ISSN 0280-5316
ISRN LUTFD2/TFRT--5536--SE

Modelling and Object Oriented
Implementation of a Windows
Based PLC Configuration Tool

Henrik Petersson

Department of Automatic Control
Lund Institute of Technology
September 1995

Document name

Department of Automatic Control | yASTER THESIS

Lund Institute of Technology Date of issue
P.O. Box 118 September 1995
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5536--SE
Author(s) Supervisor
Henrik Petersson Phillipe Pleche, ABB and K-E Arzén, LTH

Sponsoring organisation

Title and subtitle
Modelling and Object Oriented Implementation of a Windows Based PLC Configuration Tool. (Modellering
och objektorienterad implementation av ett Windows-baserat konfigurationssystem for PLC).

Abstract

The purpose of this master thesis is to model and develop a Windows application, designed to handle the
configuration process of the ABB Procontic CS31 automation system. This program is labelled CS31CONFIG.
Initially, it runs independently, but as a long term goal, it will serve as an integrated tool in a planned
new version of the ABB Procontic CS31 programming software, under development by an external society.
CS31CONFIG allows the user to specify necessary configuration parameters depending on the actual I/0
system topology, and thereafter transmit this information to a master Programmable Logic Controller (PLC).
The programming was carried out in an object oriented approach, and the code was written using the Microsoft
Visual C++ compiler.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 31

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

Contents

AcCKNOWIEAZEMENLS...correuissieraaneannsrnensnssrsesersensaosensans 1
1. Introduction.............. seesncssesnestissteaesassreenesenensntsssestsensantsns 2
2. ABB Procontic CS31 3
2.1 ABB Procontic CS31 Automation System S5 a5 ixsEeessTRRTsTs TR 3
2.2 Hardware.. cresssseresarsasnas 3
2.3 SOftWar€..cesesesererssessencsesasnsasseresnsacsessesessssasaossanssesess . 4
3. Problem Definitioncececeenee we D
4. Definition of CS31 Database..........cecererererarercsssnesesesanes 7
4.1 LaYOULuueiererrerserarsnsoressnesssassnssnsssssas 7
4.2 Flexibility S 8
5. Microsoft Foundation Class Library and Windows Programming...... 10
5.1 Microsoft Foundation Class Library - OVervieW....ueeusesesssssesesesescsons 10
5.2 Key Concepts..... 1
5.3 Different Windows.... .13
5.4 Messages and Message Maps . creennees 14
5.5 Applications under Windows....... vesessssesasassanenntsssanssetssnes 15
5.6 RESOUICES..cccurrerrercasnessnsrnraesesensrasasassases 16
6. IMPIemMENtAtiON.......ccucuitiicisisircssncssninnsnsesssssesanssssssssssnssesssssesssssessssssasase 18
6.1 General Structure of CS31CONFIG....cccerererrarserercserercresensasesesssessarnse 18
6.2 The Document Class : CConfigDoC...eresereresnsnnes S 18
6.3 The View Class : CConfigFormVw......eceesserenes 20
6.4 CS31CONFIG DialogUe ClaSSES.ercsrresesererasssssnssssssersasssacsesessnsasesssosses 22
6.5 Transmission....eeeseeseeee STRacacsussossnssnacsnssasanssassansasnsssnsussand 23
7. SUIMMATY covuvrerenrsssinsissesssssssnsesssssinomonsassssasassasssessssessssasasssssssssssasssssssssasssoses 26
A, Significance of Bits in the CS31CONFIG Database 27
References.. Senesanesesnesersesennerenessestsnnisarsesestasnnteasnteststsannisesstsetesenassee 29

Acknowledgements

I would like to thank my supervisor Philippe Pleche at ABB Control for his excellent
guidance and help throughout this master thesis. I would also like to express my gratitude to
the rest of the team CS31, especially Marc Jaffrennou and Claude Henrion for their valuable
advice.

At the Department of Automatic Control at Lund Institute of Technology, I would like to
thank Karl-Erik Arzén for supervising my work, making this master thesis possible.

Finally, Sebastien No&l at ABB Control has given me information and indispensable technical
support regarding several software and computer systems. Thank you!

Lund, September 1995

Henrik Petersson

1. Introduction

The purpose of this master thesis is to model and develop a Windows application, designed to
handle the configuration process of the ABB Procontic CS31 automation system. This
program is labelled CS31CONFIG. Initially, it runs independently, but as a long term goal, it
will serve as an integrated tool in a planned new version of the ABB Procontic CS31
programming software, under development by an external society. CS31CONFIG allows the
user to specify necessary configuration parameters depending on the actual I/O system
topology, and thereafter transmit this information to a master Programmable Logic Controller
(PLC). The programming was carried out in an object oriented approach, and the code was
written using the Microsoft Visual C++ compiler.

In chapter 2, the hardware as well as the programming software of the ABB Procontic CS31
are described. The problem is defined in chapter 3, and the goal of this master thesis is also
stated. Chapter 4 presents the definition of the CS31 database, applicable to future PLCs.
Chapter 5 explains why the application CS31CONFIG was written for Windows using C++,
and it introduces the Microsoft Foundation Class Library - the tool used in the
implementation. However, no attempt is made to explain object oriented programming, which
is considered as a prerequisite. This chapter also describes Windows programming in general,
and the fundamentals of an application under Windows. Chapter 6 describes the
implementation of the application, by explaining the structure of CS31CONFIG and how it
was modelled. The chapter also discusses the transmission and the interaction with the CS31
system. Chapter 7 is a summary, and finally, appendix A presents a complete description of
the CS31 database.

2. ABB Procontic CS31

2.1 ABB Procontic CS31 Automation System

The ABB Procontic CS31 [1], commonly referred to as CS31, is an intelligent decentralised
automation system, developed by ABB Control, Chassieu and ABB Schalt- und
Steuerungstechnik (ABB SST), Heidelberg. It is mainly designed for small to medium size
industrial processes. In general, the client handles the installation and the programming, while
ABB offers technical support. The system is controlled by a master PLC, and in addition, up
to 31 remote input/output units (I/O units) can be connected. The units are linked together via
a simple pair of twisted wires, forming an automation network. The concept of using a simple
pair of wires instead of conventional cabling, drastically reduces installation costs as well as it
assures and simplifies modularity.

Figure 2.1 The ABB CS31 automation system; the PLC KR91 can control up to 31 I/O units.

2.2 Hardware

The master PLC executes a user provided program, i.e. instructions how to behave and
evaluate information. It communicates with its environment by means of I/0 units. Each I/O
unit contains a number of I/O channels, analogue or binary, functioning as sensors and/or
actuators. Thus, these I/O units can provide the master PLC with input data, for example a
temperature measurement or the setting of a switch. This information can thereafter be

evaluated in order to provoke a desired action. The action is carried out by the I/O units upon
a command reception from the PLC, for example reduction of a radiator heating or toggling of
a switch. In order to communicate via a simple connection, each unit is assigned an address
and each channel a channel number. Any channel specific information transmitted in the
network contains the address and the channel number of the command target, i.e. channel of
receiving unit. Similarly, any unit specific information (commands concerning all channels of
a unit) contains an address of the receiving unit. The I/O channels can be configured, altering
their behaviour, and adapting them to an actual task. These different behaviours are described
by a global set of configuration parameters. To each channel, a specific subset of the
configuration parameters is applicable, corresponding to the particular hardware. Examples of
these parameters are input filter time and cut wire detection for binary channels, and
analogue measure range of tension/current.

2.3 Software

In order to manage and provide the CS31 PLCs with instructions, ABB SST has developed
the software PC33 [2], running on Intel platforms under DOS. The operator works with PC33
to program solutions for different control problems, for example PID regulation etc. PC33
supports Function Block Diagram (FBD), Instruction List (IL) and Ladder Diagram (LD). In
addition to PC33, all programming features are also accessible in terminal mode, which
simply is an ASCII character interface between the PC and the PLC, following a CS31 syntax.
In all, there exist about 50 commands to program and interact with the PLC. PC33 can be
regarded as a graphical interface, using terminal mode commands or blocks of them. All
communication is handled via a serial port operating at 9600 bps. Considering ABB’s clients
often limited technical know-how, PC33 tends to be far too complicated. To adapt the CS31
line of products to a growing market and to simplify the handling, ABB Control has engaged
an external society to develop a new software under Windows, which is due for delivery by
the end of 1995. This program will replace the PC33. In addition to the PC33 programming
languages, it will also support Sequential Function Chart (SFC), Structured Text (ST) and
C/C++ code. The user will work in a simple graphic environment, and for greater supervision,
several tools will be available, for example debugging and simulation features. As earlier
mentioned, CS31CONFIG will play an important part of this software.

3. Problem Definition

The configuration process of the CS31 serves to set the unit and channel associated
configuration parameters at user provided values. This can be today be handled in terminal
mode by the command MAIL [1]. While MAIL provides a perfectly well defined mean of
configuration, it is rather tedious from a user perspective to type one MAIL for each channel,
remembering that for instance the PLC KR91 can handle up to 992 binary channels. The
PC33 implementation of MAIL is also quite awkward and time consuming. With a little
knowledge of the command MAIL, a user can more rapidly configure a system by means of
sending MAILs than using PC33. Clearly, this could be handled more efficiently. In addition,
today’s generation of PLCs are unaware of the actual settings of the parameters, since only the
type of the remote unit and the corresponding address are stored in its memory. In order to
intelligently respond to certain situations, future CS31 PLCs are planned to store all
information regarding the configuration. This demands the definition and creation of a new
configuration command, applicable to future PLCs as well as a supporting software. By
creating a user provided database containing all relevant configuration information, storing it
in the memory, the PLC will be able to handle the configuration process internally, and solve
certain problems independently. When defining the structure of the database, there are certain
technical constraints to consider. This concerns especially the compactness, and the simplicity
of the decoding of the database, as well as flexibility towards future I/O units with unknown
configuration parameters.

While improving the performance as the CS31 system becomes more complex, it is important

that user interaction remains simple. This is a central part of the CS31CONFIG specification,
and a major effort has been spent to attain user simplicity.

PC with Windows

CS31 master PLC

CS31CONFIG (R e T T
Mail or CS31 database_))

'E__— : i = I-')

"1/0 unit

Figure 3.1 The relation between the CS31 system and its supporting software. The latter contains for instance
programming, configuration and diagnostic features.

To summarise, the topic of this master thesis is the development of CS31CONFIG, a
configuration tool which allows a user to easily enter relevant settings of the configuration
parameters. Depending on the actual PLC, this information will be translated into either
MAIL commands, assuring compatibility with existing PLCs, or a database format, applicable
to the next generation of PLCs. Finally, CS31CONFIG will transmit the information via a
serial port to the PLC. CS31CONFIG replaces the existing PC33 configuration
implementation. As a second part of the initial problem definition was a diagnostic tool
designed to run in close co-operation with CS31CONFIG, exchanging information. The main
purpose of this program is to evaluate error information stored in the PLC, and provide the
user with means for solving them. The master thesis has not attained this part of the
specification due to unexpected difficulties during the modelling phase. Also, the information
flow between the two tools was not defined in the beginning of the project, significantly
delaying the development.

4. Definition of CS31 Database

4.1 Layout

The database contains information about the actual setting of the configuration parameters.
These can be regrouped into unit and channel specific parameters. The global set of
configuration parameters shown in table 4.1, is the information required by MAIL in order to
configure the CS31 system.

Parameter Possible Settings

Unit category BI, AL, BO, AO, BIO, AIO!

Address 0-63

Register Low/High Byte

Channel type Binary/Analogue

Functionality Input, Output, Input/Output

Analogue measure range 0-10V, £10 V, £20 V, 0-20 mA, 4-20 mA, other
Input delay (ms) 2-32

Input cut wire detection Disabled/Enabled

Output cut wire detection ~ Disabled/Enabled

Table 4.1 Unit and channel specific parameters.

Hence, the information described above is necessary to configure existing CS31 units, and the
least one would expect to find in the database. In order to render the size of the database as
small as possible, it was decided to represent the database in a low level format, with each
byte containing configuration information. In addition, the database has to be started and
terminated by a unique and well recognisable separator. It will also have to contain separators
at unit and channel level, to simplify the decoding of the database.

In the definition of the database, the memory is considered divided into segments of 8 bits (1
byte). For simplicity, their values are represented as hexadecimal, i.e. each memory segment
ranges between 00 - FF. The earlier mentioned separators are chosen as FF, FE and FD
respectively. These values are strictly reserved to partition the database, and must not be used
to represent data. In addition to the set of configuration parameters, a couple of variables are
introduced; the number of units in the system, and the number of channels of each unit. Figure
4.1 presents a general overview.

1 B - Binary, A - Analogue, I - Input, O - Output.

FF
Number of units

System

FE
Category
Address/Register

Number of channels

FE
Category
Address/Register

Number of channels

FE
Category

Channel

Channel g

Address/Register

Number of channels

Figure 4.1 General layout of the CS31 database. The contents of the black boxes are to be
regarded as comments.

This database contains all relevant configurable information of the CS31. In a worst case
today scenario (i.e. 31 I/O units ICFC 16 L1), the database occupies at most 2 Kbytes in the
master PLC memory, well within reasonable limits. A complete description of the database is
found in appendix A.

4.2 Flexibility

The CS31 is a dynamic, constantly growing automation system. As the market demands
improved performance, more powerful PLCs or remote units are released. Hence, the global

set of configuration parameters is eligible for extension with new parameters, for example
scaling of analogue measure range, but also other, more complex variables. Thanks to an
object oriented implementation, CS31CONFIG can be modified to incorporate these variables
when the need arises. However, the database represents a more rigid structure, and the
definition must therefore encapsulate if not the details (after all, these are not known), at least
a general guideline for expansion. Figure 4.2 shows a part of the CS31 database at channel
level.

1 2 3 4
LLLILLll] 1|||i||||| LLLE LD LALh b g
FD Flag Binary parameters Number of supplementary
bytes (01 - FC)

Figure 4.2 The CS31 database at channel level.

Byte 2 contains a flag (bit 5), indicating the presence or not of following bytes containing
supplementary information (not used with today’s I/O units). As future configuration
parameters might be highly complex, byte 4 represents the number of following bytes
containing the actual information. Remark that FF, FE, FD are reserved values, so the
maximum number of bytes that can be inserted for each channel is 252! The details are
implemented in bytes 5 - 256, and will be defined by ABB when the nature of the
configuration parameters is better known. Thus, the CS31 database is not limited to the
present line of products, but is prepared for future applications.

5. Microsoft Foundation Class Library and
Windows Programming

When the general guidelines of the CS31CONFIG was defined, simplicity at the user level
was stressed as an important feature. As Microsoft Windows has become a popular and
widely used operating system, the choice of developing a Windows application was quite
natural, especially considering the well known graphic end user interface standard, stated by
the Windows norm. Hence, an operator familiar with other Windows applications, for
example Excel or Word, immediately feels comfortable when working in the CS31CONFIG
graphic environment, minimising the cost of introductory training. The CS31 is a constantly
expanding system that will probably exist for a long time. Hence, its supporting software must
be easy to update, and therefore, an object oriented technique was adopted. As a development
tool, the Microsoft Visual C++ version 1.51 was chosen. The language C++ is a powerful and
widely used programming language suitable for applications of this kind. Also, the main
program under development by an external society is written in C++, imposing a significant
constraint on the choice.

5.1 Microsoft Foundation Class Library - Overview

The Microsoft Foundation Class Library (MFC) [6], is a group of C++ classes enabling
programmers to write applications for the Windows operating system. The class library offers
a complete application framework, which defines an architecture for integrating a graphic user
interface of an application for Windows, with the rest of the application. The main purpose of
the MFC is to reduce the effort required to design and implement applications for Windows.
Since the MFC is an object oriented class library, it is easily reused. Instead of editing
application framework source code directly, new and specialised classes are derived from
those in the library. The derived classes inherit all the behaviour and functionality of their
base classes. In addition, programmers often extend their derived classes by adding new
member variables and functions, sometimes modifying the existing behaviour by overriding
inherited virtual member functions. Figure 5.1 shows a part of the MFC class hierarchy.

10

CObJect

[]
MFC classes - I CWInApp !a ICDocTemplate !E | CWnd E

| CFrameWnd li CView

CMDlFramaw | CFormView |E

Figure 5.1 Class hierarchy. By convention, class names begin with an uppercase "C".

=

CDlalog M

N

At run time, a MFC application is a group of co-operating objects, communicating by sending
and receiving Windows messages, and by calling each other’s public member functions.

5.2 Key Concepts

At the heart of an application for Windows is the application object, typically belonging to a
class derived from the base class CWinApp. The application object manages a list of
documents and dispatches commands to other objects in the program. Briefly, it co-ordinates
the activity of the application. The unit of data that the user works with is the document,
derived from class CDocument. The document is responsible for maintaining, loading and
storing its own data. The user interacts with a document through a view on the document,
derived from CView. A view is visualised by an embedded window in the client area, i.e. the
interior of a frame window. It displays the documents data or a part of it, and takes mouse
and keyboard input, which it translates into selection and editing actions. Figure 5.2 shows the
important relationship between the document and its view. Furthermore, an application can be
of type Single Document Interface (SDI), or Multiple Document Interface (MDI). A SDI
application allows only one open document at a time, while a MDI application like
CS31CONFIG allows several open documents simultaneously. Objects in the user interface,
such as menus and buttons, send commands to the documents, views, and other objects in the
application. Those objects carry out the commands.

11

Part of document currently visible
Document

Figure 5.2 Document and view.

Document Templates

To manage the complex process of creating documents with their associated views and frame
windows, the application object uses a document template class, CDocTemplate, which is an
abstract base class that defines the basic functionality for document templates. One or many
document templates are created in the implementation of the application object. A document
template defines the relationship between a document class, a view class and a frame window
class. An application has one document template for each type of document it supports.
CS31CONFIG supports only one type of document and has consequently one document
template. Each document template is responsible for creating and managing all the documents
of its type.

Communication Flow

The hard core of an application is the application object that manages all other objects
belonging to the application. It keeps a list of document templates, used for the creation of a
document. The document template is responsible for creating and managing the application’s
documents. In addition, it links the document with one or several views and frame windows.
The document stores the data, and its attached view visualises it. The view is own by a parent
window, i.e. a frame window. These object communicate intensively during runtime, and
figure 5.3 shows the relationship between them.

12

Application Object

User interaction

Document Template |

Document

Py

il V) (i e g e o e]|

Figure 5.3 The communication flow between different objects.

5.3 Different Windows

Frame Windows

Each application has one and only one main frame window that encapsulates the rest of the
application’s windows. Usually, it bears the name of the application in its caption (c.f.
CS31CONFIG). For a SDI application, there is only one frame window, derived from class
CFrameWnd. This window is both the main frame window, and the frame window that
encloses the view. For a MDI application, the main frame window is derived from class
CMDIFrameWnd, and it allows several documents to be opened simultaneously, and contains
consequently several frame windows. As a part of the default implementation of frame
windows, a frame window keeps track of a currently active view.

Child Windows

A child window is a window that is confined to the client area of its parent window. For
example, the view is encapsulated by its parent, a frame window, which in turn is
encapsulated by the main frame. Every child window must have a parent window. The parent
window relinquishes a portion of its client area to the child windows, and the child receives
all input from this area. The windows class does not have to be the same for each of the child
windows of a parent window. This means that an application can fill a parent window with
child windows that look differently and carry out different tasks.

13

5.4 Messages and Message Maps

All applications written for Windows are "message driven". A keystroke, mouse click or other
event, cause a Windows message to some part of the application that can respond to the event.
There are three kinds of Windows messages: Commands, Standard Windows Messages and
Control Notifications.

Commands

A Command is an instruction to an application to perform a certain action. Unlike a function
call, a Command is a Windows message that is routed to various command target objects,
each of them has an opportunity to carry out the associated instruction. Commands can be sent
to frame windows, documents, views, the application itself, and other kinds of objects. These
objects are referred to as command targets. Menus, items, buttons, and similar elements of the
user interface can cause Windows to generate Commands. These elements are bound to a
Command and later recognised by assigning them an ID.

Message Maps

How does a command target know it can handle a Command, and how does any object know
it can handle a message? The answer is the message map of the object’s class. Each command
target object, derived from class CCmdTarget, has a message map. Message maps are tables
that connect Commands or other Windows messages, with a certain function, a message
handler, that can respond to the Command. Strictly speaking, a message handler is a member
function with no argument, returning void. When a command target receives a message, the
object’s message map is used to determine which handler function to call for the message.

Command Routing

Commands are routed through a standard sequence of command target objects on the
assumption that one of them has a handler for the Command. First, the main frame receives
the Command. In case of an MDI application, it gives the currently active MDI child window
a chance to handle the Command. Because of the standard routing, this frame window now
gives its view a chance to handle the Command before checking its own message map. Unlike
the frame, the view checks its own message map first and, finding no handler, the view routes
the Command to its associated document which checks its message map. If there does not
exist a handler in the document, the Command would return to the view and then to the frame
window. Finally, the Command would be routed back to the main MDI frame and then to the
application object - the ultimate destination of unhandled Commands.

14

Standard Window Messages and Control Notifications

Standard Window Messages and Control Notifications are sent only to windows and are never
routed like Commands from one command target to another. Standard Window Messages are
sent to frame windows, dialogue boxes, views and other kinds of windows. Control
Notifications are sent from controls, i.e. child windows to their parent windows. For example,
when closing an application, a Standard Window Message is sent to the application’s main
frame window, terminating the application and closing the window. All windows have a
message map of its own (as do command target objects).

5.5 Applications under Windows

Instances

As a multitasking system, Windows lets several copies of an application, i.e. instances, run at
the same time. In order to keep track of all application objects, Windows assigns a unique ID,
an instance handle, to each copy of a running application. Multiple instances of the same
application use the same code segment, but each has its own data segment. Windows uses the
instance handle to identify the data segment that correspond to a particular instance of an
application. When the application begins, Windows passes an instance handle to the
corresponding application class.

Creation of an Application

The application object provides overridden member functions for initialisation, execution and
termination of the application. Each application using the MFC can only contain one object
derived from class CWinApp. This object is already available when Windows calls the
WinMain function, a main program co-ordinating the Windows activity, which is done at the
initial entry point for a Windows application, for example when a user runs an application.
Each time a new instance of an application is demanded, WinMain calls the overridden virtual
function CWinApp::InitInstance. The InitInstance creates one or many document templates,
depending on the implementation, that in turn create the documents, views and frame
windows. After fulfilling the creation phase, Windows calls the Onldle function, entering the
main Windows loop, waiting for messages. To terminate an application, Windows calls the
ExitInstance, which terminates the application and reallocates used memory. As with
InitInstance, both Onldle and Exitlnstance are virtual member functions of class CWinApp,
and can be overridden to perform application specific tasks. For example, when Windows
goes on idle, an application can perform application specific background tasks, non crucial to
the real time processing.

15

5.6 Resources

Resources are data objects that are separated from the main body of code in a Windows
application. Because of this, resources can be built independently of the rest of the
development process. This not only makes a project with a complex user interface easier to
manage, but it also renders the application easier to translate into other languages. Resources
are often used to describe the contents and the appearance of the user interface objects such as
menus and dialogue boxes. A resource file can be created by means of AppStudio, a Visual
C++ integrated graphics editor. Another possibility is offered using a common line editor. The
term resource template refers to the variables in the resource file determining the state of a
resource, for example height and width of a dialogue box, content of a string table or an image
of an icon. To most efficiently manage available memory, Windows normally leaves
resources on disk until they are needed, for example when the operator invokes a certain
dialogue box. Once loaded, a resource is usually placed in the discardable section of the
memory, so that memory can be liberated for other tasks if needed. The following predefined
resource types are supported by built-in Windows library routines, and are used in
CS31CONFIG.

Menus

Menus are used to issue commands.

Icons

Icons are used to represent minimised windows.

Bitmaps

A bitmap is a graphical image stored in a binary format; the basic element of the bitmap is the
pixel. In CS31CONFIG, a bitmap is used to define the appearance of the custom command
buttons in the toolbar.

Figure 5.4 The CS31CONFIG toolbar.

16

Cursor

The cursor shows the position of the mouse or other pointing device on the screen. Programs
use different cursors to show a change in the state of current action. For example, when
translating the configuration parameters, CS31CONFIG displays an hourglass indicating that
the application is busy.

String Tables

A string table is a resource type permitting to store text strings that will be displayed as part of
the user interface. Hence, instead of writing the contents of a string in the source code, for
example as an argument of the function printf(...) [4], the string is placed in the resource file.
When a certain string is needed, it is simply loaded, for instance by means of the member
function CString::LoadString(IDS_STRING) [5], which initialises a CString object with the
string in the string table identified by IDS_STRING. This simplifies editing the program
because all text messages are centralised in the resource file. It is extremely important and
time saving if the application is meant for an international market which was clearly a part of
the CS31CONFIG specification. By gathering all language dependant messages in the
resource file, local ABB societies can easily adapt CS31CONFIG to their native languages.

Dialogue Boxes

A dialogue box is a window, usually a pop-up window (i.e. belonging to the main frame
window), or a child window confined to the client area of its parent window (for example the
view). Dialogue boxes are used to gather and present user information and represent a two-
way communication,

17

6. Implementation

6.1 General Structure of CS31CONFIG

CS31CONFIG was designed and programmed exploiting the powerful features of the MFC.
Hence, it adopts an object oriented approach with a structure and disposition described in the
previous chapter. Each CS31 I/O unit is described by its own class, derived from class
CDialog. These contains unit and channel specific member variables, assigned to temporarily
store the actual settings of the concerned subset of configuration parameters. After the user
has entered the actual setting, the dialogue member variables are copied into the documents
member variables, where they are stored during execution. The dialogue classes also act as an
interface between the user and the document. Configured units are displayed in the view,
which contains a list box of units in the network.

MFC classes -

—-
[]
=== .
I |
| CDocTemplate |§ CWnd
——
[1
CFrameWnd CView g | CDlalog b
T %j.

CMDIFrameWnd CFormView i

| CConligFrm h CConfigiormv 1 |diCC°n"v I'—I.h | CConfigDoc E | CUnit Iﬂ | CCh:urmc!h

Figure 6.1 Class hierarchy. CS31CONFIG contains 18 dialogue classes.

CS31CONFIG
classes

=~

6.2 The Document Class : CConfigDoc

The document is responsible for storing the actual setting of the configuration parameters. In
MFC, documents are based on the class CDocument. Thus, the CS31CONFIG document
class, labelled CConfigDoc, is a subclass derived from CDocument. It contains one member
variable of class CObList, a collection template class provided by the MFC. An object of class
CObList can be considered as a doubly linked list, where each element is an object of a class
derived from the base class CObject. The CObList of CS31CONFIG contains up to 31 objects
of class CUnit (CS31CONFIG specific), derived from CObject. CUnit is the class describing
unit specific information, and contains in turn embedded objects of class CChannel, also
derived from CObject, describing channel specific information.

18

CDocument

CObList

CChannel |} CChannel ||} CChannel
CChannel || CChannel CChannel

CChannel || CChannel ||| CChannel

Figure 6.2 The document contains an object of class CObList.

All unit and channel specific configurable parameters, i.e. the document’s data, correspond to
protected member variables. In other terms, they are inaccessible outside the class to which
they belong (CUnit and CChannel respectively). The main reason is to assure that "...a minor
change of the problem should only impose changes in one module, or at most, a limited
number of modules..." as stated by [3]. To access member variables of class
CUnit/CChannel, or rather copies of them, one must though rely on the public member
functions declared in tables 6.1 and 6.2.

class CUnit : public CObject {
//Attributes
protected:
int m_address;
BOOL m_highbyte;
int m_category;
int m_NoOfChannels;
CChannel m_channel[31];
CString m_UserComment;
//Operations
public:
void AddUnitData(...);
void GetUnitData(...);
CString TranslateUnit2DBase();
CString TranslateUnit2MAIL(); }

Table 6.1 Declaration of class CUnit. By convention, member variable names begin with a lowercase "m_".

19

class CChannel : public CObject {
//Attributes
protected:
int m_config: //[i,o0,io]
BOOL m_binary;
int m_range;
int m_delay;
BOOL m_idet, m_odet;
int m_NoOfSuppl;
//Operations
public:
void AddChannelData(...);
void GetChannelData(...);
CString TranslateChannel2DBase();
CString TranslateChannel2MAIL(); }

Table 6.2 Declaration of class CChannel.

6.3 The View Class : CConfigFormVw

The document object defines, stores, and manages the application’s data. However, all user
interaction with the document is handled through a view object. In MFC, a view is an object
derived from CView (or from another CView derived class such as CFormView). The view
displays:the document, and acts as an intermediary between the user and the document for
input, selection and editing in the document. A given view is always associated with only one
document. Each CS31CONFIG document uses only one view class. On the contrary, some
applications can use several view classes to visualise the documents data in different ways.
The views, each framed and owned by its own frame window, occupy the client area in the
application’s main frame window. These frame windows are children of the main frame.

Main Frame Window

Toolbar

Document Dialogbar

> View Frame Window

Statusbar

Figure 6.3 Exchange of data between the document and its view.

20

If the view contains controls (such as list boxes, buttons etc.) which is the case of
CS31CONFIG, the application’s view class has to be derived from CFormView instead of
CView. CConfigFormVw keeps a list box with configured units in the network. The window
representing the view can be iconised to provide an easier overview when working with
multiple documents.

ILOT 4.
ILOT_5.CNF
ILOT_6.CNI

Address Model Comment

[0 ICSEOBAG___ Coplew Cowamt
2 ICS1 08 D1 Entiée Binaire
3 ICFC 16 L1 Surveillance ABB Robot

23 ICS0 08 R1 Actionneur

24 ICSM 06 A6 Capteur Pression

ILOT_1.CNF ILOT_2.CNF ILOT_3.CNF

Figure 6.4 CS31CONFIG is a MDI application and can manage several documents each
with an attached view simultaneously.

In order to create objects describing I/O units, CConfigFormVw uses an embedded object of
class CDialogBar, which encapsulates two combo boxes, cf. figure 6.5. By selecting a CS31
I/O unit in one of the combo boxes, CS31CONFIG invokes a corresponding dialogue box,
reflecting the choice. Upon user confirmation, the unit is visualised in the list box described
above, which represents the system. Hence, the view renders a part of the document visible
namely address, type of unit, as well as a user comment. All other information is filtered to
simplify the system overview. By simply selecting desired units in the view, CS31CONFIG
renders all parameters regarding the selected unit visible. This is handled via an object derived
from class CDialog.

Binary units:

Figure 6.5 Dialogue bar with embedded combo boxes.

21

6.4 CS31CONFIG Dialogue Classes

CS31CONFIG uses CDialog derived classes to describe the CS31 I/O units. Each unit is
assigned its own class, with its own set of member variables corresponding to the hardware.
To render the configurable parameters visible, each unit is also associated with a dialogue
resource template. These were created using the graphical editor AppStudio, simplifying the
design of the user interface. By selecting I/O units from the dialogue bar in the view,
CS31CONFIG creates objects of the associated class, and invokes the corresponding dialogue
box. Thanks to the simplicity of the graphical user interface, the user can rapidly enter the
actual settings. Upon confirming by clicking «OK», the configuration parameters are passed
to the document, where they are stored. Thereafter, the view is updated to reflect the changes,
i.e. insertion of an element in the list box. Once a unit has been configured, it can be retrieved
by selection from the same list box in the view. Upon selection, the corresponding unit is
traced in the documents object of class CObList. The stored parameters are used to reinitialise
the member variables of the object of the dialogue class, which is created. Thereafter, the
dialogue box is invoked as in the initial configuration phase, and the user can execute
changes. Serious effort is spent to render the configuration process fail-safe. Therefore, each
user provided dialogue member variable is validated before storing. Other routines prevent the
user from configuring units at the same address, as well as exceeding the limit 31 units on the
CS31 system bus.

ICS1 08 D1

Figure 6.6 A dialogue box presents information and allows the user to rapidly enter
configuration parameters.

22

6.5 Transmission

Data processing and transmission are handled by a message handler of class CConfigDoc.
Until now, the user provided settings of the configuration parameters are stored in the CUnit
and CChannel member variables, as described in the beginning of this chapter. These have to
be processed and translated into either MAIL commands, or the CS31 database. This choice is
provided by the user when entering the actual target PLC. The transmission message handler
then sets up a communication link by means of library routines.

MAIL

Currently existing CS31 PLCs are prepared to receive ASCII characters via a serial port
communication. The syntax of the command MAIL is defined by figure 6.7

Job cod

o— <CR> E" Status E

L
T Address : Address of unit

Job code : Identifier of job

d2 E T ® d1-d8 : databytes of the job

Status : PLC acknowledgement

==
==

d8

L

Figure 6.7 The CS31 command MAIL

CS31CONFIG uses one unit and six channel related MAILs, identified by their unique job
code cf. table 6.3, to configure the CS31 system. Initially, a unit specific MAIL affecting all
channels is always transmitted, resetting all channel specific configuration parameters to their
default values. Thereafter, each particular channel is adjusted to the desired setting by means
of channel specific MAILs.

23

Command Job code Level

Resetting configuration parameters to default setting 233 Unit

Activating cut wire detection of an input 224 Channel
Activating cut wire detection of an output 225 Channel
Configuration of a channel as an input 162 Channel
Setting the input delay of a channel 166 Channel
Setting analogue input measure range 170 Channel
Setting analogue output measure range 171 Channel

Table 6.3 MAILs used by CS31CONFIG

Table 6.3 shows the seven MAILs representing a complete base for configuring any CS31
system, i.e. all possible combinations of parameters can be attained. To assure correct
transmission, each character received by a CS31 PLC is echoed, i.e. retransmitted to the serial
port, where its read by CS31CONFIG. If the retransmitted character differs from the character
sent, transmission is interrupted, and CS31CONFIG notifies the operator. In addition, after
receiving a complete MAIL, the PLC sends a status response, indicating if the command
could be executed or not, and in the latter case the source of potential errors. This tightly links
the configuration procedure with another planned tool in the CS31 programming software; the
diagnostic module. In addition to the seven MAIL commands listed above, the command
MAIL also encapsulates some of the commands for diagnostic functions, such as interrogation
of configuration parameters, and acknowledging errors on remote modules. This implies an
intensive information flow between the configuration/diagnostic modules, since they partly
describe different angles of the same process. The ambition of co-operating modules falls
outside the scope of this master thesis, and will have to be defined and implemented by ABB
and the external software developer. However, CS31CONFIG is prepared to import and
export information, and can be modified to support interaction with a diagnostic application.

CS31 Database

Since the database does not represent an explicit command, but purely data, the actual process
of configuration is delegated to the PLC itself. The role of the CS31CONFIG is rather to act
as a backup tool, launching a configuration process, supplying the PLC with the actual
settings of the configuration parameters. Thus, this renders the configuration process hardware
based, as opposed to today’s more software oriented version, which demands profound
knowledge of the PC33 or the MAIL syntax. A desired effect is to introduce more self
supported, intelligent systems. From the software point of view, this simplifies the
transmission phase, keeping in mind that the PLC will be responsible for the execution and
verification of the command, transforming the role of CS31CONFIG into an intelligent
graphic user interface.

The value of one byte in the database is transmitted as two ASCII characters, representing the
hexadecimal value of the byte, i.e. ranging between 00 - FF. The future PLC will compress
these two characters into one byte, reducing the size of the database by two. As with the
MAIL command, the CS31CONFIG correlates the echoed ASCII characters (feature

24

implemented on future CS31 PLCs), to assure a correct transmission. In order to fully exploit
the hardware oriented configuration process, diagnostic interaction should follow the same
concept, i.e. the responsibility is delegated to the PLC. The diagnostic tool is in parallel with
CS31CONFIG, a co-ordinator of the activity, and hopefully, the two modules running in close
co-operation, will fulfil an important part of a new generation PLCs, more sensitive and better
adapted to real world situations.

25

7. Summary

This master thesis has modelled and implemented a configuration tool, CS31CONFIG, for the
ABB Procontic CS31 automation system. The configuration process serves to set the unit and
channel associated configuration parameters at appropriate values. Depending on the actual
PLC, CS31CONFIG will either use the existing command MAIL, or transmit a database
containing all configuration information, to a CS31 PLC. Hence, CS31CONFIG is both
compatible with existing PLCs, as well as prepared for a future generation of PLCs. The
structure of the database was defined during this master thesis.

In the definition of the database, there were several constraints to consider, especially
concerning the compactness, and the simplicity of the decoding. In addition, the database had
to adopt an expandable structure to stay compatible with planned, future configuration
parameters of the CS31. Naturally, the complexity of the problem increased as the constraints
grew more significant, particularly since the specification concerning future features were
quite vague.

The fact that the CS31 is an expanding system imposed a major concern regarding the
implementation of the CS31CONFIG. Since CS31 is a product that will exist for a long time,
its supporting software must be easy to update. This was solved by adopting an object
oriented technique, and the programming was carried out in C++.

The part of the specification concerning the simplicity of the user interface was easily solved
exploiting the powerful MFC, which in parallel with the graphic editor AppStudio, made the
design process quite fast. The result is very logic and user friendly, rendering introductory
training almost unnecessary.

As an independent tool, the CS31CONFIG fulfils its part of the specification, and runs as
expected. However, regarding the co-operation with a diagnostic tool, a part of the initial
specification that could not be attained, as well as the integration with the main program, there
remain quite a few things to define and to implement. It concerns especially the information
flow between the two tools, and the main program, which appears to be rather complex. Also,
ABB must more clearly define the specification of the diagnostic tool, in order to understand
what impact it will have on the CS31CONFIG.

26

Level

System

Unit

Significance of Bits in the CS31

Database
Byte Bit(s)
1 1-8
2 1-8
1 1-8
2 1-3
4-8
3 1-6
7
8
4 1-8

Value#* Configuration Parameter
[FF] Main separator
[00-1F:0-31] Number of units
[FE] Unit separator

[00 : Binary Input] Unit functionality
[01 : Analogue Input]

[02 : Binary Output]

[03 : Analogue Output]

[04 : Binary Input/Output]

[05 : Analogue Input/Output]

Not used

[00-3F:0-63] Address

[00 : Low Byte] Register

[40 : High Byte]

Reserved

[00 - FC: 0 - 252] Number of channels

27

Level Byte

Channel 1

2

5-256

Bit(s)

1-8

Value* Configuration Parameter

[FD] Channel separator

[00 : Analogue channel] Channel type
[01 : Binary channel]

[00 : Input channel off] Functionality
[02 : Input channel on]

[00 : Output channel off] Functionality
[04 : Output channel on]

[00 : Byte 3 off]

[08 : Byte 3 on]

[00 : Byte 4 off]

[10 : Byte 4 on]

[00 : Binary channel] Analogue measure range
[20:0-10V]

[40: £ 10 V]

[60 : 0 - 20 mA]

[80 : + 20 mA]

[AO: 4-20mA]

[CO : Other range]

[00-3E:0-62] Input delay

[00 : Disabled] Input cut wire detection
[40 : Enabled]

[00 : Disabled] Output cut wire detection
[80 : Enabled]

[01-FC:1-252] Number of supplementary bytes

[00 - FC] Supplementary information
(format not defined)

*Syntax: [Identifier : Interpretation]. Identifier is the hexadecimal value to superposition a
byte whilst interpretation is the corresponding physical value. When interpretation is omitted,
the parameter does not have a physical correspondence. Remark: a byte is considered to be

oriented as [87654321].

28

References

[1] ABB Control, ABB Procontic CS31, Edition 02, 1995.

[2] ABB Schalt- und Steuerungstechnik GmbH, 907 PC 33. Programming and Test Software.
Operating Manual GATS 1339 31 R2001, Edition 08, 1992.

[3] Holm, Per, Objektorienterad programmering och Simula, 21d Edition, KF-SIGMA, 1992.
[4] Kernigham, B.W., & Ritchie, D.M., Le langage C, Prentice Hall, 1992.
[5] Lebatard, Alain, Le grand livre de Visual C++ 1.5, Editions Micro Application, 1994,

[6] Microsoft Press, Microsoft Visual C++ version 1.5 documentation, Microsoft Corporation,
1992,

29

