ISSN 0280-5316
ISRN LUTFD2/TFRT--5477--SE

A Quantitative Feedback Theory Toolbox
- for Matlab 4.1

Michael Lekman

Department of Automatic Control
Lund Institute of Technology
August 1993

Document name

Department of Automatic Control | MaSTER THESIS

Lund Institute of Technology Date of issue
P.O. Box 118 August 1993
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--5477--SE
Author(s) Supervisor
Michael Lekman Kjell Gustafsson, Tore Higglund

Sponsoring organisation

Title and subtitle
A Quantitative Feedback Theory Toolbox for Matlab 4.1

Abstract

In this master project a toolbox for Quantitative Feedback Theory (QFT) design has been implemented in
Matlab 4.1. The thesis describes the theory behind QFT. It also describes the implementation as well as the
man-machine interface of the toolbox,

QFT is a design method for robust design with regard to plant uncertainty and specification for the closed
loop system. QFT is a graphical design method carried iteratively out in the frequency domain. Due to the
intensive graphical manipulations required, the method is tedious to work with without computer support.

Derivation of bounds (boundary-curves on the loop gain) requires graphical manipulations in the Nichols
chart. Derivation of template (a set of possible points [phase,amplitude] for a specific frequency) demands &
lot of calculations. Those parts are well suited for computer implementation.

The QFT toolbox is not just one large program which solves control problems, it is a set of routines each
solving a part of the QFT design process. This gives the user a chance to more freely use the toolbox, for
example evaluate other design methods with regard to robustness. The QFT toolbox deals so far only with
SISO-systems, but it is possible to expand it to MIMO-systems.

Key words
robust design, quantitative feedback theory, templates, performance bounds, stability bounds, compensator,
prefilter

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient's notes
English 44

Security classification

The report may be ordered from ithe Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax +46 46 1100189, Telex: 33248 lubbis lund.

Contents

Introduction, 3
Quantitative feedback theory 4
21 Theclosedloop. 4
2.2 Specification L 6
23 Templates. 7
2.4 Performancebounds, 8
26 Thecompensator. 9
26 Theprefilter 10
Implementationof QFT 11
3.1 Descriptions of some of the graphical features in Matlab 4.1. . 11
3.2 Datastructures., 13
3.3 Defining specifications 15
3.4 Derivationsof templates 15
3.5 Derivationsofbounds,, 15
3.6 Visualization of templatesand bounds 16
3.7 Compensator designtool 17
3.8 Prefilter designtool 17
3.9 Futureimprovements 19
A designexample 20
41 ThePlant 20
4.2 Defining specifications 20
4.3 Derivation of templatesand bounds 21
4.4 Compensator and prefilter design 21
45 Simulations L L 24
References 25
Keywords. 26
QFT referenceguide 27
BNDPL e e 28
COMPENSATOR e e e 29
FRQD2SPEC e 30
GETIBND e 31
GETITMPL 32
GETCOMPENSATOR 33
GETOMEGA i e, 34
GETPREFILTER et 35
GETSPEC e 36
ISBND 37
ISTMPL 38
NICHLPL 39
PREFILTER i ii .. 40
TF2TMPL e 41
TMPL2BND e 42
TMPL2STBND 43
TMPLPL 44

1. Introduction

Quantitative Feedback Theory (QFT) is a design method for robust design
with regard to plant uncertainty. QFT is difficult to work with without com-
puter support because of the intensive graphical manipulations required. To-
day almost everyone however have access to a personal computer or worksta-
tion so by providing a tool, the method becomes more practical.

This master thesis aims to implement a set of routines for QFT. Matlab
version 4.1 was chosen due to its new graphical features.

I wish to thank the staff at the Department of Automatic Control, Lund
Institute of Technology, in particular Kjell Gustafsson and Tore Hagglund for
helping me with Matlab and the theory behind QFT. I also wish to thank
Leif Andersson for helping me with IWTpX and other problems I had with the
computer system,

Michael Lekman

2. Quantitative feedback
theory

Quantitative feedback theory (QFT) uses feedback to achieve desired dynamic
performance despite plant uncertainty and plant disturbances. The main goal
for any design method is to arrive at a closed loop system with desired rise time,
overshoot, settling time, phase margin, gain margin, etc. These specifications
are defined in either time domain or frequency domain. QFT is carried out in
the frequency domain due to the fact that uncertainty is easier to deal with
in the frequency domain. The fundamental steps required for QFT design are

describe the desired system in the time domain or the frequency domain,
¢ derive plant templates, i.e. a set of possible frequency points for the plant,
¢ derive bounds on the loop gain L(jw),

o find a compensator that makes the loop gain close to the optimum, and
e derive the prefilter.

Although QFT is applicable to different problems, e.g. SISO linear time in-
variant systems, SISO nonlinear systems, MIMO linear and nonlinear systems
and sampled systems, only SISO Linear Time Invariant (LTT) system will be
considered in this project.

The first section describes the closed loop system and its uncertainty
related to the plant uncertainty. The next section shows how specifications are
defined and how specifications are translated from time domain to frequency
domain, Determination of templates and bounds are described in sections 2.3
and 2.4, The derivation of the compensator and the prefilter are described in
sections 2,5 and 2.6.

2.1 The closed loop

Pretilter Compensator Plant
|nput + Output
—l GH{S) L Ge(s) = Gp(s) >

Feedback

Figure 2.1 Block diagram of a two-degree-of-freedom system

Consider the block diagram in Figure 2.1. The transfer function of the system

15
_ G.G,
Ga =Gy .Gy’

Introduce the loop gain, L = G.G,,. The transfer function can then be written

as
L

Ga =Gy I (2.1)

In most cases the plant is not known exactly. The basic idea is to characterize
the plant with its nominal transfer function, and then determine a compensator
with respect to the uncertainty in gain and phase of the plant transfer functions
so that the specified limits on the closed loop behavior are obeyed. Finally,
the prefilter is determined so that the transfer function from input to output
behaves as specified.

To separate the design of G, from G; take the logarithm of the transfer
function (2.1). This gives

log |G| =1og|Gy| + log

7|
1+ L)
There is no uncertainty in the prefilter. Therefore the uncertainty of the trans-
fer function becomes

Alog|Gy| = Alog

1+L"

For each frequency there is a tolerance in gain of the closed loop transfer
function. This is. depicted in Figure 2.2. Let a{w) denote the lower bound and
b(w) the upper bound. To obey the constraint the closed loop has to-satisfy

a(w) < [Galiw)l < b(w). (2.2)
Introduce §(w) = b(w) — a{w), then
A [Gu(jw)] < §(w). (2.3)

To obey the constraint (2.3) the compensator must be designed so that the
variation in loop gain satisfies

|26

T+ LGw)| <)

Once a compensator has been found that reduces the closed loop gain variation
below the specification, a prefilter can be designed to make the final loop
obey (2.2).

10

-60f

80 - it

107 10° 107
Frequency {rad/s)}

Figure 2.2 Specifications defined in the frequency domain,

1.2 Y T T T T T T

Upper bound

0.8 4

Amplitude
[+]
=

Lower bound

0 0.2 W) 0.6 5.8 3 1.2 1.4
Time (saos)

Figure 2,3 Specifications defined in the time domain.
2.2 Specification

The first step in QFT is to specify desired performance for the system. It
can be done in either the frequency domain or the time domain. In the time
domain, the desired step response for the system can e.g. be characterized in
terms of max and min rise time, £™°7, ™" and max overshoot, see Figure 2.3.
Figures 2.4 and 2.5 depict the step responses of a set of second order sys-
tems with different { and w. The closed loop system should not have larger
bandwidth w;, than necessary,

1G] = G%O).

A larger bandwidth makes the system amplify high frequent noise and gives
problems with control signal saturation,

1.4

o 0.6 1 1.6 2
Time (secs)
Figure 2.4 Step responses of second order systems with different values of

¢ €[0.3 0.5 0.7 0.9 1] and w = 10,

The next step is to translate the specification from the time domain to the
frequency domain. In general this is an unsolved problem. An approximating
translation can be done by approximating the upper bound of the step response
with the response of a dominated second order system (2.4), and the lower

6

1.2 ,
w =100
"
w="T
0.8 i
[-:]
B
Eo.s 4
o.a} i
w=23
o.z2} _
o \ , . , .
) 0.5 1 1.5 2 2.6 3

Time .(sacs)
Figure 2.5 Step responses of second order systems with different values of
w € [3 7 100] and ¢ = 0.707.

bound of the step response with the response of a second order system {2.5),

with { fixed to one.

2

W

Guppef(s) = 2 F 2(&18 T w? (2‘4)
wz

Glower(s) = (3 ¥ w)é (25)

The corresponding step responses are

1 e 4wt [cos (wy/1 - (%t) + \/—f_—? sin(wy1-0%t)| (<1
1— e “H1 + wi) ¢=1

ylower(t) =1- e_w!(]‘ + Wt)

Specification can also be defined directly in the frequency domain. Typical
specifications are maximum/minimum values for the bandwidth and the res-
onance peak, Figure 2.2 showed an example of specification defined in the

frequency domain.

2.3 Templates

Suppose the plant can be modeled by a rational transfer function

B(s) XL, bis'
)~ S as
At each frequency s = jw the model G,(s) describes a single frequency point,

targ(Gp(jw)), |Gp(jw}l], in the Nichols chart. If the plant contains unknown
parameters then the parameters have to be estimated. The estimated plant

Gp(s) =

T, bist
E?za &is"

has variation in each estimated parameter, and for each frequency the plant is
described by a region in the Nichols chart. This region is called the template

ép(") =

7

FGp(jw) (a set of possible frequency points). In the case the variation of two
or several parameters depend on each other, the calculation of the template
becomes quite involved. We will therefore assume that the parameters vary
independently of each other.

ExampLE—DC-motor
The problem is to design a prefilter and compensator to control a set of motors
with loads. The DC-motor can be described by a differential equation

Jij+Dj=Ku

Let £ and £ have a wide range of values, 2 ¢ [1,5], & € [1,20]. Then the

plant can be described by the set
b
gpx{Gp(s):m bE[l,QO}, 06[1,5]}.

The template, FGp{jw), for w = 3 can be obtained in the following way. The
line AB shows the amplitude and phase for different values of a when b is
fixed, b = bnin = 1, see Figure 2.6, The variations of b moves the line AB
upward by baz/bmin = 20(26dB), giving A’B’. This procedure is repeated for
a set of chosen frequencies. 0

- i i i i i i i
??80 170 =160 =150 -140 ~130 -120 «110 =100
Phase {deg)

Figure 2,6 Template calculated for the DC-motor example, w = 3.

2.4 Performance bounds

The basic idea of QFT is to find a compensator so that the feedback moves the
template to a position where it is completely inside an area where the closed
loop specifications are met. This amounts to having a certain minimal gain for
each frequency., We start by calculating bounds for this gain and then use the
bound to design the compensator. The template FGp(jwi) can be written in

complex form ‘ ‘
Fpﬂlﬂer(wl) = lpr(jwl)IeJarg(?Gp(le))

and the template mapped by feedback as

fpalar Gp(jwl)
1+ Fpoluer(jwl) .

Introduce the loop gain set ZL(jw;) = Fpotar Gp(jw:)Ge(jw1). The next step

is to assume a specific phase for the nominal point in the template and then

calculate what magnitude the nominal point must have in order for the set of
loop gains to fulfill gain for the nominal point of the loop gain set such that
ZL{jw;)

———= 1 < §{w,).

‘1 T ZLGw)| = (1)

This is done for every phase in [-360,0] and the result is a lower bound B{w, ¢)
on the magnitude of the compensator and the nominal plant. The loop gain
must lie above this bound for the closed loop system fo fulfill the specifica-
tions. Figure 2.7 demonstrates the calculations, This is done for all frequencies
where templates are calculated.

ExAaMPLE—DC-motor-Continued
We calculate bounds on the loop gain for the DC motor control system in the
previous example. First choose a nominal plant

nom __ 1
G = s(s+1)

Next step is to find bounds on the loop gain such that the specifications are
satisfied over Gp. For w = 3 the maximum allowed gain variation is §(3) =
3.5 (10.9dB). To find bounds for w = 3, L(53) has to be chosen such that

L(53)

’1 T Igs)| S 5G)

In Figure 2.7 the template for w = 3 is plotted at two locations. For frial
one the maximum gain is 1dB and minimum gain -12dB this yields a gain
variation of 13dB, which is too large. In trial two the minimum gain is -6dB
which yields a gain variation of 7dB, which is acceptable but unnecessarily
small, The bound line shows where the template should be at this phase, This
procedure is repeated for a set of phases between 0 to -180 degrees. Observe
that the template may only be translated, not rotated. O

2.5 The compensator

After the bounds on the loop gain, L{jw), are determined, then shape the
compensator so that L(jw) fulfills the bound. This is done by adding lead and
lag filters to G.(jw) so that L(jw;) lies above B(w;, ¢). L(jw) must also sat-
isfy the stability bounds. The optimum design of the compensator is obtained
when the loop gain, L(jw), lies on the bounds at low frequencies and decreases
in magnitude as fast as possible in the high frequency range, i.e. L(jw) has
minimum gain and bandwidth. The reason for this is to reduce implementation
problem, e.g. noise sensitivity and saturation sensitivity, ete. One way to find
the compensator is to find a dominating bound, i.e. if the dominating bound is
satisfied at a reasonable phase lag of L(jw) then the other ones will automati-
cally be satisfied. Therefore it is enough to have the loop gain, L{j@Wiominating)s
on the bound, B{@wiominating: @)-

10 T T T T T T T T T

, 025d Trial 2.{0K, but can be.lower.

osdb\

Open-Loop Gain

; i : i .' L Lo, 1
-180 160 -140 -i20 100 -80
Open-Loop Phase {deg)

Figure 2.7 Bounds on the loop gain, L{j3), and templates FG, (73}, at two
locations.

2.6 The prefilter

The last step is to add a prefilter so the specifications on the closed loop
behavior are fulfilled. After the compensator design the closed locop will be
within the limits for gain variation for each frequency, but the absolute value
or the gain may not be right. Therefore a prefilter must be added to the

system.

10

3. Implementation of QFT

Matlab version 4.1 was chosen for implementing the toolbox. Matlab is an ex-
cellent program language for implementation of this kind of graphical design
methods because Matlab already has graphical visualization routines imple-
mented and it deals also easily with matrix computations. Version 4.1 have
several new features such as control buttons, menus, mouse events and figure
events which are well suitable for developing a toolbox for QFT. In the follow-
ing sections the implementation of the toolbox are described and it also shows
how to use the toolbox.

3.1 Descriptions of some of the graphical features in
Matlab 4.1.

The new version of Matlab is a substantial improvement over version 3.5.
Especially the graphics have been much enhanced. In this new version it is
possible to have more than one figure at one time. All objects in a figure are
described with a handle (a pointer to the object). There are a lot of options
for each type of object. To see which options that are available type set{object
handle) and get{object handle). Take as an example a line object:

>> handle=plot(1:10);
>> get(handle)
Color = [1 1 1]

EraseMocde = normal

LineStyle = -

LineWidth = [0.5]

MarkerSize = [6]

Xdata = [1 234567 8 9 10]
Ydata = [1 23 45867 8 9 10]
Zdata = []

ButtonDownFcn =

Children = []

Clipping = on

Interruptible = no
Parent = [49.0004]
Type = line
UserData = []
Visible = on

>> set(handle)
Color
EraseMode:
LineStyle:
LineWidth
MarkerSize
Idata
Ydata

normal} | background | xor | none]

[{no
E{-3 1 -t -1 +lolx].|x]

11

Zdata

ButtonDownFen

Clipping: [{on} | off]
Interruptible: [{nol} | yes]
Parent

UserData

Vigible: [{on} | off]

There are several new features for a graphical user interface, e.g. control but-
tons, menus, mouse events and figure events. Uicontrol defines a control but-
ton with a callback function connected. By pressing a mouse button when the
pointer is on the uicontrol, its callback function is evaluated, i.e eval(’string’)
is executed. In the following example a control button is created and a callback
property is defined.

>> handle=uicontrol;
>> set(handle)
CallBack
BackgroundColor
ForegroundColor
HorizontalAlignment: [left | center | {right}]
Max
Min
Position
String
Style: [{pushbutton} | radiobutton | checkbox | edit |
text | slider | frame | popupmenu]
Units: [inches | centimeters | normalized | points |
{pixels}]
Value

ButtonDownFcn

Clipping: [{on} | off 1
Interruptible: [{no} | yes]
Parent

UserData

Visible: [{on} | off]

>> set(handle,’callback’,’plot(sin(1:0.1:50))?%);

>> get(handle)
BackgroundColor = [1 1 1]
CallBack = plot(sin(1:0.1:50))
ForegroundColor = [0 0 0]
HorizontalAlignment = center

Max = [1]

Hin = [0]

Position = [20 20 60 20]
String =

Style = pushbutton
Units = pixels

Value = [0]

12

ButtonDownFecn
Children 3
Clipping = on
Interruptible
Parent = [1]
Type = uicontrel
UserData = []
Visible = on

[

no

In this example a sinusoidal is plotted in the figure when the control button
is pressed. When using callback functions (m-files} it could take a few seconds
the first time the callback function is called, specially when there are a lot of
m-files connected to the figure. There is one way to implement these features
so that the callbacks are executed faster. This is done by having an input
argument action, which is a string telling which part of the m-file should be
executed, in this way Matlab do not have to store more than one m-file in the
CPU-stack. This yields a faster:execution of the callback.

function example(action)
fiexample Makes a figure with a control button.

% By pressing the contrel button, a sinusoidal
% is displayed.
%
if nargin < 1, ¥ example call by the user.
action = ’'start?;
end;

if strcmp(action,’start’),
uicontrol(’callback?,’example(’’plot??)?);

elseif stremp(action.’plot’),
plot(sin(1:0.01:100));

else,
error(’Illegal action!!?);

end;

There are several other objects available such as text, axis, figure, uimenu
etc. More about those objects are described in Matlab 4.1 reference guide [8].
The QFT-toolbox relies heavily on these features.

3.2 Data structures

In Matlab the only data structure available is matrixes. To avoid a lot of input
and output arguments it is possible to pack data in a matrix. This makes it
possible to have a lot of data under one variable name. Data such as templates,
bounds and specification need to be predefined. To obtain a well suited data
structure there are a few facts to have in mind. First, if there are a lot of
input arguments and output arguments with the function call, then it tends
to be messy and hard to work with. This can be avoided by a well defined
structure on the data handling. Second there must be a way to separate the

13

data structures from each other. With these points in mind the data structures
were defined as follows.
Specifications are defined as:

135} e Wy
spec = | mag?"*™ ... mag"”
mag™™ ... mag™"
where w; are the frequencies for which maximum amplitude, mag™**, and

minimum amplitude, mag!™", for the desired closed loop are defined.
The templates data structure is:

[mag} phasel wr
mag; phase} NaN
magl phase.,, NaN
mag? phasel Wy
mag: phased NaN
mag?, phase? NaN
tmp = : : :
mag} phase} Wy
magy phase} NaN
magy phase]; NaN
mage () Phaseg (w,) w1
mage,(w,) Phaseg (w,) Wn
n m NaN }

where w; are the frequencies for which templates are calculated. mag;: and
phase} for j = 1...n; defines the contour of the template for w;. NaN® is
used to separate the templates from each other. mage,(v;) and phaseg (v
defines the frequency response for the plant. n is the number of templates and
m is the number of frequency points.

1 NaN is the IEEE arithmetic representation for Not-a-Number {NaiV)

14

Bounds are defined as:

f magi phase] wi)
mag} phasel NaN
magh phase, NaN
mag? phasel wa
mag; phasel NaN
mag?, phase?, NaN
bnd = : : '

magl phase? Wy
magy phase} NaN
magy phase], NaN

Mage,(w) Phaseg,(uy) w,

mags (v,) Pheseg,(w,) Wm

\ n NaN NaN J
where w; are the frequencies for which bounds are calculated. mag;: and phasej
are the line for the bound, for j = 1...n; defines the bound for w;. NaV is
used to separate the bounds from each other. mage (u,) and phaseg (., are
the frequency response for the plant. n is the number of bounds,

There are m-files to check what type of data (specification, template, or
bound) is stored in a matrix. See isbnd and istmpl on page 37 and page 38.

3.3 Defining specifications

The specifications are defined in the frequency domain with a graphical tool,
i.e a Matlab figure with a set of uimenus with callback functions. To define
specifications in the frequency domain just type, frgd2spec. Then a figure ap-
pears on the screen, see Figure 3.1. There is a set of possible ways to define
the specifications, and there is a menu bar at the top of the figure.

3.4 Derivations of templates

Calculating the template is difficult when the plant transfer function coeffi-
cients vary in relation to each other. The used algorithm calculates the tem-
plates assuming that the parameters vary independently. This makes the tem-
plates bigger than necessary, which will make the design conservative, The
used algorithm is described in [5].

3.5 Derivations of bounds

Derivations of bounds are the most time consuming part of QFT. It takes a lot
of time when the calculations are made without computer support, Templates

15

Figure No. 1: QFT Specification Tool § I EEE =R)

[Fie]
Print <Ctrl>—P
Qult =Ctrl>—
Save Specification <Ctri»>—35
Grid on/off = Ctri>—G
Change Speclfication =ik End Part <Ctrl=—E
G Middie Part <Ctri>~—M
0 3 New Specification <Ctri>—N | 3
107]
71 <> Upper
-2 ro Loweq
L s 3 " 2
10 10 10 1a
=l I |
upper bound (= I Frequency :110 l Damping ratio : |0,3 I

Figure 3.1 The Matlab figure which appears when frgd2spec is used.

are drawn on transparent paper, with a hole made for the nominal point, and
then moved around on a Nichols diagram to find the bounds. The bounds
are found by placing the nominal point for the template at a fixed phase and
then moving the template until the template lies inside the M-circles with the
desired gain variations, These steps are tedious to do manually.

The m-file for bound calculation implements the following algorithm:

Step 1. Get frequencies for which templates have been calculated.
Step 2. Get one template and map it in the complex plan and normalize with
the nominal gain.

Step 3. Place the normalized template above the critical point -1 (in Nichols
[-180,1 (0dB)]) and use the bisection algorithm to find the gain where
the specifications are obtained.

Step 4, Move to next phase towards 0 degrees and do step 3.

Step 5. If there is not a gain where the specification is fulfilled place the
template at the same phase and start reverse bisection for the gain,
i.e do the bisection algorithm for lower bound.

Step 6. Do the same for -180 degrees to -360 degrees. Note that the algorithm
places the template above the stability bound (under when reverse
bisection is used).

Step 7. Finally multiply the bound with the nominal gain.
Step 8. Store the result in the bounds data structure.
Step 9. Go to step 2.

3.6 Visualization of templates and bounds

There are two plot routines available, bndpl and tmplpl. Templates are plotied
with tmplpl and bounds with brndpl. These m-files use a figure, each with alot of
control buttons and menus, see Figures 3.2 and 3.3. In tmppl it is also possible
to grab one template and move it around. This makes it possible to check for

16

locations of bounds. These control buttons and menus execute bndplfaction)
or tmplpl{action) when a mouse button click appears on a control button or
menu.

3.7 Compensator design tool

This is a graphical tool, i.e a Matlab figure with menus, It is possible to
add and delete zeroes to the numerator and denominator polynominal for the
compensator, add or delete first order systems and second order systems. For
the first order system the user has to define w, and for the second order system
w and (.

:};sz-l—%?s-i-l

Low frequency gain can also be changed. The new loop gain will be plotted
after every change in the compensator filter. In figure 3.4 the compensator-
tool is plotted. After the design is completed then use save in the File-menu
to save the design in the root windows user data, sei(0, 'userdata’,design) is
executed. Use gelcompensator to get the compensator design.

3.8 Prefilter design tool

Prefilter is a graphical design tool like the compensator design tool, see Fig-
ure 3.5. It is possible to add or delete first order and second order systems
such as in compensator. The design is stored in the root windows user data
and can be reached by using geiprefiller after save is done.

l@ Flgure No. 1: Templates E (o TE] = B2 (0 L[1)

Quit <Ctri>—Q

Print <Ctri>—P
Fa 1w Lo e
LE]
o
£ 1g°
—4 g
10"' ...
10'22-.-! H o : : P I
-350 300 -250 150 —100 -850

—200
P%\ase (deg]

=i L=

Figure 3.2 The Matlab figuze which appears when implp! is used, It is also
possible to grab one template and move it around.

17

i @108 B Bl e e T

Figure No. 2: QFT Bounds Piot B

File Edit{Zoom]|
Up <Ctri=—t

Down «Ctri>—D

HIE H N P,
-360 300 -—-&80 —208

<kl

Figure 3.3 The Matlab figure which appears when bndplis used,

Flgure No. 2: QFT Compensator Design Too! 58 o) B 1 & B (5=} 115
File Edit Zoom |[Design] |
1810 Numerator o First Order System <Ctrl>—-
- Cenominator o Second Order System <Ctri>—¢
o | Low Frequency Gain «<Ctri=-L :]
187 Foeees Integrator <Ctrl>—|
ol :
"|D 1 1 i] I
-8 1'3,_6 1q—4 m;z 1li:lu 1?2 e
-200
—400 R i . 1 . 1 N ; : i
10°° 107° 107 107 10° 10° 10*
Compensator data:
Low Frequency Gain: 15
Zerpes frequency: 2,1,
Poles frequency : 7, 80{0.707),

Figure 3.4 The Matlab figure which appears when compenasator is used. Note
that there is a menu bar at the top of the figure.

The input arguments are the compensator numerator and denominator poly-
nominal, the specifications on the dynamical behavior of the closed loop and

the possible values of the plant.

18

K] Figure Mo. 7: QFF Prefilter Desigr Tool B

[EfelEdl‘t Deslign
@it <Ctri=—&
Print =Ctri=—P | :

Save Prefiiter <Ctri=—3 | :
Grd on/off <Ctrl>—G :

Prefilter data:
Zeroes frequency:

Pole frequency: 4(0.707), 2(0.707),

Figure 3.5 The Matlab figure which appears when prefilter is used. Note that
there is a menu bar at the top of the figure.

3.9 Future improvements

The QFT-toolbox deals so far only with SISO systems. In a future version
it would also be able to use MIMO systems and other systems, such as non
minimum phase systems or digital sampled systems. Derivation of bounds
should also be able to take design parameters such as phase margin, gain
margin, etc in consideration.

There is a bug in the m-file for calculations of bounds,impl2bnd. When
the bounds are enclosing the critical point -1 ([-180,1 {0dB)] in the Nichols
chart) the reverse bisection algorithm does not function as expected. This bug
is an implementation error which is not located yet. There should also be a
m-file for derivation of disturbance bounds. This was not implemented due to

the bug.

19

4. A design example

This section contains a design example solved with the QFT toolbox,

4.1 The Plant

To demonstrate the toolbox consider the plant model below, taken from Horo-
witz and Sidi [1}.

Ka
8%+ as
where a € [1 10] and K € [1 10]. Note that the coefficients of the numerator
and the denominator do not change independently. Rewriting the plant as

Gp(s) =

K
12+ s

GP(") =

yields a transfer function whose coefficients change independently with K €
[110], L ef0.11].

10

10" 10° 10

Figure 4.1 Specifications of the closed loop behavior.

4.2 Defining specifications

The first step is to define specifications on the closed loop system. This is done
in the frequency domain. By calling the QFT-function frgd2spec a graphical
tool for defining specifications appears on the screen.

>> frqd2spec;

Here it is possible to choose a couple of ways to define the specifications. The
bounds can be described with two second order models. For the lower bound,
{ is fixed to one, only w has to be defined. It is also possible to change parts

20

of the bound lines, end parts or middle parts, by clicking on the bound line
with the mouse and move the pointer to change points, the new points are the
current pointer locations. To save the specifications choose save in the menu
and use gelspec to get the specifications.

>> specmatrix = getspec;

4.3 Derivation of templates and bounds

Use {f2tmpl to determine the templates for a set of selected frequency points,
w€[0.1135 10 30] rad/s.

»> nummatrix = [1;10;1]
nummatrix

1

10

1

>» denmatrix = 1 1 0;1 1 0;0.1 1 0]

denmatrix
1.0000 1.0000 0
1.0000 1.0000 0
0.1000 1.0000 0

>> omegavect = [0.1 1 3 5 10 30]
omegavect =

0.1000 1.0000 3.0000 5.0000 10,0000 30.0000
>> tmpl=tf2tmpl (nummatrix,denmatrix,omegavect);

>> tmplpl(tmpl); % Generates a plot of templates

In Figure 4.2 the templates are plotted for a set of selected frequencies from
w. The next step is to compute the bounds on the loop gain, I(jw). This is
done by using tmpl2bnd.

>> bnd=tmpl2bnd(tmpl,specmatrix);

>> bndpl(bnd); % Generates a plot of the bounds

In Figure 4.3 the bounds are plotted. Note that the bndpl makes a plot of the
loop gain in the same Nichols chart as for the bounds,

4.4 Compensator and prefilter design

The last two steps are to design the compensator and the prefilter to obtain
the specified behavior of the closed loop. This is done by using compensator

21

760
Phase {deg}

Figure 4,2 Templates for & £ [0.1,1,3,5,10, 30} rad/s.

HE
[

I
I

R i P P P SRS
-350 -300 -250 -200 -160 -100 -50 8]
Opsn-Leop Phase (deg)

Figure 4,3 Bounds on the loop gain, Bounds are plotted with solid lines while
the loop gain is plotted with dashed line, The stars marks the frequencies for
which the bounde are computed.

and prefilter. The compensator filter and the prefilter are then chosen by the
user.

>> compensator;

The design is done iterative by adding first and second order models to the
numerator and denominator polynominal. In this example the chosen compen-

sator is
12800(s + 1)(s + 7)

s+ 2)(s? + %80s + 802
V2

22

Open-Loop Gain

3i . . T i F T : HEMEE
-350 -300 -250 -200 -180 -100 -50 0
Opean-Loop Phase (deg)

10

Figure 4.4 The bounds on the loop gain and the final design on the compen-
sator.

10
10°
107!
Y IR U RS :
1[] H HEH 1 i fedodod3331 i HE A | H
1072 107 10° 10’ 10°

Figure 4.5 A set of possible plants with the prefilter and the compensator.

To save the design choose save in the menu and then use getcompensator to
get the compensator design.

>> [cnum,cden} = getcompensator
cnum =

2.1429 17.1429 15.0000

cden =

0.0001 0.0090 0.6177 1.0000

23

Next step is to find the prefilter this is done by using prefilter

>> prefilter(cnum,cden,numatrix,denmatrix,specmatrix);

The input arguments are the compensator numerator and denominator, the
possible plants and the specifications on the closed loop behavior. In this design
tool it is possible add and delete first order and second order models to the
numerator and denominator polynominal like in compensator. In this example

the prefilter was chosen as
10

s-+ 10
To save the current prefilter choose save in the menu and use geiprefilier to
get the prefilter.
>> [fnum,fden] = getprefilter

fnum =

fden

0.1000 1.0000

In Figure 4.4 the loop gain with the final design of the compensator and the
bounds on the loop gain are plotted. The final transfer functions from input
to cutput and specifications are plotted in Figure 4.5.

4.5 Simulations

In Figure 4.6 there are several step responses for the plant with different
parameters

Go(s) = 1;’5—_'_‘ K €[1,8.25,7.75,10] 1 € [0.1,0.325,0.55,0.775,1]

X " r i)
[»] 0.5 1 t.5 =2 2.5 3
Thme (sacsa)

Figure 4.6 Siep responses for a set of plants.

24

5. References

[1] Isaac M. Horowitz and Marcel Sidi. Synthesis of feedback systems with
large plant ignorance for prescribed time-domain tolerance. Int.J.Control,
1972, vol, 16, no, 2, 287-309

[2] Isaac M. Horowitz and Uri Shaked. Superiority of transfer function over
state-variable methods in linear time-invariant feedback system design.
IEEE Transaction On Automatic Control, vol. AC-20, no. 1, February
1975.

[3] Isaac M. Horowitz. A synthesis theory for linear time-varying feedback
systems with plant uncertainty, IEEE Transaction On Automatic Control,
vol. AC-20, no. 4, August 1975,

[4] Per-Olof Gutman . Robust and adaptive control of a beam deflector. IEEE
Transaction On Automatic Control, vol. AC-33, no 7, July 1988.

(6] F.N. Baliey, D. Panzer and G. Gu. Two algorithms for frequency domain
design of robust control system. Int. J. Control, 1988, vol. 48, no. 5, 1787-
1806.

[6] J.M. Maciejowski. Multivariable feedback design. Addison-Wesley, 1989,

[7] John J. D’Azzo and Constantine H. Houpis. Linear control system anal-
ysis and design, McGrawHill, third Edition.

[8] The MathWorks, Inc. 1992. Reference Guide, New Features Guide, User’s
Guide,

25

A. Keywords

Compensator

Performance bounds

Prefilter

Specifications

Stability bounds
Templates

26

A transfer function that obtains the desired closed loop
behavior for the plant,

Bounds on the loop gain which shows possible locations
for the loop gain with regard to the performance speci-
fications.

A transfer function which places the transfer function
from input to output within the desired dynamically
behavior for the system.

Specifications for the desired dynamically behavior for
the plant.

Bounds on the loop gain with regard to stability.

A set of possible frequency points for the plant at a fix
frequency.

B. QFT reference guide

This appendix contains detailed descriptions of all QF T-TOOLBOX functions.
Some of the internal functions that are used by the main functions are not
described in detail.

(Main Functions
frgd2spec Define specification in the frequency domain
tf2tmpl Transfer function to template
tmpl2bnd Performance bounds on the loop gain
tmpl2stbnd Stability bounds on the loop gain
compensator Tool for compensator design
prefilter Tool for prefilter design

| Graphs Routines

nichipl Plots a Nichols chart in the current figure
bndpl Plot of bounds
tmplpl Plot of templates

[Logical Functions
isbnd True for bound matrix
istmpl True for template matrix

[Matrix Manipulation |
getibnd Returns one bound at a specified frequency
getltmpl Returns one template at a specified frequency
getomega Returns frequencies from templates or bounds
getspec Returns specification
getcompensator Returns compensator filter
gelprefilter Returns prefilter

27

BNDPL

Purpose

Visualization of loop gain, L(jw), and bounds on L{jw).

Synopsis

bndpl(bnd)
brdpl(bnd, frc}

Description

bndpl{bnd} plots the bounds calculated by impl2bnd in a figure. There are
control buttons for each bound which makes the bounds visible or not visible.
There are also sliders for the frequency axis and the magnitude axis. In the
top of the figure there is a menu bar with the following items,
¢ File
o Quit <Ctrl>-Q
o Print <Ctrl>-P
+ Edit
o Compensator <Ctrl>-C
o Delete design <Ctirl>-N
¢ Zoom
o Up <Ctrl>-U
o Down <Ctrl>-D
bndpl{bnd,frc) takes the input argument fre, which is a frequency response
chosen by the user, actual loop gain with compensator designed by the user.
Note that the plant should be the nominal plant., This makes it possible to
evaluate other designs than QFT with respect to robustness.

See Also
tmplpl, nichipl

28

COMPENSATOR

Purpose

Tool for design of compensator filter.

Synopsis

compensalor

Description

compensator displays a Matlab window with a bode plot of the loop gain
from the current bounds plot. Observe that compensafor can not be used
without bndpl. At the top of the Matlab figure there is a menu with a couple

of submenus.

¢ File
o Quit <Ctrl>-Q
o Print <Ctrl>-P
o Edit
o Delete
* Current Design
Numerator
+ First Order System
+ Second Order System
* Denominator
. First Order System
- Second Order System
* Integrator

e Zoom
o Up <Ctrl>-U
o Down <Ctrl>-D

e Design
¢ Numerator

* First Order System <Ctrl>-1
* Second Order System <Ctrl>-2

o Denominator

* First Order System <Ctrl>-3
% Second Order System <Ctrl>-4
o Low Frequency Gain <Cirl>-G

o Integrator <Ctrl>-I

There is also a tabular of the current compensator shown in the figure.

See Also
badpl

29

FRQD2SPEC

Purpose

Define specification in frequency domain.

Synopsis

frqd2spec(spec)
frqd2spec

Description

frqd2spec creates a new figure with a set of menus and control buttons. There is
a popup menu to select whether the upper or lower bound should be changed.
The bounds can be described with two second order models. For the lower
bound, (is fixed to one, only w has to be defined. The menu bar contains:

s File

(o]

Quit <Ctrl-Q>
Print <Ctrl-P>
Save Specifications <Ctrl-S>
Grid on/off <Ct:l-G>
Change Specifications
* End Part <Ctrl-E>
* Middle Part <Ctrl-M>
* New Specification <Ctrl-N>

It is possible to change a line by moving the pointer to the line to be changed
and press one of the mouse buttons, The new points are the pointer locations
and new points are registered as long as a mouse button is pressed and moved
around. It is possible to change end parts or middle parts of a line. This is
chosen in the menu.

0 0 ¢ o

See Also
gelspec

30

GET1BND

Purpose

Returns one bound from the bounds storage class.

Synopsis
onebnd = getlbnd(bnd,omega)

Description

get1bnd returns the bound for omega from bnd. onebnd has the following struc-

ture
mag; phase;

onebnd = :
mag, phase,

See Also
getitmpl

31

GET1TMPL

Purpose

Returns one template from the template storage class.

Synopsis
onetmpl = getlimplfimpl,omega)

Description

getltmpl returns the template for omega from tmpl. onetmpl has the following

structure
magy, phase;s

onetmpl = :
mag, phase,

See Also
getitmpl

32

GETCOMPENSATOR

Purpose

Returns the compensator filter design.

Synopsis

[num,den] = getcompensator

Description

After finishing the design the compensator is stored in the root windows user
data. geicompensaior returns the stored values from root windows user data.
Note that after save is selected in the compensator design ool the user should
use getcompensator directly before another save is used. This is done in order
not to mix data.

33

GETOMEGA

Purpose

Returns frequencies in a vector for which templates or bounds exists.
Synopsis

[omega,ind] = getomega(z);

Description

getomega finds the frequencies in the template or bounds storage class. The
index is also an output argument,

34

GETPREFILTER

Purpose

Returns the prefilter design.

Synopsis
[num,den] = getprefilter

Description

After finishing the design the prefilter is stored in the root windows user data.
getprefilter returns the prefilter from root windows user data. Note that after
save is selected in the prefilter design tool the user should use geiprefilier
directly before another save is used. This is done in order not to mix data.

35

GETSPEC

Purpose

Returns the specifications.

Synopsis
spec = gelspec

Description

After the specifications are defined the specifications are stored in the root
windows user data. getspec returns the specifications from root windows user
data. Note that after save is selected in specification defining tool the user
should use getspec directly before another save is used. This is done in order
not to mix data,

36

ISBND

Purpose

Check for bounds matrix storage class.

Synopsis
flag = isbrd(xz)

Description

isbnd(z) is 1 if the storage class of z is bounds type and 0 otherwise.

Examples
if isbnd({x)

bndpl(x)};
end;

See Also
tmpl2bnd, tmpl2stbnd, bndpl

37

ISTMPL

Purpose

Check for template matrix storage class.
Synopsis

flag = istmpl(z)

Description

istmpl(z) is 1 if the storage class of z is template type and 0 otherwise.

Examples

if istmpl(x)
tmplpl(x);
end;

See Also
tf2tmpl, tmplpl

38

NICHLPL

Purpose

Plot a graph with Nichols M-contours,

Synopsis
nichipl

Description

nichlpl plots the Nichols chart with a M-contour grid. M-circles are the de-
scriptions of feedback.

L

I-[——L = ponst,

39

PREFILTER

Purpose

Tool for prefilter design.

Synopsis

prefilier(Cnum, Cden, nummatric, denmairiz, specmatriz)

Description

prefilter displays a Matlab figure with a menu bar at the top of the figure.
It is possible to add and delete zeroes to the numerator polynominal and the
denominator polynominal. After finishing the design use save in the menu to
save the prefilter in the root windows user data. See getprefilier. The menu
contains:

s File
o Quit <Ctrl>-Q
o Print <Ctrl>-P
o Edit
o Delete
#* Current Design
¥ Numerator
+ First Order System
- Second Order System
* Denominator
» First Order System
+ Second Order System

¢ Design
o Numerator
First Order System <Ctrl>-1
* Second Order System <Ctrl>-2
o Denominator
% First Order System <Cirl>-3
* Second Order System <Ctrl>-4

There is also a tabular of the current prefilter shown in the figure,

See Also
getprefilter

40

TF2TMPL

Purpose

Calculates templates for an uncertain transfer function.

Synopsis

impl = Y2tmpl(nummairiz, denmairiz, omegavect)

Description

tf2tmpl computes templates from a transfer function with a set of parameters.
Template is a set of the possible values [phase,magnitude] for the specified
frequency.,

nummairiz contains the possible values for the numerator.

nominal values
nurnmatric = | mazimum values
minimum values

denmalriz contains the possible values for the denominator.

nominal values
denmatriz = mazimum values
minimum values

omegavect contains the frequencies for which templates will be calculated.

Algorithm

Calculates subtemplates for numerator and denominator {template in complex
form). Next step is to calculate ¢,q; and @i, Where Pmar = Zimas (num) —
Limin(den) and @i = Lpmin(num) — Ly..(den). Define a set & = (@1, @}
where ¢y = @pin and ¢, = Ppa,. Find the intersection of the sub-rectangle
bounds with the line ¢pym = @gon + @5, - where ¢; € &. Find max magnitude
and min magnitude for numerator and denominator. Then proceed to next ¢,
i = 1,...,n. For more details about the algorithm see reference below.

References

[1] F.N. Baliey, D. Panzer and G. Gu.
Two algorithms for frequency domain design of robust control system,
Int. J. Control, 1988, vol. 48, no. 5, 1787-1806.

41

TMPL2BND

Purpose

Calculates bounds on the loop gain, L(jw).

Synopsis

brd = tmpl2bnd(tmpl, spec)
bnd = tmpl2bnd(tmpl, spec, stabilityspec)

Description

tmpl2bnd{tmpl, spec} finds the contours which satisfy given performance spec-
ification in the frequency domain for each template. Stability bounds are also

calculated for !H_%| < 2 (6db), see tmpl2sibnd.
tmpl contains template for each frequency chosen by the user and it also con-
tains the system response for a set of frequencies.

spec is the desired performance specifications:

h v Wy
spec = | mag?™ ... magh®®
mag?™® ... mag""

tmpl2bnd(tmpl, spec, stabilityspec) have one extra input argument, stabilityspec
containing stability specification for each template:

stabilityspec = (wy cee Wy)
mag, ... Mmag,

Algorithm

Places each templates above -1 (in Nichols above [-180,1]) and uses bisections
algorithm to find a magnitude so that the desired specification is fulfilled for
the template and then moves the template to the next phase. First from -180
to 0 in increasing order and then from -180 to -360 in decreasing order. If
the bisections algorithm fails then the template is placed under -1 and reverse
binary search for lower bound is used. The stability bound is added to the
performance bound.

See Also
tmpl2stbnd

42

TMPL2STBND

Purpose

Generates the contours of the stability bound.

Synopsis

{sbound, sbnd] = tmpl2stbnd(z,znom, stspec)
[sbound,sbnd] = tmpl2stbnd(tmpl, stspec)

Description

tmpl2stbnd(z,znom,stspec) computes the stability bound for one template in
complex form. z is the template in complex form and znom the complex nom-
inal value. stspec contains the requested specification for stability. Note that
tmpl2stbnd(z 2nom, stspec) is used by tmpl2bnd.

tmpl2stbnd(tmpl stspec) can use all templates(¢mpl) as argument and stspec
contains desired stability specifications for each template.

w el W,
stapec = t "
Specy; ... 8pecus

The resulting bound is stored in two different data structures, shound and sbnd.
tmpl2bnd uses both structures, the actual structure which should be used by
the user is sbound because it is the same as the standard structure.

[mag] phase] wr)
mag; phasel NaN

mag, phasel NaN
mag? phase! w,

mag? phase? NaN
sbound = : : :
magl, phasel, NaN
mag? phasel w,

magy phase} NaN

mag, phase, NaN
\ = NeN NaN)

Algorithm

The main demand for stability is that }1%“ < spec; is fulfilled for every
possible value of L (Loop gain in complex form) at w;. First map templates
in to the complex plane and then find the loop gain, L(jw), where the gain
|Z(jw)| = spec for all phases. Take then the normalized template and divide
all values of I, with all values of the template and find the contour.

43

TMPLPL

Purpose

Visualization of templates in a Nichols chart.

Synopsis
tmplpl(tmpl)

Description

tmplpl{tmpl) plots templates in the Nichols chart, There is also a set of control
buttons such as on/off buttons for each template and sliders for the frequency
axis and the magnitude axis. There are also mouse button events connected to
the figure. It is possible to move the pointer o a template and by pressing the
mouse button and grab and move the template aronnd. This makes it possible
to check for possible places for the bounds on the loop gain. In the top of the
figure there is a menu.

s File
o Quit <Ctrl>-Q
o Print <Ctrl>-P

See Also
bndpl, nichlpl

44

