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Chapter 1

Summary

In this report two concepts to install adaptive active
filters in HVDC systems are studied.

The first concept is feedforward with adaptive pa-
rameters. These are adjusted using the MIT rule.
The result of the simulations show very good perfor-
mance. However, this is obtained using a simplified
model of the real system. More investigations are
needed to determine the usability of this concept in
reality.

The second concept is feedback using a indirect
self-tuning regulator. This regulator uses estimated
parameters in its design. To estimate the system
the recursive least-mean-squares algorithm and the
stochastic approximation algorithm was used. Sim-
ulations showed the ability to estimate almost the
whole system, even when the transmission net was
connected. An important remark is that this was
done in the simplified model mentioned before. The
number of parameters to estimate increase in real-
ity. Whether these are possible to estimate or not,
further tests have to show. The controller used in
this concept was designed to control in a wide range
of frequencies. The simulations showed serious dif-
ficulties using this strategy. The conclusion is that
another concept is preferable. In this, several con-
trollers, each with small bandwidth, can be used in
feedback.
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Chapter 2
Introduction

2.1 Background

In the process of converting electric power from AC
to DC in an HVDC system, harmonics are created
in the DC voltage. Some of the harmonics (300 to
5000 Hz) interfere with the telephone signals and are
definitely not wanted. To prevent these from enter-
ing the transmission line, different type of electrical
filters are installed. In most stations of converting,
only passive filters are used. To improve the per-
formance, active filters have been developed, but so
far, these have only been installed in two stations:
the Lindome station in Sweden and Skagerrak 3 in
Denmark. In these stations the passive filters are
retained and the active filters are installed as com-
plements. This due to the difficulties to annihilate
the most power-full disturbances with an active fil-
ter. The combination of passive and active filters
seems to be a good solution and it works quite well,
though, there is one drawback with the active filter.
The parameters used in the controller to determine
its performance don’t adjust to the environment.
This will result in a bad performance if the model
of the net changes, for instance, because of heat or
a new load. It also requires that the frequency re-
sponse of the net initially is measured in order to
adjust the parameters. To avoid these drawbacks,
an adaptive control concept is needed. In this report
the controller in the Lindome station is studied and
extended with different adaptive concepts.

2.2 The Lindome Station

One of the stations where an active filter has been
installed is the Lindome station. This is shown in
figure 2.1.

To the left, a 12-pulse converter is shown. This con-
verts the AC signal to DC. During the conversion,
a lot of disturbances are created. Basically, these

ABB Corporate Research

Lo I2
S
P
= cf
L.
K c2 _[—I: L] R % L3
Ko
+ '
= os
C4 L4
Figure 2.1: The filters in the Lindome station.
have the harmonic frequencies f = 12nf; where
fo = 50 Hz and n = 1,2,3.... In some cases,
also the frequencies f = 3nfo occur with small

harmonic amplitudes. It is also observed that the
largest power is found in the disturbances with the
lowest frequencies. In figure 2.2 are the measured
values of I; and I shown. In this case there is no
active control running, i.e., U, in figure 2.1 is equal
to zero. Notice the periodicity in the disturbance,
as described. It can be seen that there also arve dis-
turbances with frequencies below 300 Hz, but these
are, however, not to be removed by the active fil-
ter. The reason is limitations in the equipment. For
more information about disturbances in conversion
using a 12-pulse converter, see [Zhang], [Shore], and
[Dickmander].
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Figure 2.2: The currents I; (the upper pair of figures) and I, (the lower pair), when no active control is
installed. To the left the currents are given as functions of frequency and to the right as functions of time.

To remove the harmonics created in the conversion,
the current is filtered. This is partly done by the
smoothing reactor L1 and the passive filter (C1, C2,
L2, L3, R). The latter filter removes the 12th and
24th harmonics (that is 600 and 1200 Hz). The dis-
turbances that not are removed by the passive filter
are subject to removal by the active one.

The active filter is implemented with a high power
PWM amplifier as voltage source and a controller.
The voltage source, beneath the passive filter in the
figure, is controlled by the controller (C), which is
a program running on a high-speed digital signal
processor (DSP). In principle, the controller works
as shown in figure 2.3.

In the first module of the controller, the DC com-
ponents and offsets in the measured currents I; and
I, are filtered out. In the second module, the signal
passes an inverse model of the whole plant. This
gives a ‘standardized’ signal that is independent of
the station. In order to create this inverse model,
the frequency response of the station is measured
before starting up. This is one of the drawbacks
mentioned before. The third module comprises an
algorithm suppressing all the repetitive signals. Fi-
nally, the signal is filtered in the fourth module (only
frequencies over 300 Hz passes through) and is lim-
ited in the fifth.

In the station, there are also many systems for pro-
tection and supervision, but these are not described
in the model and will not be considered in this re-
port.

2.3 Report Contents

There are, of course, many ways of controlling a
system like this. But in order to be able to do so,
a model of the system plants needed. In chapter 3,
both a continuous and a discrete model are designed
and calculated. The different control concepts in the
report are based on these models.

The first concept is a feedforward controller with
estimated parameters. The MIT rule is used to esti--
mate the parameters. This is described in chapter 4.

In chapter 5, almost all parameters of the system is
estimated. The algorithm used in the estimator to
do this is the recursive least-squares (RLS).

In chapter 6, a control concept utilizing the mod-
els and the parameter estimates is introduced and
partially tested. More work is needed before this
concept can be used in practice.

Finally, the conclusion in chapter 7 gives the results
of this work. Here is also the different working tools
commented on.
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2.4 Assumptions

The investigations and tests in this report are based
on some assumptions of an ideal plant. Still, the

Figure 2.3: The modules in the controller.

assumed plant involves many of the difficulties of

a real plant and, thus, the results can be used for

at least discussing the principles. The assumptions

are:

e All disturbances from the converter are sup-

posed to be removed by the control. This means
that only signals with frequencies in the range
300 to 5000 Hz are present in the measured sig-
nals. To accomplish this in reality, either a
band-pass filter or many notch filters, can be
used. In order not to interfere with the con-
trol system, it is important to chose a filter that
gives minimum contributions in the phase. How
this is done, is not further examined in this re-
port. Tt is also assumed that the measured sig-
nals do not contain any noise.

In reality, there are many delays, for instance,
in measuring the current ig,; (see figure 3.1).
These delays are assumed to be zero in the fol-
lowing calculations, but because almost all sig-
nal are periodic with the period of 1/50 sec-
onds, the values measured one period ago can
be used. The alternative is to rewrite the al-
gorithms in this report to use predicted values.
Which alternative to chose depends on how pe-
riodic the signals are and how long the delays
are.

In order to create the feedforward controllers
described in chapter 4 and 6 and the estimators
in chapter 5 the assumption that it is possible
to measure the voltage u;, (figure 3.1) is made.
In reality this is not possible, but it is possible
to calculate or approximate this signal if one or
more other signals are measured.
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Chapter 3

The Model

The true model of the station described in chap-
ter 2.2 is very complicated and to develop and exam-
ine new concepts of controlling, a simplified model
is to prefer. In the section 3.1 this simplified station
is introduced and explained. Then the mathemat-
ical models are stated. Both the continuous model
and then its discrete equivalent are calculated. The
discrete model is calculated only to give a frame of
reference for estimation, while the continuous one
was implemented in the simulation program SIM-
NON. In reality the station is connected to a com-
plex transmission net. When the disturbances enter
the net, a echo is created. The echo will interfere
with the new disturbances and will give contribu-
tions in the measured signal iy in figure 3.1. This
transmission net have also to be modeled to make
the different concepts of controlling realistic. This
is done in section 3.4. Notice that this model is very
simplified, but in an initial phase of development,
this is satisfying.

3.1 The Station

There were made some approximations in the model,
in order to get it manageable. The major approxi-
mations are the removal of the 24th harmonic filter
and the return path (C3, C4, L4 in figure 2.1); this
yields a system with size 3 x 3 instead of 8 x 8. This
simplified filter is also used by [Zhang] and does not
effect results in terms of principles.

The simplified plant is showed in figure 3.1. To the
left, there is a voltage source which represent the dis-
turbance signal from the converter. From now on,
this signal will only have frequencies in the range
300-5000 Hz, that is, only signals that are to be
filtered out enter the system. This signal passes
through the smoothing reactor L1 to the resonance
filter (L2, C1, and R). Using the values in table 3.1,
its resonance becomes 600 Hz. Below the filter in

SECRC/KL/TR-December 14, 1993 7
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Figure 3.1: The approximated model of the HVDC
station.

the figure, the controllable voltage source is shown.
The voltage uy is to be calculated in the controller.

In reality a current pulse in (gyt) will be reflected
back as an echo and these reflections are rather un-
damped. This echo effect is modeled by substitut-
ing the external net with a load Ry, for the wave
impedance and a controllable current source, I,.
This way of representing a complex net is explained
in section 3.4.

L1 L2 Cl R RL
200mH 70.36mH 1.0uF 1.0Q 3200

Table 3.1: Parameters in the model. These give a
resonance at 600 Hz.
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3.2 Continuous Mathematical
Model

The model in figure 3.1 is analyzed using Kirchhoff’s
laws [Claesson, chapter 3] giving the following state-
space model.

{ 2(t) = Ax(t) + Bu(t)
y(t) = iout = Ca(t) + Du(t)

where )
ir, (t)
o) = | i)
ue, (1)
uin (t)
u(t) = us(t)
i (1)
—Rr /Ly R/ 0
A= Rp/L: —(Rp+R)/Ls —1/Ls
0 1/Ch 0
1/Ly 0 —Rp/L1
B = 0 —1/L2 RL/LZ
0 0 0
c=(1 -1 0)
D=0
uin ir
H F
us s + 1+ +1+ fout

Figure 3.2: The transfer functions in the system and
how they are connected to each other.

The input—output models are tﬁen (compare fig-
ure 3.2):

Uiy to doug: H(s) = Bu(s)/An(s)

where
Br(s) = (5.0000s% 4 71.0631s+ 7.1063 x 107)
Ap(s) = s%46.1623 x 10%s% +1.4235 x 10”5 +

2.2740 x 10%°

ABB Corporate Research

us to igut: G(s) = By(s)/Ag(s)

where
By(s) = 14.2126s* —5.5879 x 107%s —
1.5259 x 107°
Ay(s) = An(s)

ip to gyt F(s) = By(s)/As(s)

where
Bi(s) = —6.1480 x 10%s% — 2.2740 x 10*s —
2.2740 x 10*°
Ap(s) = An(s)

The bodeplots for all three transfer functions are
plotted in figure 3.3. Notice the dip at 600 Hz for
the function H(s). It is also interesting to know the
locations of poles and zeros. These are the following
(given in the s-plane):

root By = 103[—0.00714 43.7700]

root B, = [0.0010,—0.0010]

root By = 10%[—0.0018 & i1.9232]

root A 10%[—4.0301, —1.00661 & 2.1221]

Notice, that there is one zero in the transfer func-
tion By in the right half-s-plane. This non-minimum
phase might be a problem when a controller is to be
designed. In some cases, we make the approxima-
tion that B, has its zeroes in the origin or just inside
the left half-s-plane.

3.3 Discrete Mathematical

Model

The system can also be given in discrete values. Us-
ing a zero-order hold sampler [AstrémQO, chapter 3].
The sample rate is chosen to the one used in the Lin-
dome case. The sample rate is synchronized with the
period of the 50 Hz signal and there are 512 samples
every period. The sample frequency then becomes
50 x 512 Hz and the sample period 39.0625 ps. This
period is used throughout the report.

An important remark is that this sample rate might
be too low to control signals with frequencies round
5000 Hz. If a zero order hold sampler is used, the
phase added due to the hold circuit is approximately
wh/2 rad [Astrom90, page 219]. Here, w is the
crossover frequency of the continuous system. If the
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Figure 3.3: The bodeplot of H(s)(—), G(s)("- - ") and F(s)(- -"). The frequency axes are graded in Hz.

phase margin is allowed to be decreased with 5° to
15°, the sample period can be between 0.17/w and
0.52/w. To annihilate disturbances with frequencies
up to 5000 Hz, the sample period has to be between
5.4 x 10~ and 16.7 x 10~ seconds, according to the
rule above. This is a factor 2 to 7 faster than today.
With the present period, the phase loss at 5000 Hz
is 35°.

A too high sample rate will, however, increase the
load on the computer. Not only the number of com-
putations are increased, but also the accuracy of
each computation. This to prevent numerical er-
rors, because higher sample rate results in discrete
roots closer to the unit circle.

The disturbances used in this report are in the fre-
quency range 300-1800 Hz, as will be discussed in
section 4.1. The loss in phase at 1800 Hz, using the
sample period h = 39.0625 ps, is 13°. The zero-
order hold sampler, with this sample rate, gives the
following system:

where
5 (

x(kh + h) = ®x(kh) + Tu(kh)
Yy = igut = Ce(kh)+ Du(kh)

—1.5959 x 10~°
—5.0687 x 10~*
0.9898

0.9445 0.0553
0.1572  0.8322
3.1918 35.6636

|

1.8937 x 107%  —1.5959 x 107® —0.0555
T'=1| 15959 % 107 —5.0687 x 10~* 0.1571
2.1171 x 107* —0.0102 3.1918

and C and D are the same as before.

From now on, the sample period h is set to 1, when
systems are described as above. For instance, z(kh+
h) is written as z(k-+1). The forward-shift operator,
denoted by ¢, is used throughout the report.

The input—output models are obtained as follows:

Ujp o oyt H(q) = Bx(9)/Ar(q)

where
Ba(g) = 1073(0.1734¢% - 0.3429¢ + 0.1733)
An(q) = (¢ —2.7665¢% + 2.5541q — 0.7864)

ug to iout: Glg) = By(q)/Aq(q)

where
B,(¢) = 1073(0.4909¢% — 0.9819¢ + 0.4910)
Ay(e) = Anlg)
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ir t0 igut: F(q) = B (a)/As(q)

where
Bi(g) = (—0.2126¢°+ 0.4239¢ — 0.2126)
Ar(q) = An(g)

Just like in the continuous model, it is interesting to
know where the poles and zeroes are located. (These
are given in the Z-plane).

root B, = [0.9888 % 0.1464]
root B, = [1.0001,1.0000]
root B; = [0.9971 % i0.075]
root A = [0.8546,0.9560 = i0.0793]

The roots are plotted in figure 3.4. All zeroes are
close to the unit circle, which is a result of the high
sample rate and the system itself. Notice that the
non-minimum phase in B, still exists and the roots
of A show that the system is stable.

The fact that the discrete roots are close to the unit
circle may cause numerical problems. This is a prob-
lem that occurs when fast sample rate is used. To
avoid this, other concepts can be used in converting
the continuous system to a discrete equivalent. The
two concepts proposed in [Astrom89] are the delta
and the Tustin operators. These use

g—1
o=
and
_lg-1
T 2hg+1
respectively. Still, the zero-order hold sampler 1is
used throughout the report.

3.4 The Transmission Net

In reality, the converter is connected to a net that
can change its characteristics during operation. This
happens, for example, when the net is extended with
new consumers or when the present net is connected
in a different way. One problem at the converter
when such a net is added is that the net reflect echos
of the current sent out from the converter. The re-
flections also depend on the characteristics of the
net. Thus, it is important to have a good model of
the net.

Here the model consists of a load and a controllable
current source, as can be seen to the right in fig-
ure 3.1. An expression for the current ¢, is obtained

ABB Corporate Research
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Figure 3.4: Poles and zeroes of the discrete sys-
tem sampled with h = 39.0625us. The roots of By,
are circles, B, triangles, By plus signs, and A are
crosses.

when the equation A.4 (appendix A.1) of wave prop-
agation on a terminated transmission line (accord-
ing to [Johnson]), is compared to a two-terminal-
network equivalence. The result is:

ir(t) = —a (ir (t— A)+ 2iou1:(1’L - A)))

where A is the delay time for the echo to return and
a is a factor (0 < a < 1), containing line damping
and end terminal reflection coefficient. The com-
plete calculations are shown in appendix A.1. In
this calculations it is assumed that A and a do not
depend on the frequency. This will be further com-
mented on in appendix A.2, where the relation to
frequency is studied. In the SIMNON simulation
system, this model is implemented as a discrete sys-
tem.
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Feedforward Control Using the MIT

Rule

In this chapter feedforward control of the previ-
ous described system is investigated. The feedfor-
ward controller is using the estimated parameters
obtained by the MIT rule. In the first section, a
reference case is established with the true parame-
ters. In the next section, the number of estimated
parameters is increased. At the end of the chapter,
all of the parameters are estimated.

To simulate the system, some sort of input signal
is needed. This is described in section 4.1. Then,
different feedforward controllers are described in sec-
tions 4.2, 4.3 and 4.4. All of them are implemented
in the SIMNON simulator as discrete controllers.

uin ir

us + ¥t + Y+ iout
- G o Iy —

o

Figure 4.1: A true feedforward controller placed in
the system.

4.1 The Test Signals

A signal u;,, simulating the disturbances was imple-
mented. As mentioned in section 2.2, this basically
contains the frequencies 12nf Hz, where f = 50 Hz
and n = 1,2,3..., with the highest power at low
frequencies. In some cases, the frequencies 3nf also
occurs with small harmonic amplitudes.

The sum of four sinusoidal signals (300, 600, 1200
and 1800 Hz) were used to simulate the input sig-
nal. In the program, the signal with the frequency
of 300 Hz has the amplitude 2 while the others have
the amplitude 5. The reason why the 300 Hz signal
is included, is that the signal has to be persistently
exciting in order to estimate the parameters in the
transfer functions. A frequency bellow 600 Hz has
to be present in the input signal. To realize this, the
transfer functions in figure 3.3 can be studied. For
example, if H(s) is to be estimated, there has to be
information how the function acts on the frequen-
cies below the resonance frequence 600 Hz. More
information about persistently exciting is found in
[Astrom89)].

The output signal (ioyt) without controller and
without reflections from the transmission net (i, =
0) is shown in figure 4.2. In figures 4.3 and 4.4 re-
flections are included. The number of delays is set
to 20. This corresponds to a transmission line with
a length of about 117 km with the speed of the sig-
nals approximated with the speed of light. This 1s a
good approximation if the transmission net conduc-
tor is in air. The damping factor a is chosen to 0.8.
Later on other results will be compared to the three
figures 4.2, 4.3, and 4.4.

If the power spectra with and without the trans-
mission net added are compared, it is obvious that
some frequencies are damped by the net and others
are amplified. This can be understood by examin-
ing the transfer function from uj, to igyt with the
transmission net added. Some calculations give the
function

Br(1+ aq“A)

H,. =
" A1+ ag8)+2aBpg A

which has the bodeplot showed in figure 4.5 (if A =
20 and a = 0.8). Notice that the frequencies 600




12 SECRC/KL/TR-December 14, 1993

and 1800 Hz are damped more than the signal with
frequency 1200 Hz and that the 300 Hz signal is
approximately the same.

In the SIMNON simulator, the signal generator was
implemented as a continuous signal, except for some
tests in chapter 6. Numerical problems occurred and
the signal generator had to be changed to a discrete
system. We will comment on this when the change
is made.

s x107 ) F’ower«spectraI
71
sk
5k
4+
3+
ok
i B
0 1 L 1 L
0 500 1000 1500 2000 2500

frequency (Hz)

Figure 4.2: The power spectrum of iyt without
controller and reflections.

No controller
20, Uin

10

=]

~10-

-20 T T T T 1
0.39 0.392 0.394 0.396 0.398 0.4

iout

0.01

=]

T T T T
0.39 0.392 0.394 0.396 0.398 04

Figure 4.3: The current iyt without controller but
with reflections (A = 20 a = 0.8). The time-scales
are in seconds,
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Figure 4.4: The power spectrum of iyt without
controller, but with reflections (A = 20 a = 0.8).

——————————— -
-

DY)
A
A

Figure 4.5: The transfer function from uj, to igyt
when reflections are added (- -’) and without reflec-
tions (*—). The frequencies are given in rad/s.

4.2 Controller Without Adap-
tation

The first controller to be studied was an ordinary
feedforward controller such as the one in figure 4.1.
If i, = 0, the output current will be

iout = (Hg G+ H)ugy

From this, the ideal feedforward controller can be
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obtained, because it is obvious that

Ag(q
Bg(q

~—r

Bn(q
An(g

~—

Hg(q) = -G~ H = -

~—
~—

gives minimum output. Using this,

Ag(q) = Anla)

gives

where

Bi(q) = (0.1734¢% - 0.3429¢ + 0.1733)  (4.1)

and
B,(g) = (0.4909¢> — 0.9819¢ + 0.4910)

as calculated. The factor 103 is present in the cal-
culated B,(q) and By(g), but is left out when creat-
ing Hg(q). The polynomial B, (¢) has a root outside
the unit circle making He(g) unstable. Therefore,
we make the approximation that B, has a double
pole. This gives

By(q) = a7 (¢ - p)° (4.2)

where ay is 0.4909. The calculated value of p is ap-
proximately equal to unit, but in this controller it is
chosen to a slightly smaller value to prevent insta-
bility. To be sure not to come close to instability, p
was chosen to 0.997.

The result of using this controller without any reflec-
tions from the net is shown in figure 4.6. Compared
to the result shown in figure 4.2, it can be seen that
the damping varies between 25 and 400 times, de-
pending on the frequency. The reason why lower
frequencies are more annihilated is the choice of the
double pole p. If p is increased to a value very close
to unit, the higher frequencies will be more anni-
hilated. This will be seen in later simulations and
then also be further commented on.

The result with the reflections added is shown in
figure 4.7 and 4.8. This also has a strongly damping
effect on lower frequencies.
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Figure 4.6: The power spectra of 7oy when feedfor-
ward controller without adaptation and reflections
is used. The calculated values are used.

feedforward with reflections (defta=20 a=0.8),no adaptation
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Figure 4.7: Feedforward controller without adap-
tation and with reflections included (A = 20 and
a = 0.8). The time scales are given in seconds.

4.3 Adaptive Control of the
Feedforward Gain

The first controller, where the transfer functions
have to be known, is not very useful in reality. To
obtain a better controller, adaptation is needed. In
this section, the constant a; in equation 4.2 is es-
timated. The double pole has the same value as
before. This means that the controller is

_ . B9
Hela) = ke 8.997)2
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Figure 4.8: The power spectrum of i, when feed-
forward controller without adaptation and with re-
flections included, is used.

where k is estimated. To do this, the MIT rule is
used according to [Astrom89, chapter 3]. This rule
is based on gradient search according to

o) = 160 553

where in this case the error e is equal to the output
current (igyt). However, in practical use a little
modification is needed. To make the estimating rate
independent of the magnitude of the input signal
(ujy,), normalization is introduced.

The function minimized by the MIT rule is the sum
of squares error, that is,

J:Z:e2

This equation can sometimes have several minima.
If the gain or the step-size in the gradient search,
that is, the derivative of the parameter to change, is
too big, the correct minima could be missed. To pre-
vent this, a limitation of the derivative is introduced
in the MIT rule.

Normalization and introduction of saturation give
the following rule:

L 0i (1)
tout Tae(1)

ot (6i§élégt))T (aigél(g()t))

0
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where
—f a<-p
sat(a,B) =< @ al < B
g a>p

In this case © = k.

The following equivalence discrete version is

k(k) = —sat <i0ut(k)f(k)) + k(k _ 1)

a+ (f(k))?
where
A 8Z.out(t) _ Bg(él) B (L
1) = =557 = Ty T o.semztn(®)

The estimated By(g) was used in the equation f(k)
above, when this was implemented in the program.
An alternative is to use the calculated one. This was
tested, but no difference in the estimates or conver-
gence rate was detected.

The term « is to prevent a division by zero and in the
first estimator o« = 0.5 was used. In this estimator,
the limiter 8 is equal to 0.01. This gave the result
shown in figure 4.9. The final value of the constant
was —1.9418 and the resulting damping was now a
little higher for the high frequency range and the
same as before for the others.

x10~° Power-specira
T T

0 500 1000 1500 2000 2500
frequency (Hz)

Figure 4.9: The power spectrum of 7q,¢ when feed-
forward controller with MIT estimator is used. No
reflections are added. Estimates the feedforward
gain.

The factor v controls how fast the estimation will
converge and in figure 4.9 v = 1. It is possible to
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have larger v values before the estimator will be un-
stable, but this will cause ripple in the estimated
paramecter.

Note that the convergence rate also depends on «,
especially if the value is too large. A large a also
gives a small error in the MIT rule. If « is too small,
on the other hand, the denominator in the modified
rule can be very close to zero and the derivative of
the parameters will be large. This will result in a
ripple in the estimates in the same way as a large -y
will. Tests are required to find the optimum «.

The adaptive controller worked quite well without
reflections and theoretically it should work well even
when these are added. This is because the MIT
rule just changes the parameters to minimize the
amplitude of the signal 75y and does not matter if
there is another signal added.

Tests showed that the theory was correct. The result
is shown in figures 4.10 and 4.11. The annihilation
of the disturbances is good. If the power spectrum is
compared to the one where the calculated values are
used (figure 4.8), there is a little improvement. The
parameters in the estimator were v = 5, § = 0.01,
A =20, and a = 0.8. This gave the estimated value
k = —1.94053.

feedforward with reflection, gamma=5, delta=20, a=0.8

Uin 10. Us
10
5
y ARV
-5
-10:
T “lo‘_r'—'ﬁ_—f_l—_'ﬂ
0.59 0.594 0.598 0.59 0.504 0.598
2.107%, fout oK
1107
-1
° \/__.
-2
-1.107
20— =3
0.59 0.594 0.598 0 02 0.4 0.6

Figure 4.10: Feedforward controller with MIT esti-
mator when reflections are added. (y =5, A = 20
and a = 0.8. The final value of k is —1.94053. The

time is given in seconds.)
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Figure 4.11: The power spectrum of inut. A feed-
forward controller with MIT estimator is used and
the reflections are added.

4.4 Adaptive Control of the
Entire Heg

The first try was to estimate the coeflicients in the
numerator as well as in the denominator at the same
time, but this was not very wise. If one of the four
coefficients did not converge, the whole estimation
procedure was disturbed. Therefore, the numerator
and the denominator were examined separately, to
finally be put together.

4.4.1 The Denominator

Using the same estimating rule as before, the con-
stant ay and the double pole p, in equation 4.2, were
estimated. Because of the different size of the esti-
mated parameters, different v, «, and § in the MIT
rule were used to each of the parameters.

The numerator in Hg(g) was kept constant and
equal to the one in equation 4.1. The error e = igyt
was differentiated to create the estimation rule.

diout _ Bn(q)

aaf (Q) G(Q) (szc (q ___p)g
Dioy _ B (@l)

8pt (9) = —QG(Q)———af(qh_ BE

In the equations above, the estimated parameters
are present on the right-hand side (both in G(¢) and
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the denominator). To implement this in the control
system, an approximation is needed. There are now
two alternatives. The first is to replace the parame-
ters with the calculated ones. As mentioned before,
this can’t be done because B, has an unstable root.
The second alternative is to use the estimated values
one sample ago. This makes the estimator very com-
plex and hard to analyze, but as simulations showed
it worked quite well.

5 Power-spectra
T

0.6

0.2

0 500 1000 1500 2000 2500
frequency (Hz}

Figure 4.12: The power spectrum of the output cur-
rent. A feedforward controller is used and the de-
nominator is estimated. No reflections are added.

In figure 4.12, the power spectrum of the output
current 4oy is shown when no reflections are added.
In the two figures 4.13 and 4.14, the reflections are
included. In both simulations, the parameters con-
trolling the estimator were 74, = 0.001, v, = 0.002,
oq, =05, 0y =01, Bay = 0.002, and 3, = 0.002.
The final values were a;y = 5.0247 x 10~* and
p = 0.999691.

As seen in figure 4.13, both parameters converge
rather fast. Comparing to former results, it is also
obvious that the controller has good performance.
For example, when reflections are added, damping
is 1500 to 6500 times. This is a very good result,
but there is one problem, though.

The transfer function can not easily become unsta-
ble, because if there is a tendency for instability, the
output and also the error iy, would grow. Then the
estimator would decrease the value of the pole and
make the system stable again. This is not a major
problem problem.

The problem is instead the fact that the controller
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Figure 4.13: The feedforward controller when reflec-
tions are added. The final values of the estimates are
a; = 5.02472x10~* and p = 0.999691. Time is given

in seconds.
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Figure 4.14: The spectrum of iy when the denom-
inator is estimated. Reflections are added.

will integrate the signal u;;, when p comes close to
one. If uj), contains any low frequency component,
the output from the controller will increase. Such
low frequencies can of course come from the signal
Uiy, bub can also be the result of numerical errors
(for example, round-offs) in the computations. This
was the case in the simulations in this report.

Due to this problem, a DC off-set occurs in the
control signal. This can, for example, be seen in
figure 4.13. At first, the bias will not be noticed
in igyt, because low frequencies are not transferred
from u; to igyt (see figure 3.3). It will, however, be
noticed when the control signal reaches its limits. "To
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be able to use a controller like this one, some concept
of protection is needed. Probably, a high-pass filter
on the input of the controller will not be sufficient:
since an ideal filter is not possible to make, some low
frequencies will enter and the computational errors
will remain. The protection has to be internal to
the controller, observing the DC component in the
states and sometimes resetting them to zero.

4.4.2 The Numerator

The three parameters in equation 4.1 were esti-
mated, while the parameters in the denominator
were held constant (0.4909 x 1072, 0.997). It was
1ot easy to obtain good results, though. With a
small amplification factors v, the convergence was
very slow. If the v’s were made larger, ripple in
the estimated parameters occurred, destroying con-
vergence. If all parameters have to be estimated,
another algorithm have to be used. A different and
a better concept is to decrease the number of esti-
mated parameters. By using the information that
By(g) have complex roots on the unit circle, the
following simplified model of the numerator can be
stated:

Biu(q) = k(¢® —azg +1)

In simulations it were much easier to estimate only
these two parameters. No result of these simulations
are shown because the result is much the same as in
the following section, where the numerator and the
denominator were estimated at the same time.

4.4.3 Both the Numerator and the
Denominator

The following function was used, when putting to-
gether the numerator and the denominator:

k(¢* —ayq+1) By
(¢ —p)? A
Now were there only three parameters to estimate.

These are k, ay, and p. The derivative of the error
with respect to these parameters are:

Heg(q) =

Digut [¢* —arq+1 _
ok = = ™
Diout [ —kq
Bay = G _(q__p)zum
Pigug  _ [2k(q* —apq+1)
op “ T (g—pp
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In section 4.4.1, when only the denominator was es-
timated, the estimated parameters on the right side
were taken from the estimates one sample ago. The
numerator (By) in G was replaced with the esti-
mates as well. This cannot be done in the same way
here, because the constant K in B, = K(¢ — p)?
cannot be separated from the estimated k. There-
fore the calculated B, = (0.4904 x 10~3¢* —0.9819 x
1073¢ +0.4910 x 1073) is used.

5 Power-spectra
4510 . . :
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frequency (Hz)

Figure 4.15: The power spectrum when the three
parameters k, ay and p were estimated. Final values
are k = —0.34845, ay = 1.9781 and p = 0.99825.

The extended MIT rule was used and the control re-
sult became a little better than achieved using the
estimation in section 4.3. The result with no reflec-
tions added is shown in figure 4.15. At disturbances
are low frequencies 300 and 600 Hz more damped
and at the other frequencies the damping is very
much of the same. In figure 4.16 and 4.17, the esti-
mation and control are shown, with reflections from
the transmission net added. The reflection parame-
ters are as before A = 20 and a = 0.8. If these are
compared with the case when only the gain was es-
timated, the 300 Hz component is more annihilated.
Unfortunately, the 1200 Hz signal became less an-
nihilated. The situation is even worse if the results
in section 4.4.1 (where the denominator was esti-
mated) are compared to the results in this section.
The conclusion is that the former estimator showed
better performance.

In principle, this difference is not a result of the
new estimator. It is only a question of the choice of
parameters in the estimator and the time used to es-
timate. In the simulation done here, the parameters
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are 7 = 0.6, 7o, = 0.02, 7, = 0.001, ap = 0.1,
aq, = 0.5, ap = 0.1, Sk = 0.001, B,, = 0.01,
and B, = 0.01. This gave the estimated values
k = —0.36708, ay = 1.97876, and p = 0.998121.
Notice the big difference in the values of p in the
different simulations. This is the reason behind the
big differences in performance. If other parameters
had been chosen, the estimated values would have
been different. Probably a large increase of the time
available for estimation will give similar results in
the two cases, but this has not been investigated.

How to change the parameters is not obvious,
though. A large gain vy will give a faster conver-
gence, but can, especially regarding p, give less cor-
rect estimates. If the estimated value of p comes
close to one too fast, the estimate will have diffi-
culties finding the optimum value. It will have a
variation of the value in the neighbourhood of the
true value. To change « is not easy either. A too
large o gives a kind of bias in the estimates and a
too low « will cause ripple in the estimates. This
has been discussed in section 4.3. Finally, the pa-
rameter B: just as the other parameters, this has
an upper and a lower limit. If it is too big, it be-
comes less significant and if it is to small, the rate
of convergence is slow.

A better tuning of the MIT parameters would proba-
bly result in similar performance as in the case where
only the denominator was estimated.

feadforward with reflections, delta=20, a=0.8, estimates 3 parame
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Figure 4.16: The feedforward controller when k, ay,
and p are estimated and reflections are added. The
final values are k = —0.36708, ay = 1.97876, and
p = 0.998121. The time axes are in seconds.
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Figure 4.17: The feedforward controller when the
reflections with A = 20 and @ = 0.8 is added. The
signal is the power spectrum of the output current.

4.5 Conclusions

In this chapter a rather simple way of combining
control and estimation has been used. In this simpli-
fyed model of the complex reality, the system worked
well. The performance of the controller depends,
however, strongly on the choice of parameters in the
estimator and these have to be chosen with precaun-
tion. The major benefit with this concept is that no
model of the reflections is needed in the controller.
As will be seen in later chapters, this problem may
occur in other concepts. Another benefit using this
concept is a rather stable controller, if the parame-
ters mentioned before are chosen correctly.

One important thing is to implement some kind of
resetting in the controller to prevent bias. This will
not appear only for control concepts of this chapter.
It will also be needed in chapter 6 where it will be
discussed further.

The SIMNON program used in the last simulation
is given in appendix B.
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Chapter 5
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Estimating the Models Using RLS

In the previous chapter, the numerators of the trans-
fer functions G(¢) and H(q) were estimated using
the MIT rule. This rule has the major drawback of
being rather slow. In this chapter, a recursive ver-
sion of the least-mean-squares method with forget-
ting factor is used to improve the convergence rate.
Tt should be noticed that the convergence in some
cases is rather slow, though. This is a result of the
great amount of estimated parameters and the use
of a simplified version of the algorithm, in which the
covariance matrix is replaced by a scalar. 'The ad-
vantages of this simplification are less computations
and no need of matrices in the program (SIMNON
does not support vectors and matrices).

uin Ir

o * us + + jout

ESTIM

l b0,b1,b2,a1,a2,a3

Figure 5.1: The whole system with no reflections
added.

In order to create different adaptive control con-
cepts, it is important to have the transfer functions
G(q) and H(q) available. Initially, G(g) is estimated
in section 5.1, after which both G(¢) and H(q) are
estimated in section 5.2. If the reflections are added,
also most of the parameters in the model of the net

reflections are estimated. This is a secondary effect
and more work has to be done if a good model of the
net is required. The simulations show, however, the
ability to estimate a rather simple and theoretical
net, like the one used in this report.

In figure 5.1, the estimator is shown together with
the system. The filters are not always utilized, but
when they are, this will be commented on. The in-
put signal u;, is either zero or the same as in chap-
ter 4, that is, a sum of sinusoidals. The signal d in
the figure is white Gaussian noise, to ensure persis-
tent excitation when the transfer function G(q) is to
be estimated [Astrom89].

5.1 Estimating the Transfer

Function G(g)

No Reflections From the Transmission Net

In this section, the reflections are excluded, that is,
i, = 0 in figure 5.1. During estimation of the pa-
rameters in G(g), the signals u;,, and d were zero
and white Gaussian noise, respectively. The result
can be seen in figure 5.2. Unfortunately, it is very
difficult to see the convergence of the parameters in
this figure. It is, however, possible to see how the
difference between the true output (igyt) and the
estimated one (p?©) decreases. The convergence
can be seen more easily if the absolute values of
the poles and zeroes are plotted; this is done in fig-
ure 5.3. To be able to clearly see the convergence,
the initial values of By and A are departed a little
from the calculated ones. The final values of the pa-
rameters are very close to calculated ones and the
rate of convergence is fast.

The algorithm used is an ordinary recursive least-
mean-squares with forgetting factor. The algorithm
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Estimating the parameters in G(q) with LMS,uin=0,no controller
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Figure 5.2: Estimating the transfer function G(g)
when no disturbances are added, that is, u;, = 0.
The signal d is white Gaussian noise, which explains
the signal iy ¢. The signal e is the error between the
correct output and the estimated. The time is given
in seconds.
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Figure 5.3: The absolute values of the poles and
zeroes. The full line in A contains two poles which
are complex.

is given by
6t) = O)+ K (fous(t) — ¢" (0Ot 1))
K@) = P)e()=

P(t— D)g(t) (M + &7 ()Pt - Dp(t)) (5.1)
P@t) = (I-K(@®)e'®) P(t—1)/A

where in this case

Oty = lai(t) as(t) aa(t) bo(t) ba(t) ba(t)]
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SDT(t) = [ious(t—1) iout(t — 2) iout(t — 3)
us(t — 1) us(t —2) us(t—3)]

and

bog? + b1g + by

G
(a) ¢ + a1q® + azq + as

More information about this algorithm is found in
[Astrom89, chapter 3].

The initial value of the covariance matrix P was set
to a diagonal matrix. The diagonal elements related
to the current iyt were given the initial value 100,
while the elements related to the control signal us
were set to 0.1.

Here, X is the exponential forgetting factor. The al-
gorithm approximately remembers n = 2/(1 — A)
samples of old information. In other words, the
value sampled n samples ago gives almost no con-
tribution to the present calculations in the estima-
tor. For the value A = 0.999, which is used in
this simulations, n will be 2000. This equals 0.078
seconds of memory with a chosen sample period
h = 39.0625 x 1076 seconds.

The performance of the RLS algorithm was not sat-
isfying when the signal u;;,, was added (the same test
signal as in section 4.1 was used). This unmodeled
signal creates a bias in the estimates, because the
estimator tries to do a model for both G(g¢) and the
new signal. There are now three different alterna-
tives to solve this problem.

The first is to create a model for the signal. For
instance,
lout = Eg‘us + b‘e

where e is Gaussian random noise, can be used.
Then, the extended least-squares (ELS) algorithm
can be used. This is an extension of the equation 5.1
which results in estimation of the transfer functions
C(q) and D(q). The algorithm is described in ap-
pendix A.3. A serious drawback of using the ELS
in this example is that C(gq) and D(q) are of high
order and in order to estimate all parameters, much
more computation is needed. Therefore, if there are
other alternative, they should prove preferable.

The second alternative is to assume that u;, can be
measured. Then, a model for H(q) can be stated
and estimated. This is done in section 5.2.

The third alternative is to separate the signals ujy,
and d in the frequency spectrum. This way, the in-
formation needed in the estimator can be filtered
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out from the measurable output iyy¢. To compen-
sate for the filter’s influence on the d-part in igy4,
a duplicate of the filter is used on the signal d (fig-
ure 5.1).

input + output

DELAY, Tdelay

Figure 5.4: A simple FIR filter to annihilate the
periodic signal in ujy.

input +
Fa'
N

u delay, Td-1 —iea
+ 4

—El— delay, Td ha
+ 4
n delay, Td+1

output

37

N

Figure 5.5: An extended FIR filter.

Using the simplified model of a HVDC station, the
signal d can be noise with frequencies below 300 Hz
and above 5000 Hz. Signals within this spectrum are
sufficient to estimate the parameters. In this case,
the filters in figure 5.1 are only band-stop filters.

In reality, the transfer functions are not this simple
and information about the frequencies between 300
and 5000 Hz is needed in order to estimate the pa-
rameters. Then one can use the fact that the signal
u;py, and also all control signals to compensate for
this disturbance, are periodic with a cycle of 1/50
seconds. If this is assumed, it is possible to annihi-
late these signals with a FIR filter such as the one
in figure 5.4. The delay-box delays the signal with
one period, that is, Tdelay = 1/50 seconds. If this
simple filter is not enough, several identical filters
can be connected in cascade. In reality, where the
frequencies of the disturbance can fluctuate, a wider
filter like the one in figure 5.5 might be preferable.

The added disturbance d can now be Gaussian ran-
dom noise and the information between the annihi-
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lated frequencies can be used to estimate the trans-
fer function G(gq). The signals that pass are violated
both in amplitude and phase. Therefore, it is im-
portant to filter both the signals iq¢ and d through
the same type of filter.

Note that if a non-periodic signal enters the system
via u;,, the estimator must be turned off in order to
protect the estimated values. This safety algorithm

is not implemented in this report.

Unfortunately, the estimation with these FIR filter
included could not be tested in simulations. The
reason is the difficulties to implement such a long
delay in SIMNON. The program supplies a function
called DELAY, but this is not accurate enough to
use in long delays. In a program supporting vectors
and matrices it is easier to create a delay. The sys-
tem, including the filter, can then be implemented.

Including the Reflections

The problem with unmodeled dynamics that arose
when u;, was added, occurred in this section when
the transmission net was connected (i, # 0). In this
case, the new filters needed are much more com-
plicated. The effect of reflections on the transfer
function H(s) can be seen in figure 4.5. The other
transfer functions are changed similarly. For exam-
ple, see the transfer function G(s) in figure 5.6.

10
g1t
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]
g
=10t
10'6 1 I
o 10* 10° 10! 10°
200
F o
b
a
o
& 200
0 . . :
10 10 10° 10* 10°

Frequency [Hz]

Figure 5.6: The transfer function G(s) describing
the connection between u; and igyt with and with-
out reflections from the transmission net.

Instead of filtering the signals, the concept to model
the reflections was used. This is done by combining

ir (k) = —a(2igyt (b — A) + i, (k — A))
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with

. B By, By .
iout (k) = Egus(k) + —A—uin(k) + Ifzr(k)

Since the FIR filter could not be implemented in the
program, the input signal u;, was set to zero.
This yields

, N By(1+ag™®) .
ZOut(]‘) = A(l T aq‘A) + QBfaq—Aus(A)

The regressor vector then became
‘PT(k) = [iout(k—1).. Aout(k —3)
iout(k —A) .- igut(k — A~ 3)
us(k—1).. . us(k—3)
us(b— A —1).. . us(k — A —3)]
and the vector of estimated parameters

o -

where

apy = @

aps = alay + 2byso)
aps = a(as+2bs1)
aps = a(az+ 2by2)
bgpo = abgo

bgpr = abg:

bgpz = abya

Here, it is assumed that the delay A is known. In
reality, this parameter has to be found out through
an initial test. If there are several reflections, more
parameters have to be estimated. As long as there
is no reflections contributing to the signals delayed
between one and three samples, the polynomials A
and B, can be estimated.

Tt can be seen that not all of the parameters have
to be estimated. The parameters bgp1—bgps can be
calculated from apy—aps and bgo—bys. This is not
used in the simulations here. In reality, the factors
a and A depend on the frequency and the simple
analytical connections between the parameters do
not exist.

A simplified version of the RLS (equation 5.1) was
used for estimation. This is called the Stochastic ap-
prozimation algorithm [Astrom89]. Following equa-
tion can be stated, if this algorithm is extended with
a forgetting factor.

6(k) = (k—1)+P(k)p(k) (iout(®) — #” ()O(k — 1)

[al...ag api...apa bgo...bgg bgpo...bgpg]
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where

2 -1
P(k) = (E A’“”W(Z’)@(U)

i=1

The benefit of this method is that the covariance
matrix becomes a scalar, which, as mentioned be-
fore, requires less computation. The disadvantage is
slower convergence. To make it faster and to ensure
convergence, covariance resetting is used. Because
of different size of the signals iyt and u,, different
initial values of the covariance (P) are used for the
two signals.

The result is shown in figure 5.7. Initially, By has
a double zero at 0.98 and B; has a double zero at
0.992. The denominator A(q) is set to the same as
the one computed in chapter 3, except for one of
the parameters (a1), which has been changed from
—92.7665 to —2.760. The forgetting factor is set to
0.999 and the initial covariances to 0.1 and 1000 for
us and igyt, respectively.

Estimating the parameters in G(g) and tha net, no controller

ap1 - apd 1107 bp1 - bp3
2
0-
-2
= B e
0 02 0.6 1 0 02 0.6 1
2.1¢73, b0 - b2 al-a3
2
0.
1 2.
240 ——————
o 02 0.6 1 0 02 0.6 1
2106 e=iout-fitheta 1107 fout
0.
*"“’! —— -t LR
¢ 02 0.6 1 0.98 0.99 1

Figure 5.7: The estimation of G(g) with reflections
added. The input to the system is only white Gaus-
sian noise in the signal u,. The time is given in
seconds.

Even small changes in the parameters make large
changes in the locations of the poles and zeroes. In
figure 5.8, the absolute values of the poles and ze-
roes are shown. To make it easier to see the con-
vergence. A faster convergence can be obtained if
the initial covariance is increased, but then the es-
timates are more noisy, especially before all param-
eters have come close to their correct values.

As mentioned before, the number of parameters
needed to describe a net are, in reality, large. Tests
were made to simplify the implemented estimator.
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Instead of using all parameters to model the influ-
ence of the reflected signal, only one or two were
used, for example ap; and iqyt(k — A). The result
was not encouraging, though. The bias in A and B,
reminded.

Another way to avoid the large amount of estimated
parameters can be to use the ELS algorithm, de-
scribed earlier. Instead of using the delayed igyt
as regressor in the estimator, the error between the
true output and the estimated one might be used.
This idea has not been tested.
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0.9951 q
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.8: The absolute values of the poles and
zeroes. Bj(q) is calculated through the estimates
apy to apy. Time is given in seconds.

5.2 Estimating Both G(¢) and
H{(q)

No Reflections From the Transmission Net

In this section, the signal u;,, in figure 5.1 was mea-
sured and included. Just like in chapter 4, u;;, was
a sum of sinusoidals with frequencies 300, 600, 1200,
and 1800 Hz. Even the amplitudes were set to the
same values (2, 5, 5, and 5 respectively). The white
Gaussian noise was still added to signal d.

The stochastic approximation algorithm with for-
getting factor was used as before, but the regres-
sor and the vector of estimated parameters were ex-
tended with
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ol (k) = [uin(k ~1)...ujp(k—3)
uig (b — A = 1) up (k— A = 3)]
é)T funed [bh() - .bhg bhpl . .bhp3]

As before, there are analytical connections between
the first and the last three parameters in the vector
©T . These are

bwpo = abno
brpr = abp
bhp2 = abps

Firstly, the estimator was tested without the reflec-
tions. The result of this simulation is shown in fig-
ures 5.9 and 5.10. Some of the parameters and most
of the initial values are changed compared to the
previous simulations and some new parameters have

been added:

e The forgetting factor is changed from 0.999 to
0.9995 to decrease the ripple.

e The initial value of By is such that there is one
zero in 0.99 and one in 0.98.

e The initial covariances are Pio
0.001 and P,, = 6 X 104

" = 10, Pui =

u n

o A(q) is initialized to the computed values.

Estimating the parameters in G(q) and H(g), no reflections

2107 bg0-bg2 al-ad
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210 bho-bh2 N 1.107%, e=lout-fitheta

o 0.
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Figure 5.9: The estimated parameters, the error n
the estimator, and the output current. A, By, and
B, are estimated. No reflections are added. The
time is given in seconds.

If the convergence of the poles and zeroes is stud-
ied in figure 5.10, it is obvious that B, converges
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Figure 5.10: The absolute values of poles and zeroes
when no reflections are present.

much slower than the other polynomials. A larger
initial covariance can, however, not be used. This
would increase the ripple between 0.2 and 2.3 sec-
onds, which probably would slow down convergence.
A too small initial covariance will of course also give
a slow convergence and a proper value has to be
found by tests.

Including the Reflections

Finally, the reflections were included. The result
was much of the same as before. The convergence
was maybe a little slower in these simulations. In fig-
ure 5.11, the parameters are shown, while figure 5.12
contains the absolute values of the poles and zeroes
in the transfer functions G(q), H(q), and F'(g). The
final value after 5 seconds are given in table 5.1. The
initial values of the covariances were

P; = 1000
out

o, = 0.02
n

p,. = 0001

and the covariance resetting time was 0.1 seconds.
Just as in other simulations in this chapter, the ini-
tial values of the parameters were a little different
from the computed ones. The polynomial B, has
a double zero in 0.98, By, has one zero in 0.98 and
one in 0.97, and finally By has a double zero in 0.99.
The polynomial A is exactly as calculated.
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Notice the initial part in figure 5.12. The poles and
zeroes have a tendency to move when the covari-
ances are reset. Maybe, the values of the reset co-
variance (the same values as the initial ones) are too
big. Smaller values would, however, slow down the
convergence rate as discussed before.

Estimating the parameters in G(qg), H(q) and the net
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Figure 5.11: The estimated parameters, the error in
the estimator, and the output current. The whole
system is estimated. The time is given in seconds.
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Figure 5.12: The absolute values of the poles and

zeroes when the whole system is estimated.
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estimated calculated
a1 —2.76447 —2.7665
asy 2.55341 2.5541
as —0.78719 —0.7864

byo | 491841 x 10T 4.909 x 107*
by | —9.83714x 107*  —9.819 x 107*
byy | 4.92558 x 107*  4.910 x 10~*
bro | 1.66863x 10-%  1.734x107*
bpi | —3.3830x 107*  3.429 x 107*
bpy | 1.74951x 107%  1.733 x 107*

byo —0.210076 —0.2126
b1 0.416075 0.4239
bra —0.20717 —0.2126
a 0.80201 0.8

Table 5.1: Estimated parameters after 10 seconds.
All transfer functions in the system are estimated.

5.3 Conclusions

The simulations in this chapter clearly show that
it is possible to estimate the transfer functions of
this simplified system. This is done even if a re-
flection from the transmission net is present. How
this method would work in reality is, however, un-
certain. A major problem is the reflections from the
transmission net. As shown in this chapter, it is im-
portant to model the reflections. In reality this can
be very difficult, due to a very complex net.

The algorithm used is basically the least-mean-
squares (LMS) in its recursive form (recursive least-
mean-squares, RLS). In the first simulation, the full
covariance matrix was used, while in the later part
this matrix was simplified using a scalar. This al-
gorithm is called the Stochastic approzimation algo-
rithm. In both algorithms, forgetting factors were
used. When simplifying the covariance matrix to
a scalar, the convergence rate is decreased to the
benefit of a reduction in computer load. The RLS-
algorithm is, of course, to prefer if the computer
load is not too large. To increase the convergence
rate when the Stochastic approximation rule is used,
stochastic resetting is introduced.

The program used when the last simulation was
done is shown in appendix B.

25




26 SECRC/KL/TR-December 14, 1993

Chapter 6

Feedback Control

In this chapter, a feedback concept is developed
and slightly tested. This concept uses an RST-
controller, which has a pole placement design. In
section 6.1, the system is implemented without any
estimator; this to only study the performance of the
controller. The transfer functions needed in the de-
sign were the ones computed earlier. Finally, in
section 6.1.3 the estimator and the controller are
runing simultaneously, which results in an indirect
self-tuning regulator.

6.1 Feedback Using Pole Place-
ment Design

When we earlier applied the MIT rule, the con-
troller designed used was only feed-forward. This
is a very good concept to annihilate known distur-
bances. There is one disturbance that can not be
measured, though: the reflection from the transmis-
sion net i,. If the estimator in the previous chapter
is used, 4, can be calculated and feedforward can
be used. The drawback is that if the signal from
the net contains anything but the modeled reflec-
tions, this part will not be annihilated. Therefore, a
feedback design is preferred. One problem with us-
ing feedback are delays in the measurement equip-
ments. If the signal from the previous period is used,
all disturbances having a period different from 1/50
seconds will be undamped. These signals will also
create new disturbances throughout the controller,
if no precautions are taken. The alternative is to
use prediction. This is, however, not implemented
in this application.

6.1.1 Pole Placement Design

A standard RST-control is chosen to control this
deterministic system. This is shown with the sys-
tem connected in figure 6.1. To create the controller
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(polynomials R, S and T'), the diophantine equation
Aopen R+ BopenS = ngenAoAm

is solved. In this report, the performance of the
transfer function G(q) is studied in order to design
the controller. This gives Aopen = A, Bopen =
By, and ngen = B;, if the reflections from the
transmission net not are considered in the design.
B; is the part of By allowed to be canceled by closed
loop poles. In this case B;' = 1, because the roots
of By are close to or outside the unit circle. If these
are canceled by the controller, the closed loop would
be unstable.

A,, is the denominator of the required closed loop.
The order of A,, have to be greater than the order
of By, if the solution of the pole-placement design is
to be causal [Astrém90, chapter 10]. In this simu-
lations, the order is chosen to 3. Its performance is
given by the continuous parameters wmi, Wmz, and
¢ in the polynomial:

Am(5) = (s + wm1)(8? + 2wmalms + Wma)

This is sampled in the SIMNON program and the
discrete polynomial is then used. The values used
are wmy = 1.3 x 10% rad/s, wma = 100 rad/s and
¢m = 0.7, which makes a band-pass filter out of
the closed loop from u, to igyt. Comments regard-
ing the choice of parameters are given later in the
report, for example, together with the results in sec-
tion 6.1.2.

The polynomial 4, is an observer polynomial, which
in this case (and usually) is chosen to be a lit-
tle faster than the closed loop. The order of A,
is chosen to 2, to get a causal solution to the de-
sign [Astrom90, chapter 10]. This is also given in
the continuous time scale as

Ao(s) = (5% + 2w,(s + w,)
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Figure 6.1: The whole system when the estimator and an RST-controller is included.

and then sampled in the program. The values used
are w, = 2 x 10* rad/s and ¢ = 0.9.

The transfer function B,/(AmA,) is shown in fig-
ure 6.2. Notice that this is the function describing
how the signal u, transfers to gyt and not ujy to
iout- In other words, it changes the controller fune-
tion G(s), but does not improve H(s), which is re-
ally wanted. To do this, the polynomials Ap, and
A, are to be chosen differently. This is not done in
this report, but is an extension worth trying.

Bg/(AR+BgS)

5
b
T

Magnitude

L L L
10 10 10 10 10 10

=500~

Phase [deg]

~100 '2

. .
10 10 10 10° 10 10

Frequency [Hz]

Figure 6.2: The transfer function for the signal u,
t0 iyt in closed loop. The frequency is given in Hz.

The R and S polynomials are chosen as follows:

¢ +qri+ra
q%so + gs1 + 52

R =
S =

They have equal degrees, which gives no time delays
in the controller. The diophantine equation is now
solved. When running the estimator, the equation
has to be solved for each sample, each time with a
new A and B, as input.

To prevent windup in the controller when the con-
trol signal reaches its limits, anti-reset windup was
installed. This is done by changing the controller to

Aovs = Tur — Sigyt + (Ao — R)us

where
Uit Ys = Yimit
Us = § Vs —Uimit < ¥s < Ulimit
~Uimit Ys < ~Ulimit

The use of this anti-reset windup is not shown in
these simulations, but is definitely needed in reality.

6.1.2 The Result Without Estimator

To be able to study the behaviour of the controller,
no estimation could be present. The transfer func-
tions used in the controller are the ones calculated
in chapter 3.

The signal ujy, is exactly the same as before, that is,
the sum of sinusoidals.
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RST - controller, G(q),H(q) and the net as calc; no refl
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Figure 6.3: The RST-controller when no reflections
are added. The controller is started at ¢ = 0.2 sec-
onds. The time axes are given in seconds. Note the
different time scales.
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Figure 6.4: The power spectrum of the output cur-
rent iyt with the RST-controller implemented.

If the controller is started without the reflections in-
cluded, the result is as shown in figures 6.3 and 6.4.
The power spectrum is to be compared to figure 4.2.
The conclusion is that the controller annihilated the
signals with a factor 220 at 300 Hz down to 3 at
1800 Hz. To understand how the controller changes
the transfer function between u;, and i,y¢, see fig-
ure 6.5, can be studied. It can clearly be seen that
frequencies between 20 and 2000 Hz are damped in
close loop and that the performance of the controller
is satisfying up to about 1500 Hz.
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H(q) and (Bh*R)/(AR+BgS)

10

Figure 6.5: The transfer function between u;, and
iout, with (- - ) and without (*—’) controller. The
frequency axes are given in Hz.

The model of the net was connected to the system in
the next test. The damping factor @ in the model of
the net is, however, 0.7. This is because the former
value of 0.8 gave an unstable system. Why this hap-
pened, is not clear. It might depend on the fact that
the reflections not were considered in the pole place-
ment design. Another theory is that the model of
the net maybe is too simple to work without trouble.
Tests done with only the system and the model of
the transmission net added showed that instability
occurred even when a was less than one. Instabil-
ity is impossible in reality, because a < 1 naturally,
which shows that there is something wrong with the
model. Lack of time, however, made it impossible
to examine the model further, but if more work is
to be done in this field, this should be tested.

The result became as shown in figures 6.6 and 6.7,
when the transmission net was connected. The
power spectrum is to be compared to figure 4.4 in
chapter 4, even if the factor a in this figure is 0.8.
The difference in power spectra in the two cases is
very small and not noticeable at the scales used here.
The conclusion is that the result is much of the same
as without reflections.

The parameters to design A,, and 4, used in these
simulations are the same as the ones given before.
Maybe, these could given other values to get an even
better controller. No big efforts have been made to
optimize the controller.

One parameter that seems to have a strange value is
Wm2. In the simulation, this is chosen to 100 rad/s,
that is, about 16 Hz. This is rather a low frequency,
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RST - controller, G(q},H(q) and the net as calc; refia=0.7
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Figure 6.6: Control signal and output current if the
RST-controller is used with reflections added. The
controller was started at ¢t = 0.2 seconds. The time
axes are given in seconds. Note the different time
scales.
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Figure 6.7: The power spectrum of the output cur-
rent with reflections added.

considering that only disturbances in the range 300~
5000 Hz are to be removed. Tests showed, however,
that the system became unstable if a larger value of
wma were used, without changing other parameters.
Why this happened is not examined in this report.

At the end of chapter 4, there was a problem if low
frequencies entered the controller: this would give
the control signal a bias not noticeable in the output
current. Finally, the control signal reached its lim-
its and then iyt became larger. The same problem
arose In these simulations. This can, for example,
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be seen in figure 6.8, where u; has a low frequency
part that is not noticed in 4yt In this simulation,
reflections are added (without reflections, no prob-
lem was noticed). This is explained by studying how
the signals from wu;;, are transferred to us in closed
loop with and without the net connected (see fig-
ure 6.9). When the transmission net is connected,
the low frequencies are amplified a factor 10 more
than without the net. If there somehow are any low
frequencies present in u;,), these pose a bigger prob-
lem with the net connected.

AST - controller, G(q),H(q) and the net as calc; refl:a=0.7

us us
10: 10
[ 0
T 1
0 2 4 6 8 10 9.99 9994 9.998
iout fout
0.01 0.01
PN
-0.01 ~0.01
| S L e e E—
0 2 4 6 8 10 9.99 9.994 9.998

Figure 6.8: The RST-controller run for a longer
time. The signal u;,, is created in a continuous sys-
tem. The controller was started at ¢ = 0.2 seconds.
Time is given in seconds.

Uin to Us, with and without reflections
T T T

—10

Figure 6.9: The transfer function that describes how
the signal u;;, are transferred to u;, without reflec-
tions (“~”) and with reflections added (“- -”). The

frequency is given in Hz.
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Where do the low frequencies come from, then? In
reality, it is natural to have them, because the filter
to annihilate them is not ideal. This is, however,
not the case in the simulations. The only added sig-
nals are the four sinusoidals with frequencies 300,
600, 1200, and 1800 Hz. The answer to the question
is that it is errors in the computations that gener-
ates the low frequency signals. If the system that
created the signal u;,, is implemented as a discrete
system instead of a continuous, like before, the prob-
lem would disappear. This is probably a reminder of
the numerical problems or synchronization problem
that may occur in programs, when a high sample
rate is used in a rather slow system.

As mentioned in chapter 4, some kind of watchdog
is needed to prevent the control signal from getting
biased. How this is to be implemented is, however,
not examined here.

6.1.3 The Result With the Estimator
Included

To introduce an adaptive concept in the RST-
controller, the estimator in chapter 5 and the con-
troller were run simultaneously. This concept is usu-
ally named ‘indirect self-tuning regulator’. The esti-
mator estimates all transfer functions in the system,
but this particular regulator only uses G(g¢). In each
sample, the new values of the estimated parameters
are used in the design of the controller. The initial
values of the parameters in the estimator are all the
calculated ones.

AST - controller, G(q),H(q) and the net are estimated; refl:a=0.7

baC - bg2 al-ad3

rio? 2

T P — 2
—— ey
0 2 4 & 3 [} 2 4 6 8

2107 bh0 - bh2 us

10;
T — - ::m
0 2 4 [ 8 0 2 4 [ L]

Figure 6.10: The RST-controller and the estimator
run simultaneously. The controller was started at
t = 4 seconds. Time is given in seconds.

The first simulation used exactly the same controller
as in section 6.1.2. The result is shown in figures 6.10
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Figure 6.11: The absolute values of the estimated
parameters. Time is given in seconds.

and 6.11. If the latter figure is studied, the conclu-
sion can be drawn that the estimator still worked.
The controller, however, did not work satisfactionly.
This can be seen in figure 6.10. The control signal
got a bias at once after the start of the controller.
This behaviour is, in this case, related to an insta-
bility in the controller. The zeroes of the denom-
inator, R(q), are computed to be 1.011 and 0.229.
When the calculated values of G(¢) were used, the
controller was stable but even a little difference be-
tween the computed and estimated values made it
unstable. To stabilize the controller, different Ay, (g)
and A,(q) are to be chosen. This is done in the
last simulation. The new values are wy,, = 300,
Wm, = 9000, and w, = 13000 rad/s; in other words,
a narrowing of the range of frequencies in which to
control. Now the controller was stable, which can
be seen in figure 6.12; unfortunately, the controller
had a worse performance. This is obvious on ex-
amining the power spectrum of the output current
in figure 6.13. The signal with the frequency of
1200 Hz was almost not damped at all compared
to figure 4.4, where no controller was implemented.
The reason behind this behaviour is not examined
and a lot more work needs to be done.
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RST - contraller, G{g),H{q) and the net are estimated; refla=0.7
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Figure 6.12: The controller and the estimator run si-
multaneously. The new A, (g) and A,(q) were used
and the controller was started at ¢ = 4 seconds.
Time is given in seconds.
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Figure 6.13: The power spectrum of the output cur-
rent with the new controller.

6.2 Conclusions

In this chapter a feedback control concept is par-
tially tested. The controller is designed (using
Am(q) and A,(q)) to control in a wide range of fre-
quencies. This worked rather well when the calcu-
lated values of the parameters in G(gq) were used.
With present bandwidth to control within, the an-
nihilation factor of the disturbances are between 220
for 300 Hz down to 3 for 1800 Hz. If more tests had
been done with other choices of bandwidth, better
performance could probably have been obtained.

However, when the estimated parameters in G(q)
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were used in section 6.1.3, the controller was unsta-
ble. The range of frequencies to control within had
to be decreased to make the controller stable again.
A lot more work is necessary before a proper concept
can be obtained.

An important remark is the need of different safety
nets, if this concept is to be useful. For example, is
the need of resetting in the controller to prevent us
to get biased obvious. Otherwise, the control sig-
nal reaches its limit and the output current grows.
When the estimation and control is done simulta-
neously, there is also a need for a safety net. The
variation in the estimated parameters may result in
an unstable controller, if not precaution is taken.

The final results of the simulations in this chapter
show the difficulties to design a controller that work
properly in a wide range of frequencies. Perhaps,
other concepts using several controllers, should be
considered. One special concept is to have one con-
troller for each frequence of disturbance.

The program used in the last simulation is shown in
appendix B.
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Chapter 7
Conclusions

This work has resulted in a couple of controllers and
estimators, summarized in section 7.1. During the
work on this project, several ideas arose that not
were tested. Two of these ideas, not mentioned be-
fore in the report, are introduced in section 7.2. Fi-
nally, section 7.3 has comments about the tools used
in the work.

7.1 Conclusion

The development of a well-performing adaptive con-
troller is a large project. The results in this re-
port are a step in the direction of an adaptive con-
cept. The simulations show that the possibility ex-
ists. The fact that a simplified system is used is no
drawback to the method, since the same problems
arise as in the full system.

The Feedforward Concept

In principle, two different control concepts were
tested in this report. The first was a feedforward
controller with adaptive parameters, in which the
MIT rule was employed to adjust the parameters.
The error to minimize was the output current from
the plant and the measured current was assumed
to be filtered. In other words, only the signals to
be removed entered the control system. The results
of using this method were very good in this sim-
plified system. If the parameters in the estimator
were accurate, the disturbances were annihilated by
afactor of 1500 or more. This positive result was ob-
tained even when the model of the transmission net
was connected. Notice that the transmission line do
not have to be estimated in this concept, something
which makes this application of the MIT rule very
interesting. In many other concepts, the dynam-
ics of the net have to be regarded. The drawback
to this method is that the disturbances have to be
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measured. In reality, this is not possible, though.
However, an approximate value can be obtained, if
one or more signals are measured. More investiga-
tions are needed in this area.

The Feedback Concept

The second concept is a feedback controller using
pole placement design. The denominator of the
closed system (A,,) and the observer polynomial
(A,) are chosen and determines the properties of the
controller. In these tests, A,, and A, were chosen to
create a controller that work in a wide range of fre-
quencies. This concept is only partially tested. The
result when the calculated values of A(q) and By(q)
were used, was an annihilation of the disturbances a
factor 220 for 300 Hz down to 3 for 1800 Hz. The re-
sult was not as good as for the feedforward concept,
but can be seen as a complement to this. The de-
sign of the controller made in this application, was
not the optimal one and better performance is per-
haps possible to obtain. One test was then made by
running the controller and the estimator simultane-
ously. Each sample the estimated parameters were
used in the design of the controller. The result in
this single test was not satisfying. With the same
control bandwidth as before, the controller was un-
stable. A decrease in the bandwidth was necessary
to obtain stability. The decrease in bandwidth gave,
however, less annihilation of the disturbances and is
no solution to the problem. This performance show
the difficulties when a single controller is used in
a wide range of frequencies. Other concepts using
several controllers is probably preferable.

The Estimation

This report also treats the estimation of all the
transfer functions in the system. The algorithms
used are the recursive least-mean-squares algorithm




ABB Corporate Research

and the stochastic approximation algorithm. The
results of these simulations show that it is possible
to estimate G(q), H(q), F(¢), and the damping fac-
tor a, in this simplified model, provided the signals
are persistently exciting. One major problem of im-
plementing this estimator in reality are reflections
from the transmission net. To prevent bias in the
other parameters, the dynamics of the net have to
be modeled. In this report, the model of the net was
simplified and the number of parameters to estimate
due to reflections was small. In reality, however, the
transmission net is very complex and a higher-order
model has to be used. Whether this is possible to
estimate, further tests have to show.

7.2 Extensions

During this project, many ideas arose that were not
tested. In this section, two of these are mentioned.

The Use of MIT Rule In a Feedback Concept

This is an idea not mentioned before in this report.
In the same way as the feedforward rule, the MIT
rule can be used in a feedback concept to get an
adaptive controller combining the good properties
of the feedback controller with the MIT rule. In
other words, this is a system where the transmis-
sion net probably not have to be modeled, yet all
the advantages of feedback may be used. To clearly
show the idea, a simple example is given. An ordi-
nary feedback controller is shown in figure 7.1.

us + + jout

Hfb

Figure 7.1: An ordinary feedback controller.
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Proportional feedback is used, that is,
Hp, =-K

The expression of the output current in closed loop

will be
Bg

lout = muin
if the i, = 0. Differentiating this yields
digut _ Bg

0K~ (A+KB,)?

Now the MIT rule can be used, exactly as in chap-
ter 4. Other transfer functions Hygp, can of course
be chosen. Computations are done in the same way.
Problems may occur when ¢, # 0. It is not exam-
ined if the transmission net have to be modeled or
not. This is a subject for further investigations.

Feedforward From i,

The model of the transmission net was estimated in
chapter 5. This makes it possible to use this model
to calculate the part from the net in the output cur-
rent. This can then be used in a feedforward con-
cept. The principle is shown in figure 7.2. The ideal
transfer function Hy is

By

where By and B, are the numerators in the transfer
functions G(g) and F'(q).

The result of a feedforward like this depends mainly
on the quality of the model of the transmission net.
Problems will probably occur if this is to be used in
reality, where the net is very complex.
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uin ir
H F
us + + jout
G + +’
/'\r Calcul f
1 alculation o
Hif e

the reflection

Figure 7.2: The part in iy due to reflections in the
transmission net is calculated. Then a feedforward
controller is used.

7.3 Tools

There are some aspects of the working tools that de-
mand comments. The tools used are the SIMNON
simulation program and the MATLAB mathemati-
cal program.

SIMNON

This program has both positive and negative as-
pects.

First, the negative ones. The features are almost
none. Missing functions needed from SIMNON dur-
ing this particular work were for example vectors
and matrices. Also, functions to calculate poles
and zeroes had been to preferable to have. An-
other problem during the simulations was the func-
tion DELAY (a,t). This is used to delay the signal
a the time ¢. To do this, some kind of interpolation
is used. Unfortunately, the accuracy of the inter-
polated signal was not always good enough. Other
numerical problem also occurred, but these are gen-
eral for most simulators. It is probably a result of a
rather slow system sampled with a rather high fre-
quency.

The positive aspects of SIMNON is its simplicity. It
is rather easy to learn and to use.
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MATLAB

This program was used to calculate and draw the
transfer functions. It was also used to create the
power spectra in chapter 4 and 6. MATLAB worked
very well in most cases.

A positive aspect of MATLAB is the possibility to
create functions. Many functions related to control
design have already been written at the Department
of Automatic Control, Lund Institute of Technology.
These were often used and that made the work eas-
ier.
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Appendix A

Appendix

A.1 The model of the net

Zg 20

EO

EQT U U lUr

Figure A.1: Two ordinary two-terminal networks
connected to each other.

For two ordinary two-terminal networks connected
to each other as in figure A.1, following equations
can be formulated.

Z Z,
= — e 1
Ey 7, + 7 <Eg+ZOU) (A1)
Fo=E,—i7, (A.2)

Compare these equations with the true equations
for a transmission line (see figure A.2). The equa-
tion A.4 and the basic theory is found in [Johnson].

_ 2o Eg
T Zo+ Zy 1 k,.kge—z“”

Eo (1+ ke ") (A4)
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y73
4

A0S

| ) i
#

Figure A.2: A transmission line.

7= R+ jwl
*~VQ+jwC

7= V(R +jwL)(G + jwC)

where

., _ Zr— 20
" Zr+Zo
L =2
g—Zg+Z0

The guantities Zo and v are respectively, the char-
acteristic impedance and the propagation constant
of the line.

Now the factor e~?? is approximated with a damp-
ing factor (b) and a delay (A), i.e

e—Z’yI — bq—A

Then the equation A.4 is rewritten in several steps
to

Zg

Ey = ——
0 Zo+ 7,

(Ey + Egkrbg™ %+
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Zo+ 2
Eokrlcgbq_ALt—g>

2o
But
k Zg—i—Zg . Zg—Zo
Yz 4o
gives that
By= ——— E kb Eok.b e
0 Zg—'-ZO <Eg+ ghr0gq + Lo q ZQ
(A.5)

Now we want to have the to systems identically.
This means that equation A.1 is to be the same as
equation A.b. The result is

Zy Z, - ZO>

U, = kpbg™® (—E + Ey
T r Zg g Zg

Equation A.2 gives that

U, = kb (Ey + Zoi)

and if we use equation A.3 we will get

Uy = kybg™2 (Uy + 2Z0i)

i.e., if we rewrite it

kepbg™2
U = ———2741
P T kb Y
If we want to express the line with a current source
parallel with the load 7 instead of a voltage source
serial with the load, it is no problem. The current
will in this case be

kpbg=2

i, =

We can see that k, is factor close to —1, because
7o > Zgr. This mean that equation A.6 can be
written as

—-A

. —aq .
1y = m?l (A7)

and if we rewrite it one last time it will be like

in(t) = —a (ir(t — A) + 2i(t — A)) (A.8)

where 0 < a < < 1because 0 < b< 1

kr
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A.2 Extend the Model of the
Net

When creating the model of the transmission net in
appendix A.l, some assumptions were made. The
most important were made when the factor a and
delay A were assumed to be independent of the fre-
quency. If the factor v in e 217 is rewritten as

y=a+if
where
a=+vRG—-w2LC
and

B =+vVwLG+wRC

the factor e~ %" may be written as

e—Zl’y — e—-Elae—]Zlﬁ

Tt is then obvious that b = e=2'® and A = —2If are
functions of the frequency. The relation between b

and a 1s
a=kpb

where
— Zg — Zo

]“7‘ - Zg + ZO

The variations of b and the impedances Z; and Zp
with frequency, make the factor a dependent on the
frequency as well. Consequently, to get a more accu
rate model of the transmission net, the model of the
transmission net has to be extended with @ and A
that are functions of the frequency. However, this is
not examined in this report.
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A.3 The Extended
Least-Squares Algorithm

The principle of the extended least square algorithm
(ELS) is described in this section.
Consider the model

A(g)y(t) = Bg)u(t) + C(g)e(t) (A.9)

where e(t) is white Gaussian noise. The problem
with estimation of this model is that you can’t mea-
sure the noise e(¢). To create an regression model
the ap proximation

e(t) = (t) = y(t) — ¢7O(t — 1)

where
@(t) = [al...an blbn Cl...Cn]
and
T (1) = [~y)... —ylt—n+1) ult)...

ult—n+1) e)... et —n+1)]

must be done. With this approximation, the ordi-
nary least square algorithm can b e applied. For
example the simplified (and slower) algorithm can
be used. This i s given by

O@t) = O(t — 1) + P(1)p(t — De(t)

Py =Pt =1+t - e’ (t—1)

If the model is like

y(t) = i%u(t) + —g%e(t)

instead of the one in equation A.9 the parameters
for this model ¢ an be calculated in the same way.
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Appendix B

Appendix
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In this chapter is the SIMNON code used in this report shown. The first section contains programs that were
common for all simulations. Then the ones specific for the MIT simulation in chapter 4 are shown. These are shown
in section B.2. There are also programs that only are common in the simulations done in the chapters 5 and 6.
These are shown in section B.3. Finally the programs used specific for chapter 5 and 6 are shown in sections B.4

and B.5, respectively.

B.1 Programs Common For All Simulations

The SIMNON code identical in all simulations is shown in this chapter. The modules are ‘noise’, ‘refl’ and ‘sys’.

CONTINUQUS SYSTEM sys

" A model of a HVDC-station

" Simulate the system with the inputs Uin,Us and i3.

" The output is iout.

" To prevent numerical problems in the integration, the
" states have to be approximately equal size. Therefore
" is the factor ’intfact’ used.

STATE iLi iL2 Uc

DER diL1 diL2 dUc

INPUT Uin Us i3 " Inputs
OUTPUT iout " Dutput
iout=iL1-iL2

diL1=-(RL/L1)#iL1+RL*iL2/L1+Uin/L1~-RL*i3/L1

diL2=(RL/L2) *iL1~ (RL+R) *iL.2/L2-Uc/ (intfact*L2) —-Us/L2+RL#13/L2

dUc=intfact*iL2/C

R:1
RL:320

L1:0.2000 " Parameters that give a resonance
L2:70.36E-3 " at 600 Hz between Uin and iout.
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C:1E-6
intfact:3E-3

END
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DISCRETE SYSTEM refl

" Simulates the reflection from the line
" The delay used is 20 samples.

" Parameter to vary: rfact

STATE irl ir2 ir3 ird4 ir5 iré ir7 ir8 ir9 ir10
NEW niril nir2 nir3 nir4 nir5 nir6é nir7 nir8 nir® niri0

STATE irll iri12 ir13 ir14 iri15s irl6 ir17 ir18 ir19 ir20 ir2i
NEW nirii niri?2 niri13 niri4 niri5 niri6é nirl7 niri18 nir19 nir20 nir21
STATE i1 4i2 i3 i4 i5 i6 i7 i8 i9 110
NEW nil ni2 ni3 ni4 nib5 ni6 ni7 ni8 ni9 nilod

STATE i11 i12 i13 i14 i15 ii6 117 118 119 1i20
NEW nill nii12 ni13 ni14 nil5 nil6 nil7 nil18 nil9 ni20

TIME t " Time
TSAMP ts

INPUT iout " Input
OUTPUT irefl " Dutput
ioutd=i20

irefld=ir20

irefl=-rfactor*(2*ioutd+irefld) " Calculations

nirl=irefl

nir2=irt

nir3=ir?2

nird=ir3

nirS=ir4

niré=irb

nir7=ir6

nir8=ir7

nir9=irs8

nir10=ir9

nir1i=ir10 " Updating the states
niri2=irii " of reflected current.
niri13=ir12

nirl4=iri13

niris=iri4

niri6=ir15

nirl7=ir16

niri8=iri7

nir19=ir18
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nir20=ir19
nir21=ir20

nil=iout
ni2=il
ni3=i2
ni4=i3
nib=i4
ni6é=ib5
ni7=i6
nig8=i7
ni9=is8
nil0=i9
nil1=i10
nii2=i11
nil3=i12
nil4=i13
nilb=i14
nilé6=i15
nil7=i16
nii8=il7
nil9=i18
ni20=i19

ts=t+th

h:39.0625000E-6
rfactor:0.8

END
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" Updating the states
" of output current

" Update the time

" Parameters
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DISCRETE SYSTEM noise

" Creates white Gaussian

" the deviation "stdev"

TIME t
TSAMP ts

QUTPUT d
d=stdev*NORM(t)+tmean
ts=t+h
h:39.0625000E-6
mean:0

stdev:0

END

1"

]

"

noise with mean value "mean" and

Time

Output
Calculations

Update the time

Parameters
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B.2 MIT Program

SECRC/KL/TR-December 14, 1993

The SIMNON program used in chapter 4, when the MIT rule was used.

MACRD hvdct

" Feedforward controller using MIT estimator.

SYST sys signal fforward festim refl2 noise connect

LET stoptime=3
,stime=2,99
,storet=2.8
,Ssteptime=0.01
,hcent=39.062bE-6

PAR ulim:15
,hlfforward] :hcent
,h[festim] :hcent
,h[refl] :hcent
,h[noise] :hcent
,AO[signall:2
,Al1[signall:5
,A2[signall:5
,A3[signall:5
,step[signall:0
,stept[signall :steptime
,f0[signall:6
,f1[signall:12
,f2[signall: 24
,f3[signall: 36
,styr[fforward] : 1
,gamnak [festim]:0.2
,gammaaf [festim]:0.01
,gammap [festim]:0.05
,alfak[festim]:0.1
,alfaalfestim]:0.1
,alfap[festim]:0.1
,betak[festim] : 1E-3
,betaaf[festim] :5E-4
,betap[festin] :2E-4
,bg0[festim] :0.4909E-3
,bgl[festin] :-0.9819E-3
,bg2[festin] :0.4910E-3
,rfactor[refl]:0.8
,stdevinoise]:0

INIT ki1[festim]l:-0.3532
,afl1[festim]:1.977
,pl[festin]:0.99
,iL1[sys]:=1.2176E-2

Declaration of constants
in this macro

Sets the sample rate

The amplitudes of the
simulated disturbances

Can have a step in the
input signal

The frequence of the
disturbances

Starts the controller

Estimating gains

To prevent division by zero

Limits the step in estimates

Initial value of Bg

Reflection~factor
Deviation of the noise
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,iL2[sys]:-1.20608E-2 " Initial values
,Uc[sys]:-6.00927E-3

,Uin1[fforward] :-5.95631

,Uin2[fforward] :-9.35805

,Usi[fforward]:0.89354

,Us2[fforward] :1.82396

STORE Uinlsys] iout[sys] Us[fforward] k[festim] af[festim] p[festim]
SPLIT 3 2

AREA 1 1

AXES H stime stoptime V -20 20
TEXT 'Uin’

PLOT Uin[sys]

SIMU 0 stoptime /plotlist hcent " Simulates and plots
AREA 1 2

AXES H stime stoptime V -16 16
SHOW Us[fforward] /plotlist

TEXT °Us’

AREA 2 1

AXES H stime stoptime V -2E-3 2E-3
SHOW iout[sys] /plotlist

TEXT ’iout’

AREA 2 2

AXES H 0 stoptime V -0.4 -0.3

SHOW kifestim] /plotlist

TEXT ’Estimated parameter k’

AREA 3 1

AXES H 0 stoptime V 1.975 1.985
SHOW af[festim] /plotlist

TEXT ’Estimated parameter af’

AREA 3 2

AXES H 0 stoptime V 0.9 1.1

SHOW plfestim] /plotlist

TEXT ’Estimated parameter p’

MARK A 2 15

MARK "feedforward with reflections, delta=20, a=0.8, estimates 3 parameters.

EXPORT plotlist < plotlist 1000 storet /0 " Transforms the file

END
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DISCRETE SYSTEM festim

" A estimator to estimate k,af and p in the feedforward-controller.
" Uses the modified MIT-rule(normalized and saturation function).

Y When G(q) is needed in the calculations the analytical values

" are used.

" Parameters: gammak,gammaaf,gammap,betak,betaaf,betap,alfak,alfaaf
" and alfap

STATE iptil dipi2 dip13 i1l i12 i13 ip21 ip22 ip23 i21 122 123
NEW nipi1l nipl2 nip13 nill nil2 nii3 nip21 nip22 nip23 ni21 ni22 ni23

STATE ip31 ip32 ip33 131 i32 i33 k1 afl pl Uinl Uin2 Uin3
NEW nip31 nip32 nip33 ni31 ni32 ni33 nki nafl npl nUini nUin2 nUin3
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INPUT Uin iout " Inputs
OUTPUT k af p " Qutputs
TIME t " Time
TSAMP ts

p2=p*p

" Estimates k:

ip10=Uin-af+Uin1+Uin2+2#p*ipli-p2+ip12
i10=bg0#*ip11+bgl*ip12+bg2*ip13-al*ill-a2+*i12-a3%i13
Ep1=(iout*i10)/(alfak+i10*i10)

E1=IF Epi>betak THEN betak ELSE (IF Epl<-betak THEN -betak ELSE Ep1l)
k=-gammak*E1+k1

" Estimates af:

ip20=-k*Uin1+2%p*ip21-p2*ip22
120=bg0*ip21+bg1*ip22+bg2*ip23-al*i21-a2*i22-a3+i23
Ep2=(iout#*i20)/(alfaa+i20%i20)

E2=IF Ep2>betaaf THEN betaaf ELSE (IF Ep2<-betaaf THEN -betaaf ELSE Ep2)
af=-gammaaf*E2+afl

" Estimates p:

ip30=2#k#* (Uinl-af*Uin2+Uin3) +3%p*ip31-3*p2*ip32+p*p2*ip33
130=bg0*ip31+bgl*ip32+bg2*ip33-al*i31-a2%132-a3*i33
Ep3=(iout*i30)/(alfap+i30%i30)

E3=IF Ep3>betap THEN betap ELSE (IF Ep3<-betap THEN -betap ELSE Ep3)
p=-gammap*E3+p1

nipl1=ip10
nip12=ipi1l
nip13=ip12
nili=i10
nii2=i11
ni13=1i12
nip21=ip20
nip22=ip21
nip23=ip22 "Update the states
ni21=i20
ni22=i21
ni23=1i22
nip31=ip30
nip32=ip31
nip33=ip32
1ni31=i30
ni32=i31
ni33=132

nkl=k
nafl=af
npl=p
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nUinil=Uin
nUin2=Uini
nUin3=Uin?2

ts=t+h

alfak:0.1
alfaa:0.1
alfap:0.1
betak: 1E-4
betaaf:1E-4
betap:1E-4
h:39E-6
gammak:0.001
gammaaf:0.001
gammap:0.001

al:-2.7665
a2:2.5541
a3:-0.7864
bg0:0.4909E-3
bgl:-0.9819E-3
bg2:0.4910E-3

END
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Update the time

Prevent division by zero

Limits the step in
the estimator
Sample rate

Estimating gain

Parameters in A(q)

Parameters in BG(q)
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DISCRETE SYSTEM fforward

" This is a feedforward-controller using that
" Bh(q) has its zeroes on the unit circel and
" that Bg(q) has a double-pole close to +1.

" This gives the feedforward-controller

" Hff(q)=k*(q~2-af*q+1)/(q-p) "2

STATE Uinl Uin2 Usl Us2
NEW nUini nUin2 nUsl nUs2

INPUT Uin0 k af p
OUTPUT Us

TIME t
TSAMP ts

"

"

"

Inputs
Qutput

Time

The controller:

UsO=k# (Uin0O-af*Uin1+Uin2)+2%p*Us1-p*p*Us2
Ushelp=IF (styr<1) THEN 0 ELSE UsO

Us=IF Ushelp<-ulim THEN -ulim ELSE (IF Ushelp>ulim THEN ulim ELSE Ushelp)

nUin1=Uin0
nUin2=Uini
nUs1=Us

" Update the states
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nUs2=Us1

ts=t+h " Update the time

h:39E-6
ulim:10 " The parameters
styr:0

END

47

CONTINUOUS SYSTEM signal

" Creates the disturbances to simulate the converter.
n

INPUT 4 '* Input
OUTPUT Uin " Qutput
TIME t " Time

pi=arccos(-1)

omega=2#pi*f

help=A3#sin(f3%omega*t)

Uhvdc=AO*sin (omegaxf0*t)+Al*sin(f1+omega*t) +A2¢sin(f2%omega*t) +help
Uindet=IF t>stept THEN (Uhvdc+step) ELSE Uhvdc

Uin=Uindet+d

AO0:2

A1:5 " Amplitudes of the
A2:5 " sinusoidal signals
A3:5

step:5 " Amplitude of the step
stept:0 " Time to begin the step
£0:6

£1:12

£2:24 " Frequencies of the
£3:36 " sinusoidal signals
£:50

END

CONNECTING SYSTEM connect

" Commnects the hole system

d[signall=d[noise]
Uinl[sys]=Uin[signall

UinO[fforward]=Uin[signall
Us[sys]=Us[fforward]
k[fforward]=k[festim]

af [fforward]=af [festim]
plfforward]=p[festin]
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Uin[festim]=Uin[signall
iout [festim]=iout [sys]

iout[refl]=iout[sys]
i3[sys]=0
"i3[sys]=irefllrefl]

END
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B.3 Programs Common For the RLS and RST Simulations

The SIMNON code identical in the simulations made in chapter 5 and 6 is shown in this section. The modules are
‘estim’ and ‘noise2’.

DISCRETE SYSTEM estim

" Estimates the parameters in

1 G(q)=(bg0q2+bglq+bg2) / (q3+alq2+a2q+ald),

" H(q)=(bh0q2+bh1q+bh2)/(q3+alq2+a2q+a3) and

" The net

" using Stochastic approximation algorithm with forgetting factor

" Parameter: lam = forgettingfactor
" alfai, alfaui, alfaus = initial covarianses

STATE wusl wus2 us3 il i2 i3
NEW nusl nus2 nus3 nil ni2 ni3

STATE us4 us5 us6 us7?7 us8 wus9 usi0 wusll usl2 usl3 wusi4 usibd
NEW nus4 nusb nusé nus7 nus8 nus9 nus10 nusil nusi2 nusl3 nusil4 nusis

STATE us16 wus17 wusl8 usl9 us20 us2l wus22 us23 us24
NEW nusi6 nusi7 nusi8 nusi9 nus20 nus2l nus22 nus23 nus24

STATE i4 4i5 ieé i7 i8 19 i10 i1l i12 i13 ii14 15
NE¥ ni4 ni5 ni6 ni7 ni8 ni9 ni10 niii nii2 nii3 ni14 nilbd

STATE i16 117 i18 119 120 121 i22 i23 i24
HEW nil6 nil7 ni18 ni1l9 ni20 ni2l1 ni22 ni23 ni24

STATE a1l a21 a31 apil ap21 ap31 ap4l bg0l bgil bg2l
NEW nall na2l na31 napll nap21 nap31i nap41l nbg01 nbgll nbg21

STATE bgpii bgp21l bgp3l bhO1 bhil bh21 bhpil bhp21 bhp3l
NEW mnbgpll nbgp21 nbgp31 nbhO1 nbhii nbh21 nbhpll nbhp21 nbhp31l

STATE winl uin? uin3 uin4 uin5 uin6é wuin7 uin8 uwin9 uinl0 uinil
NEW nuinil nuin? nuin3 nuin4 nuind miiné nuin7 nuind nuin9 nuinl0 nuiniil

STATE wini? wini3 wuini4 wuinil5 wuinl6é uinl7 wuwinl8 uinl9 uin20
NEW nuini? nuini3 nuini4 nuinilb nuinié nuinl7 nuinl8 nuinl? nuin20

STATE uin21 uin22 wuin23 uin24
NEY¥ mnuin21 nuin22 nuin23 nuin24

STATE pinvil pinvuil pinvusl nl
NEW npinvil npinvuil npinvusl nni

INPUT iout us uin " Inputs
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OUTPUT al a2 a3 bg0 bgl bg2 " Outputs
TIME t " Time
TSAMP ts

INITIAL

pinvil=1/alfai
pinvuil=1/alfaui " Initial values of the
pinvusi=1/alfaus " covariances

SORT

fil=-il

£i2=-1i2

£i3=-1i3

£i4=-120

£ib5=-i21

£i6=-122

£i7=-123

fi8=usl

f£i9=us?2 " Gives the fi vector
fii0=us3 " its values
fill=us21

fil12=us2?2

fil3=us23

fild4=uini

fi15=uin?2

fil6=uin3

fi17=uin21

fi18=uin?22

£i19=uin?23

gotime=ngo*h " Time to begin the estimation
runtime=nrunxh " Time to run the estimation

go=IF (t>gotime) THEN (IF t<(gotime+runtime) THEN i ELSE 0) ELSE 0

fifii=filkfil+fiokfio+fil3*fi3+fid4fi4+fi64fib+£i6%f16+£1i7+£17
fifing=fi8*fiB8+fi9*fi90+fi10%fi10+fi11#fil1+£i124£i12+£113%£i13
fifinin=fi14%fi14+fi15*fi15+fi16%fi16+F117*£i17+£i18%£i18+£i19+£119
fifin=fifius+fifiuin

fifi=fifii+fifin
fithetal=fil®*all+fi2#a21+fi3*a31+fid*apli+fib*ap21+fi6*ap31+fiT+apsl
fitheta2=fi8*bg01+£i9*bgl1+fi10%bg21+£i11xbgpli+£il2¥bgp21+£il3xbgp31
fitheta3=fi14%bh01+fi15*%bh11+fi16+%bh21+fi17*bhpl1+fi18+bhp21+fi19*bhp31
fitheta=fithetal+fitheta2+fitheta3

pinvui=IF (go>0.5) THEN (pinvuil*lam+fifinin) ELSE pinvuil

pinvus=IF (go>0.5) THEN (pinvusi*lam+fifius) ELSE pinvusl

pinvi=IF (go>0.5) THEN (pinvilxlam+fifii) ELSE pinvil

e=iout-fitheta " The estimating error
helpui=go*e/pinvui

helpus=go*e/pinvus

helpi=go*e/pinvi

al=all+filshelpi
a2=a21+fi2+*helpi
a3=a31+fi3*helpi
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apl=apli+fi4#helpi
ap2=ap21+fiS*helpi
ap3=ap31+fi6*helpi
ap4=ap41+fi7+helpi
bg0=bg01+fiB8*helpus
bgi=bgli+fi9*helpus
bg2=bg21+£il0xhelpus
bgpl=bgpli+fillshelpus
bgp2=bgp21+fil2+helpus
bgp3=bgp31+fil3*helpus
bh0=bh01+fild*helpui
bhi1=bh11+fiib*helpui
bh2=bh21+fil6*helpui
bhp1=bhpil1+£il7+helpui
bhp2=bhp21+fil8+helpui
bhp3=bhp31+fil19*helpui

k=ap1l

bf0=(ap2-apl*al)/(2*apl)
bfi1=(ap3-apl*a2)/(2*apl)
bf2=(ap4-apl*a3)/(2*apl)

nusl=us
nus2=usi
nus3=us2
nil=iout
ni2=it
ni3=i2

nall=al
na21=a2
na3di=a3
napli=apl
nap2i=ap?2
nap31=ap3
nap4l=ap4
nbg01=bg0
nbgli=bgl
nbg21=bg2
nbgp11=bgpl
nbgp21=bgp2
nbgp31=bgp3
nbh01=bh0
nbhil=bhl
nbh21=bh?2
nbhp1l1=bhpil
nbhp21=bhp2
nbhp31=bhp3
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" Calculate the estimated
" parameters

" Calculate the dampin factor k
" and the polynomial Bf(q)

" Update the estimated
" parameters

" Covariance resetting

reset=IF ((ts/restime)>ni) THEN 1 ELSE 0
n=IF (reset>0.5) THEN (ni+1) ELSE ni

npinvuil=IF (reset>0.5) THEN (1/alfaui) ELSE pinvui
npinvus1=IF (reset>0.5) THEN (1/alfaus) ELSE pinvus
npinvil=IF (reset>0.5) THEN (1/alfai) ELSE pinvi

nnl=n
nus4=us3
nusb=us4
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nus6=usb
nus7=us6
nus8=us7
nus9=us8
nus10=us9
nuslil=usi10
nusl2=usiil
nusl3=us12
nus14=us13
nuslb=us14
nus16=usi1b
nusl7=us16
nus18=us17
nus19=us18
nus20=us19
nus21=us20
nus22=us21
nus23=us22
nus24=us23

ni4=i3
nib=i4
ni6=ib
ni7=1i6
nig=i7
nig9=i8
nil0=19
nill=i10
nil12=i11
nil3=1i12
nil4=i13
nilb=i14
nil6=1i15
nil7=1i16
nii8=1i17
nii9=ii8
ni20=1i19
ni21=1i20
ni22=i21
ni23=i22
ni24=i23

nuini=uin
nuin2=uinl
nuin3d=uin2
nuind4=uin3
nuinS=uind
nuin6é=uinb
nuin7=uiné
nuin8=uin7
nuin9=uin8
nuinl0=uin9
nuinii=uini0
nuinl2=uinil
nuini3=uini?2
nuini4=uini3
nuinib=uini4
nuinl6=uinib
nuinl7=uinié6
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" Update the states us

" Update the states i

" Update the states uin
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nuini8=uini?
nuini9=uini8
nuin20=uini9
nuin21=uin20
nuin22=uin21
nuin23=uin2?2
nuin24=uin23

ts=t+h

lam:1
h:39.0625000E-6
alfai:100
alfaui:100
alfaus:100
ngo:1100
runtime: 1E20
restime:2E-1

END
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Update the time

Estimating gain
Sample period

Prevent division by zero

Starts the estimator
" Keep the estimator running
Resets the covariance

53

DISCRETE SYSTEM noise2

H

" Generates white Gaussian noise

" deviation "stdev".
n

TIME t
TSAMP ts

OUTPUT d
d=stdev*NORM(t)+mean
ts=t+h

h:39.0625E-6

mean: 0

stdev:0.1

END

with mean value "mean” and

" Time

Output

Calculate the noise

Update the time

Sample rate
Mean value
Deviation
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B.4 RLS Program

SECRC/KL/TR-December 14, 1993

The SIMNON program used in chapter 5, when the stochastic approximation algorithm was used.

MACRO hvdch

H

" Estimating the transfer functions G(q), H(q) and F(q) plus the

" damping factor a in the net.

" Are using the Stochastic approximation algorithm with forgetting

" factor.

H

SYST sys signal refl2 noise noise2 estimb connect

LET stoptime=5 !
,stime=4.96 !
,shtime=4.98 !
,storet=0

,steptime=0.01
,hc=39.0625E~6 !

PAR AO[signall:2

,A1[signall:5 '
,A2[signall:5 !
,A3[signall:5
,step:0
,steptb:steptime
,f0[signall:6
,f1[signall:12 !
,f2[signall:24 '
,£3[signall: 36

,rfactor[refl]:0.8 !
,stdev[noise]:0
,stdev[noise2]:0.2 !
,lam:0.999 1
,alfai: 1000

,alfaui:2E-2 !
,alfaus: 1E~3

,ngolestim]:2500 !
,runtime[estim] :1E10 !
,restime[estim] : 1E~-1 !
,h[refl] :hc
,h[noise] :hc
,h[noise?2] :hc !
,hiestim] :he

Stops the simulation

Stops part 1/ starts part 2
Showtime

Storetime

Steptime

Sample rate

Amplitudes of the simulated
disturbance

Amplitude of the step
Steptime

Frequencies of the
simulated disturbance

Damping factor
Deviation of the noisel
Deviation of the noise?2
Estimation gain

Prevents division by zero
Starts the estimator
Runs the estimator

Resets the covariance

Sets the sample rate in
the whole system

" Initial values of the parameters:

INIT bg0O1[estim]:0.4909E-3
,bglilestin] :-0.9622E-3
,bg21[estim] : 0.4715E-3
,all[estim]:-2.7665
,a21[estim]:2.5541
,a31[estim]:—-0.7864
,aplifestim]:0.8
,ap21festim] : -2.55336
,ap31llestim]}:2.71672
,ap41i[estim] :-0.96256

"Double zero in 0.98
"The calculated values

"Bf double zero in 0.99
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,bgplilestim]:0.39272e-3

,bgp21ilestim]:-0.76976E-3 40 .8*Bg
,bgp31[estim]:0.3772E-3

,bh01[estim]:0.1734e-3

,bh1i[estim] :~0.3381E-3 "One in 0.98 and one in 0.97
,bh21[estim] :0.1648E-3

,bhpli[estim]:0.13872e-3

,bhp21[estim]:~-0.27048E-3 "0.8%Bh
,bhp31[estim]:0.13184E-3

" Simulate and plot

STORE bg01[estin] ap2ilestin] ap3ilestin] ap41ilestin]

STORE bgli[estim] bg2ilestin] alllestim] a2ilestim] a31[estim] -ADD
STORE apii[estim] bgpill[estim] bgp21lestim] bgp31[estim]l -ADD
STORE bhO1[estim] bhill[estim] bh21[estim] bhpli[estim] -ADD
STORE bhp21lestim] bhp31ilestim] elestim] iout[sys] -ADD

SPLIT 3 2

AREA 1 1

AXES H 0 stime V -3 3

PLOT apli[estim] ap2i[estim] ap31l[estim] ap4il[estim]

TEXT ’apl - ap4’

SIMU 0 stime /plotlist 3.90625E-3

AREA 1 2

AXES H 0 stime V -2e-3 2E-3

SHOW bgpiilestim] bgp2ilestin] bgp3ilestin] bg0ilestim] bglilestim] bg2l[estin] /plotlist
TEXT ’bgpl-bgp3,bgld-bg2’

AREA 2 1

AXES H O stime V -3 3

SHOW alllestim] a21[estim] a31[estim] /plotlist

TEXT ’al - a3’

AREA 2 2

AXES H 0 stime V -5e-4 5e-4

SHOW bh01[estim] bhiilestin] bh21[estim] bhpii[estim] bhp21ilestim] bhp3ilestim] /plotlist
TEXT ’bh0-bh2,bhpl-bhp3’

SIMU stime stoptime —CONT /plotlis2 3.90625E-6

AREA 3 1

AXES H 0 stoptime V -be-5 5e-5

SHOW el[estim] /plotlist

TEXT ’e=iout-fitheta’

AREA 3 2

AXES H shtime stoptime V -2e-2 2e-2

SHOW iout[sys] /plotlis2

TEXT ’iout’

MARK A 2 15

MARK "Estimating the parameters in G(q), H(q) and the net
EXPORT plotlist < plotlist 5000 storet /0 " Converts the file

END
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CONTINUQUS SYSTEM signal

n

" Creates the signal to simulate the disturbances from the converter

% This is a sum of sinusoidals. It as possible to add some white Gaussian
" noise to the signal.

"

INPUT d " Input

QUTPUT Uin " Qutput
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TIME % " Time
" Calculations:

pi=arccos(-1)

omega=2%pi*f

Uhvdc=A0%sin (omega*f0%t)+Al*sin(f1*omega*t) +A2+sin(f2*omegaxt)+Uhelp
Uhelp=A3#sin(f3*omega*t)

Uindet=IF t>steptb THEN (IF (t<stepts) THEN (Uhvdctstep) ELSE Uhvdc) ELSE Uhvdc
Uin=Uindet+d

40:2

A1:5 " The amplitudes of the
A2:5 " disturbance

A3:5

step:0 " Amplitude of the step
steptb:0 " Btep starts
stepts:1E6 " Step stops

£0:6

f£1:12

£2:24 " Frequence of the
£3:36 " disturbances

f£:50

END

CONNECTING SYSTEM connect

n
"Connects the hole system
"

d[signall=d[noisel
Uin[sys]=Uin[signall
Us[sysl=d[noise?2]
us[estim]=Us[sys]

iout [estim]=iout[sys]
uinlestim]=Uin[signall
iout [refl]=iout [sys]
"i3[sys]=0
i3[sysl=irefl[refl]

END
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The SIMNON-program used in chapter 6, when the RST controller was used. This version is the one used in
section 6.1.3, where both the estimator and the controller were run simultaneously.

MACRO hvdcé6

" Controlling using a RST-controller, designed with Am and Ao.
" Uses the calculated or estimated values of A and Bg, depending
" on the chosen value of ngo. This parameter controls when to start

" the estimator.

" The estimator uses the stochastic approximation algorithm with

" forgetting factor.

SYST sys signal2 refl2 noise noise?2

LET stoptime=8 !
,newstop=8.1
,storet=0
,store2=0
,stepon=0
,stepoff=0
,hcent=39,0625000E-6 "

PAR AO[signall:2

,A1[signall:5 !
,A2[signall:5 '
,A3[signall:5
,step:0
,f0[signall:6
,f1[signall:12 '
,£2[signall:24 '
,£3[signall: 36

,rfactor[refl]:0.7 -t
,stdev[noise]:0
,stdev[noise2]:0.2 !
,1am:0.9995 !
,alfai: 1000

,alfaui:1E-2 !
,alfaus:1E-3 !
,omo [control]:1E4 !
,zetao[control]:0.9

,omm1:0.8E4

,omm?2: 300 !
,zetan2:0.7
,ngolestim]:10
,arun[estim] : 100000E6 !
,styrt[control] :4 '
,ulim[controll: 15 !
,restime[estim]:1E~1
,hlrefl] :hcent
,h[noise] :hcent
,h[noise2] :hcent !
,hlestim] :hcent

,hlcontrol] :hcent

,hlsignall :hcent

estimé control2 connect2

Stoptime 1
Stoptime 2
Storetime 1
Storetime 2
Starts the step
Stops the step
Sample rate

The amplitude of the
disturbances

The amplitude of the step

The frequences of the
disturbances

Damping factor
Deviation of the noisel
Deviation of the noise2
Estimation gain

Prevents division by zero
in the estimator
Sets the observer Ao(s)

Sets the wanted denominator Am(s)

Starts the estimator
Runs the estimator
Starts the controller
Limits the control signal
Resets the covariance

The sample rates
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INIT bgO1l[estim]:0.4909E-3

,bgiilestim] :-0.9819E-3

,bg21[estin]:0.4910E-3

,all[estim]:-2.7665

,a21[estim]:2.5541

,a31[estim]:~0.7864

;aplilestim]:0.7

;ap2ifestim] : =2.23419 " Initially values of the
,ap3ifestim] :2.38133 " parameters
,ap4ilestim]:-0.84812

,bgplilestim]:0.34363E-3

,bgp21[estin] :-0.68733E-3

,bgp31[estin] :0.3437E-3

,bhO1[estim]:0.1734e-3

,bhii[estim] : -0.3429E-3

,bh21[estim] :0.1733E-3

,bhpl1[estin]:0.12138E-3

,bhp21festim] :—0.24003E-3
,bhp31[estim]:0.12131E-3

" Simulate and plots

ERROR 1E-6

STORE bg01[estim] ap2ilestim] ap31lestim] ap4llestim]
STORE bglil[estim] bg2ilestin] alilestim] a2i[estim] a31[estim] ~ADD
STORE api1il[estim] bhO1[estim] bhiilestim] bh21[estim] -ADD
STORE us[control] iout[sys] -ADD

SPLIT 3 2

AREA 1 1

AXES H 0 stoptime V -1.5E-3 1.5E-3

PLOT bg01lestim] bglilestim] bg21[estim]

TEXT ’bg0 - bg2’

SIMU O stoptime /plotlist 3.90625E-3

SIMU stoptime newstop -CONT /plotlis2 hcent

AREA 1 2

AXES H 0 stoptime V -3 3

SHOW ali[estim] a21[estim] a31[estim] /plotlist
TEXT ’al - a3’

AREA 2 1

AXES H O stoptime V -2E-3 2E-3

SHOW bhO1[estim] bhiilestim] bh21l[estim] /plotlist
TEXT ’bh0 - bh2’

AREA 2 2

AXES H 0 stoptime V -16 16

SHOW us[control] /plotlist

"PLOT us[controll

TEXT ’us’

AREA 3 1

AXES H 0 stoptime V -1.5E-2 1.5E-2

SHOW iout[sys] /plotlist

TEXT ’iout’

"AREA 3 2

"AXES H 0 stoptime V -5E-2 S5E-2

"SHOW i3[sys] /plotlist

"TEXT ’irefl’

MARK A 2 15

MARK "RST - controller, G(q),H(q) and the net are estimated; refl:a=0.7
EXPORT plotlist < plotlist 6000 storet /0 " Converts the file

EXPORT plotlis2 < plotlis2 5000 stoptime /0 " Converts the file
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END

59

DISCRETE SYSTEM control

Indirect RST-controller connected ags a feedforward-controller.
Have anti-reset windup

Inputs are the parameters in G and H, the polynom Am in the
transfer function wanted for the closed loop Gm=Bm/Am and
the observer Ao

Bm=B because no zeroes can be cancelled

Am=q3+anlq2+am2q+am3 is given in continuous time by the parameters
omm1l,omm? and zetam2 in A(s)=(s+omml) (s2+2*omm2*zetam2*s+omm2%omm?2)

Ao=q2+aolq+ao2 is given in continuous time by the parameters
omo and zetao in Ao(s)=(s2+2*omo*zetao*s+omo*omo)

NOTICE:

There are no protection against poles outside the

unit disc and it is pressumed that there are no common factors
in A and Bg.

STATE wuinl uin2 uin3 ioutl iout2 wusl us2
NEW nuinl nuin2 nuin3 niouti niout2 nusl nus2

STATE ri1 r21 usdl usd2
NEW nril nr21 nusdl nusd2

INPUT iout uin d bg0 bgl bg2 al a2 a3 " Inputs
QUTPUT us rlo r2o amlo am2o am3o aolo ao2o0 " Outputs

TIME t " Time
TSAMP ts

INITIAL

wn=omm2*sqrt (1-zetam2%zetam?2)
alpham=exp (-zetam2*omm2%h)

betam=cos (wm#*h)
cm=exp (~omm1*h)

Calculation of the
desired polynomial Am(q)

aml=-2%alpham#betan-cm
am2=2#%alpham¥betam*cmtalpham*alpham
am3=-cm#*alpham*alpham

wo=omo*sqrt (1-zetao*zetao)
alphao=exp (~zetao*omoxh)

betao=cos (wo*h)
aol=-2%alphao*betao

Calculation of the
observer polynomial Ao(q)

ao2=alphao*alphao

SORT

Mi=aol+aml-al
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M2=ao2+aml*aol+am2-a2
M3=aml*ao2+am2*aol+am3-a3
M4=am2*ao2+am3*aol
M5=am3#*ao02

L1=M2-al%M1
L2=M3-a2#M1
L3=M4-a3*M1

K1=L1-M5/a3
K2=L2-al%M5/a3
K3=L3-a2#M5/a3

Q0=bg2-a2xbg0+(bg1/bg0)* (alxbg0-bgl)
Q1=bg1%bg2/ (bgO*a3)+bg0-alxbg2/a3
§2=-a3*bg0+(bg2/bg0) * (al*xbg0-bgl)
(3=bg2+bg2/ (bg0*a3)+bgl-bg2*a2/a3

s2=(K3~bg2+K1/bg0-(Q2/Q0) * (K2-bg1*K1/bg0) )/ (43-Q1%Q2/Q0)
s1={K1+bg2+s2/a3+ (al*bg0-bgl)*s0) /bg0
s0=(K2-bgl1+K1/bg0-Q1#s2)/Q0 " Calculate 5(q)

r2=(M5-bg2%s2) /a3 " Calculate R(q)
r1=M1-bg0*s0

" RST - CONTROLLER, uref=0, anti-reset windup

tcon=IF (ts>styrt) THEN (ts-styrt) ELSE 0
us0=-(s0%iout+sl*iouti+s2%iout2)-aol*usi-ao2%us2+(acl-r1) xusdi+(ao2-r2)*usd2
usd=IF us0<-ulim THEN -ulim ELSE (IF usO>ulim THEN ulim ELSE us0)
ushelp=(1-exp(~50%tcon))*usd

us=ushelp+d

amlo=aml
am2o=am?2
am3o=am3

aolo=aol Creates output signals
a020=a02
rio=riil

r2o=r21

nril=ri
nr21=r2

Update R(q)

nuinl=uin
nuin2=uinl
nuin3=uin2
niouti=iout "' Update iout
niout2=iouti

Update uin

nus1=us0

nus2=usl " Update us
nusdl=usd

nusd2=usdi " Update usd
ts=t+h '" Update the time

h:39.0625000E-6 !
styrt:1E10 '

Sample rate
Starts the controller
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ulim:15 " Limits the control signal
ommi:1

omm?2:1 " Initially value of Am(s)
zetam2:1 " and Ao(s)

omo:1

zetao: 1l

END
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DISCRETE SYSTEM signal

i

" This is a disrete generator of disturbances, which is a sum

" of four sinusoidal signals.
"

INPUT d " Input
OUTPUT Uin " Qutput
TIME t " Time
TSAMP ts

pi=arccos(-1)

omega=2%pi*f

Uhvdc=A0*sin (omega*fOxts)+Al*sin(fi*omega*ts) +A2%sin(f2%omega*ts)+Uhelp
Uhelp=A3#*sin(f3*omega*ts)

Uindet=IF ts>stept THEN (Uhvdc+step) ELSE Uhvdc

Uin=Uindet+d

ts=t+h " Update the time
h:39.0625E-6 " Sample rate

A0:2

Al:5 " The amplitudes of
A2:5 " the disturbance
A3:5

step:0 " The amplitude of the step
stept:0 " Steptime

£0:6

£1:12 " The frequence of the
£2:24 " disturbance

£3:36

£:50

END

CONNECTING SYSTEM connect

"Connects the whole systenm
"

d[signall=d[noisel
Uin[sys]=Uin[signall
Us[sys]=us[control]
d[control]l=d[noise2]

iout [control]l=iout [sys]
uinlcontroll=Uin[signall
us[estin]=Us [sys]
iout[estim]=iout [sys]
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uinflestim]=Uin[signal]

iout [refl]=iout [sys]
"i3[sys]=0
i3[sys]l=irefl[refl]

bg0 [control]=bg0lestim]
bgllcontrol]l=bgilestin]
bg2[control]l=bg2lestin]
al[controll=ailestim]
a2[control]l=a2[estim]
a3[control]=a3[estim]

END
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