systems with rate limitations. The problem
will be approached from several directions. When the rate limits are not tight, some simple
changes to the anti-windup scheme provide a good answer. When instead the system input
has very strong rate limitations, a finite time is required to move the signal between
different output levels. An extra derivative effect, before the controller, compensates for
these delays and makes it very easy to tune the controller.

A second problem deals with the phase lag induced by rate limiters. A rate limiter is able to
correctly reproduce signals whose derivative does not exceed a certain value. If instead the
derivative of the signal exceeds the rate limit, the output will be affected by an amplitude
loss and a phase lag. (see next picture)

Most systems have no more than 50-60 degrees of phase margin. Unstable airplanes are
stabilized with control systems which rarely give more than 45 degrees of phase margin.

A rate limiter may induce, in the worst case, a phase lag of 90 degrees, which is enough to
make the system unstable. Rate limiters were considered the main cause of many PIO'
accidents.

To overcome these effects, several filters may be designed in the attempt of reducing the
phase lag. In this work three main kind of filters are presented and analyzed and a
comparison is made to evaluate their different performances.

' PIO : Pilot Induced Oscillations.




Figure 1
On the left, the response of a rate limiter (solid line) to a signal with absolute values of
the derivative which exceed the rate limit. To the right an ideal response of the same
rate limiter, with zero phase lag.

Different kind of filters have different properties and it is not possible to find a filter that
combines zero phase lag with a good response to all kind of signals. Even if it is possible to
constantly improve the performance of different filters, it will become clear that the goal of
the perfect compensation can never be reached due to the nature of the problem.

In the third part, a linear model of the pitch motion of the JAS-39 Gripen is studied.
Modern fighter airplanes have highly unstable aerodynamic designs in order to maximize
performance and efficiency. The limited forces produced by the aerodynamic surfaces must
match diverging actions caused by the intrinsic aerodynamic instability. Several techniques
are used to design a controller that improves the handling qualities of the plane while
avoiding that the pilot looses control of the plane.

Usually modern airplanes with digital control systems are equipped with an ‘auto-recovery’
system which assumes the total control of the plane when some state variable exceeds
certain critical limits.

In this work an attempt has been made to design a controller whose dynamic does not allow
the pilot to exceed the operating boundaries given by the control saturations while at the
same time leaving always authority to the pilot’s inputs. Unfortunately such specifications
on a controller are in conflict with the requirement for good handling qualities of the
aircraft.

Hybrid control has been implemented to provide smooth transition between a normal flight
condition and a critical one and appears to be a promising way to deal with this kind of
problems.

Hybrid control can also overcome the non-linear behavior of a real airplane at high angles
of attack.

The presence of input rate saturations requires predictive actions. An input signal takes a
while to change from a value to another and during this time, the unstable dynamic will
move further away from the initial position. This must be accounted for when designing an
emergency recovery system.

Generally an additional fixed safety margin, calculated with a worst-case approximation, is
always added due to the presence of rate limiters [ 2 ].

In this work the possibility of applying dynamic boundaries is explored. A dynamic
boundary is constantly calculated according to the current state of the input signal.
Dynamic boundaries allow full use of the operating range.

In general, harmful effects caused by rate limiters may always be counteracted or at least
significantly reduced, through the use of more sophisticated controller algorithms.




In a digital controller this means having a more complex software, which is therefore more
likely to present problems of reliability.

In mission-critical applications computer reliability and software reliability are a major
issue and therefore this aspect must be taken into account when deciding upon a control
strategy.

1.1 Saturation

In most cases a physical system will not be able to provide an unlimited output, but instead
there will be a maximum value to such output. The most easy way to simulate this is to
have an element that behaves like a normal unitary gain (i.e. does not modify the signal)
provided that the input keeps within certain given boundaries. If the boundaries are
exceeded then the block provides the closest value possible, keeping it constant until the
input returns into the acceptable range.

Saturation

Figure 2
Common symbol for a Saturation block

A saturation element is therefore defined by two values : the minimum value m and the
maximum value M and given an input  to the element the output will follow the Taw :

Input Qutput

u<m m
m<u<M u

u>M M

such behavior can be also represented trough a graph :
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Figure 3
Input-Output relation of a typical saturation block

Of course there are several undesirable characteristics associated with a saturation ; the
most obvious one is the fact that the controller cannot use arbitrarily high inputs and
therefore there is a concrete limit to the performance of the system.

5 10 15 20
Time (second)

Figure 4
Time response of a saturation block to a signal with increasing frequency

In a physical system we can improve the controller to increase performance and increase
efficiency, but at a certain point we will reach a limit when no concrete improvements are




reachable simply changing the logic of the controller, instead changes in the physical
system such as more powerful actuators will be required. Those changes will reflect in the
model into less tight saturation limits.

When designing a controller it is important to notice that when the limits of the saturation
are exceeded, the control loop is broken and there is no more relation between changes in
the input and changes in the output, since the output will remain invariably constant
regardless of any small changes in the input, provided that the input remains out of the
saturation’s linear range.

This may lead to problems in controllers that have for instance integrating components
since the controller may overestimate the ability of the system to follow the given input and
when registering a prolonged error due to the slower dynamic imposed by the saturation
uses this error to constantly increase the integral, to levels that are not useful and leading
the system to large overshoots. This phenomenon will be better described in chapter 2.
When a saturation is associated with an unstable linear system, more critical risks arise. In
an unstable linear system large control efforts are required to keep and recover the system
from positions that are far away to the equilibrium condition and this means that there are
some limits beyond which it is not possible anymore, due to the saturation limit, to provide
converging inputs and the system diverges indefinitely. This other aspect of saturation-
related problems will be covered in the 4™ and 5™ chapters.

1.2 Rate limiter

A rate limiter is a device that limits the derivative of the signal. In other terms a rate limiter
passes to the output port the input signal u if and only if the condition :

du
<
dt

r

is satisfied, where r is the rate limit that characterizes the non-linearity.

If instead the input’s changing rate is greater, then the output moves towards the input
value at its maximum rate, until it manages to join again the signal.

Of course general rate limit may admit the existence of a ‘falling’ rate limiter that is
different than the ‘raising’ one, meaning that the maximum rate at which the output may
increase can be different than the maximum rate at which the output may decrease.

Rate Limiter

Figure §
Common symbol for a Rate-Limiter Block

In the case of the rate limiter there is not a fixed relation between the input and output
values, since it is depending on the history of the signal, therefore it is not possible to
represent the link between the input and the output with a simple graph. This also leads to




the fact that the graphic representation of a rate limiter is less representative of the
effective behavior of the block.

Rate limiters themselves do not limit the maximum value of the signal, but put limits on the
rate of change of the signal itself ; such limiters usually are associated with some problems
related with the designing of controllers.
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Figure 6
Typical time response for a rate limiter to a sinusoidal input of increasing frequency

Generally a rate limiter delays the way some signals change and this generically result in a
loss of phase margin. For some frequencies and for some gains this phase loss may reach
90 degrees, a value high enough to treat the stability of a marginally stable system.
Chapter 3 will better analyze the problem and will present several filters aimed at reducing
this phase lag.

Under normal conditions controllers designed without taking into account the rate limits
will also suffer from the finite time needed to reverse or just change the input signal, and
this will delay the time a controller needs to lead the system to the desired set-point ;
eventually long overshoots are associated with rate limits for the same reasons.

1.3 Combining a rate limiter with a saturation

Often (if not always) the rate limit alone does make little meaning in a physical system,
since as already said a saturation is almost always present, representing real systems’
ability to manage signals up to a certain size.

Therefore in most model rate limits will be combined with a saturation into a single non
linear function that will include both the effects.

It is worthwhile to notice that in a block diagram representation of the system, the
combination of a rate limiter and a saturation gives different results according to the order
of placement. In other words, placing along the same signal stream a rate limiter followed
by a saturation may in some case lead to a different time response that the case in which
the rate limiter is placed after the saturation.

As an example we will consider the two systems as follows :
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Saturation Rate Limiter

Figure 7

Combining a saturation with a rate limiter

b
Rate Limiter ~ Saturation
Figure 8

Combining a rate limiter with a saturation

If we analyze the time response to a slow and large sinusoidal input, we observe that the
first setting results into a easily predictable output : the resulting signal loses track of the
input due to the excess of speed and then stops at the saturation limit, waiting for the signal
to get back down to reasonable values. When this occurs the signal starts following the
input in the opposite direction. (see next figure)

A\
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Figure 9

Time response of a saturation-rate limiter combination to a low-frequency large-

amplitude sinusoidal signal.

If instead we feed the same input signal to the second block arrangement, the results are
somewhat disappointing : after the saturation limit has been reached, the intermediate
signal x continues to increase and this causes a delay when it comes to reverse the output

direction.
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Figure 10
Time response of a rate limiter-saturation combination to a low-frequency large-
amplitude sinusoidal signal.

The two arrangements are clearly leading to different responses and the basic difference
between the two is an additional phase lag caused by the combination rate limiter-
saturation that is instead reduced by the opposite combination.

This can be clearly be seen by the following two figures, showing a steady-state time
response for both combinations and with the same parameters of the above examples :

12 14 16 18 20
Time (second)

Figure 11
Steady state response to a sinusoidal signal of a saturation-rate limiter combination
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Figure 12
Steady state response to a sinusoidal signal of a rate limiter-saturation combination

In the second case the phase lag is sensibly greater and is the same phase lag than the one
that would be caused by a simple rate limiter without saturation.

Instead, a saturation properly placed before the rate limiter reduces the phase lag.

It has been already said that a potentially dangerous disadvantage of the rate limiter is a
loss of phase margin and therefore is straightforward to notice that when combining the
blocks the saturation should always be preceding the rate limiter.

Unless the contrary is specified, n the rest of this paper this assumption will always be
done.
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2. PID Control

2.1 Introduction

In this chapter, simple plants will be regulated with PID controllers, then saturations and
rate-limitations will be added and possible modifications to the controllers will be explored
to improve the response and minimize the overshoots caused by the non-linearities.
Anti-windup circuits provide good compensation to the harmful effects caused by a
saturation in the control loop ; several other solutions are presented to overcome the
presence of rate limits that in some cases can not be simply compensated tuning the PID
controller or changing the parameters in the anti-windup blocks.

The anti-windup systems all include logic and switching. It is a non trivial task to analyze
the stability at systems that combine logic and control; for this reason the schemes
suggested have been explored extensively by simulation.

Only a few of the simulations are given in the report.

2.2 Simple PID system

In this basic system, the plant will be represented by a simple integration and the controller
is a standard PID. The input will be an initial step function with a value of 6 and then,
after 20 seconds, another step function with a value of -4 will be added, giving a final input
of 2.

A scope is added to the integral action to track its value during the evolution of the
system ; the value of the integral action will usually represented on the graphs with a dash-
dotted line.

T

+ | Integrator

First Input " [
W + 3 du/dt N 1
B . + :
Second Input Sumb5 D Derivative s Saturation
Sum ’{> Plant Output
2

P

Y

w

Figure 1
Simple PID system

At the beginning we will keep the saturation limit quite large (100) so that the system can
evolve without feeling substantial decrease in performance from it (see next figure).

With such a simple plant is rather easy to tune the controller correctly ; integral and
derivative actions are not required to achieve an optimal response, the only reason why
integral action is always included is for means of error rejection.

12
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Response
1 *,\ b e Integral action "1
ob-------- b STImin. f._._._.___._._;._._q., ....... -
0 10 20 30 40 50 60

Time (second)

Figure 2
Response to a test signal made up by two step functions added together

Now, imposing a very narrow saturation limit of +/- 1 we can clearly observe the system’s
overshoot caused by the integral action, visible in the picture, as usual, as a dash-dotted
line.

0 10 20 30 40 50 60
Time (second)

Figure 3
The presence of a saturation causes overshoots around the set points

Introducing a saturation limit of just +/- 0.5 effect is definitely impairing the ability of the
system to track our inputs, as shown in the next figure :

13
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Figure 4
A tight saturation impairs completely the tracking ability of the controller

2.3 Anti-windup

A classical solution to this kind of problems is the introduction of an anti-windup feedback
to the integral part of the controller. The anti-windup takes effect whenever the actuator is
saturated and prevents the integral term to continue to charge while the saturation is
breaking the control loop.

1
0.01s¢1

Anti-Windup
Time constant

+

Y

First Input
+

Sums
Second Input Sorm Sumi

Output

Figure 5
Anti-windup

With an anti-windup the same simulation shows a much better response ; now the integral
action is kept from overloading and the overshoot is minimal.
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Figure 6

Improved response through the use of an anti windup circuit

2.4 Integral-discharging logic

A less sophisticated way to solve the problem is to introduce a circuit that discharges the
integral term when its action tends to bring the system away from the set point.

The circuit compares the sign of the error with the sign of the integral action and if the
result is negative, the integral term is quickly brought to zero.
The overshooting only depends from how much quickly the integral buffer is discharged.

<l

+ Product

+

Y

First Input
+

Sumb

S d Input
econd Inpu Sum

—

=

Switch

Discharger

19

Plant Output

Figure 7

PID controller with integral discharger
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0 10 20 30 40 50 60
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Figure 8
Response of a PID controller with integral discharger

Bvidently a strong limit of this controller is the need of an integration in the plant,
otherwise when the system reaches the set point, it will still need a non-zero integral action,
but the controller will think that this action is diverging and will discharge it, causing the
system to diverge back from the set-point until the integral has charged again.

In case of a plant without an integral action it will be necessary to modify the controller so
that the steady-state value of the integral is constantly calculated and fed to the discharger,
every time the input changes.

Still, the system will be vulnerable and will have a very bad response to disturbances that
cause an offset of the system from its set point and further changes are needed to introduce
a smarter logic.

To show this limit we will now add a disturbance in the form of a negative step function
added after 10 seconds between the controller and the plant, while at 30 seconds the input
will be set to 6 with a step function as input

H e

Switch

First input

Sum

Disturbance

Figure 9
A disturbance before the plant is used to test the ability of the PID with integral
discharge to reject non-modeled disturbances
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The result is a highly irregular pattern due to the fact that the integral part is discharged
immediately after reaching the set point much below the level needed to keep the correct
level of output.

0 10 20 30 40 50 60
Time (second)

Figure 10
The disturbances causes severe problems to the controller since the integral is
discharged even when useful, due to the disturbance that requires a non-zero value for
the integral at steady-state.

This can be corrected with a much more complicated version of the integral
discharger shown in the next figure where a cascade made up of three different switches is
activated only in two cases : the first case occur when the integral action is positive, the
error is negative and the derivative if the error is negative as well ; the other case occur
when these conditions are satisfied with all opposite signs.

As usual, the fulfillment of these conditions causes the progressive discharge of the integral
buffer, while every other combination has no effect.

The effect of this new circuit is to provide much more tight restrictions before discharging
the integral. Now there are three conditions that must be satisfied before an integral can be
defined harmful and therefore there are less chances that an useful integral is brought to
Zero.

17
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Figure 11
Improved logic for the integral discharged adds more strict requirements needed to
discharge the integral buffer.

What follows is the response to the same kind of disturbance :

0 10 20 30 40 50 60
Time (second)
Figure 12
Improved performance of the modified integral discharge on the same kind of
disturbance

By moving the set point of the switches it was also possible to make the discharger less
susceptible to small changes that can be caused for example by noise or modeling errors.
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2.5 Rate Limitations

We will now introduce a very severe rate limitation to the actuator input. Limiting the
derivative to +/- 0.2 it takes to the system 10 seconds to fully reverse the control action and
S seconds to bring to zero the maximum control action allowed by the saturation.

Dl

Product| ~ = i
B! Discharger

M _/j{_ Switch
m_} + »%S:mz Integratof
First Input . —$> + . 1 @
mf’ i »> v 3

Second Input Sumbs D Derivative Saturation Rate Limiter

Sum [ Plant
P

Figure 13
PID with integral discharge affected by a rate limiter

As expected the introduction of the rate limitation causes an evident overshooting since the
controller ignores that its actions are delayed in time by at least 3-6 seconds.

10 P P T e

..............................................

.........................................................

......................................................

40 50 60

Time (second)

Figure 14
The result of a rate limiter are large overshoots due to the finite time needed to
change the input signal

Trying to raise up the value of the derivative action helps a bit when the rate limit is not
this much severe but this is not the case. It is evident that some other action is needed to
make the controller aware that the input’s changing rate is strongly limited.
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2.6 Splitting the anti-windup action

When rate limits are not too much severe it can prove a useful solution to split the anti-
windup circuit into two parts, giving different weights to the anti-windup activated by the
saturation and by the rate limiter.

5 +
0.01s+1 < Eﬁ‘—

Anti-windup2
1
0.01s+1
Anti-windup1

+

First Input —P| +
+

Sum5s

Second Input Sum

Figure 15
Splitting the anti-windup circuit into two dedicated circuits for the saturation and the
rate limiter adds degrees of freedom in terms of parameters that can be set and
sometimes allow to tune correctly systems affected by significant rate limiters.

In this way there are more parameters to set and this makes it even more difficult to
correctly tune the controller, but the effort is often paid back with much more smooth
responses and less overshoots.

Usually good results are achieved by raising the weight of the anti-windup related to the
rate limit, however it was difficult to get general rules of thumb.

2.7 Predictor-Feedback

The idea is to manipulate the feedback of the system so that the value is increased by a
value that is proportional to the speed at which the system is moving. This means that if
the system’s state has a certain positive value and the derivative of the status variable is
positive, the system’s controller will think that the actual system’s state is the real one plus
an off-set value that is greater or smaller according to the speed itself.

This is simply accomplished by adding a derivative action to the system’s feedback. In
some case it is useful to add a dead-zone that prevent any anticipating action as soon as a
certain speed is reached, since usually the gain of this derivative action as quite high an it
can be harmful to have it acting always, changing completely the controller’s behavior.
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Figure 16
A predictor feedback is added to a standard control loop

Of course, instead of the usual three, we have now five parameters to tune, and it takes
some trials to get a desirable response without overshoots.

0 10 20 30 40 50 60
Time (second)

Figure 17
The predictor feedback allow to finely and easily tune PID systems affected by severe
rate limits avoiding undesired overshoots

2.8 A Second-order system

In this second example we consider a second order plant in the form :

1

st 4
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that requires some adjustments in the parameters of the anticipator to get a satisfactory
evolution due to the more complex dynamic of the plant.

Second Inpu

b

P

Output

Product i
+ — Discharger
Switch
L v
+ | Integratqr
{ Sum2
+
—>—rfaal—H! P -
D Derivative + Saturation Rate Limiter S +S
Sum1
[: Plant
P [+l
Sum3 du/dt <-|
Anticipator  Dead Zone Derivative1
Figure 18

A second order system with a predictor feedback added

Note that, as expected, the integral action is quitted before 5 seconds from the beginning of
the simulation even if the system will reach the set-point five seconds later. Raising the
anticipator constant too much causes the system to stop too early and in case of a very bad
setting even to reverse the direction of the evolution moving far away for a while from the

set-point.

........................................................

Time (second)

0 10 20 30 40 50 60

Figure 19
Also second order systems can be easily tuned

2.9 Third order system

A third order system is now considered with a plant’s transfer function equal to :
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Increasing the dynamic of the system makes it harder to tune it correctly, and this is in
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Switch

general valid for linear systems as well.

N
+

Discharger

Y

First Input

1
$3+52+s

Sum5

Second Input

Sum Output

I 7T J
Sum3 @ [ > Lg du/dt
Anticipator ~ Dead Zone Derivative1
Figure 20

A third order system with predictor feedback

Despite extensive tuning attempts the system reaches the set-point either with sensible
delay and/or multiple overshooting ; even if tuned correctly, it is enough to insignificantly
change even one of the parameters to fall into a very bad response again.

0 10 20 30 40 50 60
Time {second)

Figure 21
The time response to a third order system is very susceptible to small changes in the
parameters
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Using an anti-windup system, does not improve much the response. Again it is possible to
correctly tune up the controller, but a very small change in the parameters change
completely the system’s response.

1
0.01s+1

Anti-Windup
Time constant
+
First Input P> + 1 E‘
> s34+524s
Second Input Sum5
Sum Plant Output
sum7 r/—|7114 du/dt |g——
Anticipator ~ Pead Zone Derivative1
Figure 22
PID controller with anti-windup and predictor feedback controlling a third order

plant

The following pictures show the system response to the same input under two different
values of the anticipator constant. Even a small change bring the system from a situation in
which the problem is an excessive overshoot to another situation in which the system stops
completely much before reaching the set-point.

0 10 20 30 40 50 60
Time (second)

Figure 23
Again the tuning is very difficult and susceptible to minimal changes in the parameters
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2.10 Third order system with anti-windup,
predictor feedback and integral discharger.

An idea can be to put together all the devices that we examined since now, in a hope that
their cooperation will affect different aspects of the problem, making the system less
sensible to tuning inaccuracies.

The result is encouraging, since a good system’s response can be very easily found but, as
stated before, the integrator discharger does not work properly under the effect of external
disturbances.
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Figure 24
PID controller with predictor feedback, anti-windup and integral discharge
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Figure 25
The combined effect of anti-windup and integral discharge makes easy to tune the
controller
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2.11 Importance of the integral anticipator

The anticipator can also be moved from of the feedback to the controller, acting not only
on the feedback signal but on the overall error signal.

Doing so we can split the anticipator into three different parts, to be able to control
individually the value of the anticipator constant for each one of the three parts of the PID
controller.

Trying now to set a zero gain to some parts of the anticipator leads usually to a
deteriorated performance of the system. After some tests it appears evident that the most
essential anticipator is the one that acts on the integral action, since it acts on the whole
non linear anti-windup system.

In some cases it is also possible to tune correctly the system with only the integral action
affected by the anticipator as shown in the next picture.

With more difficult system, or with more severe rate limits it becomes very hard
(impossible ?) to find a good tuning with only the integral action affected by the
anticipator, giving still the impression that in these case is better to make the whole PID
controller affected by the anticipator.

Since the anticipator’s most important effect is the one on the integral action, it is not
possible to obtain an equivalent system, obtaining an analytical expression and changing
the PID parameters according to this linear equivalence, for the reason explained before
that the total effect is not linear.

2.12 Conclusions

Anti-windup provide a very good answer to saturation problems. When rate limits are
introduced small changes in the tuning or in the anti-windup circuit may provide good
compensation of the phase loss. In particular, splitting the anti-windup feedback into two
differently weighted parts can be a first step that still does not change the controller too
much.

In case of very tight rate limits the extra derivative effect was very effective. The reason is
the predictive ability of the derivative. Keeping this concept in mind is also quite easy to
tune the anticipator by calculating how much it will make the controller look ahead
compared to the typical rising rate induced by the controller and the saturation combined.
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3. Phase compensation of rate limiters

3.1 Introduction

During this chapter we will explore some typical effects of rate limiters on marginally
stable systems. Under some circumstances a rate limiter in the control loop produces phase
lags that can treat the stability of the system ; several filters can be used in the attempt of
reducing this phase lag and some of these filters will be compared analyzing the overall
problem.

At the end examples will show theoretical improvement of stability and simulated time-
response examples to test the various filters.

3.2 Rate limiters and system stability

To introduce the problem focused by this chapter, we will first show an example of a rate
limiter reducing stability margins of a linear system.

What follows is a fifth order model, that simulates a fourth order plant and an external
operator, represented by a PI controller that controls the system with a feedback loop.

i

Input

Sl BN : A

s (s+.5)(s+1)(s+2){s+3)

Operator Output

Process

Figure 1
A linear system with a fourth order plant and an external operator

The plant is stable (four real poles with a negative sign), but the combination of the
controller and the feedback loop, makes the whole linear system marginally stable ;
stability margins are very little and therefore a little increase in gain can make the system
unstable.

There are many examples in the physical world of unlucky couplings of a stable plant with
an external (typically human) operator which result into an unstable or marginally stable
system.

Anyway the considered system is still stable ; now the response of the system is illustrated,
the input signal chosen is a ramp that starts at zero value and ends up at a value of three
and remains constant thereafter.
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Figure 2
Time response of the linear system (solid line) to a gradually increasing input (dash-
dotted line)

As expected the output follows the input with large oscillations due to small stability
margins ; anyway on the steady state the output will reach the input.

Now we will introduce a rate limiter between the operator and the plant. The overall
system is no more linear and therefore it is not immediate to predict the behavior of the
system.
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- < (s+.5)(s+1)(s+2)(s+3) E

Rate Limiter

Operator Output

Process

Figure 3
The modified system with a rate limiter in the control loop

The time response of the new system to the same input does not show any significative
difference ; the reason is that the slow input results in a small rate of change in the signals
inside the loop. The rate limiter is sometimes exceeded, but only for very brief moments
and the overall time response, showed in the next figure, is almost identical to the previous
one.
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Figure 4
Time response of the system with a rate limiter (solid line) to a gradually increasing
input (dash-dotted line)

If, instead of a gradual input, we choose a faster input that reaches again a value of three

after only one second, instead of the 18 seconds needed by the first input considered, we
obtain drastically different responses.

0 10 20 30 40 50
Time (second)

Figure 5
Time response of the nonlinear input (solid line) to a rapidly increasing input (dash-
dotted line).

The response of the linear system is always stable, and this is proved to be true for any
input regardless of magnitude, bandwidth or any other parameter that can be chosen ; on

the other hand, is very interesting to observe the time response of the non linear system,
shown in figure 5.
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It is clearly visible that the system is diverging around the set point and the control loop
fails to stabilize the plant.

On the steady state, since the system is not linear, the oscillations will not increase forever
but will reach a given level, without converging to the desired value.

In the next paragraphs reasons for this phenomena will be illustrated.

3.3 Representations of a Rate Limiter

There are several ways to represent a rate limiter. As already mentioned, software rate
limiters are used to prevent actuators from reaching their physical limits and therefore their
effect is dominant on the dynamic of the system.

Given a sampling time T and a rate limit R, the simplest form of software rate limiter
keeps a buffer with the last output value Y1 and compares it with the new input U
received.

The corresponding output will be equal to the input only if the condition :

Y1-Ul <
T

R

is true, otherwise the new value is limited so that the previous condition is verified.
In a continuos system, a possible representation of a basic rate limiter is given by the
following block diagram.

1 y
s
Integrator

+

Saturation

Gain

Figure 6
A block diagram that behaves like a rate limiter

the smaller the gain ‘k’ closer to a theoretical rate limiter will be the behavior of this
system.

Usually it is not convenient to have a too high value of k due to stability problems, since it
will be impossible for the limiter to keep a constant value without starting to swing around
a mean value at the maximum rate and at a high frequency.

g
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Figure 7

Another common form of an analog rate limiter
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In practical implementations is also commonly used the block shown in figure 7 where
small signals are fed through and larger ones are rate-limited. This is also another way to
make the rate limiter be influenced only by really significant signals that exceed over a
certain value while small ones are unaffected.

Notice that in this case also the overall behavior is somewhat different than the one of a
theoretical rate-limiter.

3.4 Non-linear analysis

The behavior of a rate limiter is obviously non-linear. Therefore we can not restrict our
analysis to simple responses like an unitary step but we will have to test instead a greater
range of inputs.

If we feed a rate limiter with a sinusoidal wave of a given amplitude A and frequency f:

u=Asin@2r ft+o¢)

we can expect four major kind of outputs that all depend on the frequency and amplitude
compared to the rate limit R of the rate limiter.
If we derive the signal input we obtain the expression :

ggz2nAfSMQﬂft+¢)

that gives us a clear relation between A, f and R. In fact if the condition :
JTAf <R

is verified the output Y of the rate limiter will be the same of the input at all times ; in this
case the rate limiter will have zero influence on the signal.

If instead this limit is slightly exceeded there will be some values for which the output
signal will not be able to follow the input signal and temporarily the two values will be
different. This is the case showed in the next figure. Notice that the output signal meets
again the input signal before the extreme is reached and therefore there is not yet any gain
loss.

If we calculate the first armonic of the output signal we can already notice a small phase
delay, due to the asymmetry of the output curve, but still the output reverses direction at
the same time with the input.
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Figure 8
A rate limiter starts to change the shape of a signal

If we increase a bit more the frequency or the amplitude of the input we will soon fall into
a third case in which the output signal is no more able to reach the input signal before the
extreme of the curve. At this point we start losing gain and the amplitude of the output will
be less than the amplitude of the input.
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Figure 9
An increase in frequency and/or amplitude of the input signal leads to a visible loss of
phase and gain.
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The shape of the output is getting progressively closer and closer to a simple triangle wave
and only a small part of it is still following the sinusoidal wave. This can be clearly seen in
the previous picture where, as usual, a unitary sinus wave is fed as input and the frequency
is carefully tuned to obtain the desired response.

If we increase slightly the frequency or the amplitude of the sinus wave we fall into the last
possible kind of response ; in this case the output signal will always try to chase the desired
output without reaching it but during crossovers.

The response will be a perfect triangular wave, and increasing the frequency of the
amplitude of the input will lead to an increasing loss of phase and gain. The phase lag will
progressively increase to a limit of 90 degrees that will of course never be reached.

The following figure shows this extreme fourth case that will be mostly under attention
during the rest of this chapter.

Figure 10
High frequency of high amplitude response of a rate limiter to a sinusoidal input is a
regular triangular wave.

It is important to notice that the amplitude of the output signal depends only on the
frequency of the input wave according to the expression :

R
Aoutput = -4—];

therefore the amplitude of the input wave has no influence on the output.

If we consider the gain to be a simple ratio between output and input, we can obtain a very
easy expression that describes the gain as a function of the input amplitude and frequency.
Given :

Gain = Aourput

input
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after the substitution we can obtain the simple formula :

Gain =
4f A

input

that again shown that frequency and amplitude of the input contribute with the same weight
to the deterioration of the signal’s gain.

Also the phase lag can be analytically calculated with a less elementary procedure but
before proceeding further the next figure gives an idea of the graphical criteria that were
used to calculate the previous formulae :

Figure 11
Graphical calculation of gain

of course the formula that describes the gain makes sense only of the resulting gain is less
than one.

To compute the phase-lag resulting from the rate limiter in this fourth case we start with a
similar graphic approach.

Translating the output wave so that its maximum takes place when the sinusoidal wave has
a zero value, we can see that the amplitude of the output signal (known) is equal to 90
degrees minus the sinus of the angle of phase lag (unknown).

In formulas :

phase = arcsin

in the same way as stated for the other formula for the gain, also this formula makes sense
only when the other one does. In this case the limited validity of the arc-sinus function
helps to prevent misuse of it.
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In the following diagrams gain and phase-lag are plotted against a logarithmic frequency
scale using the previous formulas. The system considered is characterized by a unitary rate
limiter and the various curves show different responses to input waves of 10 different
amplitudes, from 0.5 to 5, as shown by the arrows on the graphs. As expected the gain
tends to zero, while the phase-lag tends to 90 degrees.

10" 10" 10'
Hertz
Figure 12
Frequency response (gain) of a rate limiter for different values of the input amplitude
(range from 0.5 to 10)
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Figure 13
Frequency response (phase loss) of a rate limiter for different values of the input
amplitude (range from 0.5 to 10)
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Another way to obtain similar diagrams is through simulation. The following two diagrams
show gain and phase-lag obtained through multiple simulations at different frequencies.
For each frequency a simulation was performed for 200 periods, to ensure that steady state
was reasonably reached, and then the last periods were analyzed to obtain the gain and the
phase lag compared to the input wave.

The resulting graphs are very similar to the ones obtained with the analytical formulas
except for the small transitions between the unitary gain and the hyperbolic curves due to
the fact that only the fourth case is calculated by the formulas.
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Figure 14
Frequency response (gain) of a rate limiter calculated through simulation
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Figure 15
Frequency response (phase loss) of an unitary rate limiter calculated through
simulation
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As a result of this, the ‘real’ curves show a smooth transition that is not described by the
analytical ones.

To obtain a sharp analytical solution is necessary to calculate for all frequencies the
descriptive function of this non-linearity, operation already done in literature and that
brings to the same curves that were experimentally found through simulation.

In the next sections several non-linear systems of increasing complexity will be considered
and therefore it will be in many case impossible (or too complicated) to calculate a
descriptive function for them and simulation will be the only tool available to obtain a good
and reliable frequency response.

Independently from the system used to analyze the behavior of the rate limiter it is evident
that for high frequencies the phase-lag becomes more and more important, up to a
maximum value of 90 degrees.

If the rate limiter is part of a control loop, this means that for some high frequencies or
high input amplitudes the phase margin (or gain margin) of the control loop will
dramatically decrease and in some case will lead to instability.

For aerodynamically unstable planes the Flight Control System does not provide more than
45 degrees of phase margin and it is quite clear that this limit may be easily exceeded.
Typical PIO (Pilot Induced Oscillation) accidents occurred in concomitance with strong
and sudden manual inputs that saturated the rate limiters. This decreased the phase margin
changing the behavior and response of the system, leading to even more diverging inputs.
In the following section different phase compensation strategies will be discussed to
prevent or reduce this phenomena.

3.5 Phase compensating filters

The presence of a rate limiter changes in some cases the signal and we showed in the
previous paragraphs that this change results into a loss of gain and phase.

It is quite obvious that there is nothing to do with the gain loss ; simply the input’s rate of
change is too fast for the limiter and the corresponding evolution of the system is limited.
On the other hand, looking at the previous figures it is possible to think about phase
compensation and we can expect the possibility to design filters that reduce the phase lag
when the rate of change of the signal is high enough to saturate the limiter.

The phase lag is also the most dangerous phenomena associated with rate limiters, since it
endangers stability in a closed loop, while the gain loss is not usually associated with
stability problems.

3.6 Phase compensation using feedback

This method is described in [ 7 1, {81, [ 9 Jand [ 10 ] and gets it is main idea from anti-
windup methods. An anti-windup logic is a circuit, used in a PID controller that feeds back
a negative signal when a saturation limit is reached and uses this signal to discharge the
integral whose state variable is building up an excessive value compared to the saturation
itself.

Analyzing a frequency response of an anti-windup system, it is easy to notice a phase
advance when the non linearity is taking action.

The idea is to use a feedback around the rate limiter that feeds back the signal to a low
pass filter and from here to the signal source ; in presence of a rapidly changing signal, the
anti-windup circuit will start to build up a negative term that affect increasingly the overall
signal.

When the input signal reverses the direction, the negative component causes a premature
reverse of the output signal and thus reduces the phase lag.
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Figure 16
Rate limiter with feedback

Theoretically the best choice would have been to have an integrator instead of the low-pass
filter, but this does not prove to be a stable choice in the real use and therefore the low pass
filter is preferred.

Analyzing this non-linearity’s response to different frequencies and gains we obtain a
frequency response diagrams like already done with the basic rate limiter.

These two diagrams are shown in the next two figures (gain and phase) for various
amplitudes of the input signal (0.5, 1, up to 10).

Notice that since the filter is not linear, if we have a frequency response to an unitary gain,
we can not automatically know the responses to all the amplitudes, and this is clearly
shown by the diagrams that show completely different responses for different amplitudes.
Again, knowing the frequency responses for any frequency and any amplitudes does not
imply that we know the response of the filter to any input, still the non-linearity can behave
unpredictably to inputs of other kinds. In this never ending quest to crash-test the various
non-linear filters other tests will be done, testing the filters on time simulations with
various inputs.

Figure 17
Frequency response (gain) of a rate limiter with feedback

If we compare the gain loss with the one of a standard rate-limiter we see little or no
difference. The reason is that, as previously explained, there is little to do with gain loss.
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Figure 18

Frequency response (phase loss in degrees) of a rate limiter with feedback

On the other hand, the phase loss is dramatically different. This time the phase loss
remains small for almost another order of magnitude of the input frequency, after which,
again, tends to 90 degrees asymptotically.

To a frequency analysis this filters improves the phase loss still providing an input limited
in terms of rate ; however during deeper tests it was found by the authors of the filter that
high frequency signals tend to jam the filter.

From the frequency analysis it is clearly visible that there is no compensating effect for
high frequency signals, therefore high frequency components of the signals tend to activate
the filter loop even if this will be totally useless, decreasing the performance to low
frequency components of the signal.

To compensate this it is possible to add a by-pass for high frequency signals, using the
following modification to the block diagram :
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Low pass2
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Figure 19
Rate limiter with feedback and by-pass

In this case a low pass filter divides the signal, feeding the compensating filter only with
low frequency components of the signal. At the same time high frequency components are
bypassed and added just before the output.
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Frequency analysis of this final version of the filter is shown in the following figures ; the
shapes of the curves this time reserve some surprises.

The gain, as usual is not too significant, gain is progressively lost for high frequencies and
high amplitudes of the input signal. It is worth to notice anyway that this time the curve
shape is somewhat different and a small plateau is more visible for high input amplitudes.
On the overall the general gain is somewhat slightly smaller than the original one ; this
phenomena is common more or less to all phase compensating filters and is due to the fact
that filters tends generally and independently to their functioning logic, to anticipate the
moment at which they should reverse the signal. If this is not done at once and with the
maximum rate instantly, this sometimes results in a smaller evolution.

Again, for stability concerns we will be more focused of phase loss, and this small gain
losses, present also in the future filters, will always be very small.

Figure 20
Frequency response (gain) of a rate limiter with feedback and by-pass

The phase loss presents instead a dramatically different shape than the two previous ones
which were characterized by regular and smooth behaviors.

As the previous filter, the curves of this one increase significantly the range of frequencies
at which the phase lag remains small ; in addition for each input amplitude there is a small
range of frequencies in which the phase compensation has a positive peak and the phase lag
resulting is very small if not zero ; in this small range of frequencies the performance of the
filter with by-pass is of course much better than the one of the previous one.

High input amplitudes results in increasing peaks that end up into negative phase lags ;
this, for stability requirements is, of course, a positive and desirable occurrence since the
filter will compensate for phase lags of other components of the system ; however this also
means that the filter is acting in a non-causal way, literally acting before the input, and this
of course leaves some perplexity at a first glance. In the following paragraphs we will see
that occasionally negative phase lags are a common occurrence of many phase
compensating filters.
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Figure 21

Frequency response (phase loss in degrees) of a rate limiter with feedback and by-pass

The negative phase lags is usually not a major concern due to the fact that together with
the rate limit, usually also the overall input action is saturated up to a certain value,
therefore on most systems these negative phase lags will never occur.

3.7 Phase compensation using derivative action

Phase compensation can be obtained in several ways. The new filters presented use
feedback to compensate phase loss and provide good phase compensation up to a limited
frequency range. Other ways can be used to compensate phase loss and in the following
paragraphs two of them will be analyzed and compared with the previous ones.

A way to obtain phase compensation is through derivative action ; in conventional PID
controllers, the derivative action usually provides reduction of phase lag and increase of
overall stability.

The problem is that derivative action itself causes also a change in the shape of the signal
and not always this phase advance is desirable ; therefore it is necessary to have a
derivative action that dynamically is switched on and off.
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Figure 22
Rate limiter using derivative action

This problem is solved through the use of a feedback signal proportional to how much the
rate limiter is exceeded. This feedback signal “charges up” a low pass filter and the
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resulting signal is used to influence proportionally the weight of a derivative action that
adds itself to the incoming signal stream.

The saturation at the end of the low pass filter is used to impose a maximum value to the
derivative action.

In this way whenever a fast signal reverses direction, the tracking signal will reverse soon
afterwards due to the presence of the derivative action that will make it “look ahead”.

The next figure shows as usual frequency response of the filter to a wide frequency range
and for different values of the input signal :
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Figure 23

Frequency response (gain and phase loss) of a rate limiter with derivative action

These pictures reserve some surprises that require some explanations.

First of all we notice that the filter behaves better for high frequencies and shows instead a
decrease of performance (though very little) between 0.1 and .5 hertz, gap clearly visible
with high input amplitudes.

The reason for this is that for small frequencies the derivative of the signal is generally
small and may take a long time to reverse the signal, meaning that the derivative action
does not make the tracking signal to “look ahead” enough.

This problem on the other hand does not occur for higher frequencies where, for an equal
amplitude of the signal, the derivative value is bigger.

The following two figures show the frequency response in a bigger frequency interval, so
that it is more clearly visible that the lack of phase compensation occurs in a limited band
of frequency that goes back to zero for both higher and lower frequencies.
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Figure 24
Frequency response (gain and phase loss) of a rate limiter with derivative action

Another thing easy to notice are the occasional irregularities in the shape of the curves,
with high and sudden decreases in the phase lags, with seldom negative values.
Corresponding to these occurrences, the gain diagram shown also smaller irregular
patterns.

To understand the reason for such irregularities it is important to recall again the way these
curves are plotted : for each point a simulation is performed up to usually 100 periods, to
guarantee that steady state is reached and afterwards the last periods are analyzed to
extract information upon gain and phase lag.

Zooming the frequency range with irregularities, shows a different shape of the curves and
changing sampling points with closer ones changes again the shape of the curve. The
conclusion to all this is that we are facing a sort of numerical instability and the system has
more than one possible steady state that can be reached according to different initial
conditions.

Observing again the block diagram we can clearly see the “bug” that causes this erratic
behavior : a high rated signal switches on the derivative effect, but this derivative then
feeds back the switch, and this can cause for example that a signal that is no more violating
the rate limiter continues to be influenced by a no more necessary derivative action.

During the early design stages of the filter, this effect was thought to be desirable, but the
previous diagrams clearly show that it has to be avoided.

The block diagram can therefore be modified so that the derivative switch is not influenced
by the overall signal but instead only by the input signal.
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Figure 25

Improved rate limiter using derivative action

The following figures show the behavior of this new rate limiter as usual for different input
amplitudes and over a wide range of frequencies.
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The overall shape of the curves remain the same but this time there are no more instability
effect. There is instead a strange transition phenomena that occurs when the frequency is
close to the value at which the derivative action starts to be activated.
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Figure 26
Frequency response (gain) of the modified rate limiter with derivative action

The phase lag diagram shows a sudden loss of phase, followed by a sudden gain of phase.
These two abnormalities last for a very little range of frequencies, after which the behavior
goes on as expected.

Further improvements can be done to smoothen this transition and avoid this irregular
behavior, notice also that there are a lot of parameters that can be changed in this filter,
therefore there are several degrees of freedom for it is tuning such as the low pass filter
gain and time constant, the value of the maximum values allowed by the feedback
saturation and even the way the feedback influences the derivative effect, in our case a
multiplication is used.
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Figure 27
Frequency response (phase loss in degrees) of the modified rate limiter with derivative
action.

A weak spot of this rate limiter is of course the fact that the filter uses the derivative of the
signal to advance the phase. Generally speaking, using derivatives is not always a positive
thing, since the overall filter may be sensible to noise and it may happen that particular
limited inputs can cause diverging outputs.

This will be better discussed later on after the discussion of the next filter.

3.8 Phase compensation using derivative and
integral action

This filter is a modification of a very basic idea of rate limiting. If we want to limit the rate
of a signal, one very spontaneous actions is of course to derive the signal, to limit the value
of the derive and then to integrate again the resulting signal. Therefore with a simple chain
of three blocks (differentiation, saturation, integration) we are sure to obtain a rate limiter
signal.

At the same time a signal passing through such a filter, clearly moves always in the same
direction of the movement of the input signal. This is because the input signal’s derivative
has always the same sign of the output’s derivative. In terms of phase lag, this means
theoretical zero phase lag.

The reason why such a filter can not be used is because the lack of information due to the
signal partially cut by the saturation makes the output signal to drift from the value of the
input signal. For the filter’s functioning scheme, it makes no difference if the input value is
1000 and the output value is 1, it will only make importance the value of the derivative.

To partially correct this disadvantage, as shown in the next figure, it is possible to
introduce some kind of feedback that slowly makes the output signal to drift towards the

45




desired value. In this way, on the long run, the output signal will always tend to converge
back to the same value of the input signal.
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Figure 28
Rate limiter using differentiation-integration

At the same time an integral action is also introduced to correct permanent asymmetries in
the derivatives of the signal that would cause a constant error in a proportional-only
controller.

At the end, the overall correction circuit results into a PI controller that uses the error
between the input and the output to correct the direction of the output.

A low pass filter is used to make the system susceptible only to long-lasting situations and
not to sudden changes of the input signal.

The next figure shows a time simulation of the filter. As expected the reversing of the
signal is almost instantaneous and there is no phase lag.
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Figure 29
Example of a time response of a rate limiter using differentiation-integration

It is worth to notice that the peaks of the output signal are not sharp but instead present a
round shape, due to the fact that when the sinus wave reaches the peak, the signal’s
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derivative no more exceed the rate limit, therefore the signal is just unchanged and the
output has the same shape of the input.

Analyzing as usual the frequency response of the filter, we can observe that the gain
diagram is as usual very similar to the others, with little irregular patterns that make it only
slightly different than the basic one.
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Figure 30

Frequency response (gain) of a rate limiter using a differentiation-integration filter

the phase lag, instead is almost zero at all the frequencies and presents a small gap in phase
compensation in a given range of frequencies.
This gap is of course a cause of the presence of the PI correcting system.
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Figure 31
Frequency response (phase lag expressed in degrees) of a rate limiter using a
differentiation-integration filter.
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The higher the gains of the proportional and integral part, the bigger the phase loss. The
integral part is particularly dangerous, since may cause even overshoots of the drifting
signal, which result into enormous phase lags.

Now we will investigate how the performance of the filter changes, when parameters are
changed. As already said, we have two parameters in the PI controller that can be freely
changed.

Generally speaking, increasing the value of these two gains improves the ability of the
system to reject any asymmetry of the signal’s derivative and at the same time increases the
phase loss and the frequency range in which this phase loss occurs.
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Figure 32
Frequency response (gain) of a rate limiter using differentiation-integration keeping
an input amplitude of 4 and varying the feedback time constant (see the block
diagram)
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Figure 33
Frequency response (phase) of a rate limiter using differentiation-integration keeping
an input amplitude of 4 and varying the feedback time constant (see the block
diagram)
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Therefore the regulation of the PI controller can not be made without taking into account
that improvements in one direction can cause loss of performance in the other direction.
The following two figures, show instead what happens if the time constant of the low-pass
filter is changed.

Again we have a situation in which moving towards a certain value of the time constant we
have an improvement in the rejection of asymmetric signals and at the same time a higher
phase lag and vice-versa.

In this paragraph we have many times said that a rate limiter that uses differentiation as a
way to compensate the phase of a signal, is subject to certain dangers.

Generally speaking it was said that asymmetric signals may cause these filters to settle a
set point far-away from the real mean value of the input signal, or, even worse, they can
cause diverging outputs.

The PI adjustment of the filter was meant also to counteract such asymmetries and we will
now analyze the time response to the worst asymmetric signal that can occur, a saw-tooth
wave.

5 10 15 20

Figure 34
A bad input signal, which has negative derivative over long intervals, may lead to
undesirable responses that are corrected by the integral action of the adjusting signal
only after some time.

Such signal has derivatives in only one direction and a non-corrected derivative-integrative
filter would give as an output a constantly descending signal.

In this case the proportional correction makes the output signal to stop at a certain value,
that in general differs from the set point and the integral action slowly corrects the error
bringing back the signal to the right level of output after a certain number of periods.

As clearly visible in the picture, not only during the transient the answer is very poor, but
also after that steady state is reached, the phase compensation is almost non existent and
the overall signal shape is really bad.
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The amount of periods needed by the controller to bring the signal to an acceptable level
depends as already said by parameters such as the time constant and the gains of the PI
controller.

Unfortunately, as previously said, the tuning of these two parameters requires a trade off
between different kind of performance requirements.

The integral action is particularly useful to reject this kind of disturbances, but at the same
time the overshoots caused by a PI controller with an excess of integral action can lead to a
real disaster in terms of phase lag.

If it could be possible to prevent the integral action from causing overshoots still having a
high coefficient, we could improve the performance of the filter in terms of asymmetry
rejection without loosing performance in terms of phase lag.

The next picture shows an unlucky attempt in this direction :
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Figure 35

An attempt to avoid overshoots caused by the integral term of the PI adjusting signal
in a derivative-integrative rate limiter.

Without explaining one by one the effects of the jungle of switches, the overall circuit is a
logic switch meant to detect if the integral action is unproductive.

An integral action is in this case considered unproductive (or even harmful) if the system is
going away from the set point and at the same time the integral action is pushing the
system further away from the set point.

This can be translated into three condition that must be satisfied in terms of signs of the
error, of the derivative of the error and of the integral value.

This kind of logic, introduced in chapter two, tested on a standard PI controller proved to
work properly and in most of the cases succeeds in reducing the overshoot, even if not all
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the cases are contemplated. (some other times an integral action is not useful and the
switch does not turn on since it is not designed to do it.

To understand if such modification can really improve the system, the two filters (rate
limiter with differentiation-integration and the same rate limiter with the added integral-
killing circuit) are compared in two situations.

In the first one, the filter’s PI corrector is tuned with little values while in the second one,
the PI corrector bears a higher integral constant.

The following two pictures show the first case. Phase lags for different input amplitudes
and frequencies are shown and comparing the two pictures bring up a surprise. The overall
performance of the second filter seems worst in terms of phase lag.

Even if the difference it is not that relevant, the presence of the circuit, when not needed, is
somewhat harmful to the filter’s compensating ability.

20 ————— ———

hertz

Figure 36
Phase lag of a derivative integrative rate limiter with no integral control.
Case one : small PI constants
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Figure 37
Phase lag of a derivative integrative rate limiter with integral control.
Case one : small PI constants

In the following picture instead the two filters are compared with a higher value of the
integral constant and the result is inverted.

This time the first filter presents, with an input amplitude of 10, a catastrophic phase lag of
130 degrees, that is even more than the maximum 90-degrees phase lag that in the worst
case can be obtained with a normal rate limiter.

The second filter, instead, thanks to the control on the integral action, presents a phase lag
around 45 degrees, which is not small, but it is at least less than half of the previous one.
The question that now arise is if it is really worth to modify to such extent the circuit to
introduce control of the integral action. This question becomes more important since it
seems that when not needed the control on the integral is even a little bit harmful to the
overall phase compensation ability of the filter.

As usual there is no total answer, if the tuning requires high values for the PI controller’s
constants, then some form of integral control may be necessary to avoid that the integral
term takes over and leaf the whole filter to absolute weird responses.
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Phase lag of a derivative integrative rate limiter with no integral control.
Case two : large PI constants

50 S ——r

40

30

201
phase
10F

_10 P [ 2 " N | PR
10? 10" 10° 10’
hertz

Figure 39
Phase lag of a derivative integrative rate limiter with integral control.
Case two : large PI constants
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3.9 Stability analysis of a marginally stable system

In this section we will consider how the different rate limiters will modify the closed-loop
stability of a system with a very thin phase margin.
We will consider the third order system described by the open loop transfer function :

G(s) = 20-(s+4)
(s+D(s+2)(s+3)

which is characterized by three stable poles and a zero, with a total gain of 40/3.

The system is obviously stable ; if we draw the Bode plot of the transfer function we
graphically see the phase margin of the system.

The following pictures show the frequency response of the system, for a wide range of
frequencies. Linear analysis give us tools to understand when the closed loop system will
be stable.
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Figure 40
Frequency response of the considered transfer function (magnitude)
0
-50
100
150
-200 :
10° 10° 10!
Radians
Figure 41

Frequency response of the considered transfer function (phase expressed in degrees)
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The next figures instead show the same plant’s frequency response, modified with the
descriptive function of a rate limiter.

Since the rate limiter is not linear, we don’t have a linear transfer function, however we
have previously obtained, both analytically and through simulation, the complete transfer
function of the non-linearity. Now if we combine frequency response with the transfer
function, with a direct multiplication of the two complex number we obtain the frequency
response of the overall system for a given amplitude of the input signal.

Even if this has not a general validity is somewhat interesting to observe how the curves
are modified by this.
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Figure 42
Frequency response (gain) of the transfer function affected by the rate limiter and
calculated for an input amplitude of V2 (solid line) compared with the transfer function
of the unaffected transfer function
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Figure 43
Frequency response (gain) of the transfer function affected by the rate limiter and
calculated for an input amplitude of 2 (solid line) compared with the transfer function
of the unaffected transfer function
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The first thing clearly visible is the dramatic loss of phase margin. This clearly explains
why the system described in the first paragraph became unstable to fast inputs, where the
rate limit was strongly exceeded.

The considered plant, as the one considered in the first paragraph, is marginally stable.
Plotting a Nyqvist diagram clearly shows that the system is not far from the (-1,1) point on
the complex plane. If again we apply the same procedure and we combine the linear plant
with a rate limiter frequency response, we see clearly, as shown in the next figure, that the
stability limit is exceeded, meaning that this time the closed loop is expected to be unstable.
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Figure 44

Nyqpvist plot of the transfer function of the considered system (solid line) and of the
transfer function affected by the rate limit (dashed line)

In the following figures the same plot is made comparing the different rate limiters. All the
considered rate limiters succeed in stabilizing the system again.

-10

Figure 45
Comparison between the Nyqvist plots of the original transfer function (dotted line),
the transfer function affected by the basic rate limiter (dashed line) and the transfer
function corrected by the basic filter with feedback (solid line)
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Figure 46
Comparison between the Nyqvist plots of the original transfer function (dotted line)
the transfer function influenced by the basic rate limiter (dashed line) and the transfer
function corrected by the filter with feedback and bypass, computed as usual with an
input amplitude of V2 (solid line).

Figure 47
Comparison between the Nyqvist plots of the original transfer function (dotted line)
the transfer function influenced by the basic rate limiter (dashed line) and the transfer
function corrected by the filter with differentiation-integration (solid line).
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3.10 Time domain simulations

In this last paragraphs we will test the filters on time-domain simulations analyzing their
impact on more complex plants.

As a first case we will consider again the marginally stable system shown at the beginning
of the chapter. Time simulation showed that fast inputs could lead the system into
instability,

Throughout the chapter it was shown why rate limits reduce stability margins of systems
and now the same simulation (see figure 3) is proposed introducing the effect of these
filters.

The next four figures show the effect of a filter with feedback, of a filter with feedback and
bypass, of a filter with derivative action and of a filter with differentiation-integration.

The four filters manage to stabilize the system and on the steady state the output tends to
the input value.

0 10 20 30 40 50
Time (second)

Figure 48
Time response of the plant of figure 3 (solid line) to a sudden input (dashed line),
under the effect of a rate limiter with feedback

58




0 10 20 30 40 50
Time (second)

Figure 49
Time response of the plant of figure 3 (solid line) to a sudden input (dashed line),
under the effect of a rate limiter with feedback and bypass.
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Figure 50
Time response of the plant of figure 3 (solid line) to a sudden input (dashed line),
under the effect of a rate limiter with derivative action.
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Figure 51
Time response of the plant of figure 3 (solid line) to a sudden input (dashed line),
under the effect of a rate limiter with differentiation-integration.

As a final test we will show the same kind of time simulation with a different system.

This time the fourth order plant is marginally stable itself and the loop is closed without an
additional controller.

This will test the filters with a different plant and at the same time will the limit of a
derivative-integrative filter.

-

Input

> 20 A

(s+1.5)(s+1){s+2)(s+3)

Sum  Rate Limiter

Zero-Pole OouTPUT

Figure 52
Another marginally stable system without a controller before the rate limiter.

The next figure shows, as done before the time response of the considered system with a
rate limiter with feedback.

The system manages to stabilize again the plant and everything goes in the same way as
before.

Notice that this time the set point is not reached by any of the four systems since there is
not anymore the controller with the integral action.
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Figure 53
Time response of a marginally stable system with a rate limiter with feedback in the
control loop.

The next figure shows what happens if the rate limiter with feedback and bypass is not
correctly tuned.
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Figure 54
Time response of a marginally stable system introducing a rate limiter with feedback
and bypass in the control loop with improper settings.

The presence of a low pass filter allows two degrees of freedom to customize the effect of
the filter. If these parameters are not correctly settled, the filter may fail to provide enough
phase compensation when needed.
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Figure 55
Time response of a marginally stable system introducing a rate limiter with feedback
and by-pass in the control loop.
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Figure 56
Time response of a marginally stable system introducing a rate limiter with derivative
action in the control loop with improper settings.

In the next two figures, a rate limiter with derivative-integrative effect is used to
compensate the phase loss in the control loop.

The performance of the filter this time is less satisfactory than in the previous case. The
reason for this is that this time there is no controller between the input and the rate limiter,
therefore the whole input step is fed directly to the rate limiter.

As already known, this rate limiter reacts very poorly to step inputs and therefore the
output rises up only due to the PI correction.
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The next figure show a case with small values in the PI constants, while in figure 58 is
shown a case with higher values in these constants which result into an undesirable

overshoot.
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Figure 57

Time response of a marginally stable system introducing a derivative-integrative rate
limiter in the control loop with small values of PI parameters.
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Figure 58
Time response of a marginally stable system introducing a derivative-integrative rate
limiter in the control loop with larger values of PI parameters.
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3.11 Conclusions

Different compensating methods were tested and they showed different advantages and
disadvantages. '

The approach based on differentiation and integration presents a problem of loss of
information. It is more sensitive to noise, since it is highly non linear there may be
instabilities for certain inputs. With the PI adjusting controller the filter is more reliable
and able to reject bad signals, its response to signal with large derivatives is poor. A low-
pass filter before the rate-compensator may therefore be required.

Increasing the influence of the adjusting controller too much improves the rejection of the
bad signals but at the same time decreases the performance of the compensating action.
Therefore it is necessary to make trade-offs for specific applications.

The differentiation-integration approach has the benefit of a theoretically zero phase-lag. In
practice there will be a small phase lag due to the effect of the adjusting feedback and a
possible low-pass filter.

The filter with derivative action reacts very good in simulations and provides usually very
good phase compensation. It also gives a satisfactory response to step inputs.
Unfortunately the filter is almost completely defenseless against signals whose derivative is
highly asymmetrical. and in addition it is susceptible to noise and disturbances. These
drawbacks may be alleviated with an improved filter.

Phase compensation through feedback leads to a filter that has a quite smooth, regular
response to different signals. The advantage of this filter is that it is not based on the
derivative of the signal. Therefore it does not suffer from the typical disadvantages
associated with this approach. This filter has been tested in real situation and showed good
handling characteristics, giving the pilots a good feeling of the response. It is is now
implemented in the Flight Control System Software of the fighter JAS-39 ‘Gripen’ both on
Longitudinal and lateral dynamics.

The filter only compensates certain frequencies. It just behaves like a traditional limiter
without any phase compensation to high frequencies. When the limited bandwidth is
enough for a system to avoid potential instability the filter based on feedback is preferred
due to it is reliability ; this happens in most cases since high frequency phase-lag very
rarely endangers stability. If on the other hand the need of a higher bandwidth is felt, then it
is necessary to change filter, since it does not seem possible to extend the bandwidth of the
filter with feedback with an acceptable freedom.

Looking for a better phase compensation may lead eventually to other filters that, as
shown, bear other undesirable characteristics.

Looking at the problem from a general point of view we can observe that phase
compensating is a non-causal problem, and it seems a never ending run to pursue a
perfectly compensated filter that is not susceptible to particular inputs that fool its logic.
The reason for this is clearly understandable considering that if we try to design the perfect
answer to two kind of signals very different from each other, we realize that it is not
possible to know how the filter should behave without knowing the future behavior of the
signal.
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4. A first order unstable system

4.1 Introduction

We will now investigate the effects of saturation and rate limitation on an unstable system.
Consider a very basic 1% order system, whose transfer function is given by :

1

G(S):s—/l

with A as a positive real number.

Obviously the unique pole of the system is A itself and therefore the system is unstable.

A way to stabilize the system is to use a feedback equal to k where k is a real positive
constant greater than A.

The system’s state space representation would be :

X=Ax—kx+u
resulting in a negative real pole that ensure stability.

4.2 Input saturation

If we consider the system’s input limited by a saturation to 4/- u then it is easy to see that
if we let the state variable x to go beyond the value of u/A we are no more able to control
the evolution of the system which starts to diverge towards positive or negative infinity.

s1
Plant Output
K
Feedback
Figure 1

A first order unstable plant controlled with a limited signal

The input of the system can be for example a manual control over the status variable and it
is evident that improper inputs can drive the system into instability.

It is necessary therefore to design a controller that, getting close to the critical limit,
prevents the manual control to give inputs that drive the system towards instability.

Since the plant is a first order system, a first immediate solution can be to limit the
external input with another saturation, so that it will not possible for the operator to exceed
the limits given by the operating envelope.

In the following examples, unless differently specified we will assume numerical values of
the parameters as follows :

L 1
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K 2

Saturation +/- 1

These changes will result in the following modified block diagram :

L »P

Input  Limiter sl
Plant Output
K
Feedback
Figure 2

A saturation of the control output ensure that a first order system keeps within given
boundaries if no disturbances are applied

The limiter prevents the absolute value of the input from exceeding the value of 0.9
(cautelative), and therefore as a response to large inputs, the system gently approaches the
defined limit with a first order dynamic (its own artificial dynamic, given by the feedback).
In the next figure a time response to a sinusoidal input of amplitude equal to 2 :
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Figure 3
Answer of the previous system to a sinusoidal input with an amplitude of two.

This method assures that a first order unstable system evolves safely, but at the same time
it impairs performance, since it is not really necessary to limit the input unless the system
is really reaching the boundary of the controllable zone.

A better way can be to dynamically restrict the available input, depending on the status of
the system.
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A very simple example of this technique can be realized getting the feedback from the
output and adding it to the system’s input just before the safety saturation (which has to be
increased) and subtracting it immediately after.

In the example that follows the output is multiplied by two, therefore the signal will range
from -2 to +2 within the controllability range. This signal is added to the input and the
whole signal passes through a saturation which has a maximum absolute value of 2.9.
After the passage through the saturation, the feedback signal is subtracted again and the
remaining input is fed into the system as usual.

This is how the block diagram will look like :

i < >
RY
Input Sumi  Limiter

Output

Feedback

Figure 4
A modification to the saturation of the control input to allow larger control inputs
when the controllability of the system is not treated

In this way, the input signal is restricted up to different maximum values depending on the
system’s state ; if the system’s state variable is zero, then the input will be restricted to +/-
2.9 while if the state variable is at the edge of the controllability zone, then the maximum
absolute value allowed will be 0.9, resulting in a recovery action that will bring the system
towards the controllable zone again.

Of course the values can be tuned acting on the feedback constant and on the value of the
safety saturation, resulting in different safety threshold and different dynamics of the
system. The more importance is given to the feedback signal compared to the input signal
and less smoothly the system will stop when approaching the edge of the controllable zone.
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Figure 5
The same simulation performed with the modified block diagram

As a last solution we may think a diagram that leaves the operator free to control the
system with any range of input and stops the control action only when the system is really
going towards a dangerous value of the state variable, lets say, in our example, that the
system has to be stopped when the state value has an absolute value greater than 0.9, and
the system has to be driven back to value of 0.9.

First order systems can be immediately stopped and therefore the block diagram doing this
has a very simple logic :

Constant

" 1Sumi © T 1Sum2

limiter N\ :\ A E‘
B = - = sl
— Switch Sum Saturation
Input Switchi Plant Output
K
Feedback
Figure 6
Safety switches may take control of the input when the state variable exceeds certain
values

In this case the input is limited between -0.9 and +0.9 only if the status variable exceeds
the absolute value of 0.9, otherwise any input is allowed and fed to the plant.

The time response is different. In this case the system is abruptly stopped only at the
threshold and in the path it is evident the presence of crisp edges in the trajectory.

This is a time response to a sinusoidal input with a magnitude of 2 and bearing the same
frequency of the previous examples :
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Figure 7
Simulating the system with safety switches

Now instead of proceeding with standard blocks we can think of adding a programmable
controller that takes the external input as well as the feedback signal and evaluates in real
time the most appropriate signal according to the situation and the control strategy chosen.
The previous block diagram can be modified into the following way :

Bl prm B

Controlier  Saturation =

Output

Figure 8
A programmable controller may take the place of all the other block modifications.
The software can be changed at will without acting on the rest of the system.

and a programmable block was added to be able to introduce an arbitrary logic between the
input signals and the final system’s input.

In a real situation, the controller block can be a standard programmable Digital Signal
Processor that let us change at will the control law without changing the hardware used.
We will now try to program the Controller Block so that it will behave like the system
showed in figure 6.

To fulfill this aim the controller behaves differently according to three different system’s
states :
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pPL<X<Hp e This is the ‘normal’ operating situation, the controller simply
multiply the feedback by K and subtract it from the manual input to
obtain the system’s input

X <-p e A negative ‘out of range’ is occurring, the controller raises up to -p
any external input smaller than -p

X>p e In this case, the controller cuts down to p any external input greater
than p

It is evident that whenever the system approaches the +p or -p status then it is not possible
anymore to give a control input greater than Ipl and therefore from the system’s state space
equation we can see that whenever x = p the resulting derivative can only be negative or
ZEero.

If we set p to be less than u/A we can assure that no matter the external input given, the
system remains stable.

Here follows an numerical simulation showing the system under a sinusoidal input that
goes beyond the range given to the controller.

As for the previous examples, the value of p is set to 0.9.

0 10 20 30 40 50 60
Time (second)

Figure 9
Implementing safety switches in the programmable controller leads to the same results
obtained with block diagram modifications

4.3 Input rate limitation

The simplicity of the controller used till now bases its principle on the fact that in a 1%
order system we have direct and instantaneous control of the speed at which the system is
changing state.

If we suppose that the rate at which we can change input is limited :

—r<u<r
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it is not possible anymore to guarantee that the previous controller manages to stop well in
advance the system preventing it from going into an unstable zone.

Given a certain value u of the control input we have to calculate the point at which a full
control effort in the opposite direction is merely enough to prevent the system from going
unstable.

For simplicity we will focus now on the positive instability range, since all our calculations
can be easily reversed.

Given a constant deceleration effort equal to the maximum rate allowed, the system’s
differential equation can be written as :

X=Ax—ut

It can be shown that solutions of this differential equation are the equations represented
by :

where c is an arbitrary constant.
We will now determine the extreme of the function by finding the time at which the 1%
derivative of the system is zero.

u
x'=Ace* +—=0

A

Substituting this relation into the original function and defining “M” as the maximum value
that the function has to reach yields to :

xz—l—uze/l(r_ ! )+%t+—/%

Now, changing the time variable we shift the frame of reference so that the function
assumes the value M per T=0, we get :

xz—%e” + M+f£—T+i2

A A2
With the above relation we are able, given the parameters and the maximum values of
input and input rate, to calculate the real value of the state variable beyond which it is
impossible to recover the system.
As stated in the previous paragraph, M is equal to u/A. While the minimum time needed to
completely reverse the control input in the worst case is :

2u

TMAX =
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indicated in a negative value to remember that the found equation has meaning if computed
for negative values of the time variable.
Substituting this time into the equation gives :

u (—M%) u u
X=——e

e e

that indicates the value that x can assume for the system to remain stable and controllable.
Plotting the previous equation against the rate limitation as independent variable with a real
unitary pole and unitary input limit we get the following diagram which suggests the
boundary ensuring the controllability of the system under any input.

As one could expect the curve reach asymptotically the unitary value if we increase
indefinitely the rate limit ; at the same time a very low value of the rate limit can give a
negative result. It is clear that under this condition it is impossible to guarantee the
controllability of the system.

Drawing up conclusions, for very high values of the rate limit this controller is good
enough as it ensure the controllability of the system without penalizing too much the
system performance, while for low values it becomes necessary to use a controller that
takes into account the current value of the input value to change dynamically the safety
boundaries.

0.8t .

04r .
Safety
boundary

0.2

-0.2 1 L I 1
0 20 40 60 80 100

Rate limit

Figure 10
The safety boundary is drawn against the rate limit. For high rate limits the safety
boundary tends to be the boundary that can be calculated without taking into account
rate limiters
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In case the rate limit is not too low, compared with the overall dynamic of the system, the
method above described restricts minimally the freedom of the system and the response is
similar to the one without rate limitations.

The above circuit can be used, being careful to pick from the table above an appropriate
value for the safety threshold that the controller attempts to maintain.

I@*}—@ o L[>

Controller Saluration  Rate Limiter

Plant Output

Figure 11
The block diagram is modified and a rate limiter is applied for simulation purposes
Modifications to the programmable controller are now necessary

For example, with a rate limit of 10, it is necessary to pick a safety threshold below 0.8, in
the following figure a time response in this situation is showed :

Notice the small overshoots at the beginning of each plateau ; they are due to the presence
of a rate limiter before the actuator.
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Figure 12
The simulation with rate limiters and increased boundaries in the controller
Notice the small overshoots due to the presence of the rate limiter

In case of a much tighter limit in the control rate and with very strong control inputs, still
the system remains stable but a junky trajectory becomes much more visible as shown in
the next figure.
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Figure 13
More severe rate limits make the overshoots to be more visible ; of course new
boundaries need to be implemented to face these new characteristics of the system.

The long overshoots are the curves that were calculated before and represent the
progressive reversing of the control input while the system keeps approaching the critical
boundary.

Notice that the system is now working under severe restrictions that would not be
necessary with a smarter logic.

4.4 A controller with dynamic boundaries

Lets take into consideration the equation of the previous paragraph, giving the last useful
trajectory that the system can perform without falling into an uncontrollable status.

TR i i
X=- 2 e +M+—T+ Y
A A A
Now let’s substitute a generic time, that depends of the current status u of the input
variable.

which yields to :

At this point we obtained a relation that gives different boundaries according to the current
state of the input.
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If we plot the boundary versus the input status keeping the other parameters unitary and
fixing a rate limit of 5 we obtain the following curve :
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Figure 14
The last useful trajectory that keeps the system from trespassing the boundaries gives
information on the maximum values allowed for the state variable for a given input
condition.

We want now to implement this new relation in a controller that will use this relation to
improve the performance of the system without endangering safety.

We now need a controller that gets as an additional information its own rate saturated
output to decide dynamically the most appropriate limit. A possible modified block
diagram can look as follows :

Derivative Saturationt  Integrator

s & (P

Rate Limiter Saturation
Plant Output

Dynamic
Controller

Figure 15
A way to gain information about the rate limited input
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with the controller getting as an additional input its own rate-saturated output and using it
to constantly compute the safety boundary after which no diverging control action is
allowed.

Following is a simulation with a rate limit of 3 and, as usual an input saturation limited to
one. Now the controller allows the system to fully use the whole [-1 +1] domain gently
braking it when approaching the boundary limit even if the control input as fairly more
than the double of the one allowed.

0 10 20 30 40 50 60
Time (second)

Figure 16
Simulation performed with the previous block diagram with the usual sinus wave as
input.

The reason why the controller does not get the input directly after the rate saturator is
because this would create an algebraic loop impossible to solve during the simulation.

The logic shown before seems to work but it is not really robust and tends to fail with very
strong inputs or fast ones.

Another way to avoid the algebraic loop is to add a pole in the feedback and of course the
bigger the pole is, the less it will affect the system’s reaction bandwidth.

The new diagram will look as follows.
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Figure 17
Taking the information after the rate limiter requires a device to break the algebraic
loop ; in this case a low pass filter is used.

This new block diagram shows much more safety even with high inputs. However with fast
inputs the controller fails to stop the evolution of the system in time, due to the limited
bandwidth imposed by the feedback pole and of course putting the pole too far away
multiplies the elaboration time enormously.

0 10 20 30 40 50 60
Time (second)

Figure 18
Taking the signal after the rate limiter results in a very accurate prediction of the
trajectory.

Or a final way to efficiently break the algebraic loop is to insert a small delay in the
feedback, so that rate saturated values are not straightway fed to the controller again, but
are buffered in this example for one tenth of second, and then passed to the controller. The
lack of a real-time feedback makes the algebraic loop no more existing. Notice that in the
physical world is normal to have such small delays so having a minimal delay in the
feedback adds even more realist to the simulation.
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Figure 19
A minimal delay in the loop can also be used to break algebraic loops

The smaller the delay, the more precise will be the effect of the controller.

To simplify the controller’s algorithm a linear approximation of the true limit curve was
used. In the next picture the two boundaries are compared. Note that the linear
approximation is anyway cautelative in respect to the exact curve.
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Figure 20
Safety boundaries may be approximated with segments, resulting in a cautelative
error.
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5. Pitch control of a JAS-39 model

5.1 Introduction

In this chapter we will focus our attention on multivariable systems characterized by
unstable poles (i.e. with a positive real part) and affected by control saturations.

As already showed with single input/output system, also unstable MIMO system are
characterized by a limited controllability envelope, whose shape and size is affected by the
system’s dynamic and by the actuator limits.

A linear model of the pitch dynamic of the JAS 39 Gripen will be used. The pitch dynamic
of the JAS-39 is a very good example of a remarkably unstable system that needs control
systems to be introduced as an interface between the pilot and the aircraft response.
Several ways to estimate the operating limits will be discussed and several techniques to
safely control the flight envelope will be tested on different degrees of complexity of the
model, including saturation of the control input and afterwards introducing the additional
issues that need to be considered when significant rate limiters affect the control loop.
Implementations of the techniques will be tested on a numerical example of the model and
simulations results will be discussed.

Additionally the problem of the artificial stabilization will be discussed and several
solution will be presented.

As a last issue, hybrid controlling will be implemented to mach safety boundaries and
controllability envelope control with handling characteristics and flight quality
requirements.

5.2 The flight model
We will consider a state-space model] in the canonical form :
X=Ax+Bu

where x is the state vector and contains the five state variables of the system in the form :

e QK

€

o O

L €

where o. is the angle of attack, q the pitch rate, 8 the pitch angle, 8. the deflection of the
canard wings and 8, the deflection of the wing’s elevators which are used in the dual role of
ailerons and aft-elevators.
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Figure 1
Control surfaces affecting the longitudinal dynamic on the SAAB JAS-39 “Gripen”

The vector u contains the system’s external input and has the form:

. [5}
S,
where 8., and 8. are respectively the desired positions of elevators and canard wings,
whose dynamic is represented by a first order system.

The matrix A is the characteristic matrix of the linear system and has the following
structure :

A=|0 1 0 0 O
0 00 * 0
0 000 *

where the “*” mark non-zero matrix elements.
Obviously the third row is formed by zeros and only a unitary term since by definition :

_®
Codt

while the 4™ and 5™ rows represent the first order dynamics of the control surfaces.
The vector B has the following structure :

K *j
* ok
B={0 0
* 0
0 *
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5.3 Stability analysis for the model

The matrix A will have, in general, 5 distinct eigenvalues either real, or complex conjugate.
The real part of the eigenvalue will give information upon the stability of the associated
mode ; if the real part is positive, the system will have an unstable mode, leading to a
divergent time response in a non-perturbed motion with given initial conditions.

The particular model considered, will have five real eigenvalues, one of which remarkably
unstable.

Let A be an unstable eigenvalue, if v is the corresponding left eigenvector, by definition it is
known that :

vA=Av

now it is possible to change variables trough a linear transformation characterized by a
matrix T such that :

z=Tx

and the matrix T will be formed by five row-vectors in the following way :

where v is the eigenvector considered and the other four vectors form together with v a
group of linearly independent vectors.

Now, if we apply this transformation to the state space model given above, we obtain a
new linear set of equations in a new set of state variables z that takes the form :

¢=TAT ' z+TBu

which shows the relation between the new and old characteristic matrices.

Straight from the properties of eigenvalues and eigenvectors it is easy to see that the new
system of equations will have the following characteristic terms that we will use in the
following pages :

A 0 0 0 0] [B, B,

* ok ok ok ok * %
P L T R P * |y
k% k% % * ok
% ok ok ok ok % %

where :
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doing so, and looking at the system just obtained, we can isolate the unstable mode of the
system into a single scalar equation :

ZI = 7\’21 +B] Sec +B2 86‘6‘

in which z, is the only state variable.
Now and thereafter we will assume that in general the value and the derivative of the two
control inputs are limited and such limitations will be defined as follows :

5,.<3,,
5,.<3,
5,/<A,
8or| <A

In addition, given the coefficients of the input signal, we can define the effective control
signal  for the unstable mode considered, which will be given by the expression :

6=Blaec+B2 666

and for this new control variable we can as well define the limits in terms of absolute value
and derivatives, which will be function of the previously defined limits, according to the
expressions :

—8— = ’Bl Sec +’B2 Scc

A, +

B?_ Acc

K:‘Bl

with which is possible to calculate the limits of the effective control signal 6.

5.4 Stabilizing the system with a state feedback

The pitch dynamic, due to the unstable pole, is difficult to control by a human operator.
Usually a state feedback is applied in a inner control loop to shift the poles to more
desirable locations, according to stability requirements, handling qualities and other
considerations.

As already said the system considered has 5 real poles. Two of them ,very damped,
represent the first order dynamic of the control surfaces, a third one, which has an almost
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zero value, represent the almost indifferent behavior that the pitch dynamic shows towards
different angles of pitch.

In a symbolic representation of the state matrix as a function of traditional stability
derivatives of the aircraft, the theoretical value of this eigenvalue is exactly zero, since one
row of the matrix would be entirely formed by zeros.

The final couple of eigenvalues, represents what is generally called ‘short period’ in a
conventional airplane.

Generally, in the longitudinal dynamic of a conventional aircraft it is possible to point out
two complex conjugate eigenvalues characterized by a high damping ratio as well as a high
natural frequency. This mode, typical in every conventional-tail airplane is represented by
a rapid pitch movement, strongly damped, with little speed change and is mainly caused by
the aft tail (if any, of course).

The two real eigenvalues left in our model, one stable and one unstable, are the
degeneration of such complex conjugated poles in a very unstable configuration. A similar
effect can be obtained as well in a conventional airplane moving considerably the center of
gravity.

In the next figure typical positions for such poles are shown together with the path of short
period poles from a stable to an unstable configuration.

Img
0 K% s C e

Figure 2
Typical position for the five eigenvalues are shown (X’s). The two circles indicate
expected positions for standard short period eigenvalues in a conventional airplane.

The purpose of an artificial stabilization system is to change the aircraft response, into a
favorable one. The pilot’s impression of the aircraft’s ease of flight is determinant to define
the flight quality of the airplane.

A pilot builds a subjective opinion of the aircraft’s handling qualities in terms of how much
the plane is easy to fly and how much the plane reacts satisfactorily to pilot’s commands.
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Several literary resources indicate guidelines to link this subjective average judgment with
specifications on the poles of the linear model of the airplane.

According to the aircraft class and the flight condition, there are conditions for the
damping ratio and the natural frequency of the short period that should be satisfied for the
aircraft to be considered good in respect to handling qualities.

The more the real values are far away from these ‘optimal’ values, the lowest will be the
flight quality of the aircraft.

The aircraft’s dynamics are affected by structural properties, like the aerodynamic design,
the weight distributions and so on.

During the early stage of the aircraft design, its possible to choose particular
configurations with the aim of having a satisfactorily aircraft dynamic. Unfortunately most
of the times stability and ease of flight of an aircraft must be traded with performance in
terms of fuel consumption, maneuverability, speed and so on.

Usually general aviation airplanes or flight trainer, are designed to have aerodynamically
stable profiles and good handling qualities, even if this penalizes performance.

On the other hand, an airplane such as the JAS-39 Gripen is designed for maximum
performance and the designer traded all the flight qualities of the aircraft to maximize
flight performance, mission range, speed and lifting efficiency.

The result is an aircraft that is almost impossible to be manually piloted, especially at low
numbers of mach, when the center of lift s at it is most forward position and is closer to
the center of gravity.

The highly damped short period mode, traditionally present in every conventional plane
with tail horizontal stabilizers is turned into two real poles, one of which is unstable
enough to seriously impair a human operator trying to manually stabilize the system.

Since the aerodynamics of the JAS-39 are designed to maximize performance, it is not
possible to improve the handling qualities changing the flight design; instead it is
necessary to provide the plane with an artificial stabilizing system that, through the use of
an internal control loop, changes the flight dynamic of the aircraft and present to the pilot’s
command an improved behavior of the system.

In our particular case, it is necessary to turn the two real poles into a pair of complex
conjugate ones, with given damping ratio and natural frequency.

Several techniques may be used, all resulting in a feedback matrix that gets the state of the
system and according to the value of the state variables gives an input signal contribution
to the system.

In the following paragraphs several approaches will be tested to find optimal feedback
matrices that result into desired behaviors without making too much use of the control
action.

It is important to notice, that the input signals are physically limited and the pilot action
shares the same signals with the artificial stabilizing system. If this last one make excessive
use of input commands, may leave very little freedom to the pilot that will therefore feel
very little authority on the aircraft evolution.

5.5 Controllability boundaries without rate
limitations : Emergency recovery

As already noticed, the system is affected by an unstable mode whose analytical expression
is

Zl =7\’Z1 +Blsec+B2 606
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As already shown in the previous chapter, the presence of saturated control inputs define
and limit the possible states that the system can assume without becoming uncontrollable.
In this case z; has to fulfill the following condition :

Z, S§=z
o)<

max

that requires a controller that keeps the unstable mode inside the controllability envelope.
Regardless of internal loops stabilizing the system, it is not possible generally to assure
that the control system action mixed with the pilot’s input will not drive the state beyond
the controllability envelope.

Therefore it necessary to design a system that checks the value of the z; variable during the
evolution of the system and behaves differently according to its value.

An example of such a logic may be found in the next table :

Valueofzs, 0 IStatus | JAcion. @
- Zmax P < Z1 < Zmax P | Normal flight condition. | The internal feedback and the pilot’s
input are threaten normally. No other
action is required.

21> Zinax P Auto recovery : z, is positive and its module is
Emergency push -down | dangerously high.

The control loop and the pilot inputs
are broken ; the control surfaces apply
full negative control action until the
system exits from this condition.

21 < = Zmax P Auto recovery : z, is negative and its module is
Emergency pull-up dangerously high.

The control loop and the pilot inputs
are broken ; the control surfaces apply
full positive control action until the
system exits from this condition.

where ‘p’ is a safety parameter, positive and less than one in value, that states how much
the boundary proximity is overestimated in respect to the theoretical one.

If correctly tuned this system may avoid the pilot to drive the plane into uncontrollable
situations, simply cutting off pilot’s authority when limits are close to be exceeded. This of
course adds safety to the flight maneuvers but at the same time it is not really desirable a
control system that leaves everything in the hands of the pilot waiting for the very last
moment to grab the control of the whole plane overriding the pilot’s input in 2 moment in
which maybe the pilot command is critically important (for example, low level flight, final
landing phase, weapon aiming and delivery and so on).

In the next paragraphs more flexible control systems will be tested in the attempt to
smoothen the transition between full-pilot-command and full-recovery-command.

5.6 Creating a short period

As already explained, the aircraft model bears two real poles, one highly stable and one
highly unstable, that substitute the conventional short-period.

We will now try to move the two poles of the short period into desired positions trying not
to affect the other system’s modes.
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In the next paragraphs will prove useful to redefine the matrix T as a square matrix whose
rows are the five eigenvectors of the matrix A.

- -1

vy

L5

Such a matrix allow us to transform the system into a complete diagonal one, where all the
variables of the vector z represent the five first order modes.
Changing variables the new system will look like :

- - — —_r — - —

4 A, 00 0 0fg B Bi

2 0 XA 0 0 0|z By Ba 7S
Ll=|0 0 Ay 0 Oz |+{Bsy B 6“:]
2 0 0 0 Ay Oz Bo Bl
%] [0 0 0 0 Aqfz] [Bs Bl

And the interaction between the various system modes is only due to the sharing of the
same control actions. Without external control inputs the five state variables will evolve
independently according to their respective initial conditions.

We will now focus our attention on the two poles that represent a conventional aircraft’s
short period. Namely we will assume that they are the first two ones, A, being the unstable
one and A, being the stable one.

The system we will consider will therefore be a simple second-order one :

|:le|_|:7‘1 Oj|[21:|+I:Bn Blzji[sec:l

2, 0 A,z Bo BB

The matrices and vectors of the above system will be defined with new symbols and the
system will be written as :

Z=AZ+Pu
where Z can be obtained from x through the transformation :
Z=T, x

where Ty is a matrix formed from a subset of the T matrix :
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Now we may think of changing the position of the poles with a simple pole placing. What
we will obtain is a feedback matrix that will change our two poles into a conventional short
period with complex conjugate poles.

However, since the system has two input, the pole placement problem will have oo
solutions. Therefore we have one degree of freedom to play with when deciding the inputs
generated by the feedback matrix.

What we will do now will be to decide a priori a ratio between the elevator input and the
canard input signals to reduce the pole placement problem to a single solution problem.

To be sure that our stabilizing system will affect as much as possible the unstable mode
and at the same time will not affect too much the other modes, the control inputs will be
proportional to their respective B coefficient that quantifies their effect on the unstable
mode.

1
[5“} B s, =asd,
Bll

cc

and the second-order system will become :
Z=AZ+®as,

that is a single input system.

Now, imposing a pole placement to this system will result into a unique k feedback vector
that will in our objectives gently move the two poles without turn the whole system’s
modes upside down.

The stabilized second order system will have the analytical expression :

Z=AZ-®akZ=A-DP0k)Z
where the matrix inside the parenthesis will have the desired eigenvalues.
In the original fifth-order state space system, we can use a feedback matrix K that is linked
to the feedback vector k by the simple relation :
K=0kT,
and will change the original system into :
i=Ax—BKx+Bu'=(A-BK)x+Bu’
where v’ is the input by the external operator (the pilot or the navigation system).

5.7 Single pole placement

In this paragraph we will develop a technique to modify as sharply as possible only the
unstable mode of the system, leaving the others almost totally unaffected.

Using the same notation of the previous paragraph, the scalar equation of the unstable
mode is expressed by :

Zl = 7\’Zl +Bll 68(3 +B12 806
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Again we want the feedback action to focus the action on the unstable mode and therefore
we will link again the two control inputs by a proportion according to their effectiveness on
the mode.

At the same time we want to stabilize the system moving the position of the pole on the

other side of the imaginary axis.
8 ec | B 11
800 —h Bl2 “

By defining the feedback as :

we can arbitrary move the real positive pole all over the real axis, simply changing the
weight p;.

The new system will have the expression :

i =[N = p BL+BL) ]z, + B8 +BLY

were again the & terms are external inputs.
It is worthwhile to notice that is very easy to set up the new value for the pole. The system
will be stable if :

A
P22 2
1 +P7,

It is easy to see that the overall feedback matrix for the original system can be expressed
as :

K=(TB)"PT
where P has the structure :
[p, 0 0 0 O]
0 00 00
Pp=/0 0 0 O O
0O 0 0 0O
LO 0 0 0 0_

The final system will have all real poles and the position of the other four ones will not be
touched by the feedback system.

Given an input value to the system, the unstable mode will behave as a stable first order
system and will approach regularly an asymptotically a steady-state value without
overshoots.

Therefore this placement is very much suited when the value of the unstable mode has to
be carefully controlled. On the other hand, the handling characteristics of this system are
extremely poor, since the short period is formed by two stable real poles.

One last comment deserves the attempt to use this method to change two eigenvalues at the
same time.
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Given the structure of the matrix P, we may think of inserting two weights to change the
unstable mode together with the marginally unstable one in the following way :

pp 0 0 00
00 0 00
P={0 0 p, 00
00 0 00
0 0 0 0 0

the idea was to have p; as a very small weight, just enough for the marginally unstable
mode to become marginally stable. Unfortunately the two inputs allow only one degree of
freedom (there is only a single redundancy), and therefore only one pole can be changed
without affecting the others. Moving two poles in this way result into a strong interaction
that can lead to unsatisfactory results if the weight p; is anything more than very little.

5.8 A numerical example of the model

In this paragraph we will present a numerical example of the model given above., With this
numerical example we will try to synthesize several kind of controllers to achieve good
handling characteristics together with closed loop stability, using the techniques described
above.

The matrix A, of the state space model will have the following value :

[~13936 09744 —00019 —05349 —0.0071]
5687 —11827 00002 —259398 7.9642
A=| 0 1 0 0 0
0 0 0 ~20 0
0 0 0 0 -20 |

while the control input will be characterized by the following matrix B :

00676 —0.0313]
1527 04002
B=| 0 0
20 0

0 20 |

and both the matrix reflect the typology described in the second paragraph.

The matrix has five real eigenvalues :

—-20 -20 0.0027 10662 -—3.6452

three of which are stable, and two are unstable.
The five eigenvalues are written in the rows of the following matrix T :
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=

0 0 0 1 0
0 0 0 0 1
T=|-07771 -01908 05310 02682 —0.0757
-08098 —-03502 00014 04518 -0.1321
|- 08036 03182 —0.0004 -04784 01553 |

The two highly stable eigenvalues represent the dynamic of the two control surfaces, while
the third one is almost zero and represent the almost indifferent equilibrium condition in
respect to the pitch angle.

The last two eigenvalues represent the short period and one of them is remarkably unstable.
If we now apply the transformation changing the five variables into the five directions of
the modes of the system, we obtain the diagonal system :

:=TAT 7+ TBu

which numerically has the following form :

[-20 0 0 0 o 1 [ 20 0 |
0 -20 O 0 0 0 20 5
2= 0 0 00027 O 0 |z+| 50205 —15659 { 8“}
0 0 0 10662 0 84471 —27576|-
0 0 0 0  —36452] |-9.1357 32582 |

with the five eigenvalues forming the diagonal of the system matrix.

Now we can implement one of the techniques to obtain a feedback matrix K that stabilizes
the system.

Analytically the matrix K will turn the state space system from :

fo:

and the new matrix A-BK will have to satisfy our requirements.

As already introduced, there are in literature a number of different specifications of the
poles of the aircraft that define the handling qualities in terms of the pilot impression of the
aircraft’s response and flying ease.

In our case we will try to apply some of these considerations using the diagram of the next
figure.

On the two axes are reported the natural frequency and the damping ratio of the short
period and the area is divided into zones of different qualities.

It is obvious that our aim will be to bring the eigenvalues corresponding to the short period
into the inner sector, so that we will give good handling qualities to the plane, when closed
in the feedback loop.

If use a pole placement technique, we are sure to move the poles wherever we want and
therefore we can decide arbitrarily the handling qualities of the short period.

Unfortunately the resulting K matrix will usually make excessive use of the control inputs.
The problem is that any linear optimization does not take into account the presence of
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saturations and in some cases even when the system is close to the equilibrium point the
controller may order an excessive input.

1 T T T T T T T : T

Unacceptable

0.8

Natural
frequency

0.6
0.4

S  E |

0.1 02 04 06 10 2.0
Short period damping ratio

Figure 3
Typical relations between the handling qualities and the short period

On the other hand, an optimization like the LQR/LQG does not give control over the poles
of the system. The result of this is sometimes an undesired shift of the other poles, and a
change of the eigenvectors into undesirable positions.

We will try instead to use the method described in the previous paragraphs to create a
stable short period with desirable characteristics.

First of all we will aim to a couple of complex conjugate poles with the value :

-127+£252

which corresponds to point A on the next figure.

The corresponding handling quality is therefore good and the little damping ratio is well
suited for a fighter aircraft.

To obtain these poles we will proceed as explained before. First of all we have to extract
some values to create the small matrices of the second order system :

{‘1} [7\‘ 5}{ 21} [ 211 21—:|[ Cﬂ}
2' 2 O ;b Z B 1 B 9 N

Z=AZ+®u
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Looking at the numerical values it is immediate to extract the following values :

N 1.0662 0
|0 -36452

84471 —127576
" 1-91357 32582

and immediately we can calculate the proportion between the two inputs that will be used
by the control system :

O 131 § § bols
5 |Ta (0e TH 0w | L3065
ce [341

and it is now a straightforward to calculate with a pole placement the final K, matrix that
will be :

-0.3399 -00273 0.0003 00230 -0.0040
A7 01110 00089 —00001 —0.0075 0.0013

which can implement this matrix into a feedback controller.

<

Elevator Input

Sum Mux X' = Ax+Bu

+
< Mux State-Space

Canard input sumi

Output

e

K Matrix

Figure 4
State space model with matrix feedback

In the previous picture a linear model is implemented for simulations.

Since the model is linear, the response will be the expected one regardless of input
amplitude and history.

A more interesting case is when input saturations are applied to the control inputs,
reflecting that the control surfaces have a limited excursion.

We will assume for the future a limit of 30° both for ailerons and canard surfaces ; notice
that the above limit can not simply be overcome giving more movement freedom to these
surfaces since greater angles will not produce larger increases in the effect due to
separation of flows around the surfaces.
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Figure 5
Input saturation are added in the stream of the Canard and Elevator signals

With this new scheme, we run the risk of driving the system towards the controllability
edges.

As already showed in the previous paragraphs it is possible to extract the value of the
unstable mode z, as a linear combination of the five state variables.

In this case :

z,=[-08098 —05032 00014 04518 -01321] x,

To calculate the stability margins we have to look for the diagonal system.

In the same way it was shown for first order systems, if z, exceed certain values it is
impossible with the limited input available to gain control of the system which will start to
diverge indefinitely.

These boundaries are such that:

o

1Z“’SX=Z

max

which numerically means :
l2,| << 3152763
Another kind of feedback matrix can be found just moving one pole, as showed at the

beginning of this chapter.

We have one highly unstable eigenvalue, and we will now move it, while still keeping it on
the real axis, so that it will assume a negative value.
By defining the feedback matrix K such that :

K=(TB) PT

where P is a matrix with only one non-zero term :
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000 0 O
000 0 O
P=[0 0 0 0
000 p, O
000 0 0]

such feedback matrix will change the unstable mode into the following new scalar
equation :

2, :[7“4 — Dy (Bil +Bi2)]z4 + B416:c +B426;c

were the 8 terms are external inputs, and we can stabilize it simply choosing any value
for p4 such that :

A

D> 32 2
11+B12

choosing p=0.026 will result for example into an eigenvalue of :
A, =09867
The corresponding K¢ matrix will be :

-01778 -00769 00003 00992 -0.029
€71 00581 00251 -00001 -00324 00095

and bears several desirable properties.

This matrix in fact turns the unstable mode into a stable first order one and applying the
maximum input allowed will result in the unstable mode to asymptotically tend to a value
very close to the allowed limit without overshoots.

This means that no matter of the input the linear model will always remain inside the
controllability envelope.

However, even if the linear model never exceed the limits, if we introduce saturations in the
control loop then surprisingly the system will not be able to keep between the borders. '
The reason for this is that the control loop drives the system to tend asymptotically to a
value that is smaller than the allowed limit but drives it using control signals that saturate
one of the two actuators.

It is necessary then to have a controller that compensate with the other actuator if one of
the two actuators is saturated and this can be done with a cross-feed circuit modification
showed in the next figure.

Basically the cross-feed transfer the exceeding input to the other input after having it
multiplied by a coefficient which is different according to the direction to which the input is
transferred.

A problem raises since the transfer functions of the canard and the elevator are somewhat
different ; it is not possible to make them equal since the two transfer functions are both
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non minimum phase systems and it is not possible therefore to turn one of them into the
other.

On the other hand these differences are not too strong and in a way it is possible trade one
of them for the other if we don’t expect an exactly equal behavior.

1 +
Elevator Input v
p Sum X =Ax+Bu |
3] Y- oaty
Canard Input S(;m1 State-Space

Qutput

Sum3 _C, Saturation

&
<

K Matrix

Figure 6
Cross-feed of saturated inputs to compensate for single surface excursion saturation

In the case of this circuit, the problem is solved transferring an excessive amount of signal.
If we look at the modules of the transfer functions, we see that the elevator is more than
four times more effective than the canard winglet comparing them with an equal angle of
attack. The reason for this is that the canard winglets are not really too much involved in
the control of the plane, but instead their biggest purpose is to act as vortex generators
allowing the wing behind to sustain a much higher angle of attack before suffering an
aerodynamic stall'.

In the model redundancy of the signal is obtained therefore multiplying by 5 any signal
exceeding from the elevator and directed to the canard while dividing by 3 any signal that
saturates the canard movement and it is therefore redirected to the elevator actuator.

In this way, when one of the control surfaces will be saturated, the overall action of the
controller will instead be even stronger, thus compensating for any asymmetry due to the
fact that only one control surface is used.

As a final step, to make the model more flexible , we will substitute any part of the
controller with a programmable box that takes the two external inputs and the five state
variable and returns directly the input signal directed to the two actuators.

In this way, as done in the previous chapter, we will turn our block diagram into a very
simple one, shown in the next figure; any kind of control techniques or any special
modification to the block diagram will be implemented changing the software of the control
box.

! The vortex produced by the canard winglet will give more kinetic energy to the lower layers of
air that are in direct contact with the wing surface. It is the low energy of these layers that are
usually associated with the end of the laminar flow around a surface. The vortex basically mixes
layers in a vertical motion that distributes more evenly the energy.
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Figure 7
The state space model with a programmable controller and a state monitor that
extract information on the state of the unstable mode.

Now the model is ready for various simulations to be performed, with different feedback
matrices and control strategies.

In the control box can also be included a recovery logic that forces the maximum
converging input to the system in case the state variable of the unstable mode reaches
certain limits, as already done in the previous chapter.

5.9 Hybrid control

In the previous paragraph we used two different approaches to get two different state
feedback matrices. To obtain the first one, we looked to handling requirements and we
wanted the short period poles to be locates in certain well-defined positions.

This feedback matrix called K, does not take into account the presence of saturation in the
control inputs and therefore it may not bear desirable behavior nearby the saturation limit.
The other matrix, K¢, was instead designed keeping only the saturation limit as a reference
point and without disturbances keeps always the system within boundaries.

The problem with this matrix is that it keeps the eigevalues of the short period on the real
axis and therefore the resulting handling qualities are among the worst ones.

It is clear that these two matrices are desired in different flight condition and it could be
useful to have K, acting around neutral positions and far away from dangerous states,
giving the optimal handling feeling to the pilot and having K¢ as a feedback matrix during
critical assets to be sure that while still controllable by pilot’s inputs the system will keep
inside the given boundaries.

Of course it is not reasonable to have an abrupt passage from one way to another way of
controlling, but instead the two matrices should mix gradually, linearly combined with a
parameter that depends on the value of the unstable mode z.

Of course membership functions of the fuzzy controlling comes very useful in the
designing of suck a controller ; in a given point we can have that the instantaneous
feedback matrix that is expressed by the expression :

K=qK,+(1-¢)K.
where q is a function of the unstable mode state variable.

In general the full domain of the z variable can be divided into area of influence of the
various matrices in a fashion depicted by the next figure.

96




Recovery

Limit

Figure 8
Fuzzy logic may help the controller in decide which feedback matrix should be used
and how to combine them to obtain a dithering effect from one to another according
to the value of one (or more) state variable.

Which shows according to the state which are the weights of the matrices.

The last block represents the extreme recovery action done by the recovery logic already
implemented several times before.

This last recovery logic breaks the control loop and forces converging actions ignoring all
the other inputs. Notice that without any errors Kc itself should make this last recovery
block unnecessary.

Before showing different ways to combine matrices, we will first of all calculate a third
feedback matrix meant to be a sort of “half-way” between these two.

Applying the same method showed before for a double pole placement we can calculate a
feedback matrix such that the short period eigenvalues are :

-15+£2.01i
obtaining the corresponding feedback matrix Kj :

-03399 -0.0273 0.0003 0.023 -0.004
B ood1l 0.0089 —-0.0001 -0.0075 0.0013

The three matrices just obtained present handling qualities that gradually decrease, starting
with K, which bears optimal handling qualities and ending with K¢ with bears extremely
poor handling qualities.

These three matrices can be combined in endless ways, always taking into account that K
should be valid around the neutral positions and K¢ should be valid nearby the operating
boundaries.

The matrix Ky can be used optionally to have more control on the intermediate transition
between the first and the last one.

The problem when doing this kind of mixes is that there is no analytical proof that the
constantly time-changing linear combinations of these matrices will give expected results ;
for example it leaves a feeling of greater reliability the use of plateaus in the design of the
membership functions. A plateau leaves a feedback matrix fully active over a given range
without any influence from other matrices ; this will ensure that at least in that range the
system’s behavior will be the one predicted, and it seems opportune to have this feature at
least in the more critical states of the system.
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Figure 9
The three feedback matrices with their respective positions in the short period
handling qualities diagram

what follows are several kind of mixed controllers that were tested in the simulations.

K Recovery

Figure 10
Case one : basic non-hybrid controller with only one kind of feedback matrix and an
all-or-nothing recovery system at the end of the safety zone.
The system will be left free to evolve until the limit is reached ; once the limit is
trespassed a recovery action will bring the system inside the safety zone again.
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K Recovery

Figure 11
Case two : simple hybrid controller, the matrix K, turns gradually into K, which is
designed to make it impossible for the external operator to drive the system towards
certain values of the unstable mode state variable. Notice that in the final part, before
the recovery system zone, the feedback matrix K remains alone to ensure its safety
effect on the control of the unstable mode.

K I Recovery

150 300

Figure 12
Case three : same as case two, but this time the matrix continuously passes through all
the three feedback matrices considered. Ky allows more control on the intermediate
steps between K, and K.
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K Recovery

Figure 13
Case four : plateaus are inserted so that each matrix has a range within which does
not suffer any kind of influence from the other ones.

K Recovery

Figure 14

Kr g

Figure 15
Case six : multiple parabolic patterns mix all the three matrices in a continuos fashion.

Obviously these are just some of the endless ways can be thought of when it comes to mix
matrices. These examples where implemented in form of Matlab code and tested in real

time simulation with manual inputs.
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The overall results were positive, and the best ones proved to be the ones with a continuos
change in the feedback matrices without any kind of intermediate plateau.

Particularly the parabolic shape gives the possibility to the main K, matrix to remain
almost untouched for a considerable range of the state variable z and then gradually but at
an increasing speed it is replaced by the more safe K¢ matrix, without any discontinuity.
Controllers with intermediate plateaus, instead, such as the one described in case four,
showed in many cases an irregular behavior due to the fact that after a continuous change
in the control matrix, it gets suddenly stuck into a value for a certain range and this change
is much more visible than the continuos change and is also visible in case of simple step
responses.

5.10 Effect of rate limiters

As already done in the previous chapter, we will now examine the operating envelope of
the system, according to the existence of the unstable pole and given limits to the control
signal’s value and changing rate.

Given the equation :

Z2=Az+90
and given the limits :

RESS

}S]SA

a new set of non-dimensional variables will be defined such as :

Az,
XIZT
)
-
3
5
U=—
A
T=M\t
_A38
Y A
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the problem can now be expressed in terms of the new non-dimensional variables and will
take the form :

0
d(x)_ I 1Y x nEs
dt\ x, 0 0)\x, ;

with the already known limits, expressed as well in the new form :

lx?_ISl

’u]Sl

Now it is interesting to gain information on the evolution of the system when the maximum
control action is applied to the aerodynamic surfaces.
For u=1 the previous equation is satisfied by the family of curves given by the equation :

1
(x,+x,+—)e ™ =C
Y

where C is an arbitrary constant.
In the same way for u=-1 we obtain a corresponding curve :

1
(x,+x,——)e"? =C

Now it is interesting to consider for example the curves that intersect the origin; their
expression is :

er2 _
X, ==X, +——— (u=1)
l—e ™
i

while another interesting pair of curves are the ones that touch the controllability edge of
the state variable x; without crossing it.

The upper one is the curve with u=-1 which crosses the point x;=1 and x,=-1 which has the
expression :

1 —y (X, +
x, =-x, +—Y-(1—e 10y
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while the lower one is the curve with u=1 which crosses the point x,=-1 and x,=1 and bears
the following expression :

1 ]
x, ==X, +— ("7 = 1)

these relations can be used to compute a restricted range for z,. For example if we
substitute the value x,=1 in the first boundary equation we obtain the value for x, :

1 -2
Xy =—1+—(1=e")
v
and in the same way substituting x,= -1 in the second equation we obtain the value for x; :
. — 1 -2y
Xy =1+~ (e = 1)

what we have obtained are two new safety boundaries.
If we restrict our recovery system so that it keeps x, between these two new boundaries :

X SX| S Xpx

we can be sure that the delays involved in the presence of rate limiters will not cause the
system to exceed the controllability boundaries.

This of course restrict the area of free control of the system. The more strict are the rate
limiters and the bigger will be the region lost compared to the case without rate limiters.

An initial idea could be to proceed as showed in the previous chapter with the first order
system, having a controller that dynamically change the boundary according to the state of
the input variables.

Known the position of the two control inputs, it is possible to know the value of the
parameter X, and therefore it is known the value of the maximum x, allowed from which it
is a straight forward to obtain a maximum value for z,, beyond which a full converging
control action is not able anymore to keep the system into a controllable configuration, due
to the finite speed at which we can vary the input signal.

Therefore our controller may switch from normal controlling to a full recovery action if the
dynamic z; value getting too close.

While this system works most of the times, it does not analytically assure that the recovery
system always switches-on in time to save the system.

It is possible to construct some simulations to show that in some cases the limits are
exceeded and the auto-recovery fails to work properly.

To better understand the problem of this approach, we may notice that not always the
system is able to move the effective control signal at it maximum speed.

The maximum effective control signal is defined as :

g = ‘Bl gec +‘B2 gcc

and represents the way control inputs may affect the unstable mode.
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In the same way we could compute the maximum speed at which the effective control
signal may change, and this is a function of the individual values of the maximum control
rates of the single inputs.

K:‘BI}AEC +|Bz'Acc

Note that we may have two different values of the control inputs leading to the same value
of the effective control signal and this means that not always during an evolution from one
state to another of the effective control signal the maximum rate can be used.

If, for example, the canard input reaches its saturation limit, then only the elevator input
will change and the maximum changing rate for the effective signal will be reduced to :

ZZ‘BJAW

in general the path between two values of the effective signal will be formed by an initial
part in which both the input signals will change at their maximum rate and therefore the
maximum rate for the effective control signal will be used and a terminal phase during
which the evolution speed may be significantly decreased.

This additional delay may be large enough to erode the safety margin of the recovery
system thus making the recovery system unable to pull the system inside the controllability
edge in time.

Given a certain value of the unstable mode z, and a position of the control signals de and
dc, we will now illustrate a procedure to compute a correct maximum value for the
unstable mode before which no recovery action is needed.

During the following paragraph we will consider valid the following statement :

|
=g

I
>

LY
Ant

B>

that means that the canard and the elevator inputs take the same time to reverse the control
action.

If this is not true the following concept will not change qualitatively, instead there will only
be different lines along which the input signals will move when changing the value of the
effective control signal.

We will now focus on the upper limit of the unstable mode, that is, finding the maximum
positive value at which the recovery should start.

Since positive angles of the canard deflection affect qualitatively the aircraft in the same
way as negative elevator deflections, the coefficient 1 and B2 are characterized by
opposite signs. Therefore a typical recovery response to a dangerously high value of z; will
result into dec moving to its maximum positive value and Scc moving towards its
maximum negative value.

We need now to calculate the evolution of the system during the two phases to find the last
possible value of z, that allows the recovery action to keep the system between the
boundaries. Such calculation will need to be done backwards, starting from the limit
(reached when x,=1 and x,=-1) and calculating the evolution with the reduced speed until a
certain value of x, is reached, and this will allow to know the value of x; in the
intermediate point when one of the two inputs become saturated. The first part of the
trajectory will be then computed knowing the final value that has to be reached.

In general, trajectories towards the positive limits of z; are given by the general integral :
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| RN
(x,+x,——)e" =C
TR

whose meaning is fully explained in the previous pages.
We recall for ease the correspondence between the variables of the equation and the
physical variables of the system :

Az,

X; =—-
o

Xy =2
a

_M8

v A

a more useful expression of the above general integral is one that express the value of x, as
a function of x,, y and of a point x,; and X, that we want to be included in the trajectory.
This leads to the following expression :

1 N
—_— o ’Y("])Z—"\Z)
X = x2+()cp1-¥-xp2 Ye

Now, we start from a given value of z;, 8. and . ; it is immediately possible to calculate
the value of x, corresponding to the actual values of 3 and & :

’ _ Bl 8ec +Bz 60c
X, ———————S

now we have to make distinction between three different cases :

5.10.1 Caseone: §. = - O

This is the simplest case, the input signals will change together until the endpoint will be
reached simultaneously. In this case no special considerations are needed and everything
goes like a system with a single input. We will no more spend words on this case.

5.10.2 Case two : d. > - dec

In this case, after an initial phase during which the two control signals will move together,
the elevator input will saturate and the canard input signal will evolve alone until the end
point.

During the first phase the input variables will assume the following values :

8(’3(3 S 66() Sge
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-8, +8, +8/, <8, <8,
While during the terminal phase, the ranges will become :

6€C = ge

~5,<8,<-5,+8, +8,

We can define the intermediate point as the one at which :

S, | [0 3,
6(:6 B 8:; - —Sc+6;c+8,cc

and we will have a corresponding value for x, given by the expression :

”_ Bl 6: +B2 8:,0 . B]—Se +BZ('——SC +6;c +620)

4

2 5 5

Known the value of x, in the intermediate point we can now trace back the trajectory from
the point (1 ; -1) with the formula shown previously :

1 -
_ - 8 V()
Xy ==X H(x, X, Ye 7
Y
which in this case becomes :
x]'= __1_ —x} - __1_ e V271
Y- Y2

where v, is calculated considering only the canard input signal varying with the following
relation :

A0
Yo =10+
‘B 2 IAC
now that both x, and x, of the intermediate point are known, we can finally know the value
of x*; corresponding to x’,, who is known from the beginning.

This is accomplished using again the previous formula, with the general y and starting
from the known intermediate point :

Y(5—-31)

1
x;=——x +(x/+ xé’—;)e
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5.10.3 Case three : 8. < - &

This is the opposite case and the same general rules may be applied. This time the terminal
phase will be performed with the elevator input changing alone while the canard input will
be saturated.

Once known the value of x’; it is a straightforward to compute the maximum allowable
value of z; and this will be compared with the actual value of z; to decide whether is the
case or not for the emergency recover to take place.

5.11 Numerical implementation

Implementing a controller with fixed boundaries in the case of a rate limited input it is a
straightforward of the procedure adopted in the previous chapter.

The same recovery system implemented at the beginning of this chapter can be used,
simply moving the safety limit to a lower one using the formulas introduced in the previous
paragraphs.

If instead we wish to have dynamic boundaries that allow to fully use all the theoretical
flight envelope available, we need a more complex controller that gets the current value of
the saturated control inputs and uses them to compute in real-time the safety boundaries,
with different algorithms chosen according to the situation.

In the appendix is presented a function that takes as input the position of the saturated
actuators and computes the dynamic boundary ; it will be the duty of the controller to use
this routine to check in any moment if the safety limit is trespassed of not.

The disadvantage of this routine is that it is quite heavy from a computational point of
view, since it contains logical operators combined with exponential operators ; this means
that in some cases the computational load may be excessive if the resources are not so high
and this may slow down the frequency at which these safety checks are performed.
However, once known the computational algorithm, it is possible to think about
simplifications in the controller to let it compute the dynamic boundary with few
operations, still ensuring an acceptable error, as done in the previous chapter for first order
systems.

5.12 Conclusions

Unstable multivariable systems with input saturations presented several control problems
that critically influence the safety of the system. Multiple outputs give also more flexibility
and allow more choices of control strategies.

The presence of rate limiters in general requires predictive actions. This means that it is
critical to have a reliable model of the plant, the better the model is, the smaller is the
safety margin and the larger is the operating range for the system.

Applying dynamic boundaries presents unexpected problems in the multi-input case. These
problems occur when considering an independent movement of two control surfaces. Since
several devices affect the position of the control surfaces, it is more general to consider
their movement to be independent and analyze the problem in these terms.

Independently moving surfaces increase the complexity of the algorithm, as shown in the
last paragraph, and this usually overloads the controller with heavy operations that are
much more demanding than the rest of the control algorithm.

According to the precision of the model it is reasonable to have approximations to avoid
the calculations of exponential functions. Even with approximations, the software will be
more complex than before.

More complex algorithms usually result into less reliable software unless a lot resources
are spent to formally analyze and debug the routines. When designing mission-critical
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components, software reliability is a major issue that must be kept into account when
choosing control strategies.

The more complex controller and the much more difficult implementation of a dynamic
boundary controller is the price required to fully use the flight envelope.

108




6. APPENDIX

6.1 Stability derivatives of the model

The matrix elements that are characterizing the short period of the plane can be easily be
estimated through the knowledge of the stability derivatives of the aircraft.

In this case we can have a satisfactorily representation of the above model trough
conventional stability derivatives which can be used to investigate the effect of small
changes of such coefficients.

A state space representation of the model would be :

M & ] Zw o

o o ~1 ~0 * #| A

. l,[o

q Mw+MwZW M{]"l‘Mqu ~0 * * q

O1= 0 1 0 0 O |+Bu
§e 0 O O ES O 68
_60_ L 0 0 O O *_ _SC_

where the terms are expressed by the following expressions :

~ (Cp, +Cp )OS

Z\V =
muy,

M\V = Cm %

“uyl,
Mw:Cm.LQSC
“2uy ug 1,
c S

z7,=-c S %
¢ 2uy ugm
Mq =L LQSE
¢ 2u, I),

Note that some elements that in the theoretical model are supposed to assume the value
zero or one, assume in reality values lightly different.
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In particular the third column of the matrix A should be composed of all zero term, while
in reality has some very small non-zero terms that turn the null eigenvalue into a slightly
unstable one. It has been reported that this small difference is caused by the presence of the
horizontal trim tab.

6.2 MATLAB routines used in chapter 5

6.2.1 Script CANARD.M

This MATLAB script is used by all the models to extract numerical data for the
simulations. It contains the numerical model and performs several other computations to
store in appropriate variables the value of several other characteristics of the model itself.

% Function CANARD.M

A=[[-1.3936 0.9744 -0.0019 -0.5349 -0.0071]1;[5.687 -1.1827
0.0002 -25.9398 7.9642];[0 1 0 0 0];{0 O O =20 0J;[0 O O O -
2011

B=[[0.0676 -0.0313];[1.527 0.4002];[0 0];[20 01;[0 201]
C=[[1 0 0 0 O0];[01 0 O0O0];[00 1 00};[00010];[0000
111

D=[[0 01;[0 01;[0 01;[0 0];[0 011

% *** Elevator Transfer Function (1) ***

Al=h;

B1=B(:,1);

Cl=C;

D1=D(:,1);

[NUM, denl]=ss2tf(A,B,C,D,1);
numl=NUM (3, :);

zerosl=roots (numl)
polesl=roots (denl)

% *** Canard Transfer Function (2) ***

Q.

A2=RA;

B2=B(:,2);

C2=C;

D2=D(:,2);

[NUM, den2]=ss2tf (A,B,C,D,2);

num2=NUM (3, :) ;

num?2 (2)=0; %Put to zero an almost-zero value
zerosZ=roots (num2)

polesZ=roots (den?2)

oo

o

Unstable modes

oo

[V,dl=eig(A");

T=V';
TT=T (4, :);
Az=T*A*inv(T);
Bz=T*B;

oo

% Feedback Matrix

110




oo

K=place(A,B, [-20 -20 -0.05 ~2.2-2.24*1 -2.2+2.24%*11])

% Sharp Stabilization (1)

P(3,3)=0;

P(4,4)=0.026;

P(5,5)=0;

Kl=(T*B) '"*P*T;

% Mixed Stabilisation (2)

P(3,3)=-0.001;

P(4,4)=0.03;

P(5,5)=0;

K2=(T*B) '"*P*T

% Placement of two poles (3)

beta(l:2,1)=Bz(4:5,1);

beta(l:2,2)=Bz(4:5,2)

alpha=beta(l,1)/beta(l,2)

alfa=[[1 ] [1/alphall

lambda(l,1)=d(4,4);

lambda( 2)y=d(5,5)
i(l,:)= ( 1)

t1(2 :)=T(5,:)

skappa=place (lambda,beta*alfa, [-0.22-1%0.45 -0.22+1*0.45]);
Skappa=place (lambda,beta*alfa, [-1.5+2.01*1 -1.5-2.01*1]);
$kappa=place (lambda,beta*alfa, [-2+2*1,-2-2%1]);

kappa=place (lambda,beta*alfa, [-1.5+1%2.01 -1.5-1%2.01]);
K3=alfa*kappa*ti

Placement of two poles with a greater complex part (4)

do do oe

kappa=place (lambda,beta*alfa, [-1.27+1*2.52 -1.27-1%2.52]);
K4=alfa*kappa*ti
6.2.2 Function CBOX.M

This is the basic controller. Meant to replace the blocks diagrams giving the same
performances it only takes the two inputs and applies a linear feedback to them.

oP

Function CBOX.M
Normal state feedback with a K matrix

o oo

oo

function [SYS]}=cbox (input);

ol

oo

INPUTS

oo

de=input (1) ;
de=input(2);
X (1:5)=input(3:7);

oo oo

Feedback Matrix
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Kl=[[-0.1778 -0.0769 0.0003 0.0992 -0.0290];[0.0581
0

.0251 -0.0001 -0.0324 0.009511;
K2=[[-0.2306 0.0110 0.0001 -0.0255 0.01001;[0.0753
-0.0036 -0.0000 0.0083 -0.0033117;
K=K1;
%
% Feedback computation

Q

feedback=(K*x") "'
de=de-feedback (1) ;
dc=dc-feedback (2);

oo

oo

Output

oo

SYS=[de dc];

6.2.3 Function CBOX0.M

This function behaves like the previous one but adds a cross-
feed to the inputs, replacing the corresponding block
diagram.

$ Function CBOX0.M
% Normal state feedback with a K matrix

% With cross feed of saturated inputs

function [8YS]=cbox0 (input);

o5

[eis

INPUTS

e

de=input (1) ;
de=input (2);
x(1l:5)=input(3:7);

% Feedback Matrix

Kl=[[-0.1778 -0.0769 0.0003 0.0992 -0.02901;[0.0581
0.0251 -0.0001 -0.0324 0.0095]11;

K2=[[-0.2306 0.0110 0.0001 -0.0255 0.0100];[0.0753
-0.0036 -0.0000 0.0083 -0.003311];

K:Kl 7

% Feedback computation

feedback=(K*x')"';
de=de-feedback (1) ;
dc=dc-feedback (2);

oe

oo

Cross—Feed of Saturated Control Surfaces

do
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dcplus=0;

deplus=0;

1f de > 30
dcplus=-(de-30) *5;

elseif de < =30
dcplus=-(de+30)*5;

end;

if dc > 30
deplus=-(dc-30)*.3;

elseif dc < =30
deplus=~(dc+30)*.3;

end;

de=de+deplus;

dc=dct+dcplus;

SYS=[de dc];

6.2.4 Function CBOX1.M

In this function the recovery logic is added with a monitoring on the z variable.

Q.

[}

oo

Function CBOX1.M

de=input (1) ;
dc=input (2);
x(1:5)=input (3:7);

oo

oP

Feedback Matrix
(Several Choices)

oo

o°

0.

0.

Kl=[[-0.1778 ~-0.0769 0.0003
0.0251 -0.0001 -0.0324
RK2=[[-0.2013 -0.0878 -0.0023
0.0287 0.0007 -0.0370
K3=[[-0.3399 -0.0273 0.0003
0.0089 -0.0001 -0.0075 0
K4=[[-0.4177 -0.0145 0.0003
0.0047 -0.0001 -0.0006 -0
K=K2; % Matrix used

oo

o

Unstable mode

oo

v=[0.8098 0.3502
z=v*x';

-0.0014

oe oo

Feedback computation
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% Normal state feedback with a K matrix
% Checks the unstable mode 7

% Full recovery 1f [|Z|>limit

function [SYS]=cboxl (input);

1imit=310;

% INPUTS

0.0992
009511:

0.1132
010811

0.0230

.001311;

0.0018

.0011711]¢

-0.4518 0.13217%;

.02907; [0.
.03311; [O.
.00401: [0

.00331; [0.

0581

0658

.1110

1364




%

feedback= (K*x')"
de=de~-feedback (1)
dc=dc-feedback(2)

I
I

ol oo

Cross Feed of saturated inputs

o°

dcplus=0;

deplus=0;

if de > 30
dcplus=-(de—-30)*5;

elseif de < -30
dcplus=-(de+30) *5;

end

if de > 30
deplus=-(dc=-30)*.3;

elseif dc < =30
deplus=-(dc+30)*.3;

end

de=de+deplus;

dc=dc+dcplus;

o

a°

Emergency Recovery

Q

(o)

if z > limit

de=30;
dc=-30;
end;
if z < -limit
de=-30;
dc=30;
end;
% Output

SYS=[de dc];

0.2.5 Function CBOX2.M
This function implements the simplest scheme shown of hybrid controlling.
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K Recovery

Function CBOX2.M

Normal state feedback with a K matrix
Checks the unstable mode 7

Full recovery if |Z|>limit

Hibrid two-state controlling

unction [SYS]=cboxl (input):;
imit=310;

INPUTS

do oo d° o dO do do oo de oo

de=input (1) ;
de=input (2);
x(1:5)=input(3:7);

oo

oo

Feedback Matrix
(Several Choices)

oo

o
(]

Kl=[[~-0.1778 -0.0769 0.0003 0.0992 -0.029071;[0.0581
0.0251 -0.0001 -0.0324 0.0095]1];
K2=[[-0.2013 -0.0878 -0.0023 0.1132 -0.0331];[0.0658
0.0287 0.0007 -0.0370 0.0108]11:;
K3=[[-0.3399 -0.0273 0.0003 0.0230 -0.0040]1;[0.1110
0.0089 -0.0001 -0.0075 0.00131];
K4=[[-0.4177 -0.0145 0.0003 0.0018 0.0033]1;1(0.1364
0.0047 -0.0001 -0.0006 -0.00117171;

o5}

o

Unstable mode

[eis}

v=[0.8098 0.3502 -0.0014 -0.4518 0.13217];
z=v*rx"';

oo

oo

Matrix Combination

oo

K=((300-abs(z))/300)*K4+ (abs (z) /300) *K1;
if abs(z)>300

K=K1;
end;
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oo

oo

Feedback computation
feedback=(K*x')"';

de=de-feedback (1) ;
dec=dc-feedback(2);

oe

oo

Cross Feed of saturated

e

dcplus=0;

deplus=0;

if de > 30
dcplus=-(de-30)*5;

elseif de < -30
dcplus=-(de+30) *5;

end

if de > 30
deplus=-(dc-30)*.3;

elseif dc < =30
deplus=-(dc+30)*.3;

end

de=detdeplus;

dc=dc+dcplus;

oo

oo

Emergency Recovery

oo

if z > limit

de=30;
dc=-30;
end;
if z < -1limit
de=-30;
dc=30;
end;
% Output
S8YS=[de dc];

6.2.6 Function CBOX3.M

inputs

In this second case of Hybrid Control the matrix combination block chooses between three
different matrices and differs from the previous function in the following lines :

% Matrix Combination

if abs(z) < 150

K=((150-abs(z))/150)*K4+ (abs (z) /150) *K3;

elseif abs(z) < 300

K=((300-abs(z))/150)*K3+((abs(z)=-150)/150) *K1;

else
K=K1;
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end;

K I Recovery

6.2.7 Function CBOX4.M
This time plateaus are inserted with the use of the following code :

% Matrix Combination
if abs(z) < 100
K=K4;
elseif abs(z) < 150
K=((150-abs(z))/50)*K4+((abs(z)-100)/50) *K3;
elseif abs(z) < 200
K=K3;
elseif abs(z) < 250
K=(({250-abs (z))/50)*K3+ ( (abs (2z)-200)/50) *K1;
else
K=K1;
end;

K Recovery

6.2.8 Function CBOX5.M
In this function the use of parabolic membership function is introduced.
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Here is the corresponding code that decides the weight of the two matrices :

% Function CBOX5.M
% Normal state feedback with a K matrix
% Checks the unstable mode 7Z

% Full recovery i

f |Z2]>1limit

% Hibrid three-state fuzzy controlling

function [SYS]=cboxl (input);

% INPUTS

de=input(1l);
dc=input (2);
x(1:5)=input (3:7)

e8]

oo

Feedback Matrix

oo

oo

K1=[[-0.1778 ~-0.
0.0251 -0.0001

K2=[[-0.2013 ~-0.
0.0287 0.0007

K3=[[-0.3399 -0.
0.0089 -0.0001
K4=[[-0.4177 -0
0.0047 -0.0001

% Unstable mode

v=[{0.8098 0.3502
Z2=Vv*x';

oo

Matrix Combinat

oe o

if abs(z) < 200

.
r

(Several Choices)

0769 0.0003

-0.0324 0.

0878 -0.0023

-0.0370 0.

0273 0.0003
-0.0075 0

.0145 0.0003

-0.0006

0.0992
009511

0.1132
0108]1:;

0.0230

.001371;

0.0018

.0011]1]¢

-0.0014 -0.4518 0.1321];

ion

.02907; [0.
.03317; [0
.00401;[0.

.00331; [0.

0581

.0658

1110

1364

K=K4* ((200"2-abs(z)"2)/200"2)+K1l* (abs(z)"2)/(200"2);

else
K=K1;
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end;

Feedback computation

oo oo do°

feedback=(K*x')';
de=de-feedback (1) ;
dc=dc-feedback(2);

% Cross Feed of saturated inputs

dcplus=0;

deplus=0;

if de > 30
dcplus=-(de-30) *5;

elself de < -30
decplus=-(de+30) *5;

end

if dc > 30
deplus=-(dc—-30)*.3;

elseif dc < -30
deplus=-(dc+30) *.3;

end

de=de+deplus;

dc=dct+dcplus;

% Emergency Recovery

if z > limit

de=30;
dc=-30;
end;
if z < -limit
de=-30;
dc=30;
end;
% Cutput

oe

SYS=[de dc];

6.2.9 Function CBOX6.M

In this last control box, three function are mixed with parabolic membership functions
using the following code variation :

oP de

Matrix Combination

oo

if abs(z) < 150

K=K4*((150"2-abs (z)"2)/150"2)+K3* (abs (z)"2)/(150"2);
elseif abs(z) < 200

K=K3;
elseif abs(z) < 250
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K=K3* ((250"2-abs(z)"2)/(25072-200"2))+K1* ((abs(z)*2-
20072)/(25072-200"2));
else

K=K1;
end

K Recovery

6.2.10 Function STOP.M

This function allows the realization of a dynamic boundaries controller ; it takes as inputs
the position of the control surfaces and return the maximum controllable value of z.
It makes uses of a small function called “margin” which is reported thereafter.

ol

o

STOP .M
Dynamic boundaries
as a function of the control surfaces position

ot do

oo

Function z = stop(de,dc);

% Numerical Constants

Q

lambda=1.0662;
demax=30;
dcmax=30;
Demax=300;
Dcmax=300;
betal=-8.4471;
beta2=2.7576;

of

ol

Maximum values

Q

dmax=abs (betal) *demax+abs (beta2) *dcmax
Dmax=abs (betal) *Demax+abs (beta2) *Dcmax
Dmaxl=abs (betal) *Demax
Dmax2=abs (betaZ2) *Dcmax

oo

o

Different values of Gamma
according to the state of saturation of the surfaces

o

oo

gamma=lambda*dmax /Dmax
gammal=lambda*dmax/Dmaxl
gammaZ=lambda*dmax/Dmax?2

ol

oo

Discrimination between different cases
and computation of the appropriate margin
using margin.m as a sub-function.

oo

[sis}
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if de > -de
x2a=(betal*de+betal*dc) /dmax
x2b=(betal*demaxt+beta2* (-dcmax+de+dc)) /dmax
xlb=margin (gamma2, x2b, 1, -1)
xla=margin (gamma, x2a,x1lb, x2b)

else
x2a=(betal*de+beta2*dc) /dmax
®2b=(betal* (demax+de+dc) +beta2* (-dcmax) ) /dmax
xlb=margin(gammal, x2b, 1, -1)
xla=margin(gamma, x2a, x1b, x2b)

end;

% Output

z = xla

6.2.11 Function MARGIN.M

Computes the operating boundary given the values of the variables Y, X, Xip, Xop. It iS
called by MARGIN.M

oo

e

Function MARGIN.M (Used by STOP.M)
Xl=margin (gamma,X2,Xpl,Xp2)

oe

ol

function xl1 = margin(gamma,x2,xpl,xp2);
xl=(l/gamma)—x2+(xp1+xp2—(1/gamma))*exp(gamma*(po—xZ));
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