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1. Introduction

A wind power plant offers several challenges for control engineers. It should
smoothly produce electrical power under large variations in the working en-
vironment. The plant should therefore be robust against wind variations and
other types of perturbations. One example of such a perturbation is the lee
of the tower. Every time, a blade passes behind the tower some aerodynamic
torque is lost,

In analysis of control systems the uncertainty of the model is important
since the presence of feedback can amplify the sensitivity to perturbations.
Controllers that are designed to optimize certain design criteria, may at the
same time increase the sensitivity to unmodeled dynamies.

The theory of robust control offers opportunities to address these issues.
The purpose of this Master thesis is to demonstrate this on a wind power
plant with uncertain parameters and significant non-linearities. It is analyzed
in a simple framework combining fechniques from absolute stability theory
and numerical optimization of linear matrix inequalities.

The analyzed plant and controller design has been successfully operating
for several years. The computational analysis of this paper is confirmed on a
sophisticated and complex (simulation) model of the real system [Mattsson
[6]]. This nonlinear model is much more advanced than the linearized model
used for design.



1.1 Organization of the Thesis

In addition to presenting the model, Chapter 2 ties the work of this thesis to
the PhD thesis that is model is taken from [Mattson [6]]. It explains in short
the complex system of a wind power plant and emphasizes the main points
concerning the control design and the control model. Chapter 3 explains some
of the methods and criteria used, and also gives some simple examples. This
chapter is intended to make the thesis more self-contained and also give some
motivation for exploring the effect the perturbation has on the system. It
can be omitted or used as a reference when reading the thesis. The main
body of the thesis lies in Chapter 4 and 5 where the analysis of the model
is conducted. Chapter 4 contains the stability analysis and Chapter 5 the
performance analysis. These two chapters are strongly interrelated to each
other. The conclusion, summarizes the findings and give a interpretation of its
importance.

2) The Model

3) Motivation and

L m| 4) Robust Stability

Theory

5) Robust

Performance

6) Conclusion

Figure 1,1 The Organization of the thesis



2. The Model

In this chapter we will discuss the dynamics of the wind power plant, The
plant studied is a WTS5-3 Swedish wind power plant, but the techniques can
be extended to other wind power plants or other dynamical systems. This
chapter is meant as a background for the rest of the thesis and ties Sven Erik
Mattsson’s PhD-thesis [[6]] with the work of this thesis.

The model will be divided into three major parts: the turbine, the gener-
ator and the wind. In the following the power plant is studied from several
viewpoints: a control design model, an analysis model, and a more sophisti-
cated simulation model. First, the design model is presented, and then the
simulation model is briefly introduced. The analysis model will be introduced
in Chapter 4.

2.1 The Wind Power Plant

The wind turbine is a complex system with three major degrees of freedom.
The main movement is of course the rotation of the turbine around its own
axis. This movement is enforced by converting the wind energy. There is also
a movement of the nacelle and the turbine around the axis of the tower, This
movement is called yawing and it concerns the problem of aligning the wind
with the axis of the turbine, Yawing is not considered in this thesis. The blades
can be turned around their own longitudinal axes, and this is used to control
the aerodynamic torque of the turbine,

Figure 2.1 The Wind Power Plant

The rotational velocity of the turbine is represented by 1,b The twist of the



blade around its own axis § is called pitch angle, and it is a variable we can
control.

2.2 The Turbine and Generator

In the control design the two most important parts are, not surprisingly, the
turbine and the generator. The generator rotates with synchronized speed im-
posed by the electrical net. The turbine is connected to the generator through
a soft shaft, which enables the turbine to oscillate relatively to the generator.
This connection will be further studied in the sequel,

The Turbine

The turbine of a large horizontal axis wind power plant is, as expected, big.
The length of each of the two blades is 40 m (131 ft) so the turbine covers a
rather large disc intersecting the wind.

Notice that the size of the disc is important when designing a control system
in the sense that it complicates the design. When designing the control system,
it is important to know the average wind speed. It is shown in Mattsson [6]
that the wind speed in one point often is poorly correlated (< 0.6) with the
mean wind speed over the disc. Consequently, it is not sufficient to measure the
wind speed by a wind gauge {anemometer) in one point close to the turbine.
However, the wind speed can be estimated using a Kalman filter.

The aerodynamic description of the turbine is rather complicated. The
models of trusts and torques are found using static- and two-dimensional airfoil
theory to the cross sections of the blades. These equations of torque and trust
are used to develop simpler linearized equations:

AT = TpgAp+TyAls+ T&A‘IL’ + TyAy

AF = FgAP+ FyAUs+ FyAd+ FyAdp @1)
where ¥ is the horizontal force on the turbine, and 4 is the pitch angle of the
blades. This variable is very important since this is a variable we can control.
Another very important variable is Uy — the wind speed. The aerodynamic
torque T drives the turbine.

The torque T'(8, U, ¥, ¥) is very dependent on the wind U and its powers
up to the third degree (U3, U? and U). It depends linearly on 8 and on the
second power of (1,b2)

The basic dynamics of importance for pitch angle control is given by the
oscillations of the turbine against the electrical grid as depicted in Figure 2.2.
This figure should be interpreted as if the electrical network is rotating with
constani synchronous speed (4o). The "soft shaft” illustrated by the damper
and spring transfers the kinetic energy of the turbine to the generator.

The turbine will be said to rotate with an angular velocity 'z,b of P = 2.618
rad/s.

The Drive Train

The important features of the drive train is the step up gearing and the tor-
sional compliance. The gearhox steps up the torsional speed 60 times. The
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Figure 2.2 The Wind Power Plant

mounting of the planetary gearbox is designed to make the drive train tor-
sionally soft. The equations of the turbine are:

AT = JAY+ DAY+ K,Ay (2.2)
A = Ay '
where J represent the turbine inertia, K, and D, are spring- and damping-
coeflicients (see Figure 2.1).

This simple mode! contains the first oscillating mode, where the turbine
oscillates against the electrical part. The second mode which is the oscillations
of the rotor of the generator against the grid can be neglected. The natural
frequency of this mode is 25 times higher than the frequency of the first mode
and it can neither be excited by the wind variations nor damped by the pitch
angle control.

The soft shaft of the power plant is of great importance when studying the
system. This flexible design adds a mode with natural frequency 1.2 rad/s (or
0.46P). This mode is exited by the wind and blade angle changes, but it also
works as a low pass filter reducing the effect rapid wind variations have on the
electrical output.

The Generator

The power plant generates its electricity through a synchronous generator.
The electrical energy (Pg) is given by Ts where Ty is the electrical torque,
From Figure 2.2 we find that ATg = D,A¥ + K,A~ and thus

APg = 1o(D,AY + K, A7) (2.3)
where g is the synchronous turbine speed {see Figure 2.1).

The Blade Servo

The dynamics of the blade servo is also important since this will be our only
control variable. The turning of the blade around its axis (see Figure 2.1) is
described by

Toa = Br — B (2.4)

where 8, is the control-input to the servo, and T}, is a time constant (0.4 s).
It is also worth noticing that the servo cannot turn the blade faster than 6°/s.



2.3 The Wind

The wind is, obviously, very important for the operation of the wind power
plant. It is the energy supply. In the model used for control the wind will be
represented by one value for the wind speed. It can be thought of as the mean
wind speed. The change in the wind-speed is described by the dynamic by:

. AU 2
AU = E -%- Ty E’w (25)

where w is white noise with zero mean, the time constant 7%, = 20s and the
standard derivation oy, is 5—20% of U (the average wind speed over the disc).
This dynamic description is important when the controller is designed using
LQR algorithms.

Downwind Plant

The power plant studied is a WTS-3 model where the turbine operates down-
wind of the tower. This means that the turbine alignment (or yaw movement)
is supported by the wind, so the alignment can be designed with passive con-
trol, In contrast, upwind power plants need active control to align the turbine
against the wind. The WTS-3 has an active yaw controller since the passive
downwind design was found to be oscillating.

Downwind design has a major drawback to upwind design - the tower
blockage. In downwind operation, the plant converts the wind to energy after
blowing past the tower that supports the turbine. Upwind power plants on the
other hand convert the wind before it reach the tower. The lee from the tower
can be modeled as a drop in the torque of each blade when passing behind the
shaft. The lee covers a sector modeled as 10° of the rotation of the turbine.
Obviously, it occurs twice every rotation of the turbine since this plant has
two blades. In other words, it occurs with a frequency of 2P. The problems
connected to the tower-blockage will be studied in this thesis.

In this thesis the change in torque due to the tower blockage is viewed as a
change in the velocity of the wind. Instead of saying that the turbine lose the
torque on one blade we will just assume that the wind speed is reduced. Thus,
the tower blockage is modeled as a periodic disturbance in the wind-speed.

2.4 The State-Space Model

The above equations (2.1 to 2.5) are used to make a linear state-space model
around a operating point. This model is used to design a control system for
the plant.
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where we introduce Kg = Tg/J to simplify notation.

Notice that in the rest of the rapport the A’s will be dropped to get a
cleaner and less confusing representation.

Keep in mind that, the torque T(8,U, P, 2) depends on all the variables
8, U, v and 2. Equation 2.1 is a lincarized expression around an operating
point. Moreover, constants are used for the variables Kg, Ky, K; and K.
To linearize equations is always a critical step, and we need to justify that
the linearization is valid over the range it covers. This problem will in the
following be transformed into a parametric uncertainty problem and studied
in detail through Chapters 4 and 5.

2.5 The Simulation Model

For testing the different control proposals derived from the dynamic system de-
scribed over, the controller was tested on the more complex simulation model
[Mattsson [6]]. This model was developed in Simnon and consisted of six dif-
ferent model parts which were connected through their variables. The dif-
ferent parts were: the Turbine, the Synchronous Generator, the Drive Train
and Gear-box, the Pitch Servo, the Wind, and the Bus (electrical net). These
models do not suffer under the hard assumptions of the linear model described
above. Thus, the model gives a much more realistic behavior of the real sys-
tem. Notice, that the model has been extensively compared with the real wind
power plant and confirmed to be good.



3. Motivation and Theory

This chapter contains background material for the analysis given in the thesis.
The aim is to establish the notation, to review and summarize the technigues
utilized, and to give an engineering motivation. Methods from traditional fre-
quency analysis as well as modern tools for analyzing uncertain systems are
described.

3.1 Uncertainty in Models

When modeling a physical system, there is always a mismatch between the
model and the real system. This difference is often referred to as a model
uncertainty. An engineers goal when modeling a plant is to make a model
that gives useful predictions at a low cost. The engineer must, therefore, be
a mediator between the physical system and its mathematical model, always
keeping in mind the cost of every new detail lumped in to the model.

Feedback systems in themselves are designed for making the plants more
robust to uncertainties, but one of the costs for this improvement is the danger
of unacceptable behavior and instability. In control engineering the uncertainty
of the model should be considered since the concept of feedback can greatly
amplify the sensitivity to perturbations.

Methods for analyzing risks for instability are important in control engi-
neering. However, the limitation on the design is more often imposed by poor
behavior than loss of stability — i.e. if an electrical circuit is stable for compo-
nents of 10% accuracy maybe it only behaves well enough when 5% accurate
components are used.

Parametric Uncertainty

The mathematical description of a physical object includes several real con-
stants called parameters. Often, the values of these parameters are uncertain
or actually varying. The reasons for this kind of uncertainty are often manifold
and fall into on or several of the following points:

e The parameter varies from plant to plant. Similar design does not guar-
antee that the parameters will be the same.

e The parameter is obtained from a linearized expression which may de-
pend on one or many variables.

» Assumed operating condition varies in an unforeseen ways (e.g., stalling
at the blades of the power plant)

These factors introduce uncertain parameters to the control design since it
is, intentionally, kept simple and, therefor, on a low order with few variables
(or states).

When studying the validity of a model, the nncertainty itself needs to be
modeled or described in some sense. We want to give a description of the error
— the difference between the physical object and its mathematical description.

One way of describing an error due to linearization is to define some bounds
on the error. This is done in an effective way by introducing a *conic sector”
around the linearization which shows the error.

10



The most important uncertainty in the model studied is due to linearization
of the expression for aerodynamic torque T (2.1}, This approximation leaves
us with three parametric uncertainties Kg, Ky and K ;. A "conic-sector” is
shown in Figure 3.1 to illustrate the error of the linearization.

T [Nm)] .
x 10

4

: 1 1 1 1 1 1 L 1 1

8 10 12 14 16 18 20 22 24 26

U [m/s]
Figure 3.1 Wind speed versus aerodynamic torque I'. The parameter 8 is constant
at its opperating point value,

It is also useful to limit the parameters by estimating the upper and lower
bound for the real values.

‘)t’ € [Qbmin, ¢mam] (31)

This is, for example, done for Kg, Ky and K in the following analysis.

3.2 Parametric Perturbations

When analyzing the effect of uncertainties on the stability and behavior of the
compensated system, we need to separate the nominal state-space model from

the uncertainty. One effective way to do this is to describe the perturbation
as a block in the feedback loop.

Robust Stability

To analyze the robust stability of the system, the nominal model is analyzed
together with a description of the uncertainty. The model can be represented
as a scalar feedback loop (see Figure 3.2).

Transforming the System into a form for Stability Analysis

To analyze the system, we first need to define two new variables: one for vari-
able that is multiplied by the uncertain parameter, and one for the product.

11
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Figure 3.2 Feedback representation of uncertainty

& i
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¢

Figure 3.3 Standard State Space Model with Parametric Uncertainty

We then construct a state-space representation of the system with the uncer-
tainty separated from the rest of the equations. For example:

¢ = Az + agv
z = ﬁqua: (32)
v =gz

from Figure 3.3.
From these equations the block-diagram can be transformed into Figure 3.4

by following the input and output signals,

12
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Figure 3.4 More convenient representation of the system

Robust Performance

In most systems, restrictions on the performance limit the design more than
the stability. Even though the system is stable, the performance can change
much with increasing mismatch of the model and the physical object.

When analyzing robustness performance, the first step is to choose the
variables for which the performance is evaluated. For example, we may choose
wind-speed and electrical power for the wind power plant. The gain between
the two variables is preferably small since ideally the changes in wind speed
does not effect the output power.

When the variables are decided, the system is transformed into Figure 5.1.
In this form the performance can be analyzed using for example optimization
of linear matrix inequalities as will be shown in Chapter 5.

Y

$(t)

A

M(s)

Youn—  —— 1

Figure 3.5 Performance analysis setup

3.3 Frequency Domain Analysis

When analyzing stability for parametric perturbations, the frequency domain
criteria are used both for the model with a constant and a time-varying un-
certainties. A normal procedure for evaluating the stability of the plant with
drifting parameters is to start by assuming a simple description of the plant

13



{i.e. state-feedback) and constant uncertainty; then, move to the more com-
plex plant (i.e. including observer) and time-varying uncertainty, The analysis
alternates between increasing the complexity of the model and describing the
uncertainty better. The goal is to get a reasonable understanding of robustness
properties.

Nominal Plant with Unknown Constant

Consider the case where ¢ is constant but unknown and takes different values
in the range of its bounds (see 3.1). This can easily be studied using the
Nyquist theorem. From this analysis we get the uncertainty bounds that will
give a stable system if the uncertainty is constant (i.e. constant components
that are different from plant to plant). If the estimated uncertainty (3.1) is fully
covered by the bounds from the analysis, we move on to a more complicated
description of the uncertainty.

Nominal Plant with Time-varying Parameters

Analysis of stability for time-varying uncertainly is often referred to as ab-
solute stability analysis”. The main tool in this analysis is the Small Gain
theorem and its graphical counterpart the Circle Criterion. The Circular cri-
teria will be reviewed here,

=)= M(S) -}

¢(t) y) -

Figure 8.6 Model configuration for the Circle Criterion

THEOREM 3.1—CIRCLE CRITERION
Assume that 9 is Lipchitz. Then

z = Az - B¢(t,Cz), z(0)==g (3.3)
is asymptotically stable if there is a a, 8 (with 8 > a) such that:

ay < Bt y) < By Viy (3.4)

and

e[l—JrM] > 0 VweR (3.5)

14+ aM(jw)
O]

The name of the theorem refers to the geometrical interpretation of the the-
orem where the sector of the non-linearity is presented as a circle passing
through the point —1 and — % [Khalil [4]].

Instead of using the Circle criterion directly, we sometimes plot the invert
Nyquist contour. From this curve the interval of stability can be seen directly.
There is no need to inverse the values of the crossing-points. As an example,
the two different presentations are shown. In this case the stability sector is
¢ € [-0.67,0.67].

14
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Figure 8.7 Circle criterion and its inverse representation

Willems Periodic Uncertainty Theorem

If the uncertainty is periodic it can be studied more carefully by adding the in-
formation of periodicity to the analysis. This enable us to give a more accurate
prediction of the system, thus less conservative bounds.

An extended stability theorem for systems with periodic coeflicients, as
stated by Willems [[10]] is used to examine periodic uncertainties (i.e. tower
blockage).

Consider the a system loop as shown in Figure 3.8 where:

1. M(s) = p(s)/qg(s), where p(s) and g(s) are real polynomials in s, i.e.,
p(s) = " +pait o tpo
4(8) = @Gus"ttart ot 0

with p; and g; real numbers.
2. ¢(t) is real valued piecewise continuous periodic function with period T

3. Either ¢, = 0, or —1/¢, € [a, ] is satisfied.

P = 0= M(s) -

#(t) |-

Figure 3.8 Feedback System
The frequency domain theorem of Willems can then be stated as:

THEOREM 3.2
The system is asymptotically stable if
1. p(s) + ¢g(s) has all its zeros in Re(s) < 0 for some ¢ € [a, 4],
2. there exist a real function of s, F(s) such that for all real w
(a) ReF(jw)>0,
(b) F(j(w+ wo)) = F(jw) where wp = 37,

(c)} Re {F(jw)iigﬁ(: } >0

15



3.4 Conclusion
In this chapter we have outlined the technique to be used for analyzing the
uncertain system. The procedure can be summarized as:

o Represent uncertainty by a feedback loop.

o Analyze the stability of the loop with the uncertain element.

o Analyze the performance of the system taking count of the uncertain
element.

Through the rest of the thesis the method outlined will be used to analyze
the effect the major parametric perturbations will have on the stability and
behavior of the wind power plant.

16



4. Robust Stability

In this chapter the control of the Wind Power Plant proposed by Mattson [6]
will be analyzed through its parametric uncertainties, The design procedure
of the control system exploit simple linear time invariant state space models.
The model where given by the linearized physical equation (2.6).

This linear model simplified the design procedure, but raised the question
if the control law guaranteed the stability.

In 1984 when the control design was done, Simulations were used to evalu-
ate performance and robustness. Amplitude and phase margins were also used
to measure robustness, Unfortunately, requirements on performance and ro-
bustness are indeed conflicting. It makes the trade off between performance
and robustness a key issue. This makes methods to analyze effects of uncer-
tainties and nonlinearities very interesting in this application.

In the following, the robustness of the systems stability will be analyzed
when the plant is affected by uncertainties. Thus, an evaluation of the systems
stability can be developed for the uncertainties that influences the system.

4.1 The Major Uncertainty in the Model

The dynamical equations are nsed to construct a linear model around and
operating point of /=18m/s. The power plant is running for winds in the
range of 7Tm/s to 27m/s which stretches the reliability of the linearized model
very far, since both Kg, K 3 and Ky are very dependent on the wind speed.
It will be seen in the following that the uncertainty in Ky is of no importance
when we consider the stability of the model.

Ks .

3.5

0 a ; ; : :
0 5 10 15 20 26

Ulm/s]
Figure 4.1 Wind speed versus Kp

Kg, on the other hand, has a great impact on the stability and will be
studied in detail throughout this chapter. A system where both Kg and K 11-)

17



are examined at the same time will also be studied in the sequel. Kg is found
from the rather complex wind model, and by assuming that the change in the
wind speed after blowing through the turbine is not dependent on the pitch
angle the function can be written:

3c0s3(ip)? - a . ’
PO Jt(so)w ( 4,8 M)U N % A ((_135)2 ) ) (4.1)

Most of the parameters in this function are either constants or assumed
to be constant. The parameter R is the length of the blades, J; is the inertia
of the turbine, ¢ is the flapping angle of the blades (assumed constant), the
A’s are aerodynamic constants of the blade and ¢ (the angular velocity of the
blades) is assumed to be constant.

The variable (Kj) does not dependent on 3, but, is non-linear in U. The
variable K g can be seen as a time varying uncertain parameter (see Figure 4.1).
The gain range used in the sequel is Kg € (0,4) which is the interval found in
[Mattsson [6]].

4.2 The State Feedback Model

The variable Ky is has no effect on the stability. This can be seen since this
variable is not in the feedback loop (see Equation 2.6). Thus, Ky will not
influence the stability. The wind is just an input to the whole system, and the
uncertainty of Ky can be seen together with the uncertainty of U itseif. Kp,
on the other hand, is in the loop and we will study this parametric uncertainty
in more depth below.

Y
o]

— L |-

Figure 4.2 Siate feedback control

The uncertain parameter Kg can then be drawn in to the state space model
as a time varying parameter ¢ (see Figure 4.2).

The next step is to ?move out” the uncertain parameter. This is done by
first presenting Kg as:

Kp =g+ 9(0) (4.2)

18



where Kg is the operating point value of K and ¢(t) is the time varying
uncertainty. Thus ¢(t) defines the sector ¢ € [-2,2]. The operating point
Kg=2.

Then the model can be written on the form:

A

A(L) + ayd(t)BsT
“T%, 0 0 0

0 —T%,_, 0 0
K Ky F¢ Ky
0 0 1 0

#(t){1 0 ¢ 0) (43)

(== T o R o

where the respective K ’s correspond to the operating point values of the pa-
rameters in Equation (2.6).
The system can then be shown in a new representation:

s —
s71r

AL oy
{ﬁf 0]

| #(t)

Figure 4.3 Reduced Framework for Robust Stability Analysis

where Ay, is equal to A — BL.

Manipulating the system to move the integrators into the block as Fig-
ure 3.2. Notice; since we only are interested in the stability of the loop with
the uncertainty, we use a simple scalar feedback loop.

M(s) = Bg"(Is— A)ay (44)

In this representation can the stability analysis can be carried out in an
efficient way using some of the powerful frequency domain criteria for instance
Nyquist and Circle criterion deseribed in Chapter 3.

Frequency Domain Analysis

The stability of the system is studied; first, optimistically assuming ¢ to be
constant, and then in a very pessimistic perspective viewing ¢(t) as the set of
all different time varying functions within the sector.

19



The Nyquist method shows stability in the time invariant case. The inter-
val for which the gain Kg stabilizes the system in a time invariant sense was
directly obtained from the inverse of the inverse Nyquist curve (see Figure 4.4).
The point k defines the lower bound, and the upper bound is found to be infi-
nite. The stability gains then becomes the set Kg € [—1.12, co} which encloses
the whole range of wind speeds the plant is designed for (see Figure 4.1).

4_

-2

—3F

_4 1 L
-3 -2 -1 0 1
Kg

i
2 3 4 ] 8

Figure 4.4 Inverse Circle Criterion for state feedback

Using the Circle Criterion we get an absolute stability sector or the sector
where Kp can vary freely without the risk of instability. This interval is given
by the points @ and 3 to be Kg € {—0.1, 4.1]. Thus the stability is guaranteed
for this simplified model for time varying uncertainty in the wind in the range
of Tm/s to 27Tm/s (the specified operating range of the wind power plant).

This gives us some confidence, but the real system is more complicated,
and to reflect more of the reality a new model is studied.

4.3 Observer Based Feedback

For the observer based model we do not have direct access to the states, but
measure the change in the power generated ( Pg) and the change in the angular
velocity of the hub (). To estimate the state a Kalman filter was designed
and implemented as an observer. The design of the filter was done by linear
quadratic Gaussian design, and could be done separately from the feedback
design due to the separation principle. The new model was also reduced to
a three state system by viewing 8 as an input, thus eliminating one of the
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states. The system then had a form like this:

¢ = Az+ BB, yv = Ca,
.U -

160 '_1}‘; 0 07
z = ¥ A = K, K; K,
[ 5 . Lo 1 o0 (4.5)
0 -G 0 Ds o ks
B = |Kg C = 10° 10
. o 1 0

and with the observer it could be drawn as in Figure 4.5
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Figure 4.5 State Space model of system with observer and feed back
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Notice that the feedback is feed through a filter {the servo of the blade
turn) as a part of the model reduction. As seen in the figure, the complexity
of the model with the observer is much higher than the one for the first simple
maodel, Thus, transforming the system into a single scalar loop is a bit more
complicated.

Stability Analysis

The stability analysis starts by transforming the system into a single feedback
loop (3.2) where the uncertainty of ¢ was separated from the rest of the transfer
function. The transfer function can be found in an efficient way by writing the
system as a compact state space model.

g = At
g = Az.+ Bpf-+ K(Cz - Cge) (4.6)
By = -Lf-[la 3 li]e.

ﬂ = _Tbsﬂ + Tbaﬂr
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Notice that the uncertainty now is placed in the only element of the B
vector for the plant and not in the A matrix as before. In this model B was
written as:

0
B = (Ka+4() |1 (4.7)
0

Tn this form the Nyquist theorem together with the Circular criterion were
utilized to formulate a robustness evaluation.
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Figure 4.6 Inverse Circle Criterion for observer feedback

First, we study the inverse Nyquist contour of Figure 4.6 to state the region
of the stability of the plant when ¢ is constant. The points fx and ay define
the stable interval with respect to Kg to be Kg € [0,7.26] (see Figure 4.6).
This means that the plant is stable for constant winds in the whole range of
Kg and also for wind speeds a lot faster than 27m/s (which is the maximum
wind the plant is designed for — see Figure 4.1).

When we look at the stability for the time varying function, on the other
hand, the sector does not give a overwhelmingly positive result. The interval
corresponding to the points between 8¢ and a¢ is only Kg € [0.8,3.2] (see
Figure 4.6) and that does not cover the wind speeds the plant are designed
for.

4.4 Analyzing the System when two Correlated
Parameters are Uncertain

As mentioned, the uncertainty in Kg is of mosi importance for the stability,
but also the parameter K, (the friction) varies with the wind. The two func-

tions Kg(U,3) and K 1iL(U, ) were found to have very similar dependency on
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the wind speed, and they were therefore lumped into one uncertainty sector
with different scaling. By keeping this single input single output structure the
system can be analyzed with graphical techniques which are less complicated
than general multiple input multiple output analysis. To study this system
where two parameters varies in a correlated fashion, the A matrix was written
as Equation 4.8.

A = Atoy(t)efs”
—TL 0 0 0

0 -%,,, 0 0
?ﬁ fu T(_ ¢ f¢
0 0 1 0

$(t)[1 0 —0.33 0] (48)

L= = =]

The system can now be studied through the same techniques as before.

Stability Analysis

The inverse Nyguist curve is plotted for this system. Not surprisingly, this
system gave different results than the earlier and simpler models. For this
system the time invariant stability was found to be Kz € [0, 00) while the
interval for the time varying case the new model was a bit more restrictive
than before and gave an interval Kg € [0.91,3.09).

1.5

—att 1 k] 1 1 I 1 1 1 L

~0. 0 0.5 1 1.5 2 25 3 3.5 4 Kﬁ

Figure 4.7 Inverse Circle Criterion used for stability analysis of uncertainty

The reason why the time invariant system becomes more relaxed can be
that this "new” uncertainty, which can be interpreted as a friction-coefficient,
has a opposite effect to Kg and since they both behave similarly with respect
to the wind they might cancel out each other in some sense. Notice that both
uncertainties are modeled with the same sector only scaled differently (see
Equation 4.8).
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Results of our Analysis

Through this chapter we have carried out two parallel approaches to the sta-
bility analysis: one for the time invariant case and one for the time varying
case. In the time varying case the gain Kg(t) could vary freely within the sec-
tor (see Figure 4.1). These two approaches are both strongly simplified, and
our sector model for the uncertainty is very conservative,

To get a better picture of the system more sophisticated models of the
uncertainty will be needed. By providing information about the frequency
spectrum of the wind speed through the turbine in more detail more advanced
techniques can be utilized.

4.5 Periodic Uncertainty

When dealing with periodic systems, there is a great chance that the uncer-
tainty also is periodic. When analyzing a periodic uncertainty, the periodicity
gives new and important information, Thus, more advanced frequency domain
stability criteria can be utilized. These criteria take advantage of the period-
icity as well as the sector limits of the uncertainty.

Tower Blockage

When the turbine spins around its own axis with a constant angular-velocity
(P = 1o = 2.618 rad/s), the blades align with the tower with a frequency of
2P. This power plant operates in downwind and the tower, therefore, blocks
for the wind and steals the aerodynamic torque from the blade. Moreover, the
parameter concerning Kg varies a great deal from its assumed constant value
in the design-model of the system (see Equation 4.1). This effect is modeled
as a square wave. The blade is in the lee for about 10° every time a blade
swings behind the shaft. Thus, the aerodynamic torque-drop can be modeled
by decreasing Kg to the half for a short while twice every rotation of the wind
turbine (see Figure 4.8).

Kpg

3 3 T T T

1.2 1

.81

0.6

0.4 N

0 1 1 I 1 1
-1.5 -1 -0.5 o} 0.5 1 15

Figure 4.8 A Square Wave Model of the Tower Blockage.
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Analysis of the Tower Blockage

By assuming that the wind velocity is constant and the only uncertainty in
the system is the tower blockage; the uncertainty can be analyzed in the same
way as before in the frequency domain. In this analysis the circles are drawn
for a torque reduction to the half of its nominal value (see Figure 4.8 and
Figure 4.9). Moreover, the case studied considered losing the torque from one
of the blades at the time when the plant is operating under different but
constant winds.

.3l ! 1

Kg

Figure 4.9 Inverse Circle Criterion with Circles Corresponding to Tower Blockage

From the inverse circle criterion plot of Figure 4.9 the stability of the system
is guaranteed for changes due to tower blockage when the wind itself is kept
constant. Notice how the change in the torque (Kg) due to the tower increases
linearly with increasing nominal value for K (the circle radius increases). Each
circle represents a system with constant wind corresponding to the Kg value
of the right edge of the circle and the left edge corresponding to the torque of
the turbine when one blade is under the lee of the tower as illustrated in the
largest circle.

The stability of the system with respect to the tower blockage was also
confirmed by simulations on the more sophisticate model developed in Simnon,
This model was tested for different nominal values for the wind speed and with
various models for tower blockage, but the tower blockage was not found to
be a problem for the stability of the loop.

Frequency Analysis of the System with Two Uncertain Parameters

The new inverse Nyquist curve looks like Figure 4.10, and by drawing the same
circles as over (for the tower blockage) we see that the Circle Criterion leaves
us inconclusive for small values of Kg — the circle with nominal condition
Kg = 0.5 crosses the Nyquist curve.

By applying an extended stability theorem for systems with periodic co-
efficients, as stated by Willems [[10]} (see Theorem 3.2), the stability can be
shown for this more conservative system.
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Figure 4.10 Inverse Circle Criterion with Circles Corresponding to Periodic Un-
certainty

From Figure 4.11 the shaded circle then illustrates how stability can be
proven by the simple and suflicient condition for Willems’s stability theorem
(see Corollary 4.1)

CoROLLARY 4.1—WILLEMS’S THEOREM
The system described in Theorem 3.2 is asymptotically stable if:

1. the Inverse Nyquist locus of M(s) encircles the point a on the negative
real axis (notice that the axis in my plot is scaled to correspond with Kg
see Equation 4.2) of the Nyquist plane p times where p is the number of
open-loop poles of M(s) in Re(s) > 0,

2. there exist a circle C through the points a and 3, such that the Nyquist
locus of M(s) for w > 0 does not intersect it,

3. C does not enclose any multiple of the periodic frequency wy of ¢(f) for
w < 0.

|

From Figure 4.11, the stability of the system for tower blockage can be
shown for small values of Kg by constructing similar smaller circles to C.

Some interesting remarks can be added to the conclusion from this theorem.
First, the frequency of the periodic uncertainty is of great importance. This
can be illustrated by examining the system operating at the constant wind at
the operating point-(Kg = 2). Let the uncertainty be assumed to swing the
same amount up and down, thus, centering the circle at Kg = 2. We then see
that for wy = 2P the circle can be made very large (see Figure 4.12) but for
lower frequencies the uncertainty sector (or circle) decreases.

Thus by restricting the uncertainty to be periodic the uncertainty sector
can be increased with increasing frequency of the periodicity (see figure 4.12).
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Figure 4.11 Inverse Nyquist Plot and Frequency Analysis of Periodic Uncertainty
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PFigure 4,12 Inverse Nyguist Plot and Frequency Analysis of Perlodic Uncertainty

4.6 Conclusion of the Robust Stability Analysis

When analyzing the stability of the model, the physical system is approached
from two different sides. First, a simple model is made to describe the system
and the uncertainty is assumed to be non existing. Then, from the other side,
the uncertainty is described by a sector and the system is kept the same. This
process is then repeated by, first, making the model more complicated, and in
turn describing the uncertainty more precisely.

Through this form of analysis we also need to keep in mind the cause of
the uncertainty to be able to give a conservative but realistic description of
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the perturbation.

When deriving conclusions from the models a great deal of engineering
judgment is needed. On example of this is the study of stability for small
Kg. When comparing the values of Kg = 0.5 with the corresponding wind
speed (Figure 4.1), we see that this corresponds to wind speeds in the range
of < Tm/s. The stability in this region is not very critical since this is barely
enough to make the turbine rotate (recall that the operating wind is 7-27m/s).

|A¢muwl a

1.5 7

0.5 1

0 1 ) 1 L
0 0.5 1 1.5 2

Frequency[ P]
Figure 4.13 Inverse Nyquist Plot and Frequency Analysis of Periodic Uncertainty

In this chapter much work has been devoted to periodic uncertainties, In
PFigure 4.13 we see how these uncertainties can be allowed to vary more when
their frequency increases. This is, in my opinion, rather interesting. Since the
system itself behaves in a periodic fashion many of the uncertainties will also
behave periodically (i.e. tower blockage).

Notice that uncertainties in the torque with a frequency twice the frequency
of the turbine rotation {which is the case for the tower blockage) is not very
critical for the system stability. It is also interesting fo notice that wp = P
(the frequency of the turbine) only leaves room for a small circle, and the
worst range of frequencies is wy € [0, P] (see Figure 4,12 and compare with
Corollary 4.1).

This analysis is interesting and positive for the stability of the Wind Power
Plant since there is no indication in the simulations of the plant that there
are any elements that will introduce uncertainty in this range. It would be
even more positive if wy = P not was in the range of low tolerance since it is
natural that many of the perturbations will occur with the same frequency as
the turbine (e.g., imbalance in the blade weight of the blades, uncertainties of
the gears due to wear).
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5. Robust Performance

Even though stability of the closed-loop system is considered the first and most
important property in robust analysis, robust performance is often of major
significance. Changes in the environment of the system (e.g., wind gusts),
which result in tracking errors and poor control of the system, often restricts
the design. These tracking problems can be greatly amplified by perturba-
tions (e.g., parametric uncertainties) in the system. In many systems, unac-
ceptable performance restricts the magnitude of the upper and lower limits
of the parametric uncertainty more than the loss of stability. Thus, the al-
lowance of parametric variation is not determined by the loss of stability but
by unacceptable performance. For this reason techniques for analyzing robust
performance is very important, Given a limited freedom of parametric change
the performance is evaluated through modern techniques involving traditional
frequency analysis as well as modern optimization of linear matrix inequalities.

5.1 The Servo Limitations

When designing the control of the Wind Power plant (as well as constructing
the whole plant) one of the main goals is to keep the maintenance cost as low
as possible, The LQG design, therefore, penalize the servo speed ﬁ in the cost
function to restrict the movement of the servo.

To analyze this robustness performance the system is transformed into the
standard form of Figure 5.1 [Zhou [11]]. The time-varying uncertain parame-
ters are "moved out” of the nominal-model. Further, the input output variable
are corresponding to the performance evaluated.

In this case the wind change (U) is paired with the change in pitch move-
ment (B). The analysis, therefore, gives a measure of how fast pitch-movement
is needed for changes in the wind when considering some parametric uncer-
tainty.

¥

()
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M(s)

ﬁ'-q— et /]

Figure 5.1 General Framework for stability analysis
Recall, from the state-space model that the dynamics of U was given some

low pass behavior. Thus, the LQG design gives less wait on high frequency
wind. The cost function was then given by:

1 T
J = E{ lim —/ 7P+ q3(B: — ﬁ)zdt} (5.1)

T—oo T

where ¢ = 1 and gg = 10 [Mattsson [6]}.
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To get the system on the form as shown in Figure 5.1 the dynamics of the
wind was removed from the model and U was changed to be an input instead.
Moreover, the wind-speed state was deleted from the model — reducing the
model to three states. The observer was, as expected, left unchanged (see
Figure 5.2, Thus, the system is presenting a equivalent form of Figure 5.1.

Notice that the subscript s indicates the changed model to the three state
system. Recall from Chapter 2 that:

g = ’3"___/_3_ (5.2)

This enable us to output B from this model. Thus the performance from U to
£ can be studied from this model.

Y

U By CorO—A£-

1

&
L

Figure 5.2 State Space model of system with observer and feed back

The state space equations can the be found directly from Figure 5.2 and
the system can be completely restated with the equations:

& = Am—B,Le.+ ByU+fiw
é. = KC.4 (A-KC ~ BL)z. (5.3)

v = Qg
where v,w are connected through
w = @) (5.4)

as seen in Figure 5.1. This block diagram looks rather confusing and messy,
and it is made clearer by lumping together the different parameters in one
matrix.

The model then can be visualized in a general framework for robust perfor-
mance analysis (see Figure 5.3). For this type of model the machinery of robust
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Figure 5.8 The System written in a General Framework for Robust Performance
Analysis, Notice that N = (4 — KC — BL)

analysis [Zhou [11]] can be utilized to move between different input, output

variables and the “final destination” — the representation of Figure 5.1.
0 A, ~B,L 1Bt B
e = (g ] (-] Canl) 10
Cy -L KC, (A-KC- BIL) 0 0
= C(Is— A)'B (5.5)

When the system is represented in the state-space with Z, B ) C and 5, it
can be studied numerically in MATLAB’s p- and LMI-toolbox. For example,
Equation 5.5 is calculated numerically in MATLAB. Thus, the formulation of
Figure 5.1 can be studied.

Let ¢(t) be given, as before, to be a time-varying uncertainty limited by a
sector ¢(t) € [-1,1} and

_ Mn(.s) Mm(s)

M(s) = Mai(s) Maa(s)

}ERHw (5.6)

then the robust stability is evaluated in the loop of M1 as done in Chapter 3.
Thus, (I — M11¢)"! € RH,, for all ¢(t) € {—1,1] for the system to be stable.
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Robustness Performance

When analyzing the robustness we have to choose some limits on the uncer-
tainty. From last chapter it is already shown that the system is stable for
Kpg varying in a ball of radius one around its operating point. For the ro-
bustness analysis this sector needs to be reduced, and a natural sector seem
to be Kg = 2 £ 0.5. The model (see Figure 5.1) is therefore scaled such that
¢ € [—1, 1] correspond to this sector of Kg. The system is then studied through
traditional as well as more modern techniques. First, the Nyquist curve is
plotted for the elements of M(s) to get some insight (see Figure 5.4). As ex-

fnput 1 Output 1 Input 1 Output 2

Imag Axis

0 . . 2
Real Axis Real Axis
Input 2 Cutput 1 Input 2 Qutput 2

P .

0.1

Imag Axis

Imag Axis

-0.01

-0.02 i 1 3
-0.01 0] 0.01 0.02 -0 1] 0.1 0.2

Real Axis Real Axis

Figure 5.4 Nyquist plot of the elements of M(s).

pected, the Nyquist contour of M71(S) is enclosed by the circle corresponding
to ¢ € [—1, 1] thus the system is stable. We can further notice that for the nom-
inal plant (1 e. ¢(t) = 0) the transfer-function from u to B is given by Mja(s)
and the maximum amplitude can then be found to be 0.11 {rad/s)/(m/s)
occurring at a frequency of approximately 4 (rad)/(s) (see Figure 5.4).

The upper limit of the gain {7y) from (u) to (8) is found from the following
S-procedure argument (see Figure 5.1).

Our assumption on ¢{t) will be that

[¢(t)} <1 forall ¢ (6.7)
Hence,

[P < [ it (5.8)

where w(t) = ¢(t)v(¢) (see Figure 5.1). From this assumption, we will compute
a v > 0 such that

[ <2 [10Pa (5.9)
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for all 4, U satisfying the system equations. Obviously the implication from
(5.8) to (5.9) holds if there exists an @ > 0 such that

z||v][2 — |[w]]? + [1811* - Y*IU][* < 0. (5.10)

By noting that the system equations can be written as

MRl

. (5.11)
o) - U Il
U 0 1 U
the inequality (5.10) follows from the matrix inequality
[Mu M1z]* [ﬁ 0 ] [Mn Miz]
1 0 0 —= 1 0
(5.12)

[Mn Mzzr [1 0 ] [le Mzz]
< 0.
0 1 0 —o2 0 1 =

by multiplication from the right and left by [w U]%.
This equation can then be solved numerically in MATLAB’s LMI-toolbox
to find the minimal value of 42 for all # € Rt such that the equality is true.

REMARK 5.1
It is useful to rewrite the inequality 5.12 to:

z 0 0 0
[M(jw)]* 01 O 0 [M(jw)}<0 Voo (5.13)
I 0 0 —2 0 I - )
00 0 —4°

which can be {ransformed to:

(oo - ;1)-13}

] CT(Hy + 2 Hy ++2H3)C { <0. (5.14)

[ (jw— A)"1B
I
By applying the Kalman- Yakubovich- Popov Lemma, as stated by Willems
[[10]], the inequality above is equivalent to the existence of a symmetric P =
PT such that:

ATpP 4+ PA PB]
< 0.

CT(Hoy + eHy + v*H3)C [
(Ho +eHy + v H3)C + BT P 0

(5.15)

This problem is of a form which can easily be solved numerically utilizing
modern optimization algorithms in MATLAB’s LMI-toolbox. |

Notice that the inequality (5.10) does not take into account the periodicity of
the uncertainty.

When minimizing v for the robust performance of the input output pair
U to B, the solution is ¥ = 0.19 (rad/s)/{m/s) which gives us the upper limit
of the amplification. Thus, we can give the interval v € [0.11,0.19] within
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Table 5,1 Change in limits of ¥ as a function of Kg

Kpg v
min | max
0.75 +0.25 | 0.15 | 0.29
1 +0.33 |0.13|0.29
1.5 05 |0.12]027
2 +0.67 | 0.11|0.19
2.5 £0.83 | 0.12 | 0.30
3.0 +1.0 |0.13]0.42

which « will vary. Recall that the lower bound of v is found by analyzing the
nominal-plant with no uncertainty. Moreover, the lower bound is found by
looking at the maximum amplitude of Ms3(s) for all s.

How much pitch movement can we tolerate? Engineering judgment must
be used to answer this question, but from the dynamics of the wind it can
be assumed that the tower-blockage will be a greater problem than the wind
variation by itself.

Robust Performance under Tower Blockage

When analyzing for the perturbation of the tower blockage, the same circles as
in Chapter 4 is studied (see Figure 5.5). The interval of 7 is then determined

2_
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o5 0 05 1 15 2 25 3 3.5 4

Figure 5.5 Inverse Circle Criterion with Circles Corresponding to Tower Blockage

for each of the circles and the result is presented in Table 5.1.

Thus, since the tower blockage occurs with a frequency of 5.2 rad/s, v in
the range of 0.4 (rad/s)/(m/s) will force the servo to oscillate very much. In
fact 4 € [0.11,0.42] will force the system to oscillate at the frequency 2P with
amplitudes of 0 — 6°,
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The amplitude interval due to the tower-blockage is a function of the nom-
inal Kp (see Figure 5.6. Figure 5.6 shows that the robust performance is best

T s,
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Figure 5.6 'The interval of the gain from ||U|| to ||8|| as a function of Kg. The
o's correspond to the simulated values using the sophisticated nonlirear from Sven
Erik Mattsson,

around the nominal value Kg = 2 which also is the value the controller is
designed for. i
When evaluating these values of the gain from [[U]| to ||8]], it is found to
be to large; thus, it creates unacceptable § movement at the frequency of 2P.
Notice (Figure 5.6) that the upper limit of v drops to its minimum at the
operating point which the controller is designed for, but increases rapidly as
the [A@|maz (and Kg) increases.

New Design, More Robust for the Tower Blockage

Since so much of the noise is frequency dependent with the frequency 2P,
a penalty on ,6 for this frequency is needed. This is done by introducing an
inverse notch-filter (see Figure 5.7) on of frequency 2P to the ﬁ This filter
is implemented in the state-space model, and the feedback is designed with
weight on ﬁ by LQG.

10’
Frequency {rad’sec)

10!
Frequency [radises}

Figure 5.7 Inverse Notch-filter for Penal-Ising the 2P Frequency

We then follow the same analysis step for this new model and determine
the gain (v) from |[U|| to [|B]] for the tower-blockage perturbation. The new
intervals for 4 looks as follows in Table 5.2.

The gain has decreased with a factor of more than 8 for operating points up
to Kg = 2.5, and the oscillations is not longer a problem. For comparison the
gain interval is plotted as a function of the operating point. From Figure 5.8
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Table 5.2 Change in Limits of v as a function of K

Kpg 7

min max

0.75 +0.25 | 0.0209 | 0.0361
1 40.33 | 0.0195 | 0.0387
1.5 +0.5 |0.0176 | 0.0412
2 +0.67 | 0.0176 | 0.0469
2.5 +0.83 | 0.0200 | 0.0670
3.0 +1.0 |0.0226 | 0.203
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Figure 5.8 The interval of the gain from ||U]} to [|8]] as a function of Kp

we can see that the inverted notch-filter has less effect when |Ad|;40 is high.
Thus, the new design is not improved by more than a factor 2 for wind-speeds
in the range of 27Tm/s.

5.2 Robust Performance of the Power Output

In our design, the goal for the electrical power (Pg) is to keep it constant by
controlling the pitch angle. We want to analyze the effect variations in the
‘wind has on Pg. Ideally, the wind changes would not be transfered out to the
electrical net, but in reality this is hard to hinder.

The next variable pair we analyze is, therefor, the change in wind-speed
(U) to the change in electrical power output (Pg). The wind power-plant is
allowed to have a variation of about 40% in Pg.

Since earlier analysis have suggested that the the tower-blockage is the
main cause of poor-performance, the pair is evaluated for the tower-blockage,
and the same sectors are used as before.

First the evaluation is made for the wind-dynamics of a low-pass filter
(Equation 2.5). This evaluation gives gains as seen in Table 5.3. Notice that
the output is represented as % of Pgy = 3MW.

When introducing the notch-filter the estimated bounds for the perfor-
mance changes slightly for Kg's up to 2.5, but dramatically for higher values
of K. This can be seen in connection to the large perturbation at this nominal
values (for example at Kg = 3 the uncertainty is ¢(t) € [-1,1]).
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Table 5.3 Change in limits of v as a function of Kg

Kp g

nuin max
0.75 .25 | 30.37 | 58.51
1.0 +.33 | 24.55 | 52.21
1.5 405 | 16.22 | 39.73
2.0 +.67 | 12.05 | 30.57
25 +.83|9.33 |25.13
3.0 +1.0|7.85 | 26.90
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Figure 5.8 The gain from [[U]| to ||§§;100|| varying with nominal value of Kg

In Table 5.4 it can be seen that the robustness is slightly worst for the
system after the new design,

With the information we have gained from this analysis it was tempting
to designing a tighter control on the power, since stability of the system not is
seen as being a major problem. This was done, buf when the Pg control was
tightened, the gain for § immediately gave unacceptable values.

Table 5.4 Change in limits of v as a function of Kg

Kg 7

min max
0.75 +.25 | 30.11 | 58.23
1.0 +.33 | 27.72 | 55.46]
1.5 +0.5 | 19.95 | 47.70
2.0 +.67 | 15.14 | 41.85
2.5 +.83 | 12.45 | 44.51
3.0 +1.0|12.88 | 118.20
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Kp
Figure 5.1¢6 The gain from ||T]] to ||§E-‘-75100|[ varying with nominal value of Kg

5.3 Conclusion of Performance Analysis

The robust performance analysis carried out in this chapter gives a good mea-
sure of the system behavior under the influence of uncertain parameters. The
evaluation suggests that the tower-blockage is one of the major problems for
the performance, and this perturbation is, therefore, studied in detail.

From the analysis it was found that § changed to much for wind variations,
To reduce this problem for the tower-blockage a heavier wait was given to the
frequency of 2P (the frequency of the tower blockage perturbation), This was
done by introducing an inverted notch filter on B. The new design gives a
better behavior for 3, but the effect of the new design is not very convincing
for large variation in the uncertainty (i.e. |¢(t)| € [~1, 1] see Figure 5.8).

When analyzing the performance of the electrical power (Pg), the control
is found to be rather loose. Wind variations have a large impact on the power
output. The reason for this is that the control problem is difficult, and the
different control aspects have been weight against each other. Priority has
been given to the size of # in the cost function and Pg has a looser control.

In the chapter some of the analysis have been confirmed through simula-
tions in Simnon — using the complex model of the wind power plant [Mattsson
[6]] {with minor modifications). The power plant is constructed to produce
rated power (3MW) at a wind speed of 14.2 m/s [Mattsson [6] p.75], and
the simulations are therefore verifying my estimations for wind speeds greater
than this (corresponding to Kg > 1.5).

As a final remark, it is worth noting that when analyzing the tower block-
age, the analysis is also too conservative not taking count of the periodicity of
the perturbation. This could be changed by using a frequency varying # when
optimizing the linear matrix inequality.

38



6. Conclusion

The power plant is found to be stable for all perturbations examined. This
means that the linearization used for controller design was not critical for the
stability. It should however be noticed that that tightening the control more
does not seem to give the effect desired. Even though a tighter control still
will be stable, the performance is not improved. The reason for this is that
the performance for the servo speed and the power output are dependent on
each other in some sense, and penalising one more leave less for the other.

In the design the pitch movement 8 has been given priority, but this leaves
us with a very loose control on power output Pg. It was tried to tighten this
but it imposed a loose control on 8. Thus to get a better performance on both
the variables we need to use more sophisticated design than a simple LQG.
One idea would be to further explore the gain scheduling control proposed by
Mattsson [6].

When the control was designed for the power plant, the theory for analysing
the effects of uncertainty was limited. Simulations were used to evaluate ro-
bustness, and traditional techniques as amplitude and phase margins used to
design the plant, The techniques used in this thesis gives a more direct eval-
pation of the uncertainty. Instead of using engineering judgement to decide
when we have enough phase margin this method enable us to see more direct
how the uncertainty affects the stability and performance.

The stability criferion by Willems enables us to show stability in a less
conservative way than the Circle criterion. Since the wind power plant itself
behaves periodically, many of its parametric uncertainties will behave periodic,
Some of them with the same frequency as the turbine and other with different
frequency (recall the up stepping gear).

39



7. Acknowledgments

I want to thank both my supervisors Sven Erik Mattson and Anders Rantzer.
It has been a true pleasure doing my Master thesis with you both.

Anders and Sven Erik have both been very helpful and supporting, giving
me a great opportunity to get a taste of their fields of research. Thanks for
putting together a very interesting project which were based on a practical
problem that were theoretically challenging. This have given me new knowl-
edge and a hunger for digging deeper into the material.

My stay in Lund have been a great pleasure, and I am glad I got the oppor-
tunity to work in this friendly department. I would like to express my sincere
thanks to : Professors, PhD students, technical staff, secretaries, visiting sci-
entists and master students.

T also want to thank Professor Professor Karl-Johan Astrém and Bjérn
Wittenmark for letting me do my thesis at Lund Institute of Technology.

Furthermore I would like to thank The Norwegian Business Foundation
and the Norwegian State Educational Loan Found for sponsoring my studies
in University of California, Santa Barbara and Imperial College, University of
London.

Finally, T want to thank the people I share office with Cesar Mendoza
and Sabina Brufani. It has been great fun, and thanks for the burritos and
spaghetti.

40



8. Appendix: numerical values
of parameters

Operating point values for State-space model 2.6:

= Az + BB, + BuU

= (Cz
FAB (25 0 0 0
. - au Ao 0 -005 0 0
Ay ° 20 47 —047 -15
[ Ay L 0 0 1 0 (8.1)
[2.5 T 0
0 0.0057
B = By =
0|’ v 0
| 0 | 0
PE} 0 0 7.85 20.16
y = . ) C:
1) 00 1 0
Equation 4.6
2 = Azt
g = Az.+ Bf+ K(Cz - Cz.) (8.2)
B = -—0.3798--[3.26 1.21 0.954]=z, '
/B = "0-4ﬁ+Tbsﬁr
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