ISSN 0280-5316
ISRN LUTFD2/TFRT--5482--SE

Implementation of a toolbox for
hybrid Petri nets in G2

Michel Colombo

Department of Automatic Control
Lund Institute of Technology
September 1993

Abstract
This report deals with the implementation of a toolbox for hybrid Petri

nets (HPN) in G2. While developing the program improvements of the
CCPN speed set calculation algorithm have been carried out. They have
permitted to save calculations and to make it possible to solve effective
conflicts by sharing as well as by priority. The modifications are detailed
and the resulting HPN algorithm is given. In order to make every readers
able to understand the report the basical notions on discrete Petri nets,
continuous Petri nets with constant speed and Hybrid Petri nets are re-
viewed in annexes.

Résume
Ce rapport presente la boite a outil pour les réseaux de Petri hybride qui
a été implementées dans G2. L’algorithme pour calculer les vitesses des
transitions continues a été modifié pour permettre de resoudre les con-
flits par partage du flot ou par priorité. Finalement deux methodes pour
programmer les réseaux de Petri hybride dans G2 ont été experimentées.

Contents

Introduction Lo oo
2. Implementation of HPNsin G2
G2 OVETVIEW . . .« v v v i i e 5
The HPN tool box implementation 6
Implementation of CCPNs using the G2 simulator 8
Implementation of HPNs using procedures 10
3. The implemented algorithm 13
Modification of the speed set calculation algorithm 13
First modification oL 13
Second modification 0oL 15
Third modification L. 16
A new problem L 19
Implementation of the modifications 20
Conclusion 24
5. References. 26
A. Discrete Petrimnets 27
Graphical elements 000 27
The evolution of a marked PN 28
T-timed PNs o 30
Generalized PNs o oo 30
B. Continuous Petri nets (CPN) 33
Intuitive introduction of CCPNs 33
Evolution rules oo 34
The marking evolution ofa CCPNs 38
Calculation of the set of speeds 39
C. Hybrid Petrinets (HPN) 41
D. An example of modeling by HPN 43
E. CCPN examples 46
The problem of periodical stable state 46
Problem of delays 48
Divergence of markings Lo 49
F. User’sguide, 51
The creating mode L oo 51
The running mode oL Lo 55
G. The HPN algorithm 59
H. Notation, 65

1. Introduction

Plant engineers and operators operating and monitoring a discrete or
continuous process are often faced with the problem of making the cor-
rect decision about how the process should be run in order to optimize
production. Several possibilities exist for assisting the users with these
decisions. One possibility is to construct a model of the process which
then 1s simulated in order to obtain the consequence of a decision. The
problem with this approach is that it is often difficult to find all the rules
and equations monitoring a process. This is specially true for discrete
processes such as, e.g., manufacturing processes.

Around 1960 Carl Adam Petri introduced Petri nets for modeling rela-
tionships between conditions and events (Petri, 1962). Since then exten-
sive research has been made in the area and Petri nets are now one of
the most widely used methods for modeling various discrete phenomena
such as , e.g., states of discrete devices, machine production lines, etc.
In 1987 continuous Petri nets were defined by Alla and David (David and
Alla, 1992) at the Laboratory of Automatic Control of Grenoble (LAG).
The main motivation for continuous Petri nets was to approximate timed
discrete Petri nets when the number of tokens were large. Several differ-
ent versions of continuous Petri nets have been developed, for example,
continuous Petri nets with constant speeds, continuous Petri nets with
variable speeds (VCPN), and asymptotically continuous Petri nets.

The second motivation for continuous Petri nets is the possibility to
model continuous phenomena such as, e.g., flows. In this area little work
has been done. None of the different continuous Petri net models have
been derived for this purpose.

Hybrid Petri nets give the possibility to combine continuous elements
and discrete elements in the same model. This is specially appealing in
light of the large research interest on system that combine continuous
and discrete phenomena.

A user-friendly computer environment for Petri nets requires a powerful
graphical interface. G2 from Gensym Corp (Gensym Corporation, 1992)
was originally developed as a real-time expert system but has gradually
developed towards a general object oriented programming environment
with a powerful graphical interface. In a previous project a toolbox for
coloured Petri nets was implemented in G2 (Sarraut, 1990). The goal of
this was to implement a toolbox for hybrid Petri nets were the nets could
be easily created and simulated. Since the main motivation for the work
was to be able to model combined continuous-discrete phenomena and
none of the existing continuous Petri nets models were focused on con-
tinuous phenomena the correct solution would have been to define a new
model for the continuous part of the hybrid Petri net that was better
suited, i.e., more general, for modeling continuous phenomena. Due to
time limitations this was, however, considered to be outside the scope of
this thesis. Instead continuous Petri nets with constant speeds has been
chosen for the continuous part of the hybrid Petri net toolbox.

Discrete Petri nets are briefly presented in Appendix A. Continuous Petri
nets with constants speeds and hybrid Petri Nets are discussed in Ap-
pendix B. The G2 implementation of the toolbox is presented in Chap-
ter 2. An improved algorithm for the calculation of speed states in hybrid
nets is described in Chapter 3. The complete algorithm is found in Ap-
pendix G. Appendix F consists of a user’s guide for the toolbox. Finally
some problems encountered with continuous Petri nets with constants
speeds are presented in Appendix E.

2. Implementation of HPNs in G2

This section gives an overview of G2 and presents two different ways to
implement PNs with G2. Both these ways have been used in the project.

G2 overview

G2 from Gensym Corp, originally developed as a real-time expert system,
has gradually evolved into a very powerful object oriented programming
environment with strong graphical features. G2 is written in LISP that
is automatically translated into C. All user programming , however, is
done in G2’s built in programming language using either rules or proce-
dures. In order to make it easy to capture the knowledge of experts, G2
expresses 1t in terms of object classes. Therefore G2 includes many ways
to define, reason about, and manipulate objects.

G2 can be summarized into six main parts : the knowledge-base, the real
time inference engine, a procedural language, a simulator, a development
environment, an end user’s interface and external interfaces.

The knowledge-base : In G2 the knowledge base is constructed by cre-
ating subclasses of built-in classes. At the top of the hierarchy is stem the
most unrestricted class already exiting. Therefore each pieces of knowl-
edge is grouped into a subclass of item called object class. From this
object class, instances can be created. All individual instances (called
objects) have the same graphical representation (called icon) and have
the same attributes which have been specified in the definition of the ob-
Ject class. Object classes are hierarchically organized. A class inherits the
attributes of its ‘father’ or superclass and it transmits its own attributes
to its ‘children. Consequently it is very important to define attributes at
the correct level in the hierarchy. G2 also provides two other links be-
tween objects : Connections and Relations. Connections are arrows that
graphically connect objects. Relations (such as a < b) establish a relation
between objects but do not have a graphical visualization. Connections
and relations are important elements of the knowledge-base because the
expert system can reason about them.

The inference engine : The inference engine is responsible for the
application of the rules written by the developer. The rules can be ap-
plied to an object (specific rules) or a class of objects and their children
(generic rules). During run time these rules may be invoked by backward
or forward chainings. G2 allows to group rules by focus objects or by user
categories and to invoke the whole groups of rules. It is also possible to
fix a scan interval for a rule and when the scan interval is elapsed to
automatically invoke it. The advantage of using rules is that you do not
have to think about the order in which the rules will be invoked. This can
however be a problem sometimes, therefore this can be solved by using
priorities or if this is not enough by using procedures instead.

Procedural engine : Procedures are written in a Pascal style proce-
dural language. They are started by rules, by other procedures or by
action-buttons. Similarly to rules a procedure can operate on numeric
expressions, attributes or objects and can be specific or generic.

Development environment : Textual information in rules, procedures
and other items are written with a structured natural language editor.
After typing a word the next syntactically correct entries are proposed
in a menu and the user can either click on words in the menu or type
them in. To create icons an icon editor is provided. Each item in G2 is
associated with a graphical representation and has a menu by which it
can be manipulated. For example you can duplicate objects by using the
clone menu choice of the object itself or the create instance menu choice
of its class definition.

Simulator : The built-in simulator calculates simulated values which
are used to test the knowledge-base or to give information in parallel
during on-line operations.

End user’s interface : To customize the knowledge-base numerous al-
ready built-in classes exist. They can be classified as follows :
Interaction objects : They allow you to change a variable from one value
to another (for example to change the variable run from of f to on by
clicking on the right button).

Action buttons : By clicking on it an action or a procedure is started (for
example : change the back icon color to green).

Sliders, type-in bozes : They allow changing the value of a variable dy-
namically.

Displays : Graphs, meters, dials and charts are different way to present
the values of variables.

The developer can implement animations by using instructions such as
rotate, move, change colors, and create or delete objects dynamicly. It is
also possible to attach new menu choices to objects. Finally the developer
can restrict the accesses to the knowledge-base for various user categories.

External interfaces : They are sold separately from G2 and can give
the access to some external data servers (such as external data files, ex-
ternal simulators, C and Fortran functions).

G2 provides a powerful graphical interface and easy ways to manipu-
late and reason about objects. It is particularly well fitted to implement
programs such as PNs which need graphical representations.

The HPN tool box implementation

To implement PNs in G2 the knowledge-base has been partitioned into
two parts : the first part contains the class hierarchy describing the struc-

6

tural properties of PNs and the second consists of rules and procedures
to govern the evolution.

The HPN class hierarchy :

The class hierarchy of Figure 1 has been implemented in G2. The class
Petri-net-objects is used as the root class for of all petri net objects. It
1s split into three classes:

Marker class : The marker class specifies only the appearance of tokens

(a black dot).

Place class : At this level the initial marking (of the place), the mark-
ing, and the available marking (non reserved marking) are defined as
common characteristics of ¢ and d-places. The Place class has two
child classes: c-place and d-place. They correspond to continuous
and discrete places and they are mainly used to give them different
icons (double circle for c-places and simple circle for d-places).

Transition class : The class is used to define the attribute “priority” as
a common attribute to c-transitions and d-transitions. It is used to
solve effective conflicts by priority. The C-transition class defines a
maximal speed (denoted ‘Max speed’), an instantaneous speed (de-
noted ‘old speed’) and a ‘flow part’ as attributes of c-transitions.
The ‘Flow part’ is required when the effective conflict is solved
by sharing. There is also a specifical icon for c-transitions (two
boxes , one inside the other). The D-transition class details the
attributes of d-transitions : an icon (a simple box), a timing and
one boolean variable (fireable). The two subclasses d-delay-transition
and d-event-transition have the same attributes but their icons differ
slightly (a simple box with a diagonal bar for d-event-transitions). D-
delay-transitions correspond to T-timed-transitions whereas d-event-
transitions correspond to synchronized transitions.

Another class of petri net objects has been created but does not appear
in Figure 1 because it is rooted from another part of the G2 class hierar-
chy. It is called Petri-net-connection and it defines the attributes of arcs
interconnecting places and transitions. Its attribute is the ‘weight’ of the
arc.

Due to from the numerous capabilities of G2 two different ways have
been used to simulate HPNs. The first one uses the G2 simulator whereas

[tem 1w Object +-wl Petrinet objects

ransiion

C—transition

D-delay-transition

D-transition

D-gvent-transition

Figure 1. HPN class hierarchy

the second uses G2 procedures.

Implementation of CCPNs using the G2 simulator

The G2 simulator provides two facilities for simulation : simulation for-
mulas and simulation models. Both are periodically updated and the user
can set the update interval (called time increment). To govern the CCPN
evolution generic simulation formulas have been used. Similarly to rules,
the simulation formulas are named generic because they apply to a whole
class of objects. In the below example the formulas applies to every tank.

SIMULATION FORMULA
The level of any tank = the water-volume of any tank/the
cross-section-area of any tank

It is important to notice that the following formulas are incomplete in
order to simulate COPNs correctly in all cases. Some new generic simu-
lation formulas need to be introduced to solve the encountered problems
(they are detailed after the formulas). However they form the framework
of what will be, in my opinion, the shortest way to simulate CCPNs in
G2 if the user is only interested in a version of CCPNs running in real
time.

FORMULAS'
Formula 1 : The input-flow of any places P = The sum over each

c-transitions T connected at an input of P of

the speed of T

Formula 2 : The output-flow of any places P = If mi > O then
The sum over each c-transition T connected
at an output of P of the maximal speed.

else

Max(The sum over each c-transition connected
at an output of P of the maximal speed , The

input-flow of P)

Formula 3 : The speed of any c-transitions T = Minimum over
each c-places P connected at an input of T

of (the output-flow of P * the maximal speed

of T) /(The sum over each c-transitioms
connected at an output of P of the maximal

speed)
Formula 4 : mi(t+delta) = Max (mi(t)+(input-flow - output-flow)
*delta, 0)

1 The real syntax of G2 generic simulation formulas has not been respected in
order to make formulas clearer to read.
For the notations refer to Appendix H.

Remarks
: Max is a function returning the maximum of the values with the
bracket.
: Effective conflicts are solved by sharing proportional to maximal
speed (Formula 3).
: Delta is the time increment of the Generic simulation formulas.

The G2 simulator evaluates the formulas periodically. Therefore the
problem illustrated in Figure 2, Example a arises. If a c-event occurs
between two simulation time instants it results in a negative marking for
the place responsible of the c-event (point A1) and an excess of markings
for downstream places. In Example a the c-event occurred at £ = 2.5s and
Formula 4 is executed at t = 3s. Therefore the marking of P2 is evaluated
to 3 (ma(t=3)=m,(t=2)+1) instead of 2.5 and m; has the value -0.5.
The problem of the negative marking is easily solved by comparing my
to 0 (Formula 4), but the one of the excess of markings remains. In the
example it is possible to propose a solution : Point Al can be calculated
(Formula 4 without comparison to 0), therefore the excess of markings
deposited in P2 is known and we only have to subtract this quantity
to the marking of P2. However this approach seems to be insufficient
since the situation can be much more complicated such as two c-events
involving the same transition and both occurring as the simulation time
increment has not elapsed yet (Figure 2, Example b).

Two other difficulties can be noticed :

e In case of effective conflicts Formula 3 solves it by sharing propor-
tional to maximal speeds. Solving the conflict with priority is sub-
stantially more difficult to implement using this approach.

e We do not know the exact time when the c-event occurs. Therefore
1t 1s impossible to precisely graph the marking evolution.

The main reason why this way has not been continued is : it is impossible
to ‘jump’ from a c-event to the next, we have to wait for the functioning
interval being completed. An improved behavior is allowed by the second
possibility to implement PNs in G2.

time increment = 1s

m2

P1 S <)
~ }Excess of markings

T1(Vmax=1)

P2

T

T AT

: Theoretical marking evolutions

—— : Obtained marking evolutions Example b

Figure 2. Difficulties arising when using the G2 simulator

Implementation of HPNs using procedures

G2 contains four kinds of procedures :

e System procedures : They consist of already built-in procedures for
performing system operations e.g. accessing files and directories.

e Remote procedures : They are Fortran or C procedures called from
within G2.

e User defined procedures : User defined procedures look like ‘nor-
mal’ Pascal procedures in which statements such as if-then, for,
repeat,...are available. It is also possible to perform actions involv-
ing numeric expressions as well as actions that operate upon every
object of a certain class in the knowledge-base. Therefore the state-
ment in the next example is available.

If the fireable of T is true then
For each input d-places P connected at an input of T do
Remove the marker from .

The HPN program mainly uses this type of procedures.

e Simulation procedures : They are similar to the above type, but they
are used in connection with simulation models.

Procedures have been preferred to implement HPNs because they per-
mit to control the execution order of operations. The HPN program is
organized into five main procedures indicated in the following algorithm?.

The HPN algorithm :

step 1 : HPN-initialization.

step 2 : Time «— next-time-event.

step 3 : Update-markings.

step 4 : Update-event.

step 5 : New-IB-state.

step 6 : Next-event-time.

step 7: (Wait for next-event-time - the current time).
step 8 : If stable state not reached then go to step 2.

HPN-initialization : This procedure initiates all variables that need to
have an initial value and performs all operations required initially
before starting the procedures which really govern the PN evolution.

Update-markings : The procedure determines the value of the contin-
uous marking in each c-place. To carry out this task the fundamental
relation and the previous value of the marking at ¢ — dt (= the value
of Twme before step 2) are used.

Update-event : The procedure fires all transitions that need to be fired
at Time. It also approximates the available marking of the c-place
responsible for the c-event.

New-IB-state : The speed of each c-transition resulting from the new

2 A complete algorithm is provided in Appendix G

10

RS

= RS

JhE 1.(01

Type "c—place” Type "h—place" Type "d-place"

Figure 3. The ‘type’ of places

marking state and the reservation of marking is calculated by New-
IB-state (IB-state is defined in Appendix C).

Next-event-time : In this procedure the instants when the next c-
event, d-event, and h-event should happen are calculated and the
minimum over these three instants is assigned to nezt-event-time
(c-event, d-event, h-event have been defined in Appendix A, Ap-
pendix B and Appendix C).

From this algorithm can be realized a real-time version of HPNs by
adding a wait statement at step 7. The delay of the wait statement is
equal to nezt-event-time - current time, where current time is the time
elapsed since the beginning of the application. Therefore the synchro-
nization between the evolution of the HPN and the current time is quite
accurate because the calculation time from step 2 to step 5 is taken into
account. For example if at current time = 205 we are at step 2 and
at current time = 22s we end step 5, in which the next-event-time has
been determined to 30, hence 8s are assigned to the wait statement (the
calculation time has been subtracted). However the synchronization is
of course wrong if the theoretical time elapsed between two successive
events is shorter than the delay required to complete the calculations
from step 2 to step 5. In this case the delay of the wait statement is fixed
to 0 and a warning message alerts the user.

To make the program as fast as possible a new attribute has been defined
for each place to save calculations during run time. It is called the ‘type’
of the place and its values can be “d-place”, “c-place”, and “h-place”?.
It is determined as follow : if the output transitions of a place are solely
d-transitions then the ‘type’ of the place is “d-place”, if they are only
composed of c-transitions the ‘type’ is “c-place” and otherwise the ‘type’
is “h-place” (Figure 3). Using this attribute it is possible to selectively
apply the previous procedures. For example the procedure New-speed-
state will be started only if one of the following events has been detected

3 Be careful to not confuse the ‘type’ of a place and the class of a place. In the
following text we use ‘...” to refer to the name of the attribute and “...” to
refer to its values.

11

during step 2 or 3 :

e A marking reaches the value zero in places of ‘type’ “c-place” or
“h-place”.

e Tokens are deposited in places of ‘type’ “c-place’ or “h-place”.

Therefore the firing of a d-transition involving exclusively “d-places” in
the HPN does not provoke any new calculations of speeds. The ‘type’ of a
place is also used in many other occasions in the body of each procedures.
We can notice the two following usages :

e When an effective conflict occurs it is more interesting to know the
‘type’ of the place rather than its class because it is directly related to
the method to solve it. A conflict between d-transitions is exclusively
solved by priority whereas between c-transitions it can also be solved
by sharing. Further if a “h-place” is involved then it is solved by an
other method (explained in the last part of the next chapter).

¢ Inthe body of Next-event-time it is unnecessary to look for a c-event
in places of type “d-place” even ifit is a c-place and similarly looking
for a h-event or a d-event in “c-place”.

Another way to save calculations has been adopted in the determination
of speeds, it is detailed in the following chapter.

12

3. The implemented algorithm

In the following section the ideas for improving the speed set calculation
algorithm are only presented in the context of CCPNs. The second part of
this chapter briefly presents ways to generalize them to also cover HPNs.

Modification of the speed set calculation algorithm

In the Appendix B it was pointed out that the algorithm presented
(David and Alla, 1992) has the following potential problems :

e It seems difficult to solve effective conflicts by sharing.

e The order in which transitions are classified influences the number
of steps needed to reach the speed state.

e Extra iterations are required to check that the speed state is really
obtained.

The revised algorithm has been deduced from the existing. Therefore
both algorithms exploit the same basic formula introduced by David and
Alla (1992).

Formula R1 %

Vimaz if T; is strongly enabled

7 Min(Vimas, bi + v;) otherwise
with i such as P; € °T; and m;(t) = 0

v;=the speed before applying R1
v; '=the speed after having applied R1

Remark 1
: Formula R1 is the mathematical expression of the definitions of strongly
and weakly enabled®.

In order to improve the algorithm three modifications have been per-
formed, each of them solving one point. To not confuse the reader they
are separately introduced. The last section is focused on a new problem
encountered.

First modification

This change has been realized to allow the user to solve conflicts by prior-
ity or by sharing. It is made possible by initially specifying a place order
instead of a transition order and by iterating on places rather than on
transitions. To visualize the difference between the algorithms they are

4 Refer to Appendix H for the notations.

5 Refer to Appendix B for the definitions.

13

written one on the side of the other. Algorithm 1 is directly inspired by
the David and Alla’s algorithm. Algorithm 2 is a modification of the first
one.

Algorithm 1¢
Begin
Initialization :

Classify transitions
For j=1 to N do®

Algorithm 2
Begin
Initialization :
Classify places;
For j=1 to N do

v;—0; If T; has no input places then
’l)j"—O; 'Uj"“V}'maz;
End for V" —Vimaz;
Else
v;+-0;
v;'—0;
End if-else
End for
Body : Body :
Repeat until Stop=true Repeat until Stop=true
Stopetrue; Stop—true;

For j=0 to N do
For each place P;¢ °T; do
Inflow of P;«+0;
For each transition T, € °P; do
Inflow of P;—Inflow of P;+4wg;
End for
Outflow of P;«0;
For each transition T € P? do
Outflow of P;j«~Outflow of Pi+uvy;
End for
b;«—Inflow of P; - Outflow of P;;
Calculation of v;’ by R1;
If v;’ #v; then
Uy V5]
Stop«-false;
End if
End for
End for

End repeat
End

a Refer to Appendix H for the used
notations.

b N=the number of transitions in the

CCPN.

For i=1 to M do®

Inflow of P;«0;

For each transition Tj€ °P; do
Inflow of P;«Inflow of Pi+wj;

End for

Outflow of P;«0;

For each transition T;€ P do
Calculation of v;’ by R1;
Outflow of P;«—Qutflow of Pitv;’

End for

If Inflow of P;<Outflow of P;

and P; no marked then
Call Solve-effective-conflict;

End if

For each transition T;€ P? do
If ’Uj’#'l)j then

;05
Stop«—false;
End if
End for
End for
End repeat
End

a M=the number of places in the
CCPN.

The procedure Solve-effective-conflict has not been detailed because it is
application dependent. The user can implement whatever strategy he
wants for solving effective conflict. The necessary information for this
1.e., the inflow of place P and the maximal possible speed for each out-
put transition, is available at this stage. An example of a procedure for
solving the effective conflict by sharing is provided below:

14

Solve effective conflict
Begin For each transition T;€P? do

s ((inflow of P; - real outflow of P;)* flow part) 4o
Yi The weight of the arc between T} and P Yi

End for

Note :
e The real outflow of P; is the sum over the output transitions of v;.
o The flow part is the proportion of the inflow that goes through T;.

The idea leading to Algorithm 2 is as follows. To detect an effective
conflict we have to evaluate the quantity of markings entering and the
maximum quantity able to leave the place at the same instant. To deter-
mine the last entity the relation R1 is applied to each output transitions
as if the transition had the highest priority. In other words R1 returns
the maximal flow able to pass through the transition but the flow is not
assigned to it (this explains why a variable v;’ is required : it is used to
record the calculated value of the maximal possible speed). Hence the
maximal possible output flow is obtained by summing the value of v’
over each output transitions. This operation is much more difficult to
carry out with Algorithm 1 because the order in which transitions are
classified does not normally give any information about the structural
properties of the PN. The transitions that are part of the same struc-
tural conflict are not grouped together.

If, in both algorithms, places and transitions are randomly arranged Al-
gorithm 2 generally needs more calculations because during a loop over
all the places the same transition may be involved as many times as its
number of input places. This problem is corrected by the second modifi-
cation.

Second modification

The second modification aims to efficiently order places or transitions
to reduce the number of calculations needed. The adopted idea is to
“follow the flow”. To picture this idea let us assume that each c-place
is a tank, the continuous marking is a water level, transitions are valves
and the associated speed is a flow. Therefore updating the speed of a
transition corresponds to trying to change the flow of the valve. Four
intuitive concepts can be deduced :

e Initially we cannot modify the flow of a transition if there is no water
upstream, except for source transitions.

e While flowing only the valves on the flow have to be taken into
consideration.

e Changing the input flow of a tank that already contains water does
not modify the flow of the output transitions.

e When the flow of a valve cannot be revised, the flows of downstream
valves are not affected.

Applying these concepts to CCPNs, they respectively become :

e Initially only the output transitions of marked places and source
transitions have to be taken in consideration .

o If v;#v,’® then the output transitions of the non marked output
places have to be examined.

e If v;=v;’ then do nothing.

These three points can easily be implemented in the algorithm using, for
example c-pointers (each place points to its output transitions and each
transition points to its output places). In G2 it is even easier because
1t is directly possible to reason about the graphical connections linking
places and transitions. Notice that there is not only a unique transition
order even when the speed of transitions is calculated by an algorithm
incorporating the last proposed modification. Several flows can be flow-
ing simultaneously in the CCPN, therefore many solutions are available.
We can decide for example to carry out calculations on a flow until it is
dried out or to make calculations in parallel.

Rather than providing the reader with a new algorithm it has been pre-
ferred to confront the calculation evolution of Algorithm 1 to those of
Algorithm 2 using the previously defined rules (Figure 4). In the tables
of the figure the calculation order is represented by an arrow. The ar-
row comes from the speed that has just been calculated and goes to the
speed of the transition that has to be examined. The next transition
whose speed has to be updated is determined by applying the previ-
ously defined rules. Three points can be noted from the application of
the modification:

¢ We do no longer need to initially classify transitions because we
replace the static list of transitions by a list dynamically built while
running the program.

e The number of saved calculations depends on the structure of the
net and the initial markings.

e It seems possible to carry out some calculations simultaneously when
two flows are flowing independently of each other. For example the
calculations noted A and B in the second table of Figure 4.

The inconvenience of this method is that you do no more have any ‘flag’
to signal that the speed state is reached. When a flow is stopped by
the relation v = v’ it is difficult to know whether or not there exists an
other flow flowing in the CCPN at the same instant. Therefore the third
modification can be useful.

Third modification

The purpose of the third modification is to find an alternative way to test
if the speed state has been obtained. The idea is to count the number

6 Refer to notations introduced with Formula R1.

16

Hypothesis :

Vimax =5 Vamax =4
Vomax =3 V4max =6
T8 has the priority over T4
Algorithm 1 (Without the second modification)
Speeds Initisz?)lézgéion Loop 1 Loop 2 Loop 3 Loop 4 Loop &
v 0 5 5 5 5 5

v1 0 o> 1) 2> 3
v2 0 4) 4) 4) 4
0 1) 2> 3) 4

» s s
»
\ g

20 calculations

Alghorithm 2 (Applying the second modification)

Speeds |niti§géggon Loop 1 Loop 2 Loop 3 Loop 4
v, 0 5 5 5 5
A
V2 0 1 2 \ 3 \ 3
v, 0 4 4 (4) y 4)
B
V4 0 1 <2 3 4

14 calculations

NB : —In the second case the speed calculation of T3 is carried out before that of T4 in order to give it the priority.
~In table 2 it has arbitrarily been decided to begin by T1, the choice to begin by T2 leads to cne extra iteration .
—Calculations noted A and B in the second table can be carried out simultaneously.

— : The arrow indicates the calulation order

Figure 4. The second amelioration possible of the algorithm

of flows flowing in the COPN. This is also inspired by the interpretation
of the marking in terms of liquid. Initially some places (Case a)" and
transitions (case b) have flows. In other words they are the sources of the
liquid in the PN. While flowing these flows can be duplicated : in Case ¢
one flow enters the place and two leave it and in Case d the flow reaching
the transition is divided into two new flows. A flow can be dried up (it
does not have any new flow) when it reaches a transition such that of
Case e and a place such as illustrated in case f. A flow also disappears
if condition g is met. The last case corresponds to the last point of the

7 Refer to Figure 5 for the cases

O, 00

i

Case a case ¢ Case e

(initial marking different from 0) (no condition on the place marking) (transition without output places)
Case b Case d Case f

(Transition whithout input places) (place whithout output transitions)

Case g: V=V (refer to notations defined with Formula R1)

Figure 5. The count of the flow

rules defined in the second modification. When all the flows that have
been created have disappeared a speed state is obtained.

The proposed solution has only been successfully implemented with Al-
gorithm 2 but it seems possible to build a version adapted to Algorithm 1.

The rules to numerate flows are the following :
Initially :
Rule 1 : For each structure a do :
nb-flow «— nb-flow +1 per output transitions.
End for.
Rule 2 : For each structure b do :
nb-flow — nb-flow +1 per output places
End for.
Body :
Rule 3 : When a place is updated then :
nb-flow «— nb-flow +n-1
(n is the number of output transitions).
Rule 4 : When a transition is updated then :
if v=v’then :
nb-flowe— nb-flow -1
else
nb-flow— nb-flow +m-1
(m is the number of output places)
End if-else.
Rule 5 : If nb-flow # 0 then :

continue to iterate.

end-if.

18

It 1s interesting to use the previous rules only if several speed calculations
are carried out simultaneously because in this case it is difficult to know
how many calculations are running at the same instant. Otherwise a
speed state is obtained since there is no more operations to do. The
latest solution has been adopted in the HPN program.

A new problem

A new problem arises when applying Algorithm 2. It has been called “con-
flict between places” because it is related to the presence of a structural
conflict and it is dual to the problem that Algorithm 1 has in the case
of a conflict between transitions. The problem can occur only if there is
a structural conflict involving several places. The situation is illustrated
in Figure 6, Example a.

Conflict between T1 and T2 Ali conflict solved by priorit
solved by priority (T1 has the Priority order : T1> 2>T3>¥4
highest priority).

——1 T3(Vmax=2)

P1 P2 P3

T1 T2 T3 T4
T1(Vmax=2) T2(Vmax=2)

Figure 6. Conflict between places

Let us assume that T1 takes priority over T2 and we execute Algo-
rithm 2. The chosen place order is P1/P2. Therefore the output transi-
tions of P1 are updated first, i.e., v; and v, are respectively determined
equal to 2 and 0. After that the output transition of P2 is tested and v,
cannot be modified. The CCPN simulation seems all right. Now we keep
the same initial conditions but we commute the order of P1 and P2 (it
becomes P2/P1) and apply Algorithm 2 again. The output transition of
P2 is updated and the value 2 is assigned to v, because the flow passing
through T3 has not been oriented to T1 yet. When updating the output
transitions of P1 v, is determined equal to 0 because there is no available
flow (it has already been “taken” by T2). The problem arises because
when using Formula R1 we are not aware of whether or not we have the
right to “take” the flow. Rather than modify Formula R1 it has been
preferred to define a new attribute for places, ‘priority’, in order to be
able to update them by priority order. To avoid the user from having to
select the priorities a small procedure has been introduced.

19

Procedure to set the priorities of places
Initialization :
The priority of each places is equal to 10.

Body :
If there is a structural conflict between the output transitions of P then :
If the output transition of P with the highest priority (T)
has several input places or the conflict is solved by sharing then :
Subtract 1 to the priority of P;
Else
add 1 to the priority of P;
End If-else.
End If.

This is generally enough to solve the majority of the cases, but the situ-
ation illustrated in Example b is randomly solved (P3 and P2 have the
same priority) if the user does not set himself the appropriate values
of ‘priority’. It can be noticed that the procedure can be improved by
adding the value of the highest priority of the output transitions and
subtracting (1/The highest priority) instead of adding +/- 1. The last
improvement permits to carry out the situation of Example b. Effectively
if the priority of T1/T2/T3/T4 are respectively 4/3/2/1 then the prior-
ity of P1/P2/P3 are 14/9.666/9.5. Therefore the calculation order is P1,
P2, P3 and it reaches the desired result.

Implementation of the modifications

To make it possible to use all the presented modifications in the same
program the following structure has been adopted :

Initialization

Repeat until List is empty
Update-first-element-of-list

End repeat

Here List is a list of places (because the iterations have to be performed
on places to be able to manage conflicts either by sharing or by prior-
ity). The list is built dynamically by the procedures Initialization and
Update-first-element-of-list. Initialization inserts in List all places which
are marked or at the output of a source transition (the first point of the
second modification). Update-first-element-of-list carries out the speed
determination of the output transitions of the first List element and in-
serts new elements in List. The new places are inserted if they are non
marked and one of their input transitions fulfills the condition v;#v;’
(second and third point of the second modification). However a place is
not inserted if it already belongs to List. In order to make possible to
solve the new problem places are classified by priority order such that

20

the highest priority corresponds to the first element of List.
The motivation for using a dynamically built list of places when imple-
menting the revised algorithm are :

e The two main loops of Algorithm 1 (Repeat until end=true and For
i=1 to 1=N do...) are replaced by a single loop : Repeat until List
1s empty.

e It is not necessary to use the third modification because there is
no calculations in parallel. The speed state is reached when List is
empty.

e It provides an easy way to update places by priority order.

e The usage of List can easily be extended to HPN.

The procedure New-IB-state of the HPN program has been constructed
for the same model. The main modification between the CCPN imple-
mentation and the HPN implementation is that List may contain con-
tinuous and discrete places in order to mix the speed determination and
the reservation of tokens. The mixture of discrete and continuous opera-
tions is realized to avoid the problem prompted by situations such as in
Figure 7.

P1 P2
=T2 =

Figure 7. Mixing of speed calculations and token reservations.

T3

Let us assume that no mixing takes place and the token reserva-
tion is carried out by one procedure whereas another determines the
speed state. Therefore they have to be ordered in the program, for exam-
ple reservation of marking before speed calculations. In Figure 7 if the
reservation of tokens alway occurs before the speed calculation then it is
impossible to give the priority to T3. The reciprocal order leads to the
opposite problem : T2 can never get the priority. Moreover if the pre-
vious operations are separately executed the user has not the ability to
choose between behaviors. The problem is mastered by generalizing the
attribute ‘priority’ to d-places and by extending the capacities of Update-
first-element-of-list (it will be able to either carry out a speed calculation
or a token reservation). After adaptation the CCPN program structure
also appears as a perfectly convenient structure for HPN program.

Resulting from the implemented way and from the modifications
of the speed calculation algorithm some new conflict situations can be
encountered and have to be treated. The first of them is met when solving
an effective conflict by sharing. The adopted formula to calculate the

speed of the output transitions in this case is :

flow part * input flow
v =
7 the weight of the arc

In which : Flow-part is the proportion of the input flow that have to
pass through the transition.
: Input-flow is the flow entering the place P (P and its output
transitions form the structural conflict).
: The weight of arc is that of the arrow between the transition

and P.

It may happen that the speed determined by this formula is superior to
the maximal possible speed. Therefore it has been chosen to automati-
cally solve the effective conflict by priority. We consider that the conflict
is insolvable by sharing.

Other new conflict situations arise when a conflict involves continuous
and discrete transitions, it is called h-conflict. It is the most complicated
case because the available marking can be modified while solving the
conflict. Figure 8, Example a illustrates this phenomena. When updat-
ing transitions by priority order in this example the following operations
are performed :

1. T1is enabled because the number of available marks in P1 is superior
to the weight of the arc (10>5) = 5 units of markings are reserved
by T1. Left 5 non-reserved marking units in P1.

2. T2is strongly enabled because P1 contains a quantity of non-reserved
markings = vy=Vinmae

3. T3 1s enabled because the number of available marks in P1 is equal
to the weight of the arc = Problem : if we reserve the adequate
marking for the firing of T3, T2 is no more strongly enabled.

Priority order : T15>T2>T3>T4 Priority order : T1>T25T3
T5(Vmax=2) T6(Vmax=5)
p2
5
T1 T2(Vmax=6) T3 T4(Vmax=6) Ti T2(Vmax=6) T3(Vmax=6)

Figure 8. New conflict situations to take into consideration.

In order to preserve the priority order of the transitions the chosen be-
havior for T3 is to not reserve the marking although it is fireable. Notice

22

that if in the illustrated case the speed of T5 is superior or equal to 12
(=maximal output flow of P1) T3 could have reserved the marking with-
out altering the priority order. To solve the problem the following rule is
used :

Rule 1 : An enabled d-transition (T) belonging to a h-conflict
is not fired if the three next conditions are verified at the same
time :
e The marking of P® is equal to the weight of the arc con-
necting P to T.
e At the starting of the calculations inflow < outflow (Refer
to Algorithm 2 for the determination of both antities).
o There exists a least one c-transition with a higher priority

than T.

Using the previous rule and the possibility to solve conflicts between c-
transitions by sharing a new behavior can be specified in case of h-conflict.
The operation sequence to carry out Example b can be the following :

1. T1 is enabled : 5 units of markings are reserved.

2. There is no more available markings now. The situation is similar to
a classical conflict between c-transitions so we can choose to solve it

by sharing : v,=2.5 and v3=2.5.

Notice that this behavior neither corresponds to solving the conflict by
priority nor to solving it by sharing. It is an ‘hybrid’ way.

8 P is the place with several output transitions.

23

4. Conclusion

The main difference between ordinary, discrete PNs and continuous nets
is the nature of the marking in a place. In ordinary PN the marking is
discrete, i.e., the value can be any integer greater or equal to zero.

The work on continuous PNs has two motivations. The first moti-
vation is to be able to approximate discrete PNs with a large number of
markers. The second motivation is to be able to model continuous phe-
nomena. The majority of the work in continuous PNs are based on the
first motivation. Different models of continuous PNs have been developed
that to different degree approximate discrete PNs. Continuous PNs with
constant speeds (CCPN) are very easy to simulate but can give poor cor-
respondences with discrete PNs (Refer to Appendix E). Continuous PNs
with variable speeds (VCPN) correspond very closely to the behaviour
of discrete PNs but are time consuming to simulate. Continuous Petri
nets with asymptotic speed (ACPN) constitute a compromise between
CCPNs and VCPNs.

However, if we are mainly interested of the second potential of con-
tinuous PNs, modeling of continuous phenomena, none of the continuous
Petri net model are sufficient. If we look upon a continuous PN from a
continuous view point the places correspond to integrators that may only
take positive values. This can be used. e.g., to model tank systems where
tanks correspond to places and the evolution of markings between the
places correspond to a flow between the tanks. With a CCPN it is possi-
ble to model tanks with constant in and outflows (refer to Appendix D).
However none of the above models are sufficient for modeling, e.g., a tank
with a free outlet where the outflow is a function of the level of the tank,
1.e, the marking of the place.

In order to use PN formalism to model general continuous phenom-
ena it is necessary to extend the existing continuous Petri net models
in order to obtain the same expressive power that is available in ordi-
nary differential equations. However, since good simulation tools exist
for differential equations the value of this extension is questionable if
only continuous PNs are concerned.

If, however, one also considers hybrid PNs where continuous and
discrete places can be mixed together the situation becomes different.
Combined discrete-continuous systems is a very useful here. With hybrid
PNs the same model and graphical representation can be used to model
both the continuous and the discrete parts of a combined or hybrid sys-
tem. Therefore in this context it is definitely of interest to extend the
continuous Petri net model.

In this thesis the main purpose has been to implement a system
that makes it possible to simulate continuous and hybrid PNs in G2. The
project has not allowed any extensions of the existing Petri net models.
Due to its simplicity and the fact that it can model some continuous
processes, e.g., tanks with constant in and outflows, it was decided to only
look upon CCPNs and their use in hybrid PNs. When implementing the

24

algorithm for the evolution of CCPN several problems were encountered.
Three modification have been suggested to overcome these problems.

The developed G2 toolbox for HPN provides a user-friendly, graph-
ical environment where HPN can be simulated.

25

5. References.

[1] C.A.Petri (1962), Kommunikation mit Automaten, Schriften des
Rheinisch, Westfalischen Institutes fur Instrumentalle Mathematik
and der Universitat Bonn, traduit par C.F Greene, Applied Data
Research Inc., Suppl,, 1 to tech.

Report RADC-TR-65-337, N.Y., 1965.
[2] R.David and H.Alla (1992), Petri nets and Grafcet, Prentice Hall.

[3] J.Le bail (1992), Sur les réseaux de Pétri continus et Hybrides, Thése
de doctorat de 'INPG, Grenoble.

(4] P.Sarraut (1991), Implementation of a toolbox for colored Petri nets
in G2, Thése de DEA de 'INPG, Grenoble.

(5] R.David (1993), Cours de PENSIEG sur les réseaux de Petri, EN-
SIEG,Grenoble.

[6] P.Ladet (1993), Cours de 'ENSIEG sur les réseaux de Petri, EN-
SIEG,Grenoble.

[7] Gensym Corporation (1992), G2 reference manual, Gensym Corpo-
ration, Cambridge.

26

Appendix A. Discrete Petri nets

The purpose of this annex is to present basic notions of PNs to make un-
experienced readers understand all the parts of this report. For a formal
presentation over the notions rewieved in this section refer to books enu-
merated in the bibliography. Therefore only basic notions related with
this master thesis are gradually introduced and essential definitions given.

Graphical elements

A PN is composed of two types of elements : Places and Transitions,
respectively represented by circles and bars (or boxes). These nodes are
connected together by oriented arcs. An example of a PN is shown below.
The notions of in and output places are defined with the help of the
example of Figure 9. P1 is said to be an input place of T2 because there
exists an arc from P1 to T2 and reciprocally P2 is said to be an output
place of T2 because there is an arc from T2 to P2. In the same way input
transitions and output transitions are defined.

Two particular graphical aspects need to be noticed in Figure 9 :

e Transition T7 does not have input places, it is called a source tran-
sition.
o Place P1 has two output transitions T2 and T3. We say that there

is a structural conflict. More generally there is a structural conflict if
there exists at least two output transitions linked to the same place.

Special rules are often used to govern the PN evolution when encounter-
ing one of the previous structures.

A marked PN is obtained from an unmarked PN by deposing an in-

T7

Figure 9. Non marked petri Figure 10. Marked petri net
net

teger number of marks or tokens in places. The integer number is called
the marking of the place and it is noted m; (; corresponds to the number
of the place). The vector whose components are the ‘m;’ of each places
of a PN is called the vector of markings and it defines the state of a PN
at a certain moment. For example the marking vector of Figure 10 is

(2,0,1,0,3).

The evolution of a marked PN

A PN evolves from one state to another by firing transitions. The firing
of a transition consists of taking a token from each of the input places of
the transition and adding a token to each of its output places. However
to be fired a transition must be enabled (or fireable).

Definition 1
: A transition is said to be fireable or enabled if each of the input places
of the transition contains at least one token.

Remark 2
: A source transition is alway enabled.

Figure 11 illustrates the firing of transitions in a PN. In Example 1 T1
1s fireable because each of the input places have at least one token. In
Example 2 T2 is not fireable because there is no token in place P1.

0 TG

Before firing After firing No fireable

Example 1 Example 2

Figure 11. The firing of transitions

These rules are sufficient as long as we do not meet the situation illus-
trated by Figure 12, Example 1. In this figure T1 and T2 are enabled
but they cannot be fired at the same time because there is only one to-
ken for two transitions. The user has to choose if the token is going to
pass trough T1 or T2. In doing that the user imposes a priority order
among the transitions involved in the conflict. This situation is called an
effective conflict.

Definition 2

: An effective conflict is the existence of both the following conditions :
there is a structural conflict between P and its output transitions, and the
marking of P is smaller than the number of enabled output transitions.

Some more applications of this definition are shown in Figure 12.

T T SO v O

Example 1 Example 2 Example 3
Effecnve conflict No effecnve conflict Effectlve conflict

Figure 12. Conflict situation

When implementing PNs on a computer, we say that we solve the con-
flict a priori to signal that in case of a conflict the algorithm gives every
time priority to the transitions in the same order. We simulate the inten-
tion of an user who chooses every time transitions in the same order.

PNs are divided into two groups: autonomous PNs and non-autonomous
PNs. In autonomous PNs firing instants are unknown or not indicated.
Consequently they can be used only to describe what happens. It is only
a qualitative approach mainly used to explain the PNs evolution. All PNs
on the previous pages are autonomous PNs.

In non-autonomous PNs the firing of a transition is associated with the
occurrence of an event. Therefore it is possible to model what happens
and also when it happens. Two types of non autonomous PNs have been
implemented in G2 : synchronized PNs and T-timed PNs.

e In synchronized PNs the firing of a transition is related with the
occurrence of an external event. For example in the PN of Figure 13
event [} occurs when the user clicks with the mouse on transition
T1. In this case the PN is synchronized with the decision of the user
to click on the transition.

e In T-timed PNs a timing is associated with each transitions. For
example a timing of d=2 on a transition means that the firing of the
transition occurs 2 units of time after it has been enabled. It can
be noticed that similarly P-timed PNs are obtained by defining a
timing attached to place.

Before clicking After clicking
on the transition on the transition

Figure 13. A synchronized PN

29

T-timed PNs

Both the firing and the condition to enable a timed transition are slightly
different from the previously described rules. The firing of a timed tran-
sition involves the following three steps:

1. The reservation of marks. The transition reserves the tokens that
are going to be removed from the input places. A reserved tokens
cannot be used to enable another transition. In Figure 14 reserved
marks are visualized by white marks.

2. Waiting for the number of time units indicated by the timing of the
transition.

3. Deleting reserved tokens from the input places and add non reserved
tokens to the output places.

The enabling condition for a transition becomes:

Definition 3
: A T-timed transition is said to be enabled or fireable if each of its input
places contain at least one non reserved token.

This type of PNs are often used with the hypothesis of evolution at max-
imal speed. It implies that there is no time elapsed between the instant
when the transition can be enabled and the instant when the reservation
of markings occurs. This hypothesis leads to the evolution illustrated in
Figure 14, Example a.

In this example it can be noted that two marks are reserved by T1 be-
tween the time 0 and d;. We often prefer a transition reserving its tokens
only when the previous firing is completed. To reach this purpose we have
to introduce a place such as P3 to each transitions in the PN (Figure 14,
Example b). In order to avoid this excess of places an implicit limitation
is defined (Figure 14, Example c). The evolution is the same as Exam-
ple b, but P3 is no more represented: it is implicit. In all the parts of the
report the implicit notation is used.

Generalized PNs

A PNs is said to be generalized if there is a weight (an integer number
strictly greater than zero) attached to each arc. This new element can be
added to all previous PNs. It modifies the firing and enabling conditions
of transitions. For example they become for an autonomous PN:

Definition 4

: A transition is said to be enabled if each of its input places contains at
least a number of tokens equal to the weight of the arc linking the place
to the transition.

Remark 3
: Conventionally if the weight is not indicated on the arc it is equal to
one.

30

® : non reserved mark O reserved marking

Example a
P1 a P1 a P1 o P1 P1
d2 T1 d2 T1 d2 T1 d2 T1 d2 T
P2 ‘ P2 o P2 o P2 P2

Time =0 From time = 0 o time =d2 Time=d2 Fromtime = d2 1o time =2*d2 Time = 2*d2
T1 is enable The marking is reserved by T4 T1is fired The marking is reserved by T1 T1 is fired

Functioning at maximal speed

Example b
d2 m P3 4o m p3d2 ﬂo P3 d2 ﬁe P3 42 ﬂc Pa
Ok O (o (D) Ok

Time=0 From time = 0 to time =d2 Time=d2 From time = d2 1o time =2*d2 Time = 2'd2
T1is enable The marking is reserved by T1 Ttisfired The marking is reserved by T1 T1 is fired

lExplicit limitation & Functioning at maximal speed ‘

Example ¢
P1 e P1 P1 ° P1 P1
d2 T1 d2 T d2 Tt d2 T1 d2 T
P2 ‘ P2 P2 o P2 P2
Time =0 From time = 0 to time =d2 Time=d2 From time = d2 to time =2*d2 Time = 2'd2

T1is enable The marking is reserved by TY T1is fired The marking is reserved by T1 T1 is fired

LTmplicil fimitation & Functioning al maximal speed 1

Figure 14.

Furthermore the firing of a transition is carried out by deleting from the
input places and creating in the output places a number of tokens equal
to the weight of the arc connecting the place to the transition.

In a similar way the functioning rules for generalized synchronized PNs
and generalized T-timed PNs can be deduced. An example is given in
Figure 15.

P1 2 P2 P1 2 P2

T T

P3 P4 P3 P4

Before the firing of T1 After the firing of T1 T1 is not enabled

Figure 15. Generalized PN

Appendix B. Continuous Petri nets (CPN)

There exists three types of continuous petri nets : continuous petri nets
with constant speeds (CCPN), continuous petri nets with variable speeds
(VCPN) and asymptotically continuous petri nets. Only the first of these
CPNs has been implemented in G2, therefore only CCPNs are presented.
In this section the primary concerns of CCPNs are intuitively intro-
duced. The evolution rules are dealt with for both autonomous and non-
autonomous CCPNs. Finally the evolution of the marking is described
and the algorithm governing CCPNs is overviewed.

Intuitive introduction of CCPNs

6.0

5.0

@ P1 P 4.0-\‘\
301

d=2 T1 v=05 = T7T 2ol

Discrete petri net Continuous petri net 1.0

D.D i 1 il i i !] 1 L A &
0.0 2.0 4.0 6.0 8.0 11

Figure 16. Discrete
and continuous PNs

Figure 17. Evolution mark-
ings

Figure 16 shows a discrete T-timed PN and the associated CCPN. To
distinguish continuous and discrete PNs the places of a continuous PN
(called c-places) are visualized by two circles and the transitions (called
c-transitions) by an empty box. Figure 17 presents the evolution of both
markings in the d-place (called discrete or d-marking) and c-place (called
continuous or c-marking).

It can be noticed that the marking in the c-place operates as an approx-
imation of the d-place marking : this is the main concern of a CPN. To
make the CCPN realize this approximation the timing associated with
the T-timed transition (noted d) has been replaced by a maximal firing
speed (noted V') equal to the inverse of the timing. The maximal speed
associated with the output transition of P1’ implies that the marking of
P1’ at t + dt is deduced from the marking at ¢ by the relation :

my(t + dt) = my(t) — v * dt (1)

Note : The quantity v dt represents the amount of markings leaving
P1’ during dt.

The CCPN realises a good approximation of the discrete PN on this ex-
ample because the continuous marking and discrete markings are equal
every firing instant (¢t = 0;2;4...). However they differ between these

33

moments, the marking in the c-place evolves continuously whereas the
d-marking does not (the firing of the d-transition is discrete and occurs
only every 2 units). Therefore we say that the c-transition is continuously
fired. Indeed the continuous evolution of the marking in c-places implies
that it is now indicated by a real number and no more by an integer
number of tokens.

In the previous example we need only five calculations to draw the
discrete marking evolution (one calculation corresponds to one firing).
Therefore the motivation for using a CCPN is not an evidence. But now
let us assume that initially fifty tokens belong to P1. Therefore fifty cal-
culations have to be carried out to graph the evolution of the marking of
P1 whereas only one is still required with the continuous PN to find the
gradient of the line representing the evolution of the continuous marking.

0.0 10 20 30 40 30 60 70 80 90 100

Figure 18. Marking evolution of P1 and P1’ with an initial marking of
50 tokens

Three summarizing remarks can be stated :

1. Primarily CCPNs were designed to approximate the discrete mark-
ing of a PN in order to make simulations with large markings possi-

ble.

2. The approximation of CCPNs is better as the number of marks
increases (to feel that compare Figure 17 and Figure 18).

3. The continuous firing of transitions in CCPNs makes it possible to
model continuous processes that can be described by pure integrators
such as, e.g, tanks with constant inflows and outflows.

Note also that it is often useful to interpret the marking of a continuous
place as a level of liquid in order to fully understand the evolution rules
dealt with the following paragraph.

Evolution rules

All structural properties defined for autonomous PNs are conserved for
autonomous continuous PNs. Changes occur only in conditions to enable
and fire transitions.

The following differences can be noticed :

e The initial marking may be a real number.

o Weights are real numbers.

34

r=firing quantity

r=0.05 for T1’
r=0.15 for T2

Before firing T1 After firing T1 Before firing After firing

Figure 19. Firing of autonomous c-transitions

e A transition is said to be enabled if there does not exist an input
place with a zero marking.

e The user chooses the firing quantity. Let us assume that the chosen
firing quantity in Figure 19 is . Therefore 2.5 r are going to be
removed from P1 and r from P2, similarly 3.3 % r are going to be
added to P4 and r to P3. It is important to notice that the marking
cannot be negative , consequently 7 must be inferior to 1 /2.5.

e The weight of an arc is not involved in enabling a transition. It only
determines the maximal amount of marking able to pass through
transitions.

A new property comes from the above points : there is no effective conflict
possible in autonomous CPNs since the marking can alway be shared. In
Figure 19 T1’ and T2’ are both enabled. They can alway be fired because
it is possible to split the marking into two parts, one part going through
T1’ and the other through T2’.

In order to give a good approximation of the behavior of discrete T-
timed PNs, CCPNs have been defined by assuming that it is possible to
cut a mark into several tokens?. The reasoning leading to CCPN is graph-
ically presented in Figure 20. To thoroughly preserve the same marking
evolution in places P1 and P1’ the transition (T1) must be duplicated
into T1,T3,..., Tk If we do not duplicate T} only one token will be re-
served in P| and only one fired at the instant d (bad approximation).
But the transition duplication process becomes impossible when a mark
is split into a large number of tokens (k becomes to large to represent
the T}). Therefore an approximation is adopted, it consists of replacing
the k firings in parallel of transitions Ty, Ty, ..., T} by k firings in series
of a single transition (T1” with a timing of d/k). Thereby the markings
in places P1 and P1” are equal at the starting and end of the firing of
T1 but they differ between both instants. Finally the continuous PN is
obtained when k tends to infinity.
Because the timing d/k previously associated with T” is equal to zero
when k is infinite, implying that the transition is continuously fired, we
replace it by a maximal firing speed (denoted Vimaz) €qual to the gradient
of the line representing the marking evolution in cP1 (=1/d).

9 Notice the difference introduced now between marks and tokens

(O]
o

Hence two characteristics of CCPNs can be emphasized:
e CCPNs use the implicit limitation.

e The maximal speed of a c-transition must be chosen equal to the
inverse of the timing attached to the associated d-transition in order
to approximate the behavior of the discrete PN,

NB : The reasonning is represented for k=3.

P1 a P1 p1" .C cP1 Marking

T3
d B ag - T1" - V=1/dE=T ©TT h
AN
P2 ' P P2" @ cP2 AN
t

. :marking evolution of P1

Discerete PN PN after cutting the mark PN after CPN — :marking evolution of P1"
(implicit limitation) approximation (k=infinity) ___ :marking evolution of cP1

Figure 20. Evolution from discrete PN to continuous PN

The rules monitoring the evolution of a CCPN are quite different from
these of a discrete PN. For example in CCPNs there are two kinds of
enabled transitions called respectively strongly enabled and weakly en-
abled. Each of them implies a specifical way to calculate the speed of the
transition.

Definition 5
: A transition is said to be strongly enabled at a time ¢ if all its input
places have a non negative marking.

Definition 6
: The speed or the instantaneous speed of a strongly enabled c-transition
is equal to the maximal speed associated with the c-transition.

Definition 7
: A c-place is supplied at a time ¢ if at least one of its input c-transitions
1s weakly or strongly enabled.

Definition 8
: A c-transition is weakly enabled at a time t if all input places with a
zero marking are supplied.

Remark 4
: A c-transition source is strongly enabled.

Remark 5
: The maximal speed of a c-transition is chosen by the user whereas the
speed (=instantaneous speed) is calculated.

The firing of weakly and strongly enabled transitions is illustrated in Fig-
ure 21. Example a illustrates the firing of a weakly enabled c-transition.

36

Notation : v = The speed or instantaneous speed.
1V = The maximal speed.

Tet(Vmax=2)

val=2 Tat(Vmax=2) Vbi=2 —3 Tbi(V max=2) vel=2 —— ve2=7 == Te2(V max=7)

Pa @ Pb @ Po2

va2=2 Ta2(V max=3) vb2=3 ¥+ Tb2(V max=3)

ve=4 23 Te(V max=4)

Figure 21. Firing of continuous transitions

During an elapsed time of dt a 2% dt quantity'® of markings is deposited
in Pa through Tal. Therefore a maximal quantity of 2 % d¢ can leave the
place during the same time (we cannot take more than we receive in order
to preserve the marking greater or equal to 0). Consequently the speed
of the output transition (va2) can be chosen between 0 and 2. According
with the hypothesis of the evolution at maximal speed the speed is fixed
to 2. It is important to note that when a transition is weakly enabled its
firing speed may be inferior to the maximal speed. The second example
shows a strongly enabled transition. In this case the firing speed is alway
equal to the maximal speed because we do not have to wait for the arrival
of some markings, it is already in the place. In Example ¢ Tc is weakly
enabled and still the firing speed is equal to the maximal speed because
Pc2 is supplied more than enough (7 % dt enters Pc2 whereas only 4 * dt
is able to leave Pc2 in the same time).

Similarly to discrete PNs difficulties are encountered in case of effective
conflicts!!.

Definition 9
: An effective conflict exists when the three following conditions are ful-

filled :

e Thereis a structural conflict between the output transitions of place

P.
e P is not marked.

¢ P 1s not supplied enough to allow the firing of each of its output
transition at maximal possible speed.

In other words we need a decision from the user each time an effective
conflict occurs. To avoid that a predetermined behavior is adopted. A
priority order can be specified for the output transitions in the same
way as with discrete PNs. However with CCPNs another solutions is also
possible. The input flow can be split between the transitions. In the latter

10 Refer to equation 1.

11 Note that effective conflicts exist only for CCPNs not for autonomous continuous
Petri nets.

37

solution there is an infinity of ways to share the flow. The illustrated
partition (Figure 22) is called sharing proportional to maximal speed.

T3(Vmax=3)
v3=3

P1

Notation : v = The speed (or instantaneous speed).
'V = The maximal speed.

T1(Vmax=2) T2(Vmax=6)
vi=1 v2=2

The maximal speed of T
The speed of T=the input flow *

The sum over the maximal speed of the output transitions

Figure 22. Sharing proportional to maximal speed

The marking evolution of a CCPNs

An important point appears from the previous rules : the speed of a
CCPN does not depend on the quantity of markings in c-places. To de-
termine the firing speed of a transition we need only to know whether or
not the input places are marked, no matter if we have an 100 marking
or a 0.1 marking. Therefore the speeds of a CCPN are changed only if a
marking reaches a zero value (a phenomenon called c-event). Note that
the opposite event, when a marking changes from 0 to a non zero mark-
ing does not modify speeds because it can occur only if the the quantity
of markings entering is superior to the quantity leaving the place dur-
ing the same period. Consequently the output speed was already equal
to the maximal possible speed. In Figure 21 Example c, at ¢ = 0, v, 1is
determined equal to 4, at ¢t = dt the marking in place Pc2 has become
positive but the speed of T, is not be changed.

The period of time between two successive c-events is called functioning
interval and it is associated with a speed state. Speeds are unchanged over
the functioning interval but the marking evolves. If we look at F igure 21
Example b, during one unit of time an amount of 2 passes through Ty,
and a 3 quantity leaves through Ty,. It implies that the balance of B,
(denoted b) is equal to —1. More generally the balance of a place is de-
fined as the quantity reaching the place minus the quantity leaving. It is
easily calculated by subtracting input speeds from output speeds. There-
fore the marking evolution in c-places is governed by the fundamental
relation : m;(t + dt) = m;(t) + b; * dt or dc’l't“' = b; (where ; indicates the
number of the c-place). It is now possible to guess why CCPNs perform
quicker than discrete PNs : using the fundamental relation we are able to
precompute the next instant when a c-marking reaches a zero value. We
do not have to wait until the marking evolves to this value. Furthermore
the integration of the fundamental relation is easy to carry out because
b; is a constant .

The evolution of a CCPN from a speed state to another is represented by

38

a PN (named evolution graph, Figure 23) in which the instants when the
changing of speed state occurs and the vector of markings at this time are
indicated on the transitions. Places show the speed state vector during
the functioning interval. Places responsible for the new speed state cor-
respond to the new zero markings appearing in the vector of markings.
It can be noticed that there is alway a terminal node, called stable speed
state in which all balances are positive or nil implying that there will be
no more c-events. There are no functioning rules linked with this PN it
is only a way to visualize the different states of the net.

t=0 pma M=(10,0,0)

v=(1,2,1)

t=10 L. M=(0,0,10)

v=(0,1,1)

Figure 23. Continuous PN and its associated evolution graph

Calculation of the set of speeds

It is not so easy to calculate speeds only by applying the rules introduced
in the second paragraph. Effectively to determine the speed of a transition
it can be necessary to know the speed of other transitions (case weakly
enabled). Therefore the situation illustrated in Figure 23 can arise. To
determine v, we need to know vz and to know vs we need the value of
vz. To solve this recursive problem implied by definitions 7 and 8 an
algorithm has been developed by David and Alla (1992). The algorithm
will be explained with the help of Example 23.

The initialization of the algorithm consists of setting the instantaneous
speed of each c-transitions equal to zero and classifying the transitions.
In this example the order chosen for the transitions is : T1/T5/Ts. The
speed of the transitions will now be updated in the previously defined
order until a speed state is obtained.

1. Ty is strongly enabled = v; = 1 (= the maximal speed!? of T3, refer
to definition 5).

2. T3 is weakly enabled = v, = 1 (because P, is supplied by T}, refer
to definition 8).
3. Ts is weakly enabled = v3 = 1 (because P is supplied by T5).

4. Ty is strongly enabled = v; = 1 (the speed is unchanged).

12 The instantaneous speed are indicated with a small v and maximal speed are
indicated with a capital V.

5. T is weakly enabled = v, = 2 (because P; is now supplied by Ty
and T3).

6. T3 is weakly enabled = vy = 1 (the speed cannot be increased be-
cause it 1s already equal to the maximal speed).

7. The speed of T} cannot be changed.
8. The speed of T, cannot be changed.

9. The speed of Ts cannot be changed = a speed state is reached
because the speeds can no longer be changed with this marking.

To graph the whole evolution of the PN further steps consist of calcu-
lating the instant of the next c-event with the fundamental relation and
determining the new speed state at this moment. These operations are it-
erated until the stable speed state is reached. Finally the evolution graph
of Figure 23 is obtained.

From the behavior of this algorithm three remarks can be made :

e The number of calculation steps is related to the order in which
transitions are arranged. In the example if the order was Ts,T,, Ty,
the speed state would have been reached in twelve steps.

e One more iteration over each transitions is needed to check that
their instantaneous speed can no more be changed (step 7, 8,9 in
the previous example).

e It is difficult to solve effective conflicts by sharing.

In order to solve these points a new algorithm has been implemented on

G2.

H
o

Appendix C. Hybrid petri nets (HPN)

To model complex systems involving parts with a large number of tokens
or continuous processes and parts with few tokens, HPNs has been de-
veloped. An HPN is the mixture of discrete PNs and CPNs where the
discrete net can influence the continuous net and vice versa. Connec-
tions between discrete and continuous PNs can be regrouped into three
classes :

1. The discrete part influences the continuous part (Figure 24, Exam-
ple a). The illustrated net can be used to represent the logical state
of a device and its consequences on the production flow. Notice that
if a discrete place is linked to a c-transition the reciprocal arc always
exists in order to preserve the marking as an integer.

2. The continuous net can influence the discrete net (Figure 24, Ex-

ample b). It can, for example, model the decision to stop a machine
(T1) when the level in place P1 is higher than 6.5.

3. It is also possible to convert continuous markings to discrete mark-
ings and vice versa (Figure 24, Example c). It can be noted that
there are no restrictions about types and manners to connect places
to inputs or outputs of a d-transition.

P1 : Machine up
P2 : machine down

Figure 24. Hybrid petri nets

To allow these behaviors the enabling conditions of continuous and dis-
crete transitions must be extended.

Definition 10

: A d-transition is said to be enabled at time ¢ if each of its input places
has a reserved marking greater than the weight of the arc linking them
to the transition.

Remark 6

: In definition 10 it does not matter whether the input place is a contin-
uous or a discrete one, the only difference is that the weight may be a
real number in case of continuous places.

Definition 11
: A c-transition is said to be enabled at time ¢ if all its input c-places
have a positive non reserved marking or are supplied and all its input

41

d-places have a non reserved marking superior to the weight of the arc
connecting them to the c-transition.

The way to fire continuous and discrete transitions remains unchanged
and effective conflicts are solved like in the previous sections. The only
new element to take into consideration is the possible presence of reserved
markings in c-places (an example is given in Figure 25).

Finally also the notion of functioning interval is altered, it is replaced by
the notion of invariant behavior state (IB-state). During an IB-state the
marking in d-places, the speed vector and the reserved marking must be
constant. Consequently three events can lead to a new IB-state. Both of
them are already known : c-events (defined in the section about CPNs)
and d-events which correspond to the firing of a d-transition. The new al-
tering event (called h-event) occurs when the marking in a c-place reaches
a sufficient level to enable a d-transition, as illustrated in Figure 25.

1 :non reserved marking 1 :reserved marking
Tt ==, v=1 Tt = v=1 T v=1
P1 @ P1 @ P4
4.5 4.5 4.5
T2 d=2 T2 d=2 T2 d=2
Teisnotenabled 5 ES%%%S tho SEIBS e T2 s fred

Figure 25. Hybrid event

42

Appendix D. An example of modeling by HPN

This appendix presents an example of a modeling by HPN. The system
is represented in Figure 26. The evolution of the process to realized the
mixture of the liquids contained in Tank 1 and Tank 2 is described below :

1. Valve 1 and Valve 2 are opened to fill Tank 1 and Tank 2. When one
of the tanks reaches its maximal level, the input valve is automati-
cally turned off.

2. When Tank 1 and Tank 2 are full, Pump 1 and Pump 2 might be
started by the operator by clicking on the Button T1. Then Tank 3
1s filled.

3. When Tank 1 and Tank 2 are empty Pump 1 and Pump 2 are stopped
and Valve 1 and Valve 2 are opened to initiate a new cycle. These
operations are automatically carried out. At the same time Valve 3
1s opened to empty Tank 3.

Valve 1 Valve 2

ok -k

Button T1

[] \

TANK 2

TANK 1

Flow of Valve 1 = 3. Pump 1 Pump 2
Flow of Valve 2 = 2.
Flow of Valve 3 = 10.

Flow of Pump 1 = 6.

TANK 3

Flow of Pump 2 = 2. Valve 3
Maximum volume of Tank 1 = 65.

Maximum volume of Tank 2 = 20.

Figure 26. Feature of the process

The continuous part of the system (part where the liquid flows) has been
modelized by the CCPN of Figure 27. It can be noticed the simplicity of
the model : valves and pumps become c-transitions, tanks are represented
by c-places and the tubes connecting valves, pumps and tanks are the
arcs linking c-transitions and c-places. Note also that the flow of valves
and pumps set the maximal speed of the c-transitions of the model.

The discrete part of the HPN monitors the model (Figure 28). D-
places P1, P2, P3 are used to “turn on” or “ turn off” the c-transitions

43

Valve 2

Valve 1
Max speed 2 ==

== Max speed 3
3.0

Pump 2

Pump 1 1
Max speed b &2 Max speed 2
0 "\\ 0
AN
) /
Fank 3
Valve 3
Max speed 10
0

Figure 27. Modelization of the continuous part of the system

Valve 1, Valve 2, and Valve 3. Place P4 switches on or switches off both
Pump 1 and Pump 2. The d-transition T2 is fired if the marking in Tank 1
is equal to 65 (the weight of the arcs connecting Tank 1 and T2 are equal
to 65) and if P1 is marked (equivalent to Valve 1 opened) so the mark
in P1 is removed and the speed of Valve 2 is set to 0. Transition T3 is
used in a similar way, it is fired if the marking in Tank 2 is equal to 20
because the arcs connecting Tank 2 and T3 are equal to 20 and if P2
is marked. Button T1 is modeled by the d-event-transition T1'3. T1 is
enabled if the marking in Tank 1 is equal to 65 and if the marking of
Tank 2 is equal to 20 (the weight of the arcs linking T1 and Tank 1 are
65 and the weight of the arcs linking T1 and Tank 2 are 20). When T1 is
enabled its color is green and it is fired by clicking on it. Finally by firing
T4 C-transitions Pump 1 and Pump 2 are “stopped” and the speeds of
the C-transitions Valve 1, Valve 2, and Valve 3 are recalculated equal to
their maximal speed. Note that T4 is fired when the marking in Tank 3
is equal to 85 (the weight of the arcs between T3 and Tank 3 are equal
to 85) because this value implies that Tank 1 and Tank 2 are empty.

13 Refer to section 2 for the definition of d-event-transitions.

44

3.0

Valve 2

ve
Val ! - Max speed 2

Max speed 3

Pump 1
Max speed b

Max speed 10
0

Figure 28.

Valve 3

Pump 2

N {%‘ Max speed 2
0

The HPN model

Figure 29 represents an example of the marking evolution of Tank 1,
Tank 2, and Tank 3 obtained while simulating with G2.

Marking evolution of Tank A Marking evolution of Tank B Marking evolution of Tank C
Sor Qar 90 r
60 GO} 60k
40 a0t aat
201 201 /I‘ 201
00 20 40 60 8O0 100 00 20 40 BD 80 100 00 20 40 B0 B8O 100
Figure 29. A sample of obtained marking evolution

Appendix E. CCPN examples

A discrete PN can be simulated only if a small number of tokens is in-
volved in the simulation, otherwise the required time for the simulation
is too long. CCPNs have been primarily developed to solve this prob-
lem by being able to rapidly provide an approximation of the discrete
marking. Indeed the CCPN approximation is better as the number of to-
kens increases. While testing the HPN program on some examples, good
and ‘bad’ approximations of the discrete behavior have been noted. This
annex presents examples of the three different kinds of ‘bad’ behaviors
detected.

The problem of periodical stable state

1.0
éﬁm\mmﬂ O C-AND-D-P1’
1 E= Max speed 1
0.3
0.0
C-AND-D-P2 C-AND-D-P2’
== Maxspeed 0.5
;¢ 05

Marking evolution of c-and-d-p1 Marking evolution of c-and-d-p2
and c-and-d-p1’ and c-and-d-p2’

2D eor

m H H [—I H (m /

D‘D 2 * okl bk $inhi—th 4 X Ao U.U I i 1 1 1
00 30 680 80 12 15 60 30 60 90 12 15

Figure 30. The problem of periodical stable state

In Figure 30 a stable periodical state is reached by the discrete PN. A
good continuous approximation of this phenomena would have been a
constant marking (after a transitional state) equal to the average value
of the discrete marking on a period. It implies that in the illustrated
example the continuous stable state should be : marking of C-and-d-p1’
= 1/3 and marking of C-and-d-p2’ = 2/3. This is not the case. The
CCPN exaggerates the situation (0 instead of 1/3 and 1 instead of 2/3).

Note that the error between the theoretical good c-marking and the
obtained c-marking is not necessarily inferior or equal to 0.5, it depends

46

on the weight of the involved arcs. The weight of the arc linking C-and-
d-p3 to T4 in Figure 31 is 10 and the graph of the marking shows an
error of 5.5 (the average value of the marking in c-and-d-p3 is 5.5 and the
value of the continuous marking is 0). This problem is solved by VCPNs
or asymptotically continuous Petri nets.

Marking evolution of c-and-d-p3
and c-and-d-p3’

1 lqa?l r\1/1axspeed 1

C-AND-D-P3 Q C-AND-D-P3’

T4
T4 Max speed 1
! 0.1

Figure 31. Periodical stable state involving weight different from 1

47

Problem of delays

EX3-T1 EX3-T1" i ; ’
L = Iioxspeed 01 Marking evolution of ex3-p2
0.1 and ex3-p2’

10
EX3-P1 EX3-PT’
gl
-T2 EX3-T2 61
FUXB == Maxspeed 0.1
0.1 4t
. 2k
EX3-P2 EX3-PZ o L

00 15 30 45 80

75 100

Figure 32. Problem of delays

The first deposited token in Ex3-p2 (Figure 32) occurs 20s after starting
the simulation and, however the first infinitesimal fraction of c-marking
is immediately deposited in Ex3-p2’. Therefore the ‘bad’ approximation
of Figure 32 is produced. In other words the continuous flow is instan-
taneously established whereas the discrete flow is not. To correct this
error a modification of the CCPN algorithm could be carried out (For
example wait 1/V,,q, before starting the speed calculation of the output
transitions of the output places of T}).

48

Divergence of markings

In case of effective conflict it is possible to construct examples so that the
difference between the marking evolution of the d-place and the equiva-
lent c-place tends to infinity.
In Figure 33 the marking evolution of the place Pb4-p3 diverges whereas
the marking of Pb4-p3’ remains equal to 0. The ‘bad’ behavior results
from the fact that two tokens reach the Pb4-pl place at the same time.
Hence Pb4-t3 and Pb4-t4 can reserve one of them. In the CCPN marks
continuously enter and leave the place Pb4-P1’ and the sum of both the
flow passing by Pb4-t1’ and by Pb4-t2’ is small enough to go through
the same output transition (Pb4-t3’).

Figure 34 presents a case where the continuous marking diverges
whereas the discrete marking does not.
Note : A better behavior of the CCPN is obtained in both previous
cases if the effective conflict is solved by sharing (flow part of each output
transitions equal to 0.5).

NB : priority of pb4-t3 higher than that of pb4-t4

PBaT PB4T2 PB4-T1’ PB4-T2’
'_‘5 P Max speed 0.2 == Max speed 0.2
/ |%02 R
PR4-P1 PBa-P1’
PR4-T4
84'T PB4—T4
= Maxspeed 08 Max speed 0.5
PB4-P2 PB4-P3 PBQ-PZ PBa-P3
Marking evolution of ph4-p2 Marking evolution of pb4-p3
and pb4-p2’ and pb4-p3

Figure 33. Divergence of the d-markings

49

PB5-T2
la'iax speed 0.5

PBS-P3 . @ PBS-P3'

PB5-T2
2

PBS-TS PBs-T PBS-TS'
5 =S Max speed 05 == Max speed 0.2
0 0.2
PB5-P4’
' PB5-T4
== Max speed 1
02
10
. . 8
Marking evolution of pb5-p2
and pb5-p2’ b
4
NB:Pb5-T1 has the priority »
over Pb5-T2
0
00 70 14 21 28 35 42 50

Figure 34. Divergence of the c-marking

50

Appendix F. User’s guide

The purpose of this annex is to make the user able to use the main ca-
pabilities of the HPN program. When starting the program three modes
can be selected: the creating mode, the running mode and the adminis-
trator mode. The last mode allows an unrestricted access to the whole
knowledge base (dedicated to people who want to modify the program for
example) whereas the others offer the user facilities to create and run the
simulation of a PN. The next paragraphes deal only with the available
possibilities in the creating and running mode!*.

The creating mode

The creating mode is mainly composed of two workspaces (Figure 35): a
workspace situated at the top of the screen (called top-workspace) and
one at the upper right angle (called right-workspace). They contain all
elements to build a PN.

[c-place I I c-lransitiorl ‘iplace—l | dHransition] levem—transiﬁon I M

00 "
hd 4 ! administrator
Max speed 0 00
T ‘
new-workspace
O g S LTy YT Y S Y e pryesiy oty epem ey raromesars sy e areprymy

full size scale worspace

R

JEaTEYRTAYLLSTRTy

4 BIEN SO SEASIH QM BN
e G Ciit
o

BRE]
Y

AR
]
53

&
23

2

&

3

H

§

5

a1z
3

3

2
29
i
37
SHTl
14
eEES
£4%
aZA
373

1.0

RH

-
H
2585070038

x
H
3
£

£l
3
2
E

s25ds

25
33
§
23233335
L ESEEEEEEEEELES

N Max speed S
Q

Y

FIPIEF
ALspiotptate

T

FH
;‘ﬂ 2!

IRAREAREARRRRRR
§

3 xc%..

IH

55

RERRRH

H

Figure 35. The creating mode window

There are two ways to get a PN. If it has already been created you have
to click on the background of the screen (to make the main menu appear)
and select “get workspace”. A list of all the named saved workspaces is
created. Selecting one of these makes it appear. A new PN can also be
created by following the next instructions :

14 For the administrator mode read the introduction of the chapter “Application
package security facility” in the reference manual for G2 version 3.0, 1992

Operation 1 : Select the “new workspace” button on the right workspace.
A new workspace with three buttons is displayed in the middle of the
screen (called middle workspace).

Scale-workspace button : The button “scale workspace” reduces the
size of the workspace to one quarter of its full size and places it in
the lower right angle of the screen.

Full-size button : The “Full size” button reestablishes the initial size
of the middle workspace.

Delete button : The “delete” button hides the workspace and makes it
transient, therefore when the knowledge-base is reset the workspace
is deleted.

The middle-workspace is unrestricted therefore all the available opera-
tions on a G2-workspace are allowed® (such as lift to top, drop to bottom,
clone,. . . etc).

Operation 2 : A petri-net object is created on the middle-workspace
by :

e Clicking on the appropriate petri net object represented on the top

workspace. A copy of the petri net object is attached to the mouse.

e Transfer the copy to the middle workspace and click at the place
where you want it to appears.

These operations can be carried out with all petri net objects on the top
workspace.

Note : After having been pasted on the middle workspace the object
can still be moved by selecting and pulling it to a new place.

Operation 3 : To establish the connection between a transition and
a place select the end point of the arrow linked to the transition, stretch
it to the place and click on the place.

Note : A transition has only five input arcs and five output arcs and
only the first one of each input and output arrow are visible. Therefore to
select an invisible arc click ezactly at the same place as the visible arrow.

Operation 4 : By clicking on each created petri net objects the menu of
the object is displayed. The menu offers the user with several possibilities!®
to act on the object such as rotate, change size, color, delete. . ..

Operation 5 : Selecting “table” from the menu of the object displays a
table containing all the attributes of the object :

15 Refer to the G2-guide, chapter “Workspaces and the Workspace hierarchy”of
the reference manual for G2 version 3.0 (1992) for more information.

16 Refer to the G2-guide subchapter “Working with objects” p324 of the reference
manual for G2 version 3.0.

52

e For event and d-transitions the user can set the “timing” (default
value 0) and the “priority” in case of conflict (default value 5).

e For a c-transition the “max speed” attribute has to be set otherwise
the default value is 0.

e The “initial marking” attribute of a place represents the number
of initial marks in the place (default value 0), it can be set by the
operator. The “marking” attribute and the “balance” attribute for
c-places are provided only to be consulted, they do not have to be
set. The “marking” gets the value of the marking in the place at
the beginning of the IB-state and the “balance” is the balance of a
c-place.

¢ The attribute of an arc is its “weight” (default value 1).

Note : The weight of an arc can be a float only if the arc is con-
nected to a c-place.

The attributes not described above are used in case of conflict and are
explained in the following operation.

Operation 6 : Look for structural conflicts and choose one of the fol-
lowing predetermined behaviors :

e Conflict between d-transitions : They can only be solved by priority,
therefore the attribute “priority” of the involved d-transitions has
to be set.

Note : The lowest priority is 1 and the highest available prior-
ity is 1e99.

e Conflict between c-transitions : A predefined behavior has to be de-
termined only if the place involved in the conflict is a c-place. For
this class an attribute “conflict case” can be assigned to “priority”
(this cause the conflict between the output transitions be solved by
priority) or “sharing” (conflict are solved by sharing). If the first so-
lution is chosen different values have to be assigned to the “priority”
attribute of the output c-transitions in the same way as d-transitions
(refer conflict between d-transitions). If the attribute is assigned to
“sharing” the attribute “flow part” of the output c-transitions has
to be set. The flow part represents the proportion of the inflow that
is going to pass through the c-transition in case of effective conflict.

Note : The sum over the flow parts of the output transition must
be equal to 1.

e Conflict involving ¢ and d-transitions : In the case of an hybrid struc-
tural conflict and if the place is marked the HPN program carries out
the calculations on the output transitions by priority order. There-
fore different values have to be assigned to the priority attribute
of the output transitions (even to c-transitions). Similarly to con-
flict between d-transitions we do not have to set any attribute of

53

the place to get this behavior. The attribute “conflict case” is used
only if the marking of the place is nil and if there is an effective
conflict between output c-transitions (similarly to conflict between
c-transitions). Both previous situations can be involved while solving
the same hybrid conflict (the “hybrid way”describes at the end of
Section 3 to solve an hybrid conflict). The attributes of the example
of Figure 36 are set such that the ‘hybrid way’ is obtained.

1. : non-reserved marking

1. marking
v=1 v=1
(Vmax=1) (Vmax=1)
1 T5 i T5

P1

OM
T2 T4

T1 T2 T4

(Vmax=1) (Vmax=1) (Vmax=1) (Vmax=1)
v=0 v=0 v=0.5 v=0.5
Before solving the h—conflict. After solving the h—contflict

(T1 has reserved the token)

Attributes : Initial marking of P1 =1 Flow part of T3 = 0.5
Conflict case of P1 = sharing Priority of T3 =3
Priority of T1 = 5 Flow part of T4 = 0.5

Priority of T2 = 4 Priority of T4 = 2

Priority of T5 = 5
Figure 36. Hybrid conflict solved by the hybrid way

Note :

o It is impossible to enter fractional numbers for the flow part. Flow
parts such as the following 0.833/0.333/0.838 between three c-transitions
are an error because the sum over the flow parts is not ezactly equal
to 1.

e Do not forget to set a priority order to the transitions involved in a
structural conflict, even if you want to solve it by sharing because in
case of insolvable sharing the conflict is solved by priority'”.

e To obtain the hybrid way to solve a conflict give the highest priorities
to the d-transitions.

Operation 7 : By selecting the action “create subworkspace” in the
popup menu of transitions and places a subworkspace associated with
the object is created. It can be used to define actions in relation with the
state of the object.

The following rule can be built on the subworkspace of a place P1 :

17 Refer to Section 3.

54

RULE 1

If (the marking of P1 > 10) then
Inform the operator that ‘‘Overflow!!’’

It is also possible to build actions to act on the PN. For example rule 2
implies the firing of the event-transition T if the marking in the place P1
is less than 6.5.

RULE 2

If (the marking of P1 <= 6.5) and (the fireable of T is true)
then
Start event-event-trans(T)

Note : These possibilities require good knowledge of G2 and of the HPN

program therefore a non aware user will probably not be able to use them.

Operation 8 :Name the workspace using the name attribute of the
workspace menu and save it by selecting the save-kb action from the
main menu.

Note : It is wmportant to name the subworkspace because otherwise
after saving and hiding the workspace it is more difficult to find it again.

Operation 9 : If when simulating the model the behavior is different
from the one expected you have to yourself set the priority order of the
places in order to obtain the calculation order that lead to the desired
solution.

Operation 10 : Finally to simulate the PN you have to select the button
“Running mode” (on the right workspace).

The running mode

The running mode is also composed of three workspaces which due to
their location are named top-workspace, right-workspace, and middle-
workspace. The running mode is used to start the simulation of PNs
that are on an enabled, visible or hidden, workspace. Therefore, before
starting the simulation of a PN do not forget to check that the workspace
where it is located is enabled (for example click on the workspace to dis-
play the menu and if the action “desable” belongs to it the workspace is
enabled). Reciprocally disable a workspace that is not used by selecting
the action “desable” from the workspace menu. Remember that the sim-
ulation speed improves as the number of enabled workspaces decreases
(because there is less calculations to carry out on one PN than on several
ones).

The three main running buttons are situated on the top-workspace (the
Fast-hybrid-PN, the Step-hybrid-PN, and the HPN button) whereas but-

tons to monitor the simulation are located on the right-workspace.

55

fast hybrid-pn step hybrid-pn HPN creating-mode

0_. 10 administrator
1

T T Y P ORIy T e oy Ty T T message board)
P A R S R A A R I S A AR A b A T
Smpmamp— - 3 pause
:MESSAGE-BOARD =

scale worspace
(Lt) (s wersace)

sht down G2
413 51355 pm. time=100
¢4 61400 pm, Ume-10.0 HDEMO1-P1 o e G S S L e

T B Gt o SR IR
|na 61402 pm. mne-z1.se7|

35i8sE-808y

sigdpcatatetal

£

1.0 FUHDT DTS GIRIM CEASTH GIRAIN SERA GHOOT o
ST st a7 44
o Td B BnE

s
571 601Exis QS AT A
vy

+16 6:1404 pm.tine21667 |

[:17 6:14:05 pm. stable state reached] /M'/—]’
Max speed S
B

H-DEMO-PE

Figure 37. The running mode window

Step hybrid button : The step-hybrid button starts a program that
determines the speed state from the marking of the PN, fires all the tran-
sitions that have to be fired at time, sets the t2me to the time of the next
event and stops. Therefore by clicking again on the button the state of
the PN can be visualized at the beginning of the following IB-state. This
version of the program is useful to construct the evolution graph of PN,

Note :

e The time at the beginning of a speed state or a message indicating
that the stable state is reached are displayed on the message-board.

e When clicking on the button after having reached the stable speed
state the marking evolution of the PN is calculated at time = 1.5%(the
last previous time).

The HPN button : The HPN button on the right of the top-workspace
1s used to simulate in real-time the PN. This means that if the next event
time is in 10s the program waits 10s before automatically changing of IB
state (it is not necessary to click again on the button as with the Step-
hybrid-PN button). The HPN button can be used in relation with the
slider (situated close to it) to regulate the speed of the simulation. For
example in the previous case if the slider was on the value 5 the program
would have wait for 5*10s instead of 10s.

56

Note :

e It can occur that the theoretical time of the IB-state is shorter than
the time to carry out the calculations, therefore it is impossible to
run the simulation in real time. In this situation a message appears
on the message board to approzimately indicate how long the program
has been late.

e During the time elapsed between two events some new values of the
marking are calculated. The number of values depends on how long
the program waits between the events.

e Changing the speed of the simulation does not interfere with the graph
of the marking (the graph is alway graphed with the real time ordi-
nates).

o If you modify the value of the slider while stmulating, the modifi-
cation will be taken into account only at the date of the next event
time. Therefore it 1s often quicker to “restart” the simulation with
the good speed wnstead of waiting for the next event time.

e This version is the only version that allows you to dynamically fire
the event transitions by clicking on them.

The Fast-hybrid-PN button : The Fast-hybrid-PN button starts a
version of the program that carries out all calculations as quick as possible
during 30s. The main usage of the program is to quickly get the graph

of the markings.
Note :

e The running time may be less than 30s if the stable speed state is
reached before.

e The running time can be set by changing the value of the attribute
“Uninterrupted procedure exzecution limit” of the procedure Fast-hybrid-

PN.

e [t 1s tmpossible to interrupt the program while running.

Right workspace buttons : The left workspace contains the following
buttons to monitor the simulation :

Shut down G2 : Shut down G2 whithout saving.

Pause button : The pause button stops the program. All graphs and
parameters conserve their values. It can be restarted by using the
“resume” action from the main menu.

Note : The pause action stops the program but the current time
continues to elapse, therefore the time ordinate of the values graphed
after a pause (if you resume the program) are false.

Message-board button: The message-board button allows you to vi-
sualize or hide the message-board.

Creating-mode button : The creating-mode button permits you to
return to the creating-mode.

Note : The button does not reset or stop the program.

57

Administrator button: The administrator button changes the mode
to administrator without reseting the program.

Independently from the available buttons in the running mode, by
clicking on a place a graph displaying the marking evolution of the place
is automatically created. The graph appears at the left of the screen and
is transient (it means that it will be removed when reseting or restarting
the program). A solution to make them permanent is to clone the graph
and to paste the copy on a middle-workspace.

Note :

e To get the graph of the marking evolution of a place the place must
be named.

e To manipulate graphs (for ezample to graph several marking evolu-
tions on the same chart) refer to the G2 reference manual, version

3.0 (1992), chapter “Display”, p122.

Only the main functions have been presented for both the previous
modes, hence some undescribed possibilities may be encountered while
using this program. If the problem arises the best solution is to refer to
the G2 manual. Note also that the user interface for the HPN program
has primarily been developed to present the work realized in G2, therefore
nothing prevent the user from creating an unanticipated situation leading
to a bug. If the situation occurs restart the program.

58

Appendix G. The HPN algorithm

The algorithm of the HPN program provided below is a simplified ver-
sion of the implemented program. For example all parameters used for
the graphical animation or for the user’s interface have been suppressed.
Also the algorithm does not monitor the Event-transitions.

Variable explanations

b;: The balance of P;.

m;: The marking of P;.

md;: The non reserved marking of P;.

w;;: The weight of the arc connecting Place P; to Transition Tj.

v;: The old speed of Tj.

v;’ : The new calculated speed of Tj.

The event-time of T}: This is the time when the transition will be fired.
The event-time of P;: This is the time when a ¢ or h-event may occurs
in P;.

C-event-list : List of all the places where a c-event may occurs.
H-event-list : List of all the places where a h-event may occurs.
D-event-list : List of the transitions that will be fired.

List : List of all the places to update.

Global variables

time : The current time.

A : Time equal to how long an IB-state lasts.

New-speed-state : The variable is ‘true’ if a new speed state must be
examined, otherwise ‘false’.

End-simu : The variable is ‘true’ if a stable IB-state has been reached.
Start-phase : Record the beginning time of the IB-state.

Main procedure : HPN

Begin
Call Init-HPN();

El time—A+time,
Call Update-marking();
Call Update-event();
If new-speed-state = true then

Call Init-for-new-speed-state();

End if
Call Update-trans-within-input-places();
Call Update-place-to-update();
Call New-balance();
Start-phase«—time;
New-speed-state«{false;
Call Next-event-time();

59

If End-simu = false then
Goto E1;
End if
End

Procedure Init-HPN
Begin
time—0;
A0
Start-phase«0;
New-speed-state «false;
End-simu «false;
For each d-transition 7T; do
If there is no input places then
The event-time of T; «the timing of Tj;
Insert in the D-event-list;
End if
End for
For each c-transition 7} do
’v_.,'<—-0;
v;"0;
If there is no input places then
V¢ Vimas;
’UJ" (——Vimam;
Insert the non marked output places of T} in List;
End if
End for
For each place P; do
b,;(——O;
If m;#0 then
Insert P; in List;
End if
End for
End

Procedure Update-marking
Begin
For each c-place do
mi—m;+ b;*(time - start-phase);
md;—md;+ b;*(time - start-phase);
End for
End

Procedure Update-event
Begin
Repeat until the number of elements in C-event-list = 0

60

If time= The event-time of C-event-list[0] then
New-speed-state «true;
End if
Remove C-event-list[0];
End repeat
Repeat until the number of elements in H-event-list = 0
If time= the event-time of H-event-list[0] then
Insert H-event-list[0] in List;
End if
Remove H-event-list[0];
End repeat
Repeat until (the event-time of D-event-list[0]>time)
Call Fire-transition(D-event-list[0]);
Remove d-event-list[0];
End repeat
End

Procedure Fire-transition Tj:
This procedure carries out the firing of T; and inserts each input places
in List. If the type!® of the output place is “d-place” inserts it in List

otherwise (type “c” or “h-place”) concludes that New-speed-state is true.

Procedure Init-for-new-speed-state
Begin
For each place P; such as the type of P; =“c-place” or “h-place” then
If md;> 0 then
Insert P; in List;
End if
End for
For each c-transition T} do
v;0;
v;'«0;
If there is no input place then
vj(_v;'maa:;
’Uj) (—-V;'mam;
Insert the non marked output transitions of T} in List
End if
End for
End

Procedure Update-trans-within-input-place
Begin
For each d-transition 7} such as there is no input places do

18 Refer to section 2

61

If T; does not already belong to D-event-list then
The event-time of T} «time+ the timing of Tj;
Insert in D-event-list;

End if

End for
End

Procedure Update-place-to-update
Begin
Repeat until the number of elements in List = 0
If the available marking (=md;) of List[0] > 0 then
For each output transition (T) of List[0] (They are selected
by priority order) do
If T is a d-transition then
h-conflict «the value returned by the function H-conflict;
If h-conflict = false then
Call Update-d-transition(T);
End if
Else
If the available marking of List[0] > 0 then
Call New-speed(T);
Else
If already-solve=false then
Call Weakly-enable(List[0]);
already-solve «true;
End if
End if-else
End if-else
End for
Call Check-output-c-transitions(List[0]);
End if
If the available marking of List[0] = 0 then
Call Weakly-enable(List[0]);
Call Check-output-c-transitions(List[0]);
End if
End repeat
End

Function H-conflict :
This function checks that the d-transition can reserve the marking if
necessary’®.

Procedure Update-d-transition Tj:

19 Refer to section 3

62

Update-d-transition checks that the transition is fireable. If the transition
is fireable the reservation of the marking is carried out and 77} is inserted
in D-event-list after having set the correct value for its event-time (time+
the timing of T}).

Note that if after reservation the remaining available marking = 0 and
the type of the place is “h-place” then the procedure Init-for-new-speed-
state is started.

Procedure New-speed for T}:
New-speed carries out the calculation of the speed of a c-transition Tj
(update v;’).

Procedure Weakly-enable of P;:

Weakly-enable determines the speed of the outout c-transitions of P;. In
case of effective conflict it solves it by priority or sharing according to
the value of the attribute “Conflict case” of P;(update v;’).

Procedure Check-output-c-transitions for P;:

Check-out- put-c-transitions tests if v;” # v; for the output c-transitions
of P;. If the previous condition is met then all the output non marked
places of T} are inserted in List and v;’ is assigned to v;.

Procedure New-balance
Begin
For each c-place P; do
Calculation of the balance of P;;
End for
End

Procedure Next-event-time
Begin
For each c-place P; such as b; <0 do
. . md’l. .
The event-time of P« time - B,
Insert P; in C-event-list;
End for

For each d-transition 7} that does not have reserved any markings do

d «The maximum over all the input c-places of T} of 'LULE%’

For each input c-place P; such as b; > 0 do
The event-time of P; «d;
Insert P; in H-event-list;
End for
End for
A «The minimum over the event-time of all the elements of
C, H, and D-event-list;

63

If A has no value or greater than 1e99 then
End-simu «true;

End if

End

64

Appendix H. Notation

v; is the instantaneous speed of Tj.

Vimae 18 the maximal speed of Tj.

°T} 1s the group of the input places of Tj.

T} is the group of the output places of Tj.

°P; is the group of the input transitions of P;.

P? is the group of the output transitions of P;.

b; is the balance of P;.

m; is the marking of the place P;.

md; is the no reserved (or the available) marking in place P;.

w;; is the weight of the arc connecting P; to Tj.

Inflow of P; is the sum over the input transitons T; of P; of v;.

Outflow of P; is the sum over the output transitions T; of P; of v;.

65

