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Abstract

Depth and course control of a submarine are traditionally handled by two separate controllers.
A practical problem is that coupling effects between depth and course makes the depth controller
unable to work properly during course change. In order to investigate this problem a simulator
has been developed. Simulations show that a depth error occurs during course change. The mag-
nitude of the error depends on surge speed and course rudder angle.

It has been observed in practice that manual depth control during course change can be
improved by allowing an initial pitch.angle when going into the turn. An approach to solve
the problem of cross-coupling between course and depth is therefore to introduce a pitch angle
reference for the depth controller. This idea is elaborated and investigated by simulations. The
result is a control scheme which reduces the depth error.

KEY WORDS: Submarine control, cross-coupling, pitch angle references




List of Variable Names

Abbreviations

b.f.c.s. body-fixed coordinate system
CB Center of Buoyancy
cG Center of Gravity

C.5. coordinate system

ef.c.s. earth-fixed coordinate system

Ips Revolutions Per Second. (turning speed of propeller axis)
Symbols

B Buoyancy force

F, External force acting on the submarine

Ji(#,0,v) Transformation matrix (Velocity)

J:(¢,6,1%) Transformation matrix (Angular velocity)

M, Momentum due to external forces

m Submarine mass

P Angular velocity around body-fixed x-axis

q Angular velocity around body-fixed y-axis

T Angular velocity around body-fixed z-axis

U Velocity component in body-fixed x-axis direction. (SURGE)

v Velocity component in body-fixed y-axis direction. (SWAY)

Vs Velocity vector of CG expressed in body-fixed coordinates. V;, = [u v w|T
V. Velocity vector of CG expressed in earth-fixed coordinates. V, = [2, 4. 2.]T
w Submarine weight

w Velocity component in body-fixed z-axis direction. (HEAVE)
W Angular velocity vector in body-fixed coordinates. w, = [p ¢ r]T
We Euler-rate vector. w, = [¢ 8 ¢]T

X X-axis in body-fixed c.s.

X, X-axis in earth-fixed c.s

z, X, coordinate

z, CG velocity component in X, (earth-fixed) direction

Tg CG’s x-coordinate in the body-fixed c.s.




Symbols Continued

y  Y-axis in body-fixed c.s.

Y. Y-axis in earth-fixed c.s

Y. Y, coordinate

y. CG velocity component in Y, direction
ye CG’s y-coordinate in the body-fixed c.s.
z  Z-axis in body-fixed c.s.

Z, Z-axis in earth-fixed c.s.

2. 4. coordinate

Z, CG velocity component in Z, direction
zg¢ CG’s z-coordinate in the body-fixed c.s.

Greek Alphabet

Bowplane angle
Rudder angle
Sternplane angle
PITCH angle

PITCH angle velocity
ROLL angle

ROLL angle velocity
YAW angle

YAW angle velocity

W

State Variables in Nonlinear Simulation Model

x[0] wu
x[1] v
x[2] w
x(3] »p
x[4] g
x[5]
x[6] =z
x(7 v
x[8] =z
x[9] ¢
x[10] ¢
x[11] o

Additional Simulation Variables

U0 Initial value of x[0]
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Simulation Parameters

Min Step Size Minimum step size used by selected integration method

Max Step Size Maximum step size used by selected integration method
Tolerance relative local error permitted

Eq. Solver Integration method. Euler, rk23, rk45, linsim, adams or gear.
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1. Introduction

This Masters Thesis has been done at the Department of Automatic Control at Lund’s
Institute of Technology, in cooperation with Kockums Submarine Systems AB. It is a 16
week project tutored by Ola Dahl at Kockums and Rolf Johansson at LTH.

1.1 Problem Description

In areal submarine there is a problem keeping the desired depth during course change. This
is partly due to the design of the depth regulator, which is based on a linearized model of
a submarine. This design does not take into consideration the cross coupling effects that
exist between depth and course.

A way to eliminate the depth error during course change, while keeping the current design
of the depth controller, is investigated.

1.2 Report Outline

In Chapter 2 a general introduction to submarine dynamics is given, followed by a short
explanation of the David Taylor Standard Submarine Equations. Chapter 3 is a description
of the linearized submarine model used when designing the depth regulator. This regulator
is a state feedback controller, computed using LQ optimization.

The nonlinear submarine model is introduced in Chapter 4. The depth controller, as de-
scribed in chapter three, is tested on the nonlinear model. Also introduced is a gain schedul-
ing scheme, to compensate for the dependence of the surge speed. The cross coupling effects
due to a manual rudder angle are then presented. The chapter is ended with an analysis of
how the cross-coupling effects may be viewed. Chapter 5 presents two different methods for
elimination of the cross-coupling effects. One is a state feedback method and the other is a
pitch reference design based on ideas from the analysis given in chapter four. The proposed
methods are evaluated with regard to practical limitations and expectations of the system.
Chapter 6 summarizes the results found and conclusions are drawn.




2. Submarine Dynamics

A short explanation of the Standard Submarine Equations of Motion from the Naval Sur-
face Warfare Center (formerly David Taylor) lis presented [4]. These equations are the
foundation on which the submarine simulator is built, though deviations occur due to rec-
ommendations from Kockums.

2.1 Coordinate Systems

Coordinate Systems and Transformations

To describe the motion of a submarine submerged in a fluid, relative to earth, two different
coordinate systems are used. The first coordinate system (c.s.) is an earth-fixed system
X.Y.Z,. This c.s. is shown in Figure 2.1.

X
e

Ze

Figure 2.1 Earth-fixed coordinate system

1 WWW address: http://www50.dt.navy.mil/
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One representation of the submarine is by its Center-of-Gravity (CG). This point is
located at ., y., 2. relative to the earth-fixed c.s., as shown in Figure 2.2.

(%, .Ye Z)

Z
€

Figure 2.2 Submarine CGin X.Y.Z.

The second coordinate system is fixed in the submarine. This c.s., which is called the
body-fixed c.s., is shown in Figure 2.3 and Figure 2.4.

TOP - e s
VIEW 5 * — :
y
Figure 2.3 Submarine from above
—
SIDE
VIEW 2 *

z

Figure 2.4 Submarine from side

The coordinates of the CG in the body-fixed c.s. are (zg, y¢, 2g). In figures 2.3 and
2.4 the body-fixed origin coincide with CG and then (z¢, ye, 26) = (0,0,0).
The submarine can turn around all three axis x,y,z of the body-fixed c.s. The different
movements can be described in the following way: Imagine that you sit in the submarine
facing the front with your head up along the periscope. If you turn the submarine right /left
then you increase/decrease YAW angle (v). If, on the other hand, you decide to point
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your nose upwards/downwards, you increase/decrease PITCH angle (4). Finally, if you lean
right /left, then you increase/decrease ROLL angle (¢).

CONCLUSION: Position and orientation of the submarine can be described with the
variables z., Y., z, (position in the earth-fixed c.s), and ,0,¢ (yaw, pitch and roll angles).

Velocity
The velocity of the CG relative to the earth-fixed c.s is represented by the vector

I/e = (m‘e:y.eaz'e)T (21)

The velocity of the CG expressed in body-fixed coordinates is denoted V;. Its compo-
nents are u,v and w i.e.

Vs = (u,v,w)T (2.2)
The angular velocity is represented in the body-fixed c.s. as:

wy = (p,q,7)" (2.3)

A last definition is needed and that is the Euler-rate vector w,

We = (¢a0a¢)T (2'4)

Mathematical tools for transformation between the two c.s.

Transformations that, knowing V; (body related velocity) and w, (body related angular
velocity), give V, (earth related velocity) and w, (Euler-rate vector), are sought. In other
words functions such that:

J1(¢)0)¢):Vl;_) ‘/e J2(¢1 0’¢):wb — W

Mathematical preliminaries GOAL: Given a vector V in the c.s. shown in Figure 2.5,

Figure 2.5 Vector V represented in old c.s. (solid) and new c.s. (dotted)
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with coordinates x,y in the X-Y system (old system) and the coordinates z',y’ in the
X'-Y' system (new system), it is seen that the transformation from ',y to x,y is given by

¢\ [ cosa —sina <’
y /) \sina cosa Y

To find the coordinates of the vector V in the new c.s we invert the matrix above and

find that:
g\ _ [ cosa sina z
¥y )~ \ —sina cosa Y

Another way of visualizing this can be seen in Figure 2.6:

z

Figure 2.6 Old (solid) and new (dotted) coordinate axis when turning an angle o around the
z-axis

Turn the old c.s a positive angle a around the z-axis, naming it the new c.s at the new
position. The coordinate transformation then becomes

z’ cosa sina 0 z z
Y | =| —sina cosa 0 y|=Czaly (2.5)
2 0 0 1 z z

Keeping track of directions, the following c.s is found when turning around the y-axis
a positive angle a:

Figure 2.7 Old (solid) and new (dotted) coordinate axis when turning an angle o around the
y-axis

A comparison with Figure 2.6 shows that
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cosa 0 —sina
Cya= 0 1 0

sina 0 cosa

Finally turning around the x-axis gives the matrix:

1 0 0
Cxa=]0 cosa sina
0 —sina cosa

Submarine Velocity Representation It is standard to use the angles ¢, 8 and ¢ to
represent the orientation of the submarine relative the earth-fixed c.s. This is done in the
following way:

Starting from the earth-fixed c.s and the vector V, = [Z. y. Z]T, the following steps
are performed:

1. Rotate a yaw angle 1 around the Z-axis. This gives a new c.s, where the coordinates
of V, are given by: —» V;=Cz,V.

2. Rotate the new c.s a pitch angle 6 around the Y-axis: — V3=CyV1=Cy,Cz,V.

3. Rotate this new c.s a roll angle ¢ around the X-axis: — V3=Cx,4V2=Cx,4Cy,0Cz4 V.

The resulting c.s, achieved after the three operations yaw, pitch and roll, as described
above, represents the submarine’s orientation. The resulting c.s. thus coincides with the
body-fixed c.s. Since V3 = [u v w]? is the submarine velocity, represented in body-fixed
coordinates, this gives V;,=Vj, i.e.

Vo = Cx,4Cr,6Czy Ve

Most of the time interest will focus on finding earth-fixed coordinates, given body-fixed
coordinates. Since the matrices Cx,4,Cy,p and Czy are orthogonal, that is C% ,Cx,4=I so
that Cx%=C% , etc., this can be written as :

Ve = C§'¢C$'QC§’¢V}, S J1(¢a0a"/’)Vb

The matrix J;(¢, 6, 1), when written with s = sin and ¢ = cos, looks like 2:
J1(¢: g, "/}) =

c($)e(8) —s()e(9) + c()s(6)s(d)  s(¥)s(9) + c(¥)e(¢)s(6)
( s(¥)e(6)  c(¥)e() + s(P)s(0)s(¥)  —c()s(¢) + 3(8)s()e(9) ) (2.6)
—-3(0) c(6)s(9) c(0)c(¢)

2 The coordinate transformation can also be found in [4] and[5]
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Submarine Angular Velocity Representation There is also a need for a transfor-
mation between the body-fixed angular velocity w, = (p,¢,7)” and the Euler-rate vector
w, = (¢,0,9)T such that

we = J2(9,0,9)wy (2.7)

J2(9,0,%) is found by the following reasoning:
Assume that the three rotations yaw(v), pitch(8) and roll(4), as described by steps 1, 2 and
3 above, have been done and that the new coordinate system is oriented the same way as

the body-fixed c.s.

If =1)=0 and ¢ # 0, it can be seen that the angular velocity wy is a pure rotation
around the x-axis;

¢
Wy = 0
0

Suppose instead that (i):@b:O and 6 # 0 . Then wy is a rotation around the y-axis.
But this y-axis belongs to the intermediate coordinate system in step two above. Therefore
make step three to find the angular velocity in body-fixed coordinates.

This gives

0
Wy = va'f’ 0
0

The same reasoning is used when ¢=0=0, ¥ # 0. This is a rotation around the z-axis
belonging to the first coordinate system above (step one). To obtain the angular velocity
therefore rotate the system twice (steps 2 and 3). The result is

0
Wy = Cx,q)Cy’o 0
(]
Add these results to find w, = (p, q,7)7.
¢ 0 0
Wy = 0 + Cx,¢ 0 + CX,¢CY,0 0 = S(¢7 0, ¢)w¢
0 0 Y

where
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1 0 —sind
S(#,0,9)=1] 0 <cos¢ cosfsing
0 —sing cosfcos¢

which leads to 3:
1 singtand cos¢tand
(2.8)

T(#,0,4) = $(8,6,9)" = ( 0 cosé ~ sing
0 sin¢/cosf cos¢/cosb

Notice that the matrix S(¢, 6, ) is singular if § = 90 deg (% rad) for example.

2.2 Forces and Moments

The six variables (z.(t), ye(t), z(t), #(t), 6(t), ¥ (t)) describe the position and orientation of
the submarine as a function of time t. They can be found with six equations, three force
equations and three moment equations.

The external force acting on the submarine is F,=[F;, Fy, F,]7. It represents e.g. propeller
thrust and hydrodynamic forces due to water turbulence and rudder angles. To find F,,F,
and F,, use Figure 2.8

Figure 2.8 Body-fixed c.s situated in the submarine

and the relationship that gives the time derivative in earth-fixed coordinates when given
body-oriented variables:

d d

A = variable e.g. position or velocity in body-coordinates.
d/dt.= derivative in earth-fixed c.s.

d/dty= derivative in body-fixed c.s.
w= angular velocity in body-fixed c.s.

3 Can also be found in [4] and [5]
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An explanation of 2.9 can be found in [9].

GOAL:Derive an expression for the force:
F, = ma,

Knowing the vector r¢, (the distance between the origin of the body-fixed c.s. and the CG
of the submarine) as shown in figure 2.8, and using equation 2.9, the velocity of the
submarine can be expressed in the earth-fixed c.s, as:

Ve =Vp+w X g
and the acceleration as:

d d .
-(E"Ue = E’UG-FWX’UE =t +wXrgtwXrgtwXv, :'v',,-}-erG—}-wx('vb+wx1'G)
e b

a, =

The force can then be seen as:

m(th+w X v+ wXrg+wX (wXrg))=Fe

With v, = (ua ’U,’LU)T, Up = (’U., 'bﬂb)T7 w= (p7 q, T)T: w= (p7 g, ".')Ts rG=(wG’ Ye, ZG) and
m=submarine weight, the boxed expression can be expanded to find the left hand side of
the three David Taylor (DT) force equations [4].The equations are also given in Appendix
A,

Find three momentum equations The angular momentum is defined as L = Iyw
where w is the angular velocity and I the moment of inertia matrix.

Lets illustrate the following discussion with Figure 2.9.

Figure 2.9 The CG with a speed V; represented in the body-fixed c.s.
If =0 then:

M, = -‘%L = %(Iow) = [equation 2.9] = Iow + w X (Iow) (2.10)
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If, on the other hand, r¢ #0 then an extra moment is needed:

d ¢
M, =rgX F=7rgX MU = T6 X m(vp + w X vp) (2.11)

Put together the moment can be seen as:

| mre X Uy + mrg X (w X v) + Jow + w X (Iow) = M,

Wlth Vp = (’U,,‘l),’IU)T, 1)';, = (11,1.),11))7', w= (p3 q, T)T1 w= (p, q.’ i')Ti er(mG)yG)zG) a'nd
m=submarine weight the boxed expression can be expanded to find the left hand side of
the three David Taylor (DT) momentum equations found in [4] and in Appendix A.

F, and M, are found through investigations of forces affecting the submarine, such as
waves, currents,skin friction etc. A short presentation of these can be found in the next
section.

2.3 The David Taylor Standard Submarine Equations of
Motion

On the right hand side of the DT equations a number of forces and moments are found.
Among others there are added mass forces and forces due to the specific hull construction.
An extensive treatment of these is outside the scope of this report.

A few specific details worth mentioning though, are:

1. The equations are normalized. Consider e.g. the axial force equation F, which
includes the dimensionless constant X, . Suppose that the force F; depends on the
angular velocity component ¢, and that a Taylor expansion of F; is done. This gives
F, ~ .. 4+Xgq*+... with F,[*2*] and X, [kgm] and ¢*[]. The dimensionless constant
X, is then obtained by multiplication with p—z;-[;gl;].

In other words, the factor "zﬁL‘1 appears in the axial force equation to make the
dimensions right.

2. Fxp (In equation F,, Appendix A)and @, (In equation M, ., Appendix A) models
the propeller.

3. C4 (In equations F,F,,Mpicn and My, , Appendix A): Coefficient used in integrating
forces and moments along the hull due to local cross-flow.

4. ﬁL(In equations Fy,F,, M, .u,Mpitcn and My, Appendix A): Lift-curve slope used in
computing the effects of the hull-bound vortex due to lift on the bridge fairwater.

5. C (In equations F,,Fy,F,,M,.,Mpiter, and My e, Appendix A):Variable coefficient
used in scaling model thrust and drag data to full-scale.
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3. Linear Control Design

3.1 Introduction

Control of depth and course is handled by two separate linear controllers. The controller
parameters are computed using a linearized model of the submarine.

The depth controller has two output signals (sternplane §, (aft rudder) and bowplane §,
(front rudder)) and four input signals (depth z, speed in normal direction w, pitch angle §
and angular velocity around the y-axis g). The course regulator, which will not be treated
_here, is often a PID-regulator. It has one output signal (rudder §, (aft rudder)).

Since the problem investigated in this master thesis is depth-keeping, the design of the
depth regulator will be shown in detail.

The chapter starts with the linearization of the nonlinear submarine model and then goes
on to describe the depth-regulator design. Then the linear open loop system and the linear
closed loop system are simulated using Simulink.

3.2 Linear Model for Depth Contrel

Using the David Taylor differential equations (see appendix A) a linear model for depth
control analysis is sought.

A linear model can be found in two ways. One is to linearize the submarine around an
equilibrium point and by doing that getting access to all the powerful tools of linear
theory. This method will be used here. Another method, which utilizes the structure of
the nonlinear equations, is exact linearization [8).

Linearization

To simplify the model of the submarine, a little knowledge of its behavior is needed. The
six degrees of freedom (u,v,w,p,q,r) can be reduced to three if assuming that the
submarine only moves forward and up/down. While moving up/down it can be observed
that the pitch angle @ changes (the same phenomena can be observed in an airplane), so
the model should allow for movements around the y-axis (pitch). Two equations, from
Appendix A, can be used to describe this simple model: the normal force equation (F;)
and the pitching moment equation (Mpici,). They look as follows.

Normal Force equation F;:

m[w — ug + vp + ze(rp — 4) + Yo (ra + p) — ze(p* + ¢°)] =
£1%[Z%4] '

EP[Ziw + Z uq + Z,,vp+ Zy,vr)+

LP[Z,v? + Z, uw] + Z,,vv

2122/, ulw| + Z,,, |lw(v? + w?)/?|+

glz[Zg,uzﬁ, + Zjuby + Zg,,,u""&,(n -1/C)C]-
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2 Ca Jy b(z) w(=z){[w(=)]” + [v(2)]*}/2de+
(W — B)cosfcos ¢

Pitching moment equation Mp;cn:

ch_i+(I,,—I,)rp—(p+qr)Izy+(p2—rz)In-I—(qp—f-)Iw+m[zG(1l—vr+wq)—mG(u')—uq-l—vp)] =
LI5S [ Mg+ M rpl+

L1 [Myw + Mjug + M, vr]+

2B [Mw? + Mjuw + M, zwl|(v? + w?)[Y/?]+

8 P [M;, w6, + Myu?by, + Mj,,u?8,(n — £)C)+

2 Cy fyzb(z) w(z){[w(z))? + [v(z))*}/2dz—

(z¢W —azpB)cosfcos¢p — (2¢W — zp B) sinf

Restricting the degrees of freedom leads to the following approximations:

1. r=0 No angular velocity around the z-axis
2. p=0 No angular velocity around the x-axis
3. v=0 No velocity component in the y direction.

For the type of submarine studied here, the following assumptions are common
engineering practice:

1. u is assumed constant. The depth controller is thus designed for constant speed.
Varying speed is taken care of by gain-scheduling.

2. There is no displacement in the y- and x-direction of CB (Center of Buoyancy) and
CG (Center of Gravity),i.e. ¢ =zp =yg = yp = 0

3. The inertia matrix is diagonal, i.e. I,,=1I,,=1I,,=0, since the body-fixed c.s. coincides
with the main spin axes.

4. C is a variable coefficient used in scaling model thrust and drag to full scale and is
not used in this model.

5. M, is a lift factor due to unsymmetric hull. M,=0.

6. Terms with absolute value are damping coefficients and they are not needed in this
model.

7. The roll motion is neglected, i.e cos¢ ~ 1

8. W=B, i.e. the weight of the submarine is the same as the Buoyancy force, in other
words assume that the submarine is well balanced at a certain depth.

9. £Cu; b(z) w(z{[w(z))® + [v(2)]"}/*dz and
£Cy fyzb(e) w(z){[w(z)]* + [v(z)]*}/2dz models cross-flow and can be neglected.
10. g small = ¢* =
11. w small = wg= 0
12. Small pitch angles, i.e. sinf =~ 6

These assumptions hold if the submarine is moving at a relatively large depth, and does
not undertake any abrupt motions.

The normal force equation and the pitching moment equation are now simplified.
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Normal Force equation:

mlw — ug] =
L1AZig+

2132y + Zyug)+
L1?(Z;, uvw+

L1 25,076, + Zgy w6y

Pitching moment equation:

L=
215 Mg+

eI Mpwb + Mjug)+

L3 M, uw]+

213 M}, u?6, + M},u6,)—
(ZeW — ZpB)f

This can be written as

[m—gzaz:,., —enz; ][u’;]_
—eliMy, I, oM || ¢

e12z!  m+ e’z ] [ w ] [ L2zt B2z ] [ ) ]
2 w 2 q 2 bs 2 b o s 3.1
[ EPM!,  eliM] g || ermy, ermy |6 [* T (3.1)
| w721 |
—(ZgW — ZgB)
Introducing
() ()
y = =
' q by
this system can be written as:
My, = Cuy, + Du?6 + GO (3.2)
which can be transformed into:
i = M~ 'Cuy, + M~ 'Du?*6§ + M~1Go (3.3)

In order to obtain a complete state space model, differential equations for # and z are
needed. Equations 2.6 and 2.8 gives:

6 = cosfg — rsin¢g

Zz=—usin@ + vcosfsing + wcosfcos ¢
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Under the same assumptions as before they are written:
0=q z=w-—uf (3.4)
Introduce the state vector ; as:
z=|wgqglz ]T
Combining 3.3 and 3.4 then gives:

25; =A23;+B6

where

M-1Cu MG O2x1

M-1Dy?
A= 0 1 0 0 B .
1 0 -—u 0 2x2

with the following structure :

a;; v a;pu Qi3 0 b11 'u,2 b12 u2

_ | azau azzu az 0 b1 u? b2; u?
o 0 1 0 O B= 0 0
1 0 —u 0 0 0

Since u is assumed constant, A and B define a linear model for depth control. Expressions
for the coefficients a;; in A and b;; in B are given in Appendix B.
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3.3 Depth-regulator Design

GOAL Find a MIMO (Multiple Input, Multiple Output) controller that stabilizes the
submarine and gives it good depth control characteristics. The following constraints are

given:

o The pitch angle 6 should not at any time be larger than 10 degrees.
e No overshoot is wanted
¢ Rudder angles §, and 6, are limited to & 30 degrees.

A tobust design, in the sense that it works well when used with the original nonlinear
model, is sought.

Solution LQ (Linear-Quadratic) methods.

Description The LQ regulator is a state feedback controller, where the poles of the
closed loop system are assigned, not by the designer directly, but indirectly by minimizing
a performance index. Write the system to control as

{ £(t) = Am(t)+Bu(t)
y(t) Cz(t)

where z(to) is given. Let matrices Q and R be nonnegative and positive definite,
respectively. Define the quadratic performance index for the regulator problem as

V(2(to), ul-)s o) = /t :o(uT(t)Ru(t) + 7 (£)Qa(t))dt (3.5)

Tts minimization leads to a linear state feedback law, i.e. u(t) = - L z(t) [2]. The optimum
control can be written as

u(t) = —R~*B* Pz(t)

where P is the solution to the Riccati equation PA+ ATP — PBRBTP+Q=0"*

The design parameters are R, which is a weight matrix for the control signals, and Q
which is a weight matrix for the states. Q is penalizing states that are not zero. If there
were no limitation on the control signal the states could be brought to zero in a time T,
chosen arbitrarily close to to= start time for control. This is not realistic and R is
therefore introduced to penalize the control signals.

4 Matlab >> help lqr
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Design (How to choose R and Q)

General information:

1. Good knowledge about the physical system is important as it will facilitate the
choosing of parameters in R and Q [2].

2. For single input systems, the optimally designed regulator possesses an infinite gain
margin and a phase margin > 60 degrees, i.e. good stability properties. For multiple
input systems a diagonal R lets the system tolerate independent scalar gain variations
between 0.5 and oo, and phase variations less than 60 degrees in each scalar input
without disturbing stability. In the nondiagonal R case there is no guarantee in any
way of robustness to gain or phase variations on any single input {2].

3. For the multiple input system, having a diagonal R with entries of very different size
gives poor robustness to input cross coupling [2].

4. One approach to find Q and R is to set the diagonals of Q and R to the inverse of the
squared maximum allowed deviations in the corresponding variables.(1/maz?)

5. It is possible to make the poles of the closed system move to the stable poles of the
open system by letting Q=diag(pI), where p is small [2]

6. It is possible to design a LQ regulator by which the closed loop system gets
prescribed eigenvalues (3]

Boat Model A nonlinear submarine model describing a typical submarine was obtained
from Kockums.

Based on the supplied model, a controller was found using the ideas in the design part
such that

10 0 0 0
0 100 0 0 300 0
Q= R= (3.6)
0 0 1000 O 0 300
0 0 0 1

This controller is used in all simulations.
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3.4 Simulations

There are three different ways to run a simulation in the Simulink environment [6] [7].
One way is to do a graphical setup from the menu bar which gives a clear and attractive
picture of how the system is organized. The second method is to work in Matlab with a
model built up by Matlab-syntax. The third method is to write a mex-file in C, which
describes the system and its different parts in the same way as the underlying logic which
simulates the graphical model. This enables the user to define home-made SIMULINK
blocks, tailored for a specific task. The two fastest methods, the graphical
setup/simulation and the mex-file in C were tested. The graphical method will be used in
the following simulation of the linear system.

Open Loop System
The open loop system can be drawn in the following way in Simulink (Figure 3.1).

5*pl/180
ds (rad) Speed in z-direction
r_’l q i

e x:,( o P Demux Angular velocity
Mux around y
db(rad) State-Space Demux
Pitch angle
Depth

Figure 3.1 Simulink representation of the open loop system

Figure 3.2 shows the response to a positive sternplane angle (rudder deflected down).
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Figure 3.2 Submarine response to a 5 degree sternplane angle when u (surge speed) =1 m/s. w
= speed z-direction (body-fixed c.s.), @ = angular velocity around y-axis (body-fixed c.s.), theta
() = pitch angle and z. = depth

As can be seen in the lower right plot, the submarine slowly rises towards the surface.
This due to the lift forces introduced by the downward deflected rudder. With a somewhat
higher surge speed the same manceuver results in the following movement:

wim/s] _ q[deg/s]

& & b
& B

o 100 200 300 400 © 100 200 300 400

6 [ deg ] ze [m]

L
o o
s 8 §

0 100 200 300 400 [} 100 200 300 400

Figure 3.3 Submarine response to a 5 degree sternplane angle when u (surge speed)= 3 m/s. w
= speed z-direction (body-fixed c.s.), ¢ = angular velocity around y-axis (body-fixed c.s.), theta
(6) = pitch angle and z. = depth

This shows that the response to a change of sternplane angle (4,) is different for different
speeds. Above a certain speed the downward deflected sternplane will introduce a negative
pitch 6 large enough to make the submarine sink. The different pitch angles (#) induced
by the sternplane is clearly visible in Figures 3.3 and 3.2

Figure 3.4 shows the poles and zeros of the transfer function from sternplane (§,) to depth
(z), for different speeds. As can be seen in the left plot the linear system is unstable for u
= 12 m/s. Also note that the system is non-minimum phase.
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Figure 3.4 Poles (left) and zeros (right). *(1 m/s), x(3 m/s), +(7 m/s) and o(12 m/s)

Figures 3.5 and 3.6 show the response to a change of the bowplane angle. Deflecting the

bowplane a positive angle §, is the same as deflecting it down an angle §, and that results

in lifting forces moving the submarine upwards.

w [m/s] g deg/s ]
.L s:m
8 [ deg | z, [m]

/

Q 100 200 300 400 [} 100 200 300 400

Figure 3.5 Submarine response to a 5 degree bowplane angle, u (surge speed) = 1 m/s

wim/s]  q[deg/s]

b o B 1

-o‘;-ﬂ 100 200 300 400 -c\'c-.ﬂ 100 200 300 400
C Wldeg] . zlm]
-2
° —
08 -8
-8

/\_,~

0 100 200 300 400

)
)
=]

-3

100 200 300 400

Figure 3.6 Submarine response to a 5 degree bowplane angle, u (surge speed) = 3 m/s
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The poles and zeros for the transfer funktion from §, to depth are shown in Figure 3.7

008

0042

0.02»-45:----

el i H i i i i o i i i H i
TV 06 -048 -04 -035 -03 -025 -02 -0.15 0.1 -005 0O e 07 o8 05 64 63 02 01 0 01 02

Figure 3.7 DPoles (left) and zeros (right). *(1 m/s), x(3 m/s), +(7 m/s) and o(12 m/s)
The following differences in response to sternplane and bowplane changes can be seen;

e The direction of the depth response to a positive sternplane angle is speed dependent.
This is not the case for the bowplane.

o The bowplane does not affect depth as much as the sternplane.
o The pitch # is much smaller when working with the bowplane.

Closed Loop System
The closed loop system can be visualized as follows in Simulink:

Stemplane angle Spaed in z-direction
alDom m &l X'=Ax+Bu

L — q |
Domux Angular valocity
y

Demuxt Mux arourd
Stato-Spaco s\ ——sr ]
L= & ] Piich anglo
Bowplane anglo
Dopth
K Mux Demux
Gain
Feedback Gain Muxi Damu
using LGR Design, > m
Sum dosired
depth

Figure 3.8 Closed loop system with linear submarine model and Lq designed depth regulator.
Using u = 3 m/s and the weight matrices Q and R found in the design section, a

simulation where the submarine starts at zero depth and strives to go down to 10 meters
can be seen in Figure 3.9:
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Figure 3.9 Step response when zr = depth reference is changed from 0 to 10 meters. u = 3
m/s

As can be seen in Figure 3.9 the system performs well.




4. Nonlinear Submarine Model and
Cross Coupling Effects

4.1 Introduction

A linear model was used for computation of a depth controller in chapter three. This
model does however not include any cross coupling effects between course and depth.

This chapter presents simulations using the full nonlinear model, as presented in Appendix
A. First the open nonlinear system is simulated, to see if any deviations compared to the
linearized system are visible. Then the control loop is closed and the depth controller is
investigated. In connection with this, the cross coupling effects between course and depth
are shown. The chapter ends with an analysis of how the cross-coupling may be explained.

Simulation Facts

In the following chapter, the submarine is represented by a mex-file. The C-code is given
in Appendix C.

In the linear model the surge speed u is constant. This is not the case in the nonlinear
model, where u is a state variable. There is however an approximately linear relation
between the stationary value of u and the propeller revolution rate per second (rps). For
the submarine model used here 1 rps results in a stationary surge velocity of
approximately 3 m/s. In order to minimize the time to stationary u, the initial value of u
is therefore chosen as 3 - rps.

Throughout the following chapters the following simulation parameters have been used:

Min Step Size: 0.0001 sec
Max Step Size: 1 sec

Tolerance: le-3

Equation.Solver: Runge-Kutta 5
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4.2 Open Loop System

Figure 4.1 shows the response of the nonlinear system (solid line) and the linear system
(dashed line) to a sternplane angle §, = 5:

~ w([m/s] q [ deg/s ]
-0.1
-0.2 !r'-\ N
/
v/
'Mo 100 200 300
o O[deg]
-5
-10 \ 'r' R
\V!
150 100 200 300

Figure 4.1 Open system given a sternplane angle (6,) of 5 degrees. rps=1.03 (6 knots). Non-
linear system (solid), linear system (dashed)

The surge speed in the linear model is 3 m/s. The propeller revolution rate rps was
selected to obtain a stationary u as close as possible to 3 m/s. This resulted in rps = 1.03.
As can be seen in Figure 4.1 the response of the linear model resembles the response of

the nonlinear model.

Even closer resemblance between the linear and nonlinear systems is apparent when using
the bowplane (front rudder), Figure 4.2.

w[m/s]

 qldeg/s]
0.02
0
-0.02
-0%% 100 200 300
_ z(m]
6
4
2
B <
2 100 200 300

Figure 4.2 Open system given a bowplane angle (6b) of 5 degrees. rps=1.03 (6 knots) right.
Nonlinear system (solid), linear system (dashed)
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Cross Coupling

The result of applying a 5 degree rudder angle §, to the nonlinear model is shown in
Figures 4.3 and 4.4. The propeller revolution rate rps = 1, which corresponds to the
stationary surge speed 3 m/s. The states associated with the course change are shown in
Figure 4.3. As can be seen in this figure the submarine turns with a stationary turning
rate r & -1.2 deg/s, which is an expected result of the change in course rudder.

025 v[m/s] 7 [ deg/s |
0.2
0.15 03
0.4
-1
0.05
% 1% 100 200 300
g ldeg) _ ylm]
0
-100
-50
200 \ -100|
~150)
-300
~200
4% 100 200 300 250, 100 200 300

Figure 4.3 Submarine response to a 5 degree change in rudder angle (é,). v = speed y-direction
(body-fixed c.s.), r = angular velocity around z-axis (body-fixed c.s.), ¥ = yaw angle and y. =
side displacement. rps =1

The states associated with the depth model are shown in Figure 4.4. As can be seen, the
course change results in a pitch angle 8 of approximately 8 degrees and a decreasing depth.

w{m/s] q [ deg/s ]
0.4
0.2
03
02 0.1
0.1
0
05
300 0 100 200 300
deg ] Ze [ m ]
10 10
8 \x 5
8 0
4 -5
2 -10
% 100 200 300 8 100 200 300

Figure 4.4 Course rudder effect on states found in the linear model. rps = 1

Conclusion The linear model used to design the depth regulator seems to have captured
all essential dynamics of the nonlinear model (regarding depth change). It was then shown
that the rudder (§,) introduces coupling effects in the open system, Figure 4.4, such that
both the pitch 6 and the depth are affected.
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4.3 Closed System

The Simulink representation of the closed loop system with a nonlinear submarine model
and linear depth controller is shown in Figure 4.5.

.""""]I- |_||Kl= [ Mux i
Demux4 Malrix l__i—\_mi_ {70 ]
Galn (LQ) Muxd

Sum Dapth sal point

dd
rudder angle ds fdderangieD

/ x coord. earth
| o I _ Mux o Damiix fanh
rudder angla dr submating y L

W W s | *m)

ST
1l
Dainux Aall angle
>t |
Pitch angle
> ps ]
Yaw angle |

IPVF

dr_

Figure 4.5 LQ-control of nonlinear submarine system

Figure 4.6 shows the response to a change in the depth set point. The initial depth is 7
meters, the initial surge speed is 3 m/s = 6 knots, the set point is z, = 10 meters and the
depth regulator was calculated with the weight matrices in 3.6.

10.5

0 50 100 150 200 250 300

Figure 4.6 Depth change from 7 meters to 10 meters, rps = 1

As can be seen the LQ-regulator does a good job.
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Gain Scheduling

Since the equations that are used to find the LQ-regulator are changing with the surge
speed u, the optimal LQ-regulator has to follow the changes in u. This can be done by
gain scheduling, which means that LQ parameters are calculated for a set of u-values, e.g.
u=1,2..,15 and then the parameters for the current surge speed u(t) are found through
linear interpolation. The Simulink representation of the closed loop system with gain
scheduling is shown in Figure 4.7.

mddar angle d: rudder angle db
!
Gain1

> g
rudder dr II'—I_—. submarine >
Mioe subsignals - Gain scheduling

rudder angle dr

ryy

L]
reference o set:

Figure 4.7 Submarine with gain scheduling. Reference to be set is zr = depth reference

The step response of the closed loop system in Figure 4.7 at the speeds rps=0.3 (1 m/s)
and rps=1 (3 m/s) can be seen in Figure 4.8). The gain scheduling parameters were
calculated with the Q and R in Equation 3.6.

N . s s L
0 50 100 160 200 250 300

Figure 4.8 Descend to 10m, rps = 1 (solid) and rps = 0.3 (dashed)
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Cross Coupling

In the open loop system a cross coupling between depth and course can be observed. In
the closed loop system of Figure 4.7, with rps = 1 and a manual rudder angle §, of 5
degrees, the following simulation result, Figure 4.9, can be observed. See Figure 4.4. The
depth set point is 7 meters.

8, [ deg ] 8y [ deg |
10 10
5 /\ 5 f
0 0
0 200 400 600 0 200 400 600
ze [m] w[m/s ]
10 0.4
8 / 0.2 /\
6 0
0 200 400 600 0 200 400 600
deg/s 0 [ de
 aldeg/s) 5 [ deg ]
0.1 /\‘ 0] ./
0 -5
0 200 400 600 0 200 400 600
5 o, [ deg ] 500 Ye [ = ]
4 -500
0 200 400 600 0 200 400 600

Figure 4.9 Trying to keep 7Tm with 6,=5 degrees, rps=1

As can clearly be seen in Figure 4.9 its not possible to retain the depth of 7 meters. The
cross coupling seen before in the open system, Figure 4.4, can also be seen here in the
closed system. Notice that the effects of the cross coupling is different. In the open system
the pitch angle is approximately 8 degrees and the submarine rises towards the surface. In
the closed loop system the pitch angle is somewhat less than 5 degrees and the submarine
sinks almost 3 meters.

The influence of changes in surge speed u and rudder angle §,, for the system in
Figure 4.7, is shown in Figures 4.10 and 4.11. In Figure 4.10 the result of different speeds,
given the same rudder angle §,, is shown.

As can be seen the depth error is different for different speeds. It also seems that the
bigger the rudder angle 8, the bigger the depth error. Looking at the Q matrix in
Equation 3.6 it’s clear that the controller not only punishes depth error, it also punishes
pitch angle (8) error. As can be seen in Figure 4.4, the turn at rps=1 introduces a pitch,
and this introduces lift forces, making the submarine rise. The regulator works at lowering
the pitch and the depth error. As can be seen in Figure 4.9 the pitch () angle has been
lowered, compared to the open system, but not in such a way that the set point depth can
be maintained. Instead the submarine now sinks instead of rises. Thus the lifting forces
introduced by the pitch are not enough to help the submarine maintain its depth.
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Figure 4.10 Simulations with different speeds: rps = 0.3 (dashed ), rps = 1 (solid), rps = 2
(dotted). 8, = 5 degrees

Figure 4.11 shows the result of varying §, angles, for a fixed initial speed u(0) = 3 m/s
(rps = 1).
6, [ deg ] 8 [ deg ]

_______________

@ @™ ©
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>
Thimi—.—,
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g

™M o

0 200 400 600 0 200 400 600

Figure 4.11 Simulations with different &,: §r=1 degrees(solid), 6r=3 degrees(dashed), ér=5
degrees(dotted), 6r=8 degrees(dash-dot). rps=1.

Analysis Looking at the simulations done on the open system, Figure 4.4, it can be seen
that a course change introduces changes of depth and pitch angle (8). Looking into the
nonlinear equations that were used when deriving the linear submarine model (Normal
Force- and Pitching Moment equation, Appendix A), it can be seen that three terms are
affected due to the speed in the y-direction (v) and the rotation around the z-axis (r).
These are Z],vv, Z) vr and M, vr. If assuming that the nonlinear system is decoupled, it
is possible to view v and r as inputs to the depth system, i.e. disturbances, see Figure 4.12
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Figure 4.12 Nonlinear decoupled depth system, with disturbance signals » and r

These disturbances introduce something that can be viewed as a a weight disturbance, and
this weight disturbance makes the submarine move vertically, and as the introduced weight
is not situated in the CG of the submarine, but rather somewhere along the x-axis of the
submarine, a pitch angle 6 is also introduced. This can be shown in the following way:

The weight introduced in the submarine can be seen as a force working in the z-direction
and if this force is a weight, then the force = mg is equal to components represented by
Zyy and Z,, in the force equation F; in Appendix A, thus:

mg = g(L:’Z,',rvr + L*Z! ,vv) (4.1)

Introducing the moment = mgl and equating with the moment represented by M,, in the
moment equation. My, in Appendix A gives:

mgl = g(L‘*M;,vr) (4.2)

Thus it is possible to find m and , given v and r. An example will be shown to clarify the
reasoning:

To find v and 7, the open loop nonlinear system is simulated with a rudder angle 6§, = 5
degrees. This simulation shows

. wlm/s] g [ deg/s ]
02
03
02 0.1
01
0
co 100 200 300 V] 100 200 300
0 [ deg ] ze [m]

A o 2@ o
-]

b
4
=3

o 100 200 300 0 100 200 300

Figure 4.13 Open nonlinear system with ér = 5, rps=1
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The stationary v and r are then substituted into the equations in 4.1 and 4.2 which gives
m and 1. The open system, with mg added to the F, equation and mgl added to the M.
equation and no rudder turned (§, = 0) is then simulated. The result is shown in

Figure 4.14

w [m/s ] q [ deg/s]
0.4 0.4
03 0.3
0.2
02
0.1
0.1 N
00 100 200 300 o 100 200 300
0 [ deg ] ze [m]
15 20
0
10
-20
5
-40
so 100 200 300 _mo 100 200 300

Figure 4.14 Weight added, no rudders and rps=1

As can be seen in Figure 4.14, the introduced pitch angle is too big to be equivalent with
the one introduced by the turn,and the ascent of the submarine is too fast. But the test
shows that turning the submarine affects the depth and pitch of the submarine in the
same way as adding a weight to the submarine. This weight disturbance can be countered
by changing the pitch angle, using lift or down forces on the submarine to retain its depth.
(Tests made on a real submarine, support this view.)

If investigating the closed loop nonlinear system the same way, i.e. finding stationary
values by turning the closed system and then adding the weight disturbance calculated
from these values and setting §, = 0, the result will be as in Figure 4.15

w [m/s ] q [ deg/s]
02 0.15
0.5 0.1
0.1 0.05
0.05 0
% 100 200 300 8% 100 200 300
6 [ deg ] ) ze [m]
3 8.5
2 8
1 75
% 100 200 300 3 100 200 300

Figure 4.15 Closed loop system with weight added,67 = 0 and rps=1

These results can be compared with the ones found in Figure 4.9. It can be observed that
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the general behavior of the two systems are very much alike, although the weight
introduced does not make the submarine dive as deep or pitch as much as the turn does.

SUMMARY: The depth controller, computed from the linearized depth model, does what
is expected when depth control is desired. But a unwished, stable, depth offset occurs if a
rudder angle, dr, is applied. The offset is speed and rudder angle dependent.

Finally it was proposed and shown that turning the submarine can be seen as introducing
a weight into the submarine, making the depth regulator unable to maintain the required
depth.

38




5. Nomnlinear Control Design

5.1 Introduction

This chapter presents control strategies aiming at elimination of the depth error during
course change. As has been shown in chapter four, coupling effects from course to depth
act as a load disturbance in the submarine. One way to counter the force introduced by
this weight is to control the pitch angle.

Two ideas for pitch angle control are presented and investigated. The first is to combine
reference generation for the states associated with the LQ-controller (among them the
pitch angle) with nominal rudder references. The second idea is to find a pitch angle that
balances the lift force introduced by the turn, by letting the depth error control a pitch
angle reference.

The chapter is divided into four sections. In the first one a few facts affecting the
simulations are presented. Following that is a short section where the control strategies
are discussed. It should be seen as an introduction to the two last sections, Turn Acquired
Reference Control and Dynamic Pitch Control. Here the two suggested pitch reference
methods mentioned above are presented and tested. Each section ends with an evaluation.

5.2 Simulation Facts

e Rudders In the David Taylor equations there are three rudders (§,,5,,8;). Two in the
back (sternplane (6,) and rudder (4,)) and one in the front (bowplane (6;)). The two
rudder signals (§,,8,) for the back rudders are split up into four signals in the real
submarine. This is because there are four aft rudders, configured as in Figure 5.1

Port Upper (pu) Starboard Upper (su)
.

Port lower (pl) Starboard Lower (al)

Figure 5.1 Submarine viewed from behind

This construction is added to the simulation model in order to better understand the
problem of saturating rudders. Saturation may occur since the rudders have a limited
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range of action, set to = & 30 degrees.

o Surge Speed (u) Sternplane reversal occurs if the speed of the submarine sinks
below a certain level. Therefore only rudder angles 6, around 5 degrees (in order to
achieve a small speed reduction during the turn) are investigated initially, with rps =
1.

e LQ-controller To optimize the performance of the LQ controller, it is possible to
introduce Q and R matrices where the elements are dependent on the speed of the
submarine. The effect of this is so small however that the controller used in this
chapter is the same as in the previous chapters, i.e. the weight matrices are:

10 0 0 0

0 100 0 0 _ (300 0
0 0 1000 O R_( 0 300)
0 0 o0 1

o Settling time The elimination of the depth error should be finished before or at the
same time as the turn stops. The time for a turn can be approximated as
proportional to the number of degrees that is turned.

Q= (5.1)

5.3 Control Strategy

In chapter four, Figure 4.9, it could be observed that when a rudder angle §, was applied
not only did the submarine turn but it increased its pitch angle and changed its depth.
The depth regulator, on the form §=1, z, - Lz, used in the earlier chapters view these two
deviations as errors, and is incapable of correcting them.

To counter this, three possible solution may be found:

¢ Control the submarine in such a way that no pitch is introduced by the turn.

o View the pitch introduced by the turn as something natural, something that should
be maintained. To help the LQ controller to achieve this, reference values for states
and rudders are introduced.

* Use the concept of turn-introduced weight disturbance (analysis chapter 4, page 35).
This weight disturbance can be balanced by forcing the submarine to have a certain
pitch angle.

Of these three only the last two have been investigated. The first method is called Turn
Acquired Reference Control and the other method is called Dynamic Pitch
Control. The two methods are described and evaluated in sections 5.4 and 5.5.

5.4 Turn Acquired Reference Control

The section consists of three parts. The first one (A) treats constant state and rudder

references. The second one (B) treats time varying references. An evaluation ends the
section.

Pitch reference: 0,

Reference trajectories for 6, were found using
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1. The closed nonlinear model, Figure 4.7. This system is called the uncompensated
system, since it represents the original system with the nonlinear submarine model
and the linear depth controller.

2. Filters.

Heave reference: w,

Introducing the pitch reference 6, means that a w, is needed. The reason for this is that
2=w - uf (equation 3.4) and no depth change is wanted, i.e. Z = 0. This means that the
reference for w should be chosen as w, = u#4,.

Methods

Five ways of using state reference values 0,, w,, ¢, and rudder reference values 87, 67 are
investigated:

1. Independent feedback compensation Using only constant state references 6,, w, and g,.

2. Linear feedforward compensation Using constant state references 0,, w,, ¢, and
constant nominal rudder references §7, ;. The rudder references are found by using
the linear model in chapter 3.

3. Nonlinear feedforward compensation Expanding point 2, by introducing cross coupling
effects in the rudder reference calculations. This is done by introducing Z) vr, Z! vv
and M, vr in the linear model used to calculate the rudder references.

4. Independent time varying feedback compensation Using time variant state references,
ie. 0,(t), w.(t) and ¢.(t).

5. Nonlinear timevarying feedforward compensation Using time variant state references,
ie. 0,(t), w,(t), ¢-(t) and timevarying rudder references calculated as in method 3,

67 (t), &5 (t)-
A. Constant References

First only state references are used. Then rudder references are added, without and with
additions of dynamics from the nonlinear submarine model.

Independent feedback compensation The constant reference values w,, ¢, and 6,
were found by simulating the uncompensated system, i.e. the nonlinear submarine model
with the linear depth controller. The simulation time was chosen long enough for the
uncompensated system to stabilize and then its stable values w(equilibrium),
g(equilibrium) and #(equilibrium) were used as references.

The system thus consists of the uncompensated system with added references, which gives
the following way of calculating the rudder angles §,(t) and §;(t):

5() = [6,(8) (&))" = —(lu(w(t) — w:) + Lg(a(t) - g:) + 1 (6(2) = 6;) + L:(2(t) — 2.))

where Lyyq4 = [l I, lp I.] are the feedback gains, calculated from LQ optimization and
gain scheduling with respect to the surge speed u.

An initial example where rps = 1, §,= 5 degrees and the initial depth, which is also the
depth reference z,, is 7 meters, is simulated and the result can be seen in Figure 5.2.
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Figure 5.2 Submarine performance when applying a rudder angle (6,) of 5 degrees. Uncom-
pensated (solid) and with constant references (dashed). rps = 1

As Figure 5.2 shows, the performance of the submarine system is improved by adding the
constant state references. Not only is the depth error smaller for this system than for the
uncompensated system, the rudder angles needed to control the submarine are also
smaller. The result can be summarized in a table as:

Uncompensated | Constant references | ¢, = 0
submarine wy, ¢, 0,
Maximum depth
deviation (m) 2.64 2.1 1.98
Static depth
error after 2.61 0.35 0.20
500 sek (m)

The last column ¢, =0 is added due to factors involved in comparing different time varying
references generations. See section Time Varying References, page 47.

Linear feedforward compensation To improve the performance, constant reference

angles for the sternplane (6,) and the bowplane (§;) are calculated. These are found by
examining the linearized Equation( 3.1) and introducing:

w ) 8,
w=[g] me[2] 2[5
. 0 0
2= | —(ZW - ZpB) 0
thus permitting ( 3.2) to be written as

M:Bll = Cazlu + DAuz + szz (52)
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Matrices M, C and D can be found in ( 3.1). This gives the following way to find reference
rudder angles.

1

A= =2

(ME.]_ - leu - Gzﬂ)z) (53)

Since the aim is to compute constant rudder references, #; = 0 and the last equation
becomes:

1
A= [6: 6;]1‘ = W(—C’azlu - Gzﬂ!z) (54)

The approach is to find steady state values for z; = [u w]T and z, = [q §]7 from the
uncompensated submarine, and calculate the sternplane reference = §7 and the bowplane
reference = §; using ( 5.4). Thus the new rudder angles are given by:

5(t) = [8.(2) &(2)]" =
= (Lu(w(t) — wr) +1(a(t) — g-) + 1(8(2) — 6,) + L(2(t) — 2)) + (& 83)7 (5.5)

With 8, = 5 degrees, rps = 1 and zr = 7 m, this §(t) gives the system the following
performance (Figure 5.3):

8, [ deg ] by [ deg/s ]
10 10
I il i 5/
= o T
\ -
—200 200 400 600 _50 200 400 600
10 z [m] 04 w [m/s]
i /ﬁ_ﬁ_ I T
6\ 7 )
7] "
4 0
0 200 400 600 0 200 400 600
q [ deg/s ] - 0 [ deg ]
i T
oK™ ? ;f
0 200 400 600 GO 200 400 600

Figure 5.3 Submarine performance for three different cases: Uncompensated (solid), state ref-
erences (dashed), state and rudder references (dotted)
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Uncompensated | Constant references | ¢, = 0
submarine Wy, ¢y, O, 07, O
Maximum depth
deviation (m) 2.64 0.74 0.74
Static depth
error after 2.61 0.74 0.74
500 sek (m)

Compared to the simulation using only state references, this reference strategy improves
the maximum depth error. It does however not improve the static depth error. Nor does it
lessen the work done by the rudders §, and 6.

Nonlinear feedforward compensation The linearized submarine model

(equation 3.1) was used to calculate the constant rudder reference values used in the
previous simulation. If adding dynamic due to the turn, see analysis page 35, the following
can be added:

DR = F,\ _ (8(L2Z,vr+ [*Z], %)
B Mpitch N %(L‘! Mér 1)7‘)

To make the calculations of A = [ §] & ], according to ( 5.3) more accurate, i.e. taking
heed to sway and angular velocity around the z-axis, DR is added to equation 5.2 as:

Mgz, = Cziu+ DAu? + Gyzo + DR (5.6)
which can then be written:
T £T 1
A=[68&]" = Duz(—Czlu ~ Gyz2 — DR) (5.7)

With this addition, the rudder angles entering the submarine are still given by (5.5) and
the result of a given rudder angle 6, = 5 degrees is shown in Figure 5.4.

Uncompensated | Constant references | ¢, = 0
submarine Wy, G, 0, 87, 6}
Maximum depth
deviation (m) 2.64 2.77 2.67
Static depth
error after 2.61 0.03 0.19
500 sek (m)

The introduction of DR thus makes the static depth error better. The transient behavior
has deteriorated though and is now even worse than for the uncompensated submarine.
Gained by the introduction of reference rudder angles are better rudder angles §, and &,
i.e they are smaller.

Conclusions By using static reference values, the behavior of the submarine can be
improved, i.e. an asymptotically much better depth keeping can be found if using 6, , w,

44




8, [ deg ] . by [ deg/s ]

Figure 5.4 Submarine performance when adding a rudder angle (,) of 5 degrees. Uncompen-

sated (solid), state references (dashed) and with state and non-linear rudder references (dotted).
ps =1

and ¢,. Adding rudder references (67 and § ) improves the static depth error control even
more.

B. Time Varying Reference Generation

By addressing the problem dynamically, i.e. calculating time varying reference values it is
possible to improve the transient behavior compared to the static approach. In effect this
approach produces a trajectory reference for the submarine to follow, letting the linear
depth controller adjust state deviations around this trajectory.

It is possible to generate references by use of the uncompensated system. Two possibilities
exist, depending on whether state references suffice or rudder references have to be added.
If it is enough to use ¢,(t),w,(t) and 6, (t) (state references only) the uncompensated
system can be replaced by a filter that produces ,(t) and 6, (t) since that will give:

° 4.(t)

o 4.(t)=0,()

o w,(t)=u(t)6,(t) °

This will make it possible to have a filter bank, not having to simulate the whole model in
real time. This method is called Independent timevarying feedback compensation

If rudder references are needed, both the filter and the uncompensated system have to be
used. The reason for this is that the rudder equation (from Equation 5.7)

AW = 100) KON = (M0 - Coa(0)u(0) - Gaoalt) - DR (5.8)
Deeds the following additional values to be solved:
* 4:(t)=6(t)

5 From equation 3.4, setting =0
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o w,(t) = u(t)d,(t)
o v.(t)
o r.(t)

where the first two will come from the filter and the two others from the uncompensated
system. This method is called Nonlinear timevarying feedforward compensation.
This way of producing reference values may be visualized the following way[1]:

Relerence value
N

-X (t)
u® f

(E) u(t) . x(t) (\/? >

8 u() 3 x(0)
Feedback

du() =- L) 8 x(1)

Figure 5.5 Generation of state and control references

Independent Timevarying Feedback Compensation The system at hand looks as
follows in Simulink:

<
aun
ruddar angle ds
o]
ruddar angle dty
e —7 ¢
= I "
Saturationd Gaini relerences la be set:
bl zr
5'pl/180 » o M tastmex =

|-
ruddar dr rudder_systomn submaring
Muxd
Mar] subsignals Gain uling
rudder angle dr relaronc:r:enemuon

[:T]
lintegrator working on
dstnh eor, gain o
ba sel In Gain echeduling

Figure 5.6 Simulink representation with dynamic references generated by second order filter

A second order filter with a step input is incorporated in the Gain Scheduling block,
shown in Figure 5.6. The filter is shown in Figure 5.7. The output of the filter is matched
to the pitch angle response of the uncompensated system. The filter thus produces 6, (t),

g-(t) and w,(2).
The rudder signals, §,(t) and 6,(t), are found through:

5(t) = [8:(2) 6(2)]" = — (b (w(t) — wy(£)) +1g(g(t) — 4 (2)) +1o(8(2) — 6, (2)) + L (2(2) — 2 (2)))
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Simulating this system with a rudder angle §, = 5 degrees, rps = 1, gives the following

result, (Figure 5.8).

Step Input

X =
y=

Ax+Bu
Cx+Du ™|

Figure 5.7

State-Space ~ Demuxi

out_2

out1 thetaref

To Workspace1
thetadotref
To Workspace2

thetadotdotref

To Workspace3d

3]

out_3

reference generation

. 8, [ deg ] 8 [ deg/s ]
5 j}_-_ » f
o OF S o e
% 200 400 600 % 200 400 600
ze [m] w[m/s]
e
/ 02}
st [
Y
N — e ]
) 200 400 600 % 200 400 600
q [ deg/s ] 6 [ deg ]
0.2 10
i\
o1t} ' e o kit e et ey
/
oL 1= 0
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Figure 5.8 Uncompensated (solid) and with filter references (dashed)

Uncompensated | Filter references | ¢,(t) = 0
submarine | w,(t), ¢.(t), 6.(2)
Maximum depth
deviation (m) 2.64 0.87 0.71
Static depth
error after 2.61 0.19 0.11
500 sek (m)

The overall result is better now than when using only constant references, since a low

maximum depth error is combined with a low static depth error.
Added in the list above is a test where g, is set to zero. This is due to the fact that if the

uncompensated system is used to produce references, its ¢,(t) will not diminish to zero
once a stable 8(t) is reached and that will make the filter and uncompensated system

references deviate. Thus, to be able to compare simulations with references from either a
filter or an uncompensated system, the column g,(t) = 0 is added.
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Nonlinear Timevarying Feedforward Compensation Adding rudder references to
the system called Independent timevarying feedback compensation, the rudder signals
§,(t) and 6,(t) are given by:

5(t) = [8,(2) 8(8)]" =
— (ha(w(t) = we(2)) +1g(a(t) - () +16(6(2) — 6, (£)) + L:(2(2) — 2:(2))) +[E7(2) 85(£)]™ (5.9)

with

A(t) = [67(2) 8 ()T = = (M 3,(t) — C z(t) u(t) — Gaza(t) — DR(t))  (5.10)

2(t)

The signal r(¢) and v(t) are produced by the uncompensated model. Simulating this gives
the result shown in Figure 5.9

b, [ deg ] by [ deg/s ]
10 10,
5~
¢ | S P e e P,
% 200 400 600
z. [m]

10

-———— e — — —— —

oca

200 400 600
q [ deg/s ] 6 [ deg ]
0.2 5 :
/ “““““““
0.1 0
N N
% 200 400 600 -0 200 400 600

Figure 5.9 Uncompensated (solid) and compensated (dashed)

Uncompensated | Filter ref: w,(t), ¢.(t), 0-(t) | ¢ (t) =0
submarine Uncomp.sub. ref: v,(t), r.(t)
Maximum depth
deviation (m) 2.64 0.79 0.42
Static depth
error after 2.61 0.27 0.27
500 sek (m)

As can be seen in the table above, the transient performance is improved, having added
rudder references. Comparing Figures 5.8 and 5.9 it can also be found that the rudder
movements are less in the system with rudder references and that is good since it gives the
controller flexibility to perform other tasks if needed, and it also means that the pitch
angle introduced is close to being 'natural‘ thus not needing big forceful rudder actions to
be executed.
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[ntroduced in this calculation are w(t) and §(t), through matrix M in equation 5.10. If
they are excluded in the calculations the following is the result:

500 sek (m)

Uncompensated | Filter references | ¢ =0
submarine | w,(t), ¢.(¢), 6,(t)
Maximum depth
deviation (m) 2.64 0.73 0.29
— Static depth
error after 2.61 0.27 0.27

This seems to improve the performance of the submarine. The conclusion is that the
derivatives are unnecessary. If one does not want to make a filter bank, this means that it
is possible to use the uncompensated submarine model as a reference generator, since
w,(t), ¢-(¢) and 6,(t) are the only references needed.
This is not true however, as a simulation using only the uncompensated system as
reference generator, generating w,(t), ¢.(t) and 6,(t) show in Figure 5.10

8, [ deg ] by [ deg/s ]
10 10
5 /\ 5 f
] A oA ]
50 200 400 600 50 200 400 600
z. [m] w[m/s]
10
8 0.2
6 \\.- _____________ F “““““““““
ff
40 200 400 600 00 200 400 600
q [ deg/s ] 6 [ deg |
0. 5
[
0.1 /\ 0
cﬁ 200 400 600 —SCI 200 400 600

Figure 5.10 Uncompensated (solid) and with references (dashed)

Uncompensated | Uncomp.sub.ref | ¢ =0
| submarine w,(t), ¢ (1), 0-(t)
Maximum depth
deviation (m) 2.64 1.13 0.73
| Static depth
error after 2.61 0.72 0.27
500 sek (m)

This performance is not as good as when both a filter and an uncompensated submarine
model are used to produce reference values.
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Evaluation

The tests done in this first part, i.e. Turn Acquired Reference Control can be summarized
in the following way. The page reference indicates where a more thorough presentation of
the simulations can be found. The values in brackets are obtained when simulating with g,
= 0;

SYSTEM DESCRIPTION | Page reference | Maximum depth | Static depth
__ deviation (m) error (m)
1. Uncompensated 34 2.64 2.61
submarine
2. Independent feedback 41 2.1 0.35
compensation (1.98) (0.20)
3. Linear feedforward 42 0.74 0.74
compensation (0.74) (0.74)
4. Nonlinear feedforward 44 2.77 0.03
compensation (2.67) (0.19)
5. Independent timevarying 46 0.87 0.19
feedback compensation (0.71) 0.11)
6. Nonlinear timevarying 48 0.73 0.27
feedforward compensation (0.29) (0.27)

As can be seen two systems can be selected as being best in their respective group. In the
constant reference group (nr 1 - 4), the Independent feedback compensation with q, = 0, nr
2, is the best. In the time varying group (ur 5 - 6), the Nonlinear timevarying feedforward
compensation, nr. 6, is the best. These two methods, nr 2 and 6, are presented below,
where the depth of the submarine is investigated for different manual course angles and at
different speeds.
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Independent feedback compensation First presented on page 41. Note that ¢, = 0 in
the following simulations.

8, = 2 deg y 8 = 4 deg y 0, - 6 deg

% 50 1000 S 500 1000 % 500 1000
0, = 8 deg 6, = 10 deg 0, = 12 deg
16 16 20

14 14
12 12

10 10

@

@
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=3 wm

(=]
o
o

0 500 1000 0 500 1000 0 500 1000

Figure 5.11 Independent feedback compensation system given different &, at rps = 0.3. The
figure shows submarine depth as a function of time.
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Figure 5.12 Independent feedback compensation system given different 6, at rps = 1
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rps = 2
6, =2 deg 6, = 4 deg by - 6 deg
s 8
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sﬁ 8———— 8

7 7 7
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Figure 5.13 Independent feedback compensation system given different ér at rps = 2

As can be seen in Figures 5.11, 5.12 and 5.13, this is not a method which can be utilized
in the depth control of the submarine. The static depth error for speeds around rps=0.3 is
unacceptable and for speeds above ps = 1 the transient response is unsatisfactory.

Nonlinear timevarying feedforward compensation
First presented on page 49, _
The second order filter is described by the transfer function
w?
24 2Cws + w?

and transformed to the state space description

0 1 0
() o= ()

1 0 0
C = 0 1 D=]0
—w? 2w w?

Which is then used in the Simulink simulation.
In this test series filters for §, = 2, 5 and 10 degrees were found for the speeds given by
TP$ = 0.3, 1 and 2. Then interpolation gave the values for w and ¢ at the other speeds.
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Figure 5.14 Nonlinear timevarying feedforward compensation system at rps = 1. The figure
gshows submarine depth as a function of time.

As can be seen the interpolation is only a rough instrument, the simulation for §, = 12
degrees would probably show a better depth error curve if a specific filter was found for
this turn.

rps = 2
0, = 2 deg 0, = 4 deg 8, - 6 deg
8 85 85
[ ) sff [
7.6
7.5 7.5
7.4
7.2 4 A
7o 500 1000 6'50 500 1000 3’50 500 1000
5, = 8 deg 6, = 10 deg 6, = 12 deg
9 10 11
8.5 9 10
9
8 8
8
75 7 7
7 6 6 -
0 500 1000 0 500 1000 0 500 1000

I Figure 5.15 Nonlinear timevarying feedforward compensation system at rps = 2

The promising results from the initial testing, page 49, are not to be seen. If viewing the
period of interest as the one between 1 - 100 seconds (since the turning rate is
approximately 1 degree per second and most turns are less than 100 degrees), it is clear
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that there is no control of the depth in this period. That a acceptable depth is reached
after 500 seconds does not promote this method as being useful.

5.5 Dynamic Pitch Control

Introduction

In the analysis at the end of chapter four, the idea of weight change was introduced. This
effect can in fact be controlled by changing the pitch angle. By changing the pitch, the lift
forces affecting the submarine can be changed and thus depth control is introduced.

If the submarine sinks, the pitch angle needs to become larger, thus making the submarine
ascend. One way to express this is

db,

e ke(z — z) (5.11)

where k, > 0.
In Simulink this can be shown the following way

1
5242*fs+*f — 01' [ deg ]

Transfer Fcn

Figure 5.16 Generation of 6, by z. = z - z,

Adding this construction to the uncompensated submarine system, and using the fact that
W, = u6,, does give a system that is capable of adjusting the pitch due to the resulting
depth error that is produced when a manual course angle 6, is given. Without presenting
a method for finding the filter coefficients and the gain, a test produced the following
response to a b degree §, angle with rps = 1:

Uncompensated | Dynamic pitch control
L submarine of 6,(t)
Maximum depth
__deviation (m) 2.64 0.52
Static depth
error after 2.61 0.05
__ 500 sek (m)
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Figure 5.17 Dynamic pitch control system for a 5 degree turn, rps = 1

As can be seen in Figure 5.17 the possibility to control the depth during a turn is
improved. Lacking is a method for finding coefficients for the regulator structure in
Figure 5.16. One method is suggested and presented next.

PID Control

To simplify the use of a dynamic pitch reference a PID controller is used instead of the
P-controller , presented in( 5.11) and Figure 5.16 .

The PID parameters can be found by using Ziegler-Nichols method, i.e. setting the
regulator parameters such that it is only a P-regulator and then increasing the gain until
the system reaches constant oscillation. The gain that produces this oscillation is called
K. and the period of the oscillation is called Tj.

The control output u(t) can be written as:

u(t) = K(e(t) + % / e(t)dt + TD%)

noting that u(t) = %= and e(t) = z(2) - 2(¢).

The PID parameters for Simulink can be calculated as:

P=K=Kc06

I = K/T: = K/(T,0.5)

D = KTp = K(To/8)

Applying this approach to the submarine system, i.e the uncompensated submarine with a
PID added such that it generates pitch references when rps = 1 and §, = 5 degrees, gives
Kc = 0.07 and TD = 76. This gives the PID parameters; P = 0.042, I = 0.0011 and D =
0.399 and the following result:
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Figure 5.18 Depth of PID system at rps = 1 and 6, = 5 degrees

Uncompensated | Pid control
submarine of 6,(t)
Maximum depth
deviation (m) 2.64 0.68
Static depth
error after 2.61 0
500 sek (m)

As can be seen in Figure 5.18, the system is a little shaky, but it does handle depth
control rather well. The PID parameters are not perfect since the Ziegler-Nichols method
only gives a rough estimate of how to tune the regulator. To improve the damping, the
following adjustment is done:

P=K=Kc0.6

I=K/T = K/(T,/1.3)

D = KTp = K(To/8)

and this gives the following result:

Uncompensated | Pid control
submarine of 6,(t)
Maximum depth
deviation (m) 2.64 0.73
Static depth
error after 2.61 0
__ 500 sek (m)
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Figure 5.19 Depth of PID system at rps = 1 and 6, = 5 degrees

Evaluation

To investigate this method further, the following three tests show how the submarine
behaves for different speeds and different rudder angles.

For rps = 0.3

The system does not work for this speed. This since the speed is so slow that depth
control is not handled by changing the pitch angle.( This behavior was first mentioned in
section 3.4, in connection with the linear model.) Thus the rudders saturate after a while,
trying to control the pitch and with saturated rudders the submarine just dives.
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For rps = 1 (Kc=0.07 and TD=76) the following result can be seen:

6y = 2 deg 0, = 4 deg 6, - 6 deg
7.4 78 8
73 7.6 7.8
72 7.4 7.6
7.1 7.2 7.4
7 7 7.2
: 6. 7
%% 20 400 0 20 400 0 200 400
0, = 8 deg 6, = 10 deg 6, =12 deg
8.5 85 9
85
8 8
8
7.5 7.5
75
7 g 7
0 200 400 0 200 400 0 200 400

Figure 5.20 Depth of PID system turning at rps = 1

For rps = 2 (Kc=0.04 and TD=38) the following result can be seen:

6, = 2 deg 6, = 4 deg 6, - 6 deg
7.6 8 8.5
7.4 8
7.5
72 75
7
7 |
.8 8 6.5
om0 w0 *% T w0 0 200 400
b, = 8 deg 8, = 10 deg 6, = 12 deg
9 10 10
85 5 )
8
8 8
7.5
™ 7 7
A 6
S 200 00 % 200 400 0 200 400

Figure 5.21 Depth of PID system at rps = 2

In the test above (rps=2) the I variable of the PID controller was reduced to £z,

shaky behavior.

to avoid

The simulations done in Figures 5.20 and 5.21 supports the view that this is the method

among the ones tested that should be used and further developed.
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A comparison with the uncompensate submarine for the speed given by rps = 1 shows
that the depth error

6, = 2 deg 8, = 4 deg O - 6 deg
9 10 10

Figure 5.22 Depth at rps = 1. Uncompensated system (solid) and PID system (dashed).

is considerably lowered.
A comparison at rps = 2 shows

0, = 2 deg 6, = 4 deg 6, - 6 deg

10 " 12

Figure 5.23 Depth at rps = 2. Uncompensated system (solid) and PID system (dashed).

that the first 20 seconds are almost the same, both in the case when rps = 1 and when rps
= 2, i.e. no improvement in the depth keeping can be seen. After that the improvement is
significant and after 100-200 seconds the error is in most cases eradicated by introducing
the PID controller.
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An interesting question that arises is if anything has been gained in terms of less rudder
movements. Figures 5.24 and 5.25 show the sternplane angle §, for different rudder angles

5, at the speeds given by rps = 1 and 2:
6 = 2 deg 0, = 4 deg 4, - 6 deg
4 6 8

Figure 5.24 PID system at rps = 1. Rudder angles §, for the uncompensated system (solid)
and the PID system (dashed).

0, = 2 deg 8, = 4 deg 0, - 6 deg
6 8 1

0 200 400 0 200 400
8, = 10 deg 8, = 12 deg
15 15
10 (‘h ol ="~~~
5 5
0 V]
-5 -5 -5
0 200 400 0 200 400 0 200 400

Figure 5.25 PID system at rps = 2. Rudder angles 8, for the uncompensated system (solid)
and the PID system (dashed).

It does seem as if there is only a small gain involved in using the PID scheme when
looking at the aft rudder. What of the front rudder? Figures 5.26 and 5.27 shows the
bowplane angle §, for the uncompensated system and the PID system.
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0, = 2 deg 6, = 4 deg 5, - 6 deg
4 6 8

-5 -5 -5

Figure 5.26 PID system at rps = 1. Rudder angles § for the uncompensated system (solid)
and the PID system (dashed).

6, = 2 deg 6, = 4 deg b, - 6 deg
3 4 6
2 4
2
1
2
0 \\ 0 "‘ [
-1 \\ _____ \ 9 \\
\‘_‘ _____ \\ .
o 200 400 2 20 400 Zo 200 400
6, = 8 deg 6, = 10 deg . = 12 deg

Figure 5.27 PID system at 1ps = 2. Rudder angles 6, for the uncompensated system (solid)
and the PID system (dashed).

Here the PID controller lessen = improve the magnitude of the control signal in a more
noticeable way, which gives more room for other actions that might be necessary during

the turn, as any emergency actions.

It is also a fact that the less rudder movements the better, since rudder movements means
energy consumption. "

Conclusions

Using a PID controller to produce pitch references, together with the

Ziegler-Nichols method (somewhat adjusted to increase the damping) for finding the PID
parameters, made it possible to considerably lower the depth error that is the result of a
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turn. The method is however not applicable to slow moving submarines, since at low
speeds, it is not possible to control depth by varying the pitch angle.
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6. Summary and Reflections

6.1 Overview of Master Thesis

The project was done for Kockums Submarine Systems AB in Malmé and the Department
of Automatic Control at LTH.

SUBMARINE A submarine can be pictured the following way:

Figure 6.1 Submarine from side

with propellers and aft rudders in the upper left corner and the bowplane (§;) visible on
the tower.

Input signals in the model of the submarine are the aft rudders, §,, §, and the bowplane 6,
and the propeller revolution rate rps.

To control the depth, an LQ-regulator is designed from a linearized model of the
submarine. The LQ-regulator works with the rudders §, and §,. For control of sideway
motion a PID controller is used, thus controlling the rudder §,. This PID is however not
included in this thesis work.

PROBLEM Given a manual rudder angle §,, the submarine is unable to maintain its
depth, although the LQ-designed depth controller performs well when there is no course
change.

ASSIGNMENT Make a simulator in Matlab’s Simulink such that the cross-coupling
between course and depth witnessed in a real submarine can be seen and investigated, i.e.
such that when a manual rudder angle §, is applied the submarine is unable to maintain
its current depth. Then find a way to reduce the depth error. This should be done without
changing the depth control system, i.e. the LQ-regulator structure.
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INVESTIGATED SOLUTIONS:

1. Combine reference generation for the states associated with the L.Q-controller with
nominal rudder references.

2. Find a method, producing a pitch angle reference, such that the pitch angle balances
the forces introduced by the turn. Do this by letting the depth error control the pitch
reference.

RESULTS

1.

e First a static solution to the cross coupling between depth and course was
investigated. This was done by introducing constant state and rudder references.
The references were generated by turning an uncompensated submarine model
and using state and rudder values at equilibrium. This was combined with
adjustments due to the fact that a zero depth change was expected. The results
showed that it was possible to correct the depth error given enough time. An
initial transient persisted though and since the time scale for a turn is given by
the approximation: turn time (seconds) ~ turned angle (degrees), the methods
were unusable.

e Then a time varying approach was tested, i.e. using time varying state and
rudder references. These references were also produced by turning the
uncompensated submarine. This improved the initial behavior, but none of the
methods tested was able to improve the depth keeping in a satisfactory way.

2. Viewing the depth keeping problem as if a weight is introduced in the submarine
when a turn is made, led to a dynamic pitch control and investigations showed that
this method was the best. The method consists of a PID controlled pitch reference
produced by the depth error.

The method, further presented in section 5.6, showed that, depending on the surge
speed and the course rudder angle, the transient error could be lowered to 20 - 25 %
of the uncompensated system’s error and that the depth error could be made to
diminish altogether, in a time less than 200 seconds.

6.2 Concluding remark

The implementation of the submarine simulator in Simulink led to a working simulator,
which is now used at Kockums. The results of the investigations into the cross-coupling
between course and depth has led to a control scheme that reduces the depth error.
Improvements can be done by refining the calculations of the PID parameters and
introducing greater flexibility in the choice of the R and Q matrices in the LQ-regulator
(making them functions of the surge speed).

To improve things further, it might be possible to start changing the pitch angle even
before the turn is started. Investigations into the equivalent mass and a refinment of the
calculations as to its whereabout in the submarine may also lead to a better scheme for
compensating the turn.

Regarding the LQ-controller, the only way found to introduce cross-coupling dynamics
would be to extend the linear model used to find the controller, i.e. to incorporate more
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states. This was tried in an initial stage of this master thesis, but did not amount to
anything. One problem being that many linearizations would have to be made to represent
all equilibrium points, thus resulting in many different controllers. The point of the control
strategy recommended in this thesis is that the controllers now implemented in the
submarines and thus thoroughly tested, can be kept in place. The controller recommended
here can be used by only adding a little code to implement the PID controller.

In the year 1995
Hans Nilsson
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7. Appendices

A: David Taylor Equations

Equations used to model the submarine.

Note that the integral £1Cy f;* v(2)Upy(t — 7(2]) dz , which appears in

F,,F, M, u,Mpicn and M4, in the original David Taylor equations is excluded, and
replaced with Z,,, Z,, and M,, in F, and Mpis.

Axial Force Equation (F)
mli — vr + wq — ze(q* +r*) + ye(pg — #) + ze(pr — 4]

[
L}(Xge0® + Xpo7? + X,,7p)

+L3(Xju 4+ X, vr + X, wq)
FI(X 0 1 XL u?)

+L2(X£r6ru2612' + Xga&au26az + Xébdbuzsz)

ors ||

- (W — B)sind + F,,

Lateral Force Equation (F,)

m{t — wp+ ur + z¢(qp + *) — yo(r® + p?) + 2¢(gr — P)]

5l
LA(Y}# + Yip + Yy, plp| + Y;,pq)
+L3(Yur + Yjup + Y0 + Y, jwp)
+L2(Y,u? + Yuv + Yy, pv|(v? + w?)1/?)
+L2(Y6’ru26'r + Y.'i’rnuzb.f(n - %)C)
G B EIW(E)+ ol

+ (W - B)cosfsin¢

Normal Force Equation (F;)

m[w — ug + vp + 2e(rp — §) + ¥o(rg + B) — 2e(P* + )]
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5l
2 4( 7i >
L (z.ﬂ)
+L3(Zyw + Zyug + Z,,vp + Z,,vr)
+L*(Zlv? + Z),uw + Z,,vv)
+L2 (2, ulw] + Z,,,, [w(v? + w?)]
FIX (24026, + Tty + B8, (n - 3)C)
~Ca Jy b(z)w(z)[(w(2))® + (v(2))*]/*dz
]

+ (W - B)cosf cos ¢

i Rolling Moment Equation (M;eq)

Izp+(Iz —Iy)Q"‘ - (T +pq)Izz + ("'2 _qz)Iyz +(P"' - q.)Ia:y +m[yG (w_uq+vp) —Zzg (v—wp+ur)]
g

LPKip + K} + Ko qr + Ky ,plpl]

+L*[K,up + K,ur + K} + Ky,wp]

+L3[K!v? + K| guv + Kjuvpw(t — 7r)]

+L3[Kgru26f + Kfsm"%r("l - %)C]

+L3(u? + v + wi)f5[Kissindgs + Ky sin 8¢s]

+(yeW — ypB) cos B cos ¢ — (2¢6W — 25 B) cos fsin ¢
-Q,

Pitching Moment equation (Mpitcn)
L+ (L —L)rp—(p+qr) Ly + (p* —2) Lo + (qp—7) Iy, + m[2 (2 —vr +wgq) —zg(w—ug+vp)]

[L5[Méq + M, rp]

+ LA MG + Mjug + M, vr]

+L3[M!u? + M uw + M,",lwmwl(v2 + w?)|V/?]
+L3 [M},u%8, + Mpu?y + Mj,,u?6,(n— £)C]
]+C,, Sz b(2) w(z){[w(=)? + [v(z)]}/*dz

v |

- (zgW — zpB)cos0cosp — (2¢W — 2pB)sin 0

Yawing Moment Equation (Myay,)
L+ (L~ L)pg— (§+7P)lys +(9* ~P") oy + (rg—P) Lia + mlza (b —wp+ur) —yo (4 —vr +wg)]

+LE[N# + Njp + N;.pq]
+L*[Njup + N]ur + N;9]
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+L3[Nu? + Njuv + Ny, g0|(v? + w?)31]
+L3[N6,ru26"' + Nérnuzsr(n - %)C]

+Ca fy2 h(e) o( (@) + [o(e)P}dz
+(zgW — zp) cosfsing + (yg — ypB) sind
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B: A and B Matrix calculation (Maple)

> with(linalg):

> M:=evalm(matrix ([ [m-rho/2%1"~3+ZDW,-rho/2%1"4*ZDQ] , [~rho/2#1"4+MDW, Iy
> - rho/2*1°5+MDQ]1]))
>3

m—lpl"’ZDW —-lpl‘*ZDQ
M= 2 2

- —;-pl‘*MDW Iy - %plsMDQ

> Minv:=evalm(inverse(M));

—2Jy+pl°MDQ p1*ZDQ
-2 off A7 %
Minv .= Al Al
2pl‘*MDW 2—2m+p132DW
%1 %1
%l:=4mlIy—2mpl° MDQ ~2pPZDW Iy + p* 1B ZDW MDQ
- p*IBZDQ MDW

> C:=evalm(matrix([[rho/2#1°2#ZW,m+rho/2%1~3#2Q] , [rho/2+1" 3%MW,rho/2+1"4+MQ]]) *u) ;
1 1
EupIZZW u(m+§p13ZQ)

C =
%upl"MW %upl“MQ
> MinvC:=evalm(Minv &+ C);
MinvC =
[uplz(2ZWIy—- ZW plP MDQ +pl8ZDQ MW) u (4me
%1 ’

+2IypIP2Q ~2mpI* MDQ - p*I° MDQ ZQ + p* I ZDQ MQ)
/()

[_ upl(—pPMDW ZW — 2 MW m + MW pI® ZDW) Cupl®
%1 ’

(-2 MDWm - MDW pPZQ —2MQm+MQp13ZDW)/(%1)]

%l:=4mly—2mpl MDQ —2p 2 ZDW Iy + p* I ZDW MDQ
_ p*I8ZDQ MDW

> G:=evalm(matrix([[0], [-(ZG*W-ZB*B)]]));
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0
G:=
-ZGW 4+ ZBB

> MinvG:=evalm(Minv &* G);
MinvG :=
[- 2014 ZDQ (ZGW ~ ZBB)/(4me— 2mpl* MDQ

~2pPPZDW Iy + p*I°ZDW MDQ - p*I° ZDQ MDW)]
[2(~2m+ pPZDW)(2GW -~ ZBB) [(¢mIy-2mpi*MDQ
—2pPZDW Iy + p* I° ZDW MDQ - p* I* ZDQ MDW)]

> A:=evalm(maetrix([[MinvC[1,1],MinvC[1,2],MinvG[1,1],0], [MinvC[2,1],
> MinvC[2,2],MinvG[2,1],0],[0,1,0,01,[1,0,u,011));

A=
[uplz(2ZWIy—ZWp15MDQ +plPZDQ MW )

71 ,'u.(4me

+2IyplP2Q —2mplP MDQ — p*I* MDQ ZQ +p2182DQMQ)

17D -
J(%61),—2° Q(ZGW ZBB),O]
%1
upl(—pP MDW ZW — 2 MW m + MW pI* ZDW) )
- %1 —upl

(-2 MDWm - MDW pI’2Q —2MQm + MQ pI° ZDW) /(%1),
o (=2m+plZDW)(ZGW - ZB B) o]

%1
[0,1,0,0]
[1,0,u,0]
%l:=4mlIy—2mplPMDQ —2pP ZDW Iy + p?I® ZDW MDQ
~ 2B ZDQ MDW

> DD:=evalm(matrix([[rho/2*1"2*ZDS,rho/2%1"2%ZDB], [xho/2*1~3*MDS,
> rho/2*1°3%MDB]])*u~2);

%uzpl"'ZDS %uzplzzDB
DD :=

%uzplaMDS %u‘pfaMDB

> MinvDD:=evalm(Minv &#* DD);
MinvDD :=
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[u2p12(2ZDSIy— ZDSpl MDQ + pl° ZDQ MDS)
%1 !
w?pl2(2ZDBIy— ZDBpl* MDQ +pl5ZDQMDB)]

%1
qu plauz(—plaMDWZDS—2MDSm+MDSp13ZDW)
%1 ’
_ pPu?(~pPMDW ZDB —2MDBm+ MDB pI° ZDW )
% ]
%l:=4mly-2mplP MDQ - 2p I’ ZDW Iy + p*I* ZDW MDQ
~ P8 ZDQ MDW

> B:=evalm(matrix([[MinvDD[1,1],MinvDD[1,2]], [MinvDD[2,1],MinvDD[2 ,211,[0,0],00,011));

B =
[u2p12(2ZDSIy—ZDSpl5MDQ+pl5ZDQMDS)
%1 ’
u?pl?(2ZDBIy— ZDBpl5MDQ+pl5ZDQMDB)
%1
[_ plauz(—pl‘*MDWZDS—2MDSm+MDSp13ZDW)
%1 2
_pl3u2(—pl3MDWZDB—2MDBm-|—MDBpl3ZDW)
= )

[0,0]

[0,0]

%1 ::4me—2mp15MDQ—2p13ZDWIy+pZIBZDWMDQ
- p*I*ZDQ MDW
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C: Testmex mex code

/*
*
* Syntax [sys, x0] = simomex(t,x,u,flag)
*

*/
/*

* The following #define is used to specify the name of this S-Function.

*/
#define S_FUNCTION_NAME testmex

/*
* need to include simstruc.h for the definition of the SimStruct and
* its associated macro definitioms.

*/

#include "simstruc.h"
#include "mex.h"
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "fpar.c"
#include "flow.c"

/*

* mdlInitializeSizes - initialize the sizes array

*

* The sizes array is used by SIMULINK to determine the S-function block’s

*

characteristics (number of inputs, outputs, states, etc.).

*/

static void mdlInitializeSizes(S)
SimStruct *S;

{
ssSetNumContStates( , 12); /# number of continuous states */
ssSetNumDiscStates( , 0); /% number of discrete states %/
ssSetNumInputs( , 4); /% number of inputs */
ssSetNumQutputs ( , 12); /* number of outputs */

S

S

S

S
ssSetDirectFeedThrough(S, 0); /* direct feedthrough flag */
ssSetNumSampleTimes( S, 1); /% number of sample times */
ssSetNumInputArgs( S, 0); /% number of input arguments */
ssSetNumRWork ( S, 0); /% number of real work vector eolements*/
ssSetNumIWork( S, 0); /* number of integer work vector elements*/
ssSetNumPWork( S, 0); /* number of pointer work vector elements/
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/*

mdlInitializeSampleTimes ~ initialize the sample times array

If your S-function is continuous, you must specify a sample time of 0.0.

%
*
* This function is used to specify the sample time(s) for your S-function.
*
*

Sample times must be registered in ascending order.

*/

static void mdlInitializeSampleTimes(S)
SimStruct *S;

{
ssSetSampleTimeEvent(S, 0, 0.0);
ssSet0ffsetTimeEvent(S, 0, 0.0);

/*

mdlInitializeConditions - initialize the states

In this function, you should initialize the continuous and discrete
states for your S-function block. The initial states are placed
in the x0 variable. You can also perform any other initialization
activities that your S-function may require.

* O X X X *

*/

static Matrix *Minv;

static void mdiInitializeConditions(x0, S)
double *x0;
SimStruct *S;
Matrix *MM, #*Mout[2], *slask[1];
double *Mpr;
double L2, L3, L4, L5;

fpar_init();

MM = mxCreateFull(6,6,0);
Mpr = mxGetPr(MM);

L2 = LxL;

L3 = L*L*L;

L4 = L*L*L*L;
L5 = L*L*L*L*L;

/* u-equation */
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/*
/*
/*
/%
/*
/*

/*

/*
/*
/*
/*
/*
/*

/*

/%
/*
/*
/%
/%
/*

/*

/*
/*
/*
/*
/*
/%

/*

/*
/%
/%
/*
/*
/*

/*
/*

/*
/*

u */
v %/
w x/
p */
q */
r */

Mpr [0

ol ] = M-

Mpr[s] (RHD/2

M o] )*L3*X

Mgr[18]= 0 )

MP;[24]= M;
[30]= —;ZG;

*YG;

n
n
‘9 . [}

v-equati
tion */

u */
v %/
w ox/
p */
q */
r */

(e
ﬁ§§E12§=M;fRHO/2)*L3*
e
M*xc—(RHD/2)*:Z4*YPD;
*YRD;

w-equati
tion */

u */
v o/
w ox/
p */
q */
r */

M

Mpr[2] =

M£1[8]= 00;

r[i14 :

M N

p N

MP;E32%= M*§2H0/2)*L

M _ ; 3

pr[32]= el -
. (RHO/2)

*],4%
ZQD;

Y
-equation /
*

u */
v */
w ox/
p */
q */
r */

tor(3) - o
e
terlz)- I (Ri0/2)%
- - : 5%
IZX-(RH0/2)*L:PD;
*KRD :

q-e
quation */

*/
*/
*/
*/
*/
*/

H

ol BN 3

<
e

M
Mpr[4] =
M£IE101= g*zc-
r[16 ; '
M :
Mpr[22]‘ ol
M£I[28]; ;IXY. .
X N , 4
[34]= -IYQRHO/z)* .
. L5*
, MQD;

r-equati
ion */

u */
v %/
w ox/

M
M§IE5]
r[11 et
M ] -
prli7]= M*XG_,
-y (RHD/2)*
L4*N
VD;
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/% p */ Mpr[23]= -IZX-(RHO/2)*L5*NPD;
/% q */ Mpr[29]= -IYZ;
/* x */ Mpr[35]1= IZ-(RHO/2)*L5*NRD;

mexCallMATLAB(1,&Minv,1,&MM,"inv") ;
mxFreeMatrix(MM) ;

flow_init();

x0[0]
x0[1] = 0
x0[2] =0
x0[3] =0
x0[4] =0
x0[6] = 0;
x0[6] = 0;
0
7
0
0
0

U0;

.
L

x0[7]
x0[8]
x0[9]
x0[10]
x0[11]=

/*

*

md1l0utputs - compute the outputs

* ¥

In this function, you compute the outputs of your S-function
block. The outputs are placed in the y variable.

*

*/

static void mdlOutputs(y, x, u, S, tid)
double *y, *x, *u;
SimStruct *S;

int tid;
{

yl[o] = x[0];
y[1] = x[1];
y[2] = x[2];
y[3]1 = x[3];
y[4] = x[4];
y[5] = x[5];
yl6] = x[6];
y[7] = x[7];
y[8] = x[8];
y[9] = x[9];

y[10] = x[10];




E i S

y[11] = x[11];

mdlUpdate - perform action at major integration time step

L]
*
* This function is called once for every major integration time step.

* Discrete states are typically updated here, but this function is useful
* for performing any tasks that should only take place once per

* integration step.

static void mdlUpdate(x, u, S, tid)
double *x, *uj;
SimStruct *S;

int tid;
{
}
/*
* mdlDerivatives - compute the derivatives
&

* In this function, you compute the S-function block’s derivatives.
* The derivatives are Placed in the dx variable.

*/

static void mdlDerivatives(dxvec, Xvec, uvec, S, tid)
double *dxvec, *xvec, *uvec;
SimStruct *S;
int tid;
double *Minvpr;
Matrix *MN,*Mout[1];
double *Mpn;

double ds = uvec[0];

double db = uvec[1];
double dr = uvec[2];
double rps= uvec[3];
double u = xvec[0];
double v = xvec[1];
double w = xvec[2];
double p = xvec[3];
double q = xvec[4];
double r = xvec[5];
double x = xvec[6];
double y = xvec[7];
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double z = xvec[8];
double fi = xvec[9];
double th = xvec[10];
double psi= xvec[11];

double dx, dy, dz, dfi, dth, dpsi;

int nauxvec = 6;
double auxvec[6];

int i, j;
double accum;
double J,DIAM4,X1,X2,Tp,Qp;

double L2, L3, L4, L5;
double u2_eta;

DIAM4=DIAM*DIAM*DIAM*DIAM;

J=u* (1-WAKE) / (rps*DIAM) ;

X1=RHO*DIAM4* (KTO+KTJI*J+KTIJ*J*J) ;
X2=RHO*DIAM4*DIAM* (KQO+KQJ*J+KQJII*JI*J) ;
Tp=X1*rps*fabs(rps)*(1-ID);
Qp=X2*rps*fabs(rps);

L2 = LxL;

13 = L*L*L;

L4 = L*L*L*L;
L5 = L*L*L*Lx*L;

u2_eta = VC*fabs(rps)/rps*u;
/* u-equation */

auxvec[0] = -Mk(-v¥r + wxq - XG*(q*q + T*r) + YG*(p*q) + ZG*(p*r)) +
RHO/2%(
L4*(XQQ*q*q + XQAQ*q*fabs(q) + XRR*r*r + XRP*r*p)+
L3* (XVR*v*r + XWQ*wkq + XWAQ*w*fabs(q))+
L2x (XUUsu*u + XVVsvkv + XWWkwrw + XWAWrwxfabs(w) +
4*XDRDR*u*u*dr*dr +
4*XDS*u*u*ds +
4xXDSDS*u*u*ds*ds +
XDBDB*u#*u*db*db)
)
-(W-B)*sin(th)
+Tp;

/* v-equation */

—



auxvec[1] = -Mx(-w*p + u*r - YGx(r*r + pxp) + ZG*(q*r) + XG*(p*q)) +
RHEO/2%(
L4* (YRAR*r*fabs(r) + YPQ*pkq + 4*YRDR¥r*r*dr) +
L3*(YR¥u*r + YP*ukp + YWP*w*p) +
L2* (YSTAR*u*u + YVsuxv + YVAVkvksqrt(viv + wkw) +
4xYVDR*v#v*dr + 4*YDR*ukukdr + 4*YDAD¥uxu*dr*fabs(dr)+
4%YDRE*dr*(u2_eta - u*u/C)*C)
)
+ (W-B)*cos(th)*sin(fi) -
RHO/2*CDY*y_int(v,w,q,T);

+

auxvec[2] = -Mx(-uxq + v*p - ZGx(p*p + q*q) + XG*(r*p) + YG*k(r*q))

RHO/2%(

L4x(ZQAQ*q*fabs(q) + ZRR¥r*r)+

L3 (ZQ*u*q + ZVP*v*p + ZVR*v¥r + 4*ZAQDS*u*fabs(q)*ds)+

L2% (ZSTAR*u*u + ZWxwky + ZVVkvxv + 4*xZWDS*wkwkds +
ZAWsuxfabs(w) +
ZWWkfabs (wksqrt(v¥v + wiw)) + ZWB*ukwkdb +
ZAWB*u*fabs (w)*db + 4*ZDS*u*u*ds +4*ZDAD*u*uxds*fabs(ds)+
ZDB#*u*u*db + ZBAB*uxu*db*fabs(db) +
4%ZDSExds* (u2_eta - uwku/C)*C)

)

+ (W-B)*cos(th)*cos(fi) -

RHO/2%CDZ*z_int(v,w,q,T);

auxvec[3] = -((IZ - IV)*qg*r - (p*q)*IZX + (r*r - q*q)*IYZ + (p*r)*IXY)

—M*(YG*(-u*q + v*p) - ZGx(-wkp + u*r)) +

RHO/2%(
L5* (KQR*q*xr + KRAR*r*fabs(r)) +
L4 (KP*u*p + KR¥ukr + KWP*w*p)+

L3* (KSTAR*u*u + KVsu*v + KVAV*vxfabs(v) + 4*KDR#uku*dr)
)
- (YG*W-YB*B)x*cos (th)*cos(£fi)
- (ZG*W-ZB*B)*cos(th)*sin(fi)

- Qp;

auxvec[4] = -((IX - IZ)*r*p - (q*T)*IXY + (pkp - T*r)*IZX + (p*q)*IYZ)

-M*(ZG* (-v*T + wxq) - XGx(-uxq + v*p)) +

RHO/2%(

L5% (MRP*r*p + MQAQ*q*fabs(q) + MRR¥r*r) +

L4 (MQ*u*xq + MVR*v*r + 4xMAQDS*u*fabs(q)*ds)+

L3* (MSTAR*u*u + MWsutrw + MWAWkwksqrt(viv + wiw) +

4xMWDS*wkwxds + MAWxuwkfabs(w) +
MWWxfabs (wksqrt(vkv + wiw)) +
MVVxv*kv + MWB*u*wxdb +
MAWB*u*fabs (w)*db + 4*MDS#uxu*ds + 4*MDAD*u*uxds*fabs(ds)+
MDB*u*u*db + MBAB*uxu*db*fabs(db) +
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4xMDSE*ds* (u2_eta - u*u/C)*C )
)
- (XG*W-XB*B)*cos (th) *cos (fi)
-(ZG*W-ZB*B)*sin(th) +
RHO/2*CDM*m_int(v,w,q,T);

auxvec[5] = -((IY - IX)*p*q - (z*p)*IYZ + (q*q - p*p)*IXY + (r*q)*IZX)
-M* (XGx (-wkp + u*r) - YGx(-v*r + wxq)) +
RHO/2%(
L5*(NPQ#p*q + NRAR*r*fabs(r) + 4*NRDR¥r*r*dr) +
L4 (NP*u*p + NR¥u*r) +
L3*(NSTAR*u*u + NViukv + NVAVkxvksqrt (vkv+wkw) +
4¥NVDR#v*v*dr + 4*NDR¥u*uxdr + 4*NDAD*uxukdr*fabs(dr) +
4*%NDRE*dr*(u2_eta - u*u/C)*C)
) +
(XG*W - XB*B)*cos(th)*sin(fi) + (YG*W -~ YB*B)*sin(th)
- RHO/2%CDN#*n_int(v,w,q,T);

Minvpr = mxGetPr(Minv);

for (i = 0; 1 < 6; i++) {
accum = 0.0;
for (j = 0; j < 6; j++)
accum = accum+(Minvpr[6*j + i] * auxvec[j]l);

dxvec[i] = accum;
}

dx = cos(psi)*cos(th)*u+(-sin(psi)*cos(fi)+cos(psi)*
sin(th)*sin(fi))*v+(sin(psi)*sin(fi)+cos(psi)*
cos(fi)*sin(th))*w;

dy = sin(psi)*cos(th)*u+(cos(psi)*cos(fi)+sin(fi)x*
sin(th) *sin(psi))*v+(-cos(psi)*sin(fi)+sin(th)x*
sin(psi)*cos(£i))*w;

dz = -sin(th)*u+cos(th)*sin(fi)*v+cos(th)*cos(fi)x*w;

dfi = p+sin(fi)*tan(th)*q+cos(fi)*tan(th)*r;

dth= cos(fi)*q-sin(fi)*r;
dpsi= (q*sin(fi))/cos(th)+(r*cos(fi))/cos(th);

dxvec[6] = dx;

dxvec[7] = dy;
dxvec[8] = dz;
dxvec[9] = dfi;
dxvec[10] = dth;
dxvec[11] = dpsi;
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/%

* mdlTerminate - called when the simulation is terminated.

*

* In this function, you should perform any actions that are necessary
* at the termination of a simulation. For example, if memory was

* allocated in mdlInitializeConditions, this is the place to free it.

*/

static void mdlTerminate(S)
SimStruct *S;

{
mxFreeMatrix (Minv) ;
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif
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