ISSN 0280-5316
ISRN LUTFD2/TFRT--5566--SE

Dynamic Pictures as a Learning
Tool in Control

Cesar A. Mendoza Serrano

Department of Automatic Control
Lund Institute of Technology
September 1996

Document name

Department of Automatic Control MASTER THESIS

Lund Institute of Technology Date of issue
Box 118 September 1996
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5566-.SE
Author(s} Supervisor
Cesar A. Mendoza Serrano Bjorn Wittenmark and Mikael Johansson

Sponsoring organisation

Title and subtitle
Dynamic pictures as a learning tool in control

Abstract

The purpose of this master thesis is to create a computer program that presents some theoretical aspects of
control theory using dynamic pictures, which show directly the influence of different parameters on a control
system, It creates an interactive environment aided by virtual processes that use computer animation and
real time simulation to enhance the learning process,

All the implementation has been done using Matlab and its graphical user interface. The use of Simulink was
avoided in order {o make faster animations.

Key words
education, computer controlled systems, dynamic pictures

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-b316

Language Number of pages Recipient’s notes
English 44

Security classification

The report may be ordered from the Departimtent of Automatic Control or borrowed through:
University Library 2, Box 3, §-221 00 Lund, Sweden
Fax +46 46 2224422 F-mail ub2@uub2 lu,se

Contents

1,

2,

7.

10.

Introduction L 3
1.1 Howtostart 3
Acknowledgments 4
Programmingtools 5
2.1 Objects o e 5
22 Handles i i it e e e e 5
2.3 About object properties 6
Modules, animation and on-line simulation 7
31 Modules e 7
3.2 Animation and on-line simulation 8
PD-control e g
41 Goal e e 9
4.2 TheoTy . . v v v vt i e e e e e e e e e e e 9
4.3 Features of the Module 10
4.4 Programming aspects v e e e e 11
45 Example 12
Decouplingo 13
5.1 Goal, o o o e 13
B.2 Theory @ . i e e 13
5.3 Featuresofthe Module 16
5.4 Programmingaspects 0., 17
5.0 Example e i9
Controllability. 20
6.1 Goal e e 20
6.2 Theory @ i e e e 20
6.3 Features of the Module 21
6.4 Programmingaspects v v e 22
6.5 Example 27
Robot mechanismprocess 30
T1 Goal o e 30
7.2 Theory . . . v v i i e e s e e e e e 30
7.3 Features of the Module 31
7.4 Programming aspects 32
7.5 Examples 0 i o e e e e e e 35
Slalom 37
B1 Goal e e 37
8.2 Theory i v ittt i e e e e e e 37
8.3 Featuresofthe Module 38
8.4 Programmingaspects, 38
85 Examples 40
Conclusions, 42
Bibliography 43

1. Introduction

In education it is important to present the theory in a friendly and easy way
to understand. Both teaching and learning benefit from an environment where
the student can participate actively in the learning process. This environment
may be created by using sound, text, virtual processes, graphics, executable
code, dynamic pictures, animation of algorithms and other multimedia tools.

The purpose of this master thesis is to create a computer program that
presents some theoretical aspects of control theory using dynaemic pictures,
which show directly the influence of different parameters on a control system.

The program creates educational modules that help the student to under-
stand better the control theory. It develops an interactive environment aided
by "virtual processes” that use computer animation and real time simulation.
With this, the learning process in control is enhanced.

All the implementation has been done using Matlab and its graphical user
interface. The use of Simulink was avoided in order to make faster animations.

All the modules built include options like Theory and Hints that give the
student a fast introduction to the control aspects treated in the module. To
obtain information about how the module works the user is given the option
Help.

This work is organized as follows:

In the Chapter of Programming tools there is an explanation of the main
elements of the standard Matlab Graphical User Interface that were used.

The Chapter Modules, animation and on-line simulation deals with the
methodology used to carry out the animation and the on-line simulation. It
also shows the basic structure of how the modules were built.

The PD-control Chapter illustrates the concept of proportional and deriva-
tive control. Concepts of sample data systems are also analyzed. The control
of a double integrator is used for this purpose.

The interaction between the inputs and the outputs of a multivariable
process are given in the Chapter Decoupling. The process is analyzed in open-
loop and in closed-loop using a PID-controller. The advantage to introduce a
decoupler is also illustrated.

The Chapter Controllability uses a two-tanks system to explain the con-
cepts of controllable and uncontrollable subspaces. It also shows a comparison
between automatic and manual control. Constraints in the control signal due
to physical limitations are treated. For this, the Bang-bang control is used.

State feedback design with and without observers are seen in Chapter Eobot
mechanism process. The response of the system due to different inputs can be
analyzed.

A slalom game is used to show the behavior of typical systems like static,
integrator, double integrator and non-minimum phase systems. This is seen in
Chapter Slalom.

1.1 How to start

The package is started by giving the command eccs2. It was developed using
Matlab Version 4.2¢ in a computer Solaris 2.

Acknowledgments

During my stay at the Department of Automatic Control in Lund, Sweden 1
had the opportunity to work in a friendly and nice environment, In particular
T would like to thank Bjorn Wittenmark who has given me an invaluable
guidance in this work. I would also want to thank Mikael Johansson for all his
patience and help with Matlab.

Many thanks to Universidad Nacional Autonoma de Mexico (UNAM),
which sponscred my graduate studies in England and to Lund Institute of
Technology for the grant given to carry out this project.

I am also grateful to Professor Karl-Johan Astrém and Dr. Martin Clark
for giving me the opportunity of doing my Master Thesis project at the De-
partment of Automatic Control of Lund.

Furthermore I would like to express my sincere thanks to all the people in
the Department: Professors, technical staff, secretaries, PhD students, master
thesis students and friends that made my staying in Sweden one of my most
enjoyable experiences.

Finally, I want to thank my parents for all the support and love given from
home.

2. Programming tools

The main tool used for this master thesis is the Matlab Graphical User Inter-
face (GUI). The elements of the standard Matlab GUI are controls and menus.
This elements were combined with the Matlab graphical objects to built each
of the modules.

2.1 Objects

A Matlab object can be of three styles:

1., Controls: They are the push-bottoms, sliders, editable text, frames, ra-
dio buttons, pop-up menus, static text.
Their function is that when manipulated with the mouse, they cause an
action to be execuied, For instance, pushing a bottom will perform an
action specified by its CallBack.
They are created by writing in Matlab:

h = uicontrol{gcf,’Style’,PropertyNamel’,’PropertyValuel,...
'CallBack’,'action’);

They are often known as uicontrols.

2. Menus:. Menus consist of a menu bar at the top of the active figure.
Usually they are placed in the same window than the uicontrols. They
can have another submenus and they let the user to choose among op-
tions for specific actions.

They are created by writing in Matlab:

h = uimenu(gef,’label’,’MenuName’,...’CallBack’,'action’)

They are also known as wimenus.

3. Graphic Objects: These are standard graphic objects in Matlab. They
can be azes, line, plot, patch, tezt. These are the objects used to animate
the pictures in the modules.

2.2 Handles

All Matlab objects have a handle. A handle is the identifier of an object. A
handle contains the properties of a specific control, menu or graphic object.
These properties can be, for example, color, visibility, position, interruptible,
UserData, CallBack, etc. A handle can be specified by:

handlel =uicontrol{gef,'Style’,’push’,’CallBack’,’action’);
handle2=uimenu(gcf,’label’,’Option1’,’CallBack’,’action’);
handle3=plot{NaN,NaN,’color’,[0 0 0});

In the last example handlel, handle2, handle? are the handles of a control
object, a uimenu object or a graphical object.

2.3 About object properties

Object properties are the basic and most required tool for on-line simulation
and animation. To create or to draw an object or a picture takes a lof of time,
so in order to save time, the pictures and objects are created in a first stage
and when the simulation is required, it is just necessary to change the prop-
erties. For example,

flowl=patch{[.15 .15 .45 .45],[.2 .6 .6 .2],’g");

This code creates a green rectangle and it is assigned to the handle "flow1”.
The vectors specify the size and the position of the rectangle. If these vectors
are changed then the size and the position are changed. To do this, we use the
Matlab code:

set(flowl,’XData’[.15 .15 .45 .45},’YData’,[.3 .7 .7 .3],'0’);

This code moves the rectangle vertically 0.1 units and change to a blue
color. The shape is not changed. Among the most important properties used
are: CallBack and UserDala.

CallBack

The CallBack property specifies the action Matlab executes when the user
activates a user interface control (uicontrol}, Each pushbotton, slider, menu,
etc. has a CallBack property. It is defined as follows:

... 'Callback’,’action’...

Where the action can be a Matlab command, a variable name or an m-
function. When a control object is activated, Matlab passes the action string
specified in the Callback to the eval function and executes it as if it had been
typed in the command line.

UserData

The UserData property lets the user define a matrix and associate it with an
object. In this master thesis the "UserData” was mainly used to associate the
handles to the main figure window, where the uicontrols and uimenus were
defined. It is defined as follows:

... 'UserData’,'[handlel, handle2, ...] ,...

The main advantage of storing handles in a "UserData” is that the handles
and variables exist as long as the figure window remains open, Another advan-
tage is that can open aditional figure windows without confusing the variables
and handles.

3. Modules, animation and
on-line simulation

One of the most important parts of this master thesis is to introduce several
control ideas making use of animated pictures together with on-line simulation
of control processes.

3.1 Modules

The programming methodology used in all the modules is the one suggested by
Math-Works Inc. which consists in programming each module using a single
m-function. To do this and to carry out the actions of each m-function we
made use of Call-Backs.

The basic structure of a module is:

function ctrbity{operation)
if nargin == 0,
operation = ’init’
end;
if stremp{operation,’init’)
% Create the user interface (sliders, pushbuttons, etc,.)
% Create the different plots of the system.,
% Create the picture to be animated.
% Store variables in UserData
elseif stremp(operation,’actionl’}
% Load variables from UserData
% Execute action 1

elseif stremp(operation,’actionN’)
% Load variables from UserData
% Execute action n
elseif stremp(operation,’calculations1’)
% Load variables from UserData
% Carry out on-line simulation and animation

elseif stremp(operation,’calculationsN’)

% Load variables from UserData

% Carry out on-line simulation and animation
elseif stremp(operation,’close’)

% Close windows of the graphical user interface
end;

In this sample structure of a module, cirbity is an m-function. It can be
called from other m-functions (for instance, a Main Menu). The string opera-
tion has the value of the current CallBack to be executed. If the m-function
does not have any argument (i.e. the m-function is called just like ctrbity)
then the condition "nargin==0" is meet and the string “init” is assigned to

the variable "operation”. With this, the inilialization stage is carried out. The
user interface with all the uicontrols and wimenus are created. The graphic
objects like "plots”,”lines”,”patches” are also created.

Once the graphical user interface and the pictures are created in the ini-
tialization stage, the module is waiting the user activates one of the uiconirols
or utmenus to execute an action. The action to be executed will depend in the
string associated with the CallBack of the uicontrol or uimenu activated.

When an action is executed, the variables and handles are loaded so they
can be used or their properties can be changed. This is very useful when a
uicontrol or wimenu gives an option to change the values of several parameters
that are going to be used in the simulation or when some characteristics of
the picture to be animated (for instance, position of the picture, axes limits,
text, lines, etc,) need to be changed.

Finally, we have the stage in which the animation and the on-line simulation
is done. Several actions can take place before this stage, which we have called
caleulations.

3.2 Animation and on-line simulation

All the figures and pictures that are going to be animated, as it was stated
before, are created in the inifialization stage. Each figure or picture is built
by making a collection of graphical objects. To carry out the animations, the
properties of these objects are changed in an intelligent way.

In all the modules, the state difference equations of the system are obtained
and iterated in a loop. In each iteration, the properties of the graphical objects
that form the figure are changed in relation to the state of the process. After
several iterations, these changes will look like the figure is moving. Also, in
each iteration the »data property” of the plots is increased with a new point
so they will look like plotting on-line.

In some of the modules it is necessary to introduce a disturbance or to
change the reference when the process is still being executed. To do that, in
each loop the Matlab function drawnow has to be introduced. When drawnow
is found, Matlab suspends the CaliBack (i.e. go out from the loop) and check
whether a uicontrol has been activated or not. If a uicontrol has been activated,
then Matlab determines whether the object whose CallBack is suspended is
interruptible. If it is interruptible, Matlab executes the other CallBack associ-
ated with the interrupting event and then return to the next instruction after
drawnow.

Two modules of this master thesis make use of the keyboard. To do this,
we set-on the "interruptible property” of the figure in the initialization stage.
The "KeyPressFcn property” of the figure is activated when the user press a
character in the keyboard, so when this is done, a CallBack, associated to this
property , is executed. This CallBack gets the character that was pressed by
using the * CurrentCharacter property” of the figure and it can be assigned to
a variable to be used in the module.

It was found that to make use of the "KeyPressFcn property” the user
has to click with the mouse on the corresponding figure. The user must be
careful not to click in a uicontrol since the "KeyPressFen property” will not
be activated.

4, PD-control

4,1 Goal

The purpose of the PD-control module is to illustrate the concept of pro-
portional and derivative control. Further, hidden oscillations or intersampling
ripple can be studied.

4.2 Theory

One tool in process control is the PD-controller. Here the control signal is a
combination of the P-part that is proportional to the error and the D-part
that is the derivative of the error.

The proportional part increases the speed of response but gives a much
larger transient overshoot. The derivative part increases the damping of the
systermn and generally improves the stability of a system.

The PD-controller exhibits an anticipatory response since the derivative
part improves the correction depending on the rate of change of the error.

In general the control signal can be described as:

0=k o)+ 20)

Where K is the proportional gain and Ty is the constant of the derivative
control and it is called the derivative time.

In this module, a double integrator process is controlled. For this process,
the discrete-time algorithm for the PD-controller becomes:

w(k) = K [e(k) - Tui(k)] (4.2)

Where 3 is the velocity which is also fed back. With this, since the con-
trolled process is of second order; the PD-controller then corresponds to a
state feedback controller.

In digital closed-loop control systems, sometimes, they seem to have an
output response without oscillations,when in reality the output of the contin-
uous process may have oscillations. The reason for this is because sometimes
such oscillations (called hidden oscillations, or intersample ripple) cannot be
seen at the sampling points. This intersample ripple is determined by the dy-
namics of the open-loop system since we have a closed loop system just in the
sampling instants.

There are two main cases of intersample ripple. One is because observ-
ability, in the open-loop system, is lost when sampling causes cancellation
of unstable modes and the sampling period matches the frequency of these
modes. Just changing the sampling period will make the frequencies not to
match and the oscillations will be seer at the output.

The other case of intersample ripple is caused by oscillations in the control
signal due to the fact that the poorly damped zeros of the open-loop are
cancelled by the controller.

4.3 Features of the Module

To illustrate in a simple way how the discrete-time closed-loop control system
cannot, sometimes, detect the oscillations of the continuous process, the double
integrator process was chosen for this purpose. The double integrator has the
following transfer function:

G(s) = (4.3)

and the following sampled state representation:

1 h B
z(kh+ h) = (01)m(kh) + (]21) u(kh) (4.4)

y(kh) = (1 0)a(kh)
The closed-loop system with the PD-controller is:

1 h W ,
2(kh + R) = (-) o(kh) + (2) K [e(k) — Tpy(k)] (4.5)

and the input-output model when the sampling period h = 1 is:

06K(g+1)
(¢—1)(g— 1+ TpK)+05K(g+1)

y(k) = tres (k) (4.6)

The module has the following features:
1) Continuous-time simulation of a double integrator process

controlled by a PD-controller.

2) Discrete-time simulation of a double integrator process
controlled by a PD-controller.

3) The possibility to change the values of the parameters K (gain)
and T of the PD-controller.

4) The possibility to change the sampling period of the sampled-data
controller.

5} The plots of the behavior of the continuous system (continuous
line) together with the discretized system (small circles).

6) The plot of the control signal.

7) The closed loop poles and zeros of the system in the discrete
plane.

8) An erasemode option, in which the user can choose to erase the
plots each time a parameter of the PD-controller or the sampling
period are changed or to choose to keep the plots.

10

4.4 Programming aspects

As it was stated before, the use of Simulink, for simple systems, was avoided.
For that purpose, an m-function (dblint.m) was built, The general syntax for
that function is given:

[t, tk, x, xk, u} = dblint (k,td,h)
where:
Input parameters:
k: gain for the PD-controller
td: constant parameter for the derivative part of the
PD-controlier
h: sampling period
Output parameters:
t : continuous time of the process.
tk: discrete-time of the process.
x: continuous state vector for the double integrator.
xk: discrete-time state vector for the double integrator.
u: control signal (the Matlab function "stairs” is used
afterwards to obtain the hold of the control signal).

The function dblint.m simulates, both, the continuous closed-loop control
system and the discrete-time closed-loop control system. Although both are
simulated in discrete-time (i.e. iterating the differential equation in a loop)
the continuous simulation is simulated faster than the discrete-time simulation
since it is placed in a inner loop for the simulation purposes.

Figure 4.1 PD-control medule

11

Unstable

Region

| =
0.25
Figure 4.2 Values of K and Tp for stable closed-loop

L
K

4.5 Example

Consider the double integrator described by (4.4). The process is controlled by
a PD-controller and using gain X=1.339 and Td= 1.5. The sampling period
is chosen to be 1 second.

The step response plot shows the continuous response with full line and
the discrete-time response with circles, representing the sampling instants.
As it can be seen, the discrete-time system behaves like a first order system
at the sampling instants while the continuous-time system has an oscillatory
response.

This shows clearly that we can have oscillations in the system that are not
seen at the sampling points. However, the oscillation can be detected in the
control signal. Notice that this type of oscillation will not be detected in the
output if the sampling period is changed, since the design of the controller is
the same.

Further, if we consider (4.6) it is easy to see that the system is of second
order and it will be stable if K > 0, Tp > 0.5, and TpK < 2 (See Figure
4.2). This is seen in the module by changing the values in the slider for K and
Tp. When the closed-loop poles are exactly on the unit circle, that will mean
that we are on the limit for the conditions for stability and then we will have
oscillations.

12

5. Decoupling

5.1 Goal

The purpose of the decoupling module is to illustrate:

1. The interaction between the inputs and the outputs of a multivariable
open-loop process with and without decoupler.

2. The interaction between ihe inputs and the outputs of a multivariable
closed-loop process with and without decoupler.

3. The advantage to tune conirollers when the process has a decoupler
included.

5.2 Theory

In many processes it is necessary to consider several control loops at the same
time. This is the case for systems in which there is an interaction between the
different control loops. This means that if an input is changed then several
outputs may be affected. If the interaction or coupling between the control
loops of the system is strong then it will be necessary to design the controllers
for several loops at the same time.

There are some ways to judge if there is a strong coupling between the
different parts of the process; there is also methods to pair inputs and outputs
[6]. We also have methods to eliminate the coupling in a process. This last
point is considered in this module,

Coupled systems

Yor simplicity consider a systermn with two inputs signals and two outputs
signals (see Figure 5.1).

Uz n
— —»-
Ua G(S) Y2

Figure 5.1 Multivariable process (Open-Loop)

The interaction between the variables of the system, can easily been seen
in Figure 5.2, Then, the dynamics of the system may be represented using the
Laplace transforms of the outputs and the inputs as follows:

Yi(s) | _ [Guls) Grfs) U1(s) (5.1)
Yz(s) G21(3) Gzz(s) Ug(s)
Where Gi; is the transfer function from input j to output <. In this case

Equation 5.1 shows how each input affects all the outputs. The matrix of all
G;; is often called transfer function matriz of the system.

13

U Gy Y
GZI
-~ G2

Uy N e NG Y2

Figure 5.2 Coupled system in open-loop

PROCESS
PIDz ol -

Figure 5.3 Coupled system with P I D controllers

Now if a PID controller is implemented for each output of the process,
(see Figure 5.3), the tuning may not be easy since each controller affects both
outputs.

Obviously, the inputs to the system will be the outputs of the control
signal, which are represented by:

Ur(s) = Ga(¥n(s) - Yi(s)) Loop 1

(6.2)
Us(s) = Gea(¥ra(s) — Ya(s)) Loop 2
In a more general sense, if the system is described as:
Y(s) = Go(s)U(s) (5.3)

where:
Y'(s) : is the set of all the outputs.
U{s) : is the set of all the control signals.
Go(3s) : is the transfer function matrix.

and the controller signal as:

U(s) = Cr()(Y(s) - ¥ (s))

14

re ? U
h _IpIp, 1 1 ?!1‘;

Dee Process
Uy Y2

refa

=

—={ PI Dy

Figure 5.4 Decoupled process with P I D-controllers

Combining, the last two expressions and isolating Y (s) we obtain
Y(s) = Gei(8)Y:(s)

where:

Gafs) : is the closed loop transfer function matrix defined by:
Gals) = (I + Go(s)Gr(s)) 7 Go($)G:{s)
If the characteristic equation {given by the denominator of G(s)) has its
roots in the left half plane then the system is stable.
However, due to the interaction, the closed loop system may be unstable
even if each loop separately is stable, which makes it more difficult to tune the

loops. {This can be seen in the macro if the user tries to tune the PID for the
coupled system).

Decoupled systems

One way to improve the control of a coupled multivariable system is to intro-
duce a decoupler. The decoupler is just another transfer function matrix D(s)
whose objective is such that the total transfer function matrix 7'(s) has a de-
coupled structure (ideally a decoupled structure is a diagonal transfer function
matrix).

The coupled system of (5.3) is modified when the decoupler is introduced.
Then we have

Y(s) = G(s)D(s)M(s) = T(s)M(s) (5.4)

where
G(s)= Original transfer function matrix.
D(s)= Decoupler transfer function matrix.
T'(s)= Transfer function matrix of the decoupled process.

M(s)= Set of all the inputs to the decoupler (they can be the output of the
controller).

The decoupling matrix is obtained from (5.4) as:

D(s) = G(s)71T(s) (5.5)

15

This kind of decoupling is known as dynamic decoupling but it is possible
to only look at the static part of the decoupler by choosing:

D(0) = G7Y(0)T(0)

This type of decoupler is known as static decoupling. In this master thesis
only the dynamic decoupling was considered.

After introducing the decoupler, the interaction between the loops is, ide-
ally, eliminated so the tuning is easier and the risk to get a unstable system
is decreased.

5.3 Features of the Module

The multivariable process used for the simulations of this module has the
following transfer function matrix

G(s) = (AT) (5.6)

and the transfer function matrix of the dynamic decoupler according to (5.5)
is

3 ~6!a+1t
D(s) = (s ’;3)

This gives:

T(s) = G(s)D(s) = ({..?-113_(:4-3) 0) (6.7)

3{1—s
0 {s+1)(243

The module has the following features:
1) On-line simulation of an open-loop multivariable coupled system.
2) On-line simulation of an open-loop multivariable decoupled system.
3) On-line simulation of a coupled multivariable system with PID-controller.

4) On-line simulation of a decoupled multivariable system with
PID-controller.

5) Dynamic pictures of each simulation showing the configuration of each
process,

6) On-line plots for the outputs and the control signal.

7) The possibility to change the input reference of the process on-line. With
this feature it is easy to notice how a change in the reference can affect
the output of the process when this is coupled, decoupled or it’s using a
controller.

8) The ability to tune the PID-controller by changing the parameters.

16

5.4 Programming aspects

The simulation for the coupled process is based in (5.1). In the same way, the
simulation for the decoupled process is based in (5.3). Thus, for the coupled
process we have that the transfer matrix function is implemented by:

gnum1l =[1];
gdenll =[1 1};
gnuml12 =[2};
gdenl2 =[1 3];
gnum21 =[1];
gden21 =(1 1J;
gnum?22 =[1];

Where gnum;; and gden;; represent the numerator and denominator of
G;; of the transfer matrix function. To carry out the simulation, it was neces-
sary to get the discrete-time state space representation, For that, the Matlab
functions "tf2ss.m” and "c¢2d.m” were used. Then, we have for the state space
representation:

[A11,B11,C11,D11] =t{2ss{gnum1l,gdenll);
[A12,B12,C12,D12] =tf2ss{gnum12,gdenl2);
[A21,B21,C21,D21] =tf2ss{gnum21,gden21);
[A22,B22,C22,D22] =tf2ss(gnum22,gden22);

A sampling period of T=0.1 second was chosen for the discrete-time state
space representation:

[Phil,Gammal] = ¢2d(A11,B11,T};
[Phi2,Gamma2] = c2d(A12,B12,T);
[Phi3,Gamma3] = ¢2d(A21,B21,T);
[Phi4,Gammad] = c¢2d(A22,B22,T);

Once the discrete-time state representation for each (;; was obtained and
according to (5.1), the difference equations were iterated in a loop in order to
simulate the process.

For the decoupled process, the same was done for the matrices G(s) and
D(s), but now the inputs to G(s) are the outputs of D(s).

The implementation of the PID-controller was done by using:

Tps
Tt G

U(s) = K [bUc(s) _¥(s)+ -S%e(s) - Y(s) (5.8)

This algorithm includes a weighting b on the reference signal. If there is
no weighting (i.e. b = 1), then an overshoot in the step response can appear.
This can be avoided by setting b < 1. The algorithm includes a filter since
a pure derivative should not be implemented. The filter is influenced by the
parameter N, which is the derivative gain at high frequencies. N is called the
maximum derivative gain and it is in the range of 3 — 20.

The controllers were designed independently for each loop. The Matlab
code is:

17

%INITIAL CONDITIONS
for k=1:tf

el=ref-yl(k)

e2=ref2-y2(k)

P(k)=Gain*(b2*ref-y1(k));

I(k)=Iold+({Gain*T)/ti)*elold;

D(k)=((td*Dold)/(td+N*T})-...
({Gain*td*N)/(td+N*T))*(y1(k)-ylold);

m1=P(k)+I(k)+D(k); % Control signal

elold=el;

e2o0ld=e2;

ylold=yi(k};

Told==I(k);

Dold=D(k);

end

where m1 is the control signal for one of the controllers. The control signal
for the other controller m2 is implemented in identical way.

About the animation

As the animation consisted in changing the pictures for each system (coupled,
decoupled, coupled with PID-controller, decoupled with PID-controller), it
was only required to set the properties of the uicontrols before starting the
simulation. The change of input reference on line is done with the Matlab
function drawnow as explained in Chapter 3.

Figure 5.5 Decoupling module

18

5.5 Example

Consider the decoupled process of (5.6) using PI-controller (Td=0 in this case).
The two controllers are tuned independently and the parameters for each are
summarized in the following table:

PI1|PI2
Kp |02 (02
ti |06 |06

If we set ;3 = 1 and uy = 0 and start the simulation then it is easy to
see that the interaction between the control loops is eliminated. (See plots
Figure 5.5) Then if the decoupler is eliminated it will be interaction between
the loops. Notice that it is more difficult to tune the controller when there is
no decoupler and the possibilities to obtain an unstable system are larger.

19

6. Controllability

6.1 Goal

The purpose of this module is to illustrate controllability using interactive dy-
namic pictures:

1) Concepts like controllable and uncontrollable subspaces.
2) The comparison between manual and automatic control.
3) The controllable subspace for constraint control signals

6.2 Theory

A system is controllable if there is always an input sequence u(k) that can
steer a given tnitial state, 2(0), fo the origin in a finite time.

A system is reachable if there is always an input sequence u(k) that can
steer a given initial state, 2(0), to any other state in a finite time,

The set of all the states of a system, that can be reached using any possible
control signal, is called the controllable subspace. To determine whether a
state belongs to the controllable subspace or not it is necessary to analyze the
controllability matrix.

The controllability matrix of the discrete-time state system:

z(k+1) = @=(k)+ Tulk) (6.1)
y(k) = Caz(k)
is defined as:
W,=[& ... 3" (6.2)

The columns of the controllability matrix (6.2) span the states that can
be reach from the origin. As reachability of a system is independent of the
coordinates we can make a transformation to the controllability matrix {6.2)
and find the controliable subspace.

There are many ways to determine if a system is controllable, one of them
is to check if the rank of the controllability matrix is less than n, then the
system is not controllable.

1t is often necessary to find a suitable control signal that makes the system
reaches certain desirable final state. To do that we proceed as follows:

21 = Pz + Tup

20

o3 = Ppy + Tuy = Qz‘-ﬁu + @Tug + uyg

Tn = $pg + @n_lI"UQ + oo+ Tu, 4

Un-1
= A"z + [T 3T @21‘---@"—11“} ; (6.3)
. ﬁ;c L o

Thus, we will reach a final desired state if €, = Tgesired and from (6.3) the
control signal required is:

Up-t
= Wcﬁl (:cd — ‘I’nﬂto) (6.4)

Uy

This method can give large control signals, and it is often that in control
processes the control signal is constrained due to physical limitations. In this
module we solve that problem using bang-bang control.

Bang-bang control

The basic idea of bang-bang control is to use only the maximum (one bang)
and the minimum (other bang) control signals allowed for the limitations of
the system. These control signals are going to be used to bring the states of the
system to the desired final states by considering the phase plane trajectories
of the system.

The desired final state belongs to one trajectory in the phase plane when
the control signal is maximum and to another trajectory when the control
signal is minimum.

Given the initial state it is possible to steer the state of a system to one of
these trajectories using either the maximum or the minimum control signal,
Once the trajectory is reached the value of the control signal is switched, so the
behavior of the system will follow the phase plane trajectory. This trajectory
is called the switching line.

6.3 Features of the Module

Description

To carry out the goals of this module, an example of two tanks was chosen.
Each tank has a dynamics of a first order system with a given time constant
for each of them.

The control objective is to reach a certain height (final state), for each
tank, given an initial height (initial state) using a control signal.

The mathematical model used after being linearized (see programming
aspects below for more information about the linearization) is:

h(k+1) = (”(;Flf _01) hi(k) + (f) gin (k) (6.5)

Ty

21

List of features:

1) Discrete-time simulation of a two tank process.

2) Interactive on-line animation.

3) Phase plane on-line plot for the heights of the system.

4) Time on-line plots for each height of the system.

5} Control signal on-line plot of the system.

6) The capability to change the initial condition (specified
by an ”x”) and the final desired state (specified by an o)
by dragging the mouse. When this is done, the animation is
updated.

7) The option to use automatic control or manual on-line control.
For the automatic control the theory of bang-bang control was
used. For the manual on-line control the user is given a slider that
controls the inflow to the tanks. The user can also choose the
keyboard to control the inflow.

8) Tor any initial state chosen the module has the capability to
plot the subspace of the states that can be reached using finite
or infinite energy control signal

9) The possibility to change the time constant so the animation
is affected automatically. _

10) The option to plot the switching line of bang-bang control for

any final desired state and any time constant.

6.4 Programming aspects

About the model.

Since the purpose of the module is to make the concepts easy to understand
it was necessary to work with a real system. Like most of the real processes,
the two tank system has a non-linear dynamics.

The nonlinear model of the system is:

e 2
Where:
a; : is the sectional area of the outflow in the tanks,
A; : is the sectional area of the tank.
g : is the gravity acceleration.
gin: is the input flow to the tank.
k; ¢ is the liquid level.

22

As the module was supossed to simulate a first order linear system, it was
neccesary to linearize the model. The linear model obtained is:

a 1
b= [S] [h‘] + [4] Gin (6.7)
0 -23.132]| h i

For this we set g = 9.81%% . The linearization process was done around 0.5
(the height of the tanks is 1).
If a; = —L then the linear system will be:

3.132
h= 4 + Ay Gin (68)
[U T %

In this way, it is easy to see that for each tank we have a dynamics of a
first order system in which A; represents the time constant. In the module a
change in the time constant will represent a change in the sectional area of
the tank.

In the module, there is an option to change the time constant. This change
is automatically seen in the picture.

About the on-line simulation and animation.

In order to carry out the simulation the state difference equation was obtained.
A1l the variables to be used in the simulation, like time constants, initial and
final conditions, are loaded and obtained from the UserData property of the
figure. The convention used to store variable in the user data is:

.../UserData’,'[handles for simulation, handles for animation]’,...

For the simulation and the animation the difference equations were iterated in
a loop and the graphical objects were updated at the same time. (See Chapter
2).

About moving the initial and final state.

Moving an object requires actions to be executed when the mouse button
is pressed down, when the pointer is moving while pressed down and when
the mouse button is released. This is done by using the object properties
ButtonDownFen, WindowButtonMotionFen and WindowButtonUpFen.

The following is the procedure followed. First, the object to be moved has
to be created in the initialization stage (see Chapter 3).

Xhandle=plot(0.25,0.25,’kx’,EraseMode’,’Xor’,...
‘ButtonDownFen’,’ctrbity ("move”)’

The last Matlab code places in the (0.25,0.25) coordinates an ¢ and the prop-

erty 'EraseMode’ is set to 'Xor’, so when the object is moved then the last

position is erased. When the pointer of the mouse is placed in the object and

the left button is pressed the CallBack with the string "move” is executed.
The Matlab code for the CallBack "move” is:

elgeif stremp(operation,'move’);
set(figetrbity,...

23

Figure 6.1 Animation

'WindowButtonMotionFen’,'ctrbity (" moving”),...
"'WindowButtonUpFen’,’ctrbity{"moved”));

The last code sets two CallBacks. They are executed sequentially, not at the
same time. The first to be executed is the one with the string "moving”. This
CallBack sets the z in the position of the mouse pointer making use of the
* CurrentPoint” property. It will be executed as far as the button is pressed.
When the button is released the next CallBack is executed. In this CaliBack,
the settings done in the CallBack with string "move” are cleared, thus the
properties return to the original state.

Difficulties It was found that if two different objects to be moved are set
with "EraseMode” as "xor” and if they belong to the same axes, a memory
fragmentation will occur. To overcome this problem, one object was defined
with "xor” erasemode property and the other one with "normal”. The conse-
quence of this is that moving one of this objects will not be as fast and as nice
as the other one (this is the reason for which the user may have difficulties
moving the zero that defines the final state.

About the manual control

The manual control of the module was done by using interruptible CallBacks.
Since the simulation is done by iterating the difference equations inside a loop,
a drawnow is placed in the loop (see Chapter 3) and the object that called the
CallBack, that contains the simulation, is set as interruptible.

Thus, in each iteration Matlab checks if the user has moved the slider
corresponding to the control signal, if this has been done then the new control
signal will be updated and used for the next iteration.

If the user, after starting the simulation, clicks on the green rectangle where
it is written *keyboard?” (or in any other part of the window that it is not a

24

uicontrol) then the keyboard will be activated, Once the keyboard is activated
Matlab checks, in each iteration, if the user has moved the slider or activated
a character in the keyboard {See Chapter 3).

Four keys are going to be identified. These are "j* which moves up the
slider and "m” that moves down the slider about 1 %. The character "k”
moves up the slider to the maximum value (one bang), and ”j” moves down
the slider to the minimum value (other bang).

About the automatic control: Bang-Bang control

The automatic control feature cannot be used if the system is uncontrollable.
To verify this the controllability matrix is obtained and its rank is checked.

The automatic control of the system was done considering two cases: When
the control signal is infinite and when it is finite. The first case was done by
using {6.4) and the second case was done by using bang-bang control.

To apply bang-bang control the differential equations in (6.8) are solved.
First considering the input ¢, = 0 and then considering the ¢;, = 1. Once
they are solved, they are put one state in function of the other (i.e hy(hy)) so
the phase plane trajectories can be plotted. Then the equations that represent
the two trajectories are:

When ¢;n, = 0:

71 gy, Ralt)
ha(t) = ha(0)e™ 1(0) (6.9)
When ¢, = 1;

M@ﬁ:@ﬂ@—lk%M%%%+J (6.10)

Only one section of both trajectories will conform the switching line. The
final desired state, h;{t¢), must belong to the switching line. Thus by physical
interpretation of the system, {6.9) plotted from 0 to hi(ty) and (6.10) plotted
from hy(ts) to .999 will conform the switching line.

If the initial state lies on the switching curve, then we have:

O 1 i ha(t) < ha(ty)
=N 0 it m(t) > k()

But, as in most cases, the initial state is not on the switching curve, then g¢;,
must be chosen to move the system toward the switching curve, By inspection
of the typical paths of the trajectories it is possible to determine the control
law:

If 7 < 79 then:
(. Tin hi(t)
o if h1(t) > h1(tf) and hz(t) > hg(tf)e‘r’ Ralty)
W) hy(t)—1
orif hi{t) < hi(t;) and ha(t) > (ha(ty) — 1)e™ w1
Q'in = s ki(t)

1 if hi(t) > ha(ty) and hat) < hz(tf)e"?lnhl(*_f)
ksl n Ry (t)—1
orif ha(t) < hi(ty) and ho(f) < (halts) — 1)e™ G 4

+1

When 1, > 72 the control law is almost the same, but now the conditions
are inverted. This is, if ¢;; = 0 then the conditions for ¢;;, = 1 are applicable,
and vice versa.

The last control law was used to apply the bang-bang control algorithm.

25

About detecting the final state

Problems The problem arises because the final state, sometimes, cannot be
detected since it is not part of the sampling instants. One of the solutions
that it could have been taken was to change the sampling period. However,
the consequences of changing the sampling period are not the purpose of this
module (for this, see Chapter 4). Other solution was to reduce the sampling
period so the possibilities to detect the final state would be bigger. Here the
problem is that the animation would have been very slow.

Solution The solution taken is based in the comparison between the final
state and the current state. If the distance between them is less than a given
range then the state is detected.

This range could have been taken arbitrarily, but sometimes the state is
not detected because if the range is too big then a false state is detected or
if the range is too small, then a big change between the states at {; and the
states at 5 might ignore the final state, since the final state can be between
them.

For that, a dynamic range was set regarding the difference of change be-
tween the states. Part of the Matlab code is the following:

dx1=abs(x(1,k+1)-x(1,k}))/2;
dx2=abs(x(1,k+1)-x(2,k))/2;

if (abs(x(1,k+1)-x1f)jdx1 & abs(x(2k+1)-x2f);dx2),
% Final state detected

end;
Where *dx1” and "dx2” represent the dynamic range.

About the finite & infinite energy control subspace plots

The module includes an option to plot the subspace of the states that can be
reached using finite or infinite control energy.

Uncontrollable system If the system is uncontrollable this option plots
the states that, by coincidence with the dynamics of the system, can be
reached.

To do this, if the finite control energy option is being used, if is just nec-
essary to draw a triangle with corners in the origin, the initial conditions and
(1,1). The shape of a friangle arises since one side of the figure will be the
controllable subspace, which is a diagonal along the phase plane, The other
side comes from simulating the system with the minimum input (¢, = 0) and
the last side, that completes the figure of the triangle, comes from simulating
the system with the maximum input (gin = 1) (See Figure 6.3).

In case the option of "infinite gain” is being used, and if the initial con-
ditions are in the diagonal line, which is the controllable subspace, then this
same diagonal will be plotted. But if the initial conditions are not in the con-
trollable subspace, then all the states that can be reached are in the set of
all the parallels to the controllable subspace. The parallels start in the main
diagonal and finish with the parallel to which the initial condition belongs to.

26

A figure considering all this parallels is plot using the command "patch” (See
Figure 6.3).

Controllable system If the system is controllable and the finite gain con-
trol energy is being used then the bounds for the reachable subspace will be
given for the plots of (6.9) and (6.10) since this equations are obtained using
the maximum and the minimum input possibles, thus the dynamics of the
system will not be able to go outside this limits.

If the system is using infinite gain control energy then, as it is a controllable
system, the reachable subspace will be all the phase plane, therefore a "square”
(with the current axis dimensions) is drawn using the command "patch”.

Figure 8.2 Reachable subspace, switching line and automatic control using
bang-bang

6.5 Example

Example 1

Consider placing the initial conditions at (0.71,0.73) as it is shown in Figure
6.2. Set the time constants as 7; = 5 and 1, = 10, this will cause the system
to be controllable since the controllability matrix will be of full rank. Observe
the following:

1. Plot the reachable subspace using finite control energy by selecting ” Con-
trol” in the menu and then "Plots”. A curve with the form of an "eye”
will appear. Notice that if the time constants get closer then the "eye”
will tend to close. This means that the reachable subspace is smaller

27

since the system is approaching to be uncontrollable. When uncontrolia-
bility is reached the Yeye” will be completely closed and a diagonal along
the phase plane will be obtained.

If the user moves the desired final state outside this “eye”, then the state
will never be reached, however if the initial conditions are outside the
»eye”, but the desired final state is inside the "eye”, it is possible to
reach the final state since the "eye” represents the reachable subspace
and it does not have relationship with the initial conditions.

. Plot the switching line by selecting * Control” and then "Plots”, A curve
starting at (0,0.3) and ending at (1,0.7) is obtained (See Figure 6.2).
Notice that the final state always belongs to this line. The part of the
curve to the left of the final point *o” corresponds to the control input
gin = 1 and the the part to the right corresponds to ¢;; = 0. This may
change for other time constants.

. Use automatic control with finite control energy by selecting *Control”
then ” Automatic” and *Finite Gain”. It is possible to see that the tra-
jectory that starts at the initial conditions when it reaches the swiiching
line the control input is switched and the dynamics of the system starts
following the trajectory of the switching line. The bang-bang theory is
used here. If the manual control is used, then it is easy to see that, the
dynamics of the system will be always inside the "eye” since this is the
only reachable subspace for finite control energy.

Figure 6.3 Uncontrollable system: Reachable states by coincidence with the dy-

namics of the system

Example 2

Consider now setting the time constants to be equal 7y = 7 = 10. This will
cause the system to be uncontrollable, thus the only controllable subspace will
be a diagonal along the phase plane. Now

28

1. Move the initial conditions to (0.2, 0.8) and the final state to {0.35, 0.65).
Notice that this time is not possible to reach such a final state since it
does not belong to the controllable subspace,

2. Use the menu option ”Control”, "Plots” and then ”Subspace” to plot
the reachable subspace using infinite and finite control gain. This time
the plots represent the states that can be reached by coincidence with
the dynamics of the system.

If manual control is selected it is possible, sometimes, to drag the dy-
namics of the system to the final state. This may happen if the dynamics
of the system, by coincidence, reach the final state. In the module, just
push start, and this final state will be reached automatically, since the
position of the slider has been set before for this purpose.

Once the controllable subspace (the diagonal line) is reached the behavior
of the system will always lie in this line.

29

7. Robot mechanism process

7.1 Goal

The purpose of the Robot module is to use dynamic pictures to illustrate:
1. State feedback design.

2. State feedback design using observers.

7.2 Theory

Consider the process to be controlled:

dz

where u is the control vector, z the state vector, and A and B are constant
matrices. The discrete-time space representation is:

z(kh + k) = $2(kh) + Du(kh) (7.2)

The control law that makes the system follow desired trajectories is given
by

u{kh) = —Le(kh) + lu. (7.3)

The design parameters of the system are the sampling period and the closed-
loop poles in the characteristic equation. The problem is thus often stated as
specifying the sampling period h, the natural frequency w and the relative
damping ¢. If all the states variables can be measured, the aim is to find
a matrix L such that the matrix has prescribed eigenvalues, given by the
specifications.

When the states cannot be measured, we can use the control law:

u(k) = —Lié(k) + lou, (7.4)
where & is obtained from the observer
#(k + 1) = (k) + Tu(k) + K [y(k) — C&(k)] (7.5)

where K is determined by specifying the observer polynomial so that the
matrix & — KC gets desired eigenvalues. The design parameters are the same
as for the state feedback.

30

7.3 Features of the Module

Description

To carry out the goals of this module a robot mechanism process was chosen.
This system consists of a motor that drives a load consisting of two masses
coupled with a spring constant, k. The moments of inertia are J; and J; and
the damping in the spring is d. The input signal is the motor current I and
the output is the angular velocity

w b Ji+Jz
2TV
The process is described by
0 1 -1 0 0
de
Fole-1 A B [ty |ut e (7.6)
a B2 —Ba 0 0
y=[0 0 wolz (7.7)

where:

o = J1/(J1+J2)
B = df(Jrw)

Bz = d{Jowe)
v = Ki/(Jiwo)
6 = 1/(.]1(00)
The states are
1 = p1— P2
£y = w1/w0
z3 = wafwp

The system is further described in [1] Chapter 9.
List of Features:
1. Discrete-time simulation of a robot mechanism process:

(a) In open loop: Tmpulse and Step response.
(b) With state feedback.
(¢) Output feedback (use of observers)

2. Interactive on-line animation.

3. On-line disturbances.

31

4. On-line plots for the output and the control signal.
5. Plot for the poles when the system is in open loop.

6. Plot for the closed loop poles of the system and of the observer (if working
with Qutput feedback).

7. Beginners and Advance level option. In the beginners level there is no
possibilities to change the parameters of the system while in the advance
level the user can change the parameters.

7.4 Programming aspects

About the on-line simulation

All the variables used in the simulation, (i.e. the design parameters) are loaded
and obtained from the UserData property of the figure. The convention used
to store variables in the UserData is:

...'UserData’,'[[handles for simulation],[handles for animation]]’,...

Notice that this time the handles are stored in vectors and each vector is
stored in a matrix. This makes the access to each variable a bit more complex
but it is a more organized way in the cases when working with several windows
and figures.

In order to carry out the simulation the sampled version of (7.6) was used.
The sampling of the system was done using the Matlab function: *c2d.m”.

We sample (7.6) with two different sampling periods. We use a sampling
period of i = 0.1 to simulate the continuous-time process. The other sampling
period can be in the range 0.1 < A < 1 and it is used for the implementation
of the discrete-time state feedback with or without observer. Part of the main
code for that is:

elseif stremp(operation,’calculations’);
% load handles for the simulation from the UserData
% Specify the continuous-time system
% Sample the systemn
[phi,gamma]=c2d(A,B,h);
[phic,gammac]=c2d(A,B,0.1)
% Design feedback and observer using phi and gamma
% Set Initial conditions for simulation and animation
% START SIMULATION
for k=1:(80/0.1)

t(k+1)=k*0.1;
x(:,k-l-l)zphic*x(:,k)—t»gammac(:,1)*u(:,k)+gamma,c(:,2)*disturbance;
% if simulation is for Output Feedback
if sum==
u(k—{~1):-L*x(:,k)+ref"‘lc;
sum=0;
else

32

--Next position
-- Gurrent position

Figure 7.1 Wheel; *dist” represents the distance that a line is moved in each
iteration.

u(k-+1)=u(k);
end;
sum=sum+0.1

drawnow;
end

In the code, "phic” and "gammac” are used for the simulation of the
continuous-time system, while "phi” and ”"gamma” are used for the design
of the discrete-time feedback and observer. When sum == h a new sample
is taken and the control law for the observer is calculated otherwise the same
control law is used for the continuous-time process.

About the Animation

For the the animation the difference equations were iterated in a loop and the
graphical objects were updated in each iteration.

To give the sense of movement to the wheels, seven graphical objects with
the shape of a line were drawn using "patch” (See Figure 7.1). The instruction
"line” was not used since when "line” is iterated the window starts blinking
making the simulation slower,

Each line drawn with "patch®, is moved from its initial position to the
initial position of the upper line by setting the "YData” property. Once the
position of the upper line is reached, the line is set to its original initial position.
The line is moved in each iteration a distance given by

abs (hsinw(k))

dist =
8 Times

(7.8)
Where w(k) represents the angular velocity of the system and # is the time
between samples of the system. T'imes is a resolution factor. The larger Times
the better is the animation but the better the animation the slower the simu-
lation. Finally, dist is scaled for each line so all the lines will reach the upper
line initial position at the same time.

About the impulse, step response and the disturbances

Impulse To introduce an impulse in the system we set u(0) = 1 as initial
condition. Once, inside the simulation loop, we set u(k) = 0.

33

Wim

&

Disturhance

Figure 7.2 Reobot Animation.

Step response and disturbance A drawnow is put in the iteration loop
(See Chapter 2), so each time the user activates the reference value, using
the slider in the animation window, or introduce a disturbance, using a push-
bottom, the new value will be updated and used in the running simulation
automatically. If a "unit step” is required then the pointer of the reference
slider must be set in the top. The disturbance is set to be of height —10 and
of duration of 0.1 time units.

The other parameters, like for instance h, {, oy and ap, wy, can only be
updated when the process is not running.

About the State Feedback

Since the system is of third order, then three poles can be placed using the
controller in {7.3). The parameter I is calculated such that the steady-state
gain from u, to ¥ is unity. This is

1

o= 7.9
c(I-@+rL)’'r (v9)

The desired poles can be specified by
(8% 4 2fmwms + w3)(s + a1wm) (7.10)

This characteristic equation is put in a state space representation and then
discretized in order to be able to get the desired eigenvalues for the design.
This is

[As,Bs,Cs,Ds}=tf2ss([0 0 0 1});

[phis,gas]=c2d{As,Bs,h);
P=eig(phis);

34

Figure 7.3 Robot mecanism module.

To obtain the gain L in (7.3) we use the Ackermann’s formula using
L=acker(phi,gamma,P);

Where phi and gamma are & and T' respectively. "P” is the set of the
desired eigenvalues given by the specifications in (7.10).

About the Output Feedback

Here, we can only measure the output of the process. To get the other states
we use (7.5). The eigenvalues of & — K are chosen in the same way as the
close-loop poles of the system but a factor o further away from the origin,
Thus the characteristic equation for the observer is

(.52 + 2{apwmn, s + (agwm)z)(s + aparv,) =0 (7.11)
This characieristic equation is put in the state representation and then dis-
cretized to obtain the eigenvalues of the design. To get the gain K we again
use the Ackermmann’s formula as before

K=acker(phio,gammao,P});

The term — oWy, is the continuous-time equivalence of the fastest pole
of the closed-loop system when we are using the observer.

7.5 Examples

In this example it is required that the dominant modes of the robot mechanism
have a natural frequency of wy, = b rad/s and a damping {, = 0.7). Set these

35

values by using the sliders obtained by selecting ”Level” in the menu and then
? Advance”,

Consider the rule of thumb to get a sampling period of & = 0.5 for the
process. Suppose that only the output is measurable, this means that we should
set the system in »Output Feedback” mode. Set oy = 2 and ag = 2, recall
that —ag01wsm is the continuous equivalence of the fastest pole of the closed
loop system (see Figure 7.3).

The module will design the observer and the required gain to meet the
specifications given. Push the button ”Start” to see the simulation. It is pos-
sible to apply a disturbance to see how it affects the system with observer,
Notice that the response of the system is the same than the response of the
observer. The reason of this is because the system is simulated with the same
initial conditions.

If we want to compare the same design without using observer, we just
have to change the mode to "State Feedback” and the module will design
everything again.

36

8. Slalom

8.1 Goal

The purpose of the Slalom module is to show the behavior of typical systems
when these are being controlled manually and automatically.

8.2 Theory

The output response always depends on the dynamics of the system and on
the input signal that it is controlling the process. To illustrate this, we have
chosen some interesting systems like static, integrator, double integrator or
non-minimum phase systems which can be represented by using their transfer
function as follows: For a static system we have

Y(s)=KU(s) (8.1)
for an integrator
1
Y{(s) = ;U(s) (8.2)
for a double integrator
1
Y(s) = -'-9—2-U(3) (8.3)

and for a non-minimum phase system

S

¥ (s) = —;%U(s) (8.4)

s(s

In a static system the output will be the same as the input multiplied by
a gain factor K.

The integrator is called like that since the output depends in the integral
of the input. So, if a step input is given the output will be a ramp.

For a double integrator, the response depends in the double integral of the
input which makes the control of such system more difficult. For instance, if a
step input is given, the response will be a parabola. There are several systems
that can be modelled as double integrators, for example, the attitude of a
satellite or a ball and beam system.

We call a system nonminimum phase if it has zeros in the right half plane
(or in the case of discrete-time systems if it has zeros outside the unit disc).
The control of this systems is sometimes difficult due to the time delays they
usually have.

We can reach a desired state if we give to the system a right control se-
quence. In this module we aim to mimic a slalom track where the purpose is
to pass through the gates by using manual conirol.

37

lI.C. l 1.C.

a
a) ¢)
|L.C. L.c.
u [y uw [., y
1 - [T ety [

b) d)
Figure 8.1 a) Static system b) Integrator system c) Double integrator system
d)Non-minimum phase system.

8.3 Features of the Module

Description

To carry out the goal of this module a slalom game was chosen. The user is
given a pair of skies that can be controlled manually or automatically. The
objective is to make the skies pass through the gates that are distributed along
a snow field. The dynamics of the skies may be represented by either a static,
integrator, double integrator or non-minimum phase systems.

List of features
1. Discrete-time simulation of skier when this is represented by
A static system.
Axn integrator system.
A double integrator system.
A non-minimum phase system.

2. Automatic control option so the skier can follow a desired trajectory.

3. Manual control option so the user has the control of the skies. This can
be done either using the slider or using the keyboard.

4, On-line plot of the input signal.

5, Animation.

8.4 Programming aspects

About the automatic control

To get the correct control sequences that make the skies pass through the
gates we

1. Determine the continuous state space representation given the transfer
function. This is,

2(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Duft)

38

2. Discretize the system to obtain @ and T, since the aim was to do a
discrete-time simulation of the skies (sampling period h = 0.2). This is,

z(k + 1) = ®z(k) + Tu(k)
y(k) = Ce(k) + Dulk)

3. Solve the state space difference equation for each system by using z-
transform and considering as initial conditions the value of the states at
the position of one gate and as y(k) the position at the next gate. Thus,
the z-transforms obtained for each system were solved several times but
with different initial conditions. For this, we use

Y(z) = C(2I — &) Tu + z2(0)] (8.5)

To solve (8.5) we consider a step input signal of size m, i.e.

u(z) =

: (8.6)

Finally we determine m in (8.5) (Recall that y(k) is given by the position
of the next gate). With this, the strategy to make the skies pass through
the gates is to apply a step input of size m each time the skies were
passing through a gate.

We use the Matlab functions "tf2ss”, to obtain the state space representations,
»c2d”, to discretize the system and we solve by hand the z-fransform for each
system.

Static systemn For the static system we skip the first two steps, since the
output will be the same as the input multiplied by a factor K. From (8.1) and
recalling that we have chosen u to be a step of magnitude m we have

0
K

Thus, the size of the step to go from one gate to another will be obtained by
calculating m each time. As it was stated before, y(k) is the position of the
next gate.

Integrator system For the integrator system specified in (8.2), the differ-
ence equation obtained is:

z(k + 1) z(k) + 0.2mu(k)
y(k) = =(k)

Solving for y(k) using 2-transform and isolating m we get:

_y—=(0)
0.2k

The size of the step at each gate is m.

39

Double integrator system For the double integrator specified in (8.3) we
obtained the following state space difference equation:

02 1
y(k) = [0 1]a(k)
We determine y(k) using z-transform and solving for m we get:

_ y(&) — 0.2kz1(0) - 22(0)
0.02(k% — k + 1)

a(k+1) = [1 Olm(k)+!0%22}mu(k)

The size of the step is m.

Non-minimum phase systemn For the non-minimum phase system spec-
ified in (8.4) we obtained the following state space difference equation :

0.8187 0 0.1813
k+1) = k k
e(k+1) |: 0.1813 1] =(k) + l 0.0187 :| mu(k)

y(k) = [-1 1]e(r)
We determine y(k) using {z-transform) and solving for m we get:

= VB + 221(0)(0.8187)% — 21(0) — 22(0)
h 0.2k + 2(0.8187%) — 2

About the manual control and the animation

The state space difference equations for each system (static, integrator, double
integrator, nonminimum phase) were used for the simulaton. A drawnow was
included so each time there is an iteration, Matlab checks if the slider, given
to the user for the control of the skies, has been activated. If this has been
activated the new value for the input control signal is updated, otherwise the
simulation keeps on using the same value,

If the user, after starting the simulation, clicks on the green rectangle where
it is written "keyboard?” then the keyboard will be activated. Once the key-
board is activated Matlab checks, in each iterarion, if the user has moved the
slider or activated a character in the keyboard (See Chapter 3).

Six keys of the keyboard are identified. These are "m” which moves up the
slider and ”,” that moves down the slider 1 %. The character ”j” moves up
and "k” moves down the slider 10 %. The character "u” moves up and "i”
moves down the slider 20 %.

As in the last modules the picture for the animation was done in the
initialization stage and then during the simulation the ”position property” is
changed according to the value of the states of the difference equation.,

8.5 Examples

Example 1

Select the integrator system using the ”System” option in the menu. Set the
? Automatic” mode. Start the simulation. The trajectories of the skies are a sef

40

sH
]
&
g

5
tima[s]

Figure 8.2 Slalom module when controlling the double integrator and uwsing au-
tomatic mode.

of ramps. This happens since an integral system integrates the input signal,
and in this case the input is a constant (step input}) so the result is a ramp.
If the "Manual” mode is chosen, the user is given a slider which can be used
to control the skies. It is easy to see that it is more difficulf fo use "manual
control” to make the skies pass through gates than using ”antomatic control”.
Therefore we can conclude that the analysis to find the right control sequence
will be more efficient than trying to control a system whose dynamics are
uncertain for a given input.

Example 2

Select the double integrator system and start the simulation. The trajectories
of the skies are a set of parabolas. This is due to the input, which is a step,
is integrated twice. Now select the "Manual” mode to control the skies {If
you want to use the keybord remember to click in the green rectangle each
time you push the start buttom). It is easily seen that it is more difficult to
control the skies than an integrator, It might seem that even we give inputs
to change the direction of the skies, these keep their direction for a while and
then change. This is because when the value of the slider (or the variable store
in the keyboard), sometimse does not change to negative inmediatelly and a
positive input is still integrated twice.

41

9. Conclusions

In this master thesis a software that illustrates several control concepts is
developed. The program creates an interactive environment where the user
can change parameters and modify the models. These changes are directly
visnalized by using dynamic pictures.

The use of animated pictures showing theoretical concepts of control make
easier the learning process, thus the program developed in this master thesis
will hopefully give the students another view of the control aspects presented.

The different designs, the on-line simulation and the animations were done
using Matlab and its graphical user interface. The use of Simulink was avoided
so there was no need to declare variables in the Matlab workspace, with this,
the variables are more protected against unwanted user action. However, the
trade-off is that the better the simulation and the animated pictures the slower
the program will be.

Other way widely used in this work to protect the local variables was done
with the "UserData” property of the figures. This also allows the user work
with other Matlab applications without confusing the variables. It would be
desirable that for further development of this software the "UserData” keeps
on being used.

Another suggested feature it would be to include this demo in the Internet
such that it can be used with Netscape or Mosaic.

42

10. Bibliography

[1] ASTROM, KARL J, & WITTENMARK, BJORN Computer Controlled
systems, theory and design. Prentice-Hall International Inc. 1990.

[2] MATLAB, Reference Guide, The MATHWORKS Inc. 1992,

[3] MATLAB, Building a Graphical User Interface, The MATHWORKS Inc.
1993

[4] HAGLUND, HELENA, Dynamic Piclures is Sampled Data Systems,
Master Thesis, Department of Automatic Control, Lund Institute of
Technology, November 1995,

[6] ALLWRIGHT, JOHN, Course notes for the course: Discrete Time
Systems, Imperial College, University of London, 1995.

[6] WITTENMARK, BJORN, ASTROM, KARL J. & BAY-JORGENSEN,
STEN, Process Control, Lecture notes, Department of Automatic Control,
Lund Institute of Technology, Sweden.

(7] BRYSON, ARTHUR & HO, YU-CHI, Applied Optimal Control, Ginn and
Company, 1969.

43

