ISSN 0280-5316
ISEN LUTFD2/TFRT--5573--SE

Java Based
Picture Editing and Monitoring
for Power Control Systems

Anders Henriksson

Department of Automatic Control
Lund Institute of Technology
December 1996

Document name

Department of Automatic Control MASTER THESIS

Lund Institute of Technology Date of issue
Box 118 December 1896
S-221 00 Lund Sweden Dogument Number
ISRN LUTFD2/TFRT--5573--SE
Authoz(s) Supervisor
Anders Henriksson Goran Ekstdom, ABB Network Partner AB

Karl-Erik Arzén

Sponsoring organisation °

Title and subtitle
Java Based Picture Editing and Monitoring for Power Control Systems

Abstract

The Java programming language promises to be platform independent. This feature makes graphical user
interface (GUI) development in Java interesting, The problem addressed in this paper is whether Java can be
used as a core in a new man-machine interface for power control systems.

In order to get an answer to this problem the main objective of the thesis has been a evaluation of the
Java-technology based on the building of a prototype editor/viewer application. The editor part should allow
design of control pictures based on information supplied by a real-time control system.

The result is a fully functional editor/viewer application that can be downloaded from any WWW-browser,
that supports Java. The prototype has been built using the OMT (Object Modeling Technique)} method.
The prototype supports multiple documents, i.e., many editor and viewer windows. There is a possibility to
connect picture elements to a real-time database for information updating. Control pictures generate their
own Java code, they can be zoomed and panned, and the design is prepared for information zooming. The
dévelopment tool used, Symantec Café, as well as some Java performance related questions have also been

investigated.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographicsal information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 69

Seccurity classification

The report may be ordered from the Depariment of Automatic Control or borrowed through:
University Library 2, Box 3, 5-221 00 Lund, Sweden
Fax 46 46 2224422 E-mail ub2@uub2.lu.se

TABLE OF CONTENTS

1. Intfroduction 6
1.1 Motivation 6
1.2 Objectives 7

1.2.1 Properties of the editor/viewer application 7
1.3 Scope 9
1.4 Outline 10

2. Background - S.P.I.D.E.R 11

2.1 The S.P.LLD.E.R, System 11
2.1.1 Man-Machine Communication 11
2.1.2 Picture 11
2.1.3 Picture Format 11
2.1.4 Database 12

3. The OMT Method 13
3.1 Overview 13
3.2 Analysis and Design 14

3.2.1 Analysis 14
3.2.2 System Design 14
3.2.3 Object Design 14

3.3 The Development Process 15

3.4 The Three Models of the OMT methed 16
3.4,1 Overview 16
3.4.2 The object model 16
3.4.3 The functional model 16
3.4.4 The dynamic model 16
3.4.5 Combining the Three Models - Object Design 16

3.5 Frameworks 18

4, The Java Language 19
4.1 Overview 19
4.2 Introduction 19

4.2.1 The Java Buzzwords 19
4,2.2 History 1¢
4.3 Some Java Buzzwords Commented 19
4.3.1 Simple 19
4.3.2 Network-Savvy 19
4.3.3 Robust 19
4.3.4 Secure 20
4.3.5 Architecture Neutral 20
4,3.6 Portable 20
4.3.7 Interpreted 20
4.3.8 High Performance 20
4,3.9 Multithreaded 20
4.3.10 Dynamic 20

4.4 Applet vs. Application

21

4.5 Java Compile and Runtime Environments 22
4.6 Java API:s Available & Coming 23
5. Methodology 26
5.1 Literature and Other Sources of Knowledge Used 26
5.1.1 The Fava Language 26
5.1.2 Design 26
5.2 The Prototype 26
5.2.1 The development process 26
5.2.2 Design 26
5.3 Systerm Configuration 27
6. Design 28
6.1 Overview 28
6.2 The System 28
6.2.1 System Overview 28
6.2.2 Operating the System 28
6.3 Analysis 31
6.3.1 Object Model 31
6.3.2 Functional Model 35
6.3.3 Dynamic Model 35
6.4 System Design 43
6.4.1 Data Management 43
6.4.2 Data Managemnet Limitations 45
6.4.3 Network Communication Limitations 45
6.5 Object Design 45
6.5.1 Overview 45
6.5.2 The Heart of the Design 46
6.5.3 The Editor and the Viewer Window 49
6.5.4 Design Considerations, due to Applet Security Restrictions: Program Start. 50
6.5.5 The UI model 51
6.5.6 The Domain model 52
6.5.7 Updating of the ViewerWindow 52

7. Implementation 54
7.1 Overview 54
7.2 Extended AWT Functionality 54
7.2.1 The ToolBuiton Class 54
7.2.2 The PolyThickLine Class 54
7.3 AWT Specific Properties 54
7.3.1 To Catch Resize 54
7.3.2 The Updating of a Window 55
7.3.3 How to Implement Scollbars 35
7.3.4 Bugs to be Patched in the DK 56
7.4 Points to be Highlighted in the Prototype 57
7.4.1 The ColorDataBase and the MessageDataBase 57

7.4.2 The Implementation of Callbacks

7.4.3 To Increase Performance of the Picture Drawing

8. Results

8.1 Overview

57
57

58
58

8.2 The Prototype

58

8.2.1 Description

8.2.2 Application Appearance

8.2.3 Applet Appearance

8.2.4 The Generation of Java Code and Parsing

8.3 Using Java For Development

58
58
61
62

63

8.4 The Development Tool - Symantec Café

63

8.4.1 Description Of The Symantec IDDE

8.4.2 Personal Reflections On Using Symantec Café

9, Conclusions

References and Bibliography

Appendix A

64

66

1. Introduction

1.1 Motivation

In most of today’s control systems the picture presentation and the editing is often
handled by separate programs , which must be installed on the target computer.
Usually, the code has to be compiled on the same platform, as on which it executes.
Pictures tend to get a different appearance in different environments. To overcome
this problem it might be interesting to write a program on one platform and then by
some mechanism it will automatically work on all other platforms. Sun Microsystems
Incorporated defines its new Java language in the document "The Java Language: A
White Paper" [1] as follows:

"Java: A simple, object-oriented, distributed, inferpreted, robust, secure, architecture
neutral, portable, high-performance, multithreaded, and dynamic language.”

As the Java programming language promises to be platform independent, it would be
interesting to investigate, whether Java can be used as a core in a new man-machine

system.

Within the scope of the thesis there is a need to develop, evaluate and test different
design principles and architectures for an editor/viewer application capable of creating
and presenting picture objects, based on OOP design technigues.

The picture objects that are generated by the application should be portable. This
means that the generated picture objects should be portable in the sense that they can
easily be used by other Java applications than the editor/viewer application.

The editor/viewer application should also be adaptable to the new emerging Intranet
technology, so that picture objects easily can be viewed from any computer within the
cooperate network. This means that picture objects should be viewable from a Internet
browser, i.e. Netscape. The Java language facilitates the development of such
applications.

There is also a need to evaluate the Java programming language and its properties.
Does the language live up to its promises? How does the language perform as

compared to other languages, as the similar C++7? It is also important to review the
development tools available, as well as the frameworks and literature available for

Java.

The question is what can you do in a limited time using Java, is it realistic to build a
PED application based on Java? Can Java improve programming productivity? Can
Java improve program maintenance?

1.2 Objectives

The main objective of the thesis is an evaluation of the Java-technology based on the
building of a editor/viewer application.

The main objective contains a number of sub-objectives. The application should be
designed using state-of-the-art object oriented design methods, The application should
be developed with the best tools available. There should be a short evaluation and
presentation of the Java language, the frameworks used as well as the development
tools used, based on the authors personal reflections and available information,

1.2.1 Properties of the editor/viewer application

The editor/viewer application is intended to deal with generic picture elements and
symbols that are common in electrical transmission nets. The elements and symbols
can be dynamic to reflect a state (e.g. the state of a switch) or a value, or they can be
static. When the application is operated in viewer mode, information about the
controlled process should be presented in real-time. In edit mode the application
should allow you to describe the process to be modeled as a picture object,

Thus, the editor/viewer application is subjected to a number of requirements. These
requirements of course also set some limitations in the choice of application design.

Requirement list:
1. There are two modes: edit and view.

2. A picture object (PO) should be a collection of generic picture elements (PE) and
symbols.

3. The PE or symbol can be dynamic or static.

4. The dynamic PE or symbol is to be updated on events, these events come from an
information server, connected to the control system or a test program that is
generating events.

5. The size and placement of a PE is expressed in world coordinates {(absolute
coordinates).

6. It should be possible to transfer the world coordinates to pixel coordinates.
7. A PO has a defined width and height in world coordinates.

8. The ratio between a PO:s width and height in world-coordinates should be
preserved in pixel coordinates.

9. There can be associated dialog boxes to the PE:s or symbols.

10.A picture object should at least be viewable from an Internet browser.
11.There should be a possibility to zoom.

12.There should be a possibility to pan.

13.The extent of the world coordinate system should at least be X=Y=16284 units.

14.The Java code should be written so that the application can be extended to include
information zoom with de-clutter levels (PE:s can then be associated to each de-

clutter level).

15.The Java code should be written, so that the application can be extended to include
layers. (A PE or symbol can only be associated to one layer.)

16.The editor application should generate the Java source code for the PO.

17.The design should promote the portability of a PO.

The building of a working Java prototype, which fulfills the requirements above, will
constitute a foundation for a technology evaluation. The prototype should be built on
the basis of the investigation and evaluation of design principles and architecture.

1.3 Scope

This essay will not try to explain the concept of object-orientation. For the reader
interested in OO (Object Orientation), there exists a number of web-sites dealing
extensively with the topic, one has the web-address
http:/fiamwww.unibe.ch/~scg/OOinfo/FAQ/oo-faq-S-11.10.0.27. html, located at the
university of Bern. However, a short presentation of the OMT-method (Object
Modeling Technique) will be carried through.

1.4 Outline

The thesis is divided into chapters. Chapter 2 covers the background. Chapters 3-4
covers the problem context, i.e. the theoretical principles, which this work is based on.
Chapter 3 mainly discusses the OMT method. The Java language is presented in
Chapter 4. In Chapter 5 the methology used will be discussed. The motivation for the
choice of design method as well as the choice of tools and framework will be
discussed. In Chapter 6 the actual design of the editor/viewer application is discussed
and iltustrated. Chapter 7 discusses the Java-implementation of the application and
sheds light on difficult or interesting parts of the implementation as well as some
properties of the framework (this includes bugs). Chapter 8 evaluates the implemented
editor/viewer application as well as the Java language, the development tools and the
JDK framework. Conclusions are made in Chapter 9. Conclusions about the
fulfillment of the set out objectives are made.

10

2. Background - S.P.I.D.E.R

2.1 The S.P1.D.E.R. System

ABB has a system concept for an open systems architecture called S.P.1D.E.R, which
provides a platform for building network control applications, i.e. systems for Energy
Management (EMS), Distribution Management (DMS) and Supervisory Control And
Data Acquisition (SCADA).

2.1.1 Man-Machine Communication

The Man-Machine Communication (MMC) function provides common interactive
support services for all S.P.I.D.E.R applications. The Graphical User Interface (GUID)
used today is based on OSF/Motif.

2.1.2 Picture

The Man-Machine Interface includes a number of picture types for system operation
and system maintenance, including graphic diagrams, tables, list’s trend curves, tables
and menus. Pictures can be defined, and linked to a picture hierarchy, to suit the
specific requirements of individual applications.

Pictures can include static information and dynamic information. The dynamic
information is updated based on information held in the control systems database
according to Figure 2.1. Pictures can be designed with the aid of a application called
Picture Editor (PED).

Static
Information

Database

Dynamic
Information

Figure 2.1, Information Pictures.

The PED also include support functions, such as: smooth pan, stepwise or variable
zoomm, and information zoom,

Dialogues are supported to manage windows, to select pictures, and to select data
shown on pictures as well as power system operation, controlling breakers etc,

2.1.3 Picture Format

A picture compromises of a number of elements, some of which are static while
others are dynamic and connected to a database and will alter their appearance
according to the state in the database, see Figure 2.2.

11

1P 350 MW

e} -42 MVAr Dynamic

information

Database

IIIIlI[IIHlIIIIIElIII

Figure 2.2, A Picture,

2.1.4 Database

The S.P.I.D.E.R system uses a database called Avanti® as a central repository of power
system data. The internal structure of the database is designed specifically for the
S.P.LD.E.R applications and provides efficient real time data access for the power
system monitoring, analysis and control functions,

The Avanti Query Language(AQL) is used to get information from an Avanti
database. AQL. is a real-time version of Structured Query Language (SQL).

! Avanti is a propriertary database managements system developed by ABB.

12

3. The OMT Method

3.1 Overview

This chapter assumes that the reader knows the concept of object orientation, The
reader should be acquainted with terms such as classes, instances, methods,
encapsulation, inheritance, and polymorphism. The chapter begins with a section
dealing with analysis and design. Then follows a section dealing with the program
development process. Then the three different models of the OMT (Object Modeling
Technique) method are presented, with emphasis on the object model. In the last
section the concept of frameworks is introduced. The aim is not to teach the reader the
OMT method and its notations, but rather to explain the three models of the method
and their interdependence. This means that no examples of the different models will
be given, other than in the design.

There exists other object oriented analysis and design models than the OMT method,
but OMT is the most wide-spread method.

13

3.2 Analysis and Design

3.2.1 Analysis

The concept of analysis deals with the question: What is to be done? While, on the
other hand the concept of design deals with the question: How shall we do it? In the
analysis phase, the description of the system must be free from technical and
implementational considerations. The system’s information needs as well as its
functions and structures must be described.

To aid the analysis process, models of the reality must be built. A model is an
abstraction, which only considers system relevant information. One of the great
advantages of object oriented analysis is that it tends to create systems, which model
reality. The modeling activities can be described by Figure 3.1.

Reality
Analysis- Design-
maodel model
Implementation-
model

Figure 3.1, Modeling activities.

One of the advantages of the system being a model of reality, is that the same notion
of the system prevails through all the stages of development: reality, analysis, design
and implementation, This notion also forms the basis for iterative development, where
prototypes with an increasing degree of refinement can be built.

3.2.2 System Design

If the analysis part looked at what the system should do , the system design part deals
with the question: How should it be done? In the system design you deal with the
whole system, such as division of the system into subsystems and processes.

3.2.3 Object Design

The object design deals with the design of the different classes, based on the analysis
and the system design part. One could call the object design an integration of previous
work.

14

3.3 The Development Process

There exists different approaches to the development process. The two main
approaches are development according to the waterfall model and development
according to some iterative model. Object Oriented analysis and design facilitates
iterative development. The two methods are illustrated in the figures below,

Analysis

I~

Design

L

Implementé’uion

Figure 3.2, Development according to the waterfall model.

Analysis —#Design :“_*Implementation

* T

Figure 3.3, Development according to the iterative model.

The iterative model will allow stepwise refinements of the system. A prototype of the
system could be implemented. If the prototype does not meet the expectations, then
feedback is given to a new analysis of the system. These iterations can go on until a

satisfactory system is implemented.

15

3.4 The Three Models of the OMT method

3.4.1 Overview
OMT comprises three models:

o The object model represents the static, structural, ’data’ aspects of a system;

o The dynamic model represents the temporal, behavioral, control’ aspects of a
system;

o The functional model represents the transformational, *functional” aspects of a
system.

The three kinds of models separate a system into orthogonal views, they all describe
one aspect of the system, but contain references to the other models.

3.4.2 The object model

The object model provides the essential data framework into which the dynamic and
functional models can be placed, it defines the data structure that the other models
operate on.

The result of object modeling is a object diagram. The object modeling activities are
specially important during the analysis phase of the development.

3.4.3 The functional model

The functional model shows the computation and functional derivation of the data
values in the system, without indication how (implementation), when (dynamic
model), or why these values are computed. The relationship between values in a
computation are showed in a data flow diagram.

3.4.4 The dynamic model

Those aspects of a system that are concerned with time and changes are captured in
the dynamic model. It defines the control structure: the aspects of a system that
describes the sequences of operations that occur in response to external stimuli,
without consideration of what the operations do (functional model), what they operate
on (object model), or how they are implemented. The major dynamic modeling
concepts are events (external stimuli), and states (values and links of an object), The
pattern of events, states, and state transitions for a given object class, can be
represented as a state diagram. The dynamic model consists of multiple state
diagrams, one for each object class with important dynamic behavior.

3.4.5 Combining the Three Models - Object Design

The last part of the design is the object design. In the analysis part and the system
design part, work is done parallelly on the three different models. As mentioned
before, in the Object design part, the work from previous stages of the process is
integrated. Figure 3.4 explains the process of object design.

16

Analysis System Object Implementation

design design
Object- N Object- Object- Object-
mode} model g model g model
A ¥
A A 4
Functional- Functional-
model | modet
A
L A 4
Dynamical-] Dynamical-
model model

Figure 3.4, Combining the three models of the OMT-method(redrawn based on ENEA course material).

This integration process of the dynamic and functional models will add a number of
operations to the object model.

17

3.5 Frameworks

A framework is a collection of cooperating classes that are put together as a reusable
library. A framework is not a finished software product, rather it is a solid base to
build applications upon. Frameworks focus mostly on a specific problem in software
development. One framework may provide a base on which programmers build user
interfaces, while another framework provides a basic structure for network operations,
A framework for object-oriented programming can be customized for application
specific purposes by subclassing the framework classes.

Most frameworks dictate a specific architecture to an application. Some frameworks
even expect to be the only framework for an application. Sometimes there is a need to
use two or more frameworks for a specific application. A framework can be
inappropriate for solving a specific problem, if the dictated architecture is too
restricting for an application. A close look into frameworks shows that they are full of
patterns. These patterns are implemented as "ready to use” elements. A comparison of
frameworks for similar environments (e.g. frameworks facilitating graphical user
interfaces) shows that such frameworks mostly consist of similar patterns. The
detailed implementation of a pattern, however, can differ from one implementation to
another.

Frameworks are becoming more and more important. Especially large software
projects use layers of frameworks. The code, written by using frameworks, is more
"standardized" than independently implemented code. This is probably a result of that
most application code is influenced by the frameworks it uses. Using frameworks to
create applications, however, also requires that the programmers must be able to trust
the frameworks they use. In other words, it is extremely important that framework
implementations are robust, Nothing can be worse than changing a framework, when
an application is about to get finished. Therefore, a careful evaluation of a framework
for a specific problem can be one of the most important decisions within a software
project.

18

4. The Java Language

4.1 Overview

In this chapter the Java language and its properties are discussed. The ability to run a
Java program from inside an Internet browser as well as a standalone program is also
discussed. Some aspects of the run-time environment are also covered. Finally
available and coming APL:s for the Java platform are presented. Most of the material
presented herein builds on the Java whitepapers [W1].

4.2 Introduction

4.2.1 The Java Buzzwords
In the Java whitepaper [W2] the Java language is described with the buzzwords:

Java: A simple, object-oriented, network-savvy, interpreted, robust, secure,
architecture neutral, portable, high-performance, multithreaded, dynamic
language.

Some of these buzzwords will be commented on in the sections below.

4.2,2 History

The Java language was developed at Sun Microsystems in 1991 as part of a research
project to develop software for consumer electronics devices. The goal was to develop
a small reliable, portable, distributed, real-time operating environment. When the
project was started C++ was the language of choice. But there were several difficulties
with using C++, so a new language called Java was developed.

4.3 Some Java Buzzwords Commented

4.3.1 Simple

The Java Language was designed to resemble C++. Some of the features of C++, that
Sun saw as either poorly understood or confusing were removed in Java. These
omitted features are primarily operator overloading (although method overloading is
supported) and multiple inheritance. Automatic garbage collection is a feature that
was added to Java, which simplifies memory management.

4.3.2 Network-Savvy

Java libraries have extensive routines to cope with TCP/IP protocols like HTTP and
FTP. The goal is that it should be as simple to handle netaccess as handling access to
the local filesystem.

4.3.3 Robust

Java is strongly typed and performs extensive compile-time checks, these checks are
then repeated at link-time. Java also differs from C++, by having a pointer model that
eliminates the possibility to overwrite memory and corrupt data. This is accomplished,
by not using pointer arithmetic, but instead using so called true arrays.

19

4.3.4 Secure

Java is intended for use in networked/distributed environments. Sun says that Java
will enable the construction of virus-free, tamper-free systems. This is supposed to be
done by using authentication techniques based on public-key encryption. The use of
the previously mentioned pointer model also adds to security.

4.3.5 Architecture Neutral

To allow the execution of a Java application anywhere on the network, the compiler
generates an architecture neutral object file format. This fileformat can be executed on
any platform (i.e. computer system and operating system) given the presence of the
Java runtime system.

4.3.6 Portable

Architecture neutrality does not necessarily mean portability. Some computer
languages (C and C++) contain aspects of their specifications, which can be
implementation dependent. This is avoided in Java by specifying the sizes of primitive
data types as well as the behavior of arithmetic on them (e.g. “int” always means a
signed two’s complement 32 bit integer etc.). The libraries that are part of the system
also define portable interfaces. And the Java system itself is quite portable (based on
POSIX) as the compiler is written in Java and the runtime systemn is written in ANSI
C.

4.3.7 Interpreted

Java byte-codes are interpreted into native machine code instructions and not stored
anywhere. Part of the byte-code contains some compile time information, that can be
carried over to the runtime system, thus allowing type checks by the linker.

4.3.8 High Performance

To increase performance a JIT-compiler can be installed, which compiles the classes
to native machine-code on the fly as they are dynamically loaded.

4.3.9 Multithreaded

Java support concurrency through threads as an integrated part of the language.
Synchronization primitives are also supplied, these are based on the monitor condition
variable paradigm introduced by C.A.R. Hoare [A1]. Multi-threading is a means of
supplying real-time behavior. Unfortunately, this behavior is limited by the real-time
responsiveness of the underlying system (e.g. Unix, Windows, Machintosh or
Windows NT).

4.3.10 Dynamic

Java interconnects the different modules at runtime, this makes it possible to add new
methods and instance variables to libraries, without having to recompile the whole
system. Casts are also checked at run-time in Java.

20

4.4 Applet vs. Application

Java programs can run in two contexts - inside an Internet browser or as a standalone
program. Programs written in Java that run inside HTML pages are called applets.
They need a Java aware H'TML browser, e.g. Netscape or Internet Explorer (or the
Appletviewer) in order to run. Java programs can also run by themselves (these
programs are called applications), like programs in C or C++.

Figure 4.1 shows a small standalone program.

f3: 5 S class HelloWorld {

pubhc statlc v01d mam(Stung az gs{]) {

System out prmtln("HeHo world' "),

: Comp ng the program

L. Cijavae HelloWorld }ava

: Runnmg the standalone program
oG \java He]loWorld

Hello world'

Figure 4.1, A simple standalone Java program.

Creating applets is different from creating simple applications, because Java applets
“tun and are displayed inside a Web browser with other page content. An example of a
Java applet, together with html-code required is shown in Figure 4.2.

class HeiioWorIdApplet extends Java applet.‘AppIet { <TITLE>H&110 World App]et<f"I'I’ILB>
pubhc voxd pamt(Graphlcs g)i </HEAD><BODY> SLTARTS
: i “HelloWoﬂd "’ 5 25 <P>Appiet Ays:
<APPLET - -+ :
CODE-“HeEloWoﬂdApplet class
WIDTH=150
HEIGHT—25>
</BODY>
</HTML> -

unport Java awt Graphlcs

Figure 4.2, Java applet together with himl page.

Usually a web-browser defines a certain security policy that limits what an applet can
do. The most common restrictions are:

1. applets can never run any local executable program;

21

2. applets cannot communicate with any host other than the server from which they
were downloaded;

3. applets cannot read or write to the local computer’s filesystem (This is not part of
the Java specification, but in Netscape things are done in this way and in the
Microsoft Internet Explorer there is a user setting defining the security policy).

4. applets cannot find any information about the local computer, except for the Java
version used; the name and version of the operating system; and the characters used
to separate files, paths and lines.

The bytecode must be located in the same directory as that of the Web page or in any
of its sub directories. When the Java aware browser encounters the <APPLET
CODE-> tag it transfers all of *.class files (i.c. the bytecode) to the clients side for
execution. This can take a little time, depending on the bandwidth of the net, if there
are many classes to transfer. Further version of Java will compress all class files into
one major ZIP file before transferring and this will naturally decrease bandwidth
utilization.

4.5 Java Compile and Runtime Environments

Figure 4.3 shows the workings of the Java language development environment, which
includes run-time and compile-time environments. The Java Platform is represented
by the run-time environment. A source file (*.java file) is written by the developer,
this file then compiles into bytecodes (*.class file).

Run-time Environment

He-ti
Compile-time (Java Platform)

Environment

Class Loader
< Java Class
Bytecade Libraries
Verifier
Java Just-In-Time
Java [nterpreter Compiler
Compiter M Java
7% Virtual
] Machine

Runtime System

Java / / /
3

Bytecodes

{class) 4

Operating System

}

Hardware

Figure 4.3, Source code is compiled to bytecodes, which are executed at runtime (from whitepaper The Java
Platform p.24).

These bytecodes are instructions for the Java virtual machine. But before they can get
into the run-time environment they must be transported over the network or loaded
locally. Before the bytecodes are allowed to enter the Java virtual machine, they must

22

be checked for security reasons (it could be the case that they got compiled in a
compiler that does not follow Java security rules).

The Java virtual machine interprets the bytecodes or compiles them to native machine
code, with the assistance of the JTT-compiler (Just-In-Time). These operations are
done in the context of the run-time system (threads, memory and other system
resources).

Figure 4.3 also shows how the run-time system is implemented on different platforms.
The Java Virtual machine is a program that can interpret or compile Java bytecodes.
The virtual machine itself is implemented on top of the hardware and operating
system of the platform.

4.6 Java API:s Available & Coming

This is a short presentation of available and planned APILs for Java. For the work,
carried through in this thesis the JDK 1.0.2. is utilized (no other API:s were available
at the time that the work was done). The information below is a short version of the
information on the web-page http://www javasoft.com/products/apiOverview.html. At
the end of this section some words are also mentioned about the Java Process
Automation API, where ABB Systems Control is involved as an industrial partner to
Sun.

o The JDK 1.0.2 API is the API that ships with version 1.0.2 of the Java
Development Kit (JDK). It includes the 8 basic packages: java.lang, java.io,
java.util, java.net, java.awt, java.awt.image, java.awt.peer, and java.applet.

¢ The JDK 1.1 API is the next major release of the Java Development Kit. It is a
superset of JDK 1.0.2 that will bring improvements in functionality, performance
and quality to Java.

e Java Enterprise APIs support connectivity to enterprise databases and legacy
applications. With these APIs, corporate developers are building distributed
client/server applets and applications in Java that run on any OS or hardware
platform in the enterprise. Java Enterprise currently encompasses three areas:
IDBC™, Java IDL, and Java RML. IDBC™ is Java Database Connectivity, a
standard SQL database access interface, providing uniform access to a wide range
of relational databases. Java IDL is developed in accordance to the OMG Interface
Definition Language specification, as a language-neutral way to specify an
interface between an object and its client on a different platform. Java RMI is
remote method invocation between peers, or between client and server, when
applications at both ends of the invocation are written in Java,

e Java Server API is an extensible framework that enables and eases the development
of a whole spectrum of Java-powered Internet and intranet servers. The APls
provide uniform and consistent access to the server and administrative system
resources required for developers to quickly develop their own Java ‘servlets’ -
executable programs that users upload to run on networks or servers.

s The Java Security APIs are frameworks for developers to easily and securely
include security functionality in their applets and applications. This functionality
includes cryptography with digital signatures, encryption, and authentication.

23

The Java Beans APIs define a portable, platform-neutral set of APls for software
components, Java Bean components will be able to plug into existing component
architectures such as Microsoft’s OLE/COM/Active-X architecture, OpenDoc, and
Netscape’s LiveConnect. End users will be able to compose together Java Beans
components using application builders. For example, a button component could
trigger a bar chart to be drawn in another component, or a live data feed component
could be represented as a chart in another component. (Java Beans is currently an
internal code name.)

Java Commerce API will bring secure purchasing and financial management to the
Web. JavaWallet is the initial component, which defines and implements a client-
side framework for credit card, debit card, and electronic cash transactions.

Java Management API provides a rich set of extensible Java objects and methods
for building applets that can manage an enterprise network over Internets. It has
been developed in collaboration with SunSoft and a broad range of industry
leaders.

Java Media APIs allow developers and users to easily and flexibly take advantage
of a wide range of rich, interactive media on the Web. The Media APIs encompass
five areas: Java 2D, Java MedialFramework, Java Share, Java Animation, Java
Telephony and Java 3D. Java 2D provides an abstract imaging model that extends
the 1.0.2 AWT package, including line art, images, color, transforms and
compositing. Java Media Framework has clocks for synchronizing, and media
players for playing audio, video and MIDI. Clock and media players are on
different schedules. Java Share provides for sharing of applications among multiple
users, such as a shared white board. Java Animation provides for motion and
transformations of 2D objects. Tt makes use of the Java Media Framework for
synchronization, composition and timing. Java Telephony integrates telephones
with computers. It provides basic functionality for a full range of telephone
services including simple phone calls, teleconferencing, call transfer, caller ID and
DTMEF decode/encode. Java 3D provides an abstract, interactive imaging model for
behavior and control of 3D objects.

The Java Embedded APIs specify how the Java API may be subsetted for
embedded devices that are incapable of supporting the full Java Core APL It
includes a minimal embedded API based on java.lang, java.util and parts of java.io.
1t then defines a series of extensions for particular areas such as networking and
GUIs.

A Java Chip family of microprocessors will also be realeased. These microprocessors
will support the Java Virtual Machine and be designed to support the demands of
Java, such as multithreading and garbage collection.

A Java OS will also be developed and implement the Java Base Platform for running
Java-powered applets and applications. As such, it implements the Java Virtual
Machine, Java Embedded API, and the underlying functionality for windowing,
networking and file system. The operating system is designed for Network

Computers, consumer devices, and network devices for embedded applications, such
as printers, copiers and industrial controllers. These devices will have instant turn-on,

24

no installation setup, no system administration, and, when on a network, can be
automatically upgraded. The Java OS can also run in RAM on JavaChip.

At ISA/96 in Chicago (Oct. 7), Sun announced the development of a Process
Automation API in cooperation with industrial partners, such as ABB Systems
Control, The Baan Company, SAP, Valmet Automation among others, The API is
supposed to be ready in early Q2, 1997. The API will allow the development of real-
time process control applications, that run over the internet or an intranet (More
information is available at http://www.industry.net/isa96/sunapi.htm).

Today the JDK 1.0.2 API is defined as the Java Base API, and some of the above
mentioned API:s will in the future migrate into this API (The Java 2D API is expected
to do so, and that could be interesting for the prototype that is to be built in this
thesis).

25

5. Methodology

5.1 Literature and Other Sources of Knowledge Used

The knowledge and competence to carry this project through has been gathered
through several sources. My supervisor Mr. Géran Ekstrom, senior specialist software
design at ABB Network Partner, has been a great support, with whom I have been
able to discuss matters of design and implementation of the prototype. Other sources
of information have been books on the subject as well as the Internet, which has the
most recent information as well as a number of Java sites with FAQ:s (Frequently
Asked Questions).

5.1.1 The Java Language

Much of the documentation as well as information and news on Java is available at
Javasofts homepage [W4]. A good book on Java with many example applets is Core
Java [2].

5.1.2 Design

The material on the OMT method comes mainly from a book called Object Oriented
Modeling and Design [3]. Useful material on the OMT method can also be found in
course material from ENEA AB [4].

5.2 The Prototype

5.2.1 The development process

Some literature suggests that the number of iterations that the development process
has to go through, decreases with how much knowledge there initially exists about the
problem. As the problem of this thesis is to evaluate the Java language through the
implementation of a prototype, the initial knowledge of the problem is low, and thus
one could suspect that the number of iterations may become many.

Some times it has been necessary to implement some code in Java to see if things can
be done in that way and then return to the design of the OMT-method. This may seem
awkward as the object-model in the analysis stage of the OMT-method, is supposed to
be free from implementational considerations. This might be true ideally, but the
pratical experience of this work, is that a number of iterations stretching all the way to
the implementation stage of the development process have been necessary in order to
construct a wise design.

5.2.2 Design

The prototype to be constructed is supposed to handle a number of primitive drawing
elements (like lines, rectangles, circles), so it would be wise to find some kind of
framework to handle such elements (Frameworks of this type, are normally available
on other platforms, like Windows).

The framework supplied by the JDK facilitated through the awt-package (Abstract
Window Toolkit) does not give sufficient support to handle primitive drawing

26

elements. So, there existed two alternatives: to develop such a Framework by myself
(which would involve extensive work) or get it from another source. The web was
searched for companies supplying such Frameworks (like Rouge Wawe). But, the
solution was supplied by a colleague of mine at the department Mr. Christer Carlsson
who was working on his bachelors’ thesis. Some student colleagues of his had done a
Java-project last semester, which involved developing such a framework as well as a
primitive drawing application with basic functionality showing what the framework
was capable of. The Framework called HiIC (Hilevel Java Canvas), was the solution
to my problems and the drawing application supplied with it constituted a good
ground to build some of the UT parts of the prototype on, naturally there was a need to
extend these classes with much functionality. This framework, as well as its
documentation is available on the web (cf. http://www-und.ida.liu.se/~puml7 [W3]).

For the design of the application, the OMT-method has been utilized. The OMT-
method has not been used exhaustively, but used were applicable and has also been
completed by scenarios to describe the functionality of the prototype.

5.3 System Configuration

The development has been done on a 100 Mhz Pentium PC, with 32 MB RAM and
the Windows NT 3.51 Operating system. Netscape 3.0 Gold has been used as Internet
browser in the project, so as to have a benchmark browser, as the behavior of the Java
applet tends to differ between browsers. Symantec Café 1.50 beta_l has been used as
development tool. Symantec Café is a IDDE(Integrated Development and Debugging
Environment). There are several IDDE:s on the market, but the Symantec product was
chosen, because the ABB Department were the work was carried through had some
prior experience with it.

27

6. Design

6.1 Overview

In this chapter the actual design of the prototype is presented. The OMT method has
been used, but not to full extent. Where other techniques have been utilized, it is
stated in the text. The chapter begins with a section describing the overall system
followed by a section describing the analysis stage and the three different models of
the OMT method. Then, the system design and object design stages of the prototype
design are presented.

6.2 The System

6.2.1 System Overview

java source or
parsed files

—
% . user inpuf, saved
EditorWindow -« pictures
U} feedback
feedbac >
. . S.P.I.D.E.R data,
ViewerWindow saved pictures
o

PED System

Figure 6.1, Overview of the System,

In Figure 6.1, an overview of the system is shown, There is support for multiple editor
and viewer windows. The system inputs and outputs are also shown.

In the editor window the user can design his/her own control pictures. The user can
also edit pictures that have already been saved. The data output from the editor
window is a picture represented as java source code or a picture represented as a
parsed file. This parsed file contains basic textual information describing the shapes
constituting the picture. The java source code file then becomes compiled into a
* class file and then there is no distinction between the picture and the applet, i.e. the
picture is part of the applet.

The viewer window allows the user to monitor the control pictures. The viewer
window gets datainput from the S.P.LD.E.R system. Based on this data input the state
of the components in the UI changes, ¢.g. a switch can be turned on or off.

6.2.2 Operating the System

The system can be operated in either of two modes, as an applet in the context of a
WWW browser or as a normal application that is started from the command line.

28

Server

L HTML— 1
| Applet — T~
| Pictures|__ | ~h— 20 T~
----------- 4 — .
: il N M Client,
{ HTTP-Server : ~~o~_ | Www- Browser
R L H b
.. . 4, _ - e
ThreadedEcho- «t+— """ _ . ——""
Server T 7T
; A
5. 1 | 6.
: |
SPIDER

Figure 6.2, Running the system as an applet.

I the system is installed on a HTTP-server it will operate as an applet, which is the
case in Figure 6.2. On the client side there must be a Java aware WWW-browser
installed in order to run the system, The first thing the user on the client side must
perform is to access the HTTP-server with its web address. The first thing that
happens is that the web page is transferred to the client side (arrow 1), when the
<APPLET> tag is found, the applet will be transferred from the server to the client
side (arrow 2). If the user chooses to download a picture the picture-class is
transferred over the net (arrow 3). Because pictures are compiled java classes there is
no distinction between pictures and the actual applet. The pictures can also be parsed
and then they are just datafiles and cannot be regarded as a part of the applet. In the
current version of the prototype a picture can only be parsed when running in
application mode (for this to work in applet mode requires extended server
functionality). If the user has opened a viewer window, contact with the S.P.LD.E.R
system must be established in order for the monitoring to work. Due to applet security
restriction the applet may only contact the server it was downloaded from. Often the
HTTP-server and the S.P.ID.E.R server are on different hosts. Therefore a Proxy
server needs to be installed on the same host as the HTTP server. This proxy server
establishes contact with the S.P.L.D.E.R system {arrows 5 and 6) and echoes bi-
directional information between the applet and the S.P.LD.E.R system (arrows 4 and
7.

If the program is operated in application mode it can be started from the command
line and there is no need for a proxy server as the application is not subjected to applet
security restrictions and can contact with the S.P.LD.E.R system directly.

29

Figure 6.3 shows how an application is connected to the S.P.LD.E.R system. In this
mode files can be freely parsed and compiled and access to the local filesystem is
granted.

Java Application

S.PIDER

Figure 6.3, Running in application mode.

30

6.3 Analysis

6.3.1 Object Model

In Figure 6.4, an overview of the object model in the analysis stage of the prototype is
shown (The OMT-notation used in preceding chapters is explained in appendix A).

This object model is the result of an iterative process involving all the stages of the
development process. The goal has been to fulfill the requirements list of the
objectives section in Chapter 1 to as large extent as possible (When referring to a
requirement, the notation Regq. x is used, where x is the requirement number). The
abstract window toolkit (awt) framework as well as the framework supplied by the
HiJC package have also influenced the model. This is the nature of frameworks to
control the design, by putting limitations on the design possibilities through the
structure supplied by the framework. This need not be negative. If the framework is
soundly designed it can contribute to a good design, Below follows a more detailed
description of the design together with motivations for the different choices.

34

SUoWda buymep

oapjwid sops * 7 INTITAD
T

7 Juswzou * 7 JUDRIBEIXT) m 73_0;—055:24 7 — UL FNDLDSI _

awozSonuy 7

_ ._E_Ear
SUOAZIDOHIBAC

.|
= !
» 7 xogaay 7 % XOGOUM _ %

AHPUSHIWIAZSUN 4

f] ﬁ

_

WALIHESIMS

JuewFuUmREWOP

T
B %

pejodles ' pojEID :«u_n>m_|L

| Bumesq _ _ VUDJSURLLPIGOD

_ :os:mcma._:_

doasageseoReg

_ Supmmq

_|A 8%%532.;

Jngnuayy v|

| i

4 meguonng

MOPULMIONRA

ﬁ IAOPULM MDA

ddyddyaz _

SEAUBIAY

]

MOPHMAT _
1
JeqjogHeA 1DY50 AMOPUIA
IRGRONIS
egoiagzIoy

MINIBAY SISA Uy

Figure 6.4, The object model resulting from the analysis.

Req. I suggests that there should be two different modes edit and view. Figure 6.5

shows the solution chosen for this requirement.

32

X windowVector

EVMain o EVWindow

T l |

EVAppAppl ViewerWindow EditorWindow <>——/ ButtonPanel

T——— MenuBar ImageButton

Figure 6.5, The prototypes’ windows.

The object diagram suggests that there should be two different types of windows, a
editor window and a viewer window specialized from the parent class EVWindow.
The possibility to parallelly work with multiple documents is also covered by the
diagram, through the zero or more window Vector association on EVWindow. The
different components associated with the two types of windows are also shown in the
model (dialogs are excluded). The left part of Figure 6.5 shows the class EVAppAppl,
which has to do with Reg. 10, that a picture object should at least be viewable from a
Internet browser. The class allows the prototype to start in two modes: applet or
application mode.

The requirements, Req. 2 and Req. 3, are covered by Figure 6.6.

EVPicture ‘|

Vector

PictureElement

[[1 [1
other primilive
£l " LineEl i
AnafogElement I DiscreteElement | kANumEIemenlI l Text] | t | | OvalEtement | drawing elemants

Figure 6.6, The domain model.

Figure 6.6 is referred to as the domain model, as this structure describes the picture
object (PO) in world coordinates (Req. 5 considered). Regq. 2, states that a PO should
be a collection of generic picture elements (PE). The above structure also considers
Req.3, which states that a PE can be dynamic or static, by inheritance from the
PictureElement class by the DynElement and StatElement classes.

33

Requirement 6 says that it should be possible to transfer world coordinates into pixel
coordinates. This so that a PO can be presented in a window on the screen. Figure 6.7
shows the structure for how this is accomplished. The heart of the structure is the
CoordTransform class which is responsible for the transformation between world
coordinates and pixel coordinates as well as the opposite transformation.

horzScrollbar,

Scrollbar
vertScrolibar
canvas
EVCanvas -
Panel k>
HDEventhandler
EVWindow
4 EVPicture CoordTransform Drawing —
created selected
Vector Vector
l domainElement l
PictureElement Box

Figure 6.7, The nwo models: The domain model and the Ul model and their interdependence.

The CoordTransform class can be seen as the bridge between the model of the PO
expressed in world coordinates (referred to as the domain model) and the model of the
PO expressed in pixel coordinates (referred to as the Ul model). The domain model is
held by the EVPicture class through the Vector class and the Ul model is held by the
Drawing class through the Vector class. The PictureElement is represented by the
class Box in the UI model. The functionality stated by Reg. 11 and Req. 12 is also
covered by this structure, i.e. the possibility to zoom and pan. The panning is partly
enabled by the Scrollbar and the CoordTransform classes. Coordtransform also
enables the zooming of a PO. The portability of a PO (Reg. 17) is promoted through
the separation into two models, UI and domain model. The fact, that if there are only
associations to the domain model and never from it, will make it possible to use the
domain model independent of the other classes. This makes the domain model
completely portable and thereby usable by other applications or applets.

Requirements 7 and 8, which has to do with a PE:s width and height and the
preservation of the ratio between these two quantities, can also be fulfilled by the
structure suggested by Figure 6.7. The structure also takes care of Reg. 13 which states
the minimum size of the world coordinate system.

34

There are a number of specialized classes from Box, which represent the UL
representation of the different PE:s in the domain model. These classes have names
like LineBox, RectBox and so on, each corresponding to the classes LineElement,
RectElement, eic., in the domain model. To every such class there is a connected
eventhandler, which controls the behavior of the corresponding box object. The
structure, called the Ul-model, is shown in Figure 6.8.

Box

LineBox RectBox %}W

GvalRectEvent-
Handler

LineEventHandier

Figure 6.8, The Ul-model.

The requirement 4, that the dynamic PE:s should be updated by a info server is
considered by the structure of Figure 6.9.

ViewerUpdate Drawing

DataBaseServer

Figure 6.9, updating of dynamic PE:s.

The actual updating should be performed by the ViewerUpdate class. Associated with
the ViewerUpdate class is a DataBaseServer class, which is supposed to handle the
information gathering from the control system. There is also a association with the
Drawing class, i.e. the UI model. An association with the domain model is not needed
as the interesting thing is to view the updates, and the UI model is the viewable
model. The ViewerUpdate class should be specialized from the Thread class (supplied
by the java API framework). This because updating should take place concurrently
with the other activities performed by the editor.

6.3.2 Functional Model

The functional model of the OMT-method, has not been used here. Instead, a number
of scenarios have been defined. The scenarios deals with typical operations in the
prototype, such as the drawing of a PE in the UI model, zooming and so on. The
functional behavior of the prototype comes from the scenarios.

6.3.3 Dynamic Model

The dynamic model can present state diagrams, event sequence diagrams and event
flow diagrams. In this design it was found sufficient to use event sequence diagrams.

35

Running the program as an applet

EVMain . .
—start—» ViewerWindow
selToolimages—
setPlicturelist—m»

new———M

Figure 6.10, start of the program as an applet.

Figure 6.10 shows how the program is started, if it run as an applet, i.e. from the
applet viewer or an Internet browser. To start the program as an applet a .html file
containing the <applet> tag must be supplied. The EVMain class is specialized from
the Applet class and therefore a start message is sent to it, when starting as an applet.
After that some initializations are made, like loading the bitmaps for the toolimages
and reading the parameters in the .html file listing the available pictures on the server.

Running the program as an application

EVAppAppli

—main—-mn

new . .
EVAppAppli ViewerWindow

setToollmages—»

new——-———mp

Figure 6.11, start of the program as an application.

The class EVAppAppl in Figure 6.11 is specialized from EVMain, but this time the
start method is not called, but the main method, as the program is now run as an
application, This architecture allows the program to sense in which mode it has been
started and adapt itself accordingly.

Adjustment of the window size

EVWindow ToolKit CoordTransform . EVCanvas
EVPicture

e 1AW |

new
I‘LW

——getScreenSize——»
e——screenSlze——

new

resize
windo

getWindowSizg———— >
b windowSizg—mrmr—————

resize
windo'

ZQOm

Figure 6,12, Adjustment of the window size.

36

As the program is started and a new picture is opened, the editor or viewer window
must adjust its width to height ratio to be the same as that of the domain model. Or, to
be correct, the width to height ratio of the canvas must be exactly the same as the
corresponding ratio of the domain model, if a linear transformation is to be performed.
Thus, the window must be resized to allow the canvas to get a preferred width to
height ratio. This, requires some knowledge about the components” sizes in the
window as well as what canvas size a certain choice of window size renders. Figure
6.12 shows one solution to this problem.,

37

The Zoom Procedure

EVWindow CoordTransform EVPicture Drawing Box PictureElement

—action{zoom_in}«

ZOOME
getDrawlngElements——»
«—————drawingElementg-——

getEdited
edited
getPosition
position—
getOtherAtiibutes
ctherAtiributes
getVisibleYorldCentes
M—visibleWoddCenter—
—— gatCanvasSize—
canvasSize—»
|- geiVisibleWorldWidths]
M- visibleWorldWidih—]
- getvisibleWerid Helghw
m—visibleWordHelght—
geEl it —
slement
plage—--
satOtherAllnibutes
zoom-——H
—gatPictureElementa-
M—- pletureElements—i
removeAl————n
——CanvasSizg——
canvas——-—#
gelCentarPosition-
centarPosition —A
gaCtharAltributes
otherAtiributes
[-gatVisibleWordCentes
—visiieWorldCenter—
——geiCanvasSize—
canvasSize——¥
- getVisibleWortdWidths
—visibleYWWorldWidt—
- geiVisibleWorldHelghw Box

—visibleWorldHelght—]

—— e s e m——— —— - -
add

Figure 6,13, The zoom procedure.

Figure 6.13 shows the messages required to perform zooming in the program. The
procedure begins with the user choosing Zoom In or Zoom Out from the View menu
alternative. Then, the newly created or edited drawing elements on the canvas are
found (i.e. the Ul-model is verified) and the corresponding domain elements are
updated. Then the domain model is zoomed (the message zoom from CoordTransform
to EVPicture), i.e. the part of the domain model containing information about the area
that is visible to the user is recalculated. After that, the domain model is read and ail
elements are removed from the UI-model. From the reading of the domain model, new
resized elements are created in the Ul-model. This require a number of messages
concerned with recalculating distances and positions in the Ul-model. Some of these
self explanatory methods are accounted for in Figure 6.13.

The Pan Procedure

The pan procedure is identical with the zoom procedure, except for the message zoom
between CoordTransform and EVPicture. Instead of increasing or decreasing the size
of the visible area (as with Zoom Out or Zoom In) the size of the visible area is kept in
the domain model, but the position of the visible area is moved, i.e. panned.

38

The Saving of a Picture and the Generation of Java Code

Process

(Runtime} EditorWindow CoordTransform EVPicture
—acton{sava)H
|—updateDomainhModat-»| FileDialog
—new —_ ¥
getFie: — ¥
il
savel’.clona parse} PersistentOutputsiream
B naw—
| seiCodeGeneration
{false)
writeSomeAttributes.
[it Pessistentyect PersistentOutputsiream
avel* Java,source: L —
— —paW ————
1
setGodeGensration(ire————h
-
N \'u'ritePerslsltentVeclu-r———b
H——exac{complis}—

Figure 6,14, save and generate code procedure.

It is only possible to save a picture from the EditorWindow and it is only possible to
launch an editor window, when in application mode (as access to the local filesystem
is only granted in this mode). To save a picture the user chooses the save or save as
menu alternative. First the domain model is updated, i.e. verification of the UT-model
to see if some elements have been edited or created. If the save as menu alternative is
chosen the user is presented with a standard filedialog. After that the EditorWindow
knows the name of the picture to be saved. Then two versions of the picture are saved,
a * clone, which is a parsed version of the picture, and a * java which also becomes
compiled to a .class version.

It may seem a bit awkward to save two versions of the picture, a parsed one and a
compiled one. The reasons for doing this are system consistency reasons. When the
java runtime system encounters a class the first time it is registered to the java runtime
system and after that it cannot be altered. By recompiling a picture class, the class is
altered. But only the file version, *.class file, is altered as the java runtime system has
already loaded the class previously. To overcome this problem, i.e. to open a newly
saved picture without shutting down the system and making the runtime system
unaware of the picture class, a *.clone version of the picture is always saved and then
this version is parsed back into the system. The *.class version is used when opening a
file from a ViewerWindow, when running as an applet.

The actual parsing and java code generation is handled by the interface Persistent, and
the classes PersistentInputStream and PersistentOutputStream. The Persistent
interface defines read and write methods for the classes that implement it. This allows
objects to write information about themselves to file. And the method
setCodeGeneration decides whether java code should be generated or not.

39

The Opening of a Picture, in Application Mode.

EVWindow Drawing Filedialog EVPicture CoordTransform
-action{openy
getChanged—»
———changat-——r7t
N
tACH
postAc! on(opaﬂi B
ﬁ]y‘;!"T‘ .
es) pent.cone} PersistentinputStream
— —nep- —*

1eadSomaAtiibuteDatea——»
readParsistent »

resize

Figure 6.15, the opening of a picture in application mode.

When running the program in application mode access to the computer filesystem is
granted. When the user chooses the Open menu alternative, the picture is checked to
see if any changes has been made as compared to the saved version of the picture. If
that is the case the user is prompted with a dialog informing him that the picture has
changed and if he wishes to continue despite of this fact.

After this dialog has been shown, and the user wishes to continue, he is prompted with
a file dialog box. The user chooses a file to open with the extension .class for a
compiled version of the picture or an arbitrary extension for a parsed version of the
picture.

If the user is not running the program from an internet browser (applet mode) the file
will be parsed, if the user chooses a *.class file from the file dialog the corresponding
* clone file is chosen. The actual parsing takes place, with the help of the
PersistentInputStreamn class and the readPersistent method.

40

The Opening of a Picture, in Applet Mode.

EVWindow AppletFileDialog CoordTransform
_actonopenl AppletFileDialogThread

new L

start--—»
+— appletFiteDShow—

show
action({ok_buttony-

« applOpen—

newl nstancE

setPicture »
resize »

Figure 6.16, the opening of a picture in applet mode.

The event sequence diagram for opening a file from an internet browser is shown in
Figure 6.16. First the user is prompted with a dialog, containing the available pictures.
A list of available pictures is supplied by the *.html file from which the applet is
started. The structure for launching the dialog has to do with the previously mentioned
modal blocking bug.

When the picture is actually opened a new instance of the compiled picture class (the
* class file) is instantiated. The picture which the CoordTransform works with is set to
this picture and the Ul-model is verified by the resize method in the CoordTransform
class.

41

The Creation of an Element on the Canvas

ToolButton EditorWindow CoordTransform EVPicture Drawing HDEventHandler

—mousaUp
—passMessage{loot+
. - mouseDown—
reatelingEl
i createLineElement— LineElement
—— —— ewv— —— ———— —»
deselactAl LineBox
— — naw——

e add———nd
+——seleclOnly——

Figure 6.17, creating an element on the canvas.

To create an element on the canvas (assumes editor window) the user must push the
appropriate tool button (in this example the line tool). The EditorWindow is informed
of this, and it passes the choice on to the canvas eventhandler (HDEventHandler),
where its state is set to the tool selection. Then, when a mouse down is received by
HDEventHandler (i.e. the user pushes the mousebutton on the canvas), a request to
Coordtransform of creating a new LineElement (i.e. a domain element) is sent. This
request is passed on to EVPicture and a LincElement is created. All elements on the
canvas are deselected and a LineBox (i.e. a Ul element) is created. This LineBox is
added to the Drawing, which holds all the elements in the UI model and the LineBox

then becomes selected.

42

Updating of Dynamic Elements in Viewer Mode

ViewerWindow Drawing DynamicBox

—startUpdating»|
[getDynamicBoxe ViewerUpdater

[—— dynamicBox

new{dynamicBoxeg}————# Databasesewer Aﬂl’lbute

NeW

S figW————"

setlrionty-

start

connect————3¥

/ getAtiributes—»]
[+———atiributes——
loop ——————updateBox———————*

wait(sample{jme

Figure 6.18, updating dynamic elements on the canvas.

When a picture is opened in a viewer window the startUpdating method is called. The
first thing that happens is that the dynamic boxes are looked up and passed on to the
constructor of a ViewerUpdater object. The ViewerUpdater object is launched in a
thread. The ViewerUpdater class holds an Attribute class, which holds the database
references to be fetched from the database, the references are supplied by the dynamic
boxes. The ViewerUpdater class also holds a DatabaseServer class. When the Thread
is put to a running state by calling the start method from the ViewerWindow, a
connection to the database is established. Then the attributes are fetched from the
database and after that the dynamic boxes are updated by use of polymorphism. Then
the Thread waits a second followed by a new cycle of the previous procedure, starting
with establishing a connection to the database.

6.4 System Design

Normally, the system design part of the OMT-method describes the different
subsystems, the Graphical User Interface (GUI), the division into processes and the
data management of the system.

As much of the editor/viewer prototype’s functionality lies within the GUI, this part
has already been considered during analysis. The only part relevant to the prototype is
the data management part.

6.4.1 Data Management

The data management of the editor/viewer prototype must consider requirement 16 of
the requirements list. Req. 6 states that Java source code should be generated for the
PO.

43

A solution to requirement 16 is to let each subclass of the baseclass PictureElement in
the domain model hold the knowledge of how to generate its own Java-code. The
generated Java source code for the PO should ideally be a subclass of EVPicture, the

class holding the domain model.

The basic structure of the Java source code for a PO could look like in Figure 6.19.

Figure 6.19, Possible structure of the Java source code for a picture object.

The Java source code can then be compiled and then it will behave like any other class
in the Java system.

To achieve that each subclass of PictureElement holds the knowledge of
selfgeneration through Java source code a number of techniques could be deployed. In
some way each object must create itself on file. In C+ +, the concept of stream
operators can be utilized to achieve this. In the next release of the Java API the
concept of Object Serialization will be supported(cf. JDK 1.1,

http://www javasoft.com/products/JDK/1.1/designspecs/index.html [W5]).

Meanwhile, the problem can be solved with the solution suggested in the book
CoreJava [2], by the notion of persistent storage (cf. CoreJava pp.482-498). By letting
the PictureElement implement the Persistent interface, each subclass of
PictureElement must define read and write procedures, that allows the class to create
itself on file and recreate itself from file. By doing this and utilizing the

44

PersistantInputStream and PersistantOutputstream classes, found on pp. 492 - 498,
and slightly modifying these classes the problem is solved. The modification is to add
some java-code to the values written to file by these classes. Then, a parsed as well as
a Java source code version of the domain model could be written to file.

Now by compiling this Java file describing the PO, the editor can create a class that is
part of the system. The next time you need to look at the class or edit the class an
Object of the PO class is created. This solution has some problems and advantages
associated with it.

The advantages of a picture being a class, are when running in applet mode, there is
no difference between the applet code loaded from the server and the data (the
pictures) loaded from the server as both are classes. This also contributes to the speed
of picture creation as a picture is a compiled class, from which it is possible to create a
new instance.

But, there are also some problems associated with this solution. One problem is if you
edit a picture and want to save it under the same name there will be problems. As the
picturename is the class name and if you redefine a class during runtime there will be
inconsistencies in the system (cf. article in JavaWorld [A2]). The solution to this
problem would be to parse the picturefile at runtime. The other type of problems that
occur are due to applet security restrictions and are covered in the section below.

6.4.2 Data Managemnet Limitations

When running an editor the user might want to save the picture he has created to the
local filesystem. This is not possible, when running the system in applet mode, as the
applet security restrictions denies access to the local filesystem. It is also not possible
to run a system call, i.e. run the Java compiler javac, when running in applet mode.

To overcome this a server could be written to handle the saving of pictures as well as
compilation of pictures. This functionality must then lie on the server side. But, on the
other hand it would make it possible to run not only the viewer, but also an editor
from a internet browser.

6.4.3 Network Communication Limitations

Applet Security Restrictions also say that an applet may only contact the server it was
downloaded from. This calls for some server functionality regarding the DbServer
Class that contacts the S.P.LD.E.R system to get data for dynamic PE:s. The DbServer
class can not directly contact the database which is located at some IP address. It must
go through the server from which the applet was downloaded.

6.5 Object Design

6.5.1 Overview

In the object design phase, the three models that have been created during the analysis
stage and the system design stage of development are put together. The resuit will be a
new object model with messages as well as attributes added as a result of the analysis
of functional and dynamic models. The different parts of the systems’ object design
will be presented below.

45

6.5.2 The Heart of the Design

EVWindow

AboutDShow

action

applOpen

appletFileDShow

copyPicDShow

gaiCanvas

tCanvashize

g:tCmrﬂ ransform EVCanvas

geiDrawing horz_axis I

ge!H_orzScrol!bar vert_axis

geiPicture

getPickireName o getDrawing

getRecomendedWindowSize paint

{absiract} selDrawing

getVerScrolibar

handlsEvent

modalYesNoDShow

paint

passhiessage

postAction

setPicturelist

setPicturaName HDEventHandler

sstToolimages

stanUpdating (abstract} :‘e‘:gf:lg‘s’“’"

stopUpdating {abstract}

zoomHome

EVPicture CoordTransform Drawing
add
addToCopied copyUlBomain add
bringToFront createAnalogElement bringFoFront
createAnalogElement I croateBreakertlement F———r——1copy
createBreakerElament createlsolaterElement deselect
crealelsolatorElement crealalineElement deselectAll
createtineElement createOvalElement gsiChanged
createQvalElement createReciElement getDrawingElaments
create RectElement createTextElement getlynamicBoxes
createTextElement getCanvasCoordinates gelSelectedDomainEfements
cutElements getHorizontalTransformFactor group
getCopiedElements getOrigo pont
getPictureElements getVerticaiTransformFastor remove
getVisiblaWorldCenter gelWindowSize removaAlt
getVisibleWorldHeight getWordGoordinates select
getVisibleWorldWidih pan(} selectOnly
open pasteDomainil - sendToBack
pasteCopiedElements resize sefCalor
remove L selPiclure setFilling
removeAll updateDomainModel setLineWidth
removeAliFromCopled zoom ungroup
removeFromCopied zoomHome
save
sendToBack
sefVisiblaWordCenter
zoom
Vector Veslor
PictureElement Box

Figure 6,20, The heart of the design.

The heart of the editor/viewer prototype is shown by Figure 6.20. An exhaustive
presentation of all the methods in the figure will not be made, only the most important
will be presented.

Methods In EVWindow:

46

action: This method takes care of all action events in the window, mainly menu
selections. Sometimes a menu selection causes a dialog to be posted. Depending on
the dialog input, the postAction method is then called.

handleEvent: This method takes care of all sorts of events in the window, e.g. it
senses when the scrollbars are moved.

applOpen: This is the open method that is called when the program is run as an
applet. It merely instantiates a subclass of EVPicture (i.e. a picture generated by the
java-code generating editor).

getRecommendedWindowSize: abstract method, that must be defined in the
subclasses of EVWindow (i.e. EditorWindow and ViewerWindow). The input to
the method is the canvas size and the output is which window size this canvas size

yields.

paint: This method contains information of how to create the contents of the
window, as well as how to catch a resize of the window (cf, Implementation

chapter).

passMessage: This is a callback method, a push on one of the toolbuttons causes a
callback and so on.

postAction: This is also a callback function from some of the modal dialogs.

Methods in EVPicture:

open: Causes a picture to be parsed and loaded into the system through the
PersistentInputStreamClass and the readPersistentVector method.

save: Causes a picture to be saved through parsing or through the generation of its
Java-code. This is done through the PersistentOutputStream class and the
writePersistentVector method.

setVisibleWorldCenter; Sets the centerpoint of the domain model in world
coordinates, corresponding to the centerpoint of the canvas (i.e. the visible part of
the UI model).

zoom: zooms the domain model that is the visible extent in world coordinates is
recalculated.

Methods in CoordTransform:

copyUIDomain: The selected and copied elements in the Ul model are transferred
and stored as their domain model equivalents. This makes correct copying between
different zoomlevels possible.

getCanvasCoordinates: Calculates the corresponding coordinates on the canvas,
for a given set of world coordinates.

getHorizontalTransformFactor: Calculates the horizontal transformation factor
between the domain model and Ul model at the current zoom level.

47

getOrigo: In the domain model origo is at the center of the coordinate system. On
the canvas origo is at the upperleft corner. This method calculates the center
coordinates of the canvas.

getVertical TransformFactor: calculates the vertical transformation factor in
between the domain model and UI model at the current zoom level.

getWindowSize: As the window contains a canvas which must have the same
width to height ratio as the domain model if the transformation is to be linear. The
width to height ratio of the domain model must be taken into consideration, when
calculating the window size. This is done by taking, as input, a proposed window
size which is based on the screensize and then making the best under the given
constraints to meet the proposal.

getWorldCoordinates: Calculates the corresponding coordinates in the domain
model, for a given set of coordinates on the canvas.

pan: Updates the domain model, zooms the domain model (reversed to the zoom
method below, i.e. enlarges the visible extent) and then calls the resize method to
recreate the UT model,

pasteDomainUI: Takes the elements copied to the domain model and recreates
them in the Ul model, at an arbitrary zoom level.

resize: Traverses the domain model and creates the elements in the UI-model at an
arbitrary zoom level.

updateDomainModel: Traverses the UI model and creates or alters the elements
that have been edited in the domain model.

zoom: Updates the domain model, zoomes the domain model and then calls the
resize method to recreate the Ul model.

Methods in Drawing:

getChanged: As the drawing holds all the elements in the UI model, this method
just finds out if an element in the model has been changed. This can be useful, if
the user is to be notified of this fact when exiting the program or opening a new
picture.

getDynamicBoxes: Selects the dynamic boxes to a vector. This is useful for the
ViewerUpdater class, which wants to update these boxes.

The EVCanvas class is a subclass of the Canvas class in the HiJC package and on
this canvas all the elements of the Ul model are drawn. The HDEventHandler class
is an EventHandler for the canvas which takes care of events on the canvas and this
class holds a status attribute, that modifies the behavior of the EventHandler
depending on what tool has been selected.

48

6.5.3 The Editor and the Viewer Window

EVWindow

AboutDShow

action

applOpen
appletFileDShow
copyPlcDShow
getCanvas
getCanvasSize
getCoordTranstform
getDrawing
getHorzScrolibar
getPicture
getPictureName
getRecomendedWindowSize
{abstract}
getVertScrollbar
handleEvent
modalYesNobShow
paint

passMessage
postAction
setPlctureList
setPictureName
selToollmages
startUpdating {abstract}
stopUpdating {abstract}
zoomHome

EditorWindow ViewerWindow

ColerDShow gelCanvasSize

DBDShow getRecomendedWindowSize
EditorWindow passMessage

actionI o8 s}artil.Jdeatlng
copyPicDShow stepUpdating
getCanvasSize

getDefaultColor

getRecomendedWindowSize
passMessage

postAction

setDsfaultColor

Figure 6.21, The editor- and viewerwindow structure.

The most important thing to mention about Figure 6.21 are the methods startUpdating
and stopUpdating. The startUpdating method launches a ViewerUpdater thread, which
updates the dynamic boxes. And the stopUpdating method stops the ViewerUpdater
thread. This is applicable to the ViewerWindow class, in the EVWindow class they
are just empty methods.

49

6.5.4 Design Considerations, due to Applet Security Restrictions: Program
Start.

EVMain
start
EVAppAppl
main

Figure 6.22, The different start modes of the program.

Depending on if the program is started as an application (i.e. java programname) or it
is started as an applet (i.e. from an Internet browser) the main method is called or the
start method is called.

50

6.5.5 The Ul model

Box

bringToFront {abstract}
fill {abstract}
getCanvas
getColorindex
getEdited

getElement {abstract)}
getFilled

getMinMaxX {abstract}
getMinMaxy {abstract}
getSelected
getThickness

move {abstract)
remove {abstract}
resize {abstract)
sefect {abstract)
sendToBack {abstract}
setColor {absiract}
setEdited

setParent {abstract}
setSelected

LineBox

bringToFront
disableDragboxes
fill
getBeginPoint
getElement
getEndPoint
getFlgures
gethinMan
getMinMaxyY
move

remove

rasize

select
sandToBack
setColor
setParent
sotThickness

LineEventHandler

mauseDown
mouseDrag
mousellp
setParant

Figure 6.23 shows the Ul model.

RectBox

i

bringToFront
disableDragboxes
fill

getElement
getFigures
getl.owerRight
getMiinMaxX
getMinMaxy
getPosition
getUpperLeft
move

rermove

rasize

salect
sandToBack
selColor
setParent

OwalRectEventHandler

mouselDown
mouseDrag
mousalp
setParent

Figure 6.23, The Ul model.

51

6.5.6 The Domain model

PistureElement

gaiCanterPosition
g#iCertsiConrdinale
gsiCenterf Coordnata
gziColerindax
getDeclhtterlavel
getFiting

getlayer

placs

rzad

setColorindax
sotDacheer

eetFiing

satl ayer

wrile

[

DynEfement

geiDBANDWa
getBBOLzct
read
s=tDBANRDUe
s2:DBON

writa

-

1
StatElement

gaiThichness
raad
setThlcimass
writa

LineElement

| |

RestElernent Texitiement

AnalogElement BreakerElement

selaterElement

gaiBaginPoint

read raad
writs Wit |

=tEndPeint
read ?;-d h
. a
wria satBegnPoink
s2tEndPoind

wiita

getlowsrRight gatFontSize
getUpparlel gaiText
raad read

setl owerRightCoenar setFontSze
sstUppsrLetComer salText
wits wtits

Figure 6.24, The domain model.

Figure 6.24 shows the domain model. The setDeclutter and getDeclutter methods of
the PictureElement class are there in order to support future extensions with
information zoom. This design allows information zoom to be implemented casily just
by considering the declutter level (which can be linked to a zoom level) when creating
the Ul model in the CoordTransform class.

6.5.7 Updating of the ViewerWindow

Drawing

add
bringToFront

ThreadedEchoServer ViewerUpdaler
I start
main
DatabaseServer Attribute

connect getAttributeName

getAttributes getFioat

runQuery gatint
getObjectName
getValueString
setValueString

copy
deselect

deselectAll
gelChanged
getDrawingElements
getDynamicBoxes
getSelectedDomalnElements
group

print

remove

removeAll

select

selectOnly
sendToBack
setColor

setFilling
setlineWidth
ungroup

Figure 6.25, The updating of dynamic boxes in the ViewerWindow.

52

Figure 6.25 shows how the updating of dynamic elements is handled. The
ViewerUpdater class, which is launched in a thread, takes the dynamic elements from
the Drawing class and then makes a socket connection to the ThreadedEchoServer,
which must be installed on the same computer as the HTTP-server (when in applet
mode). The ThreadedEchoServer can handle multiple clients.

When the start method of the ViewerUpdater is called it goes into a loop where it
communicates with the ThreadedEchoServer (which communicates with the
S.P.LD.E.R database) and the elements in the UI model are updated once per second.

53

7. Implementation

7.1 Overview

This chapter will cover some implementational aspects of the prototype. The chapter
is divided into three sections, two of them covering the awt (Abstract Window
Toolkit). In the first section extensions to the awt are covered, this may not be so
important, as the APT for GUI development is expected to be extended in future
releases of the JDK (cf. Java 2D located at [W4]). The second section discusses some
usual problems that are encountered when working with the awt. The last section,
discusses the inner workings of the prototype. The workings of the HiJC are not
discussed, as this is well documented on the web.

7.2 Extended AWT Functionality

7.2.1 The ToolButton Class

The ToolButton class is specialized from the ITmageButton class, which contains the
two methods setlmage and setSelectedImage. The ToolButton is essentially a canvas
onto which to images are drawn depending on if it is selected or not. The awt
normally only supports TextButtons. The ToolButton also utilizes the Callback
functionality (see below).

7.2.2 The PolyThickLine Class

The PolyThickLine class tries to emulate lines of arbitrary thickness on the canvas.
The first attempt was to draw several lines of thickness one beside one another. This
works fine for straight horizontal lines, but the thickness of the line will vary with the
angle in which the line is drawn. So, the thick line, was instead implemented as a
filled polygon, which works good. But, it seems as polygons must at least be two pixel
high or two pixels wide, so there is a problem with line thickness one. Another
problem that has not been entirely implemented is the BoundingBox definition of this
thick line. These are all problems, which with some effort could be coped with, But as
the purpose is to implement a prototype for a technology evaluation there is no need,
and hopefully will the new release of the JDK support thick lines.

7.3 AWT Specific Properties

7.3.1 To Catch Resize

In the prototype it is important to know when the user resizes the window, as the
width to height ratio of the canvas must be the same as that of the domain model. It
seemed like a problem to catch the resize, since to my knowledge no event gets
posted. But, the solution was found on the web at a the Java Developer site, in the
“How do L...” section (cf. http://www digitalfocus.com/digitalfocus/fag/howdoi.html

[W6]).

54

How do I tell when a wmdow has been resmed‘?

T read somewhere thata WIN DOW MOVED event wﬂi get posted dunn g wmdow res:zes but it 3
doesn tseemed workform_" -~ o : : : B o :

the" ‘window’s

/) Check 1f wmdow was just resazed i
pubhc vo;d pamt(Graphlcs g) B
s : -

ght = curDim.height)

This is the solution that has been deployed in the windows’ paint routine in the
prototype.

7.3.2 The Updating of a Window

Another good point that is made in the “How do L...” section of the Java Developer
[W6] is the mechanism by which windows are redrawn.

What - exactly is the interaction between rcpamt() and update()/pamt()‘? How do 1 indicate that only _f
certam parts_of my dlsplay need to be updated’? N - o IRt

(Submltted by Eu'c McCaEl)

'_""'Not;ce that pamt() is, calied in two cases

eeds td be -r'édfa\{fﬁ"fq_r obscure reasons (pun

: when the wmdow is resxzed de—icomﬁed
mtended) and : ‘
when you haven tovemdde___ the

default update() method

B repamt() is the method you use to have_ stem ca]E update() 'wuh the current ._graphlcs context By
defau]t update() calls. pamt() after cieanng the dlsplay, and so Lhe appiet is pamted aga1 : B

. The problem'occurs when you. need to d:splay thmgs movmg around but also nced some’ stah
background Calling repamt() and havmg update() perform your sunple animation is the nght o
solutlon but lhc ammation drawmg should be separated from the backgmund dr_awmg Pumng the _

7.3.3 How to Implement Scollbars

In order to make a scrollable canvas, you will often want to have scrollbars. First, the
scrollbars are created and added to the Panel, where the canvas resides. Then, the
second problem is to sense when the user moves the scrollbars. There is a callback to
handleEvent when this happens. When program senses that a scrollbar has been
moved the programmer must implement something wise to do, like translating the

55

bitmap on the canvas or recreate the objects on the canvas and so on. Below a scaled
down example of the handleEvent routine of EVWindow is given.

pubhc boolean handieEvent(Event event} {

' 1f (evem target == vertScrollbar)_ in :
f vertScrpoar- Vaiue(} = vertValue) {

e
7.3.4 Bugs to be Patched in the JDK

There is a very annoying bug in JDK 1.0.2 concerning the posting of modal dialogs on
the windows platform. If a modal dialog is posted the whole system becomes blocked.
There is a patch to this bug as well as a thorough problem description(see {W4], the
modal blocking bug). The patch is essentially to launch a Thread from which show on
the dialog is made. But, this patch has shown some problems when using it with
Internet browsers (Netscape 3.0 Gold and Microsoft Explorer 3.0), where it causes a
“security exception: thread”. This bug is supposed to be fixed for JDK 1.0.3, but in
the meantime the picture selection dialog has been replaced with a Frame and this
works fine.

56

7.4 Points to be Highlighted in the Prototype

7.4.1 The ColorDataBase and the MessageDataBase

Two static classes handling color and message passing in the system have been
implemented: ColorDb and MessageDb. These two classes defines valid colors and
valid messages to be passed in the program. As an example the message TOOL_LINE
is passed to the window, when the user selects the line tool. This done through the
interface CallBack and the method passMessage (see below).

7.4.2 'The Implementation of Callbacks

Callbacks are implemented through the notion of interfaces. Interfaces can also be
used to get some of the functionality of multiple inheritance, which is not supported
by Java. In the prototype callbacks are implemented through the interface CallBack
How to implement interfaces and callbacks is thoroughly described in CoreJava pp.
154 -161, The CallBack interface defines a method passMessage, the CallBack
interface is then implemented by the EditorWindow class through the clause: ..,
EditorWindow implements CallBack, in the constructor. This forces the
programimer to implement the passMessage method in EVWindow, and in that way
messages can be passed to the window.

7.4.3 To Increase Performance of the Picture Drawing

The resize method of the CoordTransform class, basically handles all the drawing and
resizing of Ul components (i.e. the picture drawing). To tune the drawing
performance, the hide method of the canvas should be called, as well as the
delayRepaint(true) method of the canvas. Then, the Ul components can be drawn,
After the draw procedure is completed the delayRepaint(false) and the show()
methods should be called. The call to the hide() method increases drawing
performance drastically.

57

8. Results

8.1 Overview

Tn this chapter the implemented prototype and its properties are discussed. The
prototype is also discussed in an Intranet context, and how it could be used if it was to
be marketed as a product. Some personal reflections on using the Java language and
the JDK, as well as the Symantec Café IDDE are made.

8.2 The Prototype

8.2.1 Description

The result of the design and implementation effort is a prototype that allows the user
to edit and view pictures, which get input from the S.P.I.D.E.R system. The prototype
can execute in two modes: as an application or as an applet from within an Internet
browser. In application mode it is both possible to edit and to view pictures. In applet
mode it is only possible to view pictures. In both modes multiple documents are
supported (i.e. arbitrary number of viewer windows of the same picture, but only one
editor window),

The reason why it is only possible to view pictures in applet mode, is the security
restrictions of most Internet browsers, which prevents you from accessing the clients’
filesystem. This problem could be overcome by adding functionality on the server
side, so that it would be possible to save pictures on the server, thus making it
possible to edit pictures online as well.

The performance of the prototype is a bit poor, about 4 seconds to draw and
recalculate a picture for zooming, containing some 300 picture elements, on a 100
Mhz Pentium with JIT compilation enabled. Probably could this performance be
improved a bit by optimizing the drawing algorithms and sorting the elements and
using the tricks of the trade.

The implementation of the prototype contains 62 Java classes (the frameworks used
are excluded). The average class is about 60 lines of code. There are about 6-7 larger
classes. The largest two, EVWindow and CoordTransform, are about 880 lines of
code each.

8.2.2 Application Appearance

Figure 8.1 an editor window is shown. At the top of the window, on the left hand side,
there are some buttons, that allows the user to select a tool: such as a line or a breaker
or an isolator. The attributes of the created elements can be edited by the buttons at the
top of the window, to the right, as well as through menu selections. It is also possible
to alter the color of the elements by launching a palette window from the menubar.
Cut, Copy and Paste within and between documents is supported. It is also possible to
zoom and pan a picture. The design also allows information zoom, through different
declutter levels, but this option is not enabled in the prototype.

58

Edilar Window: amhistppt

!e Edit View Selections Utfides VWindow Help
nacerer: (] () 0T
L1 Amherst Station

M
nata i 5
L e i Lerd laag Paish e wa®ma Rasly
FEE ng Prstog L T TN B z;\‘-’ﬁ " o3p Baan
15 G2¢ Bnskg) 510,
[m] o1 g‘zhna.'ug oo 530 F_n;’cg o o aa amé
Sioprang 525 knsteg 423 Bnalog
verezeng [S PN vetsgerey T o2u Bnztog vetrgerey] a3y hratag
32g 2p Razioy "
333 20 Jasle 25 bnatog er Fnsta:
gal!cw Fx E‘amé’ EEl v - !
1l knateg 2t knalog O s "
EA
B3
T} 28 b (AP LAV Posoy
A
{ I j hnsiog
]
knatey
L 50 [2 78 7
58 5E LE] eE 8 mn
A ea
oF Fnalag &8 Bralog 77 Boalog
1) I5~"-ah:'g ea Rnafoy ;g ;13
55 Fnalog &5 Raslng o
& Pnaiog 71 Bnalog

& bnseg

Figure 8.1, The appearance of the editor window in application mode.

To each of the dynamic elements (i.e. isolator-, breaker and analog elements) there is
a connected database dialog, where the element is connected to a certain point and
type of value in the S.P.1.D.E.R system. Figure 8.1 contains a station in the
distribution net called Amherst, this station has been built with the editor (please note
the analog elements in the picture, the text Analog will change to the database value
of the point when the picture is viewed from a viewer window, see also the next

section).

59

Figure 8.2 gives another example of how pictures are created in the editor window,

S Editor Window: Untitled =~ ..oim i =700
Edit View Selections Uliliiies Window Help

d Attributes: |E

;Ile

3]

S e

ST S b

HELLO WORLDH
| CAN CREATE CONTROL PICTURESH!

Figure 8.2, The editing of a picture.

The design of the prototype also makes it very easy to extend it with new types of
elements as well as adding attributes and functionality to existing elements.

Viewer VWindow: amhesstppi

Fle View Window Heip

LT Amherst Station o
2 b Ll S et et P
B g R e m o DD T ng o
3 T orarn O e O Osub
o15

ﬂs;s b i ¢ B

Vatmany [

R

TR S T

Figure 8.3, The appearance of the viewer window in application mode.

Figure 8.3 shows the viewer window in application mode. A viewer window is
basically an editor window with scaled off functionality and with updating from the

60

S.P.ILD.E.R database. In viewer mode it is only possible to open and close pictures, as
well as zooming and panning them.

8.2.3 Applet Appearance

Yiewer Window: amherst.oizss

Figure 8.4, The viewer window as seen from the Netscape 3.0 Gold browser.

If the prototype is installed on a HTTP-server the pictures created by the editor can be
viewed through a Internet browser, as seen in Figure 8.4. This could be useful for
some power companies, giving them the possibility to view the status in their stations
from any platform that is connected to the corporate computer network. Usually today
within a company there exists many different types of computers as well as operating
system (i.e. platforms). Given the possibility to build an Intranet utilizing web-
techniques, the cost of having to install and develop and update new versions of the
client for each computer type and operating system will vanish. The only program that
needs to be installed on each computer is a web-browser, and those are cheap and
available for many platforms.

It is probably also a relatively simple matter to convert pictures constructed by other
editors to be viewable by the viewer applet. This conversion might also be an
important factor, as there is no need for reinventing the wheel.

61

8.2.4 The Generation of Java Code and Parsmg

anort _;ava'unl Vector
tmport _;ava util, Stack
:mportjava 10 E

// detor-Vmwer selfgenerated java-pzcture

o 1bleAreaCemer{0} _
o v1slb1eAreaCemcr{1} 0

) Hlclass Sampie?zc java

Figure 8.5, Java source code for a picture generated by the editor.

Figure 8.5 shows the Java source code generated by the editor for a simple picture.
The editor automatically generates the source code and compiles it, if the picture is
saved with the .java-suffix. If the picture is saved with any other suffix the
information will be parsed as in Figure 8.6.

Figure 8.6, A parsed picture generated by the editor.

The parsing as well as the Java-code generation is handled by the objects in the
domain model (cf. the design chapter). This functionality could easily be extended,
other code than Java code could be generated and for other purposes than describing
the appearance of the picture, or each element could be associated with links to
information about the element {e.g. A script could be started that gets information
from a relational dB about the element, such as service status, type, installation year,
manufacturer, or why not some multimedial facilities showing a live video of the
element and so on).

62

In the prototype, the pictures that are opened are created from compiled classes
representing the picture, that are installed on the server. Practical experience with this
system has shown, that it might be better to use parsed versions of the picture instead.
This can be enabled through small server and client modifications.

The performance seems to be the same when loading from HD. This might depend on
the need for class verification before running in the Java Virtual Machine. Another
thing worth noticing is that the size of the .class file (14 kb) is about half of that the
parsed version for the Amherst station. This might be important if the bandwidth of
the network is low. But, the parsed version has many advantages, there is not the
problem of system consistency due to many definitions of the same class in the
runtime system. It is probably easier to build mechanisms for picture navigation (i.e. a
picture directory system) with parsed files, because a .class file is not really loaded, it
is rather seen as part of the program, and you just make a new instance of the class in
order to view the picture.

8.3 Using Java For Development

Using the Java language was a really positive experience. Java resembles C++ a lot,
and that made me feel comfortable as I have worked with C++ before. Some of the
pitfalls that are common in C++, have been removed in Java. It was a relief not having
to deal with pointers (based on the arithmetic pointer model) and destructors and the
like. This also promoted object oriented programming practices. On the whole I found
the language simple to learn and use.

But, it is also evident that Java is a new product. The JDK 1.0.2. and the libraries
supplied with it do not suffice to develop a mature software product. This is evident
from the section above, where a need persists to extend the Java AWT APL There
were also some irritating bugs that were associated with the API (i.e. the dialog
blocking bug). In order to build a complete application out of the prototype a more
extensive library supporting GUI components is needed. Hopefully, the new release of
the JDK 1.1 and the Java 2D API will overcome this problem. The JDBC API might
also be useful for enhancing database communications.

The different behavior of applets in different browsers as well as in the applet viewer,
is also somewhat irritating, The grounds for this might be the fact that the underlying
platform and operating systems are not identical. However, In my opinion it is Javas
task to overcome these problems. Hopefully Java will mature and the behavior
demonstrated on one platform will be the same for all platforms (i.e. it is good to be
sure of that your applet will not crash on a specific platform or in a specific browser. It
should suffice to test the applet on one platform and on one browser.)

8.4 The Development Tool - Symantec Café

At the time of writing there are many IDDE:s on the market: Microsoft has released
J++, Symantec has released a new product called Visual Café, Jactory from Rouge
Wave and so on. In this section the IDDE that the author has used, Symantec Café,
will be briefly described, together with some personal reflections (cf. Dr. Dobbs
Journal August 1996 [A3] for a more extensive review of Symantec Café).

63

8.4.1 Description Of The Symantec IDDE

Café supplies most of the features that are common in today’s IDE:s (Integrated
Development Environment): project management, wizards, compilers, class browsers,
graphical debuggers, color-coded source code etc. A resource editor called Café
Studio is also included, which is a visual tool that lets you create Java forms by using
drag-and-drop on visual controls (i.c. buttons, choice lists, scrollbars and so on). It is
also possible to import existing Windows resource scripts into Studio and convert
them into Java source code.

Project Management

The project management feature allows the management of a set of source files. A
project can be built into a program. The project manager lets you choose if it is an
applet or application is to be built. What compiler, that is to be used, the Sun Java
Compiler or the Symantec one (yes, they supply their own that is faster than Sun’s),
can also be chosen together with some other features.

Views and Workspaces

The Views and Workspaces allows you to look at your program from different
perspectives. A view is essentially a window, whereas a Workspace is a collection of
views. Altogether, there are nine different views: Source Editing, Project, Output, Call
Chain, Data/Object, Breakpoints, Thread Debugging, Class Editor, and Hierarchy
Editor.

Most of these views are self explanatory. The Class Editor is a class browser that lets
you look at the classes of a project. The members of a class as well as the source code
for that member can also be viewed. The window is divided into three panes. The
Hierarchy editor provides the same functionality, but instead the graphical
representation of the class relations is given. The classes and members can be edited,
new classes and methods can be added and so on.

Café allows up to five workspaces to be defined. Initially, four predefined workspaces
are provided Editing, Browsing, Debugging and Output, Naturally, the views
contained in each workspace can be defined and edited.

8.4.2 Personal Reflections On Using Symantec Café

I found Café simple to work with, almost everything is self-explanatory. It takes a
little time before you get a grip of things, how projects work and so on, but after that it
just to get on with it. I especially appreciated the class editor, when my project grew in
size. The class editor made it ease to browse through the system and get an overview
of it.

There were also some negative things, among them an irritating bug that occurred
once in a while having to do with error messages. When a compile error is detected it
is shown in the output window, and then the line containing the error can be double
clicked and you come directly to the incorrect line in the source code. This worked
fine most of the time, but after etror correction it was sometimes impossible to save
the source file and the whole IDDE had to be restarted. Also, I did not find the Studio
very helpful. The Studio is supposed to generate the Java source code for the forms

that you graphically create, but if you did something wrong there was no Cancel
button and you had to manually remove the source code files.

To sum things up, on the whole I liked working with Symantec Café.

65

9. Conclusions

This thesis has shown that it is possible to develop a prototype resembling a mature
application, with the use of state-of-the-art object oriented design techniques. The
prototype that has been the result of the work enables control pictures to be viewed
over the corporate intranet. Control pictures can also be designed in the editor window
of the prototype. The created control pictures generate their own Java code or they can
be parsed. The control pictures get updates from a real-time database, containing
information about the controlled system.

It is also possible and easy to extend the prototype to contain new types of picture
elements. One possible extension might be a picture element that is a picture, i.e. the
mapping of a picture onto the coordinate space of another picture.

On the whole the Java language and the development environments used have lived
up to what they promised. But, it has also been shown that the Java language and the
available frameworks do not suffice to write a full-blown professional software
product. But, this could soon change, as many new API:s are being released or is soon
going to be released at the time of writing. If the cooperate strategy is to be on the
development edge, it might be a good idea, to start planning those full-blown software
projects in Java today.

The whole idea of supplying advanced applications over an Intranet, that seems
plausible to do bearing the example of the developed prototype in mind, can change
the view of how program maintenance and distribution is to be done. The whole
concept of an intranet will fundamentally change many values in this business,

66

References and Bibliography

BOOKS

[1]
J. Gosling and H. McGilton (1995) The Java Language: A White Paper
and The Java Language Environment: A White Paper, Sun
Microsystems Computer Company, Mountain View, CA, Edition May
1995 (available at http://java.sun.com/whitePapers/)

2]
G. Cornell and C. 8. Hostmann (1996) Core Java, SunSoft, Sun
Microsystems Computer Company, Mountain View, CA.

[3]
Rumbaugh et al(1991) Object Oriented Modeling and Design. Prentice-
Hall International 1991.

[4]
ENEA AB, swedish computer consulting firm, Course material on the
OMT-method.

ARTICLES

[Al]
1974. Hoare, C.A.R. Monitors: An Operating System Structuring
Concept, Comm. ACM 17, 10:549-557 October.

[A2]
JavaWorld(October 1996}, available at [W4].

[A3]
Dr. Dobbs Journal (August 1996).

WEB

(Wi1]
http://www.javasoft.com:80/doc/white_papers.html

[W2]
http:/fwww.javasoft.com:80/doc/Overviews/java/

[W3]

http://www-und.ida.lin.se/~pum17

[W4]
http://www.javasoft.com

[W3]
http://www .javasoft.com/products/TDK/1. [/designspecs/index.html

[W6]
http:/fwww.digitalfocus.com/digitalfocus/fag/howdoi.html

Appendix A

OMT-notation used in this paper:

Class:

! Class Name

Class Name

attribute

operation

Generalization (Inheritence):

I Super Class l

[

f Subclass-1

| | Subclass-2

Abstract Operation:

Super Class

operation {abstract}

A

|

1

Subclass-1

Subclass-2

operation

operation

Association:

Association Name
| Class-1 i { Class-2 |

Multiplicity of Associations:

Exactly one
Many (zero or more)

Aggregation:

I Assembly Classf

l Part-1-Class | Part-2-Class

Derived Class:

rClass Name [

