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Introduction

This thesis deals with the stability analysis of control systems with static
nonlinearities and uncertainties using the method of Integral Quadratic Con-
straints (IQC’s). The nominal system is supposed to be linear, time-invariant
and stable. The perturbations are considered to be causal and bounded.

The motivation for this work originates from the fact that static non-
linearities are very commonly encountered in control systems. Amplifiers,
actuators, sensors, motors, valves and electrical relays usually have char-
acteristics that can be modeled by nonlinear functions such as saturations,
relays, dead-zones, friction models. Consider for example the system shown
in Figure 1, which could describe the system of a double tank with a PID
controller and an anti-windup filter W. The saturation would in this case
describe the characteristic function of a pump. Such systems can easily be
transformed to the feedback system shown in Figure 2, to which the theory
applies. In this system, A is a bounded nonlinearity, or in the general case
a diagonal matrix whose elements are bounded nonlinearities or uncertainties.

The term integral quadratic constraint is used for an inequality describing
constraints on a perturbation or an external signal. The constraint has the
form of a weighted quadratic frequency integral.

IQC’s have been present in the control literature for more than thirty
years. Until the 60’s the stability analysis of single-input/single-output sys-
tems like the one shown in Figure 0.2 was based on graphical criteria, such
as the Popov criterion and the circle criterion, which often give conservative
stability conditions. Later in the 60’s, Zames and Falb introduced a more
general class of multipliers which includes the above mentioned criteria. In
the 70’s, IQC’s were used, and named so, by Yacubovich, to treat the stabil-
ity problem for systems with more advanced nonlinearities. The usefulness
of the above approaches was limited by the lack of appropriate software. The
recent development of interior point methods for solving systems of Linear
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Figure 0.1: Control system with saturation and PID controller with anti-
windup

Figure 0.2: Feedback system

Matriz Inequalities (LMI’s) has strongly improved the possibility to analyze
complex systems using combinations of different IQC’s. See [8], [10] and the
references therein for more details.

The work of this thesis is based on the results given in [8] and [10].
A review of these results as well as some well known IQC’s are given and
a recently proved IQC concerning a friction model is considered. Particu-
lar emphasis is given on the formulation of the stability criteria in terms of
LMI’s. This is proved to be very useful, as the representation of IQC’s in an
LMI form allows recycling in other problems where the same type of nonlin-
earities appear.

More specifically, the thesis is structured as follows.

The first two chapters give some mathematical preliminaries and a short



review of the most essential results on the use of IQC’s for stability analysis
of feedback systems with static nonlinearities.

In Chapter 3 the IQC’s concerning sector restricted nonlinearities, slope
restricted nonlinearities and a friction model are presented. We also discuss
a number of nonlinearities which are often found in practical applications
and fall within the framework of the already studied IQC’s.

Chapter 4 concentrates on the LMI formulation of the results presented
in the previous chapters. The results given in [7] are first reviewed and then
they are applied to the special case of slope restricted nonlinearities. Em-
phasis is given on the choice of multipliers for this type of nonlinearities and
a method for selecting the appropriate ones is proposed.

In Chapter 5 the above theory is applied to three different examples. The
two first are just theoretical. However, they illustrate very clearly the way
that our method works, as well as the efficiency of the developed software.
Example 3 is particularly interesting, as it applies our results to a practical
system including a regulator with anti-windup. The case of a saturation is
studied first. The results are then extended to the case of the simultane-
ous presence of a multiplicative uncertainty in the system’s dynamics. It
becomes clear how easily our method allows extension of the results to the
case of several nonlinearities and uncertainties.

Two appendices are given in the end of the report. Appendix A includes
the proofs of the theorems presented in Chapter 3. In Appendix B the Matlab
programs that have been used for the necessary computations are listed.



Chapter 1

Notation and Mathematical
Preliminaries

In this chapter the notation which will be used throughout the thesis, as well
as some function spaces and mathematical results are given.

e R denotes the set of real numbers and R™*™ the set of m X n matrices
with elements in R.

e MT denotes the transpose of a matrix.
o M* is the Hermitian conjugate of a complex matrix.

e L7*(—o00,00) denotes the space of square integrable functions (—oo, c0)
— R™. For a function f € L}*(—o0,00) we define the Ly-norm as

Ifllz = (ff:o fT(t)f(t)dt)l/z. L7'[0, 00) can be viewed as a subspace of
L} (—o00,00) with f(t) =0, for ¢t < 0. The Ly-norm of a function

f in L3[0, 00) is defined as || flla = ( [7° fT(2)F(t)dt)"".

e The Fourier transform of a signal u(t) € Ly(—o00, 00) is defined as
w(jw) = F{u(t)} = / u(t)e ' dt
o Parseval’s Theorem : If u,v € L7*(—00, 00), then

/ uT (t)v(t)dt = — / *(jw)d(jw)dw

e Introduce also the truncation operator Pr, which leaves a function
unchanged on the interval [0,T] and gives the value zero on [T, co].
Causality of an operator F means that PrF = PpF Pr.
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An operator H : LT[0, 00) — LJ*(—00, 00) is said to be bounded if the
gain

Hv
|| = sup 1Evl2
very ||v]l2

is finite. A bounded causal operator maps L3[0, oo] into itself.

Let RLo, be the set of proper (bounded at infinity) rational functions
with real coeflicients and no poles on the imaginary axis. Any function
H € RL, has a (not unique) realization H(s) = C(sI — A)"'B + D,
where det(A — jwl) #0, VYwe€R.

The subset of RL, consisting of functions without poles in the closed
right half plane is denoted RH,,.

The set of m xn matrices with elements in RL,, (RH,,) will be denoted
RLZ*™ (RHZ*").

RL; denotes the set of strictly proper rational functions with real co-
efficients and no poles on the imaginary axis. Any H € RL; has a
realization H(s) = C(sI — A)™'B, where det(A —jwI) #0, Vwe R.
Any H € RL; can be uniquely written as H = H. + H,., where H. =
C:(sI — A.)™'B. corresponds to a causal operator, ie. eig(4.) < 0,
and Hy. = Cye(8I — Aac) ! B, corresponds to an anticausal operator,
i.e. eig(Aq) > 0. The corresponding impulse response is defined as
follows:
C.ettB,, t>0
ht) = { Cace?**Bye, t<0.

H € RL; can be viewed as an operator Ly[0,00) —> Lj(—o00,00),
defined as follows: If v € Ly[0, 00), then H maps v into

(hxv)(t) = /°° h(t)v(t — m)dr = /—°° v(t)h(t — 7)dr

—o00 00

The Fourier transform of the above quantity is given as follows
F{h xv}(jw) = F{h}jw)F{v}(jw)
Let H € RL;. The L; norm of its impulse response is defined as

1Al =/ |h(t)|dt=/ |CettB|dt

o ©0

0o 0
— / ICce.Acth|dt + / |CaceAactBac|dt'

0 —00



Chapter 2

Stability Analysis based on
IQC’s

We will in this chapter review the most essential results on how
to use Integral Quadratic Constraints (IQC:s) for stability anal-
ysis of feedback systems as the one shown in Figure 2.1, see [10]
and [8] for more details.

Consider the feedback system shown in Figure 2.1. It is assumed that G
is a stable linear causal time-invariant operator with transfer function G(s)
in RH7.*™. The perturbation A is a bounded causal operator from L7*[0, co)
to L7*[0, 00).

We assume that the feedback system in Figure 2.1 satisfies the following
well-posedness condition

Definition 2.1 The feedback system in Figure 2.1 is satd to be well posed if
for every T > 0, there exists a causal inverse of the operator I — PrGA.

We will be concerned with input/output stability in the following sense:

> G(s)

Figure 2.1: Feedback system



Definition 2.2 The system of Figure 2.1 is input/output stable if it is well
posed and I — GA has a bounded causal inverse, i.e. if there exists a C > 0,

such that ||(I — GA)™!|| < C.

The term IQC is defined as follows:

Definition 2.3 Suppose Il € RHZ ™, A is said to satisfy the IQC defined
by IL, of

> f»(jw)]* : [;,(jw)]
g II iy dw >0
[ [ae] e [(5)] >
for any 9,4 being the Fourier transforms of v,u € L3[0,00) with u(t) =
A(v)(t).
A general stability theorem in terms of IQC’s is stated below [10].

Theorem 2.1 Let G be a linear causal operator with transfer function G(s) €
RHZ*™ and let A be a bounded causal operator on LT[0, 00). Assume that

(i) for any T € [0,1], the interconnection of G and TA is well-posed,
(i) for any T € [0,1], the IQC defined by 11 is satisfied by TA,

(iii) there ezists € > 0 such that
[G(}“’)] (jw) [G(l{“’)] < —el, Ywe [0,00]. (2.1)

Then the feedback system in Figure 2.1 is input/output stable.

The basic idea for using these results in practice is as follows. First de-
fine a description of the perturbation A in terms of IQC’s. The set of all
IT functions which define valid IQC’s for A is always convex. The stability
analysis then consists of a search for a Il in this set such that (2.1) is satisfied.
Normally we only know, or use, a subset of the II—functions that describe A.

The following two properties are useful when defining an IQC description
of a block diagonal perturbation A. Property 2 is particularly useful, as it
shows that the description with IQC’s easily allows extension of the stability
analysis to the case of several uncertain or nonlinear blocks.

Property 1 If A satisfies the IQC’s defined by II,,...,II,, then A also
satisfies the IQC defined by II = z,II; + --- + «,II,, where z,,...,z, are
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nonnegative numbers. The more IQC’s that can be verified for A, the more
powerful analysis can be done.

Property 2 Assume that A has the block-diagonal structure A = diag
{Ay,...,A,} and that A; satisfies the IQC defined by II;. Then A satisfies
the IQC defined by II = daug{Il;,...,II,}, where the operation daug is
defined below. For simplicity we give the result for the case n = 2, but this
can be easily extended for the case

g I -
I, = [Hfz II.-J’ i=1,2

where the block structures are consistent with the size of A; and A,, then

Hn 0 le 0
0 H21 0 H22

o, 0 MLz O
0 I, 0 Iy

da,ug{Hl, Hz} =

11




Chapter 3

IQC’s for Different Types of
Nonlinearities

This chapter presents a number of IQC’s that describe nonlin-
earities which often appear in models of uncertain systems. More
specifically, we give results concerning sector nonlinearities, slope
restricted nonlinearities and a simple friction model. Fzamples
of practical systems where the above nonlinearities can be found
are discussed in the end of the chapter.

3.1 Memoryless Nonlinearity in a Sector

In this section we will discuss memoryless nonlinearities in the sector|a, 8],
which is defined as follows.

Definition 3.1 sector[a, 3], a < B, denotes the class of memoryless nonlin-
earities ¢ which satisfy the following conditions

¢(0,t)=0, V teR*
av? <p(v,tw<pv’, V veR, teR'

This definition is illustrated in Figure 3.1.
It is easy to verify the following two propositions, which define IQC’s that
describe sector bounded nonlinearities.

Proposition 3.1 Consider a nonlinearity ¢ : R x Rt — R which belongs to
sector[0,00). Then ¢ satisfies the IQC defined by

I(jw) = [2 ﬂ

12
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Figure 3.1: Nonlinearity in sector|a, 8]

The result of the above proposition can be generalized as it is shown in
the following proposition, which gives the IQC corresponding to the circle
criterion [15].

Proposition 3.2 Consider a nonlinearity ¢ : R x Rt — R which belongs to
sector{a, B]. Then ¢ satisfies the IQC defined by

fio) = [ 30 4/

The proof of the above proposition is based on the fact that the nonlinearity
¢ € sector[a, 3] can be transformed to a nonlinearity ¢ € sector[0, o), for
which Proposition 3.1 can be used. The transformation is achieved with the
following two transformation matrices

 JE— 1 0
= B—a =

It is easy to check that
(jw) = (8 — o) T3 T W(jw) Ty Ty

where II(jw) is as in Proposition 3.1.

13
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Figure 3.2: Nonlinearity with slope restricted in the sector [a, §]

3.2 Slope Restricted Nonlinearities

This section deals with memoryless nonlinearities with slope in the interval
[a, B]. The class of these nonlinearities is defined as follows.

Definition 3.2 slope|a, 3] denotes the class of memoryless nonlinearities ¢
which have the following properties:

(i) (0)=0

(1) there is a constant k > 0 such that |p(z)| < k|z|,Vz
(111) ¢ is odd

(tv) agﬁ(ﬂ)ﬂ”—zlgﬁ, Vo, # ¢,

] —T2

where o, B are constants with —oo < a < B < oo.

The above definition is illustrated in Figure 3.2. At every point, a tangent
of ¢(v) lies in the sector [, A].

The following theorem and corollary which define IQC’s that describe
slope restricted nonlinearities have been proven in [16]. The proofs are given
in Appendix A.

Theorem 3.1 Suppose that ¢ is a real-valued function on (-0o,00) with the
following properties:

(i) ¢(0)=0

(i) ¢ is monotone nondecreasing, i.e. (1 — x3)[p(z1) — (z2)] >0
(iii) there is a constant k> 0 such that |p(z)| < k|z|, Ve

(tv) ¢ is odd.

14



Then ¢ satisfies the IQC defined by

. 0 d+ H(jw
) = [d rGe) o )]

where H € RLy, i.e. H(jw) = c& (jwl — Age) bac + cF (jwI — A.)~b,, and
the Ly-norm of its impulse response is no larger than d, i.e.

oo 0 oo
1Al :/ lh(t)ldt=/ ICZ,_.eA"‘tbacldt-}-/ | T eett,
- 0

o0 -0

dt <d

and d is a nonnegative constant.

In the above theorem, the indices ¢ and ac denote causal and anti-causal
components, respectively.

Remark If ¢ is not odd, the additional assumption that h(t) >0, Vte R
1S necessary.

The results of Theorem 3.1 can be generalized as it is shown in the following
Corollary.

Corollary 3.1 (Slope restricted nonlinearities) Suppose that, in addition to
properties (1) and (iv) of Theorem 8.1, ¢ satisfies also the following condition

asf(_ml)__so(ﬁsﬂ_e’ Vi, # @
L1 — &g

where o and B are constants with o < B —e¢ and € is a small positive number.
Then ¢ satisfies the IQC defined by

o[, w2 [

where II(jw) is as in Theorem 3.1.

3.3 A Friction Model

In this section we give an IQC which describes the nonlinearity shown in
Figure 3.2. It is possible to use this nonlinearity as a model for friction. This
is discussed in more detail in the next section. The following theorem gives
the corresponding IQC.

15
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Figure 3.3: Stiction nonlinearity

Theorem 3.2 Consider the nonlinearity ¢ shown in Figure 3.2. For |v| <
v1 @ has slope ky and for |v| > vy it has slope k; < k;. The points vy, v
are supposed to be known. Then ¢ satisfies the IQC defined by

I(jw) = [_lkz —ﬁr [1 + Iz(!)*(jw) H Ig(jW)] [—1’92 _F]

where H € RL, and the Li-norm of its impulse response is no larger than
1—kov
(146)—kovy ~

The proof of the above theorem is given in Appendix A.

3.4 Common Nonlinearities in Control Sys-
tems

In this section we will present some nonlinearities which are often found in
practical applications and can be treated in the same way as the nonlinearities
which have been discussed in the previous sections.

3.4.1 Saturation

This kind of nonlinearity is shown in Figure 3.4 and can be defined as follows.

k’l), I’U| S Vo
kvo, |v|> vo

sat(v) = {

16
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Figure 3.4: Saturation

The saturation is one of the most commonly encountered nonlinearities
in control systems. It is usually caused by limits on component size, proper-
ties of materials and available power. It appears in amplifiers and actuators,
which always have a finite working range.

In transistor amplifiers and magnetic amplifiers the output varies linearly
with the input only for small amplitude inputs. When the input amplitude
gets out of the linear range of the amplifier, the output changes very little
and stays close to its maximum value, causing the saturation phenomenon.

Most actuators also have saturation characteristics. A typical example
is a two-phase servo motor. Its output torque cannot increase infinitely and
tends to saturate due to the properties of the magnetic material. Similar
behaviour can be found in valve-controlled hydraulic servo motors, which are
saturated by the maximum flow rate [12].

Since sat(-) € slope[0, k], the IQC presented in section 3.2 can be used
for the stability analysis of a feedback system including such a saturation.

3.4.2 Dead-Zone

A dead-zone is shown in Figure 3.5 and can be defined as follows.

07 "U' < v
dz(v) = { v — vy, v > vg
v + vy, v < =7

A dead-zone is quite often encountered in physical devices, where the

17




dz(v)

Vo v

Figure 3.5: Dead Zone

output is zero until the amplitude of the input exceeds a certain value. Con-
sider for example a d.c. motor. In linear system analysis it is assumed that
rotation is possible for any value of the applied voltage, if the field current
is maintained constant. In reality, due to friction, rotation occurs only if
the torque provided by the motor is sufficiently large. This corresponds to
a dead-zone for small voltage signals. Similar phenomena occur in valve-
controlled pneumatic actuators and in hydraulic components [12].

A dead-zone describes also the relation between internal energy and tem-
perature for materials which have a phase change. More specifically, the
temperature, T, depends upon the internal energy, u, of the substance as
follows.

Ci(u—L/2), w>L/2 ("unfrozen” substance)
T(u)=< 0, |lu| < L/2 (phase change region)
Co(u+L/2), wu<L/2 ("frozen” substance)

where L is the "latent heat”, C) is the heat capacitance for the "unfrozen”
region and C, is the heat capacitance for the "frozen” region [3].

A dead zone can be considered as a nonlinearity which belongs to the
class slope[0,k], where k is the slope in each specific case. Hence, the IQC
presented in section 3.2 can be used.

3.4.3 Backlash

This nonlinearity is usually caused by the small gaps which exist in trans-
mission mechanisms. In gear trains, there always exist small gaps between

18




Figure 3.6: Backlash

A

Wo

Figure 3.7: Backlash nonlinearity - Angular velocities of the gears in Fig-
ure 3.6

a pair of mating gears (Figure 3.6), due to errors in manufacturing and as-
sembly. As a result, when the driving gear rotates a smaller angle than the
gap b, the driven gear does not move at all. We make the assumption that,
after contact has been established between the two gears, the driven gear
follows the rotation of the driving gear [12]. This is the case, when there is a
breaking torque acting on the driven gear which strives to make the angular
speed of the driven gear zero, which is a quite ideal situation.

If wy and w, are the angular speeds of the driving and the driven gear,
respectively, then their relation is described by the nonlinearity shown in
Figure 3.7. When the driving gear begins moving, the speed w; of the driven
gear will remain zero until a point A, where contact between the two gears
is established. After this point, the angular velocities of the two gears will
be practically the same. If at some point the driving gear changes direction
of rotation, then w, will be zero as long as the angular distance between the
two gears is less than b. After a point B, where contact is established, w,

19




will depend linearly upon w;.

According to the above analysis, the backlash nonlinearity belongs to the
class sector[0, k], where k is the slope of the linear parts of Figure 3.7. The
corresponding IQC is the one presented in section 3.2.

3.4.4 Relay

This is an extreme case of saturation - the linearity range is zero and the
slope in the linearity range is infinite. Important examples of relays include
electrical relays, output torques of gas jets for spacecraft control and friction
models in mechanical systems.

The relay nonlinearity can be approximated by a slope restricted nonlin-
earity, with o = 0 and 8 — oco. Hence, Corollary 3.1 can be applied.

3.4.5 Friction

Consider the system shown in Figure 3.8, which is a model of a position con-
trolled one degree of freedom rigid mass system with sliding friction. Simple
or complicated systems may be considered with appropriate choices of G,(s),
G1(s) and G3(s). This diagram can be manipulated to arrange all the linear
elements as one block, leaving the nonlinear element as a second block, giving
the block diagram of Figure 3.9 [1].

The nonlinearity N(A) describes the relation between the friction and the
velocity. A model of N(A) is shown in Figure 3.10. It models static, kinetic
and viscous friction and also a negative viscous friction at low velocity. Static
friction is the force necessary to initiate motion from rest. In Figure 3.10,
it is the friction corresponding to zero velocity. The kinetic friction is the
friction component that is independent of the magnitude of the velocity. The
viscous friction is proportional to velocity and is present in fluid lubricated
Junctions, such as machines lubricated by grease or oil. The sum of the
kinetic and viscous friction corresponds to the linear part of the model in
Figure 3.10. In many situations the force required to commence motion from
rest is greater than that required to sustain motion. Detailed observation of
friction suggests that the drop from static friction does not occur instantly
but in the way shown in Figure 3.10. The region of negative viscous friction
is that in which the friction force drops with increasing velocity [2].

20
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X Y v y y
Sty Brory) g () @ Gi(s) Ga(s) A
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N(A)

(Friction vs. Velocity)

Figure 3.8: A single mass system with friction, friction modeled as a function
of velocity.

+ Gi(s) >

F N(A) X

Figure 3.9: Simplified block diagram of the system shown in Figure 3.8

Friction Negative
Force Viscous Friction

Velocity

|

Figure 3.10: Negative viscous plus kinetic plus viscous friction model
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The above friction model is like the one shown in Figure 3.3, when the
slope k; tends to infinity. Hence, it will satisfy the IQC presented in section
c3.3.

Another nonlinearity which looks exactly like the one discussed in section
3.3 can be found in models of tyres, see [6] for more details.

3.5 Summary

The IQC’s that are satisfied by sector nonlinearities, slope restricted non-
linearities and a friction model have been presented in this chapter. Non-
linearities that are commonly encountered in control systems have also been
discussed. From this discussion we see that the class of slope restricted
nonlinearities covers a quite wide range of nonlinearities found in practical
applications. The proposed friction model covers many different types of
friction. In this model the slope k; is supposed to be finite, while in practice
we often consider to have a nonzero friction for zero velocity. In some cases,
this should not be a problem since k; is allowed to be arbitrarily large. This
assumption though would probably not be able to treat any kind of friction.
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Chapter 4

LMI Formulation

This chapter deals with the LMI formulation of resulls presented
in previous chapters. A review of results on the LMI formulation
of the stability criterion is given first. We then concentrate on
the LMI formulation of the IQC satisfied by slope restricted non-
linearities. For this case, the choice of the appropriate multipliers
1s also discussed.

4.1 LMI Formulation of the Stability Crite-
rion

In most cases the class of IQC’s that describe the structure of a nonlinearity
A is infinite. In [7] the following format has been suggested for the description
of a class of IQC’s

(jw) = T(jw) M) (jw) (4.1)

where M is a fixed affine function of A € R™ which takes values in the set
of symmetric matrices in R¥Y*Y and the range of A is determined by the
additional constraints

CL(JWw)MAN)®(jw) <0, k=1,...,K (4.2)

foralw € R. ¥ = [\Il“ \Ilb] 1s structured consistently with the struc-
ture of A. Hence, if A is an operator from L}[0,00) to L*[0,00), then
¥ e RLQ’,"(‘*’"), i.e. ¥% and U® have columns ! and m, respectively. Let
P(¥,®, M) denote the set of matrix functions II(jw) defined as follows:

PO, e, M) = {lI(jw) : ¥(jw)*"M(AN)¥(jw) = I(jw) for some A € A}
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where

A={X: B(jw)MMN)s(jw) <0, k=1,...,K}
& = {d,,..., 8}

The above description allows transformation of the stability condition by the
Kalman-Yacubovich-Popov (KYP) Lemma into linear matrix inequalities.

In our applications we will only deal with constant matrices ;. The
following analysis is based on this assumption.

It has been mentioned in chapter 2 that a convenient way to obtain a
description of an operator A = diag{A;,...,An} in terms of IQC’s is to
add and augment simple descriptions of the diagonal entries Aq,...,Ay. It
is easy to verify that this can be easily done when we use the above format.
For the simple case of N = 2, addition and diagonal augmentation of the
IQC classes defined by the sets P; = P(¥y, &1, M) and P, = P(¥,, B2, My)

are achieved as follows

rem=p([GL{[3] o) (7 ])
awar 2 =2 (0 { [ [2] )[4 2])

szgoqﬂ;o
0 v2 0 W

and
where

The above results can be easily extended to the case of N > 2.

Given a description of a nonlinearity A as in (4.1) and (4.2), the stability
test corresponding to Theorem 2.1 can be stated as follows.

Feasibility Test
Find A € R™ such that the following inequalities are satisfied

[G(fw)] B(ju) M) ¥ () [G(j‘”)] <0, Vwe o]

SrM(N)®, <0, k=1,...,K
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Assume that we have a realization
G -1
Uil= C(sI-A)y"'B+D

where det(jw] — A) #0, VYw € R. Application of the KYP Lemma as it is
stated below gives the following LMI formulation of the Feasibility Test.

LMI Formulation for Feasibility Test
Find X € R such that the following inequalities hold

A Bl1TTo P o A B
I 0|l |P o o I 0
¢ p| |o 0o M| |c D

ST MNP, <0, k=1,... K

<0

where P = PT € Rme*me and ne=dim(A).

Lemma 4.1 - KYP [1}]

For the system ®(s) = C(sI — A)™'B + D, where det(jwl — A) # 0, the
following inequalities are equivalent. M 1s a symmetric matriz.

(i) & (jw)M®(jw) <0,V w e [0,o0]

(1t) There exists a matrizc P = PT such that

A B 0 P 0|][A B
I 0 P 0 O I 0f<o.

C D 0 0 M| |C D

T

4.2 LMI Formulation for Slope Restricted Non-
linearities

It has already been proven that a nonlinearity ¢ having the properties stated
in Theorem 1 satisfies the IQC defined by

0 d+ H(jw)

0wl =134 B Gw) 0

(4.3)

where d is a nonnegative constant and H € RL; is strictly proper, with the
Li-norm of its impulse response no larger than d.
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Introduce the "basis multipliers” H; € RL;, 7=1,...,N and let

H=Y =H; (4.4)
where z; are real numbers.

The constraint on the L;-norm of the impulse response of H will be
replaced by the following one

N

D el | i i< d (4.5)

=1

where ||h;||; is the L; norm of the basis multiplier H;. Note that (4.5) is not
equivalent to the constraint on the L; norm of A. It is in general a conser-
vative estimate of the L; norm. This will be discussed in detail in the next
subsection.

The relationship (4.5) is not linear in z;, because of the absolute values
appearing there. In order to get it in linear form, we introduce the positive
and negative terms of z;’s, defined as follows

zf = max(z;,0)
¢, = max(—a;0).
It is then possible to write
r = zt —a
2] = zt +2.

Hence, relationships (4.3) and (4.5) can be written as follows

. 0 d+ 3N (af — 27 Hi(jw)
I — =117 * 4.6
9=y, S (of - 57)H: () 0 (46)

and
N
Z(w? +27) || Hi|| -4 <0 (4.7)
=1

where
d,a},z; >0, i=1...N. (4.8)




:*';1;_

Let A correspond to d and = 1 =1...N and define the matrices

0 D(})
MO = |YeN+)x(eN+) 4.9
( ) D(,\) 02N 11)x(2N+1) ( )

where D()) = Diag{d, z{,zy,... 2}, 25} and

g 1 ] [ -1 ]
0, | B |
0 —H, | Hi ||
0 Hy | Hy |
. 0 —H ) H . I
wo) = || | mutie) = |11 aatiuy = | v | (o)

1 0 1

1 0 1

1 0 1

L 0 ] | 1

where Iy 1 is the (2N +1) X (2N + 1) identity matrix. It is easy to see that
the matrix II(jw) of equation (4.6) can be written as

(jw) = ¥(jw)" M(A)¥(jw)

and that the inequalities (4.7) and (4.8) are respectively equivalent to the
following inequalities

@1 (jw) M(A)®,(jw) <0 (4.11)

B,(jw) M(N\)@,(jw) < 0 (4.12)

In the case of a nonlinearity ¢ satisfying the conditions of Corollary 3.1,
i.e. a nonlinearity satisfying the IQC defined by

O I I M PP e | P

the same analysis can be applied. The inequalities (4.7) and (4.8) hold also in
this case and the matrices M(A), ¥(jw), ®;(jw) and ®3(jw) are still defined
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as in equations (4.9) and (4.10). Hence, the inequalities (4.11) and (4.12)
remain the same, while the matrix II(jw) can be written as

fi(jw) = (i) M) (jw) (4.13)
where
bio) = (i) ;79[ 1] (414)

and ¥(jw) is given in (4.10).

A Matlab function which does the above LMI formulation for a given set
of multipliers has been written. This is called slopeNL.m and a list of it is
given in Appendix B.

4.2,1 Choice of Multipliers

The previous discussion implies that H € L;(—o0, 00). Here we are going to
decompose H into a sum of causal and anti-causal components.

The space L;(—o00, 00) can be decomposed as L;(—00, 00) = L;(—00,0] @
L,[0, 00), i.e. for every h(-) € Li(—o00, ), we can write h(t) = h*(t)+h ()
where

R(t), t>0 _ 0, >0
h+(t):{0, t<0 h(t)={h(t),t§0

The following lemma. [5] allows us to approximate ht*(t) and h=(t) by a
finite sum.

Lemma 4.2 If f(t) € L1[0,00), then for every € > 0 there ezists a vector
(zo, z1,...,2n) € RV such that

o N
[ 70 = aateroe
o =0

dt <e

where a > —1.

Replacing t by -t, the same result also holds for L;(—o0,0]. Instead of the
factor e™® we can, without any loss, use e~*, which simply introduces a
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Figure 4.1: “Orthogonal” basis multipliers

time scaling. By choosing a@ = 0, we obtain the following basis for the
approximation:

tie ™, t>0 - 0, t>0
wo={ 0 120 wo={ w20

Hence, an Nth order approximation of an L; function h(t) is given as follows

N

h(t) =) [ahf (2) + bibi (2)]

1=0

Note that for any values of 7 and k, the Laplace transform of h(t) will be
a rational function.

It should be mentioned here that with such a choice of basis multipliers
the constraint on the L; norm of the multiplier is usually conservative. It
would be possible to avoid this conservativity by choosing the basis multipli-
ers hi(t) as “orthogonal” functions in L;. This means that the h;() should
be defined over different time intervals as shown in Figure 4.1. There is how-
ever a problem with this approach. The basis multipliers k;(t) must be linear
combinations of exponential functions. This implies that the multipliers A,
and hs in Figure 4.1 will be of high order, which would lead to complicated
LMI computations.

In many cases it is sufficient to find the break frequencies in the Bode
plot of the system transfer function G(s), in order to decide about the basis
multipliers that should be used. If for example the break frequencies are w,
and wy, then the set of multipliers

M = {ert et vt gwrt | (Newit (Nemuwrt ¢Neowat yNo—waty (4 15)
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where N is the order of the approximation, can usually assure stability of
the feedback loop. However, in most cases just a subset of M is enough
for proving stability. Hence, by using all the elements of M we just intro-
duce unnecessary and time-consuming computations. This can be avoided
by careful inspection of the Nyquist and Bode plots of the system appearing
in the stability condition. From these plots we can predict the frequencies
over which the multiplier should be ”active”, as well as whether we should
use a causal or an anti-causal multiplier. Useful information can also be ob-
tained from a plot that shows how the largest eigenvalue corresponding to
the inequalities of the feasibility test (see section 4.1) varies with frequency.
The frequencies where there is a positive eigenvalue give us an indication of
the frequencies over which the multiplier should act upon the system. Of
course, this implies that more than one iterations of the Matlab program are
normally necessary for finding the appropriate multiplier.

Usually more than one multiplier assures stability. In these cases, we
prefer the simplest multiplier, or the one which allows better performance
results.

It should finally be mentioned that in some cases it has not been possible
to prove stability by using the set of multipliers given in (4.15). It is not
clear if this has happened because this way of selecting basis multipliers
1s not correct or because the order N of the approximation that has been
chosen was not large enough. It is quite probable that the reason was the not
right choice of N, but this cannot be checked easily, as after some point the
computations become very complicated and slow. However, even for these
cases, it has been possible to find a suitable multiplier by following the above
described method based on the Nyquist and Bode plots.

4.3 Summary

The LMI formulation of the IQC results presented in the previous chapters
has been discussed here. The chapter focuses on the LMI formulation of
the IQC satisfied by slope restricted nonlinearities. The choice of appropri-
ate multipliers for this kind of nonlinearities has been discussed and a new
method for selecting them has been proposed. The same problem is also
studied in [5]. The efficiency of the method suggested here is illustrated in
the next chapter, where the above theory is applied to specific examples.
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Chapter 5

Examples

We will in this chapter apply the previously discussed theory to
spectfic ezamples. The first two examples are theoretical and they
tllustrate the applicability of the theory and the efficiency of the
developed software. The third example is practical and it offers
a good insight on how our results can be used in practice for the
stability analysis of systems with nonlinearities and uncertainties.

For the first two examples consider the system shown in Figure 5.1. The mi-
nus sign in the system transfer function G(s) makes the closed loop system
equivalent to a closed loop with negative feedback. This will be useful later
for comparing our results with other already existing ones.

According to Corollary 3.1, a nonlinearity ¢ having the properties men-
tioned in Corollary 3.1 satisfies the IQC defined by

H(jw) = Ty Ty M(jw)T1 T

% S-G(s)

Figure 5.1: Perturbation in negative feedback form
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where

0= gy 729, mef . me (L]

d is a nonnegative constant, H € RL, is strictly proper, and the L;-norm of
its impulse response is no larger than d.

The stability criterion can then be written as follows:
[‘IG] fi(jw) [‘IG] >0, Vwel0,o0]-
Applying the appropriate transformations to the nonlinearity ¢ and the for-

ward system —G(s) (see Figure 5.2), the above inequality is equivalent to
the following one:

é(}w)] O(jw) [é(;w) <0, VYwe]0,00]

l.e.
GGw)|"[ 0 d+ H(jw)] [G(jw)
[ 7 ] 4+ H*(jw) 0 - <0, VYwe]l0,o0]
where
o e 1 ~ -G
G—G_,B—-a and G_l-l—aG'

Hence, the stability analysis problem of the feedback system shown in
Figure 5.1 is equivalent to the following problem:

Find a multiplier H such that

Re [é(jw)Z(jw)] <0, Ywe€|[0,00]
where  Z(jw)=d+ H*(jw) =d+Za:.-Hj‘(jw)

and H;(jw) are the basis multipliers.

The above theory has been applied to the following two examples which
have been taken from [5], [13].
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Figure 5.2: Transformed closed loop system
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Figure 5.3: Example 1: (a) Bode plot of the transfer function G(s) (b)
Nyquist plot of the transfer function G(s)

5.1 Example 1

Let the system transfer function be

o 3(s+1)
Ga)= s?(8% + s+ 25)

Its Bode and Nyquist plots are shown in Figures 5.3(a) and (b), respec-
tively.

We assume that an odd monotone nonlinearity ¢ € slope[l, 8] is applied
to the system in the way shown in Figure 5.1. Our goal is to find a bound
for B that guaranties stability.

It should be mentioned that the fact that the system G(s) is not stable

(it has a double pole at s=0) does not cause any problems to the application
of the theory, since the sector [1, 3] does not include zero. We assume that
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o = 1 is chosen so that the system G(s), obtained after the first transfor-
mation shown in Figure 5.2 has been applied, is exponentially stable. This
is necessary for stability. In our case, the system G(s) is indeed stable.
Its poles are —0.4416 + 4.95795, —0.4416 — 4.95794, —0.0584 + 0.3430j and
—0.0584 — 0.34307, which lie in the left half plane.

The size of B cannot be larger than the Nyquist gain for G(s), which cor-
responds to destabilization by a linear feedback element. The Nyquist gain
is found to be Bmas = 8. This conclusion can be drawn from Figure 5.4(a)
where the Nyquist plot of the system G(s), i.e. the closed loop system with
forward transfer function —G(s) and positive feedback gain o = 1, has been
plotted. It should be mentioned here that, since we use positive feedback,
the critical point for the Nyquist criterion is the point (1,0). From the plot
it is shown that the gain margin for the system G(s) is 7, which gives an
overall gain margin Bme; = 1 + 7 = 8 for the system G(s).

Figure 5.4(b) shows the Nyquist plot of the system ((s) which is ob-
tained after both transformations have been applied to the original system
G(s). Figure 5.5 shows the Bode plot of the system G(s).

From the Bode plot in Figure 5.5 it is easy to find that the frequencies
which correspond to Re[é(jw)] > 0 are the frequencies in the interval [0.38,
0.93](rad/sec). Hence, in order for the stability condition to be satisfied,
over this range of frequencies the multiplier should be able to add phase ad-
equate to bring all the corresponding points of the Nyquist plot to the left
half plane. More specifically, the multiplier H(jw) should be such that the
quantity Z(jw) = d+zH*(jw) adds positive phase to the system é’(](u) over
the frequencies [0.38, 0.93](rad/sec). Hence, we can expect that the multi-
plier will be "active” at frequencies between 0.1 rad/sec and 1 rad/sec.

LMI computations with several combinations of basis multipliers of the
form t*e™ have been carried out. The objective was to find the multiplier
which provides the largest stability bound, i.e. it satisfies the stability con-
dition for the maximum upper bound 3. Just by using one basis multiplier,
namely the hy(t) = tef, ¢ > 0, we can obtain an upper bound of 8 of 7.9999,
which can be considered as a good approximation of the maximum Nyquist
gain Bmq, = 8. The following analysis is based on the use of this basis mul-
tiplier.

According to (5.1), the multiplier which finally appears in the stability
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Figure 5.4: Example 1: (a) Nyquist plot of the transfer function G(s) (b)
Nyquist plot of the transformed forward system G(s)
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Figure 5.5: Example 1: Bode plot of the transformed forward system é’(s)
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Figure 5.6: Example 1: Bode plot of Z(jw) = d + =, H{(jw). Hi(jw) =
1/(jw — 1)? is the Fourier transform of the basis multiplier h,(t) = te*

condition has the form
Z(jw) = d+ o, H (jo)

where Hy(jw) = 1/(s+1)? is the complex conjugate of the Laplace transform
of the basis multiplier »,(¢) and d and z; are constants, see section 4.2, the
values of which are found using LMI-Lab. The Bode plot of Z(jw) is shown

in Figure 5.6.

Comparing Figures 5.5 and 5.6, we see that at every frequency in the
interval [0.38, 0.93](rad/sec) the phase of the multiplier is adequate to trans-
fer the corresponding point of the Nyquist diagram of é( jw) to the left half
plane. In addition, at every other frequency its phase is small enough to keep
the corresponding points of the Nyquist plot at the left half plane. Hence,
the stability condition will be satisfied for every w € [0, 00]. This is clearly

38




10

—14a —= —10 —B —a — —= (=}

Figure 5.7: Example 1: Nyquist plot of the product of G’(s) and Z(jw)
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Figure 5.8: Example 1: Bode plot of the product of G(s) and Z(jw)
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Figure 5.9: Example 2: (a) Bode plot of the transfer function G(s) (b)
Nyquist plot of the transfer function G(s)

shown in Figures 5.7 and 5.8 where the Nyquist and Bode plots of the prod-
uct of é’( jw) and Z(jw) have been plotted. The Nyquist plot lies completely
in the open left half plane and the phase in the Bode diagram is always in
the interval [—90°, —270°].

5.2 Example 2

Let the system transfer function be

32

(s2+1)(s% +9) + 10-4(3s® + 21s)

Its Bode and Nyquist plots are shown in Figures 5.9(a) and (b), respectively.

We assume that an odd monotone nonlinearity ¢ € slope [0, 8] is applied
to the system in the way shown in Figure 5.1. Since a = 0, only the second
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Figure 5.10: Example 2: Root locus of the closed loop system

transformation is needed. Hence, the transformed closed loop system will
have the form shown in Figure 5.2, if the feedback loops with gains +a are
omitted and the gains +1/(8 — a) are substituted with +1/8.

The upper bound 8 cannot be larger than the Nyquist gain for G(s),
which corresponds to a linear feedback element. From Figure 5.9(b) it can
be seen that, no matter how large the gain becomes, the Nyquist plot will
never encircle the point (-1,0). Hence, the Nyquist gain for the system G(s)
will be co. This is shown more clearly in Figure 5.10, where the root locus
of the function G(s) has been plotted. The poles of the closed loop system
with gain feedback lie always in the left half plane, although they are very
close to the imaginary axis. Hence, the closed loop system will remain stable
for infinitely large values of the linear feedback gain.

In Figure 5.11 the Nyquist plot of the system é’(s) = —G(s) — %, ob-
tained after the transformation has been applied to the original system G(s),
is shown.

LMI computations with several combinations of basis multipliers of the
form tFe* have been carried out. As in Example 1, the objective was to find
the multiplier which provides the largest stability bound, i.e. it satisfies the
stability condition for the maximum upper bound 3. Using the basis mul-
tiplier hi(t) = e'®, we can obtain an upper bound of B of 1.43 10=3. This
is higher than the one obtained in [5], which is an indication that our mul-
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Figure 5.11: Example 2: Nyquist plot of the transformed forward system
G(s)

tiplier is probably better than the one used in the above mentioned paper.
The following analysis is based on the use of this basis multiplier.

The multiplier which finally appears in the stability condition has the
form

2(jw) = d + 2, H; (ju)

where Hy(jw) = —1/(s + 10) is the complex conjugate of the Laplace trans-
form of the basis multiplier hy(¢) and d and z; are constants, the values of
which are found using LMI-Lab. Its Bode plot is shown in Figure 5.12.

In Figures 5.13 and 5.14 the Nyquist and Bode plots of the product of
é(jw) and the multiplier Z(jw) have been plotted. The Nyquist plot lies
completely in the open left half plane, which means that the stability condi-
tion is indeed satisfied. This can also be verified from the Bode plot, as the
phase is always in the interval [-120,-180](degrees).

It should be mentioned here that this example is quite extreme, in the
sense that the poles of G(s) lie very close to the imaginary axis. However,
it is useful from a computational point of view, as it makes clear that our
algorithms can work efficiently even in so sensitive cases.
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Figure 5.12: Example 2: Bode plot of Z(jw) = d + z,H{(jw). Hi(jw) =
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Figure 5.13: Example 2: Nyquist plot of the product of é(s) and Z(jw)
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Figure 5.14: Example 2: Bode plot of the product of G(s) and Z(jw)
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Figure 5.15: Control system with saturation and PID controller

5.3 Example 3

Consider the system shown in Figure 5.15. The system is controlled by a PI
controller and the nonlinearity is a unit gain saturation.

The combination of a saturating actuator and a controller with integral
action gives rise to a phenomenon called integrator windup. If the control
error is so large that the integrator saturates, the feedback path will be bro-
ken because the actuator will remain saturated even if the process output
changes. The integrator, being an unstable system, may then integrate up
to a very large value. When the error changes sign, the integral may be
so large that it takes considerable time until the integral assumes a normal
value again.

There are several ways to avoid integrator windup. One possibility is
to stop updating the integral when the actuator saturates. This method is
called conditional integration.

Another method is the one called tracking and it is illustrated by the
block diagram in Figure 5.16. In this system an extra feedback path is pro-
vided by measuring the actuator output and forming an error signal e, as
the difference between the actuator output and the controller output. This
error is then fed back to the integrator through the gain 1/T;. The error
signal e, is zero when the actuator is not saturated. When the actuator is
saturated, the extra feedback path tries to make the error signal e, equal to
zero. This means that the integrator is reset so that the controller output
is at the saturation limit. The integrator is reset to an appropriate value
with the time constant T3, which is called the tracking-time constant. The
advantage of this scheme for anti-windup is that it can be applied to any
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Figure 5.16: Regulator with anti-windup for the system of Figure 5.15

actuator, i.e. not only a saturated actuator, but also an actuator with ar-
bitrary characteristics, such as a dead-zone or a hysteresis, as long as the
actuator output can be measured. If this is not possible, the actuator can be
modeled and an equivalent signal can be generated from the model.

The system of Figure 5.16 is equivalent to the one shown in Figure 5.17,
which is of the general form shown in Figure 5.18.

We assume that the system dynamics are described by the transfer func-
tion
1
(s +1)%(s+10)

Gyp(s) =

This can for example describe the system of a double tank controlled by
a PI controller. The factor 1/(s+ 1)? describes the tank dynamics, while the
factor 1/(s + 10) corresponds to a sensor measuring the liquid level in the
lower tank. The saturation describes a pump [11].

The PI controller can be tuned using the Ziegler-Nichols method [4]. The
parameters k and T; are given by the following relationships:

k = 0.45ko
To
T; = 12
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Figure 5.17: Regulator with anti-windup for the system of Figure 5.15
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Figure 5.18: General form of control system with an actuator and anti-
windup
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Figure 5.19: Closed loop system for stability analysis

where
-1
k = -
° 7 Gyljwo)
To = _2_7_"
Wo

and wy is the frequency where the Nyquist plot of Gp(jw) intersects the real
axis. From the Nyquist plot of Gp(s) it is easy to find that wy = 4.58 rad/sec.
Hence

ke = 242.37
To = 137 sec
k = 109.07

T, = 1.14 sec

The value of the tracking time constant T; depends on the specific perfor-
mance requirements. In any case though it has to be lower than the integrator
constant T; [11]. Since we are only concerned for the stability analysis of the
system, the value T; = 1 is sufficient for our purposes. Hence, the filter W of
Figure 5.18 will be W = 1/s.

Our objective is to find the maximum value of the gain k for which the
loop remains stable. In order to apply the method which has been presented
in the previous chapters, the closed loop system of Figure 5.17 has to be
brought in the form shown in Figure 5.19. We consider that the reference
signal is zero, i.e. » = 0. From Figure 5.18 it is then easy to see that

v = —Gpy+ Wip(v) -
—GnGpp(v) + We(v) — Wo
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Figure 5.20: General form of control system with an actuator, multiplicative
uncertainty and anti-windup

Hence

v W—-GpG,

G = =
o(v) 1+ W

The nonlinearity ¢ is a unit gain saturation. Hence, it can be considered
as a slope restricted nonlinearity of the class slope[0, 1].

LMI computations have been carried out using the above values for k, T}
and T;. Several multipliers give stability of the closed loop system but the
multiplier which allows the maximum value of the gain k has been found to
be h(t) = exp(10t). The maximum gain is kme, = 125.2. Hence, we have a
gain margin of 14.79 %.

We now consider the case of the existence of a multiplicative uncertainty
in the system dynamics. G, is considered to be the nominal value of the
system transfer function. Its actual value is given as follows

Gp,actual = Gp(]- + WAA)

A is assumed to be a linear time-invariant operator with gain ||A(jw)| < 1
and Wa is a high-pass filter. Hence, the uncertainty A affects the system only
in high frequencies. The block diagram of the system is shown in Figure 5.20.

Our objective is again to find the multipliers which give the maximal up-

per bound of the gain k. Since we have two nonlinearities, in order to apply
our method, we should transform the system of Figure 5.20 to the system
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Figure 5.21: Closed loop system for stability analysis under the presence of
a multiplicative uncertainty

shown in Figure 5.21.

In this system

G=|(Cn Gl AP O 5 v g A= (90
5 Gl a=[p ] o[ w20 (2]

Gn Ga 0 A A)
where
__v(s) 8) = v()
A 00) IR Xy 0] I
8) = R ON 8) = o)
Ga(s) = o(v)(s) il Ga2(s) A(u)(s) o(v)=0

From Figure 5.20 it is easy to find that

W - GG -G
=TT o=
G21(8) = WAGp Gzz =0.

As it has been mentioned in previous chapters, a description of the op-
erator A = diag{p, A} can be obtained simply by augmentation of the de-
scriptions of the nonlinearity ¢ and the uncertainty A. ¢ is a unit gain
saturation, hence it can be considered as a slope restricted nonlinearity of
the class slope[0,1]. For the uncertainty A a corresponding IQC is defined
by the matrix

q._ |RUR 0
A=l 0 —R'UR
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where U = UT > 0 [7]. In order to obtain the descriptions of ¢ and A,
the functions Complexpar and ZamesFalb have been used respectively. The
augmentation is obtained using the function IQCdaug. The corresponding
Matlab program, Example3_b.m, is listed in Appendix B.

LMI computations have been carried out using the following data: k& =
109.07, T;=1.14, T, =1. The filter Wa was chosen as

s+ 10

A= 5311000

The multipliers which allow the highest gain k have been found to be:

For the saturation ¢ :  h(t) = exp(10t)

) _ s—01 (s-01)*71T
ForA: R=1 s+0.1 %HT)L?] .
The maximum gain is k., = 120.7. As it is expected, this gain is lower
than the maximum gain which was achieved when the multiplicative uncer-
tainty was not present.

5.4 Conclusions

The results that have been presented in the previous chapters have in this
chapter been applied to three examples. The first two examples are just
theoretical. They show how the theory can be applied to each specific case.
Useful conclusions about the range of frequencies where the stability condi-
tion is not satisfied, as well as the kind of the multiplier that should be used,
can be drawn from the Nyquist and Bode plots of the transformed forward
system. In the third example a model of a physical system has been studied.
Both the cases of a saturation and the simultaneous presence of a saturation
and a multiplicative uncertainty have been considered. The usefulness of the
IQC description of perturbations becomes evident here, as it is shown how
easily the results can be extended to cases where more than one perurbation
is present in the closed loop system. All LMI computations in this chapter
have been performed by LMI Lab [9].
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Conclusions

The object of this thesis was the stability analysis of control systems which
include static nonlinearities and uncertainties. The analysis has been based
on the concept of Integral Quadratic Constraints (IQC’s).

A review of recent results in this area has first been made. The already
known IQC’s describing sector nonlinearities and slope restricted nonlinear-
ities have been presented and discussed. A new IQC describing a friction
model has been proved. The proposed friction model covers a lot of different
types of friction appearing in control systems. This has been discussed in
detail in chapter 3. A number of other nonlinearities commonly encountered
in control systems has also been presented. It has been shown how these
nonlinearities can be handled in the IQC framework.

A main point of the thesis has been the LMI formulation of the IQC re-
sults. Based on the results presented in [7], an LMI formulation of the IQC
describing slope restricted nonlinearities has been derived. The proposed al-
gorithm has also been programmed in Matlab. Particular emphasis has been
given on the choice of multipliers for the case of slope restricted nonlineari-
ties. We have suggested a way of choosing appropriate multipliers, based on
useful conclusions that can be drawn from the Nyquist and Bode plots of the
system transfer function.

Our resulls have been applied to three differenl syslems. The (wo first
are theoretical and they have also been studied in [13] and [5]. They are
useful for presenting how the proposed method works and for illustrating the
efficiency of the software. Furthermore, in one of them we have achieved re-
sults better than the ones in [5], which is a good indication for the proposed
method of choosing multipliers.

The most important example though is the third one, where the stability
of a model of a practical system controlled by a PI regulator with anti-windup
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has been studied. The case of a unit gain saturation has been treated first.
The next step was to consider a more general case by introducing a mul-
tiplicative uncertainty in the system’s dynamics for high frequencies. It is
shown that, once we have an IQC description for each nonlinearity or uncer-
tainty, the analysis can be very easily extended to the case of many nonlinear
or uncertain blocks. This is probably the most important feature of the IQC
based analysis of nonlinear systems and a good motivation for using this
method.

For the LMI computations in the examples the LMI-Toolbox of Matlab
has been used. In some cases, especially when more than two multipliers are
used, the computations become very complicated and time consuming. An
improvement of the software with respect to the choice of multipliers would
be a subject for further discussion. Finally, extension of the theory to cases
of unbounded nonlinearities and hysteresis problems are subjects of great
interest and open research areas.
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Appendix A

Proofs

We are giving here the proofs of the theorems and the corollaries stated in
Chapter 3.

A.1 Slope Restricted Nonlinearities

The following Lemmas [16] are useful for the proof of Theorem 3.1.
Lemma A.1 If ¢ is monotone nondecreasing, then

zp(e) — ye(e) > P(z) — P(y) (A1)
for all & and y, where P(x) = [ ¢(s)ds.

Proof Since ¢(-) is monotone nondecreasing, the following inequality will

hold
[p(z + kAz) — o(z)]kAz > 0

for any integer k > 0. Hence
> le(e + kAz) — p(2)]Az > 0
k=1

for any integer m. Setting Az = (y — ¢)/m and letting m approach infinity,
we deduce that

/z " o(8)ds — o) / “ds >0, (A2)

Since [¥ p(s)ds = P(y) — P(z), (A.2) is equivalent to (A.1).
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Lemma A.2 If ¢ is monotone nondecreasing and if there is a constant C >
0 such that |p(z)| < C|z|, then

©0

[ st snieatenae < [ aleyptaonar (A3)

—00

Jor all 7 and any z(-) in Ly(—o0,00). If, in addition, ¢(-) is odd, then

[ st mietena] < [ styotateer (4.4
Jor all 7 and any «(-) in Ly(—o0, 00).

Proof Since |p(z)] < Clz| and z(-) is in Ly(—o00,00), ¢(z(:)) is also in
Ly(—o00,00) and P(z(+)) is in L;(—o00, 00). Thus,

| {a0heta(t) — =t + ryola(e)}é

> / " P(o(t))dt - / " Pla(t + 7))t

= 0.

Hence (A.3) holds.
If ¢ is odd, then P(-) is even, and so

/_ : {e()e(2(t)) + o(t + T)p(2(t)) }dt
_ /_ : {e(t)p(2(t)) — [—a(t + 7)p(a(t)) bt

> [7 {Pa®) - P(-o(t+ )}

=0.
Hence, (A.4) holds.

Proof of Theorem 3.1 We have to show that

/. Lo’(‘(;(jl)] [d T Ig(jw)] LZ(\(;(‘;Z:)] 20 (45)
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for all v € L,[0, oo).
The left side of equation (A.5) can be written as follows
L= [ {pGus BG)e)G)

+6(0) (jw)ld + H*(jw)}d(jw) jdw  (A6)

Using the property

/_ ” *(jw) H(jw)d(jw)dw = /_ ) *(jw) B (jw)i(jw)dw

oo

equation (A.6) takes the form

©0

L= 2 [ o(u)io)ies+2 [ o) H)e6) )

©0 — o0
——

= 2 [ Gl +2 [ (i) (A7)

©0

—

where 2(jw) = H(jw)p(v)(jw) is the Fourier transform of the signal
() = H0) s w(0)0) = [ Moot - r)ir (A9)

Applying Parseval’s Theorem to (A.7) and using (A.8) we get

I = 2«% /_ :v(t)cp(v)(t)dt+2% /_ :v(t)z(t)dt

_ ¢ /_ T (t)p(o)(B)de + % /_ " t) /_ " h(r)p(w)(t — )drdy(A.9)

T )

By changing the order of integration in (A.9) we have

L= % /_ " o(t)e(v) ()it + - /_ ~ hr) /_ " o(@)e(v)(t - r)dtdr (A.10)

[o o]

According to Lemma A.2 the following inequality holds

[ oweone-ni] < [ s nptere

00

‘/:m v(t)p(v)(t)dt (A.11)

[+ =]
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The integral J = [ v(t)p(v)(t)dt is always nonnegative, since ¢ is odd and
nondecreasing. Hence

w) [ e - > —lhie) [ w@pto)e - rat| =

)| [ ottt -na| 2 —ho)| [ oereto)era

By integrating both sides of the above inequality we get

/_w A7) /_ : v(t)p(v)(t — 7)dtdr

(>}

- / |A(r)| / o()o(v)(¢)dtdr (A.12)
Using inequality (A.12), equation (A.10) yields

L> 2 /_w o()p(v)(t)dt — - / Ih(r)| / o(t)p(v)(t) dtdr

o0

1

S [d - /_: |h(r)|er J (A.13)

™

Since J > 0 and the L;-norm of h(t) is no larger than d, the right part of the
inequality A.13 is always nonnegative. Hence, ¢ satisfies the IQC defined by

; 0 d+ H(jw
M(jw) = [d—I—H*(jw) 0(J )]

Remark When ¢ is not odd, the theorem can be proven in a similar way.
The only change is that we need to make use of (A.3) instead of (A.4) in
Lemma A.2.
Proof of Corollary 3.1 Transform the vector [¢(jw) c;(;)(jw)]T as follows
1st Transformation :

[ B(jw) ] [ 1 O] [j’\(.?“’) ]

e(0)(w)] — [—a 1 |p(v)(jw)

2nd Transformation :

[ 1 =10 5] [stael,
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The operator ¢(-) is defined as

3(2) = () — az (A.14)
It has the same properties as ¢ and it satisfies the condition
ngsﬁ_a_g (A.15)
1 — P

From the second transformation it follows that
1
) =l — —— BN 1
v =) — R0 (A16)

N()() = @(v)() (A.17)
It is now sufficient to show that N has all the properties that ¢ has. Then
the corollary follows from Theorem 2. More specifically, we will show that
(i) N(0)=0,
(i) N is monotone nondecreasing,i.e. (y1 — ¥2)[N(y1) — N(y2)] >0,

(i) 0 < ¥ONW) < M < 00, V 31 # s,

Y1-12

(iv) N is odd.
The proofs of the above properties are given below.

Property (i)
For y = 0, equation A.16 gives
1
B—a

Equation (A.15) for #; = ¢ and z; = 0 yields

#(v) (A.18)

vV =

Os@gﬂ—a—e<ﬂ—a

Hence, for ¢ > 0 it holds that 0 < @(z) < (8 — a)z and for z < 0 it holds
that 0 > @(z) > (@ — a)z. The above inequalities can be written together as

0 < |¢(e)] < (B—a)la], Ya#0 (A.19)

Because of inequality A.19, equation A.18 holds if and only if v = ¢(v) = 0.
Hence, A.17 yields N(0) = 0.
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Property (ii)
According to equations (A.16) and (A.17) the following equalities hold

(y1 - yz) [N(yl) - N(yz)]

= [vl — —i—a¢(v1) —v2+ ,ﬁtp(v”] [95('”1) - 95(”2)]

B Fm—v»—a%;W@n—¢@M]wwn—ﬂwﬂ
1 [p(v1) — @(va)] ]

— o v — Vg

= (=)l - plun)] [1 -

Since ¢ is nondecreasing, it holds that (v — v2)[@(v1) — @(v2)] > 0. From
(A.15) it is easy to see that

1 [pn) - p(e)] |

1- g —a V1 — Vg 20
Hence, (y1 — 2) [N(31) — N(y)] > 0.
Property (i)
N(y:) — N(ya) _ ¢(v1) — ¢(v2)
Y1 — Y2 v = goaP(v1) — vz + 525 P(vs)

@(v1) — @(v2)
(v1 —v2) — 525 [B(v1) — B(v2)]
@(v1)—é(va)
_ . (A.20)

L [e)-o0)]
-

Using (A.15), equation (A.20) yields

0< Nu)=N@) B-)B-a-c)_,
Y1 — Y2 €
Property (iv)
Equation (A.16) yields
1 .
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Since ¢ is odd, (A.21) can be written as follows

F—#(-0) (A.22)

Taking into account (A.22), equation (A.17) yields
N(-y) = ¢(—v) = —@(v) = —N(y)

Hence, N is odd.
Since N has all the properties mentioned in Theorem 2, N will satisfy
the IQC defined by

_y:-__ru_

: 0 d+ H(jw
0Gw) = |4 4+ ge(ju) 0" )

and the corollary follows.

A.2 A Friction Model

Proof of Theorem 3.3 Consider the following quantity
A = [0 = ko) + b« (u = ka0))0)] [o0) - 2-u00)]
= () - ko] [o(0) - -u(0)]
+ /_ : (r)(u — ka)(t — 7)dr [o() - %u(t)]
> [u(t) ~ kno(®)][o(0) ~ -ul0)
-} /_ : B(r)(u — kyv)(t — 7)dr
> [u(t) - k(0] [o(6) - 7-u(0)
~ [l sup {](u — k)0 }ol0) - 5uto)

> fult) — koo (t)] [olt) - —,;l—u(t)] -~ 0le) - kllu(t)} (A.23)

"v(t) — kll'u,(t)l

where we have made the assumption that the L;-norm of the impulse response
of H is no larger than a positive constant «, i.e.

/w |h(t)|dt < o

(>}

60




U
148 k
kl EE kg'v—___
=i o0 v
|:— v _1
el —=1-4
Figure A.1:

and

C = sup {|(u — k2)(#)|}

From Figure A.l it is easy to see that

Vi, |(u = ka)(#)] < (1+6) = kavy = sup {|(u — kv)(t)]}

From Figure 3.3 we can see that:
(i) For |v(t)| < |v1], wu(t) = kyv(t) and hence A=0.
(ii) For v(t) > v1, kiv(t) > u(t). Hence (A.23) yields

A2 [u(t) = bao(t) = O)fo(t) = -u(t)]
Assuming that
¢ = inf [u(t) - bao(t)
i.e. C = 'U,('vz) - kz’l)z =1- kz'!)z

(A.26) yields A >0, VYu(t)> v,.
(iil) For v(t) < —v1, k1v(t) < u(t). Hence,

A'> [u(t) - kyo(t) + O] [u(t) — kilu(t)]

In this case,

C = inf [u(t) ~ kpo(t)] = ~ sup [u(t) — kav(¢)

v<—vg
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and A >0, Vu(t)<—v,.

From equations (A.24), (A.25) and (A.27) we find that the bound of the
Ly-norm of the impulse response of H should be

&= 1—’921)2
N (1-|—5)—k2'l)1

Since

[o(t) - kllu(t)] [10(6) — Rav(e)] + [ (u — ka0))®)] 2 0, vt
the following inequality will also hold

/_ " () - %u(t)] [[u(t) = Ryo(e)] + [+ (u - ko)l(t)]dt >0 (A.28)
Applying Parseval’s theorem to (A.28) we get

o /_oo (5- kila)*(jw)[a — kyd + H(h — kat)](jw)dw > 0

co

& 2 /_ " (1“;* = El{“) (jw)[1 + H(jw)] (& — kyd)(jw)dw > 0

o0

o [ (- gt) L+ H(Gw)) (@ - keo)o)d

o

+ / (@ = k")) [1 4 H ()] (5 — £-1) (w)dw > 0

(>}

& fm E” - kL“) (_j“’)_ xl'[(jw) [(” N kl“) (j“’)} dw >0

(& — kz?)(jw)

(o0}

00 [A1* AT 1 N
v ]. ‘—kl— . 1 _H v
had /_m 4 [—kz 1 II{jw) [—kz 1 ] [u]
where
on 0 1+ H(jw)
M(jw) = [1+H*(jw) 0 '

Hence ¢ satisfies the IQC defined by

MI(jw) = [—lkz ﬁﬁrﬂ("w) [—lkz Flﬁ]'
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Appendix B

Matlab Programs

The programs and functions presented in this appendix are all written in the
Matlab-4.2c programming code.

The function slopeNL.m provides the LMI formulation of the IQC de-
scribing slope restricted nonlinearities.

The program Examplel.m has been used for the computations concern-
ing the first example. For the second example exactly the same code has
been used, so it is not going to be given again.

The programs Example3_a.m and Example3_b.m refer to the third
example. The first one considers the case when just a saturation is present
and the second one the case of the simultaneous presence of a saturation and
an uncertainty.

The function mult_plot.m has been used in order to obtain the Bode
plot of the multiplier appearing in the stability condition. Its inputs are the
multiplier and the results, Mstruc, of the IQCfeas command.

At some points there are references to functions which are not listed here.
These were part of already existing software, written by Ulf Jonsson, Tech-
nical University of Lund, which has been used for the LMI computations. A
list and a short description of these functions is given below.

IQCfeas : It examines the feasibility test as this has been presented in

section 4.1. It has the following structure
[Mstruc,tmin] = 1QCfeas(G,IQCdata,plot_type,wvec), where

G: System matrix obtained with the mu-tools command pck
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IQCdata : A set of IQC’s

plot_type : ’none’ (default) No plot.
"FDI0’ Plot largest eigenvalue corrsponding to the FDI (0)
above.
"all FDIs’ Plot largest eigenvalue corrsponding to the FDIs in
(0),...,(N) in separate windows.

wvec : The FDI plots are calculated at these frequencies. By default
wvec=logspace(-2,2).

Mstruc is the M()) matrix, see section 4.2. If the feasibility test is succesful
then tmin is negative, otherwise positive.

IQCdaug : This function generates the set of IQC’s satisfied by the operator
diag(As,...,Ay) from given sets of Integral Quadratic Constraints satisfied
by operators A,,...,Ap, It is currently limited to nine input arguments.
The way the augmentation is achieved is the one discussed in chapter 2.

Complexpar : This function specifies a set of IQC’s corresponding to a
bounded complex parameter A = §I. The size of the identity matrix corre-
sponds to the column size of the multiplier. § can be a scalar LTI system,
such that ||§(jw)|| < 1 or a constant parameter, such that |§] < 1. The
function is defined as follows

IQCdata = Complexpar(R,bound),

where R is the multiplier. ’bound’ is the bound on the multipliers, which by
default is infinity. The corresponding II matrix is as shown in section 5.3.
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slopeNL.m

function IQCdata = slopeNL(mult,alpha,beta);

%
Wh
A
%
%
%
%
%
A
%
A
%
A
%
A
%
/A
%
%

IQCdata = slopeNL(mult,alpha,beta);

Specifies a set of IQC’s corresponding to a possible nonlinear and
time-varying bounded operator Delta which has the following properties:
(i) Delta(0)=0

(ii) Delta is monotone nondecreasing

(iii) There is k>0 such that [Delta(x)| <= klx[, for any x

(iv) Delta is odd

Pi(jw) is given as

[ o d + H(jw)]
Pi(jw)= [ ]
[d + E+(jw) 0 ]

where d is a nonnegative constant and H is a strictly proper function
in RLinf with the Li-norm of its impulse response no larger than d.

In the case of a single multiplier H, the following matrices are used.

[0 1] [-11] [1 0 01
[o H] ClAI] [o 1 0]
Phio = [0 -H] Phil = [|H|] Phi2=[ 0 0 1]
[1 o] [1] -1 o o]
[1 o] [1] fo-1 01
[1 o] [1] Lo 0-11]
[0 0 0d o0 0]
[0 0 0 0 x+01
Mstruc=[0 0 0 0 0 =x-] MO=zeros(6)
d o 0 0 0 01
[0 x+0 0 0 01
[0 0o x-0 0 01

In the case of a nonlinearity Delta having all the properties mentioned
above and also

Delta(x1) - Delta(x2)

A
1]

alpha <= beta - e, beta-e > alpha, e>0

x1 - x2

the definitions of all the matrices above, apart from PhiO, remain
the same.

PhiO is substituted by PhiO*T1%T2, where T1, T2 are the following
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transformation matrices

%
h L -1 ]
h [ 1 v ] [1 0]
% T1=[ beta-alpha ] T2 = [ ]
% [ ] [-alpha 1 ]
% [ o 1 ]
A
%
% If H is a linear combination of basis multipliers H1,H2,...,HN,
% then the above matrices have to be transformed appropriately. Their
% structure though will be similar to the one corresponding to N=1.
%
% The inputs of the function are the multiplier vector, mult, and the
% bounds of the nonlinearity, alpha and beta.
%
% The multiplier vector has to be in the form
o,
A
%  mult = [k1 11 k2 12 ... kN 1N]
h
% where each pair (ki,1li) corresponds to a basis multiplier
% (t"ki)*exp(lixt).
%
%
%
¢ = size(mult,2); % Number of elements of multiplier vector
N = c/2; % Number of basis multipliers
3=0;
for i = 1:2:c-1

Jo= 3+

k(j) = mult(i); % Power of t

1(j) = mult(i+1); % Coefficient in exponential
end
% Find the Laplace transform of each basis multiplier.
% This is based on the fact that the Laplace transform of
% a function (t"ki)*exp(li*t) is h(s) = (ki!)/(s-1i)~(ki+1)
%
H=[1; % Initialization of vector H, which will

% be used for building the matrix PhiO

phil = -1; % Initialization of the vector Phil
for i=1:N

k_fact = 1;

den = [1 -1(i)];

for j=1:k(i)

k_fact = k_fact#*j; % k-factorial

den = conv(den,[1 -1(i)]); % Denominator of H(s)
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end;
num = k_fact; % Numerator of H(s)

[a,b,c,d] = tf2ss(num,den);
h = pck(a,b,c,d); % Basis multiplier h
H=abv(H,h,mscl(h,-1));
normh = abs(k_fact/((1(i))"(k(i)+1))); % Norm of h
phiil = abv(phil,normh,normh);

end;

if nargin== % Case of a nonlinearity having the properties (i)-(iv)

Phi0 = sbs(abv(zeros((2*N+1),1),ones((2+N+1),1)), ...
abv(1l,H,zeros((2*N+1),1)));

else % Case of a nonlinearity having the properties (i)-(iv)
% and also slope in the interval [alpha, beta-e]

T1 = [1 -1/(beta-alpha) ; 0 1];

T2 = [1 0 ; -alpha 1];
Phi0 = mmult(sbs(abv(zeros((2*N+1),1),ones((2*N+1),1)), ...
abv(1,H,zeros((2*N+1),1))),T1,T2);
end;

Fiset = putsys(PhiO,Fiset);
Phil = abv(phil,ones((2%N+1),1))
Fiset = putsys(Phii,Fiset);
Phi2 = [eye(2#N+1); -eye(2+N+1)];
Fiset = putsys(Phi2,Fiset);

D=1;
for i=2:2%N+1

D = daug(D,i)
end;

Mstruc = [zeros(2#N+1) D;
D zeros(2*N+1)];

MO=0*Mstruc;
IQCdata = IQCpck(Mstruc,MO,Fiset);
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Examplel.m

% Example 1

% System transfer function G(s)
% G(s)= 3(s+1)/(s"2)(s"2+s+25)

clear all;

% Define the system transfer function G(s)
num_G = 3*[1 1];

den_G = conv([1 0 0],[1 1 25]);

[4,B,C,D] = tf2ss(num_G,den_G);

G = pck(A,B,C,D);
frs_G=frsp(G,logspace(-2,2));

% Define the transfer function -G(s)
num_G_minus = -num_G;

den_G_minus = den_G;

G_minus = mscl(G,-1);

frs_G_minus = frsp(G_minus,logspace(-2,4));

% Specify the bounds of the slope of the nonlinearity
a=1;
b = 7.9999;

% Choose the multiplier

multiplier = [1 1]

IQC=slopeNL(multiplier,a,b);

[Mstruc tmin]=IQCfeas(G_minus,IQC,’FDIO’,logspace(-2,2))
grid;

% Bode and Nyquist plots of G(s)

figure(2); clg;
bode(num_G,den_G,logspace(-2,2,10000));
title(’Bode Plot of the Transfer Function G(s)’);
subplot(3,1,3);
vplot(’nyq’,frs_G);
grid;
title(’Nyquist Plot of the Transfer Function G(s)’);

% Nyquist plots of transformed forward system
figure(3); clg;

% System G-tilde

subplot(2,1,1);

num_fi=a;

den_f£f1=1;

[num_cli,den_cli] = feedback(num_G_minus,den_G_minus,

num_f1,den_£f1,1);
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[a_cl1,b_cli,c_cli,d_cli] = tf2ss(num_cli,den_cll);
G_tilde = pck(a_cli,b_cli,c_cll,d_clil);
frs_cll = frsp(G_tilde,logspace(-1,2,1000));
vplot(’nyq’, frs_cli);
grid;
title(’Nyquist Plot of Closed Loop with Transfer function -G(s)
and Gain Feedback k=1?);
subplot(2,1,2);
% System G_hat
num_£2=-1;
den_12=b-a;
[num_cl2,den_cl2]=parallel{(num_cll,den_cli,num_£2,den_£2);
[a_cl2,b_cl2,c_cl2,d_cl2] = tf2ss(num_cl2,den_cl2);
G_hat = pck(a_cl2,b_cl2,c_cl2,d_cl2);
frs_cl2 = frsp(G_hat,logspace(-1,2,1000));
vplot(’nyq’,frs_cl2);
grid;
title(’Nyquist Plot of the Transformed Forward System’);

% Bode Plot of the Transformed Forward System
figure(4); clg;

bode(num_c12,den_cl2,logspace(-2,2));

subplot(2,1,1);

title(’Bode Plot of the Transformed Forward System’);

% Find and plot the multiplier which appears in the stability condition
H = mult_plot(Mstruc,multiplier);

% Check if the stability condition is satisfied
% Nyquist plot of the system appearing in the stability comdition
figure(7); clg;

sys = mmult(G_hat,H);

frs = frsp(sys,logspace(~2,2,1000));

vplot(’nyq’,frs);

grid;

title(’Nyquist plot of the product of the transformed

forward system and the multiplier’);

% Bode plot of the system appearing in the stability condition
figure(8); clg;
[a_syst_mult,b_syst_mult,c_syst_mult,d_syst_mult] = unpck(sys);
[num_syst_mult,den_syst_mult] =
ss2tf(a_syst_mult,b_syst_mult,c_syst_mult,d_syst_mult);
bode(num_syst_mult,den_syst_mult,logspace(-2,2,1000));
subplot(2,1,1);
title(’Bode plot of the product of the transformed forward
system and the multiplier?’);
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Example3a.m

% Example 3
% Saturation

clear all;
% System transfer function Gp(s)
num = 1;

den = conv(conv([1 11,[1 11),[1 101);

% PI Controller

k = 125.2; %116.1; %109.07;
Ti = 1.1426;

num_c = k*[Ti 1];

den_c = [Ti 0];

% Filter W(s) for Anti-Windup
T =1;

num_f = 1;

den_f = [T 0];

% System G(s) used in the IQC

num_G = addpoly(Ti*conv([1 2 1],[1 10]1), -T*k*[Ti 1]);
den_G = Ti*conv(conv([T 11,[1 10]),[1 2 11);

[4,B,C,D] = tf2ss(num_G,den_G);

G = pck(A,B,C,D);

w = logspace(-2,2,1000);

frs_G = frsp(G,w);

% Slope bounds for the saturation
a = 0;
b=1;

% Choose the multiplier

multiplier = [0 10];

IQC=slopeNL(multiplier,0,1);

[Mstruc tmin]l=IQCfeas(G,IQC,’FDIO’,logspace(-2,2))
grid;

% Nyquist plot of transformed forward system
figure(4); clg;
G_hat = madd(G, -1/b);
frs_cl = frsp(G_hat,w);
vplot(’nyq’,frs_cl);
grid;
title(’Nyquist Plot of the Transformed Forward System’);
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% Bode Plot of the Transformed Forward System
figure(5); clg;
[a_cl,b_cl,c_cl,d_cl] = unpck(G_hat);
[num_cl,den_cl] = ss2tf(a_cl,b_cl,c_cl,d_cl);
bode(num_cl,den_cl,logspace(-2,4));
subplot(2,1,1);
title(’Bode Plot of the Transformed Forward System’);

% Find and plot the multiplier which appears in the stability condition
H = mult_plot(Mstruc,multiplier);

% Check if the stability condition is satisfied
% Nyquist plot of the system appearing in the stability condition
figure(9); clg;

sys = mmult(G_hat,H);

frs = frsp(sys,logspace(~2,4,1000));

vplot(’nyq’,frs);

grid;

title(’Nyquist plot of the product of the transformed forward

system and the multiplier?’);

% Bode plot of the system appearing in the stability condition
figure(10); clg;

fa,b,c,d] = unpck(sys);

[n,d] = ss2tf(a,b,c,d);

bode(n,d,logspace(-2,4));

subplot(2,1,1);

title(’Bode plot of the product of the transformed forward

system and the multiplier’);

Example3b.m

% Example 3
% Multiplicative uncertainty

clear all;
% System transfer function Gp(s)

num = 1;
den = conv(conv([1 1]1,[1 11),[1 101);

% PI Controller

k = 120.8; %109.07;
Ti = 1.1426;

num_c = k*[Ti 1];

den_c = [Ti 0];
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% Filter W(s) for Anti-Windup
T=1;

% Filter W_D(s) of the multiplicative uncertainty
z = 10;

1000;

num_fd = [1 z];

den_fd = [1 pl;

2]
1]

% System G(s) used in the final loop

num_G11 = addpoly(Ti*conv([1 2 1],[1 10]), -T#k*[Ti 1]);
den_G11 = Ti*conv(conv([T 1]1,[1 10]),[1 2 1]1);
[A_11,B_11,C_11,D_11] = tf2ss(num_G11,den_G11);

G_11 = pck(a_11,B_11,C_11,D_11);

num_G12 = -k*T*[Ti 1];

den_G12 = Ti*[T 1];

[A_12,B_12,C_12,D_12] = tf2ss(num_G12,den_G12);
G_12 = pck(A_12,B_12,C_12,D_12);

num_G21 = [1 z];

den_G21 = conv([1 p]l,conv([1 2 1],[1 10]));
[A_21,B_21,C_21,D_21] = tf2ss(num_G21,den_G21);
G_21 = pck(A_21,B_21,C_21,D_21);

num_G22 0;

den_G22 = 1;

[A_22,B_22,C_22,D_22] = tf2ss(num_G22,den_G22);
G_22 = pck(A_22,B_22,C_22,D_22);

G = sbs(abv(G_11,G_21),abv(G_12,G_22));
[G,sig] = sysbal(G);

% Slope bounds for the saturation
a = 0;

b=1;

% Find the appropriate multiplier for the saturation
multiplier= [0 10];

% Find the appropriate multiplier for the uncertainty

R = ritz(0.1,1,2);
IQC_Delta = Complexpar(R);
IQC_f = slopeNL(multiplier,0,1);

% Augmentation of the descriptions of the two perturbations
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IQC = IQCdaug(IQC_f, IQC_Delta);

[Mstruc tmin] = IQCfeas(G,IQC,’FDIO’,logspace(-2,2))
grid;

mult_plot.m

% This function finds the multiplier that is appearing
% in the stability condition and returns its Bode and
% Nyquist plots.

function multiplier=mult_plot(Mstruc,mult);

% Find the multiplier from the elements of Mstruc
r = size(Mstruc,1);
¢ = size(Mstruc,2);
d = Mstruc(i,r/2+1);
¥ = ((x/2)-1)/2; % Number of basis multipliers
for i = 1:N
% x(i)=(x+)-(x-) for i=1:N
x(i) = Mstruc(2+*i,r/2+2*i)-Mstruc(2%i+1,r/2+2*i+1)
x(i) = x(i);
end

¢ = size(mult,2);
3=0;
for i 1:2:¢c-1
j =3+
k(j) = mult(i);
1(j) = mult(i+1);

end

% Use the conjugate of the multiplier for the stability condition

multiplier = d;
for i=1:N
k_fact = 1;
den_m = [1 -1(i)]; ' Denominator of the multiplier
den_cm = [-1 -1(i)]; % Denominator of the conjugate of the multiplier
for j=1:k(i)
k_fact = k_fact*j;
den_m = conv(den_m,[1 -1(i)]);
den_cm = conv(den_cm,[-1 -1(i)]1);
end;

num_cm = k_fact;

[a_cm,b_cm,c_cm,d_cm] = tf2ss(num_cm,den_cm);
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h_cm = pck(a_cm,b_cm,c_cm,d_cm);
% Multiplier=d + Sum[x(i)#*h(i)]
multiplier = madd(multiplier ,mmult(h_cm,x(i)));

end;

% Bode plot of the multiplier appearing in the stability condition
figure(b); clg;
[a_mult,b_mult,c_mult,d_mult] = unpck(multiplier);
[num_mult,den_mult] = ss2tf(a_mult,b_mult,c_mult,d_mult);
bode (num_mult,den_mult,logspace(-2,4,1000));
subplot(2,1,1);
title(’Bode plot of the multiplier’);

% Nyquist plot of the multiplier

figure(6); clg;
frs_mult=frsp(multiplier,logspace(-2,4,1000));

vplot(’nyq’,frs_mult);
grid;
title(’Nyquist plot of the multiplier’);
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