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1. Introduction

This work is a part of a project which aims at developing controllers that are
highly autonomous, in the sense of being self-governing. Intelligent controllers
is a closely related concept. It is then desirable to let the controller itself
perform most of the work that now is done by process operators and engineers.
This includes tuning and adaptation of parameters, diagnosis and supervision.
The dynamics of the controlled process are then naturally of great interest.
Alas, they are not always known entirely, or sometimes not known at all. It is
also possible that the dynamics vary over time when a process goes through
different phases. If a model of the process exists, then automatic classification
of the real process can be used to compare model with reality and thus be
used for diagnosis and fault detection. A classification procedure will be used
to obtain a rough categorization of the dynamics before applying more detailed
analytical techniques.

Also, when discussing processes with unknown dynamics, who has more
knowledge of the process than the controller that is controlling the process? If
the controller is able to classify each step- or impulse response then this infor-
mation could be used when another similar process is implemented. It would
also be possible for the process operator to ask the controller how it was per-
forming: ” Well, today I am a bit oscillating but yesterday I was monotonous”,
which could be valuable information. It might also be possible to examine load
disturbances and noise. Knowledge about the nature of a disturbance would
make it easier to take the correct measures to minimize the effects of the dis-
turbance. Having this built into a controller would among other things vouch
for better control of the process and a broader base for fault diagnosis. In this
thesis, we will only examine classification of system dynamics, but with the
knowledge gained from doing this, it will probably not be hard to make similar
kinds of classifications for disturbances.

The purpose of the thesis is to investigate if neural networks can be used
to roughly classify dynamical systems. There are several typical categories
such as monotonous, oscillating, and non-minimum phase. It is of course of
great interest to find out if a system is stable or unstable, but this can pretty
easily be done without the use of neural networks. We have therefore limited
our studies to systems that are known to be stable.

The problem of classification is basically one of pattern recognition. A
human can look at a pattern, for example a step response from some process,
and easily be able to recognize it as, for example, an oscillating system. Even
if the signal is noisy, or parts of it is missing, it is still no big deal for the
trained eye to recognize the basic characteristics of a system from the plot
of the step response. Good tolerance of noise, the ability to generalize, and
the ability to make do even when some pieces of information are missing,
are some of the typical properties of neural networks. Neural networks have
been used in such diverse applications as pattern- and speech recognition, data
compression, solving optimization problems (including the traveling salesman
problem) and robot control.

There are primarily two kinds of neural networks, depending on the way
they are trained: nets trained with supervised- and unsupervised learning. Su-
pervised learning means presenting the net with inputs and the corresponding
desired outputs. Unsupervised learning means presenting the net with inputs,
and letting it learn by itself. We have examined one version of each type, the
backpropagation net with supervised learning and the Kohonen net with unsu-




pervised. Both types have been trained and examined on essentially the same
kinds of systems, but with some variations to examine the specific properties
of each net.

We have examined step and impulse responses for some typical systems.
We have primarily been interested in finding out if system classification is
possible, and if one type of response is easier to classify than the other. As we
shall see, rough classification is possible with both step and impulse responses
though it works best with the latter. Sensitivity to noise has of course been
investigated, and found to be low. The sampled information containing the
step- and impulse responses can be treated in some different ways before being
presented to the network, that is it can be normalized. This has also been
examined.

2. Neural Networks

Computers of today are indeed very powerful machines, that can make millions
of arithmetic operations every second. Any computer can present an almost
unlimited amount of decimals for 7 in a short time, a feat that would put a
human being firmly into the Guinness Book of Records. But when it comes to
recognizing your own mother, or even her handwriting, the traditional com-
puter falls far behind the most moderately intelligent human. Recognizing
images and patterns is a difficult task because they contain a lot of informa-
tion, and it often requires that we can separate important information from
unimportant. Two images of the same person are seldom or never exactly the
same. Different light, background, photographic angle and facial hair configu-
ration can make the same person look rather different. Yet a human is usually
able to tell if it is the same person in the pictures. Our brains work in myste-
rious ways, but we know that there are a lot of interconnected neurons that
work in parallel in a way that no computer does.

An artificial neural network is an attempt at modeling the way we believe
the human brain works, and can be implemented in software on a computer
or in hardware. There exists different kinds of artificial neural networks, each
emphasizing different aspects of how we think the brain learns and works.
Neural nets have successfully been used for a lot of different tasks but each
task has been very specific in some sense, for example recognizing handwritten
letters or "understanding” speech. We are limited to using rather few neurons
compared to the number of neurons in the brain, due to storage and memory
limitations. It probably would not be possible to build anything approaching
the human brain anyway, but for simpler tasks such as classifying system
dynamics, neural networks can be useful.

Before a neural network can be put to work, we have to train it, just like
a human has to be trained before being able to perform a certain task. The
network is usually trained on a set of examples that are somehow representative
of the problem to be solved. This is usually called learning. The net is then
supposed to be able to come up with an answer when presented with an input,
even if that specific input was not in the collection of examples. Basically there
are two types of learning: supervised and unsupervised.

Supervised learning is sometimes called learning with a teacher. The net
is presented with inputs and the corresponding desired outputs. The output
from the net is calculated and the difference between the obtained and the
desired output is computed. The learning then takes place on the basis of this




error. Learning with a teacher is, for example, like learning the words of a
foreign language. You sit with the vocabulary and try to learn how to spell
the French word for "thank you” and try "mercy”, which you see is wrong
when you check the glossary, and correct yourself to “merci”. Learning has
taken place.

Unsupervised learning has no teacher. A set of examples are presented to
a network which then figures out a way to classify them. This is much like
how humans learn from experience. We might for example watch a Sylvester
Stallone movie with all of its mindless violence and non-existing plot, and
then a similar Chuck Norris movie. We will certainly consider them as being
almost the same film, along with a host of similar movies that we have wasted
our youth upon. If we then try to broaden our minds and decide to see Fried
Green Tomatoes, we will notice that it has very little in common with the two
earlier films. We have, without anyone telling us how, classified the films into
two different categories: the excessive and entertaining violence category, and
the intelligently sensitive category. Learning how to categorize the films has
occurred by just watching them and seeing similarities and differences.

In this section we will describe the two methods, the backpropagation net
and the Kohonen net, we used to classify transient responses. The algorithms
will be motivated mathematically as well as explained verbally. A discussion
about the need for normalizing the vectors in the Kohonen net will be given.

Supervised Learning

Supervised learning is the original neural network training method and it
means presenting the net with an input and a desired corresponding output.
Usually you use a whole set of input-output pairs and train the net until
you get the desired result. There are many different kinds of networks that
use supervised learning but in this report we are going to concentrate on the
backpropagation network. The algorithm behind this network was indepen-
dently formalized by [Werbos, 1974], [Parker, 1986], and [McClelland and
Rumelhart, 1986] and is based upon an earlier method called the delta rule.
The backpropagation algorithm is also sometimes referred to as the general-
ized delta rule. The backpropagation network (BPN) has been found useful in
many areas, and there are existing applications in the fields of pattern recog-
nition and data compression using the algorithm. A 2-layer backpropagation
net is shown in figure 2. The net actually has three layers; an input layer, a
hidden layer and an output layer but the input layer is usually not considered
as a part of the neural net, hence the name 2-layer network.

What tasks can a BPN be taught to do? It is usually said that the BPN
is good at generalization but will not extrapolate very well. Generalization is
the net’s ability to, given several input vectors belonging to the same class,
key off significant similarities in the input vectors and thus learn to classify
vectors that it was not trained on. For example a BPN can easily be trained to
perform addition of integers. To do this we start with a training phase where
we present input-output pairs, like 1+ 2 = 3 and 3+ 4 = 7, to the net. After
a number of training cycles the net will be able to without errors sum up the
integer pairs from the training batch. If we now use set of inputs, other than
the ones used in the training phase and apply it to the net, we find that it will
correctly add the sum. This ability to work with previously unknown input
data is called generalization . But what happens if we present the net with
two integer, whose sum will be larger than any of the sums in the training
batch, or if you instead of adding two integers try to add two real numbers?




This will unfortunately not work neither for the case where the sum is large,
nor for the case where we use real numbers, and this is a result of the BPN
not extrapolating very well.

Input Layer Output Layer

Figure 1. A backpropagation net designed for data compression. To the right
the input data is compressed to the network’s internal data representation which
is held in the hidden layer neurons. The compressed data is transmitted to a
receiving network that will decompress it.

The backpropagation networks can also, as mentioned earlier be used for
data compression. When doing this you design a net where the input— and
output layers are of the same size and where the hidden layer is considerably
smaller, like in figure 1. The compression rate is given by the ratio between the
size of the input layer and the size of the hidden layer. To manage a task like
this the net must be trained with data similar to the one it is going to operate
on. For example if we would like to compress a Whitney Houston song we would
have to train the net with a couple of her latest hit songs and let the net build
an internal representation of the most common beats and howlings, which are
actually not that many. A net like this would for example probably not work
very well if you tried to use it to compress Beethoven’s fifth symphony. The
net has been trained to recognize features common in Whitney Houston songs
and would try find those characteristics in the classical masterpiece. Since
these features are not very typical for Beethoven the resulting compressed
data would not be sufficient to reconstruct the symphony.

Backpropagation

The backpropagation algorithm gives a method for changing the weights in
any feedforward net. To train the net you use a set of input-output pairs. In
the first phase you apply the input to the input neurons and it propagates
through each layer until an output is generated. In the second phase you
compare the output with the desired result and an error value is computed.
The error is now propagated backwards through the net adjusting the weights
by an amount proportional to the total error. This two phase cycle is repeated
until the error value has reached an acceptable level. You will find a more




comprehensive description of the algorithm in [Freeman and Skapura, 1991]
or [Hertz et al., 1992].
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Figure 2. A two-layer backpropagation net.

An input vector, & = (2,...,2zy)T N is the number of input neurons, is
applied to the input layer of the network. The input propagates to the hidden
layer and the net input to the jth hidden unit is

N
h h h
Ij = E wjim¢+bj
i=1

where 'wf‘]- is the weight on the connection from the i input unit, and b;-‘ is the
bias term. The bias term can be considered as the input from a unit with the
constant value of 1 and the weight b;-". The output from the node is then

ot = 24)

The superscript ’h’ stands for hidden layer unit. f is the transfer function for
the neuron, usually a sigmoid function such as f(z) = 1/(1 + e~%), which is
depicted in figure 3. Another typical sigmoid is f(z) = arctan(z). We will get

Sigmald tunction

Figure 3. The sigmoid function f(z) = 1/(1 + ¢~). The name sigmoid comes
from the s-shape of the function.

similar equations for the output layer

L
=Y w040

j=1
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where L is the number of neurons in the hidden layer. The subscript ’o’ stands
for output layer units. The error of the output is calculated as

1 M
D) Z(yk - 02)2
k=1

and 5 ofe a1°
o=l = O g g = (0 — 005
owg; *oIg dwy, k= O A (ID)0;
where y = (y1,...,ynm)7T is the desired output vector and M is the number of

output neurons. We wish to adjust the weights in the direction of the negative
gradient of the error E. This method is called the gradient-descent technique.
Thus the weights on the output layer are updated according to

wi;(t + 1) = wy,(t) + Awp;

where S
Awgj = —l=— = L(yx — O2) £’ (1}) 05
" Bwy; Wi,
The factor I, is called the learning rate.
To be able to calculate the weight changes for the hidden layer we rewrite

the error function E.
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Again we adjust the weight for the hidden layer in proportion to the
negative gradient of the error E. The update equation for the hidden layer
weight is thus:

( +1)_w (t)—l—Aw

where

lek— DI wg, FM (I

Changing the weights in the hidden layer is the last step in the second
phase of the backpropagation cycle.

Improved Backpropagation

To further improve the backprogagation algorithm we use a technique called
momentum. With momentum you keep the weight changes moving in the same
direction and prevents the network from converging to local minimum. This
is done by adding a fraction of the previous weight change when calculating
the new weight wy;. The update equation now becomes




The momentum parameter a must be between 0 and 1.

Adaptive parameters is another improvement. To decrease the learning
time we use an adaptive learning rate. The idea is to check if the weight
update did exceed the old error by more than a predefined value. If it did, the
process is moving in too large steps and the learning rate must be reduced.
It is also possible that the learning rate is increased if there has been several
steps in a row that have decreased the error function.

Unsupervised Learning

The supervised learning approach described above uses sets of inputs and cor-
responding desired outputs when training a neural network. This is something
like learning the vocabulary of a foreign language: "merci” means ”thank you”,
”au revoir” means "good bye”, and so on. However, if we consider the way we
learn a lot of other things, like when we learned to speak as little children,
this was done without a teacher. A lot of examples were presented to us in the
form of other people talking to us or to each other. Eventually we understood
the meaning of the sounds, and after some training we could even produce
some intelligent speech ourselves. This is unsupervised learning. When train-
ing a neural network with an unsupervised learning technique, we present a
selection of examples to a network which then organizes itself according to an
adaptation algorithm.

There are several unsupervised learning methods. We will use Kohonen’s
network model. The resulting network will be referred to as a Self-Organizing
Feature Map. In this section we will describe the model, discuss the need
for normalization of the input vectors, and present a simple example. Self-
Organizing Feature Maps have been used for speech recognition (Kohonen’s
neural phonetic type writer [Kohonen, 1988]), robot control, solving the trav-
eling salesman problem, and much more.

Self-Organizing Maps

The name Self-Organizing Maps (SOM) comes from the nets’ ability to classify
and organize input data by themselves. When the net is trained, its weight
matrix will form a surface in weight space that has adapted the shapes of the
training vectors. A common approach to unsupervised learning is competitive
learning. In competitive learning only one output unit can be active at a time.
When an input vector has been applied to the network the output vector is
calculated. The output unit with the greatest value wins the competition and
becomes active. The winning unit is the one whose weight vector most closely
matches the input vector and it is only this unit which is allowed to learn. The
learning process means adjusting the winning unit’s weight vector towards the
input vector. The amount with which the weights are changed is set by a factor
called learning rate.

A feature map is a SOM which is capable of not just organizing and
classifying data but it is also able to map nearby input patterns to nearby
output units, e.g. two similar input vectors P; and P, will be mapped to units
located close to each other. If we let P, and P, get closer and closer the
output will eventually coincide. This property is called topology preservation.
The feature map can be of one or two dimensions depending on the relationship
between the input vectors. A one-dimensional feature map is simply a linear
array of neurons. A two-dimensional feature map is shown if figure 4. The
connection geometry between the neurons can vary. In figure 4 the neurons are
arranged in a square formation. Another type of two-dimensional arrangement
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Figure 4. A two-dimensional feature map where the output neurons are ar-
ranged in a grid. Similar input patterns will be mapped to nearby output neurons.

is a hexagonal geometry.

With plain competitive learning the net will not be able to perform fea-
ture mapping. To do this we need to add a neighbourhood function. The
neighbourhood function gives the neighbours of the winning unit. We use this
to adjust not just the winning unit’s weight vector but also the neighbouring
units’. The neighbourhood size decreases over time as the training progresses.
In figure 5, the neighbourhoods of a two-dimensional square feature map and
a one-dimensional linear feature map are shown. In the following when we ex-
amine unsupervised classification, we will work with the feature maps, which
will be referred to as self-organizing feature maps or SOFMs.

COO0OO0OO0O00OO0OO0
OB CHONONONONONONG
O 000 00000
O O|0]O © Oj0|0 O
Home neuron
o o|o|o[efololo o
Neighbourhood 1
O olojooofoloo ~
0Oo0loo0oO00O0O00 ¢ )
OO0 O0OO0O0O0OO0O0OO0 ——
OO ONONONONONONS OO HONON NONCHNONG)
Two-Dimensional Feature Map One-Dimensional Feature Map

Figure 5. The output layers from a two-dimensional (left) and a
one-dimensional (right) feature map, where neighbourhoods are shown. The home
neuron is the winning neuron.

Creation of the Self-Organizing Feature Map

The SOFM consists of a number of units (neurons) which are all connected to
the input. Each neuron receives the same input vector, P = (P1,P2: -5 Pu)7,
where p; is a scalar. When training a net, we first choose a vector from a batch
of supplied training vectors. This is usually done in a random manner, and the
probability of choosing a training vector P is given by a probability density
p(P). For simplicity, one can have the same probability of choosing each vector
in a batch and then put several identical vectors in the batch if we want the
probability of choosing this particular vector to be greater than average. This
vector is processed by the neurons to form an output. The simplest way of
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processing is forming a linear function of the scalar inputs, giving the output
from the ith neuron:

0i = > wi;p; (1)
j=1

Here w;; is the weight from the jth scalar input to the neuron. It is these
weights that are updated during training. Writing w; = (w1, wiz, . . ., win)7,
we see that (1) is nothing less than the inner (scalar) product w? P. w; is
the weight vector of the i#th neuron. We thus compare w; with P, and we
wish to find the neuron with the weight vector that is closest to the input
vector. Comparing the neurons is done by forming a weight matrix, W with
the different neurons’ weight vectors as rows. We then take the matrix product
W P which gives an output vector, O = (04, 0,,...,0,)T where the ith element
is the inner product of w; with the input P, and m is the number of neurons.
The competition then consists of finding the largest element in O. This is
schematically illustrated in figure 6. The necessity of normalization is discussed
below.
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Figure 6. An illustration of a self organizing map with four inputs and four
neurons. The inputs are compared with each neuron’s weight vector through scalar
multiplication, giving the neurons their value. The competition then assigns a one
to the neuron with the largest value and zero to the others.

After finding the winning neuron we want to apply an adaptation process
that makes the weights of each neuron converge to such values that every neu-
ron becomes sensitive to a particular kind of input. The adaptation equation
for the winning neuron can have the form

NEOY . ary - . { \
(p;(t) = vlod)}wi;} (2)

[Kohonen, 1989], where a(t) is the learning rate, which is a decreasing function
of time to guarantee convergence of the weights to a unique limit. 0;(t) is as
we saw the output from the ith neuron. v(:) is the lateral interaction between
the neurons. In the brain -which we try to mimic- the amount interaction has
the form of a Mexican hat as in figure 7. With the vocabulary used above, the
neurons that are close to the winning are strongly excited, that is, updated
with nearly the same amount as the winning. Neurons a little further away
are inhibited: the lateral interaction is negative. Neurons far away from the
winning have a small positive interaction.

Next we turn to the problem of preserving the topology of the input
patterns. This means mapping similar input patterns to nearby output units.
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Figure 7. The lateral interaction of the neurons in the brain. The winning
neuron is in the middle.

Similar here means that they look alike in some way, not that they are located
next to each other in a batch of training vectors. Two stable and monotonous
step responses with different rise times should for example be mapped to
neurons close to each other, whereas an oscillating step response should be
mapped to a neuron that is further away from the stable monotonous ones.
This is done by updating not only the winning neuron ¢, but also the neurons
within a neigbourhood N, of a certain radius from c¢. If we simplify (2) by
taking o; = 1 for all neurons inside N, and o; = 0 for those outside, and
7(0) = 0,7(1) = 1 equation (2) will have the following simple form:

dw,- 7
dt

= a(t){p;(t) — wi;(£)} i€ N, (3)

which is more like a top-hat like function, as in figure 8. The neurons outside

Interaction

0 Lateral distance

Nec

Figure 8. The lateral interaction of the neurons in our simplified model. The
winning neuron is in the middle.

of N, will not have their weights changed. The shape of the neighbourhood is
of course dependent on the dimensionality of the SOFM. In this work we will
only study one-dimensional feature maps, so N, in (3) will be linear as seen
to the right in figure 5.
To summarize the updating procedure in discrete-time:

1. Choose a random vector from a batch of training vectors.

2. Find the weight vector w;(k) that matches the input P(k) the best.

12




3. Update the weights:

wi(k + 1) = wi(k) + a(k){P(k) — w;(k)} forie N, 4
wi(k + 1) = w;(k) otherwise. (4)

This will be referred to as Kohonen’s algorithm.

What we do when we us Kohonen’s algorithm is map the n-dimensional
input vectors onto the one- or two- dimensional neural network via the weight
vectors. The mapping

8,: V4, PeVod,(P)cd

where &, (P) is defined as finding the neuron that wins the competition, which
can be formalized as

124 (P) - P|| = min jw; - PJ| (5)

is illustrated in two dimensions in figure 9, along with a schematical illustra-
tion of Kohonen’s algorithm. Finding the winner in the way described by (5)
versus through comparing scalar products is discussed in the section about
normalization on page 15. The mapping ®,,(P) is a neural map from the in-

Figure 9. The updating of the weight vectors in Kohonen’s algorithm. The
winning neuron ¢ and its closest neighbours have their weight vectors adjusted
towards the training vector P. Only w. is shown. The magnitude of the adjustment
Aw, is determined by the learning rate a(k).

put space V to the neuron lattice A. The adaptation algorithm, in words,
takes the following steps (see figure 9). Choose an input vector P from the
n-dimensional manifold V' (step 1). Find the winning neuron ¢ in the neuron
lattice A (step 2). Update the winning neuron and its neighbours’ weight vec-
tors, that is shift w, towards P with the amount Aw, which is determined by
the learning rate (step 3).

The neighbourhood N, is a function of time, as is the learning rate a.
Exactly what functions can best be determined by experimenting. Linearly
decreasing functions seem to work well. It is useful to realize that the formation
of the map consists of two stages: the initial formation of the correct order,
and the convergence of the weights to their final values. The convergence of
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the weight values may take several times as many steps (even up to 100 times
as many) as the initial formation. Therefor the size of N, should decrease more
rapidly than the value of a, and reach its minimum of 1 well before the end
of the training. a should reach zero at the last training cycle. The initial size
of the neighbourhood is best set to cover a large part of the net. « is typically
set to 0.01 or smaller to start with. The weight matrix is initialized with small
random numbers.

Do we know what will happen with a net if we apply the algorithm in
(4)? Kohonen states that every neuron will become maximally sensitive to one
particular training input P. He also proves in the case of a one-dimensional
input that as k — oo, the weight values w; will become ordered, and that once
they are ordered they will remain so. The fraction of neurons that become
sensitive to a certain kind of input, approximates the relative occurrence of
this kind of pattern in the training batch. So if you for example have many
monotonous vectors in the training batch, there will be many monotonous
weight vectors. This ability to map statistical distributions, however, works
well only with large networks [McCord Nelson and Illingworth, 1991].

The interested reader will find that the training procedure is very well de-
scribed in [Ritter et al., 1992]. The book contains some elucidating illustrations
on how training vectors are mapped to the weight space. It also describes a few
examples on interesting applications of Kohonen nets. [Hecht-Nielsen, 1989] is
intended as a text book in introductory neurocomputing and contains mate-
rial on both supervised and unsupervised learning, as well as suggestions on
implementation. Another book that is more application- and implementation
oriented is [Freeman and Skapura, 1991].

Normalization of the Input Vectors

The need for spatial normalization is obvious when you consider exactly what
the feature map does in training and operation. The input vector is multiplied
with the weight matrix, W. This means taking the scalar product between the
rows in W with the input vector. The input is then classified as corresponding
to the row which gave the largest scalar product - this row wins the competi-
tion. Now, there are two ways for this scalar product to become large: either
the row in W has large elements, or the row is nearly parallel to the input
vector. We are interested in finding the row that is most parallel to the input,
because this means that the elements in the two vectors are very much alike,
and thus the corresponding patterns are similar.

Figure 10. Three vectors that are not normalized.
What happens if the vectors are not of the same length? Consider the
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two-dimensional vectors in figure 10. Let a and b be the vectors used to train
the net. b has larger elements than a which is shown by its greater length.
The initial weights in W are chosen as small random numbers. When training
the net, the winning unit’s weight vector is updated to look like the input. In
the beginning of the training the neighbours of the winning unit will also be
updated. When one row in W has won with b as input a couple of times, its
weights will have become so large that this row will always win. Thus the net
will only be able to give one output, namely the one corresponding to b. When
applying c to the net trained with a and b, the net will tell you that the input
was of type b even though a is much more parallel to ¢. With this discussion
in mind, it is natural to perform all training and evaluation with vectors of the
same (Euclidean) length. If nothing else is stated, all input vectors are scaled
to unit length, i.e. a vector a is divided by va%a.

The process of finding the winning neuron is often described as finding the
weight vector that minimizes the distance to the input vector, that is finding
the index ¢ for which

[[P(k) — we(k)| = min{|| P(k) — wi(k)||} (6)

This procedure does not require that the vectors are normalized. However, if
we are to use a matrix representation of the weight vectors as in the procedure
described above, we need to normalize all concerned vectors to unit length.
The procedure of taking the inner product and finding the greatest value is
equivalent with (6) if the vectors are normalized.

A simple net

A simple example is used to illustrate unsupervised learning. Consider a one-
dimensional feature map with 12 output neurons. In figure 11 the four training

vectors P; = (p;1,...,Pj100)%, j = 1...4, are shown. The output from each
. y=sin{x*3.14/200) 1 y=x/100
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
20 40 60 80 100 950 90 &0 80 100
1 y=logsig(x-50} ; Step function
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
=% 40 60 80 100 % 0 60 80 100

Figure 11. The training vectors for the example net before normalization.

neuron is calculated as
0; = ’U),;P

where w; is the weight vector of the ith neuron, w; = (wi1, Wiay - .« ., Wirgo) T,
i1 =1...12. The output from the net thus becomes

O=WP
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where W is the weight matrix, which has each neuron’s weight vector as a
TOoW:

Wy Wiz ... Wiy
W21 Wz2 ... Wz
W =
W1 W2 cee Whp
and O is the output vector
01
02
0= .
Om

with n = 100 and m = 12. In figure 12 the weight matrix is shown at its initial
state and after some different number of training cycles. The weight vectors
are ordered along the y-axis and the index of each element is on the z-axis, and
the value on the z-axis. We can clearly see how each weight vector gradually
adapts the values of the training vectors, and how the vectors become ordered
in a certain manner. Note however that the ordering differs for each figure.
This is explained below.

The initial learning rate was 0.15, which is why we only need 500 cycles
to find the approximate shape of the weight vectors. As discussed above, a
significantly lower learning rate should be used to get really useful nets, but
what we have here is sufficient for example purposes. Also, the training vec-
tors are rather distinct from each other. The training was restarted for every
simulation, which is why the nets are not ordered in exactly the same way
after different amounts of training. The ordering process goes on for a longer
time the more training cycles that are used, so the net trained for 500 cycles
is more thoroughly ordered. Moreover, there is no essential difference if the
step is furthest to the left or to the right. The main thing is the internal order
between the different vectors.

3. Classification with Neural Nets

In this section we will present the common factors for the supervised learning
and the unsupervised learning approach when classifying transient responses
of dynamical systems with neural networks. The different systems used to train
and test the nets will be defined and illustrated, along with a description of how
they were generated. Noise is always present to some extent when measuring
signals in real life, so we are interested in how the nets perform on noisy
responses. Here we will describe how the noise was generated and applied. To
make systems that have essentially the same properties look more alike, we
need to perform some kind of normalization. For time normalization we used
a method based on the average residence time, which is also described in this
section. To complete the normalization we scale the vectors to unit length.

The Example Systems

We used nine different step responses to train the nets. These are shown in
figure 13 and will be referred to as P; ... P, or as the training steps. We also
trained nets using impulse responses, that is, the time derivative of the step
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Figure 12. The weight matrix for the example net. On the z-axis are the sam-
ple, i.e. the inputs, the neuron number is on the y-axis, and the weight values

w;; on the z-axis. For a two dimensional feature map it is much more difficult to
visually understand the weight matrix.

responses. These were approximated with forward differences of the step re-
sponses. The impulse responses are illustrated in figure 14, and will be referred
to as P1 .. .Pg.

The steps were generated using the step function in the Control System
Toolbox for MATLAB. The time scale is 0 to ¢ seconds with sampling points
every t/100 seconds giving vectors with 101 elements.

Py ... P; have the transfer function

1
G(s) = ———
(s) (s+1)
with n = 1,4,8 and ¢ = 5,20, 40 seconds.
Py ... P;5 have the transfer function
1
Gls)= ————
(s) 8%+ 20w + w?

with w = 1 for both transfer functions and ¢ = 0.5,0.1, ¢ = 20, 50 seconds.
FPg has t = 20 seconds and

1-3s
9=
P, has t = 20 seconds and \
e~ 2
G(s) T os+1
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Figure 13. The normalized step responses used to train the nets. The steps will
be referred to as Pi (top left), P; (top middle) ... Py (bottom right).

P has t = 50 seconds and

1
(s+0.1)(s? 4+ 0.2s + 01)

Finally, P; has t = 30 seconds and

G(s) =

1-3s
=y

What is interesting to find out is how the nets can classify these responses.

Among the nine step responses in figure 13 we are interested in identifying four
to five classes:

1. Monotonous: P;...P;.

2. Essentially monotonous: P, and P;.

3. Oscillating: Ps.

4. Inverse response (right half-plane zeros): Ps and P,.

5. Time delay: P».
We say four to five classes because we do not consider it a big error if the
essentially monotonous responses Py and Ps are mistaken for monotonous re-
sponses. The small inverse response Ps might also be hard to identify, but we
use it to test how well the nets are able to perform. We will use the same
classification for the impulse responses.

To evaluate the nets’ ability to identify unknown signals we used a differ-
ent batch of step- and impulse responses. These were of the same kind as the
ones above, but with varying parameters. We generated a total of 31 differ-
ent responses. A representative selection of the step responses are depicted in
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Figure 14. The normalized impulse responses used to train the nets. They
will be referred to as Py (top left), P; (top middle) ... Py (bottom right). The

raggedness that some responses show are due to the numerical differentiation.

figure 15, and the corresponding impulse responses in figure 16. They will be
referred to as Q... Qo and @Q;...Qy, or as the test responses. The systems

have the following transfer functions:

with n =1,4,8,for Q;...Q3;

1
G(s) = 2+ 2w + w?
with w =1 and ¢ = 0.75,0.25,0.1, for Q,4...Qs;

e—1.55

s+ 1

G(s) =

for Qx;
1

G =
(s) (s +0.08)(s? + 0.155 + 1)
for ()s; and last but not least

for Q.
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Figure 15. The normalized step responses, Q1 ...Qg, used to test the nets.

Normalization in Time

It seems like a good idea to make systems that have essentially the same

0.2 k 0.2 0.2
0
0 50 100 % 50 100 % 50 100
- 0.4
0-2 0.2 oz
0.1 0.1 0
0 0.2
0 -0.1 0'4
0 50 100 0 50 100 0 50 100
0.4
0.5 0.2
0.2 o
. 0 0.2
0 50 100 0 50 100 0 50 100

Figure 16. The normalized impulse responses, Ql . .Qg used to test the nets.
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characteristics, look as similar as possible. If all first order systems look the
same, you only need to train the net on one such system. A normalization like
this can be done using the average residence time, T,,, which is defined as

- IS th(t)dt
IO
where h(t) is the impulse response, i.e. the derivative of the step response.
The definition of T,, implies that k(t) tend to zero, which in turn means
that the step response must be stable. It is fairly easy to sort out unstable
responses so this is a reasonable condition. During simulation, h(t) was ap-
proximated with forward differences of the step response, and the integrals
approximated with sums.
T, is calculated for a step response which is then cut off after nT,,, where
n = 4 was found to be a suitable value. To get a vector the same size as the
original, linear interpolation is used on the remaining elements. Care was taken
when generating the step responses not to sample them too long so that too
much information would be lost when normalizing.

0.06

C.04

0.02

50 100 50 100 S0 100

Figure 17. Two different first order systems. 1/(s + 1) is plotted with '+,
1/(s+0.5) plotted with 'x’. Left: The step responses before normalization. Middle:
After time normalization. Right: After time- and space normalization.

Noise

Neural networks have the property of being able to classify noisy signals. We
examined the noise tolerance on nets trained both on vectors to which noise
had been added, and vectors unaffected by noise. In the following when noise is
discussed, it is white Gaussian noise with zero mean and a standard deviation
of n percent of maz(v)— min(v), where v is the unnormalized vector to which
the noise is added. That is, if maz(v) — min(v) = a, then the noise will be
N(0,a/100). A statement like ”ten percent noise was added” thus means that
n = 10. Two step responses with 10% noise added are shown in figure 18.

When a derivative is approximated by forward difference (e.g. when calcu-
lating the impulse response) noise is added after differentiation. This is because
differentiating a noisy signal gives an even noisier result. There are good ways
to deal with this problem so we chose this simple way when simulating since
we are interested in neural networks and not in filter design.
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Figure 18. Two step responses with 10% noise added. P; to the left, Py to the
right. The solid line in the middle of the noise is the step response without noise.

Summary

When we generate transient responses, things are done in the following order:
generate a step response using the step function, normalize in time using the
procedure described above, differentiate using forward differences if we want
an impulse response, reduce the number of samples by for example picking out
every fifth sample, add noise if desired, and normalize vectors to unit length.
This is illustrated for complete clarity in figure 19.

Generate
step

Normalize

in time

Remove

samples

Normalize
length

Figure 19. How transient responses are generated. Actions described inside
squares are always performed, those inside circles are optional.

4. Classification Using 2-Layer BPN

In this section we will discuss how backpropagation nets can be used to clas-
sify transient responses, i.e. step- and impulse responses. The goal is to find
nets that are able to classify systems as monotonous, oscillating, essentially
monotonous, inverse response systems or as systems with time delay. We will
first investigate how the nets behave when trained on the nine vector training
batch P, ... P, and later on a larger test batch with twenty-seven different vec-
tors. Different training methods will be used and we will see how these affect
the performance of the nets. An interesting question is how good the nets are
at classifying transient responses they were not trained on. Another question
is how much noise the nets tolerate without doing incorrect classifications. An
important parameter when designing the net is the number of neurons in the
hidden layer and later in this sections we will show how the net size affects
the performance of the net.

The Training

When designing training algorithms our goal is to find nets that converge fast,
that can recognize the training vectors with or without noise, and that have
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good generalization capability i.e. the ability to correctly classify vectors that
they were not trained on. The training was done using the function trainbpx
from MATLAB’s Neural Network toolbox [Beale and Demuth, 1992]. We used
three different methods to train the backpropagation nets;

e Method A, which is the most straightforward method, just means training
the net with the training vector batch.

e Method B. The net is trained for N cycles. The training time is divided
into three phases. First training 2—51! cycles without noise, then training
the following lsﬂ cycles with noise applied to the input vectors and at last
training the remaining cycles without noise.

e Method C. This an another method to train with noise. A training batch
that consists of two sets of the original training batch is created. To one of
the sets is then noise added. This means training both with and without
noise during all training cycles.

Classication Errors for Different Training Methods
T T

45 T

40 Method A - Solid
Method B - Dotted
35 Method C - Dashed

Error in Percent

60

20 30
Applied Noise in Percent

Figure 20. Performance of nets trained with three different methods. The solid
line shows the performance of the net trained without noise. ‘

In the literature it is often said that if the net is going to operate on noisy
input you should also be trained with noise. It is also claimed in [Freeman
and Skapura, 1991] that a net trained with noise will converge faster than one
that is trained without. However in our simulations we have discovered neither
better performance nor faster convergence when training with noise. A large
test batch with three groups of twenty nets were trained for 10 000 cycles
using different training methods for the three groups. All nets were tested on
the training vector batch with noise applied to it. The noise ranged from 0 to
60 percent in steps of b percent. The result can be seen in figure 20. Method A
is slightly better than the two methods where noisy training input were used.
With twenty percent noise applied the net trained with method A can classify
99.84 percent of the inputs correctly.

Network Structure and Training Parameters

There are a number of different parameters to consider when training a back-
propagation net. We have investigated how the performance was affected by
varying some of them while others were kept fixed. The simulations were con-
centrated on 2-layer nets with bias neurons and a logarithmic sigmoid transfer
function. The initial values for the weights between the input layer and the
hidden layer is set using the nwlog function in the Neural Network Toolbox,
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which implements a method described in [Nguyen and B.Widrow, 1990]. The
weights connecting the hidden layer and the output layer are initialized to ran-
dom values between —0.1 and 0.1. We discovered that nets with larger initial
values in the output matrix converged slower.

Parameters used during training are the learning rate, I, and the mo-
mentum. The learning rate is adaptive and the parameters for controlling it
are

e lr;,. -the multiplier used to increase the learning rate.
e Iry.. -the multiplier used to decrease the learning rate.

e Error-ratio -the maximum ratic of new and old error allowed without
rejecting new values of weights and matrices. The Error-ratio can also
be used only with the momentum.

We found that a suitable value for the learning rate is 0.01, with Ir;,. = 1.02
and Irg,. = 0.98. With those parameters there is a good chance that the net
will converge but it will proberably take some time. For faster convergence but
with a severe risk that the net will get stuck in a local minimum you can you
use Ir = 0.15, Iry,, = 1.05 Irg,. = 0.7. With our training batch we got better
results for nets with more than about 18 neurons in the hidden layer using
the later Ir-parameter configuration. A good value for the momentum is 0.95,
and 1.04 for the Error-ratio. In figure 21 it is shown how the parameters vary
over time for a net with twenty neurons in the hidden layer, trained with the
step response vectors P ... Py. Figure 22 shows the same net trained with the
impulse responses P; ... Py and it is clear that the convergence speed is much
higher than for the net trained on step responses.

2- ayer Backpropagation with Adaptive LR & Momentum
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Figure 21. A net with twenty neurons in the hidden layer trained on step
responses for 5000 cycles with adaptive parameters.

In our simulation we discovered that when working with considerably
smaller nets, i.e. 5-10 hidden layer neurons, it was preferable to use a small [,,
approximately 0.01. Those nets converged rather quickly and performed well.
At larger net-configurations those parameters were not sufficient anymore and
this lead to more and more nets that did not converge. This problem can be
solved through tuning the parameters more carefully.
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Figure 22. A net with twenty neurons in the hidden layer trained on impulse
responses for about 2000 cycles with adaptive parameters. Notice the extremely
small sum-squared-error.

Reducing the Number of Output Neurons

The desired output when training the net is called the target vector. There
exists one unique target vector for every input training vector Py ...P;. We
used two different types of target vectors: binary output and single output, see
figure 23. Binary output simply means that the output neurons are interpreted
as bits in a binary number. The bits are set as follows

. [0, Or<05
BinaryOutput, = { 1 0> 05, (7)
where k = 1,..., M, M is the number of output neurons, and Oy, is the output

from neuron k. The leftmost neuron is interpreted as the least significant bit. In
figure 23 (top) the binary representaion 1001 of 9 is illustrated. Single output
means that every output neuron is given a unique number and only one neuron
is active at a time. A neuron with an output value of 1 is defined as active
and similarly is an inactive neuron defined as a neuron with an output value
of 0. An example of a single output representing the number 9 is shown in
figure 23 (bottom). The advantage of using binary output is that you reduce
the number of free parameters, i.e. the weights on the connections between
the layers, quite drastically and this can be very important when the nets get
larger. Take for example a net with twenty-seven hidden layer neurons and the
same number of input-output pairs. If we used single output target vectors this
will give us 616 more free parameters than if we used binary output. Equation
(7) shows the weak spot of the binary output method which is its sensitivity
to noise. In the case of using single output target vectors, the output neuron
with the highest value is set to one and all the others are set to zero, which
leads to a net with higher tolerance to noise.

In our simulations with the training sets P, ..., Py and Pi,..., P, we have
used both methods and we found that with single output target vectors you
get a smaller final-sum-square-error and better performance with or without
noise, but when the net size grows it gets harder and harder to make the net
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Target Vector For Input Vector No. 9 Using Binary Output
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Figure 23. The two types of target vectors: Binary output (top) and single
output(bottom). Both target vectors represent the output nine. Least significant
bit for the binary output is the bar to the left in the figure.

converge. At more than thirty neurons in the hidden layer we are forced to
use binary output to get a working net.

The Size of the Net

When designing a net our goal is to get as good performance as possible and
at the same time use as few neurons as possible. It is possible to train a net
with only two neurons to recognize the training vectors Py ... Py but the net
will be sensitive to noise and not very good at generalization. We tried to find
the optimal net configuration for the training vectors P; ... Py and to do that
we used a large test batch where we trained ten nets for every hidden layer
configuration from two to forty neurons. To get the best possible performance
we used single output target vectors. Each net was trained 10 000 cycles and
later tested 500 cycles on the training vectors, with 15 percent noise applied.
The result is shown in figure 24.

It seems to be sufficient with only about eight neurons, which is close to
the number of training vectors. We first did the simulations with both single
output and binary output target vectors and though the former performed
much better the latter did not have any problem to converge even when the
net size was increased to over fifty hidden layer neurons. This was a big problem
when using single output target vectors, since the nets rarely convergered when
the number of hidden layer neurons exceeded thirty. The best-net curve reaches
below 0.5 percent classification error at only seven neurons in the hidden layer.

Computational Complezity

When deciding the net size one important consideration is the complexity of
the calculations required to train and later to run the net. First the number
of free parameters is very important. If you have too few the net is not able to
learn and if you have too many the net is likely not to converge or to converge
to a local minimum. For a 2-layer backpropagation net the number of free
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Classication Errors for Different Number of Hldden Layer Neurons with 15‘7 Noise Applied
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Figure 24. The classification errors for nets with different numbers of neurons
in the hidden layer. The solid line shows the how the average net bahaves after
traing. We also show with the dotted line how the best net, for every configuraion
performed.

parameters are

F=(N+1)*xL+(L+1)xM,

where N is the number of neurons in the input layer, L is the number of hidden
layer neurons and M is the number of neurons in the output layer. The extra
ones come from the bias unit. The net is depicted in figure 2. This means that
if we add one more neuron to the hidden layer, the number of free parameters
will increase with N 4+ 1+ M. In the net trained with impulse responses we
had N = 100 and M = 9 this will give 110 new parameters for every new
neuron.

During training the weights are updated every cycle. The update equation
for the output layer weights is

wzj(t +1)= w,‘:j(t) + Awy;

where 8E
Awj; = ~l o= = b (ys — O9)f(I7)O}

kj
and for the hidden layer weights
whi(t + 1) = w}, A1) + Aw?,;

where

—L Z(yk x (TE)wi; ’h(I]h)‘”i-

Thus for every cycle we have to calculate Awy; and Aw , where¢=1,...,N,
J=1,.,L,and k =1,..., M. The sigmoid functlon used in our simulation is

1
f(z) = To o (3 flops)
f(z) = At e (7 flops).

To the right of the functions you can see the number of floating point op-
erations (flops) required for MATLAB to calculate the function values. The

27




training cycle for a backpropagation net has two phases. First every vector
in the training batch is applied to the net and the total sum-square-error is
calculated. In the second phase the weights are adjusted to minimize the error.
The output is calculated as

0 = fu(W° - far(W" - P; 4+ b*) + 5°),

where W° is a M x L matrix, W" is a N x L matrix and the function fy is
just a matrix version of the sigmoid function above. Taking the scalar product
of two vectors with the lengths L requires 2L floating point operations. This
means that if we have a training batch P containing S vectors it will take
S{M(2L + 8) + L(2N + 8)} flops to calculate the output for the entire batch
p.

The next step is to backpropagate the error and adjust the weights in the
two layers. Calculating the new weights takes (L + 1)M (L + 12) operations for
the output layer and (N + 1)L(1+ M (L + N + 21)) for the hidden layer. All
in all this makes a total of

flops(L,M,N) = (8)

S{M(2L+8)+L(2N +8)}+(L+1)M(L+12)+(N +1)L(14+M)(L+ N +21))

per training cycle. It is usually sufficient to choose L = § and if we use a
single output target vector we will get M = S. For the case N > § we can
now write equation (8)

flops(S,N)= NS§%+ (N? +25N)S? + (N? + 22N)S (9)

The number of training cycles will also depend on the complexity and the
number of training vectors in the training batch. The more training vectors
the more cycles are required.

For an ordinary net with nine hidden layer neurons and nine output neu-
rons trained with the vectors P; . ..Ps, the number of cycles needed is about
1500. With N =100 and S = L = M = 9 we can use equation(9). This gives
us

1500 - flops(9,100) =

1500 - (100 - 9 + (100% 4 25 - 100) - 9* + (100* + 22 - 100) - 9 = 1.79 - 10°

needed floating point operations to train the the net. This is a large number
of operations and it is always wise to estimate the training time before you
start running.

Results for Transient Responses

A backpropagation net can easily learn to recognize all nine training vectors
P, ...Py and their differentiated counterparts Py ... Py, With the proper pa-
rameter setting you can get a net with anything from 2 up to 40 neurons in the
hidden layer to converge and thus manage the task of recognizing the training
vectors. The number of training cycles required to get a net with sufficiently
small sum-squared-error was about 5000 for the step responses and less than
2000 for the impulse responses. We have found that having the same number
of neurons in the hidden layer as the number of training vectors will work out
very well. Earlier in this section it is shown that the number of neurons in the

28




hidden layer will not affect the performance with noisy inputs, as long as the
number exceeds a certain limit. This limit is in our case, with nine input vec-
tors, approximately nine hidden layer neurons. When designing a net to test
the sensitivity to noise we chose to use twenty neurons in the hidden layer and
Single-Output target vectors. We created two batches: one using Py ... P, and
the other using P; .. . Py as training vectors. The first thing that strikes you

Classification Errors for Impuls Responses
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Figure 25. Classification errors for a net trained on impulse responses. The net
has 100 input neurons, 20 hidden layer neurons and 9 output neurous. With 20
percent noise on the input signal the error is only 0.11 percent.

when comparing nets that have been trained on the two training sets is the
overall higher performance when using the differentiated set. They converge
much quicker and usually get a much lower final sum-squared-error, i.e. for
our training batch we will get a final error at around 107, Having a final
error this small automatically gives the net good noise tolerance. In figure 25
it is shown how such a net performs when working on noisy input. We get 100
percent correct classification with up to 12 percent noise. The average error
when having twenty percent noise applied to the vectors Py .. . Py is only 0.4
percent and that must be considered as a very good result. The vectors P,
P,, Ps and P, with twenty percent noise are shown in figure 26.
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Figure 26. The differentiated training vectors Pg, 1'34, Py and P, with twenty
percent noise on top.

The nets trained to work on step responses converged slower and gave
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a final sum-squared-error at around 0.1, which is much larger than for the
impulse responses. Not very surprisingly this lead to greater noise sensitivity.
In figure 27 you can see the performance of such a net when tested with noisy
inputs. When we apply more than five percent noise to the training vectors Py
... P, the classification error will be larger than zero. Another major drawback
when using step responses compared to using impulse responses is that it
is much more difficult to set the training parameters for the latter. If the
parameters are to large the nets are not very likely to converge and if they are
to small the convergence rate will be very slow.

All in all we can see that nets using impulse responses are easier and
faster to train and also perform better than nets using step responses.

Classification Errors for Step Responses
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Figure 27. Classification errors for a net trained on step responses. The net
has 101 input neurons, 20 hidden layer neurons and 9 output neurons.

Testing on Unknown Inputs

The real power of neural networks lies in their ability to operate on inputs
that they were not trained on. During the training phase you prepare the net
to work with a certain kind of data and the net will learn to key off the inputs’
significant features. In previous sections we have shown how different training
methods and training parameters affect the performance of a backpropagation
net and with all this we shall now design a new net and see how it handles
previously unknown inputs. We will use two nets, both with twenty neurons
in the hidden layer, and we will train them without any noise. The first net
will be trained to work with step responses and the second to work with
impulse responses. The number of training cycles will be individually adjusted
to get the best possible nets. A description of the test batches Qi1,...,@o
and Ql, .. .,Qg is given in section 3. To avoid statistical fluctuations we have
trained and tested about twenty nets of each category. Typical classifications
for nets trained on step responses are:

e (; (Monotonous 1st order) classed as Py (Monotonous 1st order)

Q. (Monotonous 4th order) classed as P, (Monotonous 4th order)

Qs (Monotonous 8th order) classed as P, or P3 (Monotonous 4th order)
Q4 (Essentially monotonous) classed as P (Monotonous)

Qs (Oscillating) classed as P, (Oscillating)

Qs (Oscillating) classed as Py (Oscillating)
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o Qr (Delay) classed as P; (Delay)
e Qs (Essentially monotonous) classed as Py (Monotonous)
e Qo (Inverse response) classed as Py (Inverse response)
This is undoubtedly a very good result. The net is capable of separating
the five different classes mentioned in the introduction. The results for the net
trained on impulse responses are shown below, and it makes about the same
classification as the step response net. When further comparing the two nets it
is found that the impulse response net performs slightly better than the step
response net when tested with noisy input. Even with only ten percent noise
on top of the inputs the nets will make a different classification. They usually
identify the correct system type, but further information, like the order of a
monotonous system, will be lost. For example a system that without noise
is classified as monotonous of the 1st order is with noise instead classified as
monotonous of the 4th order. Typical classifications for nets trained on impulse
responses are:
e Q. (Monotonous 1st order) classed as P, (Monotonous 1st order)
e @, (Monotonous 4th order) classed as P, (Monotonous 4th order)
o Qs (Monotonous 8th order) classed as P; (Monotonous 8th order)
e Q4 (Essentially monotonous) classed as P, (Monotonous)

Qs (Oscillating) classed as P (Essentially monotonous)

Qs (Oscillating) classed as Py (Oscillating)

Q- (Delay) classed as P; (Delay)

e Qs (Essentially monotonous) classed as P (Monotonous)

o Qo (Inverse response) classed as Py (Inverse response)

Training on a Larger Batch

To further investigate how the backpropagation nets can be used we will in
this section train them with a larger training set R, ...Rj7;. We will show that
it is possible for the net to make a much more detailed classification than has
been done previously. Qur goal now is to use the nets, not just to classify the
system as for example monotonous, but also in this case to give information
about the order of the system. The step responses in the new training set come
from the following systems:

e Monotonous R, ... Rg

1
G —
()= oy
where n=1,...,9.
e Oscillating Pig ... Pir
1
Gls) = s + 2w + w?’

where w; = 1 for i = 10,...,14 and w; = 0.5 for i = 15,...,17
and ¢; = 0.25, 0.2, 0.15, 0.1, 0.05, 0.25, 0.2, 0.15.

e Essentially monotonous Pig

1

Gs) = T 01)(s? + 0.25 1 01)
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Figure 28. The large training batch Ri—Rar.
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Figure 29. The large training batch Ri-Rar.
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where (a;,%;) = (0.75,1.5),(1.0,0.5), (2.5,1.0), (1.5,0.5)

e Inverse Response Ry3... Ry

1—as
O ey

where a = 0.75, 2, 4, 0.5, 1.5.

Nets were trained both directly on the training vectors and on their differen-
tiated counterparts. While nets trained on the latter converged without any
problems nets trained on the step responses hardly converged at all. Hence,
we will only discuss the nets trained on the impulse responses. The number
of cycles needed to get final-sum-square error of the order 10~ usually was
about 25 000. To get the same error with the smaller training batch P; .. . Py
only about 1500 training cycles are needed. To test the nets’ ability to classify
vectors that it was not trained on, we used a test batch with impulse responses
similar to Q1,...,Qs but generated with different parameters to prevent the
vectors in the test and in the training batch from being to similar. The result
was a net that was able to give information about the order of a monotonous
system and a approximate value of the delay for a system with a time delay.
The test systems had the following transfer functions:

e 24,...,Q2; Monotonous

1
Gls) = (s+0.5)"’
where n=1,4,8.
e Q24,...,Q2 Oscillating
1
Gls) = 82 4+ 2(w + w?’

where (w, ¢) = (1.0,0.75), (1.0,0.5), (0.75,0.25).

e Time delay
—1.5s

e Essentially monotonous

G(S) = (s + 008)(52 + 0.15s + 1) .

e Inverse response Lo
—2s
G(s) = T

We applied those test vectors to a net trained with impulse responses and
the results are presented below. The net is capable of deciding the order of the
first three monotonous impulse responses which is in line with observations
made on other test batches, where the net correctly recognized monotonous
inputs with order from 1 to 9. With the oscillating impulse responses the test
vectors are classed a vectors with the same appearance but without giving any
direct information about w and (. The last three vectors Q27, .. .,Q29 were
all mapped to correct categories. The classification of Q27 even gave the right
time delay for the system.
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The next step is to add some noise to the inputs and see how this affects
the net’s generalization capability. When doing this we find that information
such as the value of a time delay or the order of a system is soon distorted by
the applied noise. Not very surprisingly the conclusion is that the more noise
there is on top of your input the less information you get about the system.
Typical classifications for nets trained on Ri,..., Rg are:

o (2, classed as R, (Monotonous 1st order)

o Q2, classed as R4 (Monotonous 4th order)

e (2, classed as Rg (Monotonous 8th order)

Q2, classed as R; (Monotonous 2nd order)

Q2, classed as Ry5 (Oscillating (w,¢) = (1.0,0.1))

(2, classed as Ry5 (Oscillating (w,¢) = (0.5,0.05))
G2, classed as Ry; (Time Delay (a,t) = (2.5,1.0))

o (2, classed as Rig (Essentially monotonous)

o Q2 classed as Ry (Inverse response a = 1.5)

Conclusions and Practical Considerations

The backpropagation network seems to be well suited for use as a classifier of
system dynamics. We have investigated nets trained on impulse responses and
and nets trained on step responses and found the former superior in several
aspects. They converged faster, were less sensitive to noise, and had a better
ability to generalize. One rather tricky question is how to design and train a
net to perform a certain task and we have in this section tried to give guidelines
regarding this. One of the most important things about net design is to keep
the number of neurons as few as possible to get good training results and real-
time performance. One good way of doing this is to code the output as binary
numbers. To train a net with impulse responses requires about 1500 training
cycles.

We found that using an adaptive learning rate of 0.01 with Ir;,. = 1.02,
lrg,, = 0.98 worked well. A good value for the Error-ratio is 1.04, and 0.95
for the momentum.

It is clear that the more you want the net to know and recognize, the more
sensitive it will become to noise. For example, the impulse responses from two
monotonous systems of order two and three will become very much alike when
you add some noise to the signal, even if it is just a few percent. But it is also
obvious that it is possible to use the nets to get a lot more information about
the system than just a rough classification.

5. Classification Using One-dimensional SOFMs

Classifying transient responses is basically a pattern recognition task. Self-
Organizing Feature Maps have proven to be able to perform pattern recog-
nition well, like for example Kohonen'’s phonetic typewriter [Kohonen, 1988].
In this section we will present our experiments with SOFMs and show how
they can be used for classification of step- and impulse responses. Simulations
were carried out to investigate how the nets’ performance were affected by the
number of neurons. We examined what resolution can be obtained, that is how
many different classes of responses we can separate. How much computation
is required? We are naturally interested in how sensitive to noise the nets are.
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Nets trained on inputs that were not affected by noise were compared with
nets trained on both noisy and unnoisy inputs. The sampling rate is usually
of some importance to applications, and we investigated how the nets’ perfor-
mance varied with the number of samples in the input vectors. The SOFMs
organize the training vectors in some way according to their mutual resem-
blance. Which are alike and which are not? We will present our findings, and
try to explain the results. Finally, we will show two nets that we constructed
when we took the results from all of the experimenting into account.

A 3D-plot of the normalized batch of training vectors is shown in figure 30.
This will later be compared with 3D-plots of the weight matrices. The vectors
were first normalized in time then in space. By normalization in space we mean
scaling the vectors to unit length.

120

Figure 30. A 3D-map of the normalized training vectors. On the z-axis we have
the samples (the inputs), the number of the training vector is on the y-axis, and
the value of each vector component is on the z-axis.

The Training

The training was done with the function trainfm in the MATLAB Neural
Network Toolbox [Beale and Demuth, 1992]. The function trains a competi-
tive layer by randomly presenting an input vector from the supplied batch of
input vectors. The neuron whose input is greatest and the neighbours within
the current neighbourhood then has its weights updated with the Kohonen
rule. During training with trainfm the number of neighbours affected by the
winning neuron is decreased linearly to reach a minimum of affecting only
the neurons next to the winning after one quarter of the training cycles. The
learning rate also decreases linearly from a given initial value, to zero at the
last training cycle. If nothing else is stated, the nets were trained for 100 000
cycles with an initial learning rate of 0.005, which were found to be good
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parameters. As stated in section 2, we use a "top hat” approximation of the
»Mexican hat” lateral interaction function.

After training was completed the nets were tested on both the training
batch and a batch of vectors that it had not been trained on. When a net has
been trained with unsupervised learning it is necessary to test it on the training
batch to see how it classifies known inputs. The nets were also tested for noise
sensitivity by adding Gaussian white noise to the vectors that were tested.
Some nets were trained on vectors that were both affected and unaffected by
noise. This was done by having a double batch of training vectors, one of which
was noisy.

The choice of training vectors is important when creating a feature map.
Vectors that are representative of the interesting classes we wish to find should
naturally be used. But the type of responses the net is trained on is not the
only important aspect. The amount of patterns that are similar must also
be appropriate. The number of neurons that adapt to a certain pattern is
proportional to the relative occurrence of that pattern in the training batch.
Consider figure 31 where the weight vectors of a 20 neuron network trained
on the vectors in figure 30 are shown. There is a smooth transition from
the large inverse response at neurons 1 and 2 to the oscillating response at
neurons 18, 19 and 20. Notice that the net orders the responses automatically.
The ordering is easily understood, and clearly intuitive since we use a one-
dimensional map, i.e. the neurons are arranged in a linear array. The net
becomes ordered because not only the winning neuron has its weights updated,
but also the neurons within a certain neighbourhood, as described in section 2.
This is called topology preservation. Had any pattern been more frequent in
the training batch, this would have been visible in the figure.
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Figure 31. A 3D-map of of the weight matrix from a 20 neuron network, trained
on the step responses P; ... Py. The samples are on the z-axis, the neuron number
on the y-axis, and the value of each weight w;; on the z-axis.
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Using the SOFM

Knowledge about the shape of the weight surface such as that in figure 31
can be of great help when evaluating the output from the net. A good way
of finding out which neurons respond to which input is to apply the training
vectors on the net and study the output of each neuron. An example of this is
shown in figure 32. The training vector Py was applied to the 20 neuron net
whose weight matrix is shown in figure 31. There we can see that neurons 1

0.95H i
T [

0.0S5

-0.05}

100 7o 10 20

Figure 32. The outputs from the 20 neurons in the net depicted in the figure
above (right) when Py (left) was applied.

and 2 both have values equal to one while the other neurons have significantly
smaller values. The winning neuron is the one with the largest output value.
If more than one neuron has the same output (as is the case here), the one
with the lowest index is considered as the winner. When the winning neuron
has been found, its value is set to 1 and the other neurons are set to 0. As we
can see in figure 31 the weight vectors for neurons 1 and 2 look very much like
Py. Similar results are obtained for the other training vectors.

The Number of Neurons and the Number of Samples

Obviously we need at least as many neurons as the number of classes we are
interested in identifying, since the number of neurons equals the number of
different outputs we are able to receive. If we are interested in being able to
distinguish between the first order system P; and the fourth order system P, we
need more neurons than if we only want to classify them both as monotonous.
Further, we are not able to decide what classes the SOFM will organize itself
into. Only experiments can tell us how many different classes the nets will be
able to distinguish between, and what amount of neurons is most appropriate.

Computational Complezity

The amount of computations performed naturally increases as the number
of neurons and the number of samples increase. If the number of neurons is
R and the number of samples is C, then the weight matrix W is R by C.
One training cycle consists of multiplying W with an input vector P having
C elements, finding the largest element in the resulting R by 1 vector, and
then updating the winner and its neighbours. Taking the inner product of two
vectors with C elements requires 2C floating point operations (flops), finding
the largest element in a vector with R elements requires R flops, and updating
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one weight vector requires 3C flops. The number of neurons that have their
weights updated varies over the training cycles. If we assume that an average
of N neurons have their weights updated each cycle then one training cycle
requires 2CR 4+ R + 3NC flops, that is the number of flops per training cycle
increases linearly both with the number of neurons and the number of samples.
Evaluating one input vector will require 2CR + R flops, which is a rather
limited amount of computation. This means that once the net is trained, it is
potentially very fast and could work in real time.

Ezperiments

Experiments were done both on the step responses and the impulse responses.
A few testruns showed that nine neurons did not give any useful results for
nets trained on step responses. Starting at twelve neurons experiments were
performed on full training vectors, training vectors with every fifth sample,
and vectors with every tenth sample. For vectors trained on impulse responses,
testing began at nine neurons. After training a net it was tested for how many
of the training vectors it could distinguish between. This is to find out which
responses a net is able to recognize as well as to find out which responses are
similar to the net.

Nets trained on every tenth sample seemed somewhat ambiguous, espe-
cially when tested on oscillating signals. This is probably because too much
information is neglected and can be compared with too slow a sampling rate.
We therefore concentrate on comparisons between nets trained on vectors with
all of the 101 samples and vectors with every fifth sample.

10 T T T T T T

Number of Different Classes
&
]
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Number of Neurons

Figure 33. The number of different classes nets were able too distinguish be-
tween depending on the number of neurons in the net. The nets were trained on
impulse responses with vectors containing every fifth sample.

The number of different classes that a net is able to distinguish between
depends on a number of factors. The number of neurons is the most obvious
factor to consider. This is illustrated in figure 33 where the number of different
classes are shown as a function of the number of neurons. Nets with more
neurons are evidently able to distinguish between more vectors. The number
of training cycles is another factor of importance. We can for example see

38




that a net with twelve neurons was able to single out six different classes
after training for 100 000 cycles. When training for fewer cycles, the nets were
able to distinguish between fewer classes. Training for more and more cycles
show that there is a limit for each amount of neurons. Tests were conducted
from 20 000 to 200 000 training cycles. Also, nets with the same amount
of neurons trained for the same amount of cycles were not always able to
distinguish between the same same amount of classes. This occurred mainly
when relatively few training cycles were used, which means that the nets do
not have time to become fully ordered. Thus the final ordering depends more
on the initial weight values, which are random.

Results for Step Responses

As mentioned above, the number of different classes that a net can distinguish
between depend mainly on the number of neurons and the number of training
cycles. As the number of different classes increase we are interested in which
steps the nets are able to single out. Note that there is no difference if another
step is singled out due to an increased number of neurons, or because the net
was trained for a longer time.

The nets trained on step responses with every fifth sample were at their
worst able to group the training batch P; ... P, into four different classes, and
at best into eight different classes. The nets trained on full training vectors
could at their worst find five different classes, and nine at their best. There was
no difference between the nets trained on every fifth sample and nets trained
on full vectors as to the order in which the different step responses emerged.

Four classes: Ps and P, are singled out, {P;, Ps, Ps} are considered as one
group (group A), and {P,, Ps, Ps, P;} as another (group B).

Five classes: P, is now distinguished from group A.
Six classes: Py is separated from group B.

Seven classes: Two different possibilities are manifested; either P; can be
distinguished from P and group A is split up, or Ps can be singled out
from group B. The two cases seem equally likely.

Eight classes: Group A exists no more. Group B have two constellations:
{Ps, Ps} or {P,, P}
Nine classes: Well, it’s obvious, isn’t it.

Nets trained on full vectors needed 14-15 neurons to find six classes, while
nets trained on every fifth sample needed 16—17 neurons. To find seven classes
full vector nets needed about 19-20 neurons, and nets trained on the smaller
vectors needed 20-21. Full vector nets could find eight different classes with
21-22 neurons, when nets trained on every fifth sample needed 24-25. At 30
to 35 neurons the nets trained on full vectors could single out nine classes.

Results for Impulse Responses

Impulse responses seem to be easier to separate. This is clear from the fact
that nets trained on impulse responses could find the same amount of classes
as nets trained on step responses, with fewer neurons. Both nets trained on full
vectors and on every fifth sample could find between four and nine different
classes. The order in which the classes emerge was independent of the number
of samples used.

Four classes: P is singled out. The rest are collected in three groups;

{Pl,P4,P8} (group A), {Pz,Ps,PG} (group B), and {P—,, Py} (group C).
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Five classes: Either P is singled out from group A, or group C is split.

Six classes: A lot of different cases occur.
e Group A is reduced to {Pl, Pg} and group C is split. Group B intact.
e group A is reduced to {Pl, P4} group C is split, and group B intact.
e Two new groups are formed: {P;, P;}, and {Ps, Ps, Po}, while the
rest are uniquely identified.
e One new group is formed: { Py, P;, Ps, P;}, the rest are identified.
o Another new group: {P;, P, Ps, By}, identifying the rest uniquely.

Seven classes: Back to simplicity, only two different constellations. Either
group A remains {Py, Ps} and group B is reduced to {Ps, Ps}, or group
A is split up leaving group B {P,, Ps, Ps}. Group C is split up for good.

Eight classes: {P,, P;} is the only remaining group.

To find five different classes, both kinds of net needed 9-10 neurons. Six
classes were found with 11-12 neurons. Nets trained on full vectors could
find seven classes with 14—15 neurons, while nets trained on every fifth neuron
needed 17-18 neurons. Full vector nets found eight classes with 20-22 neurons,
when nets trained on the smaller vectors needed 23-24 neurons. Both types
needed around 30-33 neurons to find all nine different classes.

As we can see, the nets trained on impulse responses are able to distinguish
between more different classes with fewer neurons, than nets trained on step
responses. This is probably because the step response is the integral of the
impulse response, and when we integrate we always lose some features. This
means that step responses will look more alike than impulse responses. It is
also clear that nets trained on vectors with every fifth sample need a few more
neurons than nets trained on full vectors to find the same amount of classes.
This can be due to the fact that the vectors containing fewer samples also
contain less information. Those vectors have fewer distinguishing properties,
so we need more neurons to separate them.

Noise

Feature maps were trained on sets with only unnoisy vectors and sets con-
taining both noisy and unnoisy versions of the training batch P; ... P,. Thisis
easily done with the trainfm function, as it randomly choses one vector from
the training batch and presents it to the net. When training nets on both noisy
and unnoisy vectors, we only need to supply a training batch containing one
set of each type.

When evaluating a net for noise sensitivity, each vector was presented 100
times to the net with a new noise series added every time. For the evaluation
of a net, an unnoisy vector was presented to begin with. The output was then
considered as the correct output when evaluating the output from the net
when a noisy input vector was applied. The noise evaluation procedure was
done with a MATLAB function noisetest, which applies noise up to a given
level in five equidistant steps. It is a function that was written especially for
our own purposes. The nets’ sensitivity to noise depend basically upon four
things:

e The type of transient response. The nets trained on impulse responses had

a significantly lower error rate than those trained on step responses. As

stated in the previous section, this is probably because impulse responses

contain more distinguishing features than step responses and can therefore
be more easily recognized.
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¢ The number of samples. Nets trained on full vectors had a decidedly lower
error rate than those trained on every fifth sample. With fewer points to
average out the effects of noise, this seems like a plausible effect of training
with fewer samples.

e The number of classes the nets were able to distinguish between. Nets
that could separate fewer classes had a lower error rate. If a net is able
to distinguish between fewer classes, then there are fewer classes to make
mistakes about.

e Training with or without noise. Nets trained without noise have a consid-
erably lower error rate. This is discussed below.

The number of neurons did not seem to affect the noise sensitivity.

Nets were trained on vectors not affected by noise, on mixes of unnoisy
vectors and vectors affected with 3% noise, and a mix including vectors with
7% noise added. Those nets will for brevity be referred to as nets trained on
noisy vectors. One important observation from training with noise added, is
that those nets can distinguish between fewer classes. Typically, nets trained
on noisy vectors were able to separate one or two classes less than their unnoisy
counterparts.

Also, nets trained on noisy vectors were more sensitive to noise. Nets
trained on noisy vectors show a significantly higher error rate than their com-
parable unnoisy counterparts. By comparable we here mean nets that have
approximately the same number of neurons, and can distinguish between the
same amount of classes. Consider figure 34. Two nets with 16 neurons were
trained on step responses with all of the 101 samples. They were trained on
vectors without noise (net A), and vectors with 7% noise applied (net B).
Both nets were able to single out six different classes. The input vectors were
the nine training vectors, each being presented 100 times per vector and noise
level to the nets. As we can see, net A has an overall higher rate of correct
classification than net B.
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Figure 34. Percentage correct classifications as a function of the amount of
noise applied to the input vectors, containing all of the 101 samples of the step
responses P; ... Py, Solid line for the net trained on vectors without noise, dashed
line for net trained on vectors with 7% noise applied.

The effect of applying noise to training vectors can be seen in figure 35,
where the weight vectors for the two nets described above are plotted. It
is obvious which weight vectors belong to the net trained on mnoisy vectors.
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Clearly, it must be more difficult for nets with weight vectors such as the
ones depicted to the left, to distinguish between inputs. Further, the nets are
trained on one noise sequence. No two noise sequences are alike, so training
on one noise sequence does not make the corresponding weight vector more
similar to the input vector when another sequence is applied when testing.
Probably it is more unlike the noisy input vector. However, the noise has zero
mean. So if we were to train on a lot of different noise sequences, that would
be something like training without noise. As we showed above, those nets are
considerably less sensitive to noisy inputs.

0.05 0.05

-0.05
-0.05

o 50 100 (8} 50 100

Figure 35. The weight vectors for two 16 neuron nets. To the left, a net trained
with 7% noise; to the right a net trained without noise.Note how the weight vectors
have adapted to the values of the training vectors.

As we have shown above, nets trained without noise are the least sen-
sitive to noisy input vectors. There are also rather big differences between
nets trained on step- and impulse responses, and between nets trained on full
vectors versus nets trained on every fifth sample. This is shown in figure 36.
There the noise sensitivity of four 16-neuron nets is illustrated, one each of the
above described types. All of the nets were trained on noise free vectors. The
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Figure 36. Percentage correct classifications as a function of applied noise.
Solid line: Impulse response, full vectors; dashed line: Impulse response, every fifth
sample; dash-dotted: Step response, full training vectors; dotted: Step responses,
every fifth sample.
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impulse response nets, trained on full vectors are generally much less affected
by noise. They have between 80% and 92% correct classifications with 50%
noise applied to input vectors, varying with the factors stated above.

Testing on Unknown Inputs

One of the main advantages of using neural networks is their ability to classify
systems they have never seen before. The idea is to train the nets on typical
examples, and then let the nets evaluate unknown signals. When we use nets
trained with unsupervised learning we need a method to evaluate the output
from the net. As the nets have organized themselves in some way, we cannot say
for example that if neuron four won the competition, then it is an oscillating
system. The way we solved this problem was to have an evaluation function to
which we supplied the training batch along with the test responses together
with the weight matrix of the net we wished to examine. The number of
the winning neuron for each of the training vectors was computed, and then
compared with the number of the winning neuron when an unknown signal
was applied to the net. The unknown signal was classified as being of the
same type as the training signal with the winning neuron closest to its own
winning neuron. For example, if the inverse response ()9 was applied to the
net in figure 31, and neuron number one won the competition, then Qg would
be classed as being of the same type as Py, as this is the training vector to
which neuron one corresponds. This is equivalent to providing a lookup table
of classifications constructed after completed training,.

The nets were tested on the step responses Q;...Qo in figure 15, the
corresponding impulse responses @;...Qs in figure 16, and on several other
similar vectors where parameters were slightly changed. Results for @; ... Qg
and Ql .. .Qg are representative of the entire collection of test vectors.

The results from these tests are similar for nets trained on step- and
impulse responses. The winning neuron when a test vector is used as input is
almost always the same as one of the winning neurons when one of the training
vectors is used. The classification of the test vectors did not vary much for nets
with more than 14 to 15 neurons. The number of different classes that the nets
were able group the training vectors into made no difference when classifying
the test vectors. The sensitivity to noise was not surprisingly slightly higher
than the sensitivity when testing the nets with the training vectors. There was
no difference between nets trained on every fifth sample and nets trained on
full vectors. Typical classifications for nets trained on step responses are:

@1 (Monotonous) classed as P; (Monotonous)

Q2 (Monotonous) classed as P, (Monotonous)

@3 (Monotonous) classed as P, or P; (Monotonous)

Q4 (Essentially monotonous) classed as P; (Monotonous)

@5 (Oscillating) classed as P, (Essentially monotonous)
Qs (Oscillating) classed as Ps (Oscillating)
@~ (Delay) classed as P, (Delay)

Qs (Essentially monotonous) classed as P; (Monotonous)

e Qo (Inverse response) classed as Py or sometimes as Ps (Inverse response)

As we can see, the classifications are basically correct, although not entirely.
Q. is really an oscillating step response, although very damped, so mistaking
it for the monotonous P; is nothing to lose sleep over. {J5 is as we can see a
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moderately damped oscillating signal. It would perhaps have been more desir-
able to classify it as Ps rather than P, which is even more damped. This could
possibly be dealt with when choosing training vectors: it is probably useful to
have a more smooth transition between very damped oscillating systems and
weakly damped systems. The same could be said about the inverse responses
P; and Py. Qs is essentially monotonous, so classifying it as P, does not seem
so bad. Typical classifications for nets trained on impulse responses are:

Q. (Monotonous) classed as P, (Monotomnous)

@2 (Monotonous) classed as P, (Monotonous)

Qs (Monotonous) classed as Pyor P, (Monotonous)

Q. (Essentially monotonous) classed as P, or P, (Essentially monotonous
or monotonous)

Qs (Oscillating) classed as Py (Monotonous)
Qs (Oscillating) classed as P; (Oscillating)
@+ (Delay) classed as P; (Delay)

Qs (Essentially monotonous) classed as Py or P, (Essentially monotonous
or monotonous)

° Qg (Inverse response) classed as Py (Inverse response)

As we can see, these nets can more easily identify Q4 and Qs. On the other
hand Qs is wrongly classified as being monotonous. The same suggestions as
those stated for step responses apply here too.

Two Concluding Nets

We will now present two nets that were created with all of the experiences
gained during the work in mind. One net was trained on step responses and
the other on impulse responses. Both nets were trained on full vectors, without
noise applied, for 100 000 cycles with an initial learning rate of 0.005. The nets
had 18 neurons, which seems to be a reasonable amount considering compu-
tational complexity versus resolution. It also happens to be twice the number
of the training vectors. As training vectors, we used a modified selection of
P, ... P, where we took into consideration the discussion about the oscillating-
and inverse response cases above. The step- and impulse responses, which we
will refer to as Ty ...Ts and T .. .Tg, are illustrated in figures 37 and 38. P;
and P, have been replaced by one oscillating response that has a damping
which lies between P, and Ps, and one inverse response which could be placed
between Py and P,. None of the new responses have the same transfer function
as the responses in Q; . ..Qy, which were used as unknown inputs to evaluate
the new nets.

When training was completed, the net trained on the step resopnses could
single out all of the nine training steps. This was a little surprising, since we
needed more than 30 neurons when training on the original P; ... P,, and with
18 neurons the nets could typically find six to seven classes. One explanation
can be that T, ...Ts are a little more unlike each other than P; ... P, are. A
3-D plot of the weight vectors is shown in figure 39. When testing the net with
the training vectors we learn how the net has ordered the step responses:

e T — neuron 11
e T, — neuron 7
e T3 +— mneuron 13

e T, +— neuron 16
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Figure 37. The new training batch of step responses, T3 ...Ts.
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Figure 38. The training batch of impulse responses Tl .. .Tg.

e T — neuron 18
e T — neuron 5
e T — neuron 9
e Tg +— neuron 3
e Ty — neuron 1

This tells us for example that T and Ty are very much alike, because nearby
neurons win the competition when they are used as inputs. We can also deduce
that 75 and Ty are the step responses that are the most different from each
other; neurons on either side of the net win when they are applied.

The net trained on impulse responses could distinguish between seven
different classes, which is the same amount as the 18-neuron net trained on
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Figure 39. The weight vectors for the net trained on the step responses
T, ...Ts. The samples are on the z-axis, the neuron number on the y-axis, and
the value of each weight w;; on the z-axis.

P, ...P, could. The weight vectors are illustrated in figure 40. The ordering
of the impulse responses is not the same as that of the step responses:

° T1 + neuron 17
{T, Ts} — neuron 5

e T, +— neuron 15

o T+ neuron 10

° TG — neuron 1

® T-, — neuron 18
{Ts,Ts} — neuron 3

Here we see that two pairs of impulse responses are so much alike that they
are classed as the same, {Ts, 7o} and {13, Ts}. The most different steps are Ts
and T5.

One thing that may seem a little odd is that T, and Ty appear to be very
much alike. This is obviously true for the step responses, but does not at first
glance seem to be the case with the impulse responses. However if they are
both drawn in the same figure as in figure 41, we see that the amplitude of
the oscillating T, decreases with about the same rate as T} decreases.

The net trained on impulse responses was, just as we saw above, much
less sensitive to noise. Note however that the net trained on step responses
could distinguish between more classes than the impulse response net. As we
showed, this is a factor to take into account when evaluating noise sensitivity.
A comparison when the noisy training vectors were used as inputs is shown
in figure 42. When evaluating the output from the nets, we provided a table
with acceptable outputs for each input. If for example Ts or Ty were used as
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Figure 40. The weight vectors for the net trained on the impulse responses
T...Ts.
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Figure 41. The impulse responses T) and Ts.
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inputs, the output was considered correct if any of the neurons one through
four had the greatest value. The neurons considered as correct winners for each
input were decided by examining the weight matrices in figures 39 and 40, and
comparing it with the output when unnoisy inputs were used.
Providing such a table naturally leads to a higher degree of correct classi-
fications than what we saw in the previous noise section. However, it is a more
realistc approach since this is how you would use it when operating in an
application. The noise sensitivity of the step responses was varying to a high
degree for the different steps. 7y, T, and T were decidedly more sensitive, and
had a correct classification rate of about 50% when applying 50% noise. The
other steps had 100% correct classification up to, and including, 20% noise.
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Correct classifications as a function of the amount of noise applied

to the input vectors. Results for the net trained on impulse responses are drawn
with a solid line, step responses with a dashed.

The impulse responses were as we can see very insensitive to noise.

Last, we tested the nets on the ) and Q batches of test vectors described
previously. The nets were tested on unnoisy as well as noisy testvectors. The
error rate was only somewhat higher than what we got when we tested on the
training batch. See figure 43. Both nets classified the test vectors correctly. In
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Figure 43. The percentage of correct classifications when the test batch @ with
varying degrees of noise was used as input. Solid line for impulse responses, dashed

for step responses.

fact, both nets classified all of the test vectors in the same way:

e Q; (Monotonous) classed as T; (Monotonous)

° Q:
e (3
° Q4
* Qs
° Qo
Q7

(Monotonous) classed as T, (Monotonous)

(Monotonous) classed as T, (Monotonous)

(Essentially monotonous) classed as T, (Monotonous)
(Oscillating) classed as T, (Oscillating)
(Oscillating) classed as T (Oscillating)
(Delay) classed as T (Delay)
Qs (Essentially monotonous) classed as T; (Monotonous)

Qo (Inverse response) classed as Ty (Inverse response)
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Conclusions

The original question which we set out to answer was if it is possible to clas-
sify system dynamics with neural networks. It rather early became clear that
Kohonen nets (SOFMs) are able to perform this task. We have seen how the
weight vectors of the nets beautifully adapt to the shapes of the training
vectors, and found a theoretical ground to lean on concerning ordering and
convergence of weight values [Kohonen, 1989].

When it had become clear that it is possible to use SOFMs for system
classification, we proceeded to investigate some of the variables that may effect
the nets’ performance. We started out by only investigating step responses,
for which the classifications ” monotonous”, ”essentially monotonous”, etc.
are obvious from inspection. When contemplating how to make different sys-
tems look more different, we decided to differentiate the step responses, i.e.
study the impulse responses too. Both step- and impulse responses were then
investigated in parallel.

The first thing we looked into was how many neurons were necessary.
Training on the original training vectors P, ... P, showed that it is possible
to identify all nine of them, but that we had to use 30-35 neurons to do this.
Nets trained on impulse responses needed 2—-3 neurons less than nets trained
on step responses to find the same number of different classes. When more care
was taken to choose the training vectors, we could find all of the nine different
training vectors using nets with a little more than half the number of neurons
as were needed earlier. The number of samples used in the training vectors
is of interest, since fewer samples means less calculations. We discovered that
when training on vectors with fewer samples, we need more neurons to find
the same number of classes as when training on vectors with more samples.

When applying noise to input vectors, it became evident that fewer neu-
rons gave bad results. Nets trained on every fifth sample are considerably
more sensitive to noise than nets trained on full vectors. The nets trained on
impulse responses emerged as least noise sensitive. Training nets with noisy
vectors showed that this is not something we want to do. Those nets were able
to separate fewer classes, and they were more sensitive to noise.

As we evaluated the nets with unknown inputs, we discovered that the
number of different classes they could distinguish between did not matter all
that much. We wanted to classify the unknown inputs as one of the known
training vectors, and this worked well. It also became clear that great care
must be taken when chosing training vectors, and we must really be aware
of which classifications we want to make. Nets trained on P;...P, and on
P, ...P, showed some differences when classifying the unknown inputs. The
most severe case was that the nets trained on impulse responses mistook an
oscillating test vector (§s) as being monotonous (P, ). When training nets on a
more carefully selected batch, however, no such mistakes were made, and nets
trained on both kinds of responses classified the unknown inputs in exactly
the same ways.

To summarize, we can state that nets trained on impulse responses are
considerably less sensitive to noise, than are nets trained on step responses.
Also, the more samples that are used, the less sensitive are the nets. With
carefully selected training vectors, the classification of unknown inputs will
not differ depending on what kind of training vectors have been used.
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6. Tools

The way neural networks organize themselves when trained is not completely
understood. How to choose the best configuration of a network for a partic-
ular task can therefore not entirely be derived ”analytically”, so much of our
work consisted of making computer simulations of different network configu-
rations. In this section we will describe the hardware and software we used,
and also give some hints on how we would consider implementing a neural net
in software.

Hardware and Software

We did our work on Sun SPARC stations 1 and 2, running SunOS 4.1.2, con-
nected to a SPARC Server 690 in a network at the Department of Automatic
Control in Lund. These machines are pretty powerful, which is needed when
training large nets. Training a 15 neuron SOFM for 100 000 cycles still required
around 45 minutes of CPU time.

All of the simulations were done in MATLAB version 4.1, using the Neural
Network Toolbox version 1.0c by Mark Beale and Howard Demuth [Beale and
Demuth, 1992]. As we have described, training and using neural networks con-
sists mainly of vector and matrix operations. This is exactly what MATLAB
is designed for, which makes it an ideal tool for experimenting with different
network configurations,

The Neural Network Toolbox implements training algorithms for differ-
ent kinds of nets, seven kinds of neuron transfer functions, neighbourhood
functions for the Kohonen nets, and other useful functions for creating and
examining neural networks. After training, the nets are represented by one or
more weight matrices, depending on the number of neuron layers. These weight
matrices, created with the algorithms in the toolbox, were used for evaluating
the corresponding net configuration. For evaluation of the nets, we wrote small
MATLAB scripts to add noise, check classifications, evaluate known and un-
known input vectors etc. The way MATLAB works makes it easy to evaluate
large test batches of input vectors on many different nets, and thus gathering a
lot of information about how the nets behave. Most of the figures in this report
were generated in MATLAB, for example all diagrams and plots of matrices
and vectors. Those figures that were not generated in MATLAB, were made
using a drawing program called Xfig. This report was written using IANTpX.

Hints on Implementation

Implementation of a specific task in software would probably make training
and operation of a network a lot more efficient. Though MATLAB has highly
optimized vector and matrix operations, such things as loops take considerable
time. One book that provides good background and programming suggestions
for implementing neural networks is [Freeman and Skapura, 1991]. We would
however like to give some of our points of view.

As we have stated several times, the nets we have studied are mainly rep-
resented by one or more weight matrices, and training them involves primarily
vector and matrix operations. We therefore suggest that a set of functions for
doing vector and matrix operations are implemented, preferably in an object
oriented language such as C++. Classes for vector and matrix manipulations
independent of the number of elements, like in MATLAB, would be useful. A
layer class could be represented by an input vector, the weight matrix between
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the layer’s input and the layer itself, a user supplied transfer function for the
current layer, and a vector representing the output from the layer.

A backpropagation net could then be a class consisting of the appropriate
number of layers. This class should also contain functions for calculating the
output from the whole net and for training it. The training needs functions for
computing the error between the output from the net and the desired output,
for backpropagating the error, and for updating the weights in each layer.

A Kohonen net is not so complicated as a backpropagation net. The net is
represented with only one weight matrix. A SOFM class would then consist of
one input vector, one output vector, and a weight matrix. The training needs a
neighbourhood function, and a function for calculating the lateral interaction,
i.e. some approximation of the Mexican hat function, and a function for ap-
propriately updating the weights. A competition function to give the winning
neuron should also be supplied.

After training, the nets have to be evaluated and provided with some
lookup table that can interpret the output from the output from the net.
Once trained and evaluated the nets should be ready to use. What we have
described here are only brief suggestions on how we think a good implemen-
tation could be conceived. The literature includes some other suggestions and
anyone interested in implementing a neural network should look into some
different books.

7. Conclusions

This work has clearly shown that it is possible to perform rough classification
of system dynamics using both the backpropagation net and the Kohonen net.
Both types of nets are capable of identifying the different classes as desired,
and their ability to generalize is good. The sensitivity to noise is low, especially
for nets trained on impulse responses.

The backpropagation net and the Kohonen net appear equally well suited
for the task of rough classification. The nets differ mainly in how we can control
what they learn. The target vector used when training the backpropagation
net gives us the authority to decide which features we consider important.
A SOFM on the other hand, organizes itself during training, which yields an
intuitive generalization ability, but it has perhaps not the same resolution as
the backpropagation net. When in operation, the SOFM requires considerably
less floating point operations than a backpropagation net, an important feature
for real time applications.

It has become perfectly clear that nets trained on impulse responses per-
form better than nets trained on step responses. They are considerably less
sensitive to noise, and show a slightly better ability to generalize. This applies
to both the backpropagation net and the Kohonen net. To achieve a good
ability to generalize, it is important to normalize the inputs. We normalize
the inputs in time so that only the significant part of the signal is considered.
Normalizing in space after normalizing in time makes similar inputs (e.g. in-
puts of the same order) look very much alike. Normalizing in space means
scaling the vectors to unit length. Using input vectors of the same length is
crucial, especially for the Kohonen net. When considering noise sensitivity, we
found that the fewer samples used, the more sensitive were the nets. The nets
should for best results be trained on inputs with no noise applied.

To sum up the results, we can say that both the backpropagation and
the Kohonen net are able to perform system classification. Regarding the type
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of input, there is no doubt that impulse responses with not too few samples

should be used.
What’s Next?

We have shown that it is possible to use neural nets to roughly classify system
dynamics. One question that immediately arises is, can we use nets for finer
classification? Is it possible to use neural networks to, for example, find the
order of a system? We made some brief examinations on monotonous systems
with G(s) = 1/(s + 0.75)", n = 1...9. SOFMs trained on both step- and
impulse responses could uniquely identify systems withn = 1...4. BPNs could
identify all of the nine responses, which illustrates their greater resolution.
More detailed experiments could show exactly what information it is possible
to extract from the transient responses. It might be possible to use several
consecutive nets to get a more and more detailed classification of a system. As
is usually the case when you study things with some care, each new discovery
immediately resulted in more questions, but with limited time at hand we were
not able to pursue all of the interesting sidetracks that we encountered.
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