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1. Introduction

Research on adaptive control has so far mostly been focused on linear systems.
Significant progress has been made in development of algorithms, analysis
of stability, and convergence analysis. Adaptive techniques have also been
transferred to industry and a number of adaptive controllers have appeared.

Lately there has also been significant progress in nonlinear control theory,
e.g. feedback linearization and use of optimal control. A natural step is then
to start investigations of nonlinear adaptive control. This can be expected to
be quite a difficult task. As an intermediate step we can consider adaptive
control of special classes of nonlinear systems. This is the task of this thesis
where we consider adaptive control of piecewise linear systems.

The starting is a practical problem that frequently occurs in industry,
namely control of systems with heating and cooling. Such problems are com-
mon in heating ventilating and air-conditioning systems. A practical solution
has been to use conventional PID controllers with different settings for heating
and cooling. Such systems are naturally more difficult to tune and adapt than
conventional PID controllers. They are however not as difficult to deal with
as general nonlinear systems.

The thesis is organized as follows. In chapter 2, a prototype model of
a piecewise linear process is treated. Some difficulties when controlling it
with a conventional PI-controller are pointed out. Chapter 3 investigates the
identification of piecewise linear systems. A parameter estimation algorithm
is developed and some problems with it are discussed. Suggestions are made
how to overcome these problems. In chapter 4 a controller design algorithm for
piecewise linear systems using pole placement based on input-output models is
developed. The estimation algorithm and the controller design algorithm are
combined in a self-tuning regulator to control piecewise linear systems adap-
tively. Conclusions and references are given in chapters 5 and 6 respectively.
Some explanations about SIMNON and some program listings can be found
in appendix A.




2. Problem description

Many industrial processes are nonlinear. A particular type of nonlinearity
occurs in processes with heating and cooling. Such processes are common in
HVAC (heating ventilation and airconditioning) systems, in plasticextruders
etc. In these cases the processes can be approximated by piecewise linear
systems, one system for heating and another for cooling. In this section a
simplified process model with this property will be described.

Such processes are currently controlled by PID type of controllers which
may have two settings, one for heating and one for cooling. It is a tedious pro-
cess to tune the controllers because of the switches between operating regions.
The parameters may also change in a way which makes adaptation necessary.

2.1 A prototype model

The features to be included in the prototype model are given below:

1. As mentioned earlier, the model should be piecewise linear.

2. It should represent a process that can be controlled by heating and cool-
ing.

3. In this first model, heating and cooling should not be performed at the
same time, as this would mean that we have to deal with a multiple input
system.

4. Conventional controllers should give inferior performance while control-
ling this process, because only this justifies the design of a rather compli-
cated adaptive controller.

One application we had in mind when looking for a good model was the
following heating system (see Fig.2.1).

temperature
measurement
radiator
room 1 room 2

Figure 2.1 A Room temperature control system.

The goal is to control the temperature T4 in room 2. In an abstract model, the
boiler with temperature T3, the radiator with temperature Ty, room 1 with
temperature T3, and room 2 with temperature T4 can each be considered as
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first order systems connected to each other. Together this is a fourth order
system. With the heater set at a certain temperature T}, the water tempera-
ture of the boiler can be raised. As the boiler looses heat to the environment
which is at temperature T, this is a cooling process which is of course much
slower than the heating process. In an abstraction the environmental temper-
ature can be regarded same as the heater temperature as a control variable.
It is assumed that heat losses of the rooms and the pipes can be neglected.
It is also assumed that while heating, losses of the boiler can be neglected.
Therefore, either heating or cooling have to be considered, but not both at
the same time (this is exactly what was demanded above). A simplified model
of the system could consist of four subsystems connected to each other in the
following way:
[r

——f— g e

.

Figure 2.2 A simplified model of the heating system.

In a further simplification it is assumed that all subsystems are “equally sized”
and that the heat transfer coefficients between them in both directions are
equally k. The heat transfer equations are then the following:

1. Heating

dT.

—dt—l = gn(Th — Th) + k(Ty — T1) (2.1)
2. Cooling

dT

—dtl = 9o(Te — Ty) + k(T — Ty) (2.2)

where g, is the transfer coefficient for heating and g, is the transfer coefficient
for cooling.

3. Other heat transfers

dT,

—5 = KTy~ T3) + k(Ts - Ty) (2.3)
jdd% = k(Tz —_ T3) + k(T4 - TS) (24)
O b1y -Ty) (2.5)

In a final simplification it is assumed that k = 1. Replacing (—1‘% with the
Laplace-operator s, equations (2.1)-(2.5) are transformed to obtain




sTy = yh(Th — Tl) + Ty -1 (2.6)

Ty =g (Te—T)+ T2 - T4 (2.7)
sTy =Ty + Ts — 2T (2.8)
sT3 = Ty + Ty — 2T (2.9)
oTy =Ty — Ty (2.10)

Eliminating T4, Ts, and T3 from the equations 2.6, 2.8, 2.9, and 2.10, the total
transfer function G(s) between the input U(s) (which is T}, for heating and T
for "cooling”) and the output Y(s) (which is Ty) is received (here for the case
of heating).

G(S) = Y(S) = 9h = Tg
U(s) s*+(6+gn)s®+ (10+5gn)s® + (4 + 6gn)s + gn f{h )
2.11

The transfer function for cooling is obtained by replacing gp with g.. Figure
2.3 shows the block diagram of the model. The nonlinear block (see Fig.2.4)
has a gain of g, for positive and a gain of g, for negative values of i(t).

f &

Nonlinear
T block ()

4
Y

— =
1 {1

Figure 2.3 The block diagram of the nonlinear model.

Is this a good model? This model neglects a lot of properties of a real heat-
ing system. It also contains several very rough approximations. However it
captures qualitatively all the key features that were described above.

....... _gC

nonlinear block block Gy block G

Figure 2.4 The nonlinear block and the linear blocks it was replaced with when
optimizing the PI-controllers.




2.2 Experiences with the PI-control of the piece-
wise linear model

To learn more about the models properties and behaviour its control with
different PI-controllers (see Fig.2.5) was simulated using the simulation lan-
guage SIMNON [Elmgqvist, Astrém, Schénthal, and Wittenmark, 1990]. One
PI-controller was optimized for the model when the nonlinear block is replaced
with the linear block G}. The other PI-controller was optimized for the case
when the nonlinear block is replaced with the linear block G, (see Fig.2.4).

¥p S PI- u Ges) y

controller

Y
=]

Figure 2.5 The closed control loop used for the experiment.

Each of these controllers then controlled the linear model they were designed -
for and the nonlinear model (see Fig.2.3). This means that four different
combinations of controllers and process models were used (see Fig.2.6).

Pl—controller designed 1 linear model with
for the linear model with block Gh
bIOCk QI \
nonlinear model

3
PI—controller designed linear model with
for the linear model with 4 block G
block G, ¢

Figure 2.6 The four different combinations of controllers and process models
that were used for the simulations.

The behaviours of the four systems were compared with respect to step re-
sponses for steps of the set point, load disturbances interacting at the begin-
ning of the process, and measurement noise which was added at the end of the
process. Basically two situations could be expected to be interesting.

1. How would the PI-controller designed for the linear model with block Gj
(high gain linearity) perform, when the nonlinear block is in the domain

with gain g. (low gain)? How does this compare to the control of the
linear model with block Gj7

2. How would the PI-controller designed for the linear model with block G,
(low gain linearity) perform, when the nonlinear block is in the domain

with gain g (high gain)? How does this compare to the control of the
linear model with block G.?

During simulations the variable i(t) (see Fig.2.3) was the indicator to see in
which domain of the nonlinear block the model is at any point in time. When
i(t) is positive, the model is in the domain with gain g, which shall be called the
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positive domain. When i(t) is negative, the model is in the domain with gain
ge which shall be called the negative domain hereafter. For the simulations,
the parameters g5 and g, were chosen to be 1 and 0.02 respectively. This quite
big ratio of 50 : 1 should allow to see in a “black and white” contrast what
happens when switching from the linear to the nonlinear system.

ExaMPLE 2.1

In a first experiment the response of the nonlinear system to a negative unit
step of the set point y,, (see Fig.2.5) was simulated. Figure 2.7 shows the
results for the case when the controller has been optimized for the linear model
with block G.. It compares the response of the output y(¢) of the nonlinear
model (NL) with the one of y(¢) of the linear model (L) with block G..

ysp, L: y(t)/linear NL: y(t)/nonlinear

04
0.5
. NL
L Time t
) I ] 1 1
0 20 4 40 60 80 100
L: i(t)/linear NL: i(t)/nonlinear
L
0 —— T —
N
—10/
—201 Time t
1 1 I 1 I
0 20 40 60 80 100

Figure 2.7 Comparison of unit step responses between the nonlinear model and
the linear model with block G,.

In the nonlinear case y(t) oscillates more than in the linear case, but the
difference is not significant. The explanation for this similar behaviour is
found in the lower diagram of Fig.2.7. “Luckily” the indicator signal i(t) of
the nonlinear model is with a few exceptions always negative. Therefore the
nonlinear model is almost always in the negative (low gain) domain and this
is what the controller has been designed for. O

ExAMPLE 2.2

Figure 2.8 shows the results for the case when the controller has been optimized
for the linear model with block G} (high gain). It compares the response of
the output y(t) of the nonlinear model with the one of y(t) of the linear model
with block Gj,.
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ysp, L: y(t)/linear NL: y(t)/nonlinear

0
B = w
) ' : Time t
0 50 100
L:i(t)/linear NL:i(t)/nonlinear
O rm—
NL
—-104 Time t
0 50 100
L: u(t)/linear NL: u(t)/nonlinear
O e —— ————————
L
-10; Time t
0 50 100

Figure 2.8 Comparison of unit step responses between the nonlinear model and
the linear model with block G,

This time the responses are very different for the two models. For the nonlinear
model y(t) responds very slowly. It has a big overshoot and a very long settling
time. Again the behaviour can be explained by looking at the indicator signal.
As long as i(t) is negative the nonlinear system is poorly controlled. The
nonlinear model is in the negative (low gain) domain. Therefore the control
signal u(t) has to be much larger than for the linear system with block G
(high gain) (see bottom diagram in Fig.2.8). The controller does not manage
to produce big enough control signals because it has not been designed for the
gain G. (low gain) domain of the nonlinear block. However, as soon as the
indicator signal becomes positive (at timea:54) the nonlinear system responds
very well, because now the nonlinear block is in the domain the controller has
been designed for. O

In a second experiment the responses of the nonlinear system to a positive
unit step of the set point y,, were simulated for the different controllers. This
time the controller designed for the linear model with block G, (high gain)
performed better than the other one. However it did not perform as well as it
did when controlling the linear model with block Gj. Especially the settling
time was several times as long as the one for the linear model. The reason
is again that the indicator () became negative and therefore the nonlinear
model entered the domain the controller was not designed for. When using the
controller designed for the linear model with block G. (low gain) the output
of the nonlinear model oscillated heavily.

Similar experiences were made when adding load disturbance and mea-
surement noise to the model. Every time the nonlinear block entered the
domain the PI-controller was not designed for performance was poor.

These results could have been expected. The evidence found in the ex-
periments demands a different approach to the problem. One obvious solution

11



would be to switch between different controllers. The decision on which con-
troller to use would be based on the sign of the indicator i(t). If the indicator
can not be accessed this approach would no longer be possible.

During the experiments it was also found that the system is very sensitive
to parameter changes. When one of the parameters g, or g, of the nonlinearity
(depending on which gain the controller had been designed for) was changed a
little bit control performance became worse. Therefore it must be concluded
that when the parameters gj, or g. (or other parameters of the system) vary
with time, switching between different “fixed” controllers would not work well.
In this case an adaptive controller would be required. To find a suitable
adaptive controller two basic problems have to be solved.

1. Identification of the model assuming that different parts of the process
are known.

2. Implementation of a controller assuming that the process has been iden-
tified and is therefore known.

This project will deal mainly with the first problem as it is the base for the
implementation of an adaptive controller.
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3. Recursive estimation of piece-
wise linear systems

In this project it is assumed that the process parameters vary continuously
and that their variation can not be determined a priori. Therefore they have
to be estimated recursively and the regulator parameters will be adjusted
accordingly. An adaptive controller that captures these features is called a
self-tuning regulator (see Fig.3.1), [Astrém and Wittenmark, 1989].

Process parameters
Y
Design Estimation -t
Regulator
parameters
uc
—-. S
Regulator Process
- u y

Figure 3.1 Block diagram of a self-tuning regulator.

The block labeled design in Fig.3.1 determines the new regulator parameters,
treating the estimated process parameters as if they were true. This is called
the certainty equivalence principle.

Several recursive parameter estimation methods have been developed such
as maximum-likelihood estimation, Bayesian estimation (both stochastic ap-
proximations), and recursive least squares (using deterministic criteria). Least
squares has been chosen for this project as it has several advantages. It has
been applied successfully to a large variety of problems. Also when the model
is linear in the parameters (as is the case for our problem) it is simple to apply
because the least squares estimates can be calculated analytically.

3.1 Introduction to least squares

Assume the following model is given.

y(t) = ¢1(8)01 + ¢2(t)02 + ... + In(t)0r = $(t)T (3.1)
y is the observed variable, 6y,0,,...,0, are the unknown parameters to be
estimated, and ¢1, @2, ..., ¢, are known functions called regression variables.
Introduce the vectors ¢7(t) = (¢1(t)da(t)...dn(t)) and 6T = (816;...6,) and
the matrix T
¢ (1)
B(t) = :
¢7(t)
13



Pairs of observations and regressors (y(¢), ¢(¢),i = 1,2, ..t) are collected over
a period of time. The aim is to determine parameters 64,0y, ..., 0, such that
the sum of the squared errors

t
1 , ,
V(6,t)=3 > (y(i) - ¢7(:)6)? (3.2)
i=1
between the measured variable y(i) and the computed output from Eq.3.1
is minimized. For systems with time-varying parameters the least squares
criterion of Eq. 3.2 can be replaced with

t
_1 tif 0 _ AT (02
V()= 3 X0 - 700 (3.3)
where A is a parameter called the forgetting factor such that 0 < A <1 . It
gives unit weight to the most recent data, but data that is n time units old is
only weighted by A™. The solution to this problem in recursive form is given
by the following theorem, [Astrém and Wittenmark, 1989].

Theorem 1: Recursive least-squares estimation with exponential forgetting
Assume that the matrix ®(t) has full rank for ¢ > t5. The parameter 6, which
minimizes 3.3 , is given recursively by

6(t) = 6(t — 1)+ K (£)(y(t) — ¢ (1)(t ~ 1)) (3-4)
K(t) = P(t)$(t) = P(t - 1)p(t)(M + ¢" (£) P(t ~ 1)$(2)) (3.5)
P(t) = (I - K(t)¢"(£))P(t — 1)/X (3.6)

= P(t— 1) — P(t — 1)¢(t)(I + ¢" (t) P(t — 1)¢)) " ¢T (t)P(t — 1)

Recursive estimation of linear systems

First and second order linear systems were considered. A general first order
system has the pulse-transfer operator

by
q+ay

H(g) = (3.7)

where ¢ is the forward shift operator. The corresponding difference equation
is

Yt = —a1yp—1 + brugg (3.8)
a
= (—yt_lut_1)<bi> = ¢{ 61 (3.9)
A general second order system has the pulse-transfer operator
b1g + by
H(q) = ———"— 3.10
(9) P (3.10)
and a corresponding difference equation of
Y = —a1¥_1 — Qa¥s—2 + b1us_1 + baus_2 (3.11)
a
a
= (—Ye-1 — Ys—2Ut—1Us—2) bf = ¢T‘92 (3.12)
b2
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The algorithm given by Theorem 1 was implemented in SIMNON to estimate
the parameter vectors 6; and 6. The systems had the transfer functions
G(s) = 1/(s+1) and G(s) = 1/(s+1)? and were assumed to be time invariant,
so the forgetting factor was set A = 1 which means no forgetting. These
continuous transfer functions were converted to their discrete representations
(using the sampling time of the estimator), so that the true values of the
parameter vectors 6, and 8, could be obtained as a reference. This was done
for all the following examples. As input signals steps and square waves were
used. Estimates showed to be quite accurate and had short convergence times
for both systems.

3.2 Estimation of piecewise linear systems

The piecewise linear systems that were looked at have a transfer function
G(s) = G1(s)gn/(s+gn) for the positive domain and a transfer function G(s) =
G1(5)gc/ (5 + gc) for the negative domain, where G1(s) is linear and gn # g..
The following figure shows the situation for the parameter estimation.

estimation -t
T i
A

: 2nl I
u y -
-1 o _.1_ G (S) i >

l ™ B Sy

[ R B i ~8¢ ]

{ nonlinear block |

|

| F1] !

Figure 3.2 Parameter estimation of piecewise linear systems.

It was assumed that the indicator signal is accessible, so the three signals
u(t), i(t) , and y(t) could be used for the parameter estimation. What should
change in the recursive estimation algorithm?

Two “pairs” of parameters 0y, = (@1h..Gnh b1h..bnp) and 6. =
(@1c.-@ne bic..bne) (compare with Eqs.3.9 and 3.12) were defined corresponding
to the two domains. How about the regression vector ¢ ?

T
¢t = (—yt—l — Yt—2+ — Yt—n Ut-1’ut—2-~-ut—n)

The regression vector contains the old values of u and y. When the system
moves from one domain into the other one, the regression vector still contains
old values of u and y of the “old” domain which are of no use in the “new”
domain. Therefore care must be exercised when the system switches between
domains. It is necessary to interrupt estimation for a number of sampling pe-
riods (for an n-th order system n sampling periods) until the regression vector
is filled with data that corresponds to the correct domain. This phenomenon
will be called “time-out” hereafter.
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Finally two P-matrices Py for the positive and P, for the negative domain
had to be defined. The reason is that for the updating of a P-matrix the
regression vector is needed (see Eq.3.6), which is different for the two domains.

The algorithm given by Theorem 1 had to be modified as follows. When
the indicator i(t) is negative (which means the system is in the negative do-
main) it is

K(t) = Pe(t)p(t) = Polt — 1)(¢)(AT + ¢T (£) Pt — 1)p(t))™"  (3.13)

éc(t) = éc(t - 1)+ K(t)(y(t) — ¢T(t)éc(t - 1)) (3.14)
n(t) = On(t — 1) (3.15)
P.(t) = (I - K(t)¢T (£))Pe(t — 1)/A (3.16)
Pu(t) = Py(t — 1) (3.17)

Else, when the indicator i(t) is positive it is

K(t) = Pu(t)p(t) = Pu(t — 1)(t)( M + ¢ () Pu(t — 1)6(2))™" (3.18)

0n(t) = On(t — 1) + K(2)(y(t) — ¢T()0n(t — 1)) (3.19)
0.(t) = 6.(t — 1) (3.20)
Py(t) = (I - K(2)¢" (8))Pa(t — 1)/A (3.21)
P.(t) = P(t — 1) (3.22)

This algorithm can be regarded as an estimation of two linear systems
with different gains in parallel. At any point in time the parameters are
estimated as if the system was linear.

Estimation of systems with different gains

The algorithm given above was implemented in SIMNON for the estimation
of first order piecewise linear systems. The implementation of recursive esti-
mation algorithms for higher order piecewise linear systems in SIMNON was
then just a matter of adding additional dimensions to the algorithm for first
order systems (see Appendix A for program listings).

As a first step a first order piecewise linear system with the transfer
function G(s) = gn/(s + gn) for the positive domain and the transfer function
G(s) = gc/(5 + gc) for the negative domain was considered. The parameters
gn and g, of the nonlinear block were chosen as 1 and 0.02 respectively, same
as in the previous chapter.

ExAMPLE 3.1—A first order piecewise linear system

Consider the system in Fig.3.2 with G1(s) = 1. Let the input u(t) be a square
wave with period 10. Choose the sampling period T' = 0.2 and let the initial
covariance matrices P, and P, be 100 where I is the identity matrix. The
parameter estimates are given in Fig.3.3.

16



u(t) and y(t)

1 y
u
-1 Time t
| 1 | 1
0 5 10 15 20
it)
O \
-2 Time t
L 1 § 1
0 5 10 15 20
1 &1h(t)and &1c(t)
0 \N"”‘
L — N ,
-1 — e t
1 1 ¥ 1
0 5 10 15 20

Figure 3.3 RLS parameter estimation of the first order piecewise linear system.

In the figure a5 denotes the estimate of parameter a; in Eq.3.7 for the system
when it is in the positive domain (the domain with gain ghr), G1. is the estimate
of parameter a; when the system is in the negative domain (the domain with
gain g.). Both parameter vectors 65 and 6, had the initial values (1,0).

The square wave u(t) starts with a negative step which makes the indica-
tor i(t) negative. Therefore the estimation of the parameters for the negative
domain starts (see lower diagram in Fig.3.3). Parameter a,, converges slowly
and has not reached its true value when the system moves to the positive
domain (after 5 time units). It then stays constant until the system returns
to the negative domain (after 10 time units). Then it converges at a value of
-0.994 (true value: -0.996).

Parameter d,5 stays at its initial value until the indicator signal becomes
positive (after 5 time units). Then it converges very quickly at -0.813 (true
value -0.819). The input signal u(t) was chosen to illustrate how the estimation
algorithm works and not to get the best possible estimates. With more exciting
input signals even more accurate estimates were obtained.
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P1in Pi1c

801 80;
40); 401

0' l : : time It 0' ' . . time It
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P22n P22c
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Di2h Pi12n

0 4
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~10 : : : time |t _ 0. : : : time It
0 5 10 15 20 0 5 10 15 20

Figure 3.4 The elements of the P-matrices for the two domains.

In Fig.3.4 the elements of the P-matrices for the two domains are shown. On
the left side all elements of P, (positive domain) move very quickly to zero.
On the right side the elements pi1. and pisc move slowly during the first 5
time units. This speed reflects the speed of convergence of the parameters a;.
and Blc

The experiment was repeated for different gains g.. It was found that the
more g, is increased, the faster the parameter vector 6. would converge and
the quicker the elements of the P.-matrix would converge to zero. For gc = gn
parameters would converge at the same speed in both domains.

An explanation for this can be found from Eq.3.5. The filter gain is given
by K(t) = P(t)é(t), where ¢(t) = (—y(t —1) wu(t —1)). As the gain g. is
increased, the system is faster and the output y(t) is larger. Therefore the
regression vector ¢(t) will be larger and the filter gain K (¢) will be higher. It -
follows that f(t) can move quicker.

Notice in Fig.3.3 how small the output y(t) is during the first five time
units. This is due to the low gain of the system in the negative domain.

Another way to get higher convergence rates for the parameters 6, and
6, was to increase the amplitude of the input u(t). The reasons for this are
similar to the ones just described in connection with increased gains. As the
amplitude of u(t) is increased, y(t) increases and therefore K (t) is larger. It
follows again from Eq.3.4 that é(t) can change its value faster. Choosing the
amp]itude of u(t) 30 times as big as previously 6, would converge almost as
fast as 0h

Other ways to get a faster convergence of 6. were to use larger initial
P-matrices and more exciting inputs u(t). O

As a second step a second order piecewise linear system was considered. The
true parameter vectors are now 8y = (ain, azh,b1n, byp) for the positive and
0. = (@1c, azc, b1c, bac) for the negative domain (compare with Eq.3.12).
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ExAMPLE 3.2—Parameter estimation of a second order piecewise linear system

Consider a system with the transfer functions G(s) = gn/((s+gn)(s+ 1)) and
G(s) = g¢/((8 + gc)(s + 1)) for the two domains (gn = 1,g. = 0.02). Let the
input u(t) be a square wave with period T, = 27 and amplitude 2. Choose
the sampling period T = 0.2 and let the initial covariance matrices Py and F.
be 10%I. Choose the initial parameter vectors 0y, and §. both as (0,0,0,0).
The results for this experiment are given in Fig.3.5.

u(t) and y(t)
2 /—7 -
u
—2 time t
1 ) ) 1
0 5 10 15 20
i(t)
4
o~—
—4 tithe t
i | 1 ]
0 5 10 15 20
a1p(t)and a1.(t)
0]
-1 &lc
d1p __ ] _
__2 . . T LIILIC Ill
0 5 10 15 20

Figure 3.5 RLS parameter estimation of a second order piecewise linear system.

Parameter 0y, converges quickly and is quite accurate after a simulation time
of only 20 time units (a1, = —1.631 compared with a true value of -1.638),
while §, converges more slowly and is less accurate (&;. = —1.76 compared
with a true value of -1.815). One reason for this is that 0. is the parameter
estimate for a very slow linear process (gain g. = 0.02). Therefore the output
y(t) has a smaller rate of change than in the high gain domain. This makes
convergence slow.

It was found that i)lh = by and bi. = Bgc. It will be shown in section
3.3 that this is not a coincidence. The elements of the lower right corners of
the P-matrices (Paak, Pah, Padh, Pase, Pasc and pagc) Were still at values around
5000 after 20 time units of simulation which is too large and indicates that
something is wrong. It just did not have such a drastic effect for this system
as the true parameters are not so far apart (by, = 0.0175, bap, = 0.0153, by =
0.3741E — 3, by, = 0.3495E — 3). O

One way to get around this problem was to use more exciting inputs u(t).

ExAMPLE 3.3—Using a more exciting input signal u(t)

In Fig.3.6 the experiment from example 3.2 was repeated adding another
square wave to the input u(t) with period Ty = 5 and amplitude 1.5.
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Figure 3.6 RLS parameter estimation of a second order piecewise linear system.

The results were very good this time. Parameter @, = —1.631 compared with
a true value of -1.638, ;. = —1.813 compared with a true value of -1.815. The
bi’s and b;.’s were estimated equally precisely this time. All elements of the
P-matrices came down to small numbers (below 10). Notice that when the
indicator becomes negative the first time, the parameter of the new domain
(@1.) stays constant a little longer. The reason is that it has to be waited two
sampling periods until the regression vector is filled with values from the new
domain before any new estimation can be made. O

Other ways to speed up the convergence of the parameters were a) to use
inputs with larger amplitudes and b) to use larger initial P-matrices. This
would however not change the problems with the bin's and by.'s. It was still
found that by = bzh and by = by using a single square wave input.

Further experiments with second order systems were made varying the
gains of the two domains. Similar experiences were made as for first order
systems peviously. It was found again that the higher the gain of a domain
was, the faster its parameters would converge to their true values.

One interesting result is the following. It was found that for piecewise
linear systems the parameters of the low gain domain would converge faster
than for linear systems with the same low gain.

ExaMPLE 3.4—Comparing parameter convergences for two systems

The experiment from example 3.3 was repeated for a second order piecewise
linear system with the gains g, = 1 and g. = 0.02 for the two domains. The
parameters of the negative domain (with gain g.) were found to converge faster
than for the linear system with gain g. (see Fig.3.7).
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Figure 3.7 Comparing parameter convergences for second order linear and piece-
wise linear systems.

One reason is that in the piecewise linear system the output y(t) is much larger
when the system is in the negative (low gain) domain. Therefore the filter gain
K (t) will be larger and the parameter estimate d;. can move quicker away from
its initial value. Notice on the right side that the values of the output y(t) are
very small because the system has a very low gain in both domains.

A difficulty

In the previous examples the indicator i(t) is in the positive domain (high gain
domain) for a short time compared with the negative domain for piecewise
linear systems. The reason for this can be found from Fig.3.2. Remember
that gp and g. were chosen as 1 and 0.02. When u(t) makes a positive step the
indicator i(t) follows it immediately and the same value is found at the output
of the piecewise linear block. It then only takes a very short time until y(t)
takes on the same value as u(t), so the indicator i(t) moves back to zero very
quickly. On the other hand, when u(t) makes a negative step it takes much
longer time for the indicator i(t) to go to zero, because of the low gain (0.02)
of the nonlinear block. Another way to see this is that the time constant of
the loop consisting of the nonlinearity and the integrator (see Fig.3.2)is 1 in
the positive and 50 in the negative domain. This can be expected to cause
some problems, especially for higher order piecewise linear system where the
estimator has to wait longer after changing domain before any estimation can
be done.

The easiest solution to this problem would be to add a ramp to the input
signal with a gain such that the indicator spends half the time in the positive
and the other half in the negative domain. But this is of course useless for an
adaptive controller, as a system can not be controlled this way.
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ExaMPLE 3.5—A difficulty with piecewise linear systems

As described previously, when entering a new domain the estimation can only
start after a number of sampling periods, so for certain input signals u(t)
the indicator i(t) might not be long enough positive in order to obtain good
estimates. As an example consider Fig.3.4 where the first order piecewise linear
system has a sinusoidal input »(t) with amplitude 0.4 and period T, = 2.
The sampling period is T, = 0.2. The initial covariance matrices P, and P,
are chosen as 100I. The initial parameter vectors 6 and 4, are both (1,0).
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Figure 3.8 RLS parameter estimation using sinusoidal input.

The parameters of the negative domain are estimated quite accurately (i.e.
dic = —0.993 compared with a true value of -0.996), while the parameters of
the positive domain are estimated poorly (15 = —0.67 compared with -0.819).
This behaviour was found independently of the frequency of u(t) over a wide
range of frequencies. 0

Several experiments were made to investigate by what means the esti-
mates could be improved using sinusoidal input. The following observations
were made. In order to get more accurate estimates three different ways were
found.

1. Increase the amplitude of the input signal u(t). In example 3.2 the es-
timates in the positive domain are improved significantly (&;, =-0.812
compared with a true value of -0.819) by increasing the amplitude of the
input signal 5 times. This is the same effect as described in example 3.1.
It can be explained with the filter gain K (t) being higher which allows
the parameter estimates to move faster away from their initial values (see
Eqs.3.4 and 3.5).

2. Use longer simulation times. An estimate a4y, = —0.809 was obtained
after a simulation over 10000 time units. This is close to the true value
of -0.819.
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The last measure increases the data used for estimation. Thus more informa-
tion is available and the estimate becomes more accurate.

3. Increase the initial P-matrix. The initial P-matrix is usually chosen as
P(0) = pI, where p is a large number and I is the identity matrix. It
reflects the confidence in the initial estimate §(0), see [Soderstrém and
Stoica, 1989]. By increasing P(t), K (t) will increase (see Eq.3.4 and 3.5)
and therefore the parameters can move much faster away from their initial
values 6(0) when the error (y(t) — ¢ (£)8x(t — 1)) is different from zero.
Choosing p = 10* for the example from above almost perfect estimates
were obtained (@15 =-0.817 compared with a true value of -0.819, asp
=0.182 compared with a true value of 0.181).

3.3 The “time-out” effect

An interesting phenomenon that occurs in identification of piecewise linear
systems called the “time-out” effect was explained in section 3.2. It was found
that every time the system changes domain (that is the indicator i(t) changes
sign), estimation has to be interrupted for a number of sampling periods. It is
well known in identification of linear systems that good data for estimation is
obtained in transients. The time-out means that these periods are significantly
reduced for piecewise linear systems. What are the effects of this? It will be
shown that the problems found in example 3.2 are due to the time-out in the
estimator.

The change of domain of the system is usually caused by large variations in
the input signal u(t) (i.e. steps). Significant information about parameters is
obtained during these time periods. For piecewise linear systems the estimator
is however blocked at the changes, because of the need of filling the regression
vector with appropriate data. Thus the estimator does not operate during
the times when the data contains the most valuable information for system
identification.

To see one possible effect, consider an n-th order system with the regres-
sion vector ¢ftr = (=¥t=1 — Yt—2+ — Yt—n Ut—1U_3...Ut_p) and a corresponding
parameter vector 6; = (a1a3...a, b1bs...b,) for one domain. Assume a square
wave input u(t) (amplitude ¢1). After changing domain the estimator waits n
sampling periods until the regression vector is filled with data from the new
domain. The components of the regression vector that corresponds to u(t) are
then all equal and constant. This has some unexpected consequences.

It will be shown that for certain initial P-matrices, the part of the fil-
ter gain K (t) corresponding to the b-parameters will always consist of equal
values.

To see this partition the vectors § and ¢ into parts corresponding to the
a- and b-parameters. Partition the P-matrix in a similar way. Assume that
the regression vector has been filled with data from the positive domain for
the first time at time t=1. It then has the form

¢(1) = (i‘;) (3.23)

where € is a vector with all components equal to one and ¢; is a constant. Intro-
duce the vector 6T = (d1...ds), where the Parameters d; ...d, are constants.
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Assume further that the initial P-matrix has the form

P(0) = [ P, §eT ]

7 3.24
6T  pI+ caM (3-24)

where I is the identity matrix and M is a matrix with all components equal to
one (both have dimension n). Notice that the identity matrix is of this type.
It follows from Eqs.3.23 and 3.24 that

P(0)§(1) = [i‘} pr;M ]<f16>

(3.25)
_ Paoy + c1nd _{m
T \ebT ¢y + c1pe + creane) \v
The filter gain is given by
K(t) = P(t — 1)g(t)(I + ¢" (£) P(t — 1)$(t)) (3.26)
(see Eq.3.5) which we partition as K (t) = (ﬁ:gg) corresponding to the a- and

b-parameters. It follows for t=1 from Eqs.3.25 and 3.26 that

K(1) = P(0)¢(1)(I + ¢ (1)P(0)$(1)) "
C(p) 1 (Kd1) (3.27)
T \v/l4+a Kb(l)
where the scalar a is given by a = ¢7 (1)P(0)¢(1). Therefore the filter gains
K3(1) associated with the b-parameters are the same after one recursive step.

The proof is only complete if the updated P-matrix has the same form as
its preceeding one. To show this consider that the new P-matrix is given by

P(t) = P(t — 1) — P(t — 1)g(t)(I + ¢" (1) P(t — 1)¢)) " ¢" () P(t — 1) (3.28)
(see Eq.3.6). For t=1 it follows that

P(1) = P(0) — P(0)¢(1)(I + ¢7(1)P(0)$))~ 4" (1)P(0)

[ Pa §eT By 1 ¢

- [esT ol + czu] N (u>1+a(“ V') (3.29)
_ [ P, 6T ] 1 [MJ,T ;WT]

T | e8T pI + cau 14+a \vu? vwwT

It now remains to show that u»T, vuT, and vvT do not change the form of
the P-matrix. Consider » in Eq.3.25 which is

v= 66T¢a + c1pe + cieane
Since 6T ¢ is a scalar, the equation can be rewritten as
v = (6T¢a + c1p + c1can)e = kye

where k; is a scalar. It follows that v»T = k%eeT = kM. This matrix
only changes the value of ¢; in Eq.3.1 which does not effect the form of the
submatrix pI + caU.
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Now consider uvT. Rewrite p as g = f + cyn§, where the vector P,¢q
has simply been renamed for convenience. Thus

pyT = (_f + c1n6)kleT = kl(feT + caneT)

This matrix is of the same form as §¢’ and by adding them the form remains
the same. Because (§eT)T = €67 and (;wT)T = vuT the same thing applies to
€8T . The proof now follows by induction.

Therefore the filter gains Kj(t) associated with the b-parameters are al-
ways all equal. If all b-parameters are equal initially it follows that they remain
equal during the estimation. It thus follows that a square wave signal is not
a good input for estimating the parameters of a piecewise linear system. This
explams the results from example 3.2 where it was found that blh = bzh and
blc - b2c

In addition the output y(¢) will also change very little in the low gain
domain. The excitation is therefore poor and the a-parameters are poorly es-
timated. Hence the only parameter that we can expect to estimate accurately
under these circumstances is the static gain of the system.

A comparison between estimators with and without time-out

To illustrate the effects of the time-out first and second order linear systems
were investigated. For linear systems there is no need to stop estimation
when changing domain and wait until the regression vector is filled with data
from the correct domain. The data from both domains reflects the same
linear system and can therefore be used in both domains. The estimators for
piecewise linear systems were modified such that they still estimate two sets
of parameters for the two different domains, but do not interrupt estimation
when switching domain. These two sets of parameters should then converge
to the same values for linear systems.

Comparisons were made between the estimator with and without time-
out for first order linear systems with different gains. Remember that for first
order systems the estimator only waits one sampling period when changing
domain which is a very short time.

When comparing the two estimators for a first order linear system with
gain 1 virtually no difference could be found. The parameter estimates con-
verged just as fast in the two cases. For first order systems with lower gains
significant differences could be found.

ExAMPLE 3.6—The effects of the time-out for a first order system.

Consider Fig.3.9 where the two estimators are compared for a first order linear
system with gain 0.02. A square wave with period 10 was chosen as the input
u(t). The estimator had a sampling period T = 0.2. The initial covariance
matrices P,(0) and P.(0) were both 1000I. The initial parameter vectors On

and 0, were equally (1,0).
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Figure 3.9 A comparison between a parameter estimation with time-out (left)
and without time-out (right).

On the left side the estimation with time-out is shown, on the right side the one
without time-out. Parameter @15 converges slowly in both cases. To explain
this consider Fig.3.10 where the output y(t) is shown with different scales.
y(t)
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~-0.1 T T T T time tl
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Figure 3.10 The output signal y(2)

At time 0 the regression vector is ¢7(0) = (0,0). As the initial output
signal y(0) is zero, it follows that the correction term

(0) = (4(0) - #7(0)6x(0))

(see Eq.3.4) will be zero. Thus the estimates can not change. The estimator
without time-out can not use the excitation in u(t) (u(t) makes a step at
time 0). Therefore dy5 converges at the same rate for both estimators. Since
the system has a low gain the output y(¢) has a small rate of change and
parameters converge slowly.

The speed of convergence of @, on the other hand is very different in the
two cases. The reason is that when the system moves in the positive domain
(after 5 time umits), the correction term

e(t) = (y(t) — 6" (1)t - 1))
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is quite large, because y(t) is approximately —0.1. The estimator without
time-out can change the estimate 6y, rapidly, making use of the excitation in
the input step. Parameter 6, converges fast in this case.

When the estimator with time-out can start estimation the output y(t)
has a very small rate of change. As there is not any excitation in the input
u(t) parameters converge slowly. What makes the difference is that the most
valuable part of the excitation in the input step (after 5 time units) can not
contribute to a better identification when the estimator with time-out is used.
When the estimator without time-out is used it can.

As already mentioned earlier the filter gain K(t) can be raised by increas-
ing the amplitude of the input u(t). When increasing the amplitude of u(t) it
was found that the parameters of both domains would converge faster. O

Improved excitation

Having understood the phenomenon of time-out, we can now suggest some
ways to overcome the problem. Since it is due to the lack of excitation in
connection with switches from one domain to another, we will simply make
sure that after a switch, the input is changed so that proper excitation is
obtained while the system remains in the same domain.

ExamMmpLE 3.7

In Fig.3.11 a square pulse was added to the square wave after the Tegression
vector was filled with data from the positive domain (after a little more than
5 time units).
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Figure 3.11 The parameter estimation when adding a square pulse to the input
u(t).

The estimate d;5(t) converges very fast this time. This is the result of just a
little extra excitation. By adding more square pulses when the system is in
the negative domain the parameter a1.(t) would also converge faster. O
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Comparisons were also made between estimators for second order systems
with and without time-out. Similar results were obtained as for first order
systems. For a linear system with gain gn = 1 very little difference could
be found between the two estimators. When using a linear system with a
gain g. = 0.02, the estimator without time-out performed a little better than
the other one. The difference was however much smaller than for first order
systems.

Same as for first order systems the speed of convergence could be raised
by a) using inputs u(t) with bigger amplitudes, b) using better excited inputs
u(t), and c) choosing more suitable initial P-matrices.

Summary

As a conclusion, the input signal u(t) must capture more features for the
parameter estimation of piecewise linear systems than for the parameter esti-
mation of linear systems.

1. Same as for linear systems, it should be excited enough in order to obtain
accurate estimates. However there must be excitation during the periods
of time when estimation can be performed. As the steps of the input u(t)
that cause a change of domain always fall into the time-out period of the
estimator, the most valuable part of their excitation can not contribute to
a better identification of a piecewise linear system. Therefore steps within
the domains that do not cause another change of domain are needed.

2. Another new result is that the input u(t) must bring the indicator signal
long enough in the high gain domain, so that enough estimations can be
performed there.

3.4 Introducing a forgetting factor A

So far all experiments were made using A = 1 which means no forgetting.
This was reasonable because the systems were time invariant. As the estima-
tor designed in this project shall be used in self-tuning regulators to control
time variant piecewise linear systems, experiments were made using forgetting
factors A < 1. The question was whether this would effect the estimator for
piecewise linear systems in the same way as it effects estimators for linear
systems.

In a first step first order linear and piecewise linear systems were investi-
gated. For high gain linear systems (i.e. with gain g, = 1) the estimator was
not found to be sensitive to changes in A . The results were virtually the same
for 0.9 < A < 1. For low gain linear systems however the estimator was found
to be sensitive to different choices of A. Estimates converged faster for smaller
choices of A.

For the piecewise linear process with gains g, = 1 and g. = 0.02 slightly
better results were obtained for smaller A’s.

In a second step second order linear and piecewise linear systems were
looked at. For second order high gain linear systems (i.e. with gain gp = 1)
estimates converged a little faster as A was reduced. For second order low gain
linear systems (i.e. with gain g. = 0.02) significant differences could be found.
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ExaMprPLE 3.8

In Fig.3.12 the estimator performances are compared for a linear system with

the transfer function G(s) = '(a-l-()—.()émfj for A =1 and A = 0.9. Two square

waves with periods Ty = 2% pi and Ty;2 = b and amplitudes al=2 and a2=1.5
were used as the input u(t). The sampling period of the estimator was T, = 0.2
and the P-matrices had the initial values P, = p10%. The initial parameter

vectors @), and §, were both chosen as (0,0,0,0).
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Figure 3.12 Comparing estimation of a linear second order system for A = 1 and
A =0.9.

Using A = 1 the parameters converged slowly (see left side). Parameter a5, =
—1.527 and @;, = —1.563 after 20 time units of simulation. These values are
quite far from the true value of -1.815.

On the other hand, using A = 0.9 results were much better. Parameter
a1p = —1.799 and @;. = —1.803. These values are close to the true value.

The reason for this is that the smaller A increases the P-matrices. The
filter gain K (t) will be larger (see Eqs.3.4 and 3.5) and the parameter estimates
can therefore move faster away from their initial values. For a higher gain
system the difference is less visible, as the rate of convergence is quite big
anyway. O

ExamprLE 3.9
In Fig.3.13 a comparison was made between the estimator designed in this
project for piecewise linear systems and a standard least squares estimator
designed for linear systems. The standard least squares estimator only esti-
mates one set of parameters, performing estimation in both domains and all
the time.

The performances of the two estimators were compared when estimating
the parameters of the same second order low gain linear system as in the last
example. Also the same input signal u(t) and the same initial conditions were
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used as in the last example. Fig.3.13 shows the results using A = 0.9 for both
estimators.
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Figure 3.13 Comparison of the two estimators with A = 0.9.

This example illustrates quite nicely that the convergence rate of the param-
eters can be twice as long when estimating two sets of parameters (see left
side) compared to estimating just one set (see right side).

When using the estimator without time-out estimates would converge a
little faster. O

For the piecewise linear system it was found again that by using smaller
A’s parameters would converge a little faster.

In a good estimator care must be taken to ensure that the estimator
does not diverge when forgetting is used. This can be achieved by a) covari-
ance resetting, b) a constant trace algorithm, or c) directional forgetting. See
[S6derstrom and Stoica, 1989).

Parameter estimations for fourth order systems were also carried out. A
general fourth order system has the pulse-transfer operator

b1g® + bag® + bag + by
¢t + a1¢® + a29® + asq + a4

H(q) =

(3.30)

Notice that 8 parameters have to be estimated at the same time so the esti-
mation can be expected to be a lot more difficult,

Using A = 1 the parameters of the fourth order linear system G(s) =
gn/((s + gr)(s + 1)3) (gn = 1) converged very slowly and only when using
very exciting inputs u(t). With smaller forgetting factors parameters would
converge significantly faster. No good results were obtained for the param-
eter estimation of fourth order piecewise linear systems. This could not be
explained.
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4. Controller design for piecewise
linear systems

In the previous chapter recursive least squares was introduced and applied to
estimate the parameters of piecewise linear systems. These estimates shall now
be used to design appropriate regulators to control these systems (compare
with Fig.3.1). There exist a number of different controller design methods
as pole placement, linear quadratic, minimum variance and model-following,
see [Astrom and Wittenmark, 1989]). It was decided to use pole placement
based on input-output models. One reason is that an input-output model is
obtained from the recursive estimation algorithm. Another advantage is that
it is simple and easy to implement.

4.1 Introduction to pole placement

This design method is applicable to single input, single output systems. The
relation between the input u and the output y of the system is given by the
pulse-transfer function

B(z)
A(2)
A(z) and B(z) are assumed to be polynomials without common factors. Also
the desired closed-loop pulse-transfer function must be specified in the form

Bu(z)
AM(Z)

where Bpr(z) and Apr(z) should again not have any common factors. Finally
a characteristic polynomial A, must be given that contains observer dynamics.
The control law for a regulator with the two inputs y,, (the command signal)
and y (the measured output) and the output u can be written as

R(q)u(k) = T(q)ysp(k) — S(q)y(k) (4.3)

R, T, and S are polynomials in the forward shift operator. R is assumed to
be monic which means that the coefficient in the highest power in R is unity.
Conditions on the control law are deg R > deg T and deg R > deg S, both for
causality reasons. The degrees are usually chosen such that equality holds, as
it will be the case in this project.

It is now the goal to specify the polynomials R, T, and S for the control
law given by Eq.4.3 such that the closed-loop system (see Fig.4.1) satisfies the
input-output relation given by Eq.4.2 and an observer with the characteristic
polynomial 4,(z). Notice that disturbances and modeling errors are neglected.

H(z) = (4.1)

HM(Z) =

(4.2)

pA

—Sp_—: Ru = TXp_ Sy u % y
1
—l

Figure 4.1 Block diagram of the closed-loop system.
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Eliminating u between Eqs.4.1 and 4.3 gives

Y BT B,

Voo AR+ DS~ A ()

There are many different solutions to Eq.4.4 by different choice of R,S, and T.
Usually sufficiently well damped zeros of the open-loop system may be
canceled by closed-loop poles. Because the self-tuning regulator shall be used
for systems where information about poles might not be available it was de-
cided not to cancel any zeros.
The pole placement design problem can be solved by the following algo-
rithm [Astrém and Wittenmark, 1984 and 1989).

ALGORITHM 4.1—Pole placement design with no zeros canceled
Conditions on the control law in order to get a causal solution are:

deg Ay, — deg B,, > deg A — deg B
deg A, > deg A — deg 4,, — 1

A further condition is: B divides B,,

Step 1: Solve the equation (Diophantine equation)
AR+ BS = A A,

with respect to R and S. Choose a solution such that

deg § < deg A
and
deg R = deg A, + deg A,,, — deg A
Step 2: Form
T =A,B,,/B
The control law is
Ru=Ty,, — Sy

4.2 Pole placement for piecewise linear systems

At first sight only one extra step has to be added to the algorithm described
above in order to apply it to piecewise linear systems. It must be decided
which linearity of the system the controller shall be designed for. Obviously
this decision should be based on the sign of the indicator i(t). When i(t) is

positive the input-output model H(z) = %Eg for the positive domain must be
chosen. Otherwise the model for the negative domain is the proper one to use.
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With this little modification the algorithm was implemented in SIMNON
for second order piecewise linear systems. The following algebraic problem
arose when trying to start the simulation. In the system the indicator i(t)
is a function of u(t). In the controller design algorithm the decision on with
input-output model to use depends on the indicator i(t). Therefore the new
controller output u(t) (which is the system input) depends on the indicator
which itself depends on the controller output u(t). As there are no time-delays
an algebraic loop occurs.

The only way that was found to overcome this problem was to introduce
a delay somewhere in the design algorithm. It was decided to base the decision
on which input-output model to use on the old and not the actual indicator
i(t). This way the controller will calculate outputs u(t) for the old linearity
for one extra sampling period when the system changes domain. This is not
very satisfactory, but no better solution could be thought of. The controller
was implemented this way.

ExAMPLE 4.1—Adaptive control of a linear system.

In Fig.4.2 the linear system with the transfer function G(s) = 1/(s+ 1)? was
controlled for 200 time units. A square wave set point y,,(t) with period 40
was used. The sampling period was 7' = 0.2. The initial covariance matrices
Py, and P, for the estimator were both chosen as 10%I, where I is the identity
matrix. The initial parameter estimates §, and 6, were both (0,0,0.1,0.1).
The desired closed-loop damping was 0.85 and the desired closed-loop natural
frequency was 1.2. The observer pole was set at -0.4. The control variable u(t)
was limited to +2.5 because of the uncertainty about the initial estimates of
the system parameters. This in turns made it necessary to implement antireset
windup [Astrém and Wittenmark, 1984].

Yap(t)and y(t) u(t)

1 2
0 0/
-1 -2

time t time t

I ) | 1 1 L ) 1
0 50 100 150 200 0 50 100 150 200
41i(t) 0 d1p(t)and aq.(t)

L
AT T

—4 : tlmel: t ) :

¥ T T 1
0 50 100 150 200 0 50 100 150 200

Figure 4.2 Adaptive control of a second order linear system.

time t
1

The parameter estimates converged very quickly to accurate values and the
controller performed fine then. The delay in the controller design algorithm
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when changing domain does not show any effect here, because the models for
the two domains are identical. O

The experiment was repeated for linear systems with lower gains. The
results were just as good. However bigger control signals u(t) were needed
which makes sense.

EXAMPLE 4.2—A nonlinear system
The experiment was carried out for a piecewise linear system with the transfer
functions G(s) = gn/((5+gn)(s+1)) and G(s) = gc/((5+9c)(s+1)) for the two
domains (gp = 1, g. = 0.02). Notice that there is a factor of 50 of difference
between the two gains.

The limitations for the input signal u(t) were put up to 300. All other
values were kept the same. The parameters are given in Fig.4.3.

20W ysp and y(t)

104
O-Lk yF— A\ t
0 SIO l(l)O 15'0 2(30
u(t)
1004
0 T
—1004 y V V
—2001
-3004 time t
0 SIO 1(I)O ISIO 260

Figure 4.3 Adaptive control of a second order piecewise linear system.

The results are very bad this time, but they are as expected. Every time
the system moves from the negative to the positive domain big overshoots
occur for the system output y(¢). The reason is that in the negative domain
big control signals are required, as the system has a very low gain. When it
moves into the positive domain the controller uses the system parameters of
the negative domain for another sampling period. The control signal is then
much too large for the positive domain with a high gain of one. 0

Improving the control algorithm with prediction

For a square wave set point y,,(t) it can be predicted that the system changes
domain after every step. The algorithm was modified as follows. When the
old set-point y,,(t) was negative and the new set point is positive (which
means that a positive step occurred) it uses immediately the estimated system
parameters for the positive domain. When the old setpoint was positive and
the new set point is negative (which means that a negative step occurred) it
uses immediately the estimated system parameters for the negative domain.
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ExamvmprLE 4.3
In the next figure the same system as in the previous example is controlled
using prediction as described above.

sp and y(1)
l-ﬂ/jb {
—1
time t
L | ) 1
0 50 100 150 200
) u(t)
. N
—100+
—200+
—300; time t
) ] V ¥
0 50 100 150 200

Figure 4.4 Improved control with prediction.

The results are very good this time. The parameters converge quickly for both
domains and control performance is good. The experiment was repeated for
even larger ratios gy : g. and the results were just as good.

For systems with such big differences in gains between the two domains
two sets of desired closed-loop performances in terms of desired closed-loop
natural frequency and desired closed-loop damping should be specified in order
to optimize the control algorithm. The controller should then switch between
these two sets when changing domain.

The prediction method as described above is only applicable for special set
points y,,(t) as square waves and steps. For other kinds of set point signals it
might not detect all changes of domain. Or it might detect a change of domain
by mistake. In order to reduce these risks the prediction method would have
to be modified, i.e. it could look at differences between the values of new and
recent set points or at rates of change of y,,(t).

The idea of prediction as described above could also be used for systems
where the indicator i(t) is not accessible. All decisions in the estimator that
were based on the sign of the indicator ¢(t) in this project would then be based
on the new and recent values of the set point y,p(t).

Summary

It was found that when the change of domain can be predicted, the modified
control algorithm performed well. For problems where this is not the case no
satisfying solution has been found and it would be necessary to look for other
control strategies.
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5. Conclusions

Several problems in control of piecewise linear systems have been treated in
this thesis. As a result some insights were obtained about the behaviour of
this kind of systems.

A parameter estimation algorithm for piecewise linear systems was devel-
oped and tested for first and second order systems. It was found to be nec-
essary to introduce a time-out mechanism in the estimator when the system
changes domain in order to fill up the regression vector with appropriate data.
This is an important consideration for all piecewise linear systems. Several
problems caused by the time-out in the estimator were found and explained.

One difficulty arises for domains where the gain is high. The response
of the system is very fast in such domains. In extreme cases the system
might leave a high gain domain before any estimation could be performed.
But also when this is not the case, the periods during which estimation can
be performed. are significantly reduced.: This can slow down the parameter
convergence considerably.

For square wave inputs it was found that their most valuable excitation
can not contribute to system identification when the estimator with time-out
is used. The reason is that the step changes in the square wave will cause a
change of domain of the system which makes a time-out necessary.

With the knowledge gained some suggestions were made how to overcome
these problems. These suggestions contain requirements about the nature of
inputs of the system. A key issue here is that for the estimation of piecewise
linear systems, excitation alone might not be sufficient in order to obtain
accurate estimates. There must be excitation during the periods of time when
estimation can be performed. Mlustrations with examples were given.

Finally an adaptive controller for piecewise linear systems was developed,
using pole placement design based on input-output models. An algebraic
loop problem in the algorithm had to be overcome by introducing a time-
delay. Problems as a result of this time-delay were solved using a prediction
method. With this prediction method second order piecewise linear systems
were successfully controlled for certain set-point signals.

This thesis was a first investigation about problems occuring when con-
trolling piecewise linear systems adaptively. Further research must follow to
obtain results that can be used in practice.

36



6. References

AstrOM, K. J. and B. WITTENMARK (1989): Adaptive Control, Addi-
son-Wesley, Reading, Mass.

AsTrOM, K. J. and B. WITTENMARK (1984): Computer controlled systems,
Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Ewmquist, E., K.J. AstroM, T. SCHONTHAL, and B. WITTENMARK
(1990): SimnonTM User’s Guide for the MS-DOS Computers, SSPA SYS-
TEMS, Box 24 001, S-400 22 Géteborg.

KNuTH, D. E. (1985): The TEXbook, Addison-Wesley, Reading, Mass.

SODERSTROM, T. and P. Stoica (1989): System identification, Pren-
tice-Hall Inc., Englewood Cliffs, New Jersey.

37



Appendix A

1.

A brief introduction to SIMNON

SIMNON is an interactive program that can simulate dynamical systems con-
sisting of continuous and discrete subsystems. The subsystems are connected
with a connecting system. It defines how the inputs and outputs of the various
subsystems are interconnected (see Fig.1). For further information we refer to
[Elmkvist, Astrém, Schénthal and Wittenmark, 1990].

2.

The programs for the self-tuning regulator

To simulate the control of a piecewise linear process with a self-tuning regulator
three subsystems were defined.

1.

The second order system procs is a continuous system and simulates
the process which is controlled.

The regulator strs (self-tuning regulator for second order systems) is
a discrete system and consists of two parts. One part is the recur-
sive estimation algorithm. It estimates the parameters of the process
model using the process input u(t) and the process output y(t). Notice
that it is identical with the estimator used in chapter 3. The other
part is the pole-placement algorithm. It uses the estimated model
parameters to design an appropriate regulator and calculates the new
process input u(t).

The connecting system conn connects the regulator strs and the pro-
cess procs and closes the control loop.

Fig.1 shows how the three systems exchange signals.

u(t) u(t) self—
Process Connecting tuning
(continuous) system regulator
i(t) _ i(t) _ | (discrete)
procs - conn strs
y(® y(®

Figure 1. The exchange of signals between the process, the connecting system
and the self-tuning regulator.

The program listings of the three subsystems are given on the following pages.

Notice that to simulate just the parameter estimation of the process model

the same system can be used.
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CONTINUQUS SYSTEM proc
"Second order system procs

INPUT u
OUTPUT y i
STATE x1 x2
DER dxi dx2

y=x2

dx2=x1-x2

i=u-x1

dx1=IF i<0 THEN b#i ELSE a*i

a:1'"0.02
b:0.02

END

CONNECTING SYSTEM conn
TIME t

ulprocl=ulest]
y[Lest]l=y[proc]
ifest]=ilproc]

END

DISCRETE SYSTEM reg

"File called strs.t

"Indirect Self-Tuning Regulator based on the model

" H(q)=(bl*q+b2)/(q"2+al*q+a2)

"using standard recursive least squares estimation and pole placement
"design without cancellation of process zeros

"Polynomial Am has degree 2 and

"Polynomial Ao has degree 1

"Specifications are given in terms of continuous w and z

INPUT y i "set point, process output and indicator
OUTPUT u "control variable

STATE yspl y1 ul vi ‘controller states

STATE ii i2 "old indicator signals

STATE thia th2a th3a th4a "parameter estimates

STATE thib th2b th3b th4b

STATE f1 £2 £3 £4 "regression variables
STATE piia pi2a pi3a pida “covariance matrix a
STATE p22a p23a p24a

STATE p33a p34a

STATE p4da

STATE pi1ib pi12b pi3b pil4b "covariance matrix b
STATE p22b p23b p24b

STATE p33b p34b

STATE p44b

NEW nyspi nyl nul nvi

NEW nii ni2

NEW nthia nth2a nth3a nthéa
NEW nthib nth2b nth3b nth4b
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NEW nfi nf2 nf3 nf4

NEW niia ni2a ni3a nida

NEW n22a n23a n24a
NEW n33a n34a
NEW nd4a

NEW niib ni2b ni3b nl14b

NEW n22b n23b n24b
NEW n33b n34b
NEW n44b
TIME t

TSAMP ts

INITIAL

"Compute sampled Am

a=EXP (~z*w*h)
aml=-2%a*C0S (wxh*SQRT(1~z*z))
am2=a*a

thia=0 “initial estimates
th2a=0

th3a=0.1

th4a=0.1

thib=0
th2b=0
th3b=0.1
th4b=0.1

pl11a=10000 "initial covariances
P22a=10000
p33a=10000
p44a=10000

p11b=10000
p22b=10000
p33b=10000
p44b=10000

SORT
1.0 Parameter Estimation

ysp=IF MOD(t,per)<per/2 THEN step ELSE -step
"1.1 Computation of P*f and estimator gain k

signal=abs(sign(i)+sign(il1)+sign(i2)) "check to see if the indicator has
"been long enough in the new domain

tb1=p11ib*£f1+p12b*£2+p13b*£3+p14b*f4
tal=pliaxfi+pil2a*f2+pi3a*xf3+pldaxfsd

pf1=IF signal<2.5 THEN 0 ELSE IF i<0 THEN tbl ELSE tail

tb2=p12b*f1+p22b*£2+p23b*£3+p24b*f4
ta2=pi2a*fi+p22a%f2+p23a*f3+p24a*f4

pf2=IF signal<2.5 THEN O ELSE IF i<0 THEN tb2 ELSE ta2
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tb3=p13b*£1+p23b*f2+p33b*f3+p34b*f4
ta3=p13a*fi+p23a*f2+p33a*f3+p34a*fs

pf3=IF signal<2.5 THEN O ELSE IF i<0 THEN tb3 ELSE ta3

tb4=p14b*Lf1+p24b*f2+p34b*£3+pldb*f4
tad=pliaxfi+p24a*f2+p34a*f3+pidasfs

pi4=IF signal<2.5 THEN 0 ELSE IF i<0 THEN tb4 ELSE ta4
denom=lambda+f 1%pf1+f2%pf2+£3%pf3+f4*pfe

ki=pfi/denom

k2=pf2/denom

k3=pf3/denom
k4=pf4/denom

"1.2 Update estimates and covariances

tb9=y-£1%th1b-£f2%th2b~£3%th3b-f4%th4b
ta9=y-fi*thla-£2+%th2a-£3+th3a-f4+th4a
eps=IF i<0 THEN tb9 ELSE ta9

nthia=IF i<0 THEN thia ELSE thlat+kikeps
nth2a=IF i<0 THEN th2a ELSE th2a+k2*eps
nth3a=IF i<0 THEN th3a ELSE th3a+k3*eps
nth4a=IF i<0 THEN th4a ELSE thé4at+k4*eps

nthib=IF i<0 THEN thib+kil*eps ELSE thib
nth2b=IF i<0 THEN th2b+k2+*eps ELSE th2b
nth3b=IF i<0 THEN th3b+k3#*eps ELSE th3b
nth4b=IF i<0 THEN th4b+k4*eps ELSE th4b

nlla=IF signal<2.5 THEN piia ELSE IF i<0 THEN piia

ELSE (pila-pfixki)/lambda
ni12a=IF signal<2.5 THEN pi2a ELSE IF i<0 THEN pi2a

ELSE (p12a-pfi%k2)/lambda
ni3a=IF signal<2.5 THEN p13a ELSE IF i<0 THEN pi3a

ELSE (p13a-pf1#k3)/lambda
ni4a=IF signal<2.5 THEN pi4a ELSE IF i<0 THEN pi4a

ELSE (pi4a-pfixk4)/lambda

n22a=IF signal<2.5 THEN p22a ELSE IF i<0 THEN p22a

ELSE (p22a-pf2%k2)/lambda
n23a=IF signal<2.5 THEN p23a ELSE IF i<0 THEN p23a

ELSE (p23a-pf2#k3)/lambda
n24a=IF signal<2.5 THEN p24a ELSE IF i<0 THEN p24a

ELSE (p24a-pf2+k4)/lambda

n33a=IF signal<2.5 THEN p33a ELSE IF i<0 THEN p33a

ELSE (p33a-pf3*k3)/lambda
n34a=IF signal<2.5 THEN p34a ELSE IF i<0 THEN p34a

ELSE (p34a-pf3*k4)/lambda

n44a=IF signal<2.5 THEN p44a ELSE IF i<0 THEN p44a
ELSE (p44a-pf4+k4)/lambda

n1ib=IF signal<2.5 THEN piib ELSE IF i<0 THEN (pi1b-pfi*ki1)/lambda
ELSE piib

ni12b=IF signal<2.5 THEN pi2b ELSE IF i<0 THEN (pi2b-pfi*k2)/lambda
ELSE p12b

ni3b=IF signal<2.5 THEN p13b ELSE IF i<0 THEN (p13b-pfi¥k3)/lambda
ELSE pi3b



n14b=IF signal<2.5 THEN p14b ELSE IF i<0 THEN (p14b-pf1%k4)/lambda

ELSE p14b

n22b=IF signal<2.6 THEN p22b ELSE IF i<0 THEN (p22b-pf2+k2)/lambda

ELSE p22b

n23b=IF signal<2.5 THEN p23b ELSE IF i<0 THEN (p23b-pf2#k3)/lambda

ELSE p23b

n24b=IF signal<2.5 THEN p24b ELSE IF i<0 THEN (p24b-pf2+k4)/lambda

ELSE p24b

n33b=IF signal<2.5 THEN p33b ELSE IF i<0 THEN (p33b-pf3%k3)/lambda

ELSE p33b

n34b=IF signal<2.5 THEN p34b ELSE IF i<0 THEN (p34b-pf3+k4)/lambda

ELSE p34b

n44b=IF signal<2.5 THEN p44b ELSE IF i<0 THEN (p44b-pf4xk4)/lambda

ELSE p44b

2.0 Control design

"2.1 Choice of model parameters with prediction

altp=IF i1<0 THEN thib ELSE thia

al=IF ysp1<0 AND ysp>0 THEN thia ELSE IF ysp1>0 AND ysp<0 THEN thib

ELSE altp

a2tp=IF 11<0 THEN th2b ELSE th2a

a2=IF yspi<0 AND ysp>0 THEN th2a ELSE IF yspi1>0 AND ysp<0 THEN th2b

ELSE a2tp

bitp=IF i1<0 THEN th3b ELSE th3a

b1=IF ysp1<0 AND ysp>0 THEN th3a ELSE IF yspi>0 AND ysp<0 THEN th3b

ELSE bitp

b2tp=IF ii1<0 THEN th4b ELSE th4a

b2=IF ysp1<0 AND ysp>0 THEN thda ELSE IF ysp1>0 AND ysp<O THEN thdb

ELSE b2tp

2.1 Solve the polynomial identity AR+BS=(B+)AocAm -
bs=bi+b2

as=1+ami+am2

bmo=as/bs

a0=-aop
n=b2*b2~-ai*blsb2+a2*bi*bi

t0=bmo

t1=bmo*ao
r1=b2/b1+(b2*b2—am1*bi*b2+am2*b1*b1)*(—b2+ao*b1)/n/bi
s0=(ao+ami-al-r1) /b1

si=(ao*am2-a2*ri) /b2

"3.0 Control law with anti-windup
v=—a0*v1+ysp*t0+t1*xyspl-sO*y-si*yi+(ao-r1) *ui

u=IF v<-ulim THEN -ulim ELSE IF v<ulim THEN v ELSE ulim

"1.3 Update regression vector and old indicators---

nfi=-y
nf2=f1
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nf3=u
nf4=£3

nii=ji
ni2=ii

e=0

"3.1 Update controller state

nyl=y
nui=u
nvi=vy
nyspi=ysp

4.0 Update sampling time -- —

temp=IF abs(i)<0.01 THEN h/6 ELSE h

ts=t+h"temp

"Parameters
lambda:0.99
h:0.2
pi:3.141592
aocp:0.4
z:0.85"0.7
w:l.2"1

ulim:2.5

per:40
step:1

END

"forgetting factor
"sampling time

"observer pole
"desired closed loop damping
"desired closed loop natural frequency

"limitation of control signal

"period of set point
"amplitude of set point
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