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Preface

In order to become Master of Science one has to do a Master Thesis Project.
This report describes the project I did. It was done during the spring and
summer of 1996 at the Department of Automatic Control of Lund Institute of
Technology.

In order to explain why I choose the present subject we have to go back
to the fall of 1995. At that time I took a course in Real Time Systems and
in order to pass it, one were required to do a project. I choose to implement
a regulator for an inverted pendulum. The report for that project is Abelson
et al. (1995). Earlier this spring I took a course called System Identification.
In this, it was also required to do a project. Since I had become fascinated by
the inverted pendulum during the project in Real Time Systems, I choose it
for the system to identify. The result was Abelson and Christelius (1996).

After having done two projects on the inverted pendulum I had got quite
a good knowledge of it. I therefore thought that it would be a good idea to
deepen this knowledge by doing my Master Thesis project on it.

As supervisors for the project I had Karl Johan Astrém, who is the Pro-
fessor at the department, and Henrik Olsson, who finished his PhD during the
time I did my thesis. I would like to express my gratitude to them for sup-
porting me and for giving me good advices. Thank you! Also, I should thank
Mikael Johansson for giving me a copy of an old project report in Real Time
Systems on the inverted pendulum. Johan Eker supplied me with a copy of
Eker et al. (1996), a mathematical model of the inverted pendulum on which
parts of Section 2.1 in this report is based, and Eker and Astrém (1996), a
description of a nonlinear observer for the inverted pendulum. He also gave
me a copy of a PAL-program for swinging up and regulating the pendulum.
Thank you two!

Let’s end the preface with a joke! I have a habit of first writing my reports
using pencil and paper and then afterwards type them into the computer.
Typing is very mechanical. Applying the syllogism in the beginning of Section
1 means that there was friction while typing. Indeed there was!

Lund, July 1996
Carl Fredrik Abelson
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Figure 1 The inverted pendulum, and the pendulum plus the real-time computer.

1. Introduction

This report has two subjects, the inverted pendulum and friction. Somewhat
simplified and humorous, the connection between these can be made by the
following syllogism. Friction exists in every mechanical system. The inverted
pendulum is a mechanical system. Therefore, friction is affecting the inverted
pendulum.

The inverted pendulum is an unstable process. It consists of a pendulum
which is to be balanced. There are many kinds of inverted pendulums. The
one used in this project may be described as follows. An arm is mounted to a
center pillar, and a pendulum is attached to the arm. Both the arm and the
pendulum may be rotated. The acceleration of the arm may be controlled. A
photo of the inverted pendulum is in Figure 1.

Friction may occur in two places. The first is in the bearing by which the
arm is mounted to the center pillar, and the second is in the bearing which
connects the pendulum to the arm. In this project, it is assumed that the
latter friction is negligible and thus only the former will be examined. Except
for the bearing, this friction is explained by three contact pins. They are used
to transmit the measurements of the pendulum position, the arm position and
the arm velocity.

When trying to control the inverted pendulum with a simple, linear con-
troller one gets limit cycles because of the friction. The size and shape of these
depend on the nature of the friction. Therefore, the limit cycles may be used
to determine suitable parameters for a friction model, e.g., by simulation. A
description of this, along with results from such investigations, is presented
in this report. The size of the friction has also been determined using sim-
pler methods. Also, it has been examined if the friction differs for different
directions of the arm.

Friction is a very simple or a very complicated phenomenon, depending
on how accurately one looks at it. On a macroscopic, or rough, level it is




easy to understand but on a detailed level there are a number of peculiarities
associated with it. Because of this, there is an abundance of friction models,
reaching from simple ones with a single parameter to differential equations of
high order and with many parameters. In this thesis two models have been
used, a simple one and an advanced one. Parameters for both models have been
identified and their performances have been compared. It has been examined
how much better the advanced model is in capturing the friction of the inverted
pendulum. Both models, along with some properties of friction, are presented
in Section 3.

Before closing this section, the outline for the rest of the report is presented.
The report consists of three parts followed by a summary. In the first part the
theoretical background is presented. Section 2 contains a presentation of the
inverted pendulum. A mathematical model is derived and the linear controller
used to control it is described. Section 3 is about friction. Some basic properties
are presented along with the two friction models used in the experiments. Limit
cycles is the theme of Section 4. Some methods for predicting them are given
along with their relationship with friction.

Sections 5 and 6 make up the experimental part. In these, the practical
experiments are presented. Section b gives the results from simulation experi-
ments of the friction models. In Section 6, model-based friction compensation
is tried.

In order to perform many of the tests on the real process, a real-time
regulator had to be written. This is presented in Section 7. A user’s guide is
given and the internal structure of the program is presented.

The last section consists of a summary of the report followed by some
concluding remarks. Possible extensions of the thesis are also mentioned.




2. The Inverted Pendulum

The inverted pendulum is a common example of an unstable process. This
is partly explained by the fact that such a device is fairly easy to construct.
The pendulum used in this project was built at the Department of Automatic
Control at Lund Institute of Technology in Lund, Sweden.

It is pictured in Figure 1. It consists of a pendulum, an arm and a center
pillar. The arm is mounted on the center pillar and may be rotated in a
horizontal plane. The pendulum is attached to the arm and it may also be
rotated, but in a vertical plane. The point where the pendulum is attached to
the arm is called the pivot point.

The process has two equilibrium points. The downward position corre-
sponds to an ordinary pendulum. This point is stable and in the phase plane
it has the character of a stable node. The upright, or inverted, position is
unstable and has the character of a saddle point. The goal is to design a reg-
ulator so that the upper equilibrium point in the closed loop system is stable.
In other words, the pendulum should be balanced.

Three signals can be measured. The angle and the velocity of the arm,
and the angle of the pendulum. The input to the process is the voltage to the
motor. This is approximately proportional to the acceleration of the arm.

2.1 Mathematical Models

In this subsection a nonlinear model of the inverted pendulum will be derived.
The derivation is based on Eker et al. (1996).

The angle of the arm in radians is denoted by ) and the angle of the
pendulum, also in radians, is denoted by §. The angle § = 0 means a pendulum
in its upright position.

The dynamics of the drive electronics are fast and can be neglected. The
input voltage thus results in a torque on the arm. The relation between the
control voltage V and the angular acceleration of the arm {2 can be described
by the following proportionality:

JO = kV

Choose as the theoretical control signal u the acceleration of the arm in m/s?.
The relation between u and € is

u = ﬂLl (1)

where Ly is the length of the arm.

It is assumed that the arm is weightless and that the mass of the pendulum
is concentrated to a single point, the mass point,

The model is derived using a force equation. Before stating it, the accel-
eration of the mass point is calculated. Two coordinate systems are used, a
rotating coordinate system (éj€3€3) and a static coordinate system (e—%e-’ée_g)
The base vectors are defined in Figure 2. The relationship between the coor-
dinate systems may be described by a rotational transformation.,

cosfl —sinQ? 0
(e‘{ € e';;):(e_i“ e_"; e_f;) sinl!  cos? 0
0 0 1
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Figure 2 The coordinate systems used in the derivation. L; denotes the length of
the arm, and L; denotes the length of the pendulum.

Let 7 be a vector that points at the mass point. An expression for it in the
rotating coordinate system can be calculated using some trigonometry.

(Me=(In Lasin(d) Lycos(6) )

The velocity of the mass point is calculated by taking the time derivative of

(Me-
(M= (Fe= (0 Lycos(6)d ~Lysin(0)d )

The acceleration is obtained in a corresponding way.

(@)= @)= (0 Ls(cos(0)d - sin(0)(6)?) ~ La(sin(8) + cos(6)(6)?) )

The axis of rotation is €3 = e-é. This is a static axis and common for both
coordinate systems. In vector form, the angular velocity & and the angular
acceleration & may therefore be expressed as follows:

(@)e= (@)er = Q- 63
(@)= (A)er =& = - €3

The wanted acceleration is the one in the static coordinate system, not the
one in the rotating coordinate system. Using a standard mechanics theorem,
the relation between the two accelerations may be expressed as:

@ =AXTH+BX (@xF)+2WxT+d




e, A
F
€2
mg
Figure 3 The forces acting on the mass point.

Inserting the above expressions gives
a*:( 00 O ) X ( Ly Lysind L2c050)+
(00 a)x((00a)x( I Lasing Lycoss ))+
2(0 0 @) x (0 Lycos(0)f ~Iysin(0)f )+
(0 La(cos(0)d — sin(6)6> ~La(sin(6)f + cos(0)6” ) =
( “QLysind OL; 0 ) + ( _Q2L, —0?Lysinf 0 ) +
2( —QLyc0s0 0 0 ) +

( 0 Ly(cos86 — sinf6?) —Ly(sin 4 + cos 662) ) =

((11 as CL3)

a; = —QLQ sinf — Qle - 2ﬂ9L2 cos 0

where

as = QUL — Q%Lysind + Ly(cos 06 — sin 992)
ag = —Ly(sin 86 + cos 992)

A force equation is now stated. It is assumed that only two forces act on the
mass point, gravity and the tension in the pendulum. Figure 3 shows these
forces. The force equation is stated in vector form with one equation per axis.
The forces have no composant in the ej-axis, resulting in only two equations.
They were derived using Figure 3 and trigonometry.

may = —F sinf
mag = —F cos — myg
Eliminating F yields

may cos§ — magsinf — mgsind = 0

10




Insert the expressions for as and a3 and simplify.
VL1 cos 6 — Q2L sianos(?—}—Lzé—gsinG =0 (2)

Introduce the resonance frequency of the pendulum wy.

wo = 4]~
0 I,

Inserting this and the expression for the control signal (1) in (2) gives a model
of the inverted pendulum.

. » 2
g :wésin@—i—ﬂzsinﬂcose— Mcosﬁ

. ? (3)

0=—
L

The term 2 sin @ cos § is due to the centripetal force.

Damping. In the above derivation, damping was not considered. The os-
cillations of the pendulum are damped, see for example Figure 33 in Appendix
A. Introduction of a linear damping term —2(wof gives

. . . wiu
6 = —2(wyb -[—wg sinf + N2sinfcosf — 2~ cos §
g

(4)

.U
0=—
Ly

Friction.  Friction is affecting the arm. Therefore a friction term is intro-

duced. Denote the friction force by Fy, and the actual acceleration of the arm
by a. A force equation for the arm may then be stated.

ma = mu — Fy,

Introduce a = (1L, and solve for ().
U Feo 1

Q:—L—l— m Ll (5)

Inserting this expression into (4) gives the following model:

. . . 2 Fr w?

0:—2Cw00+w§sin0—|—ﬂzsin9cosﬁ—Mcos@—k——f—tw—ocosﬁ
g m g

_u Feo 1

B Ll m L1

&

Model Parameters. The model has three parameters that have to be
identified. This is done in Appendix A. The following values resulted

wo = 6.8 rad/s
¢ =0.04
Li=021m

Determination of the friction force FYy, is the subject of this thesis. Models for
it will be given in later sections.

11




Conversion Factors. In the equations above, variables in SI units are
used. These theoretical variables differ from the signals sent to and received
from the real process. The latter ones are scaled and biased voltages. Since
it is desirable to use ST units inside the regulator, these voltages should be
converted to such after having been read from the ADC, or before being sent
to the DAC. Conversion factors for doing this are determined in Appendix B.

Denote the measured angle of the arm by z, the measured velocity of the
arm by v and the measured angle of the pendulum by y. Further, denote the
control signal sent to the DAC by upa. Then the conversion formulas between
the measured and the theoretical signals are

6 = m(y + 0.503) y € [-1,1]
1= 25.8(z — zo) z€e[-1,1]

= 28.7(v+0.02) v e [-1,1]
upa = —0.022y uUp4g € [—1,1]
2.2 State Feedback

The inverted pendulum is not stable. In order to stabilize it, it must be con-
nected to a regulator. The control strategy chosen is linear state feedback. It
is not the control that gives the best performance, but it is simple and it gives
good performance. Since a real-time computer will be used to implement the
controller, it is designed in discrete-time. The control law has the following
form:

u(k) = —Lz(k)
where

L:[11 Iy I 14}

Friction and damping are neglected, therefore the model (3) is used. In
order to do a design using linear techniques, this model is linearized. Intro-
duction of the state vector

D 9D o o

T
and linearization around the upright position, i.e., ¢ = [ 0 000 ] gives

the system
0 1 00 0
2
de wZ 0 0 0 -0
- g
#=|o 001" o |®
0 0 0 0 1/Lq (7)
1000
y=10 0 1 Ofe=
0001

12




Since the controller will be implemented in discrete-time, the system must be
discretized. Using standard methods® the following discrete-time version of (7)
is obtained:

{m(k +1) = ®z(k) 4 Tu(k)

y(k) = Ca(k)
where
cosh(wgh) 3—0 sinh(wgh) 0 0
& — wp sinh(woh)  cosh(woh) 0 0
0 0 1 h
0 0 0 1
and

—%(cosh(wgh) -1)
— %0‘ Sil’lh(LUQh)

2.
2Ly

h/L,

T'=

The specifications for the regulator are given in continuous time. Assume
that the desired characteristic equation is
(8% + 2C1w1s + w?)(s% 4 2Cowys + w3) = 0.

The denotations w; and (; stand for the desired natural frequency and damp-
ing of the pendulum, and ws and (; stand for the ditto of the arm. The
corresponding discrete-time equation is

(¢* + p1g + p2)(a* + p3g + pa) = 0 (8)
where
p1 = —2eW1Gh cos(w1y/1 — (2h)
Py = e—2wlC1h

p3 = —9egw2l2h cos(wg4/1 — Cgh)

-2 h
(pa=e w32

The characteristic equation for the closed loop system is
det(¢] — (2 —-TL))=0 (9)

By setting the characteristic equations (8) and (9) equal and solving for L, one
gets expressions for the regulator parameters. Unfortunately these are large,
and they are therefore not given here. The interested reader may find them in
Appendix C.

Before being able to calculate the L-vector another parameter has to be
set, namely the sampling period h. Since the inverted pendulum is an unstable
process with fast dynamics, this should be chosen as small as possible. In this
thesis, the following value was used:

h =0.005s

!See for example Section 3.2 in Astrdm and Wittenmark (1990).
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2.3 Observers

Only three out of the four states are measureable. The fourth, the velocity
of the pendulum, has to be estimated. The measurements are a bit noisy. If
the control signal is calculated using them, this also gets noisy. Therefore, all
states should be estimated, and the estimates should be used to calculate the
control signal. For the estimation, Kalman filters were used.

A Nonlinear Kalman Filter for the Pendulum.  The pendulum is a
nonlinear process. This can be seen in, for example, Eq. (3). For high pre-
cision, a nonlinear estimator is therefore preferred. A Kalman filter is used.
The following presentation is partly based on Eker and Astrém (1996). The
major difference is that the centripetal term 02 sin 8 cos § has been included
in the Kalman filter. The reason is that the performance of the real inverted
pendulum may be increased, since larger deviations of the arm position can
be tolerated.

For simplicity, damping is disregarded. The remaining pendulum equation
is
i 2 2 o wiu
0 = wysinf + Q°sinfcosd — —;—cos@

Introduce the following state variables

Ty = 0
1.
Ly = —0
Wo
The system then becomes
d:cl
—; = Wo2
dt
(10)
dz, . g . wolt
— = Wosinz + Q“singy coszy — — cos @y
g

As with linear Kalman filters, a nonlinear filter is obtained by replacing the
states with their estimated counterparts plus adding correction terms to both
state equations. The measurable signal is the pendulum angle 8 = ;.

diy N .

— = i ki(zy — 2

) o + k(21 1)

di .. 2 . wol . .

—d—tz = wpsin®; — Q sindq cos &1 + 207 cosdy + ka(z1 — 1)
g

The filter gains are calculated using linearization. No swingup is imple-
mented, so the system is linearized around the upright position z = (0,0) and
) = 0. With Q = 0, the system matrix of (10) is
Wol2 ]

wop sin o4

f@1,23) = [

The Jacobian is calculated for the upright position.
=2 L o)

_5;_ Wo 0

A

14




The characteristic polynomial of the Kalman filter may now be calculated.
Since the pendulum angle is measurable, C=[1 0].

s+ kl —Wy

det(sI — (A - KC)) = by —wy s

=52 + kys+ wO(kg - wo)

Assume that the desired characteristic polynomial is
5% + 20o1wo18 + Wiy
By identification of coefficients, expressions for the filter gains can be given.

kl = 2Col Wo1
2

w
By = 2 + wo
Wo

The stability of the Kalman filter has not been investigated. In simulations
and in practical tests, it has however been found to be stable. Stability of
a Kalman filter without the centripetal term and with general filter gains is
studied in Eker and Astrom (1996).

The Kalman filter was implemented using a real-time computer. Since it
is nonlinear, it is difficult to discretize. Therefore, it was implemented using
finite differences to approximate the derivatives.

A Linear Kalman Filter for the Arm. The arm is modelled by a linear
double integrator, and thus it suffices with a linear Kalman filter. A discrete-

time filter is used.
Introduce the state vector
Q
Ty = | .
Tl a
The subsystem for the arm may then be written
yz(k) = szz(k)

where
# !:1 h]
27 lo 1
1A%
SIF
h/Ly
Cy=[1 0]

15




The Kalman filter is created by replacing z, and y, with their estimated
counterparts, £ and §3, and by adding a correction term to the state equation.

{fﬁz(k + 1) = @z(ﬁz(k) + qu(k) + Kz(yz — Cz’flg(k))
J2(k) = Caza(k)

Expressions for the gain vector Ky = [k3 kq]" are now calculated. Continu-
ous time specifications are used. Introduce the desired characteristic equation

8% + 2(oawers +wl =0

where w,j is the desired natural frequency and (o3 is the desired damping. The
discrete-time counterpart is

¢’ + Po3 + Pos =0 (11)
where

Po3 = —2e"Yo2lo2h cog(wez4/1 — (2, h)

Pos = 6‘2w02¢02h

The characteristic equation for the Kalman filter is
det(q[ - (@2 — KzCz)) =0 (12)

By setting (11) and (12) equal and solving for K, one gets the following
expressions for the filter gains

k3 =2+ pos
by — 1+p03 +po4
4T h

2.4 Controller Parameters

In the experiments, two control designs are used. In the first the control of the
arm is faster than the control of the pendulum. Its state feedback specifications
are

W = Wy = 6.8

(o= 0.7

wl =10 (13)
9 =

Cz =0.7

and its Kalman filter specifications are

We1 = 20
(o1 = 0.7
' (14)
Wo2 = 10
CoZ =0.7

16




In the second design, the control of the arm is slower than the control of the
pendulum. Its specifications are

W1 = Wwg = 6.8

C]_ =0.7
(15)
Wy = 3
(o= 0.7
and
Wp1 = 20
Col =0.7
(16)
Wey = 7.5
Coz = 0.7

The gains for the state feedback loop and for the Kalman filters corresponding
to these control specifications are given in Appendix D.

The bandwidth for the pendulum, wy, is chosen the same as its resonance
frequency wg. The choice of 10 and 3 for w, is arbitrary, the first is higher
than w; and the second is lower. The Kalman filter for the pendulum is faster
than the state feedback, about three times. The Kalman filter for the arm
in the case of the slow design is 2.5 times faster than the state feedback.
For the fast design they have the same bandwidth. The latter was optimized
experimentally. The dampings are all set to the standard value of 0.7.

2.5 Summary

The inverted pendulum was the subject of this section. A nonlinear process
model was derived, and model parameters were given. Further, a friction term
was introduced. The result was the following process model:

" . . 2 Fr 2
0 = —2(w00+w3 sinf + Q2sinf cos § — f%cos@%— Zir% cos @
m g

.. u Feo 1
i
where
wo = 6.8 rad/s
¢ =0.04
L;=021lm

To control the inverted pendulum, linear state feedback is used. To estimate
the position and the velocity of the pendulum, a nonlinear Kalman filter is
used, to estimate ditto for the arm, a linear Kalman filter is used. In the
practical experiments, two control designs are used, one with fast control of
the arm, and one with slow control of the arm.

17
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Figure 4 Stribeck curve. Friction may be divided into four regions depending on
the origin of the friction.

3. Friction

In the introductory courses in physics? friction is taught only rudimentarily.
One usually learns only of its existence, that it opposes motion and that there
are two kinds of friction, one during zero velocity and one during motion.
Friction force is usually described by

F=uN

where N is the normal force and p is the coefficient of friction. There are two
kinds of p, the coefficient of static friction u, and the coefficient of kinetic
friction py,.

The friction model described above is good for a general understanding of
friction and for simple, classroom experiments. If one requires deeper under-
standing of friction, more advanced models are required. In this section such
models are given. Also further properties of friction will be given. This section
is based on Chapters 2 and 3 in Olsson (1996). For a more detailed presenta-
tion of friction, these are recommended. They also give a few more of the vast
number of friction models.

3.1 Some Basic Properties

In the introductory courses it is assumed that the kinetic friction is the same
for all velocities. This is a simplification since the friction force varies with
velocity. The relation may look as in Figure 4. This is called a Stribeck curve
after R. Stribeck who discovered it. As shown, friction may be divided into
four regions depending on the origin of the friction. Friction occurs between
two surfaces in contact. In mechanical systems, they are usually separated by
some form of lubrication.

The first of the so called lubrication regimes is the sticking regime. Here
the velocity between the surfaces is zero. The friction force in this regime is
called static friction or stiction.

When the motion starts, the boundary lubrication regime is entered. In
this, the friction is due to the oxide layers on the surfaces. Since they have

*See for example pp. 92-96 in Sears et al. (1987).
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Figure 5 Stick-slip motion. The spring is pulled with increasing force until the
box starts to move. After a sudden jerk, the box sticks again.

lower friction than the actual surfaces, the friction force is now decreasing with
velocity.

In the mized lubrication regime the surfaces are more separated than in the
former one. The reason is that more lubrication has been brought in between
them. The minimum of the Stribeck curve is located in this regime. The phe-
nomenon that the curve is decreasing in the boundary lubrication regime and
in the mixed lubrication regime is called the Stribeck effect.

In the full fluid lubrication regime the surfaces are completely separated.
The friction is now due to the lubricant only, the surfaces are “water skiing” on
the lubricant. The friction force is determined by the viscosity of the lubricant.
Since this is proportional to velocity, the Stribeck curve in this regime is a
straight line.

The Stribeck curve is not static. Depending on how the velocity is varied,
one gets slightly different curves. Increasing the velocity gives slightly larger
friction than decreasing it.

The concept of break-away force is important. It is the force required to
initiate motion, i.e., to overcome the static friction. Experimentally, the break-
away force of an object may be estimated by connecting a Newton meter to it
and then pull this with increasing force until the object starts to move. The
force required to start motion is then the break-away force. Since the static
friction usually is lower than the kinetic friction and since a Newton meter
usually contains a spring, the object usually will move for a while and then
come to rest again. This is called stick-slip motion. The experimental setup is
shown in Figure 5.

The break-away force varies with the rate by which the external force is
increased. For low force rates the break-away force is larger than for high rates.

3.2 A Classical Model

Two mathematical models for friction will now be introduced. The first one
is simple but satisfactory for less demanding tasks. The second one is ad-
vanced and state-of-the-art. It captures the properties described above along
with some more. The two models will later be used in the practical experi-
ments on the inverted pendulum. Among other things, their parameters will
be identified. Let us start with the simple model.

The easiest model of friction force one can make is to approximate it with
a constant, i.e, make it independent of velocity. This is called Coulomb friction
and is denoted by F¢. Since the static friction force is larger than the kinetic
friction force it would be more accurate to separate these two. Static friction
is often shortened to stiction and denoted by Fgs. As shown in Figure 4, the
friction force in the full fluid lubrication regime is almost linear. This leads
to the concept of wiscous friction, denoted F,, in which the friction force is
considered proportional to velocity. Pure viscous friction is rare. Instead it is
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Figure 6 Classical friction models. In a), pure Coulomb friction is shown. In b),
Coulomb friction is combined with viscous friction. In c), stiction is also in the game.
d) shows a more realistic friction model, compare with Figure 4.

used in combination with Coulomb friction to form an affine relationship.
Figure 6 shows diagrams for the three different friction types. The rela-
tionships for both positive and negative velocities are shown. Since friction
opposes motion, it has the same sign as the velocity.
The first of the two friction models to be used in this thesis is stiction with
Coulomb friction. In mathematical terms, this is described by the following
relationship:

Fe sgn(v) ifv#£0
F=({F, ifv=0and |F,| < Fs (17)
Fssgn(F,) otherwise

where F, denotes the external force. The first line describes the Coulomb
friction and the third the stiction level. The middle line says that if the object
is at rest and the external force is less than the stiction, then the object does
not move. The model has two inputs, the external force F, and the velocity
v, and one output, the friction force F. It is an example of a static friction
model, i.e., it is stateless, the only things affecting the output are the present
velocity and the external force.

The major advantage of (17) is its simplicity. It is easy to understand and
it has few parameters, only two. It is also easy to implement, although a few
problems arises, but they are common to most friction models. For a rough
understanding and description of friction, (17) is therefore good.

The foremost advantage is also the foremost disadvantage. For more de-
manding tasks it is too simple. When studying kinetic friction at a detailed
level it is not enough to approximate it by a constant. In that case static
models are not enough.

3.3 The LuGre Model

In this section a more advanced friction model is introduced. It is naturally
more complicated than the model in the previous subsection, but it will capture
the properties mentioned in Section 3.1 along with other, more advanced.
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7

Figure 7 The contact interface between two surfaces may be considered as con-
sisting of a single bristle. Its deflection is denoted by =z.

The friction model is dynamic, i.e., it has a state z. Before giving the model,
the state will be presented and motivated. Friction occurs when two surfaces
are in contact. Since the surfaces are irregular, the contact takes place at a
number of asperities. These may be modelled as elastic bristles. As a rough
approximation all bristles may be replaced by a single one. Application of an
external force causes the bristle to bend. Its deflection is denoted by z. See
Figure 7.

We are now ready to give the model. It consists of a first-order differen-
tial equation in 2, along with a formula for the output, the friction force F.
The model has six parameters, among which Fs and Fg from the previous
subsection are two.

d_ ol

at =" g('u)z
1

9(0) = ——(Fo + (Fs — Fo)e (/') (18)
0

F= o'oz+0'1§—§ + Fyv

The model was first presented in Canudas de Wit et al. (1995). It is called
the LuGre model since its pioneers came from Lund and Grenoble.

The friction force consists of three parts: stiffness, damping and viscous fric-
tion. The coefficient of stiffnessis oo > 0. It is constant and may be thought of
as the stiffness of the bristle, i.e., how hard the surfaces are. The coefficient of
damping o1 > 0 is also constant and affects the damping in the transition be-
tween sticking and sliding. The third term, the viscous friction, was explained
in section 3.2.

The function g(v) in (18) affects the shape and slope of the Stribeck curve
in the boundary lubrication regime. The Stribeck velocity vg affects the location
of the minimum of the Stribeck curve, see Figure 4.

The model has many interesting mathematical properties. It is beyond the
scope of this report to discuss them, but the eager reader may consult Ols-
son (1996). This also contains a more elaborate discussion of the parameters,
comparisons with other models and simulation experiments.

There are a few extensions and variants of the model (18). The function
g(v) may, for example, be made asymmetrical or may be replaced by a function
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other than an exponential one. Fg, Fo and F, may also be made asymmetrical
if the friction for positive velocities differs from that for negative ones. It is
also possible to let oy be a function of velocity. In Olsson (1996), the following
equation is suggested:

oi(v) = e (v/va)?
If using the LuGre model, for example, to compensate for friction, an ob-

server must be used. The reason is that the state z is not measureable. A
simple observer is given below.

dz lv| .

& = _k

i g(v)z e
1

g(v) = —(Fc + (Fs - Fg)e™/vs)') (19)
0

. dz

F= 0'02 + 0'13{ + Fv:v

Its structure is similar to a Kalman filter’s, i.e., a correction term —ke has been
added to the system equation. The parameter k is the gain of the observer,
e is an error, e.g., the control error. For mathematical properties and tests of
this observer, see Chapter 5 in Olsson (1996).

3.4 Summary

An introduction to friction has been given and some of its properties have been
presented, e.g., the Stribeck curve. There is an abundance of friction models.
Two of these, one simple

Fg sgn(v) ifv#0
F=XF, ifv=0and |F| < Fg
Fg sgn(Fe) otherwise
and one advanced

dz |v]

dt v g('v)z

1
g(v) = ’U_O(FC + (Fs — Fc)e"(”/"s)z)

d
F = aoz—}—ald—:—}—Fvv

have been presented. A more thorough presentation is given in Olsson (1996).
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4. Limit Cycles

The amplitude of a periodic solution to a linear system is dependent on the ini-
tial conditions. Different initial conditions give different amplitudes. Also, this
kind of oscillation is not structurally stable since it is caused by solutions with
purely imaginary eigenvalues. A limit cycle is a nonlinear oscillation whose
size and shape is independent of the initial conditions, or more correctly, small
variations in the initial conditions does does affect it.

4.1 Methods for Predicting Limit Cycles

It may often be desirable to predict whether a limit cycle will occur or not.
And if it does, what its shape and character will be. Therefore, methods for
predicting limit cycles have been developed.

A fairly simple such method is the Poincaré-Bendixson theorem. This states
sufficient conditions for the existence of limit cycles for a given system. Un-
fortunately it only works in two dimensions, and has no correspondence in
higher ones. Closely related is the Bendixson criterion. This states sufficient
conditions for the non-existence of limit cycles.

The most famous, and probably most used, method for predicting limit
cycles is the describing function method. A describing function may be said
to be the nonlinear correspondence to the transfer function for linear systems.
To use this method, the given system must be rewritten as consisting of two
blocks, one linear and one nonlinear. Since a limit cycle is periodic it may
be represented by a Fourier series. This is then truncated and only the first
order term is kept. It is assumed that the input to the nonlinearity is a pure
sinusoidal. The describing fuction is defined as the integral expression for the
first order complex Fourier coefficient at the output of the nonlinearity, di-
vided by some normalization constant. The describing function may be used
to predict the existence of limit cycles, and if they occur, what their period
and amplitude are most likely to be. The method is clearly approximative and
it is known to have predicted wrong. Because of this approximativeness it is
mostly used in applications, e.g., in automatic control.

None of the methods described above were used in this thesis. Instead
simulation was used. By implementing the system and the nonlinearity in, for
example, Simnon one gets, not only the period and amplitude of the limit
cycle, but also its shape. By changing the parameters in the models one can
easily see how the limit cycle changes. Simulation is not an exact method nor
a mathematical one, but since a real system is not normally exactly known, it
is, perhaps, the best method for use in this project.

The two theorems and the describing function method are described in
detail in Khalil (1992). A study of limit cycles using simulation is done in
Section 5 of this report.

4.2 Limit Cycles and Friction

Friction is a good example of a phenomenon which is closely connected with
limit cycles. One example is stick-slip motion. It is associated with velocity
control, and may occur in a system where the reference value is too small. A
typical example of stick-slip motion is given in Section 3.1. The object will
not get the desired velocity. Because of the friction it will alternate between
slipping and sticking.

Another example is hunting. This may occur in position control where
the controller has integral action. Because of the latter, the output will jump
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Figure 8 Typical limit cycles from the inverted pendulum. In a) the pendulum
angle is shown, b) contains the velocity of the arm, and c) the control signal.

alternatively from one side of the reference value to the other without ever
reaching it.

A third example of a system where limit cycles arise because of friction is
the inverted pendulum. Since this is an unstable system with fast dynamics,
the effect of friction is more severe than it would be on a corresponding stable
system. When trying to balance the pendulum in the upright position, it starts
to oscillate around it. The size and shape of this limit cycle varies with the
controller parameters. Figure 8 contains a typical limit cycle. Three signals
are shown, the pendulum angle, the arm velocity and the control signal. The
real limit cycle was obtained using the linear state feedback loop described in
Section 2. The fast arm control, (13) and (14), was used. Note that the arm is
stuck for a short while at the turning points. This is most visible in the arm
velocity.

In the next two sections, the relation between friction and limit cycles for
the inverted pendulum are studied further. Also, more examples are given.
The shape, amplitude and period of the limit cycles may be used to determine
the size of the friction, and to identify friction models. This is also done.

4.3 Summary

Limit cycles are nonlinear oscillations. There are several methods to predict
them, some of which have been presented briefly.

Because of friction, limit cycles often arise when trying to control mechan-
ical systems. This is the case with the inverted pendulum. When trying to
balance it, it oscillates. An example of this has been given.
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5. Friction Identification Using Limit Cyles

There are many ways to estimate friction. And there are many ways to estimate
the friction of the inverted pendulum. In Appendix E, simple direct methods
are used. Stiction was, for example, estimated by sending out constant control
signals of increasing magnitude until the arm started to move. There are two
reasons why direct friction estimation is not a good method. The first is that it
is rough. The second is that only simple static friction models can be identified.
Estimation of the parameters in, for example, the LuGre model requires a more
sophisticated method.

In this section, friction is estimated using limit cycles. As mentioned in the
previous section, such arise when trying to balance the inverted pendulum.
The period, amplitude and shape of the limit cycles depend on the friction.
By comparing limit cycles from the real inverted pendulum with limit cy-
cles obtained through simulation, the friction can be estimated and models
identified.

For the simulations, the simulation language Simnon was used. The pro-
cess model, the state feedback, the Kalman filter and the friction model were
implemented in separate blocks. The algorithm used to solve the differential
equations was Runge-Kutta-Fehlberg 4/5.

In Section 5.1, limit cycles from the real inverted pendulum are given and
explained. Those are used to identify two friction models, the classical model
(17) and the LuGre model (18). Section 5.2 is about the former and Section
5.3 is about the latter.

5.1 The Real Process

When trying to control the inverted pendulum using a simple, linear controller
ones gets limit cycles. In this subsection, those are presented. The real-time
controller described in Section 7 was used to register them. The state feedback
and the Kalman filter described in Sections 2.2 and 2.3 acted as regulator. Two
different parameter settings were used in the regulator, the fast control design,
(13) and (14), and the slow control design, (15) and (16).

The Fast Control Design. A typical limit cycle from the inverted pen-
dulum when the fast control design is used is shown in Figures 9-12. Eight
signals are shown. The velocity of the pendulum is not measurable, and can
thus not be plotted. In Table 1, amplitudes of the most important signals are
collected, along with the period of the limit cycle.

Some remarks should be made regarding the shape of the limit cycle. The
top of the cycles of the measured pendulum angle consist of two peaks with a
valley in between. The first peak is lower than the second. See Figure 9.

The arm is stuck for a short while at the turning points. This is most
noticeable in the plots for the measured arm velocity, since this is zero for
short periods. The cause of the sticking is of course the stiction. The valleys in
the measured pendulum angle are caused by the sticking, they coincide with
the periods of zero arm velocity.

In Appendix E, one of the conclusions is that the friction is asymmetric
and depends on the sign of the velocity of the arm. If this is the case, the
limit cycle should be asymmetric. It is not. One may therefore deduct that the
friction magnitude is not strongly dependent on the sign of the velocity.

In the Kalman filters friction was not considered. Therefore, the periods of
zero velocity do not have any correspondence neither in the estimated arm
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Figure 9 Limit cycles for the fast control design. Measured and estimated pen-
dulum angle.

Estimated pendulum velocity
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Figure 10 Limit cycles for the fast control design. Estimated pendulum velocity

and control signal.
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Measured arm angle
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Figure 11 Limit cycles for the fast control design. Measured and estimated arm
angle.

Measured arm velocity
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Figure 12 Limit cycles for the fast control design. Measured and estimated arm
velocity.
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Measured pendulum angle
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Figure 13 Limit cycles for the slow control design. Measured and estimated pen-
dulum angle.
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Figure 14 Limit cycles for the slow control design. Estimated pendulum velocity
and control signal.
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Measured arm angle
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Figure 15 Limit cycles for the slow control design. Measured and estimated arm
angle.

Measured arm velocity
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Figure 16 Limit cycles for the slow control design. Measured and estimated arm
velocity.




angle nor in the estimated arm velocity.

The Slow Control Destgn.  Figures 13-16 contain a typical limit cycle
for the case of the slow control design. Table 1 contain some data for it.

Comparing with the limit cycle from the fast control design in Figures 9-12
one finds some similarities. The top of the cycles for the measured pendulum
angle has the same shape in both control cases. However, the valley is more
distinct in the present case. With two exceptions, the remaining signals are also
similar to those in the fast case. The exceptions are the estimated pendulum
angle and the estimated pendulum velocity. The former appears to be closer
to its measured counterpart than in the fast case. This is explained by the fact
that the limit cycle in the present case is slower than in the fast case.

The foremost differences between the two limit cycles are the period and
the amplitudes. See Table 1. In the slow design, the period is 2.1 s, and the
amplitude, i.e., from turning point to turning point, of the arm cycle is 145°,
almost half a lap. In the fast design, the oscillations are faster and has a smaller
arm cycle. The period here is 1.1 s, and the width is 23°.

peakl peak2 valley T  max(u) max(Q)
fast | 0.080 0.095 0.074 1.1 4.4 2.0
slow | 0.18 0.22 0.15 21 64 5.2

Table 1 Data for the real-time limit cycles. The heights of the two peaks of the
measured pendulum angle are denoted by peakl and peak2, and valley is the height
of the valley. T is the period. max(u) and max(f2) are the maximum amplitudes of
the control signal and the measured arm velocity. All parameters have SI units.

5.2 The Classical Model

The classical model (17) has only two parameters, the stiction Fs and the
Coulomb friction F¢. Approximate values for them are given in Appendix E.
For convenience, they are reproduced here.

Fg =23
(20)
Fe=15

These estimates are used as initial values and as guidelines in the identification
in this section.

The classical model is discontinuous, the friction force for zero velocity is
larger than that during motion. When trying to simulate the model, problems
arise because of this, since simulation is not exact. There are many possible
solutions, the one used here is to define the interval Q € [-0.001,0.001] as
being zero velocity.

Comparison of Limit Cycles. Comparison of limit cycles is the method
used for the identification. It may be described as follows. Limit cycles from
the real process are compared with limit cycles obtained through simulation.
The friction parameters, Fs and F¢ in this case, are varied systematically
until the desired resemblance is obtained. Period and amplitudes are the most
important factors, but the shape, for example of the measured pendulum angle,
should also be considered.
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Measured penduium angle
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Figure 17 Simulated limit cycles for the fast control design. Measured pendulum
angle and measured arm velocity. Compare with Figures 9 and 12.

Control signal
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Time [s]
Friction force
4 T T T T T T 1 T T
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Figure 18 Simulated limit cycles for the fast control design. Control signal and
friction force. Compare with Figure 10.
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Measured pendulum angle
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Figure 19 Simulated limit cycles for the slow control design. Measured pendulum
angle and measured arm velocity. Compare with Figures 13 and 16.

Control signal
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Figure 20 Simulated limit cycles for the slow control design. Control signal and

friction force. Compare with Figure 14.
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Measured pendulum angle
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Figure 21 Simulated limit cycles for the fast control design when wy = 7.5,
Fs = 2.3 and F¢ = 1.3, Measured pendulum angle and measured arm velocity.

Compare with Figures 9 and 12.

Control signal

30 325
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Figure 22 Simulated limit cycles for the fast control design when wy = 7.5,
Fs = 2.3 and F¢ = 1.3. Control signal and friction force. Compare with Figure 10.
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Figure 23 Simulated limit cycles for the slow control design when wo = 6.1,
Fs = 2.3 and F¢ = 1.3. Measured pendulum angle and measured arm velocity.
Compare with Figures 13 and 186.
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Figure 24 Simulated limit cycles for the slow control design when wy = 6.1,
Fs = 2.3 and Fg = 1.3. Control signal and friction force. Compare with Figure 14.




Fco | peakl peak2 valley T max(u) max(Q)
1.110.143 0.142 0.135 0.888 6.0 2.70
1.3 10157 0.154 0.146 0.901 6.5 3.05
1.6 10172 0.168 0.159 0.911 7.0 3.35
1.7 10187 0.182 0.172 0916 7.6 3.70
1.9 0.199 0.192 0.182 0.921 8.2 4.00

Table 2 Variation of F¢ in the case of the fast control design. The denotations
are explained in Table 1. Fs = 2.3 was used as stiction.

Fg | peakl peak2 valley T max(u) maX(Q)
1.9 | 0.169 0.164 0.157 0.920 6.7 3.23
210171 0.165 0.157 0916 6.8 3.31
2310173 0.167 0.159 0910 7.0 3.35
250176 0.172 0.164 0.900 7.3 3.45
2.710.178 0.174 0.165 0.897 7.5 3.50

Table 3 Variation of Fis in the case of the fast control design. The denotations
are explained in Table 1. F¢ = 1.5 was used as Coulomb friction.

Theoretically, this method should work. Practically, it does not. It is diffi-
cult to get good results when applied to the inverted pendulum. One reason
is that the inverted pendulum is an unstable system with fast dynamics. Such
a system is more sensitive to changes in the process parameters than a corre-
sponding stable system. If accurate results are required, the process must be
accurately known. Results from simulations are given below. They could not
be used to find optimal parameters.

Simulation.  Figures 17-20 shows simulated limit cycles. The first two
figures contain cycles for the fast design, the last two figures contain cycles
for the slow design. Because of lack of space, neither the estimated states nor
the measured arm angle are included in the figures. Since the friction force
is generated during the simulation, a plot of this is included. The period of
the fast design is T = 0.91 s, and the period of the slow design is 7' = 3.3 s.
Compare with Figures 9-16 in the previous subsection. In the case of the fast
design, the period is smaller and the amplitudes are larger than those of the
real process. The reverse is true for the slow design.

Variation of Fs and Fz. In the simulation described above, the friction
parameters used are those determined by the rough methods in Appendix E.
It was now tested if varying them would improve the correspondence. The fast
arm control was considered first. In turn, Fs and F¢ were varied, and for each
setting the period and the peak amplitudes of the limit cycles were noted. The
results are found in Tables 2 and 3. In order to get stiction, the interval of
zero velocity had to be increased to {1 € [—0.03,0.03].

Decreasing Fg while holding Fg constant at 2.3 results in lower maximum
values and slightly smaller period. Increasing F yields the opposite. Decreas-
ing Fg while holding F¢ constant at 1.5 also reduces the amplitudes of the
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Fo | peakl peak2 valley T max(u) max(ﬂ)
1.1 10,096 0.154 0.028 3.17 4.3 3.6
1.3 1 0.109 0.174 0.032 3.26 4.8 4.2
1.5 | 0.125 0.194 0.036 3.32 b4 5.0
1.7 1 0.141 0.217 0.038 3.38 6.0 5.8
1.9 | 0.162 0.241 0.042 3.39 6.9 6.7

Table 4 Variation of F¢ in the case of the slow control design. The denotations
are explained in Table 1. Fg = 2.3 was used as stiction.

Fg | peakl peak2 valley T max(u) max(Q)
1.9 | 0122 0.189 0.036 3.32 5.2 4.9
21]0124 0191 0.036 3.33 5.2 4.9
2310125 0194 0.036 3.32 5.4 5.0
250126 0198 0.036 3.30 5.5 5.0
970128 0.198 0.035 3.31 5.6 5.0

Table 5 Variation of Fg in the case of the slow control design. The denotations
are explained in Table 1. F¢ = 1.5 was used as Coulomb friction.

limit cycles but increases the period. Variation of Fs affects the limit cycles
less than variation of F. The experiment was repeated for the slow design,
resulting in Tables 4 and 5. The behavior of the limit cycles is the same as for
the fast design. The conclusion is that limit cycles resembling those from the
real process cannot be obtained by varying the friction parameters, at least
not within reasonable limits.

Ezplanations and Improvements. One may now ask oneself what to
do in order to get the desired similarity. There are two possible answers to
this question. The first is that the friction model may be too simple. If this
is the case is tested in the next subsection, where the more advanced LuGre
model is simulated. The second answer is that the model parameters and the
conversion factors are not known exactly. The damping is almost negligible
and, thus, does not affect the limit cycles to any extent. The length of the arm
is very well known. The conversion factors for the pendulum angle, the arm
angle and the arm velocity are also well measured. This leaves two parameters,
the scaling factor for the control signal &, and the natural frequency wg. When
k, is varied, the amplitude of the limit cycles are changed but not the period.
The desired resemblance could therefore not be obtained.

Strangely enough, almost perfect resemblance is achieved in the case of the
fast design by changing wg in the process model from 6.8 to 7.5. The result
is shown in Figures 21 and 22. Compare with Figures 9-12, the limit cycles
from the real process. In the Kalman filter, wq is kept at 6.8. I have not been
able to explain why changing wq gives this resemblance. Setting wg = 7.5 in
the Kalman filter as well, gives limit cycles similar to those in the case when
wo = 6.8, i.e., having the same wp in the process model as in the Kalman filter
gives bad resemblance. The best result that can be achieved in the case of the
slow control is when wy in the process model is decreased from 6.8 to 6.1. The
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resulting limit cycles are shown in Figures 23 and 24. They are not as perfect
as those for the fast design, but they are acceptable.

Summary. To summarize, simulating the system with the same wq in the
process model as in the Kalman filter gives poor results. Increasing wp in the
process model to 7.5 gives very good results for the fast design, but bad results
for the slow design. Decreasing wo to 6.1 and it is the other way around.

What the optimal friction parameters are will be left as an open question
until Section 6. There, friction compensation is performed, and the friction
parameters that reduce the limit cycles the most are determined.

5.3 The LuGre Model

Simulation of the classical model was not successful. Optimal friction param-
eters could not be determined by varying the friction parameters. Unfortu-
nately, this holds for the LuGre model as well.

The LuGre model has seven parameters. Each of these was varied while the
others were kept constant. As default parameters, the following values were
used:

(Fs =2.3

Fc =15

F, =0.07

oo = 100 (21)
o1 =5

vg =1

k=1

Only the fast design was simulated. The results are found in Appendix F.
As with the classical model, no parameters within reasonable limits made
the limit cycles resemble those from the real process. When using the default
values above, the simulated limit cycles resembles those in Figures 17 and 18
in the previous subsection. Setting wy = 7.5 gives limit cycles similar to those
in Figures 21 and 22.

5.4 Summary

Simulation of the inverted pendulum with the two friction models was per-
formed. It was not successful, limit cycles resembling those from the real pro-
cess could not be obtained through simulation.

In Section 5.1, limit cycles from the real process were shown and explained.
In Sections 5.2 and 5.3, simulation experiments using the two friction models
were performed. The parameters of the models were varied in order to get
limit cycles similar to those from the real process. This could not be achieved.
The reason is that the process parameters and the conversion factors are not
known accurately enough.
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6. Model-Based Friction Compensation

There are many ways of reducing the effects of friction. The most common
solution is to use some kind of lubrication. A better way is to use friction
compensation. Using a friction model, an estimate of the friction force is cal-
culated. This is then applied to the process with opposite sign towards the
real friction force.

In this section, model-based friction compensation is tested on the inverted
pendulum. As can be seen in Eq. (5), the friction force reduces the control
signal. The friction force estimate should therefore be added to the control
signal. Three friction models are used, the classical model (17), the LuGre
model (18), and a pure Coulomb friction model. The real-time controller in
Section 7 is used for the experiments. The same two control designs as in the
previous section are used, i.e., the fast design (13) and (14), and the slow
design (15) and (16).

The goal is to reduce the limit cycles as much as possible.

6.1 The Coulomb Friction Model
In theory, a model with pure Coulomb friction is a relay.

F = Fg sgn(Q)

In order to implement it for friction compensation it must be modified. Because
of measurement noise, an arm velocity  close to zero makes F toggle between
—F¢ and Fg. In order to avoid this, hysteresis must be introduced. The limits
are set to +&. The model now has two parameters, F¢ and €. In Appendix F,
the Coulomb friction is estimated to Fo = 1.5. Setting ¢ = 0.05 eliminates the
toggling.

The results from the practical friction compensation were not good. When
the parameters above are used, the limit cycles looks about the same regardless
if friction compensation is on or off. Other values of F were tried as well, but
the result was about the same. Setting ¢ = 0 makes the arm shake at the
turning points. This results in shorter periods of stiction. But an oscillating
control signal is bad for the motor, it wears it. Figures 25 and 26 contain a
limit cycle along with the estimated friction force. The fast control design is
used, and the friction parameters are F¢ = 1.5 and ¢ = 0.05. Compare with
Figures 9, 10 and 12. The slow design gives similar limit cycles.

The conclusion is that friction compensation using a pure Coulomb friction
model is not fruitful in the case of the inverted pendulum. One reason is that
the friction force is constant and only depends on the sign of the velocity.

6.2 The Classical Model

For two reasons, the classical model (17) is better than the model in the
previous subsection. The first is that it has stiction, the second is that the size
of the friction force depends on the control signal. It is therefore reasonable to
expect better compensation with this model.

Two modifications must be made in order to use (17) in practice. The
first is the same as for the previous model, hysteresis must be introduced.
As above, the limits are set to +e. The second modification concerns the
discontinuity between the stiction and the Coulomb friction. This is eliminated
by introducing an exponential decay of the friction force. After having done
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Figure 25 Limit cycle from the real process with friction compensation. The
Coulomb model and the fast control design. F¢ = 1.5 and € = 0.05. Measured
pendulum angle and measured arm velocity. Compare with Figures 9 and 12,

Control signal
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Figure 26 Limit cycle from the real process with friction compensation. The
Coulomb model and the fast control design. F¢ = 1.5 and ¢ = 0.05. Control signal
and estimated friction force. Compare with Figure 10.
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these modifications, the implementation form of (17) becomes:

u if Q] < e
F= o
(Fc + (Fs — Fc)e_(n/vs) ) sgn(Q) otherwise

As anticipated, friction compensation is better with the classical model.
For the slow design, the following friction parameters reduce the limit cycles
most:

Fg =23

Fe =155
vg = 0.5 or 2
€= 0.08

The Coulomb friction F has to be increased slightly in order to get symmetric
limit cycles. Two values of the slope vg are optimal, depending on which type of
limit cycle is preferred. The value vg = 2 gives small but fast limit cycles. The
smaller vg = 0.5 gives slow but larger ones. In the latter case, the pendulum
is better balanced. The former limit cycles resemble those in Figures 27 and
28, the latter those in Figures 29 and 30.

For the fast design, it is more difficult to reduce the limit cycles. The
friction parameters above did reduce the limit cycles, but not as much as for
the slow design. No better parameters than those above were found.

In both control cases, the arm oscillated slightly at the turning points.

6.3 The LuGre Model

The LuGre model is more flexible than the two previous models. It has more
degrees of freedom, seven parameters. It is therefore easy to anticipate good
compensation even for the fast design.

In the implementation, the LuGre model cannot be used as it is. Instead
an observer must be used. The one used here is (19).

The friction parameters from Section 5.3 were used as starting point in the
compensation experiments. One change was made, F = 1.55 was used since
this gave symmetric limit cycles in the previous subsection. Some parameters
affect the limit cycles more than others. In the quest for the optimal parameter
setting, only three parameters were varied, o9, o1 and k.

If 09 < 50 the pendulum starts to shake, an undesirable behavior. Larger
values increases the arm velocity. A o9 of about 400-500 makes the arm os-
cillate at the turning points. Smaller values of oy than 5 make the arm more
damped at the turning points. If oy = 10 the motion gets jerky. The observer
gain k is best placed between 5 and 10. Larger values make the arm shake,
smaller make the limit cycles resemble those in the uncompensated case. The
oscillatory behavior may be due to numerical problems in solving the differ-
ential equation of the LuGre model.

The friction parameters that best reduce the limit cycles for both control
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Figure 27 Limit cycles from the real process with friction compensation. The
LuGre model and the fast control design. Measured pendulum angle and measured
arm velocity. Compare with Figures 9 and 12.

Control signal
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Figure 28 Limit cycles from the real process with friction compensation. The
LuGre model and the fast control design. Control signal and estimated friction force.
Compare with Figure 10.

41

i
]
P
!
i




Measured pendulum angle

0.04 ' ! ! ! !

0.02 ‘
| |
0 TEAT I

-0.02

-0.04 :
-0.06 : ! ! ; L ‘
0 2 4 6 8 10 12 ;

Time [s]
Measured arm velocity

1.5 ! ! ; ! ;

_1 L i ! I i
0 2 4 6 8 10 12
Time [s]

Figure 29 Limit{ cycles from the real process with friction compensation. The
LuGre model and the slow control design. Measured pendulum angle and measured
arm velocity. Compare with Figures 13 and 16.
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Figure 30 Limit cycles from the real process with friction compensation. The
LuGre model and the slow control design. Control signal and estimated friction
force. Compare with Figure 14.
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designs are the following:

Fg =23
Fc =1.55
F, =0.07
o9 = 300
o,=6

vg =1
k=17

Examples of resulting limit cycles are given in Figures 27-30. Note that they
are asymmetrical. This has mainly two explanations, an asymmetrical friction
force and bias in the measured pendulum angle.

For the fast design, the limit cycles are small and fast. The peak-to-peak
value of the measured pendulum angle is about 0.04, compared to 0.2 in the
uncompensated case. The period is about the same in both cases, a little
smaller in the compensated case. For the slow design, the limit cycles are
similar to those compensated with the classical model and vg = 0.5, i.e., large
and slow. Their behavior are unpredictable. In Figures 29 and 30, the peak-
to-peak value of the measured pendulum angle is about 0.06 and the period is
about 6 s. The corresponding values in the uncompensated case are 0.45 and
2.1.

Since the parameters given above best manage to reduce the limit cycles,
it was tested what result they would give if simulated with. This was not
successful, trying to simulate the LuGre model with them gave numerical
problems.

6.4 Summary

Friction in the inverted pendulum is a nuisance and should be reduced. Lubri-
cation is not enough, limit cycles arise anyway. Therefore, model-based friction
compensation has been tried. Three models were used, one with pure Coulomb
friction, the classical model and the LuGre model.

The result may be summarized as bad, better, best. The Coulomb model
did hardly affect the limit cycles, they almost got larger. Better was the clas-
sical model. For the slow control design, improvement was clearly made, for
the fast design, no. The LuGre model managed to reduce the limit cycles for
both control designs.
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Figure 31 The real-time controller. Screen dump.

7. The Real-Time Controller

In order to perform experiments on the inverted pendulum, a real-time con-
troller was written. The state feedback loop and the Kalman filter described
in Section 2 were implemented. An MS-DOS computer was used as platform,
and Modula-2 was used as programming language. The program is interactive,
controller parameters may be changed on the screen.

Five cables must be connected between the inverted pendulum and the
computer in order to transmit the measurements and the control signal. The
table below describes how the cables should be connected.

Connection on IP | Port on computer
Armpos All

Hast Al 2

PendelPos AT 3

IN AOO

“Ground” AGND on AO

7.1 User’s Guide

The controller is interactive, parameters may be changed on the screen. The
buttons for this are located in the lower part of the screen. In the upper part
is a plot window. A screen dump is shown in Figure 31.

Start/Stop

The regulator is started by pressing the Start button on the right. Stopping
it is done by the same button. No swing-up is implemented. Therefore, the
pendulum must be balanced manually before starting the control.

Plot

The upper part of the screen consists of a plot window. When the regulator
is active, signals are plotted. The signals plotted are the measured pendulum
angle y, the measured arm position z, the measured arm velocity v, and the
control signal u. By clicking on the buttons directly below the plot window,
plotting of specific signals may be turned on and off.

44




Save Data

Use the Save button to save data. Collection of data is begun by pressing this
key, and ended by pressing it a second time. Note that data are not stored
to the disk directly. Instead this is done after the program has been exited. If
having collected data, pressing the Exit button makes the program prompt
for a filename. The prompt is called out>, and appears directly above the plot
window. Input the filename with no extension! The extension .dat is added
automatically.
The following ten signals are stored:

1. Measured pendulum angle 6

[\

Estimated pendulum angle é

Estimated velocity of pendulum Y
Control signal u
Measured armposition 2

Measured velocity of arm

NS ovoe W

Estimated armposition {}

Estimated velocity of arm Q

g

9. Estimated friction force Fy,
10. Estimated state z of the LuGre model

The data are placed in lines. They have ASCII-format and may therefore be
loaded into Matlab.

Changing Controller Parameters

Parameters for the state feedback and for the Kalman filter may be changed.
This is done using the two buttons State Feedback and Kalman Filter on
the left. Click one of these, and a menu will appear. The current parameters
are displayed. These are changed by pressing the value of choice, entering the
new value, and pressing Return. Note that the new values are not set until the
Enter button on the menu has been pressed. The controller parameters are
explained in Section 2.

There are two shortcut keys, Fast and Slow. The first sets the controller
parameters for the fast control design, (13) and (14), and the second is for the
slow control design, (15) and (16).

Beneath the buttons described above, the current state feedback gains are
displayed. To the right of them are the current Kalman filter gains.

Friction Compensation

Friction compensation is activated by pressing the button marked Compen-
sation and deactivated by pressing it a second time. When the compensation
is on, the text on the button is changed to Compensating.

The friction model used in the compensation is chosen by clicking on the
button marked Friction Type. The current model is displayed in the text
window in the bottom right corner of the screen. Three models are available,
a model with Coulomb friction only, a classical model, and the LuGre model.
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Regul

Figure 32 Dependency graph. By definition, the arrow point at the module being
imported.

To change the parameters in the current friction model, use the button
marked Friction Model. Press it, and a menu will appear. New parameters
are entered in the same way as described in the section “Changing Controller
Parameters” above. The parameters of the friction models are described in
Section 3.

Exit
The program is exited by pressing the button marked Exit. Note that if data

has been collected using the Save button, the program will prompt for a
filename. See further Section “Save Data”.

7.2 Module Structure

The program was written in Modula-2. In this language, a program is built
on modules. A module consists of a collection of procedures and variables. In
this subsection, the module structure of the controller is described. Figure 32

contains a dependency graph, showing the import dependencies between the
modules.

Main The main module. Starts the processes, sets their priorities, and then
waits for end. When the end signal comes from OpCom, the processes
are terminated and the program is ended.

Regul The heart of the program. Contains the regulator process. Also pro-
cedure for sending measured data to the plot process.

OpCom Procedures for the operator communication. Buttons, menus and
text windows.

Plot Controls the plotting of signals in the plot window. Contains the two
plot processes.

StateF Support module for Regul. Contains the state feedback controller and
the Kalman filter. Procedures for calculating the control signal, updating
the states, getting and setting parameters, and updating the controller
gains.
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LinkList Using the “Save Data” button, data may be stored on disk. The
collected data is not written directly, instead it is stored in a linked list
until the program exits. This module contains the list plus procedures
for handling it.

Friction Contains the friction models, and procedures for calculating the fric-
tion force.

7.3 Process Structure

Since the controller is a real-time system, it has processes. Their structure is
described here. The program has four processes, two of which are located in
the Plot module.

Regul The main control loop. Has the highest priority. Reads the measurable
signals from the ADC, calculates the control signal, and sets it out on
the DAC. Then updates the state of the Kalman filter. If data are to
be stored, this is done. The process is periodic with period equal to the
sampling period, A = 0.005 s.

OpCom The process for the operator communication is the mouse pointer.
Each button has its own callback procedure. When the button is clicked,
this is started. The mouse process is not periodic, it is event based. It
has the second lowest priority.

Plot The plot module contains two processes. The first, Read, gets the mea-
sured data from Regul and puts it in a buffer. This process has the second
highest priority and is periodic with period 0.1 s. The other process, Plot,
collects the data from the buffer and plots it. This is non-periodic and
has the lowest priority.

7.4 Process Communication

The communication between the processes is handled using monitors. Asso-
ciated with each monitor is a collection of monitor procedures. In these, the
shared variables are accessed.

Instead of each process having its own monitor, as would be the more natu-
ral solution, each module has its own monitor. Although a bit circumstancial,
this solution works perfectly. In future versions of the program, however, this
will be changed.

7.5 Sumimary

In this brief section, the real-time controller was described. It was written in
order to perform experiments on the real inverted pendulum. A user’s guide for
the program was given. The internal structure of the program was described,
its modules, processes and process communication.
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8. Summary and Conclusions

Friction is a difficult phenomenon. There is no standard model that captures
all of its properties. A vast number have been proposed, and which is the
best depends on the application. There is also no universal way of estimating
friction. This also depends on the application.

In this thesis, friction in an inverted pendulum has been studied. The
friction has been modelled, identified and compensated for. For the modeling,
two friction models were used. One simple, static and classical with stiction
and Coulomb friction, and one advanced, dynamical and state-of-the-art, the
LuGre model. Both of these are good in capturing the friction of a mechanical
system like the inverted pendulum. They are introduced in Section 3.

Friction identification was performed using two methods. The first is sim-
ple. It regards friction from a mechanical point of view. This method is de-
scribed in Appendix E. The second method is based on comparison of limit
cycles. When trying to control the inverted pendulum using a simple linear
controller one gets limit cycles because of friction. Limit cycles from the real
process were compared with limit cycles obtained through simulation. Unfor-
tunaretly, this method was not very successful. It requires a process model
with accurately known parameters. An unstable process with fast dynamics,
like the inverted pendulum, is very sensitive to changes in the process param-
eters. A small change in one parameter makes a great change in the shape of
the limit cycles. The result from the simulations are given in Section 5.

Friction compensation was more successful. The limit cycles were reduced.
It was not possible, however, to make the pendulum stand still. Best results
were achieved with the LuGre model. A third friction model was introduced,
pure Coulomb friction. This model is extermely simple and one of the most
commonly used in practical friction compensation. It was not successful in the
case of the inverted pendulum, however. Friction compensation is discussed in
Section 6.

A nonlinear model of the inverted pendulum was derived, and its param-
eters were identified. This was required for doing the experiments described
above. Linear state feedback was used as regulator, with Kalman filters for
estimating the states of the process. The controller was implemented using a
real-time computer.

Two major conclusions may be drawn from the experiments, one negative
and one positive. Friction identification based on limit cycles is difficult and
requires an accurately known process model. It was not possible to estimate
better friction parameters than those determined using simple methods. The
positive conclusion is that friction compensation is practically feasible, the
limit cycles were indeed reduced.

Some aspects of friction in the inverted pendulum has been studied in this
thesis. Since friction is a complex phenomenon, there are many more which
could have been studied, but unfortunately time was the limit. Two possible
extensions will be mentioned. The process parameters and the conversion fac-
tors should be estimated more accurately, so that friction identification using
simulation of limit cycles could be performed better. Also, it would be inter-
esting to test an adaptive friction estimator, since friction varies slightly with
the operating conditions.

A possible non-friction extension is to implement a swingup for the pen-
dulum. Control strategies other than linear state feedback could also be tried,
e.g., fuzzy control.
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A. Identification of the Inverted Pendulum

There are many ways to identify a process. One method is to use a pseudo
random binary signal as input to the process, and then identify the collected
data using Matlab’s System Identification Toolbox. Unfortunately it is difficult
to get good results with this method for the inverted pendulum. For a try, see
Abelson and Christelius (1996). Instead, heuristic or direct methods have to
be used.

The model (4) for the inverted pendulum has three parameters, the reso-
nance frequency wg, the damping ¢ and the length of the arm L;. In section
2.1 values for these are given. In this appendix, the values will be motivated
and the experiments used to determine them will be presented.

A.1 The Resonance Frequency wyq

Linearizing Eq. (4) around the downward position § = 7 yields a linear process
model. Its characteristic polynomial may be written as

§% + 2lwos + wi
This corresponds to a differential equation for 6.
é+ 2{w09 + w§0 =0
The solution of this is
8(t) = Ae 0 cos(wgt + ¢) (22)

where

wyg = woy/1— (2 (23)

The constants A and ¢ may be determined by initial conditions.

The most accurate method of estimating the resonance frequency for a
process is to determine its Bode plot. The resonance frequency is then the fre-
quency at which the peak of the amplitude curve is located. Since the damping
affects the position, it has to be taken into account. However, this method was
not used. Instead a less accurate but simpler one was used. The arm of the
inverted pendulum was held tight while the pendulum was manually set in
motion. RT-Simnon, run in open loop, recorded the oscillations. The result is
shown in Figure 33.

If the damping is small enough, wy & wy. In this subsection this approx-
imation is made. In the next subsection, the damping is estimated and, if
necessary, wg corrected. Not taking the damping in account, wy may therefore
be estimated using the following formula:

2
Wwo = —T— (24)
where T is the period of the oscillations. T’ will be estimated by measuring the
average distances between the peaks marked in Figure 33. Since the oscillations
are nonlinear, peaks whose amplitude is larger than, say, 0.15 rad will be
considered unreliable. Because of friction in the pivot point, the last oscillations
will not be used either. The location of the peaks are shown in the table below.
They have been measured from the diagram using a ruler.
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Figure 33 Damped oscillations. The digits mark the peaks used in the estimations.

peak t At =1t; —t; 4
1 2.25 —
2 3.23 0.98
3 411 0.88
4 5.06 0.95
5 6.01 0.95
6 6.87 0.85

The average distance between the peaks is the average of the values in the
At-column, and it is T' = 0.92 s. Using Eq. (24) above, an estimate of wy is

2
wo = 6_79r—2 = 6.83 rad/s

Since damping affects this value, it will be corrected in the next subsection.

A.2 The Damping (

In Figure 33, one clearly sees that the oscillations are damped. In this sub-
section the size of this damping is estimated. If the oscillations obey Eq. (22),
then the amplitudes of their peaks are approximately given by

Opeak(t) = Ae ¢! (25)
Since wg is known, the peaks of the oscillations may be fitted to this equation.

The same peaks as in the previous subsection are used. Their heights were
calculated using a ruler. The result is shown in the table below.
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peak | @ 0 — G t t—to
3.39 | 0.21 {225 0

3.35 | 0.17 |3.23 | 0.98
331 013 411 1.86
3.27| 0.09 |5.06 | 281
3.24 | 0.06 |6.01 | 3.76
3.21 0.03 | 687 | 4.62

Sy Ot = W

The second column shows the absolute pendulum angles, as measured from
Figure 33. In the third, these have been corrected so that the downward posi-
tion, 8y = 3.18 rad, corresponds to zero angle. It is the values in this column
that will be fitted to the equation above.

The fourth column contains the time locations of the peaks. In the last
column, the time scale has been corrected so that the first peak corresponds
to t = 0. The height of the first peak was used as A. { was calculated for each
of the other peaks by the following modification of Eq. (25):

(=~ In(y)

th

where 6 and ¢ are taken from the table and wg = 6.83 is the value estimated
in the last subsection. The following dampings resulted:

peak ¢
2 0.032
3 0.038
4 0.044
5 0.049
6 0.062

The damping estimates vary very much. One reason is friction in the pivot
point. As the amplitude of the oscillation decreases, the effect of this friction
increases. Therefore, the damping estimates for the higher peaks are the more
reliable. Somewhat arbitrarily, the value { = 0.04 was chosen as the final
damping estimate. Because of the uncertainty, it is given with one digit only.

Because of the damping, the resonance frequency estimated in the previous
subsection was wq, not wg. Since an estimate of the damping is now available,
wo will be calculated. Using Eq. (23) one gets

_ wq _ 6.83
/1= V1-004

The assumption that wg & wy therefore was valid. Because of the rough method
used, only one decimal is used, yielding the estimate wo = 6.8 rad/s.

Wo

= 6.84 rad/s

A.3 The Length of the Arm I,

The length of the arm of the inverted pendulum was measured using a ruler.
The distance from the axis of rotation at the center pillar to the pivot point
is L1 = 0.21 m.
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A.4 Summary

Using simple methods, good estimates of the process parameters have been
calculated. They were

wp = 6.8 rad/s
¢ =0.04
I;=02lm
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Figure 34 The angle of the pendulum. On the y-axis is the unscaled and biased
angle read from the ADC, and on the x-axis is the number of data points.

B. Measuring the Conversion Factors

The signals received from the AD-converter (ADC) and the signal sent to
the DA-converter (DAC) are scaled and biased and not in SI units. Since it
is desirable to work with unbiased SI units inside the regulator, the signals
must be converted to such. To do this, the scaling factors and the biases —
conversion factors for short — must be known.

The inverted pendulum has three outputs: the angle and the velocity of the
arm, and the angle of the pendulum. It has one input: the control signal. Below
conversion factors for these will be presented along with the experiments used
to determine them.

B.1 The Angle of the Pendulum

The scaling factor for the pendulum angle was determined by manually ro-
tating the pendulum one lap, from downward to downward position. During
the revolution, the angle of the pendulum was measured. The result is shown
in Figure 34. As can be seen, the pendulum goes from about -1 to 1 in one
lap. Since one lap in SI units corresponds to 27 radians, the scaling factor is
approximately 7. This is not entirely correct, the scaling factor is slightly less
than =7, but this value is used anyway.

Besides the fact that the measured and the real pendulum angle differs by
a scaling factor, there is also a bias between them. When the pendulum is in
its upright position, the ADC does not return the value zero. The measured
zero is instead located around 7 /2 rad. The reason is that it is undesirable to
have the leap from -1 to 1 in or near the upright or the downward position.
Measuring the bias was simple. The pendulum was balanced manually in its
upright position and the signal from the ADC was read. The value -0.503
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Figure 35 The angle of the arm. On the y-axis is the unscaled, measured angle,
on the x-axis is the number of data points.

resulted.

To summarize, we have the following conversion formula between the mea-
sured pendulum angle y and the real pendulum angle 4. By definition § = 0
means a pendulum in its upright position.

§ =m(y+0503) ye[-1,1]

B.2 The Angle of the Arm

An ADC has a limited range. For example, the ADCs on the inverted pendu-
lum are limited to [-1,1]. What happens when one of the limit points is reached
depends on the signal connected to the ADC. In the case of the pendulum-
and armposition, it simply leaps to the other limit point. This can be seen
in, for example, Figure 34. For the pendulum angle these limitations were not
a problem. The breakpoint was just set at about 7/2, an angle not normally
used. For the armposition it is not desirable to have a breakpoint each lap,
since the control of the arm may start at any angle. It has therefore been
decided to have the breakpoint at about every eight laps. The arm may, there-
fore, run several laps before reaching a limit of the ADC. As a side-effect, the
scaling factor for the armposition is greater than .

To measure the scaling factor, the arm was rotated ezactly one lap, during
which the position of the arm was measured. The measurement was done using
RT-Simnon, which was run in open loop. The result is shown in Figure 35.
The data was analyzed using Matlab, and the position of the arm before and
after the revolution were calculated. They were found to be ¢g = —0.0699 and
21 = —0.3132. The difference between them is zp—2; = —0.0699—(—0.3132) =
0.2433. Since one lap corresponds to 27 radians, the scaling factor between the
real armposition 2 and the measured armposition z is 27/0.2433 = 25.8.
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Figure 36 The velocity of the arm. The measured position is denoted by z, and
the measured velocity is denoted by v.

As with the pendulum angle, the armposition has a bias zg. The starting
point of the control of the arm is defined as 2 = 0. Since the control may
start at an arbitrary angle, the bias ¢ is different every time the regulator is
started, and cannot therefore be given a specific value. The bias is dynamic.

To summarize, the conversion formula between the measured armposition
¢ and the real armposition  is

Q=258(z—z) ec[-1,1]

B.3 The Velocity of the Arm

The measurement of the scaling factor for the velocity of the arm requires
a velocity controller. A simple P-regulator was used and it was implemented
using RT-Simnon. The gain was set to X = 0.15 and the reference value was
chosen as v,y = 0.5. The position and velocity of the arm were measured
and plotted. The result is shown in Figure 36. Both signals are unscaled.
As can be seen, there is a stationary error in the control of the velocity on
account that a P-regulator was used, but this is not any reason for concern
since only the stationary velocity was used, not the reference value. Data
from the experiment was analyzed using Matlab. The stationary velocity was
estimated by calculating the mean value of a number of data points. The result
was v = 0.2801.

To calculate the scaling factor, the actual velocity of the arm in rad/s was
required. This could be estimated by for example counting the number of laps
the arm did in, say, 30 s after having reached its stationary velocity. A more
accurate way is to plot the position of the arm versus time and then measure
the time it takes for the arm to go from -1 to 1. The result is shown in Figure 36.
Using Matlab, the time was found to be 6.41 s. Since the scaling factor for the
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arm position is 25.8, going from -1 to 1 corresponds to 2-25.8 = 51.6 rad. The
actual velocity of the arm is then
. 2:25.8

0= YT 8.05 rad/s

This should correspond to the measured velocity from the ADC, v = 0.2801.
The scaling factor therefore is 8.05/0.2801 = 28.7.

The measurement of the arm velocity has a bias vg, even though it is small.
Estimating this bias is simple. The arm was kept still while the velocity was
measured using RT-Simnon. The test was repeated a few times. The value of
the bias varied, but stayed within the interval

vo € [—0.009, —0.026]

A reasonable mean value of the bias is v = —0.02.
To summarize, the relation between the measured velocity v and the actual
velocity € is

Q=287v+0.02) vel-1,1]
B.4 The Control Signal

The scaling factor for the control signal is the most difficult one to estimate.
There are two reasons for this. First, the relation between the input voltage to
the motor and the acceleration of the arm is not linear. Secondly, the friction
in the arm has to be taken into account. A fairly good estimate of the Coulomb
friction has to be known in order to calculate the effective control signal, i.e.,
the output control signal minus the friction.

Let upa denote the control signal sent to the DAC, and let u denote the
theoretical control signal, i.e., the one in SI units calculated in the program. If
k., denotes the scaling factor, the relation between these two may be written

upa = ky - u

Introduce uy, = Fy,/m, the Coulomb friction divided by the mass of the arm.
It is assumed that uy, is constant. From Appendix E, we know that a good
estimate of it is uz. = 0.035.

In the experiment that follows, the transfer function of the arm, Eq. (5),
is used. It is rewritten using the variables introduced above.

(upa — usr sgn(f2)) (26)

~ 0.21k,

The relation between the theoretical control signal u and the control signal
sent to the DAC upy4 is not linear. Linearization will therefore be used. The
experiment will be confined to those parameter ranges which are to be used
in the control. Preliminary experiments have shown that the velocity of the
arm is concentrated to the region from -3 rad/s to 3 rad/s and that up, is
concentrated to -0.15 to 0.15.

If a constant control signal is sent to the DAC, the arm starts to accelerate.
By measuring the acceleration (2 and then applying Eq. (26), k., can be calcu-
lated. Four different control signals were used: upa = -0.05, -0.075, -0.1 and
-0.2. The velocity of the arm, ) in rad/s, was plotted versus time, as shown in
Figure 37. The accelerations in the range §} € [0, 3] were estimated by fitting
straight lines. Then Eq. (26) was applied and k, was calculated. The results
are shown in the table below.
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Figure 37 The control signal. Velocity of the arm versus time for up4 = -0.05,

-0.075, -0.1 and -0.2.

A

-0.05 | 3.1 |-0.023
-0.075 | 11 | -0.018
-0.1 | 13 | -0.024
-0.2 60 | -0.013

As can be seen, k., varies very much. Somewhat arbitrarily, the value k, =
—0.022 was chosen.

Two remarks should be made. First, only negative control signals were used
in obtaining k,. The reason is that these give rise to positive arm velocities
and thus slightly nicer diagrams. It would have been more complete to also
test what results positive control signals would give, but it was expected that
the result would be about the same. The value k, = —0.022 was tested in
practice and found to work well. Secondly, as can be seen in Figure 37 one
gets some sort of plateau of constant velocity in each of the diagrams. When
upa = —0.05 this is located around {} = 0.7 rad/s, when upy = —0.075 it is
about Q = 2.5 rad/s, when ups = —0.1 it is about Q = 3.5 rad/s and finally
when upy = —0.2 it is slightly below Q = 6.0 rad/s. I have no idea why this
plateau arises and I have not investigated the matter further. Note, however,
that in all three cases it seems to begin after about 0.2 s.

B.5 Summary

Here the scaling factors and biases for the input and output signals are sum-
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marized. The denotations are explained in the text.

6 = m(y + 0.503) y € [-1,
Q= 25.8(z — zo) ze[-1,

Q= 28.7(’0 + 0.02) v E [—1,1]
upa = —0.022u up4 € [—1,1]
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C. Gains for the State Feedback Controller

Since the equations for the state feedback gains are large, they are not included
in Section 2.2. Instead, they are given here. For denotations and explanations
of the equations, see Section 2.2.

I, =— %(4 cosh(wgh)? — 2 cosh(wgh) + 2papa cosh(wph)
+ 2 cosh(woh)p1 + 2 cosh(woh)ps — p1 + Pap3 + pP1Pa + ps — p3
— 1+ py — pops + plpg)g/(cosh(woh)2 — 2 cosh(wgh) + 1)

Iy =— 21—(4 cosh(woh)? + 2 cosh(weh)p1 + 2 cosh(wph)ps
+ 2 cosh(woh) — 2papa cosh(woh) — paps — 1 + pa — paps + P2
—PiP4 T P1ps +p1 -+ Pa)g/((COSh(“’Oh) — 1) wo sinh(woh))

_ 1(pop3 + pa + p1pa + 1+ p1p3 + paPa + Pa + p1 +p3) L1

s = 2 h2 (cosh(wgh) — 1)

_ 1(5+3p1 + 3ps + p2 + Ps — 3p2pa + P13 — P1P4 — P2p3)Ln
4 h (cosh(woh) — 1)

l4:

59




D. Gains for the Two Control Designs

For use in the experiments in Sections 5 and 6, two control designs are intro-
duced in Section 2.4. Pole configurations for the state feedback and for the
Kalman filters are given there. In this appendix, the L- and K-vectors cor-
responding to these are given. The L-vector contains the gains for the state

feedback loop, the K-vector contains the gains for the Kalman filters.

The gains for the fast design are

[y = —86.6267
l, = —11.8530
l3 = —19.7987
[y = —6.89851
and

k1 =28 -

ks = 65.6235
ks = 0.07002
ks = 0.48280

The gains for the slow design are

[, = -31.3510
Iy = —4.13566
I3 = —1.82609
Iy = —1.23275
and

k1 = 28

ky = 65.6235
ks = 0.05251
ks = 0.27396
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E. Simple Identification of Friction

Some simple friction experiments were performed on the inverted pendulum.
First the stiction and the Coulomb friction were estimated. Then a rough
Stribeck curve was determined.

E.1 Stiction and Coulomb Friction

Estimating the stiction is very simple. Constant control signals of increasing
magnitude were sent to the DAC until the arm started to move. This gives the
value of the stiction. The tests were made using RT-Simnon, and the stiction
in both directions were estimated.

To determine the Coulomb friction the same method as in determining the
stiction was used. The natural exception was that lower magnitudes of the
control signals were used. Since the Coulomb friction is lower in magnitude
than the stiction the arm had to be given a slight push to overcome the stiction.
As is shown in the next subsection, the Coulomb friction, or more correctly
the kinetic friction, varies with velocity and therefore depends on how hard
the arm is pushed. .

Although the experiments are simple to perform, accurate results are dif-
ficult to get. The reason is that the friction varies from time to time, and
also differs depending on how much the inverted pendulum has been used
before the tests. The latter is explained by the fact that the viscosity of the
lubrication is high when the pendulum is started and then decreases after the
pendulum has been run a while.

It was found that friction varied slightly depending on direction. For posi-
tive velocities, i.e., clockwise direction, the stiction was found to be

F& €[0.045,0.055]

and the Coulomb friction was mostly concentrated to the range
FJ €0.035,0.040]

Friction in the counterclockwise direction is slightly smaller, with
Fg €[0.045,0.050]

and
F €1[0.030,0.035]

A few remarks should be made. The given friction values are magnitudes.
In practice the friction for negative control signals is negative and vice versa.
Also, the given values are the measured ones, i.e., they are unscaled. At the
end of this subsection scaled parameters are given. It should once again be
pointed out that friction varies with many factors and that one might get
values of the friction parameters that are outside the given ranges. But they
are good approximations of the real, “ideal world” intervals.

Since intervals are difficult to use practically and since the differences in
the friction depending on direction are not very large, mean values for the
parameters are given. A good estimation of the stiction is Fg = 0.050 and a
good approximation of the Coulomb friction is F¢ = 0.035. When translating
these values to SI-units, i.e., when dividing them with |k,| = 0.022, one gets
Fg =23 and Fp = 1.6.
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Stribeck curve for positive velocities

ook ......... .......... .......... .......... .......... .......... ......... .......... ..........
ol Lo S L g
: : o :

£ : : : : : . : : :

w ; : : : : : : : :
16 R R N
14k L Qg 2T e SRS I SRR ] SRR ,
12 I I L i 1 I i i i ]
0 2 4 6 8 10 12 14 16 18 20

v (rad/s)
Stribeck curve for negative velocities
] S SUU PR SUNPOS R PP PITE TP L SR A
: (e} : o]

4B T ERRRRRRE .......... OO ,,,,, SRRREEE 0000 ..........

£ : : : : : : : : :
E_-,.g._ ,,,,,,,, ......... SRR SR O .......... SRR e SRR
S s © S U RN ORPRE S :

-2 N . ;
DY R Lo T RSN IR P L L L ;
: : : : : : : : : o
i I 1 [ 1 I 1 1 ! ]
20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

v (rad/s)

Figure 38 Stribeck curve for the inverted pendulum.

E.2 Stribeck Curve

The second simple experiment is designed in order to get the Stribeck curve.
The test has two goals. The first is to determine to what extent a Coulomb
friction model can be used, i.e., to see how flat the Stribeck curve is. Since the
friction is determined in a different way than in the previous subsection the
second goal is to verify the suggested mean value for the Coulomb friction.

The Stribeck curve was determined using RT-Simnon and a P-regulator to
control the velocity of the arm. Different values of the gain and of the reference
value were set. When the velocity had reached stationarity the values of the
velocity and of the control signal were measured. Since the velocity is constant,
the control signal should be zero. Because of the friction it is non-zero and its
value is equal to-the friction at the measured velocity. This can easily be seen
in Eq. (5). Both positive and negative velocities were tested and the resulting
Stribeck curves are shown in Figure 38. Velocities below = 3 rad/s could not
be examined with the method used. The results for larger velocities are not
entirely reliable, since unwanted phenomena like air resistance affects the arm.
But the experiments are not meant to be precise, they are only to serve as
guidelines for the more advanced ones to come. What is significant in the
diagrams is the shape of the curve and the mean value of the kinetic friction
for lower velocities. The Stribeck effect is clearly visible, the curves are u-
shaped. As for the goals of the test, the first one is fulfilled. The friction may
be considered constant for low velocities. The second goal, that Fo = 1.6 is
a good approximation for the magnitude of the Coulomb friction, is fulfilled
for negative velocities but is a bit over the target for positive velocities. The
value F = 1.5 would be more appropriate.

In the full fluid lubrication regime of the Stribeck curve the relation be-
tween friction force and velocity may approximately be considered linear. The
slope of this line is called viscous friction and is denoted by F,,. This effect is
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clearly visible in the Stribeck curve in Figure 38 for velocities above 10 rad/s
in magnitude. By fitting straight lines to these points in the diagrams, an es-
timate of the viscous friction can be calculated. The result is ¥, = 0.067 in
the case of positive velocites, and F, = 0.075 in the case of negative velocities.
Since air resistance etc affected the measurements, the final estimate is given
with one digit only: £, = 0.07.

Using Figure 38, an estimate of the Stribeck velocity vg can also be cal-
culated. This velocity affects the slope of the Stribeck curve in the boundary
lubrication regime. Since no measurements are available in this regime, and
since the exact value of vg is not so very important, only its magnitude, s = 1
rad/s was chosen as the estimate.

E.3 Summary

Two experiments were performed. First, the stiction and the Coulomb friction
were determined by sending out constant control signals. It was found that
the friction was slightly dependent on the direction of the arm. Secondly, a
Stribeck curve was plotted using velocity control. Estimates of the stiction, the
Coulomb friction, the viscous friction and the Stribeck velocity were calculated.

Fg =23
Fe =15
F, =0.07
vg =1
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F. Results from Simulation of the the LuGre Model

The tables below contain data from simulation experiments of the LuGre
model. The fast control design was used. One parameter at a time was varied
while the others were kept constant at their default values. The default values
are given in Section 5.3. The denotations in the tables are explained in Table 1

in Section 5.1.

One remark should be made. The value 69 = 100 seems to be extremal
regarding amplitudes and period.

Fs | peakl peak2 valley T max(u) max(f)
1.9 0.201 0.184 0.182 0.892 8.2 3.9
2.110.205 0.187 0.185 0.888 8.5 4.1

2.3 10209 0.190 0.187 0.884 8.9 4.2
2510214 0.195 0.190 0.877 9.2 4.3
2710217 0.198 0.192 0.872 9.5 4.4

Fo | peakl peak2 valley T max(u) max()
1.1 10183 0.165 0.160 0.866 7.8 3.6

1.3 0195 0.178 0.173 0.878 8.4 3.9
1.510.209 0.130 0.188 0.883 8.9 4.2

1.7 10.221 0.204 0.200 0.887 94 4.5
1.910233 0.214 0.209 0.895 9.9 4.8

F, | peakl peak2 valley T max(u) max(Q)
0 0.203 0.183 0.179 0.863 8.5 4.0
0.07 ] 0.209 0.190 0.188 0.883 8.9 4.2
0.14 | 0.215 0.199 0.196 0.902 9.2 4.4

vg | peakl peak2 valley T max(u) max(Q)
0.510.199 0.183 0.182 0.890 8.1 3.9

1 0.209 0.190 0.188 0.883 8.9 4.2

2 0.219 0.200 0.194 0.875 9.5 4.5

Table 6 Variation of Fs, F¢, F, and vg.
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oo | peakl peak2 valley T max(u) max(Q)
50 | 0.232 0.206 — 0.851 9.6 4.6
75 10212 0.190 — 0.879 9.0 4.2
100 | 0.209 0.190 0.188 0.883 8.9 4.2
125 | 0.212 0.196 0.190 0.876 9.1 4.3
150 | 0.218 0.203 0.197 0.866 9.5 4.4
200 | 0.239 0.2256 0.216 0.838 10.8 4.9

o1 | peakl peak2 valley T max(u) max(()
0.198 0.1568 — 0.936 7.3 3.7
0.201 0.176 0.175 0.907 8.0 3.9
0.209 0.190 0.188 0.883 8.9 4.2
0.224 0.209 0.202 0.851 10.0 4.6
10 | 0.261 0.249 0.240 0.795 12.3 5.6

k peakl peak2 valley T max(u) max(()
0 0.183 0.157 0.153 0.963 7.1 3.5
0.01 { 0.184 0.157 0.1563 0.959 7.2 3.5
0.1 |{0.18 0.159 0.156 0.956 7.3 3.6
1 0.209 0.190 0.188 0.883 8.9 4.2
2 0.303 0.288 0.281 0.747 14.3 6.5

Table 7 Variation of o9, o1 and k.
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. Table of Notation

The table below contains the most important denotations used in the report.
Estimated variables have hats, for example, § denotes the estimated pendulum
angle.

y Measured pendulum angle (scaled and biased)

T Measured arm position (scaled and biased), in Section 2: state variable
To Bias of measured arm position

v Measured arm velocity (scaled and biased)

UuUp4 Control signal set out on the DAC (scaled)

9,6,6 Angle, velocity and acceleration of the pendulum (rad, rad/s, rad/s?)
Q,0,0 Angle, velocity and acceleration of the arm (rad, rad/s, rad/s?)

u Control signal (m/s?)

F Generally: friction force, Section 2.1: tension (N)

Fy, Section 2: friction force (N)

F, Externally applied force in the classical friction model (N)

Fc Coulomb friction (N) .

Fg Stiction = static friction (N)

F, Viscous friction (N)

0o Coefficient of stiffness in the LuGre model

o1 Coefficient of damping in the LuGre model

vg Stribeck velocity, in the LuGre model (m/s)

z The state in the LuGre model (m)

wq Damped natural frequency of the pendulum (rad/s?)

wo Natural frequency of the pendulum (rad/s?)

¢ Damping of the pendulum

Ly Length of the arm (m)

Ly Length of the pendulum (m)

wy Desired natural frequency for the pendulum (rad/s?)

G Desired damping for the pendulum

wsy Desired natural frequency for the arm (rad/s?)

(o Desired damping for the arm

Wo1 Desired natural frequency for the pendulum in the Kalman filter (rad/s?)
(ot Desired damping for the pendulum in the Kalman filter

W2 Desired natural frequency for the arm in the Kalman filter (rad/s?)
Con Desired damping for the arm in the Kalman filter

k, Scaling factor for the control signal, between up 4 and u

g Gravitational acceleration, 9.82 m/s?

h Sampling period (s)
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