ISSN 0280-5316
ISRN LUTFD2/TFRT--5467--SE

Scanned Image Processor
for X11/Motif

Per Tunestal

Department of Automatic Control
Lund Institute of Technology
February 1993

Document name

Department of Automatic Control Master Thesis
Lund Institute of Technology Date of issuc
P.O. Box 118 February 1993
S5-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5467--SE
Author(s) Supervisor
Per Tunestal Rolf Johansson and Jonas Fredenholm

Sponsoring organisation

Title and subtitle
Scanned Image Processor for X11/Motif.

Abstract

The aim of this master thesis is the development of a software package for showing and manipulating scanned
images in a X11/Motif environment,

The main purpose of the software is digitizing of graphs scanned in with a black- and white scanner. The
software shall support both manual and automatic identification of graphs and coordinate systems. In the
automatic mode the program shall be able to compensate for small non-linearities in the coordinate system
as a consequence of for example photo copying. The task of automatic identification is complicated by the

relatively high amount of noise present in the scanned images, and the fact that the curves are several pixels
thick.

Key words

Classification system and/or indcx terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 45

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

Acknowledgments

I would like to express my gratitude to Rolf Johansson and Jonas Fredenholm for making this
master thesis possible, and for hints and advice during the work.

2. TaSK. ..o G R RS e A 2
2.1. Background secimssissassisssissasssrmms et ime s G s i idiive 2
2.2, SPECIfICALION cocemmerermmvensssprssnmesmse sommmbemREr AR AT A AT A3 S R TS 3
3. The MOt SYSEEIMoviiiiiiii ittt raaeannees 4
3.1 INEEOAUCHIONuoiiieiis e ettt st e e iree e e 4
3.2, WHAZELS ...ttt e 4
3.3. Widget characteriStiCs . suumsmmmammissmviisstsimetssmos o msseissme R sihsssimissss 4
3.4. Widgets in appliCatiONS uussmssuvsssinsssimmiiomissiiod i sniys isnss i s @y mssss s 4
3.5. Widget methods s s s s 5
REEIONCES ... vve v i ST FO 00 VI Y oy b s S i 5
4, Tmage fILETINgooeoooe Gismmssimasronsosemsensom e e TV s R R AR b 6
4.1, INETOQUCLION ..ot 6
4.2, TMAGE AALAoviiiiiieiecce et 6
4.3, Filtering Algorithmscccoooiiiiii e 6
4.3.1. Inverting algorithmc.cooooiiiiiii 6
4.3.2. Erasure of Solitudes.............c...cooiiiiiiiiiiccice e 7
4.3.3. Thinning algorithm....................cccccoiiiiin i 7
4.3.4. Cross- and endfinding algorithm......................cooiiiiiin, 8
4.3.5. Algorithm for identifying coordinate intersections 9
4.3.6. Algorithm for adjusting the coordinate system.....................coceeueenne 9
4.3.7. Algorithm for finding connectionsccceeevvvreeiereiivresniiennnens 9
4.3.8. Algorithm for vectorizing the image..............ccccovveeeiiieiieniriicnenns 11
4.3.9. Erasure of Coordinate Lines.............c..cooocveeiiiiiiiiiieiiiirisiieeniinieanns 12
4.3.10. Erasure of Dead Endsoooooiiiiiiiiiiiiiiii e 12
4.3.11. FOlloWINg CUIVES..........covviiiiiiiii e cinbe s sibesasieaesbae s neaseins 12
REfOICICES ..o o B ST R SRSV 13
5. Coordinate Handlingcccooooniiiiinnnneen e i ivsson s wssaibisibe sssavoiionis 14
5.1 INtrOAUCHIONcvviiiiii et 14
5.2 MEthOdoooiiiiiii e s 14
5.3 TREOTY ... e 14
6. GIaph WIAZEL.ccv.iiiininiiiie suominns ovesunens vossnnen sree s oo s BSMANRASS AR FADSSR EATLAR 16
6.1, INLLOAUCHIONoovvriiiiiiee e s e s SR S S R AR 16
6.2. WIdget Class...........ooooiiiiiiiiiiiieie e oo i oA S8 S S A GRS 16

0.3, RESOUTICES ... e e e e a e e 16

6.4, FUNCHONALLYooovviiiiieic s 18

6.4.1. Widget Methodscovviiiiiiiiiiiiiiiiciie s 18

6.4.2. Widget ACLIONS...........ooviiirieriiiriiiiiiriie i 19

6.4.3. CallbaCKSc.ooiiiiiiiiiii it 20

6.5. Exported FUNCLONS....................cucimsrasimusyosiasssisesossssiosssssssbirmsags e earessanereconse 21
6.6. Created OQUIPULooiveewrer siiviaasoii i siins dis isis sinsaisssssesizess e seesnesrennssans 22
6.7. SUMMATY.........coooeviiiernrenrer o S AT oo v ve e vnravsrneen 22
RELEIENCESvvvviierinrireeeveeeeens e oo TSRS RSN AT BT 1ot ovenavenaasnacn 23
T. Magnify WAAEEL............coovviiieriiireriienieee snnanrsenbisssssasadass s HaF s R4S FRGR O e rreaerrannnnnneon 24
7.1 INETOAUCLION ...ttt ra e e e e 24
7.2, WAt CIaSS........c.ooiiiiieiiiii st 24
7.3 RESOUICES ..ottt ettt e b e e sbe s 24
7.4. FUNCHONAlitYooveririneen cssammssmsmisissssrsnicssssossmeosnas sass senigts o seseseneessressns 25
7.4.1. Widget Methods o ssinmsamasmsimsssmmmssonn e 25

7.4.2. Widget ACHONScocosmimiiisivemiimsimsmmsseasi@os e 25

7.4.3, CallDACKS cisssssssvseusisasa o s T Usasaransi o sove s sriene s 25

7.5. Exported FUNCHIONS56 s i st dos sdiedaiatis o s aesvesvanenrens 25
7.6, SUMMATY........oooeiiiineninreieieesiees o st dsy s TSI B 1 vorrrereranes 25
RETEIENCESoiiveeoiice ettt 26
8. APPICALION.iiiiiiiiiiii ettt 27
8.1, INtrOdUCHIONooiiiiitiiii e 27
8.2. Widget HIerarchy coomsommessenmmmssiis asosmssemusasmsass « +esessreessoreos 28
B3 MENUS. ..ot A R A SRR NSRS S TS SPYES 28
8.3.1. Main MENUccoomemammsssssss e s s assan s e s 28

8.3.2. Filters MenU jususaseseie s s s s sy 28

8.3.3. Click Mode Men........ 50 sme0meshemisaieisiiasan s s i 29

8.3.4. Display Mode MEenu.............ccvovvvviierrinesirienieineimnicsieise s 29

8.3.5. MOAE MEMU........ccooiiviiiiiiiiiiei et e e aaaa e ee 29

8.4, Other WIdZetS.........cooiiiiiiiieie i 29
8.4.1, Text Field consnusmnonmmsomasimrissseasamismeaasss s 29

8.4.2, File Selection BOX........ s s i 29
RETEIENCES ..o S S A S M AR s S 30
Q. CONCIUSIONcvvvivieieiniereiineecuieeecene e s SRR T R A PR P T A 31

Appendix:
User’s Guide

2. Task

2.1. Background

Flygprestanda AB is a company that performs services for civil airline companies as well as
national air forces. The services mainly concern flight performance support and route planning.

The aircraft manufacturers supply diagrams specifying the performance, e.g. engine power, of
the aircraft depending on various conditions, e.g. air temperature, air pressure and speed. Both
safety and economy can be improved by taking full advantage of this information. Most small
and middle size companies however lack the resources and knowledge to do so. This is where
Flygprestanda AB enters the picture.

The route planning problem concerns choosing the best way from airport A to airport B. It
also involves the procedures when departing from and arriving to an airport. Today these
procedures are created manually, but with a new computer program using a terrain data base
of the whole world, it will be possible to create these procedures on screen. For this reason
there will be a need to digitise maps with altitude curves.

Today all diagrams are digitised using a conventional digitise board and a computer program
that stores the digitised points and creates a textfile containing the digitised coordinates. The
textfile is of a format recognised by optimising and other calculating programs developed by
Flygprestanda AB. This arrangement is not satisfactory for the following reasons.

- The result is highly dependent on how well the user places the points and
there is no easy way for the user to compare his work with the original
diagram.

- Often diagrams are distorted due to photo copying. There is no way to deal
with this in the present solution.

- The procedure is quite time consuming, because every point has to be
manually digitised.

- If the diagram is accidentally moved during the session, the remaining points
will not be correctly placed.

There is thus a need for better computer support.

The solution to these problems is a computer program where the user works on screen with
scanned images of the diagrams. The digitised points could then be displayed on top of the
image, and the user could easily check if the points are placed accurately. A magnifying
window would further aid the user in placing the points. With the image in the computer's
memory the program could also perform image processing for extraction of coordinate system
and data.

The purpose of this master thesis is to develop a computer program which implements the
above stated functions according to the specification in the following section.

2.2. Specification

The thesis consists of two parts:

- A software package for showing and manipulating scanned images in a X11/Motif
environment.

-Documentation.

1. Software description:

The software shall be written in C and use the X11 Xtoolkit.

The following functions shall be implemented:

a) Widget showing a bitmap/pixmap containing the scanned image.
The widget shall be able to

- show a pix/bitmap.

- identify a coordinate system using mouse input.

- select and save points using mouse and a selected coordinate system.
- select filtered data lines and convert lines to an array of points.

- overlay source data (the original pixmap) and retrieved data to check consistency.
b) scrollbar widget for showing a selected part of the child widget.

¢) A magnifying widget showing a selected part of a widget.

d) A filter function for extraction of data of a scanned graph. The filter shall be able to separate
the coordinate system lines, and the data lines in a graph.

e) A program using the above described functions making a tool for looking at scanned
images, and processing data contained in the scanned images.

2. Documentation.

The documentation shall be written in English, and contain a description of algorithms used for
processing the image, as well as a description of the widget functions and relationships.

3. The Motif system

3.1. Introduction

Building applications with a graphical interface using pure C programming with a library of
low level graphics primitives is difficult. The Motif system is designed to simplify this by
providing predefined elements for user interface, such as scroll bars, push buttons, dialog
boxes and menus. In fact the Motif system provides a way of object oriented programming
with standard C. The objects used in Motif are called widgets which is short for "windowed
gadget".

3.2. Widgets

A widget is a programming object which has a window on the screen at its disposal. Each
widget is a member of a class. A number of widget classes are predefined by the Motif system.
The elements for user interface mentioned above are all examples of predefined widget classes.
An application programmer can use widget instances from these classes but can also write his
own widgets as subclasses of these predefined classes.

3.3. Widget characteristics

To the application programmer who uses predefined widget classes a widget can be thought of
as a "black box" with inputs, outputs and states.

Widget

Inputs————=> | Internal state | ———> Outputs

Figure 2.1: Black box visualization of a widget.

The inputs and outputs are called the widget resources and are the public parts of the widget's
data structure. The internal state is the part of the widget's data structure that is private to the
widget.

In a widget the inputs and outputs are called widget resources and can be set and read by the
application that uses the widget. A special kind of resource is the "callback". Most widget
classes has one or more callback resources which let the application declare callback functions
that will be called as a consequence of some condition being fulfilled. This condition is often a
mouse button or a key being pressed. In the callback functions the application can
communicate with widgets by setting or getting resources or by calling functions exported by
the widget.

3.4. Widgets in applications

In an application widgets are declared as variables of type Widget, and are placed in a widget
tree, where the geometry of each child is managed by its parent. The children of a RowColumn

widget for example will be placed in rows or columns according to what is specified in the
resources.

3.5. Widget methods

The active part of a Motif application is an event sensitive endless loop where events are
dispatched to the various widgets. If you for example click mouse button 1 in a PushButton
widget a mouse button event will be dispatched to the PushButton widget, which in turn will
change its appearance and call its Activate Callback.

Some events have a special status, and the widget functions that are called as a consequence of
these events are called the widget methods. Some of the most important widget methods are:

initialize: Called when the widget is created by the application. Initializes private state
variables in accordance with resource values.

expose: Called when part of or the entire widget gets exposed after having been obscured.
Restores the widget's appearance.

resize: Called when the widget is being resized. Recalculates the widgets graphical appearance
based on the new size.

set_values: Called when a widget resource is set by the application. Recalculates private state
variables based on the new resource values.

destroy: Called when the widget is destroyed by the application. Frees dynamically allocated
memory space.

In addition to these predefined methods a widget can define action routines which will be
called following a specified event sequence.

References
More on X11 and Motif can be found in these books.

Nye, A., and O'Reilly, T., 1992. "X Toolkit Intrinsics, Programming Manual". O'Reilly &
Associates, Inc. ISBN: 0-937175-62-5

Open Soft Foundation, 1991. "OSF/Motif Programmer's Guide". Prentice Hall.
ISBN: 0-13-640673-4

Nye, A., 1991, "Xlib Programming Manual". O'Reilly & Associates, Inc.
ISBN: 0-937175-11-0

4. Image filtering

4.1. Introduction

There are some major difficulties when trying to filter out data lines of mathematical functions
from a scanned bitmap image.

1. The data lines are not of zero width.
2. The coordinate system lines intersect the data lines.
3. There is noise present in the image.

In section 6.3. some solutions to these problems will be presented.

4.2. Image data

The source data to perform filtering on is stored as a character array in a structure of the type
XImage, defined in XLib. Xlib supplies a number of functions as an interface to this structure.
The functions provided for setting and getting pixels are:

unsigned long XGetPixel(ximage, x, y)

XlImage *ximage,
int X,
int V;

The XGetPixel function returnes the pixel value of the pixel with coordinates (x, y) relative to
the origin (upper left of the image). In case of a binary image it returns 1 (set) or O (not set).

int XPutPixel(ximage, x, y, pixel)

XImage *ximage,
int X,
int Y

unsigned long pixel,
The XPutPixel function sets the value of the (x, y) pixel to pixel.

However, these functions are far too slow to use in the filtering algorithms presented below.
For that reason some specialized functions which operate directly on the image data were
designed.

4.3. Filtering Algorithms

4.3.1. Inverting algorithm
Often scanned images are inverted, that is data lines are 0:s and the background consists of 1:s.
For this reason a function

void Graphlnvert(w)
Widget w;

is exported. This function goes through the original and the filtered bitmaps bytewise and
inverts each byte.

4.3.2. Erasure of Solitudes

A function
void GraphSolitudes(w)
Widget w;

that deletes all lonely points is exported. This function scans the entire image and deletes points
which have all neighbours unset.

4.3.3. Thinning algorithm

The problem of non zero line width can be solved by filtering the image with a thinning
algorithm. The object of the thinning algorithm is to reduce all curves in an image so that the
filtered image will contain the medial paths of all the curves in the original image. It is however
very expensive to actually compute the medial paths of all curves. For this reason an iterative
method that deletes edge points on the curves will be used. The method used was developed
by Zhang and Suen in 1984 and is described in "Digital Image Processing". The algorithm is
implemented in the exported function

void GraphThin(w)
Widget w,

Each iteration of the algorithm consists of two steps, where in the first step a point is flagged
for deletion if the following conditions are satisfied (see Fig. 4.1).

(a) 2<N(p,) <6,
(b) Sy =1,
(©) py Py Ps=0,
(d) py-ps-Ps=0,
where N(p,) is the number of nonzero neighbors of p,; that is,

N@)=p,+p;+ .. T Pg+ps

and S(p,) is the number of 0-1 transitions in the ordered sequence of p,, p,, ..., Pg, Po, P,. When
all of the bitmap has been scanned according to the conditions above, the flagged points are
deleted. In the second step, conditions (a) and (b) remain the same, but conditions (c) and (d)
are changed to

() py Py Ps=0,
d)p, ps-ps=0,

Bl Sy BN
Ras]
Fan T AT des

Fig. 4.1: Neighborhood arrangement used by the thinning algorithm.

Points meeting the conditions (a), (b), (c'), (d') are flagged and deleted in the same manner as
in step one. This procedure is iterated until there are no points left to delete.

The left part of condition (a) is to prevent endpoints to be erased, and the right part is to
prevent erosion into corners. Condition (b) prevents cutting off one pixel thick lines.
Conditions (c), (d), (c"), (d') assures that regions are thinned symmetrically. Step one deletes to
the upper left and step two to the lower right.

The thinning algorithm has been tested on various images and performs well. One problem
however, arises in the vicinity of multiple line intersections, where severe deformation can take

place.

4.3.4. Cross-_and endfinding algorithm
An algorithm that finds all endpoints and points where curves intersect, and puts them in a list
is implemented in the function

void GraphCrossings(w)
Widget w;

This function is intended to be used after the thinning algorithm has been applied to the bitmap.
A pixel is put in the list if it is set and its surrounding according to Fig. 4.1 meets either of the
conditions

(@) S, =23, or

(b) p,=p;=p,=0,0r
DPs=DPs=ps=0, 0r
Ps=P7;=pg=0, or
Ps=Dy=p, =0

(©) S)=1,Np)<2

Condition (a) handles normal 3- and 4-way crossings, and condition (b) handles crossings of

the type in Fig. 4.2.

E| 2
N
] [
=]

Fig. 4.2: Crossing handled by condition (b).

All four points of the cluster in the middle are stored as crossings. Condition (c) matches all
endpoints.

The structure of the elements in the list is

typedef struct node_struct {

short X, V;
struct node_struct *connections[8];
char *path[8];
char rev[8];
XPoint midpoints[8];
XPoint *vect[8];
short *nvects[8];
int type,;
} nodetype;

where XPoint is a data type defined by Xlib according to
typedef {

short x,vy,
} XPoint;
The member type can have one of the values
NORMAL CROSS
COO_CROSS
END POINT

The function GraphCrossings assignes the value NORMAL_CROSS to intersections, and
END_POINT to endpoints. The function also initiates all the other members.

When testing the algorithm, the conditions (a) - (c) above have proven to constitute a correct
model of intersections and endpoints.

4.3.5. Algorithm for identifying coordinate intersections
The exported function

void GraphCoos(w)
Widget W,

checks all crossings found with the cross finding function and tries to match an orthogonal
cross of user specified size in the original bitmap. If there is a match, the node is marked as
COO_CROSS.

4.3.6. Algorithm for adjusting the coordinate system

If the user of the program has specified a coordinate system manually, the exported function

void GraphCreateCooSystem(w)
Widget W,

can adjust the coordinate system according to the coordinate intersections identified with the
function GraphCoos. The function scans the intersections in the entered system and checks if
there is an identified intersection close enough and, if so, uses the identified intersection
instead.

4.3.7. Algorithm for finding connections
An algorithm that traverses all paths between all endpoints and crossings found with the cross
finding function, and establishes connections is implemented in the exported function

void GraphFindConnections(w)
Widget w;

What the function does is, leaving out technical details

for (all elements in the list of crossings and endpoints) {
for (all paths emerging from the node that are not already traversed)
follow, and store the path until a crossing or endpoint is reached;
establish a bidirectional connection between the nodes;

)

The arrays path, connections, rev of nodetype above all refer to connections between the node
and other nodes. The pointer array, connections, contains pointers to the connected nodes.
The array of character strings, path, holds the information about the paths. The array of

characters, rev, tells for each connection the array index of the same connection in the other
direction.

When following a path, coded values of the direction of travel are stored in a character string,
which when the path is complete is stored in the array path. This saves both time and memory
space compared to storing the coordinates in a list. The directions are coded with the binary
numbers below.

RIGHT 00000001
DOWNRIGHT 00000010
DOWN 00000100
DOWNLEFT 00001000
LEFT 00010000
UPLEFT 00100000
UP 01000000
UPRIGHT 10000000

When following paths it is important to assure that there is no more than one way to do so. It
is also essential to avoid any possibility to get caught in a loop. If the algorithm avoids
searching in directions that are partly or entirely backwards (se Fig. 4.3), the possibility of
getting caught disappears.

\L/ \T/
/ \

Fig. 4.3: Permissible directions of search.

One problem with the result produced by the thinning algorithm is illustrated in fig. 4.4. The
lower pixel has two neighbours in the forward direction. The way around this problem is to let
horizontal and vertical directions have higher priority than diagonal directions.

\-T

Fig. 4.4: Path following algorithm having to make a choice between two directions.

From fig. 4.5 it follows that there can be no more than eight paths coming from a single
crossing. Actually there can't be more than four but the simplicity of indexing arrays led to a
data structure with an array of eight possible connections from each crossing or endpoint. The
numbers shown in Fig. 4.5 are used to index the arrays concerning the connections.
Consequently the index of a connection will in general have different indices in different
directions. This is why the array rev is needed.

10

NFA
= B
VLN

Fig. 4.5: Possible path directions from crossing or endpoint.

For future use the coordinates of the midpoints on every path are stored in the array
midpoints.

The path finding algorithm has proven to perform as expected when applying to thinned
images.

4.3.8. Algorithm for vectorizing the image
An algorithm that converts all connections between nodes to vector sequences is implemented
in the exported function

void GraphVectorize(w)
Widget W,
The idea of vectorizing is illustrated in Fig. 4.6.
=Wl
| I
- =3
K B
A

Fig. 4.6: Vectorization of a path.

The path from node A to node B is vectorized with a vector length of 7. This is done for all
connections found with GraphFindConnections, and the result is stored in the array vect in the
node structure. Each element of vect can hold an array of vectors. The elements of the array
nvects tells how many vectors there are in each connection.

A rough description of the algorithm is, with vector length = length

for (all nodes) {
for (all paths from the node) {
while (not end of path) {
Create vector from length steps of the path;
Put vector in array,

}

if (more than one vector, and last vector is shorter than length) {
Add this vector to the second last vector;
)

Put vector array in node structure;

}
}

The vectorization smothes the connecting paths, which is useful when searching through the
network trying to identify an entire curve.

11

4.3.9. Erasure of Coordinate Lines
The exported function

void GraphEraseCooLines(w)
Widget w;

goes through all connecting paths and checks if they keep within a user specified distance from
a coordinate line. If so, the algorithm deletes the path and breaks the connection. The purpose
of doing this is mainly to help the auto searching routine in making the right decisions.

4.3.10. Erasure of Dead Ends
The exported function

void GraphEraseDeadEnds(w)
Widget w;

checks the lengths of paths to or from endpoints and deletes paths with a length shorter than a
user specified value.

4.3.11. Following Curves
The function

void LineSearch(gw)
GraphWidget gw;

tries to digitize a whole curve starting with a selected node and connection. The function starts
at the selected connection and compares the last vector with the first vectors in the neighboour
connections. The function chooses the connection with the least difference in direction if the
difference is small enough, and continues from there (see Fig. 4.7). This is done in both
directions from the selected connection. All vector starting points are stored in the current data
line.

Fig. 4.7: Selected connection and the connections chosen by the algorithm.

A problem arises when an intersection of many lines has been separated by the thinning
algorithm into two or more nodes. This is handled by the algorithm by checking directions of
vectors from neighbour nodes as well if they are close enough (see Fig. 4.8).

12

Fig. 4.8: Separated intersection where the algorithm "looks one step ahead".

To assure that the algorithm doesn't get caught in an endless loop every connection passed is
marked, and if this connection is reached again it cannot be chosen.

References
More on the thinning algorithm can be found in section 8.1.5. of

Gonzales, R. C., and Wintz, P., 1987. "Digital Image Processing”. Addison Wesley.
ISBN: 0-201-11026-1

13

5. Coordinate Handling

5.1. Introduction

When an image is scanned there will always be deformations in parts of the image. These
deformations can take place for example if the paper has been folded. For this reason the
program must be able to handle slightly non-linear coordinate systems.

5.2. Method

The method used in the application is to place all coordinate intersections in a matrix, and have
a local coordinate system in each cell in the matrix (see Fig. 5.1).

9 10 [11 12

Fig. 5.1: Matrix of coordinate intersections, where each numbered cell has its own local
coordinate system.

The real coordinates of an arbitrary point on screen can now be calculated from the
coordinates of the downleftmost corner of the cell containing the point, and the local
coordinates in the cell. The question is however what method to use for calculation of the local
coordinates.

5.3. Theory

Fig. 5.2 shows one cell in the matrix of coordinate intersections. Let the surface be
parameterized by s, t, and let these parameters be the "local coordinates" of the cell. Let (x(s),
y,(s)) denote the screen coordinates of the points on line 1, and (x;(s), y;(s)) the screen
coordinates of the points on line 3.

s
(x00,y00) 1 (x10, y10)

Fig. 5.2 A cell in the coordinate matrix. Marked coordinates are the screen coordinates
of the corners.

14

It follows from the image that

x(8) = Xgo *+ 8*(Xyg - X00) ¥1(8) = Yoo + 8*(¥10 - Yoo)
X3(8) = X1 T 8*(X; - Xo1); Va(S) = Yor + 8 (y11 - Yor)

For an arbitrary point in the cell with screen coordinates (x(s, t), y(s, t)) it follows that
x(s, t) = x,(8) + t*(%5(s) - x,(8)) ;o y(s,) = yi(8) Ft*(Y5(s) - va(S))

Simple calculations give
X(s, £) = Xg9 T 8%(Xy0 - Xgg) F t¥(Xg; - Xgo) T 8¥t¥(Xy; + Xgg = Xg1 = Xy0)
(s, £) = Yoo T 8*(¥10 - Yoo) T t* Vo1 - Yoo) T 8*t* (Y11 * Yoo = Yo1 = Y10)
This can be written

x(s, t) =a +b*s + c*t + d*s*t y(s, t) = e + f*s + g*t + h*s*t(5.1)
with

a=Xg ; € =Yoo

b = x4 - Xg , £=¥10- Yoo

€= Xo1 = Xg0 ; 8= Yo1 ~ Yoo

d =3 * Xg0 - Xo1 = Xp0 ; h=y;; % Yoo - Yor - Yo

We would like to invert (5.1) in order to get a formula to calculate (s, t) from (x, y), but the
last terms are non-linear and makes it difficult. If however the coordinate system is close to
linear we can neglect these terms and calculate an approximation (s', t') of (s, t).

M

The error made in the approximation can now be calculated by applying (5.1) on (s, t') and get
(x', y). if the difference between (x', y') and (X, y) is too big a correction can be made.

x'—x y'-y
b g

In the program this correction is iterated until x'-x <0.5 and y-y <0.5 .

s~ S —

15

6. Graph Widget

6.1. Introduction

The Graph widget is the heart of the application. Its purpose is to provide a tool for displaying
and digitizing a scanned image read from a file. The widget can operate in one of three modes:

- Digitization of mathematical functions from x to y.
- Digitization of mathematical functions from y to x.
- Digitization of general continuous curves in two dimensions.

The Graph widget supports manual digitization of coordinate intersections and data lines, but
also exports some filter functions for interactive semi automatic digitization of coordinate
intersections as well as data lines.

6.2. Widget Class

The class name for the Graph widget is GraphWidgetClass, and to use an instance of the
Graph widget in an application the following include statement must be at the top of the
application.

#include "Graph.h"

6.3. Resources
Following resources are defined by the Graph widget.

Name Class Type Default
XfpNcallback XfpCCallback XmRCallback NULL
XfpNforeground XfpCForeground XmRPixel Black
Xf{pNbackground XfpCBackground XmRPixel White
XfpNpointColour XfpCPointColour XmRPixel Blue
XfpNcurrentColour XfpCCurrentColour XmRPixel Red
XfpNcooColour XfpCCooColour XmRPixel Green
XfpNdataFile XfpCDataFile XmRString NULL
XfpNoutFile XfpCOutFile XmRString NULL
XfpNimage XfpCImage XmRPointer NULL
XfpNclickMode XfpCClickMode XmRInt 0
X{pNxCoo XfpCXCoo XmRPointer NULL
XfpNyCoo XfpCYCoo XmRPointer NULL
XfpNxoutCoo XfpCXoutCoo XmRPointer NULL
XfpNyoutCoo XfpCYoutCoo XmRPointer NULL

16

XfpNcurrentF XfpCCurrentF XmRPointer NULL
XfpNshowConnections | XfpCShowConnections |XmRBoolean False
Xf{pNdisplayMode XfpCDisplayMode XmRInt 0
XfpNcrossSize XfpCCrossSize XmRlInt 10
XfpNvectorLength XfpCVectorLength XmRInt 10
XfpNminPath XfpCMinPath XmRInt 30
XfpNxSpacing XfpCXSpacing XmRPointer NULL
XfpNySpacing XfpCY Spacing XmRPointer NULL
XfpNmode XfpCMode XmRInt XY
XfpNsearchMemory XfpCSearchMemory XmRInt 50
XfpNregionSize XfpCRegionSize XmRlInt 10
XfpNendLength XfpCEndLength XmRInt 10
XfpNmidpointLimit XfpCMidpointLimit XmRInt 3
XfpNcallback:
Specifies the callbacks to be called when the widget performs XtCallCallback.
XfpNforeground:
The foreground colour of the bitmap.
XfpNbackground:
The background colour of the bitmap.
XfpNpointColour:
The colour of digitized data points not belonging to the current data line.
XfpNcurrentColour:
The colour of digitized data points belonging to the current data line.
XfpNcooColour:
The colour of digitized coordinate line intersections.
XfpNdataFile:
The name string of the bitmap source file.
XfpNoutFile:
The name string of the outfile containing the coordinates of the digitized data points.
XfpNimage:
A pointer to the XImage structure containing the bitmap currently displayed on screen.
XfpNclickMode:
Specifies the mouse input mode.

COO MODE= Manual input of coordinate intersections

POINT MODE = Manual input of data points. When changing to this mode, a new

data line will automatically be created.
SEMI_MODE = Automatic digitization of selected connection. When changing to

this mode, a new data line will automatically be created.

17

AUTO MODE = Automatic digitization of entire data line. When changing to this
mode, a new data line will automatically be created.

XfpNxCoo and XfpNyCoo:
Used to get user input of coordinates from application program.

XfpNxoutCoo and XfpNyoutCoo:
Used to transfer current coordinates of intersection to application program.

XfpNcurrentF:
Holds the f-value of the current data line.

XfpNshowConnections:;
Specifies whether to show connections between data points or not.
XfpNdisplayMode:
Specifies what to show on screen.

NORMAL DISP = Show original bitmap

FILTERED MODE = Show filtered bitmap

VECTORS_DISP = Show vectorized image
XfpNcrossSize:
Specifies the cross size to use when identifying coordinate intersections with GraphCoos.
XfpNvectorLength:
Specifies the vector length used when vectorizing the image with GraphVectorize.
XfpNminPath:

Minimum length of a path to be erased by GraphEraseCooLines.

XfpNxSpacing and XpfNySpacing:
Used to transfer spacing of the coordinate system between widget and application.

XfpNmode:
Sorting mode.

XY= Sort data points as function from x to y
Y X= Sort data points as function from y to x
CONTINUOUS = Do not sort data points
XfpNsearchMemory:
Specifies how much to weigh in old directions when identifying data lines.
XfpNregionSize:
Size of click sensitive regions.
XfpNendLength:

Maximum length of dead ends to be erased by GraphEraseDeadEnds.

XfpNminpointLimit:
Minimum length of connections to be click sensitive.

6.4. Functionality

6.4.1. Widget Methods
The following methods are implemented in the Graph widget:

18

Initialize:

The Initialize method loads graphics contexts used when drawing on screen, checks resource
values set by the application, sets private state variables and loads initial bitmap if one is
specified.

Redisplay:

Checks if the widget is realized and if so redraws exposed part of the bitmap. The method also
redraws data points, coordinate intersections, coordinate lines and vectorized image, all
according to current display mode.

SetValues:
Handles resource settings from the application.

Destroy:
Deallocates all memory space dynamically allocated by the widget.

6.4.2. Widget Actions

There are four action functions defined in the Graph widget. What action the action functions
will perform depends on the resource XfpNclickMode.

StartAdd:
StartAdd is called when mouse button 1 is pressed.

If the value of XfpNclickMode is

- COO_MODE: If the number of coordinate intersections is less than 3, a new element will be
placed in the list of coordinate intersections. If the number equals 3, the nearest node in the
coordinate matrix will be moved to the position of the mouse pointer.

- POINT MODE: A new data point will be added to the current data line.

- SEMI_ MODE or AUTO_MODE: If the image has been vectorized, the nearest connection
will be selected.

StartMove:
StartMove is called when mouse button 2 is pressed.

If the value of XfpNclickMode is:

- COO_MODE: The nearest element in the list of coordinate intersections will be selected for
moving.

- POINT MODE: The nearest element in the structure containing data points will be selected
for moving. The data line containing this element will be the current data line.

- SEMI_MODE or AUTO_MODE: Same action as for button 1.

DoMove:
DoMove is called when the mouse is moved with button 1 or 2 pressed.

If the value of XfpNclickMode is:

- COO_MODE: The selected element in the list of coordinate intersections will be moved
according to pointer motion.

- POINT MODE: The selected element in the structure of data points will be moved according
to pointer motion.

- SEMI_MODE or AUTO MODE: No action is performed.
FinishMove:

19

FinishMove is called when mouse button 1 or 2 is released.
If the value of XfpNclickMode is:

- COO_MODE: The selected element in the list of coordinate intersections will be fixed in the
current pointer position.

- POINT MODE: The selected element in the structure of data points will be fixed in the
current pointer position.

- SEMI_MODE: The vectors belonging to the selected connection will be transformed into
data points in the current data line.

- AUTO_MODE: The function LineSearch will be called and all the vectors of an entire curve
will be transformed into data points in the current data line.

DeletePoint:
DeletePoint is called when mouse button 3 is clicked (pressed, released).

If the value of XfpNclickMode is:
- COO_MODE: The nearest element in the list of coordinate intersections will be deleted.
- POINT MODE: The nearest element in the structure of data points will be deleted.

- SEMI_MODE or AUTO_MODE: If the image has been vectorized the nearest connection
will be deleted.

6.4.3. Callbacks
The Graph widget defines one callback with the name XfpNcallback. An element of the
structure

typedef struct _GraphCallbackStruct {
int reason;
XButtonEvent *event,

} GraphCallbackStruct;

is supplied with each callback. The field reason can take the values

- ADD DATA: Called when a data point has been placed.

- MOVE_DATA: Called when a data point has been moved.

- ADD _COO: Called when a coordinate point has been placed, telling the
application to specify coordinates.

- MOVE_COO: Called when a coordinate point has been moved, telling the
application to specify coordinates.

- PLACING: Called whenever the mouse is being moved with button 1 or 2
pressed.

- CANCEL: Called when buttons 1 or 2 has been clicked where there is
no point.

- IMAGE CHANGED: Called when a new bitmap has been loaded.

- DEFINE SPACING: Called when a coordinate matrix is to be created, telling the
application to specify the spacing between coordinate lines.

- NEW_LINE: Called when a new data line has been created from within the

widget, telling the application to specify a new f-value.

20

When the callback is caused by a button event, the event field contains the event.

6.5. Exported Functions

void GraphCoos(w)
Widget w;

Image filtering function described in sect. 4.

void GraphCreateNewCurve(w, f)
Widget w;
float f

If a no data line with f-number f exists, the function creates one. Otherwise the data line with f-
number f'is made current data line.

void GraphCrossings(w)

Widget w;

Image filtering function described in sect. 4.
void GraphEraseCooLines(w)

Widget w;,

Image filtering function described in sect. 4.
void GraphEraseCurve(w)

Widget w;,

Erases current data line.

void GraphEraseDeadEnds(w)

Widget w;

Image filtering function described in sect. 4.
void GraphFindConnections(w)

Widget w;

Image filtering function described in sect. 4.
void GraphlInvert(w)

Widget w;

Image filtering function described in sect. 4.
void GraphLoadBitmap(w, data_file, filt)
Widget w;

char *data_file;
Boolean filt;

Loads the bitmap stored in msp-file data_file. If filt is TRUE the bitmap is placed as filtered
image, otherwise it is placed as original bitmap.

void GraphSaveBitmap(w, out_bitmap)
Widget w;
char *out_bitmap;

21

Saves the filtered image in the msp-file out_bitmap.

void GraphSaveData(w, out_file)
Widget w;
char *out_file;

Stores the digitized information in the text file out_file.

void GraphThin(w)
Widget w;

Image filtering function described in sect. 4.

6.6. Created Output
When the function GraphSaveData is called, a text file with the following syntax is created.

& <name of text file without search path>
& <name of text file with search path>
* <name of the bitmap file with search path>

Y%<f-value>
<pairs of x- and y-coordinates of the points in the data line, sorted according to sort mode>

Yo<f-value>
<pairs of x- and y-coordinates of the points in the data line, sorted according to sort mode>
*

The data lines are sorting in rising f-values.
Example:

* graf.dta
4 /home/per/graf dta
* /home/per/graf. msp

%-1000.00

3001.29 2.83 3288.64 3.75 3544.46 4.50 3804.57 5.25
%0.00

2999.53 2.58 3298.16 3.50 3466.89 4.00 3646.39 4.50
%2000.00

3002.07 2.04 3315.53 3.01 3483.79 3.50 3662.19 4.00

*

6.7. Summary

The graph widget implements most of what is needed to digitize functional graphs as well as
for example maps with altitude curves. The automatic path finding algorithm however lacks the
ability to find closed curves because they have no endpoints and no intersections. The ability to
find closed curves would be convenient when digitizing altitude curves.

22

References

Nye, A., and OReilly, T., 1992. "X Toolkit Intrinsics, Programming Manual". O'Reilly &
Associates, Inc. ISBN: 0-937175-62-5

Open Soft Foundation, 1991. "OSF/Motif Programmer's Guide". Prentice Hall.
ISBN: 0-13-640673-4

Nye, A., 1991. "Xlib Programming Manual". O'Reilly & Associates, Inc.
ISBN: 0-937175-11-0

23

7. Magnify Widget

7.1. Introduction

The purpose of the Magnify widget is to provide a magnification of a bitmap picture by some
integer factor. In the application this will be used as an aid in placing data points and
coordinate intersections. In particular, when the mouse button is pressed to place a point the
Magnify widget will display a surrounding of the actual point in the bitmap. This surrounding
will continuously be updated until the mouse button is released. The window has a coloured
frame surrounding the current point in the bitmap. This frame is allowed to move in a square,
and the magnify window is scrolled first when the border of this square is reached.

7.2. Widget Class

The class name for the Magnify widget is MagnifyWidgetClass, and to use an instance of the
Magnify widget in an application the following include statement must be at the top of the
application.

#include "Magnify.h"

7.3. Resources
Following resources are defined by the Magnify widget.

Name Class Type Default
XfpNforeground XfpCForeground XmRPixel Black
XfpNbackground XfpCBackground XmRPixel White
XfpNgridColour XfpCGridColour XmRPixel Green
XfpNcenterFrameColour XfpCCenterFrameColour XmRPixel Red
XfpNimage XtpCImage XmRPointer NULL
XfpNcurX XfpCCurX XmRInt 300
XfpNcurY XfpCCurY XmRInt 300
XfpNwidthInPoints XfpCWidthInPoints XmRlInt 20
Xf{pNheightInPoints XfpCHeightInPoints XmRInt 20
XfpNspaceBetweenPoints XfpCSpaceBetweenPoints XmRInt 2
XfpNwidthInPixels XfpCWidthInPixels XmRlInt
XfpNheightInPixels X{fpCHeightInPixels XmRInt 8
XfpNforeground: Colour of points that are set.

XfpNbackground: Colour of points that are reset.

XfpNgridColour: Colour of the grid between points.
XfpNcenterFrameColour: Colour of the frame surrounding the center point.
XfpNimage: Pointer to the bitmap image that is to be magnified.

24

XfpNcurX: Current x-coordinate in the bitmap.

XfpNcurY: Current y-coordinate in the bitmap.
XfpNwidthInPoints: Width of the magnify window in magnified points.
XfpNheightInPoints: Height of the magnify window in magnified points.
XfpNspaceBetweenPoints: The space in pixels between the magnified points.
XfpNwidthInPixels: Width in pixels of magnified points.
XfpNheightInPixels: Height in pixels of magnified points.

7.4. Functionality

7.4.1. Widget Methods

The following methods are implemented in the Graph widget:

Initialize:
The Initialize method loads graphics contexts used when drawing on screen, checks resource
values set by the application and sets private state variables.

Redisplay:
Checks if the widget is realized and if so redraws the magnified points.

SetValues:
Handles resource settings from the application, and if needed redraws the widget.

Destroy:
Deallocates all memory space dynamically allocated by the widget.

7.4.2. Widget Actions
No actions are defined in the Magnify widget.

7.4.3. Callbacks
No callbacks are defined for the Magnify widget.

7.5. Exported Functions

The Magnify widget exports one function.
void MagnifyResetOffset(w)
Widget w;

7.6. Summary

The magnify widget is a very simple tool, and it is designed that way on purpose. I didn't want
to make a tool that was tailor made for this application, but could be used in any application
where magnification of a bitmap is needed. I could have made a magnify widget with
possibility to display for example the digitized data points or with possibilities to digitize by
clicking in the magnify window. Such functions would however be of very limited use in a
different application.

25

References

Nye, A, and O'Reilly, T., 1992. "X Toolkit Intrinsics, Programming Manual". O'Reilly &
Associates, Inc. ISBN: 0-937175-62-5

Open Soft Foundation, 1991. "OSF/Motif Programmer's Guide". Prentice Hall.
ISBN: 0-13-640673-4

Nye, A., 1991. "Xlib Programming Manual". O'Reilly & Associates, Inc.
ISBN: 0-937175-11-0

26

8. Application

8.1. Introduction

The application code is the part of the program that ties everything together. It creates
instances of the GraphWidgetClass and MagnifyWidgetClass and creates menus with which the
user can interact with the program. Because the widgets may not and cannot communicate
directly with each other, the application must handle all such communication through callback
functions. The application code is like "the spider in the net". Fig. 8.1 shows what the
application looks like on screen.

P was m——— ———
H .

{Save Data] ,:”'if

f LI Connect i e :: :: f i i:Load Filteredsz
: ' - e diImage :

iChange £]

Save Bitmap

;;New Line

|

fErase s i
.;Line 3 _;F 5- Tf 5 . k?:

l

ff@ﬁFilters - - : i} ;;Find Nodes

%Defaults S .‘ : ,',r .I‘. E Label Coo. :
: ; . - #iIntersoectionsijl

¢ {iDisplay SRR i
| Mode . & §ifind
_ 4 { 4 #iConnections

; il Mode

§Vectorize

IR t ' 8 4
i = JE:; T - . giCreate Coo.

iiSystem

HiErase Coo.
d:Lines

fiErase
i:Dead Ends

BiErase
.afiiSolitudes

Fig. 8.1: Appearance on screen.

27

8.2. Widget Hierarchy

The widget hierarchy is illustrated in Fig. 8.1. Some widgets of minor importance for the
overall picture have been left out. For example, all the menu boxes has a shell widget as parent.
The shell widget supports its children with a window manager frame so that the menus can be
resized and moved by the user.

o]

] | |
[xyBox | [fBox | [filtersBox |[defaultsBox | [wamingBox |[fileBox |[mainWindow |[mag |[clickModeBox |[displayModeBox |[modeBox | [spacingBox |

iput 1/ Tnput ! r5o—=- lnp
| Fields || Field | [Buttons | 1

T - [F— JRPRIP Pp—— e e |
i | [seOmuions Jospes | [Biois | [Do | | Do | | R

[Tuttons |

Fig. 8.2: Widget hierarchy.

8.3. Menus

All menus except for the main menu are menus that can be "popped up" by pressing the
appropriate toggle button in the main menu. By pressing the same button again the menu will
be "popped down".

8.3.1. Main Menu
The main menu is always visible and contains toggle buttons to "pop up" and "pop down" the
sub menus. It also contains

- a push button for exiting the application.

- a push button for loading a bitmap.

- a push button for erasing all digitized information.

- a push button for saving digitized information in a text file.

- a push button for creating a new data line.

- a push button for erasing the current data line.

- a push button for changing the f-value of the current data line.

- a push button for "popping up" a input window for changing some default settings.
- a toggle button that controls whether connections are drawn between data points.

- a toggle button that controls whether the magnify window is visible or not.

8.3.2. Filters Menu

The filters menu is a box containing one push button for each of the filter functions described
in sect. 4. There are also two push buttons for loading a prefiltered image and for saving a
filtered image.

Each of the buttons has a callback function associated with it which, when called, will call the
appropriate exported function in the graph widget.

28

8.3.3. Click Mode Menu
The click mode menu is a box containing four toggle buttons, one for each click mode, of
which only one at a time can be active. The four click modes are

Coo. Mode Mouse clicks are interpreted as coordinate intersections
Point Mode Mouse clicks are interpreted as data points

Semi Mode Mouse clicks will digitize the vectors of one connection
Auto Mode Mouse clicks will digitize an entire data line

Each toggle button has a callback function associated with it that, when called, will set the
click mode resource in the graph widget.

8.3.4. Display Mode Menu
The display mode menu is a box containing three toggle buttons, one for each display mode, of
which only one at a time can be active. The three display modes are

Normal Bitmap Show original bitmap
Filtered Bitmap Show filtered bitmap
Vectorized Image Show vectorized image

Each toggle button has a callback function associated with it that, when called, will set the
display mode resource in the graph widget.

8.3.5. Mode Menu
The mode menu is a box containing three toggle buttons, one for each sorting mode, of which
only one at a time can be active. The three sorting modes are

xy-Mode Data points are sorted as functions from x to y
yx-Mode Data points are sorted as functions from y to x
Continuous Mode Data points are not sorted

Each toggle button has a callback function associated with it that, when called, will set the
mode resource in the graph widget.

8.4. Other Widgets

8.4.1. Text Field

For user input of integer and float values a widget of the class xmTextWidgetClass is used.
This is the case in the input boxes for default settings, x- and y-coordinates, coordinate line
spacing, and f-values.

8.4.2. File Selection Box
When loading/saving files on disk the user specifies which file to load/save in a file selection
box, which is a widget of the class xmFileSelectionBox.

29

References

Nye, A., and O'Reilly, T., 1992. "X Toolkit Intrinsics, Programming Manual". O'Reilly &
Associates, Inc. ISBN: 0-937175-62-5

Open Soft Foundation, 1991. "OSF/Motif Programmer's Guide". Prentice Hall.
ISBN: 0-13-640673-4

Nye, A., 1991, "Xlib Programming Manual". O'Reilly & Associates, Inc.
ISBN: 0-937175-11-0

30

9. Conclusion

All the functions stated in sect. 3 have been implemented in the application. The user interface
is somewhat primitive, and could with some effort be made much more sophisticated. With the
limited time available for a master thesis I have used most of the effort on the actual
performance of the application.

31

Flygprestanda AB
Malmé

X-Graph Digitizing tool

User's Guide

by Per Tunestal

Malms, January 1993

1 TOEEOAUCHION ..ottt s s bbb e
Y (=31 L0 L PP PP PP PP PP PP PTPPPPPP TSI PRPTY ST PIPSRPE TP
2.1 IMAIN IMIBIIU ..ot bbb

2.2. Display MOde MENU.........c.ocoooiiiiiiiiiiiiini i

2.3, IMOAE IMEIIU ..ottt

2.3, FIRErS MIENU.oooviiiiiiit ittt bbb

2.5. Input MOde MENUooiiiiiiiiiii st

3. MOUSE INPUL. ... e SO
3.1. Entering coordinate SYStemS ..ot

3.1.1. Creating a Coordinate SyStem............c.cocoriimiiniimimiinns

3.1.2. Changing the Coordinate System ..o,

3.2. Digitization 0f LINeS............cccooiiviiiiiiiiii i

3.2.1. Manual Digitizationcccooiimmmininiie s

3.2.2. Semi Automatic DIgitiZationcccoeiirvumnmmiinnnrine s

3.2.3. Automatic DIgitization...............ccoovriiinmimenmnniieree e

4, SAMPIE SESSION...... vttt

1. Introduction

This is a short user's manual for the digitization tool XGraph. The application is a tool for
digitizing scanned images of for example diagrams or maps. The program supports manual
digitization by mouse clicking, but also supplies some filter functions for interactive automatic
digitization. The program works with linear coordinate systems only, but can compensate for
deformations, present as a consequense of for example photo copying.

The appearance of the application is presented in Fig. 1.1. It has a work space which holds the
image, a main menu, and sub menus which can be popped up by clicking buttons in the main
menu. Here the filters sub menu has been popped up.

Load Filtéredi%i
Image '

fiChange f |

ESave Bitmap

iInvert

|

Ik
?EThin Ii.;

r

EEFind Nodes

tiDefaults l e . ¥ ' Label Coo.)
| : Intersections;!

Mode 3 #iFind
: y 3 i;Connections

It Mode
Vectorize

it 2
i

E;Create Coo.
ZiSystem

#:Erase Coo.
#:Lines

E;Erase
Dead Ends

i Erase
Solitudes

2. Menus

The program has a main menu and four sub menus.

The sub menus are popped up by clicking the appropriate button in the main menu, and are
poped down by clicking the same button again. The sub menus can be moved freely on screen
while they are popped up.

2.1. Main Menu

The main menu contains buttons for popping up sub menus and buttons for
performing frequently used actions. The buttons that pop up sub menus are:

Main Menu
. - Filters

Quut . _ ' _
Load Pops up the menu with filter functions for automatic processing of the
Bitmap image.
Clear - DlSplay MOde
Save Data || Popsup a menu where the user can decide which image to display on screen.
o Connect || - Mode
Change f || Pops up the menu where the user can specify in which order to sort data
New Line points on the same line.
Erase - Click Mode
Lm? Pops up the menu where the user can decide how the program will react to
o Filters mouse input. The buttons that perform actions are:
Defaults - Quit

Display - "
O Mode Quits the application.
O Mode - Load Bitmap

Click Loads a bitmap from a msp-file on disk. The filename is specified by the user
0 Mode in a file selection box.
o Magnify || - Clear

Deletes all digitized information. A warning is displayed, where the user can
cancel the operation.
- Save Data

Saves digitized information in a text file of standard Flygprestanda format. The filename is
specified by the user in a file selection box.

- Connect

The program can show connections between points belonging to the same data line. This
button toggles between showing, and not showing these connections.

- Change f

Lets the user type in a new f-value of the current data line.

- New Line

Creates a new data line. The user is prompted to type the f-value of the new data line. If this
value matches the f-value of an existing data line, the data line with this f-value will be the

current data line.
- Erase Line
Deletes the current data line.

- Defaults

Pops up an input form where the user can change some default values.

Coo. Cross Dimension:
Vector Length:
Search Memory:

Region Size:
Length of Dead Ends:

MIN. Path Length:
Magnify:

2.2. Display Mode Menu

Display Mode Menu
T\E SR

- Vectors

work space.

2.3. Mode Menu

- Continuous
4~ Mode

Size of matching cross when searching coordinate line
intersections with the filter function Coo. Intersections.

Minimal vector length in pixels when performing the
filter function Vectorize.

Number between 0 and 100 specifying the amount of
memory when auto searching for data lines.

Size in regions of click sensitive regions.

Longest paths to be deleted with the filter function
Erase Dead Ends.

Specifies the minimal length of paths that are made click
sensitive.

Pops up the magnifying window.

The display mode menu has one button for each display mode, of which
only one can be active.

- Normal Bitmap
The original bitmap is displayed in the work space.- Filtered Bitmap
The filtered bitmap is displayed in the work space.

A vectorized representation of the filtered image is displayed in the

The Mode menu has one button for each sorting mode.
- XY-Mode

Points on the same data line are sorted as function from x to y in
rising x-values.

- YX-Mode

Points on the same data line are sorted as function from y to x in
rising y-values.

- Continuous Mode

Points are not sorted.

2.3. Filters Menu

Filters Menu

The Filters menu contains buttons for loading and saving a filtered
image and for performing various filter functions on the image.

Load Filtered - Load Filtered Image

Image | Loads a prefiltered image from a msp-file on disk. The user specifies
Save Bitmap | | the filename in a file selection box.

Invert -Save Bitmap

Thin Saves the filtered image in a msp-file on disk. The user specifies the
Find Nodes | filename in a file selection box.

Coo. - Invert

Intersections Tnverts the image. The filter functions can only handle images where

{Find 1= Set, 0 = Reset.
Connections _
- Thin

Vectorize
Create Coo Performs thinning on the image. Must be executed before executing
' Find Nodes.

- Find Nodes

Finds endpoints and intersections in a thinned image. Must be
executed before executing Coo. Intersections or Find Connections.

Dead Ends

- Coo. Intersections

23 Erase
1 Solitudes For all the nodes found with Find Nodes this function tries to match a

= cross in the original image, with width and height according to the
e default value Coo. Cross Dimension. Must be executed before
executing Create Coo. System.

- Find Connections

Finds connections between the nodes found with Find Nodes, by following paths in the thinned
image. Builds a nework out of the nodes and connections. Must be executed before executing
Vectorize.

- Vectorize

Transforms the paths found with Find Connections into sequences of vectors with a minimal
length according to the default value Vector Length. Must be executed before doing automatic
or semi automatic digitizing of data lines.

- Create Coo. System

Adjusts coordinate system according to the coordinate intersections found with Coo.
Intersections.

- Erase Coo. Lines

Erases paths found with Find Connections that are close to the connecting lines between
coordinate intersections.

- Erase Dead Ends

Erases paths where at least one end is an endpoint. Paths must be longer than the default value
Length of Dead Ends in order to be erased.

- Erase Solitudes

Deletes all lonely points.

2.5. Input Mode Menu

The input mode menu has one button for each mouse input mode.

Input Mode Menu

b R

| _ Coordimnate i In this mode coordinate intersections can be placed and moved. See
| * Input | Coordinate handling,

Point | - Point Input
o Input L P

Semi auto. |

- Coordinate Input

In this mode data points can be placed and moved. When the button
is pressed the New Line function is automatically executed.

{0 Mode

Automatic - Semi auto. Mode

O : . . .

Mode | In this mode the vectors of a selcted connection are turned into data
points of the current data line. When the button is pressed the New
Line function is automatically performed.

- Automatic Mode

In this mode the program tries to find a whole data line by searching in the network created by
Find Connections in the Filters Menu. When the button is pressed the New Line function is
automatically performed.

3. Mouse Input

3.1. Entering coordinate systems

3.1.1. Creating a Coordinate System
In order to create a coordinate system, the click mode must be Coordinate Input. A starting

coordinate system is created by specifying the coordinates for three points in the bitmap. This
is done as follows.

1. Click the left mouse button on a point with known coordinates. Enter the
coordinates for the point.

25 Click the left mouse button on a point with the same y-coordinate as the first
point and higher x-coordinate than the first point. Enter the coordinates for the
second point.

3. Click the left mouse button on a point with the same x-coordinate as the first
point and higher y-coordinate than the first point. Enter the coordinates for the
third point.

If the coordinates have been correctly entered, an input box will appear where the spacing

between coordinate lines in x- and y-directions should be entered. When this is done the
coordinate lines will appear on screen.

A coordinate point can be moved by pointing at it and moving the mouse with the center
button pressed.

A coordinate point can be deleted by pointing at it and clicking the right button.

3.1.2. Changing the Coordinate System

When the coordinate system has been created according to 3.1.1. the coordinate line
intersections can be moved by clicking with the left mouse button in the new position for the
intersection. The Input Mode must be Coordinate Input.

If there are coordinate lines in the original bitmap, the coordinate system can be automatically
corrected with the function Create Coo. System. in the filters menu.

3.2. Digitization of Lines

3.2.1. Manual Digitization
In order to digitize data lines manually, the input mode must be Point Input. When the Point

Input mode is entered, the New Line function is automatically executed. The user is prompted
for the fovalue of the new line. If an existing f-value is entered, no new line is created. This is
instead one way of changing the current data line.

Data points are entered to the current data line by pointing with the mouse and clicking the
left mouse button.

Data points are moved by pointing and moving with the center button pressed.

Data points are deleted by pointing and clicking the right mouse button.

Current data line is changed by clicking the center button on a point on the desired data line.
Another way to do the same thing is to execute the New Line function and specify the f-value
of the desired data line.

The current data line is deleted by clicking the button Erase Line.

3.2.2. Semi Automatic Digitization

In order to perform semi automatic digitization the input mode must be Semi auto. Mode.
When this mode is entered, there will appear boxes on every connecting path that is long
enough.

In this mode one connecting path can be digitized by clicking the left button on the appropriate
box.

A connecting path can be deleted by clicking on the box with the right mouse button.

3.2.3. Automatic Digitization

In order to perform automatic digitization the input mode must be Automatic Mode. When
this mode is entered, there will appear boxes on every connecting path that is long enough.

In this mode a whole data line is digitized by clicking the left mouse button on a connecting
path belonging to the data line.

A connecting path can be deleted by clicking on the box with the right mouse button.

4. Sample Session

The normal procedure for digitizing a diagram of functional curves is as follows:
1.

Load the original bitmap with Load Bitmap.

2

Specify an initial coordinate system according to sec. 3.1.1.
3.

Pop up the Filters menu.

4.

If needed, invert the bitmap with the Invert command.

5.

Thin the image with the Thin command.

6.

Find endpoints and intersections with Find Nodes.

7.

If there is a visible coordinate system, execute Label Coo. Intersections followed by Create
Coo. System to correct the coordinate system.

8.

Execute the Find Connections command to find the connections between endpoints and
intersections.

9.

Vectorize the image with Vectorize.

10.

Pop up the Input Mode menu and change to Automatic Mode.
11.

Enter the f-value for the data line to be digitized.

12.

Click on the sensitive box of a part of the data line. The line will now be digitized. If part of
the line was not digitized, click on a sensitive box on that part.

13.

Press New Line to digitize a new line.

14,

Repeat steps 11-13 for every line in the diagram.

