CODEN: LUTFD2/(TFRT-5435)/1-37/(1991)

A Process Knowledge Base Browser

Marie Andersson

Department of Automatic Control
Lund Institute of Technology
March 1991

Document name

Department of Automatic Control Master Thesis

Lund Institute of Technology Date of issuc
P.O. Box 118 March 1991
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-5435)/1-37/(1991)
Author(s) Supervisor
Marie Andersson Nick Hoggard, ABB, Karl-Erik Arzén, LTH

Sponsoring organisation

Title and subtitle
A Process Knowledge Base Browser

Abstract

This report is the documentation of a project called “A Process Knowledge Base Browser”, that has been
performed as a Master Thesis in Computer Engineering at the Lund Institute of Technology.

The purpose of the project is to develop a graphical browser to an object-oriented data base containing various
types of information about a process plant and its components. The structure and contents of the knowledge
base were developed prior to the project by ABB.

The information in the knowledge base is divided into two large groups: classes and instances of these classes.
Each of these groups is displayed in a separate window. The classes and the instances share the same basic
structure. This made it possible to make the two windows almost similar, which in turn makes the browser
easier to use. The class hierarchy graph is displayed in a third window on the screen. The completed graphical
browser consists of three different windows, which together can show the user all the information currently in
the knowledge base.

The browser is implemented in C++ using the object-oriented graphical user interface InterViews.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 37

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 101 0,
§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Contents

Introduction 1
The Browser project 2
2.1 Imtroduction. e e 2
2.2 Knowledgebase. o e e e 3
2.3 Load/Savetool 3
24 Browser e e e e e e e 4
Knowledge base concepts 5
3.1 Imtroduction. e e 5
3.2 Objects, Attributes 6
3.21 Multi-view objects L 6
3.2.2 Connectionobjects 7
3.2.3 Class definition objects L 0 ... 7
3.2.4 Composite multi-view object, 7
3.3 Classes, instances and inheritance, 8
The Knowledge base implementation 9
4.1 Imtroduction. i e e 9
4.2 Objects, Attributes e 9
4.2.1 Multi-view objects 10
4.2.2 Connectionobjects e e 10
4.2.3 Class definition objects 11
4.2.4 Composite multi-view objects 12
4.3 Classes. . . v v vt i e e e 13
4.3.1 Classesforobjects 13
4.3.2 C(Classes for composite objects 13
4.3.3 Classes for attributes. 0 ... 13
The Browser 15
5.1 Imtroduction. e 15
5.2 Multi-view object browser L 16
5.2.1 Introduction e 16
5.2.2 Multi-view objects subwindow, 16
5.2.3 Selected multi-view object subwindow 16
524 Classsubwindow 16

5.2.5 Selected multi-view object subwindow II

5.2.6 Views and View: subwindows
5.2.7 Connection points subwindow

......................

......................

5.2.8 Consists-of relations for multi-view objects subwindow,

5.3 Class browser
5.3.1 Introduction
5.3.2 Classes subwindow
5.3.3 Selected class subwindow

......

......................

......................

......................

......................

5.3.4 Child and parent class subwindows L.

5.3.5 Instances subwindow
5.3.6 Selected class subwindow II
5.3.7 Views and View: subwindows
5.3.8 Connection points subwindow

......................

......................

......................

......................

5.3.9 Consists-of relations for classes subwindow
5.4 Inheritance tree display

6 Implementation
6.1 Introduction

6.2 StringBrowser-class
6.3 TextEditor-class

of the browser

..............

..........

...........

......................

......................

......................

......................

6.4 Scrolling e e

6.5 Graphics, a part of InterViews

6.6 Bitmap-class

.............

......................

......................

6.7 Experiences of using C++ and InterViews

7 Conclusions

A Glossary

ii

18
18
18
19
20
20
20
22
22
22
23
24
24
24
26

28
28
28
29
29
29
29
30

31

32

Chapter 1

Introduction

This report is a documentation of a project called A process knowledge base browser, which
I am doing as a Master Thesis in Computer Engineering, at Lund Institute of Technology.
The project has been done at ABB Corporate Research, Ideon, Lund, where I also have my
first instructor Nick Hoggard. ABB cooperates with the Department of Automatic Control
with projects similar to this one, hence I got my second instructor there, Karl-Erik Arzén.

Prior to this Master’s Thesis project, a prototype knowledge base had been constructed
by Nick Hoggard. The purpose of this knowledge base was to store all the information
about a process plant, for example functional, topological, geographical information etc.
Also defined were some procedures for searching through the knowledge base. My task
was to show the information about the plant on the screen using the procedures mentioned
above and the knowledge base. Displaying the information should be done in a way that tell
the users as much as possible about the plant. Showing all the information simultaneously
on the screen was out of the question for mainly two reasons. First a complete knowledge
base is very, very large and second if everything is shown at the same time, it would be
impossible to subtract any useful information from the “mess” on the screen.

In order to be useful the browser should be well-structured, logical and easy to use.
All the information in the knowledge base was divided into two large groups: classes and
instances of these classes. Each of these groups is displayed in a separate window. The
classes and the instances share the same basic structure. This made it possible to make
the two windows almost alike, which in turn makes the browser easier to use. Finally
the class hierarchy graph is displayed in a third window on the screen. The completed
graphical browser consists of three different windows, which together can show the user
all the information currently in the knowledge base. The browser is implemented in C++
using the object-oriented graphical user interface called InterViews.

Chapter 2 shortly describes the whole Browser project. The concepts of the knowledge
base are explained and described in Chapter 3, and after that, in Chapter 4, the imple-
mentation of the knowledge base is described. Chapter 5 is a thorough description of the
graphical browser and its functions and Chapter 6 is about the implementation. Finally
conclusions are found in Chapter 7.

Chapter 2

The Browser project

2.1 Introduction

The Browser project is being performed at ABB Corporate Research in Lund. The purpose
of the project is to investigate the possibility of implementing an object-oriented knowl-
edge base containing a variety of different information and knowledge about the plant.
Different kinds of information might include geographical information, e.g. 3-D descrip-
tions, topological descriptions of the plant, e.g. process and electric schematics, functional
plant descriptions that describes the goals and abstract functions of the plant, component
information, control logic, textual descriptions, e.g. installation descriptions and operator
manuals, etc.

In a large knowledge base of this kind it is important to have structuring mechanisms
that matches the plant and how information about the plant is stored. The most important
of these mechanisms is the object, which can represent some physical entity in the plant.
Objects representing larger parts of the plants are typically composite, i.e./ they are com-
posed of other objects. It is often the case that a physical object needs to be described from
multiple points of view at the same time. In order to handle this the multi-view object
concept is used, which will be described later.

Plant knowledge bases have multiple applications. Ideally they should follow the life-
cycle of the plant, i.e. they should be built-up during design and updated during production,
operation and maintenance. Examples of knowledge base approaches to engineering are the
Steerbear project at Kockums Computer Systems or the CALS (Computer Aided Logistics
and Support) project initiated by the US Department of Defence. ABB cooperates with the
Department of Automatic Control at Lund University of Technology in an IT4 project called
"Knowledge-based Real-time Control Systems”. In this project a multi-view knowledge
base is specified that also includes the on-line computer control system.

There are three larger parts in this project the knowledge base prototype, the load/save
tool and the browser, which is the part that I am implementing. Connections between
these parts are shown in Figure 2.1. The load/save routines are used to collect and save
information in the knowledge base to/from a disk file.

Load/ Knowledge Graphical
Save Lib Lib | Browser
Tool Base Tool

ASCII format
disk file

Figure 2.1: Connections between the three larger parts of the project, the knowledge base,
the load/save toolkit and the browser.

2.2 Knowledge base

The knowledge base contains all information necessary to represent a process plant. This
knowledge is divided up into objects. In a model of, e.g., a process plant these objects could
correspond to process components such as pumps, valves, switches etc., process units or
the entire plant.

One of the reasons for using this kind of knowledge base, where everything is divided
into objects, is that the source code can be reduced with up to two thirds. The reduction
is due to the fact that the data structure can look the same in the knowledge base as in the
application. An object contains data that are logically connected. A user propably wants
to read in a whole object at the same time, which can be done much faster in this kind of
knowledge base than in a conventional data base. ,

The following characteristics are implemented in the knowledge base and described
more detailed in Chapter 3 and 4:

e Classes and instances of objects

Class to class inheritance

Multi-view objects

Composite objects

Objects that are connected together using the concepts “connection points” and “con-
nections”

2.3 Load/Save tool

Load/save tools are used for saving the information in the knowledge base to disk file and
loading from disk file back to either files specified by the programmer or standard files. The

contents of the disk file is in ASCII-format, which means that the knowledge base does not
have to be defined with C+4+ code, it can also be defined by editing the ASCII file.

2.4 Browser

Reading the ASCII representation of the knowledge base will not give much knowledge
about the process plant, even if it contains all the information. The graphical browser is
supposed to display the information, currently in the knowledge base, in such a way that
it will be easier to understand compared to reading directly from the knowledge base.

Objects in the knowledge base have a lot of information connected to them. Each object
usually contains information about what kind of object it is, the name of it, what makes
this object special compared to other ones and so on. Displayed from the beginning in the
browser are only the names of all objects. Using the mouse the user selects any object
interesting enough to know more about. The browser then responds to that selection, finds
out as much about it as possible, shows the result on the screen in a structured way and
waits for new selections.

C++ and InterViews' have been used to implement the browser. For more information
see [C++], [IV1], [IV2].

!InterViews is an object-oriented graphical user interface from Stanford University.

4

Chapter 3

Knowledge base concepts

3.1 Introduction

In this chapter all concepts concerning the knowledge base will be explained. Relationships
between different concepts are also described here. To make this chapter somewhat easier
to understand I will use the same example, Ex1, troughout the chapter.

Here is Ex1:

OBJECT Steritherm

LIST (consists-of relation) Electrical system
STRING child entity = Electrical system
STRING childview = topological view

LIST (consists~of relation) Control system
STRING child entity = Control system
STRING childview = topological view

LIST (consists-of relation) Steam system
STRING child entity = Steam system
STRING childview = topological view

LIST (consists-of relation) Pneumatic system
STRING child entity = Pneumatic system
STRING childview = topological view

LIST (consists-of relation) Warm water system
STRING child entity = Warm water system
STRING childview = topological view

LIST (consists-of relation) Cold water system
STRING child entity = Cold water system
STRING childview = topological view

LIST (consists-of relation) Main product system
STRING child entity = Main product system
STRING childview = topological view

LIST (photograph class) Steritherm photo
INT photograph number = 12344

LIST (view) topological view
STRING Electrical system:topological view
STRING Control system:topological view
STRING Steam system:topological view
STRING Pneumatic system:topological view
STRING Warm water system:topological view
STRING Cold water system:topological view
STRING Main product system:topological view

LIST (view) geographical view
STRING Steritherm photo

LIST (view) functional view

3.2 Objects, Attributes

The knowledge base consists of a list of objects, which in this case can be both classes and
instances of classes. Each of the objects has a number of attributes. Attributes can be
simple things like integers or strings, or more complex data structures.

s
]

attributes

]

objects

In this knowledge base there are four different kinds of objects:
1. Multi-view objects

2. Connection objects

3. Class definition objects

4. Composite multi-view objects

3.2.1 Multi-view objects

Multi-view objects are used to describe objects that requires to be described in different
contexts with different attributes and internal structure. At the same time, in the different
contexts, though they need to be described as one unified object. To be able to divide the
object, into pieces matching the special purposes, an attribute called “view” is used. The
topological, the geographical and the functional view are the most general ones. Topological
views shows, e.g., designs of parts of objects, circuit diagrams for electrical systems and
so on. Geographical views can be photos, drawings etc. that show how something really
looks, and finally the functional view, which explains how things work and what they are

supposed to do. In Ex1 at the beginning of this chapter the views are implemented as LIST-
attributes. In the topological view there are diagrams of the electrical system, the control
system, the steam system and so on. The geographical view is a photo of the Steritherm
object. The functional view does not give any information at all at the moment.

As shown in the figure below a multi-view object can have more than one view. Any
attribute can also be included in more than one view.

Multi-view object

i

attributes

)
3YA () - viens

U

If you look at the class definition for a “multi-view object”, it is a parent class. And
as with all other base classes new classes can be derived from them. “Pump class”, for
example, may be derived from a multi-view object. Derived classes inherit all attributes,
including view attributes, from their “parent classes”, who in turn may be derived classes
with inherited attributes. The newly constructed classes then define and add their own
characteristic attributes.

3.2.2 Connection objects

Connection objects are special objects that connects two other objects via “connection
points”.

Object Object
Connection
! P EE— . Connection
Point ® ® Point
Connection
Object

3.2.3 Class definition objects

All objects that have the same attributes and behaviour can be grouped together. A “class
definition object” is an object that defines the structure of the group of objects. Class
definition objects are further described in the following section.

3.2.4 Composite multi-view object

A composite multi-view object is an object that has an internal structure consisting of
interconnected objects representing subparts of the superior object. A subpart of a com-

posite object does not have to be another whole object, it could also be one or more views
of an object. Ex1 contains LIST attributes called “consists-of relations”. These attributes
show the subparts and also what view/views of those subparts they concern.

O = "consists-of relation"
attributes

3.3 Classes, instances and inheritance

A class is a group of objects that share the same attributes and behaviour. As there are
different kinds of objects, there are also different kinds of classes:

e classes describing an object
e classes describing a composite object
e classes describing an attribute

Objects describing a unique member of some object class are called instances.

A class definition object is an object describing the structure of a class. If a new
class definition is created from any already existing class definition, a process known as
“inheritance”, the new class will consist of all attributes included in the existing class. In
the new class it is forbidden to remove any of these inherited attributes but it is allowed
to add new ones.

Created classes are called child classes and those they were created from are parent
classes. Multiple inheritance means the ability to inherit attributes from more than one
parent class. This is allowed here.

Chapter 4

The Knowledge base implementation

4.1 Introduction

In this chapter the contents and structure of the knowledge base will be described. It will
also be described how all the concepts, explained in the last chapter, are implemented in
the knowledge base. In Section 4.2 the structures of objects and attributes are described
and in Section 4.3 the structures of different classes are explained. The Steritherm-example
I used in Chapter 3, Ex1, is sometimes used here too.

4.2 Objects, Attributes

The knowledge base consists of a list of objects.

(OBJECT
OBJECT
OBJECT

(OBJECT
(INT
STRING)
OBJECT ‘
OBJECT
(STRING
LIST
STRING
INT)
OBJECT

An object has a list of what is called attributes. There can be three different kinds of
attributes in an object, INT, STRING and LIST. The third type, LIST, makes it possible
to construct composite attributes, which are defined in classes for attributes. As mentioned
before this knowledge base contains four kinds of objects. Their implementation will be
described in the following sections.

4.2.1 Multi-view objects

Multi-view objects have one or more attributes called “views”. The view-attribute contains
a LIST of the attributes that belongs to a particular view. And as mentioned before one
attribute can appear in more than one view. Ex1 shows the most common views, the
topological, the geographical and the functional view.

4.2.2 Connection objects

An object may contain attributesnamed “connection points”, which are defined by the class
definition “connection point class”. As can be heard by the name of them, “connection
points” are used to connect two multi-view objects together.

Four attributes are used in each connection object and, in order, they are:

o Name of first object

o Name of connection point on first object

e Name of second object

e Name of connection point on second object

Ex 2 below shows how one of the connections between the switch K2 and the pump M2.
This connection is connected to a connection point called 6 on the switch and a connection
point called C on the pump. There are propably more connections than this one between
switch K2 and pump M2, but one connection object only defines ONE connection.

Ex2:

OBJECT (connection class for pump-switch group, 3) K2:6,M2:C
STRING object 1 name = Switch K2
STRING connection point 1 name = 6
STRING object 2 name = Pump M2
STRING connection point 2 name = C

The class “connection class” defines how a connection point is supposed to be imple-
mented.

10

4.2.3 Class definition objects

All information about a class is gathered together in its class definition, which is an object.
The contents of it is shown and described as follows:

e a LIST of ancestors: this is a list of parent classes that this class has been directly
derived from.

o a LIST of attributes: when an instance of this class is created, these attributes and
inherited attributes should be included.

e a LIST of class component entities: if an instance of this class is made, all the objects
in this list are automatically created. For example, if an instance of a pump-switch
group class is created, then one object of the type pump class is created, one of
the type switch class and three of the type connection class for pump-switch group.
Furthermore “consists-of relation” attributes are added, one for each of the above
objects, to the new composite object.

Ex3:

OBJECT (class definition) pump-switch group class

LIST (class ancestors)
STRING multi-view object

LIST (class attributes)

LIST (class component entities)
STRING pumpname = pump class
STRING switchname = switch class
STRING connectlname = connection class for p-s group, 1
STRING connect2name = connection class for p-s group, 2
STRING connect3name = connection class for p-s group, 3

The list of class attributes shows that instances created from this class will have no
attributes inherited. Next list, the list of component entities, shows that instances created
from this class will be built up by one pump, one switch and three connections between
them. It should be mentioned that if this list is empty then the created instance of the
class is not a composite object. The example below shows an instance of the pump-switch
group class.

11

OBJECT (pump-switch group class) PSG 2

LIST (consists-of relation) Pump M3
STRING child entity = Pump M3
STRING childview =

LIST (consists-of relation) Switch K3
STRING child entity = Switch K3
STRING childview =

LIST (consists-of relation) K3:2,M3:4A
STRING child entity = K3:2,M3:4A
STRING childview =

LIST (consists-of relation) K3:4,M3:B
STRING child entity = K3:4,M3:B
STRING childview =

LIST (consists-of relation) K3:6,M3:C
STRING child entity = K3:6,M3:C
STRING childview =

As mentioned one “consists-of relation”-attribute is created for each component in the
component entities list, which is in the class definition for a pump-switch group. The
childviews can be named but in this example they are not.

4.2.4 Composite multi-view objects

A composite multi-view object is created from a class with a component entities-list that
is not empty. These kinds of objects have a characteristic attribute called “consists-of
relation”. Composite objects have one or more components, all of which are refered to
by the “consists-of relation” attributes, which consists of two attributes, the name of the
component and what view of that component it refers to.

OBJECT (multi-view object) Main product system

LIST (view) topologocal view

LIST (view) geographical view

LIST (view) functional view

LIST (consists-of relation) Pump M2:topological view
STRING child entity = Pump M2
STRING childview = topological view

LIST (consists-of relation) Pump M2:geographical view
STRING child entity = Pump M2
STRING childview = geographical view

12

4.3 Classes

As mentioned before there are different kinds of classes. These will be described thoroughly
in the following sections.

4.3.1 Classes for objects

The “multi-view object”-class and the “pump-class” for example, are two classes describing
objects.

OBJECT multi-view object
class ancestors
class attributes
class component entities

OBJECT pump class
class ancestors
multi-view object
class attributes
ATTRIBUTE
ATTRIBUTE
ATTRIBUTE

class component entities

Their most important similarity is that in both classes the list of component entities is
empty. As can be seen in the above picture, the list of ancestors is allowed to be empty,
and so is the list of attributes. They can also have one or more attributes, like in the pump
class.

4.3.2 Classes for composite objects

In this kind of class the list of component entities is not empty. Composite objects are
constructed from other objects, called components. The list of component entities consists
of name references to other object classes, which put together make the composite object.

An object created from the pump-switch group class, see Ex3, are built up by five
components, a switch, a pump and three connections for pump-switch groups. The three
connection objects describes how and where the pump and the switch are connected to
each other. See Ex2,

4.3.3 Classes for attributes

This type of class defines how a certain kind of attribute should be implemented. As an
example I chose “electrical connection point class” :

13

OBJECT electrical connection point class
class ancestors
connection point class
class attributes
connection type = electrical power phase
phase = put A,B,C or ground here
class component entities

The list of attributes in this class shows that an instance of electrical connection point
class will have one attribute defining what kind of connection type it is and another at-
tribute defining the phase.

14

Chapter 5

The Browser

5.1 Introduction

The browser shows the contents of the knowledge base to the user in a graphical way. As
the knowledge base can be very large it is impossible to show everything at the same time.
Therefore it was decided to show only the names of the classes and objects. If the user
then wants to know more about an object for example, .he or she selects that object with
the mouse. The browser gets the message, searches through the knowledge base for all
information about the selection and shows it on the screen.

The browser is partitioned into three parts each having its own window on the screen.
These parts are:

e Class browser
e Multi-view object browser

e Inheritance tree display

Class browser

Inheritance tree
display

Multi-view
objects browser

Two of them, the class browser and the multi-view object browser, interact. Hence, if
the user makes certain steps in one of the windows, the other one will respond.

15

Classes are displayed in the class browser and multi-view objects in the multi-view
object browser. Connection objects are not shown explicitly in any window. Connections
are instead shown in the “connection points” subwindow. In all of the windows a mouse is
used for all kinds of operations. Most of the classes in the knowledge base are child classes,
this fact made it interesting to draw the whole class inheritance tree once and for all in a
separate window, the Inheritance tree display. In this window the mouse is only used for
scrolling and zooming.

5.2 Multi-view object browser

5.2.1 Introduction

All objects that are created from multi-view object class or any of its child classes are to
be shown in this window called Multi-view object browser. What the final result ought to
look like, and precisely what was to be displayed I did not know from the beginning. This
window was created bit by bit, and has been changed a number of times since the start of
the project.

To write the program InterViews was used. Problem number one that arised was the
question of which of the InterViews classes were to be chosen to implement the smaller
subwindows inside the multi-view object browser. Could an already existing class be used,
or did it have to be child classes of such. Final decisions are discussed in a separate section
at the end.

Figure 5.1 shows the multi-view objects browser as it looked when it finally was com-
pleted. Dividing this big window into smaller subwindows makes it more easy to describe
and understand. The following sections each take care of the description of a subwindow.

5.2.2 Multi-view objects subwindow

The purpose of this subwindow is to show the user all multi-view objects currently in the
knowledge base, so that users by themselves may choose what object is interesting. Only
the names of the objects are displayed. When starting up the program this subwindow will
be the only one in multi-view objects browser containing anything at all. See Figure 5.2.

5.2.3 Selected multi-view object subwindow

Selections of multi-view objects can be carried out in a number of different ways. Hence
chosen objects may not be visible in the Multi-view objects subwindow. As it often is
desirable to know the name of the last choice a “Selected multi-view object” subwindow
was added to the Multi-view object Browser. In this subwindow the user can always see
what the last selection was. An example is shown in Figure 5.3.

5.2.4 Class subwindow

All multi-view objects are instances derived from some class in the class browser. Therefore
it could be of interest to show to the user what class the chosen object has been derived
from. This is done in class subwindow, and the class that is displayed is the one that the
object is an instance of. Figure 5.4 shows an example.

16

]
= 1
Multi-view objects

Hulti_view objects Selected aulti-view ohject Class

Electrical systen
ﬁl\{ a}ev:trical systen

Selected wulti vieu object Vieys Vieu:
| £ ﬁ ,
[+ [+]
Cornection Points Connected to; ISj
k1 [4)

Consists-of relations for Multl-vlew objects
- is part of —1 OBJECT I-—- consists of >

B
o

Figure 5.1: Multi-view objects browsers final look.

Hulti_view objects

raot @

TDE level

Steritherm

Electrical system
280V electrical systen
220Y electrical system
24V electrical system

Figure 5.2: Multi-view objects subwindow when multi-view object “Lamp circuit” has been
chosen

Hulti_view objects Selected nulti-view object
root Electrical systen

Top level

Lamp circuit

Steritherm

lectrical systen
280V electrical system
220Y electrical system
24V electrical system

Figure 5.3: The purpose of selected multi-view object subwindow.

17

Class
pump class

Figure 5.4: Class subwindow when object “Pump M2” has been chosen.

Selected multi_view object

OBJECT {pump class} ’Pump M2’ <
LIST {icon} “icon name”
STRING "filename” = "fusers/exjobb3/browser2/icons/pc’
LIST {electrical connection point class} “phase A7
STRING “connection type” = “electrical power phase”
LIST {icon) "icon name”
STRING “filename” = “/users/exjobb3/browser2/icons/ecpc”
STRING “phase” = "A”
LIST {electrical connection point class} “phase B”
STRING “connection type” = “electrical power phase” o

Figure 5.5: This selected multi-view object subwindow shows all information about the
chosen object.

5.2.5 Selected multi-view object subwindow II

Selected multi-view object subwindow II shows, as well as the selected multi-view object
subwindow we earlier discussed, the multi-view object last chosen. The difference between
these subwindows is that in subwindow II, all information about it is shown as it is rep-

resented in the knowledge base (although formatted a bit to make it more readable). See
Figure 5.5.

5.2.6 Views and View: subwindows

In an earlier chapter in this report views are described as parts of an object. As can be
heard from the word multi-view object one object may have more than one view. If a
selected object has one or more views their names are displayed in Views subwindow as
shown in Figure 5.6. Select one of the views in View subwindow and all parts of the object
the chosen view contains is shown in Views: subwindow, see Figure 5.6. Just as before all
selections are marked using reversed colours.

5.2.7 Connection points subwindow

When an object is chosen the browser checks if the object has any connection points. If
so0, the names of all connection points are written out in Connection points subwindow. It
should be mentioned though that all connection points are shown, not depending of what
view it belongs to. If the connections of the selected objects are connected to anything
then the name of that object will be written out, see Figure 5.7. In Connection points

18

Yiews Viewstopological view
0 ological view . phase A 5
geographical view

phase B
phase C

]

2]

Figure 5.6: Views and View: subwindows.

Connection Points Connected tot

phase B Switch k2 ,ﬁ.
phase C Switch K2 D
Ground {unconnected? 5

Figure 5.7: Connection points subwindow.

subwindow it is possible to make selections. Not of the connection points themselves but of
whatever object it is connected to. The Multi-view object Browser then shows the selected
object. Reversed colours are used to point out what choice was just made.

Connection points is something that could be shown graphically, but in this implemen-
tation it is not.

5.2.8 Consists-of relations for multi-view objects subwindow

Some objects may be put together to make a new object, a composite object. A great
deal of all objects in Multi-view objects browser are either composite objects or parts
of composite objects. When an object is chosen in the Multi-view objects browser, the
“Consists-of relations for multi-view objects” subwindow will show if the selection is a
composite object or is a part of another composite object. Nothing says that it cannot be
both.

One great difference between this subwindow and other subwindows is that lines, rect-
angles, labels etc. are used to display information. In Figure 5.8 the object Steritherm has
been selected. As can be seen in 5.8 the selected object is the one in the middle. If the
chosen object is a component of other objects, these are drawn to the left (in this case Top
level). On the other hand if the selection has got components these are drawn to the right
(for example steam system). In this window all components are shown independently of
what view they belong to.

All selected objects in this subwindow are surrounded by a light-grey rectangle. It is
also possible to select multi-view objects by pressing a button on the mouse when pointing
at the object’s label. When that has been done all subwindows will be cleared in multi-
view objects browser and the newly selected object is displayed instead. In “the consists-of
relations for multi-view objects” subwindow, the chosen object will be marked and centered.

19

Conslsts-of relatlons for Multi-view objects
<- is part of ——| OBIECT I--- conzists of —>

57

srem-
THERR

terithern JE

E_—]@

L
—{Preunatic systen E

!

S

Harw water systen

g0l
1100

Figure 5.8: Consists-of relations for multi-view objects subwindow.

5.3 Class browser

5.3.1 Introduction

The Class browser window shows the classes defined in the knowledge base. To make the
whole browser logical and well-structured this window ought to have the same layout as
the Multi-view objects browser. Because of some differencies between multi-view objects
and classes it cannot look exactly the same though.

In this window the user is able to make selections that will make the Multi-view object
browser window react and show a new object. The Multi-view object browser window can
on the other hand never change anything in the class browser window, which means that
there is only a one-way connection between class browser and multi-view object browser.

When the class browser was completed, it looked like Figure 5.9. Dividing the window
into smaller pieces makes it somewhat easier to describe, hence that has been done.

5.83.2 Classes subwindow

Class definition objects currently in the knowledge base are all displayed in “Classes sub-
window” as shown in Figure 5.10. It does not only show multi-view objects classes, it also
shows attribute classes, composite object classes and so on. When the program starts this
subwindow will be the only one in the class browser containing information.

20

]

=

)
L4

Classes

Classes

Selected class Instances

rulti-view cbject

connection point class

electrical comnection point class
photograph class

punp class

3 kH punp class

4 ki punp class

0.4 kN purp class

connection class

switch class

{ | Perent classes

K

Child claszes

Vieus Vigus

Selected class
|

1L Bl

Connection points
543 I li

Conslsts-of relatlons for Classes
<= is part of ---I CLASS |-— consists of

Figure 5.9: The completed class browser

Classes

connection point class

electrical connection point class
photograph class

pump class

3 kW pump class

4 ki pump class

0.4 kW pump class

connection class

switch class

pump—switch group class

connection class for pump-switch aqroup, 1

5

Figure 5.10: Classes subwindow when multi-view object class has been chosen.

21

Classes Selected class

multi-view object [+ |pump-switch group class |
conhection point class

electrical connection point class Parent classes

photograph class multi-view object i_‘j
pump class

3 ki pump class L)

4 kM pump class
0.4 kH punp class
connection class
switch class

Child classes
pump-switch group class, 4 ki

o[k]

Figure 5.11: Hidden selected class.

Parent classes
multi-view object

ol kb

Child classes

3 ki pump class
4 ki pump class
0.4 kil pump class

¢l

Figure 5.12: Child and parent class subwindows.

5.3.3 Selected class subwindow

The “selected class subwindow”, shown in Fig. 5.11, shows the class last selected in “classes
subwindow”. This might seem a bit unnecessary but it can be useful though. A class can
be chosen not only in the “classes subwindow”, hence the selected object might not be
visible in that subwindow, but it is always visible thanks to “selected class subwindow”.

5.3.4 Child and parent class subwindows

Child classes, i.e. those classes directly derived from the chosen one, are displayed in the
“child classes subwindow”, see Figure 5.12. Furthermore parent classes are shown in the
“parent classes subwindow”, see also in Figure 5.12. These are classes from which selected
classes are derived. Multiple inheritance makes it possible to have more than one class in
“parent classes subwindow”.

In both subwindows users are able to make selections. All choices give identical results:
the choice made is marked in the “classes subwindow”.

5.3.5 Instances subwindow

The “instances subwindow” is a subwindow that interacts with the “Multi-view object
Browser”. Furthermore it shows all instances created from the selected class and from
child classes derived from the chosen class. In Figure 5.13 multi-view object class has been

22

Instances

root ﬁ

Top level

Lamp circuit
Sterithern

Electrical system

380V electrical systen
2208 electrical sustem

Figure 5.13: Instances subwindow when multi-view object class has been chosen.

Selected class

OBJECT {class definition} "multi-view object” £F)
LIST {class ancestors) *7
LIST {class attributes) ~°
LIST {icon} "icon name”
STRING “filename” = "/users/exjobbd/brouserd/icons/mvo’
LIST {class component entities) 7

<]

Figure 5.14: Selected class subwindow IT when multi-view object class has been chosen.

chosen. Those objects that are multi-view objects can be chosen in the “Multi-view object
Browser” too, hence any selection of such an object in “instances subwindow” makes the
multi-view object browser react and display whatever choice was made. Also shown in
this window are the “connection objects”. These can be selected, but nothing will happen
though.

5.3.6 Selected class subwindow II

“Selected class subwindow II” shows the selected class just as “selected class” subwindow
does. But subwindow II does not write out the name of the class, it displays all information
about the chosen class as it is represented in the knowledge base (with some formatting for
readability). In the example in Figure 5.14 multi-view object class has been selected.

23

Views Yiewgeographical view
topological view
graphical view

Pump photo

ok

el

Figure 5.15: Views and View: subwindows.

Connection points

phase A K+
phase B

phase C L)
Nround <

Figure 5.16: Connection points subwindow.

5.3.7 Views and View: subwindows

When a selection of a class is made, all its views will be shown in the “Views” subwindow,
see Figure 5.15. Click with the mouse in this subwindow and the chosen view will be
displayed in “View:” subwindow as shown in Figure 5.15. Reversed colours are used just
as before, to mark the choice in “Views” subwindow. If the class is a definition of an
attribute, then this subwindow will be empty, because attributes do not have views.

5.3.8 Connection points subwindow

After any selection of a new class the browser finds out if the chosen object has any
connection points. If so the names of all connection points are written out in “Connection
points” subwindow. In Figure 5.16 pump class is the chosen class.

5.3.9 Consists-of relations for classes subwindow

There is one subwindow in class browser that does not look like any other subwindow. This
particular subwindow is named “Consists-of relations for classes”. Rectangles, lines, labels,
icons, etc. are used here. Any selected class is shown in the subwindow as in Figure 5.17.
If the chosen class is a component of other classes these classes are drawn like in Figure
5.18.

The selected object is marked by a surrounding light-grey rectangle in both of the
windows 5.17 and 5.18. Another facility in this subwindow is the ability to select any
visible object. Press the left mouse-button when pointing at the objects label and the
chosen object will be marked instead. Furthermore the selected object will be centered and
its components ete. will also be drawn.

Selections made in this subwindow have similar effects on class browser as any other
selection of a class. All subwindows will be cleared, the chosen class will be marked in
“classes” subwindow, its name will be written in “selected class” subwindow and so on.

24

Consists—of relations for Classes
<~ is part of -—| CLASS |-— consists of —>

=

[pump-suitch group plass J

connection class for ~switch gro

1

<80
oD

Figure 5.17: Consists-of relations for pumpiswitch group class.

Consists-of relations for Classes
& is part of —-1 £1A56 I--- econsiste of =)

5o
oD

Figure 5.18: A class that is a component of other classes.

25

Class-hierarchy

A

3 i punp class

4
kw

/;:’:
4 04,
£ kuw
nulti-viey object s 0.4 ki pump class
—
p L] PSGC! | Gy | 1+
LT‘I o Hkw "]
switch group class | 'Eu,Emi ch group class, 4 ki

7]

[photograph class

K0

comnection class

{cornection class for pump-switch group, 1 |

[fest class a |

comnection class for pump-switch group, 2 1

. tost class ¢ =)
/{—‘ %09
@4

test class b

Figure 5.19: The Inheritance tree display.

5.4 Inheritance tree display

When a child class is created from another class it inherits all its characteristics. In most
of the cases new ones will be added to the child class. The knowledge base contains a lot of
classes most of which are child classes, hence a class inheritance tree could be interesting to
any user. As this tree is static, at least from the browser’s point of view today, it only has
to be drawn once. The Inheritance tree display window, which is automatically iconified
at the start of the program, shows the whole tree at the same time. Figure 5.19 shows the
final result.

Multiple inheritance makes it possible for a class to inherit from more than one class.
This fact became a problem when implementing the procedure drawing the graph. A
problem because a child class may be derived from classes which are at different “levels”
in the tree. For example “test class f” in Figure 5.19, should have come just after “test
class d” to the right. It has got one “parent” at level one and another at level four. The
difficulty lays in drawing the lines between them without crossing any other object. Today
there already are defined programs that draws graphs, which I maybe could have used, for

26

more information see [DAG1].

When creating this window a procedure is called that will iconify it directly when
the program starts. To make the browser start up a bit faster nothing in this window is
composed until the user clicks on the icon with the mouse.

27

Chapter 6

Implementation of the browser

6.1 Introduction

To implement the browser InterViews, the object-oriented programming language C++
and the UNIX operating system was used. C++ is a programming language derived from
C. It has a lot of new features compared to its parent language. Features suiting this project
best are those supporting data abstraction (with classes) and object- oriented programming
(with virtual functions), which make it possible to define new own types. The second
feature mentioned adds the facility to define data types and functions operating on the
types. Having learned Pascal as my first programming language I thought it was rather
easy to learn C and C++.

InterViews is an object-oriented graphical user interface developed at Stanford Univer-
sity. It is implemented as a library of C++-classes that define common interactive objects
and composition strategies. InterViews supports composition of three different object cat-
egories of which I have used two, Interactive Objects and Structured Graphics Objects.
Some examples of the first category are buttons and menues which are derived from the
parent class Interactor. Circles and polygons are examples of the second category and
they are derived from the parent class Graphic.

Almost all my classes in the implementation are derived from an InterViews class,
and, if not, I have defined a new class. Each window is implemented as a class and so are
each subwindow in the larger windows. Problem number one that was bumped into was the
question of which of the InterViews classes were to be chosen to implement the subwindows
inside the class browser and multi- view object browser. Could already existing classes be
used or did it have to be child classes of these?

The final result included 7800 lines of source code and about 30 different self-defined
classes, all of which are subclasses of already defined classes from InterViews. A HP
9000/375 was used for this project.

6.2 StringBrowser-class

Most of the subwindows in the browser have at least one of the following abilities: adding
and deleting strings, making selections of those strings. InterViews has a class matching
these needs very well, the class StringBrowser. Now comes the question of what to use: the

28

already defined class, or a child class of it? The answer to that question is child classes in
all cases. One of the reasons for that is that whenever a selection is made in a subwindow,
different actions have to be taken for different subwindows. Therefore the original procedure
in StringBrowser taking care of events, (actions such as mouse or keyboard-activity), is
changed and implemented in the child classes instead. Another reason is the procedures
creating the subwindow, i.e. drawing the rectangle and the name of the subwindow on top
of it. This procedure is added to the child class.

6.3 TextEditor-class

In the subwindows displaying how the selected class or object is implemented in the knowl-
edge base, only text is shown and no selections are allowed. TextEditor is an InterViews
class used to implement these subwindows. A lot of facilities in TextEditor are not used
in the windows and some procedures needed in the implementation are missing, see above.
Hence, child classes are used again.

6.4 Scrolling

Scrolling is a facility needed in all subwindows except tliose only displaying one string at
a time. Other windows might contain so many strings that if shown at the same time
would make the window huge. Therefore scrolling can be done in all those subwindows,
either by using the scroller on the right side or by using the mouse inside the subwindows.
To implement the scrollers the class Scroller in InterViews was used. Mouse-scrolling was
already defined in StringBrowser and TextEditor.

6.5 Graphics, a part of InterViews

Up to this point in the project nothing else has been done than making windows, writing
text into them and adding scrollers. Has InterViews got any already defined class for
drawing pictures such as lines, rectangles, circles etc ? The answer is yes! Graphics is a
part of InterViews taking care of all these things. Included in Graphics is a class called
GraphicBlock. Child classes of this are used to implement the two consists-of relations
subwindows in the class browser and multi-view object browser and the Inheritance tree
display window. Inside the GraphicBlock class another class is included called Picture. An
object created from this class is the actual class in which all drawing operations take place.
There is one Picture in each of the GraphicBlock child classes. Instead of scrolling with
scrollers in this subwindows a panner is used. The panner, created from the InterViews
class Panner, controls the Picture in the GraphicBlock. Zooming can also be done with
the panner.

6.6 Bitmap-class

The smaller pictures inside the rectangles in the drawing-windows were implemented using
the class Bitmap. First I made the pictures using a graphical bitmap editor called Bitmap.

29

As a result I got a file with a bitmap-matrix. This was then used when creating an icon
using the Bitmap-class.

6.7 Experiences of using C++ and InterViews

Most of my earlier experiences of debuggers are that often one has to use them for a rather
long time before they really help you find faults in your program. The C++ debugger I
used was easy to use and when a fault occured that made the program exit, the debugger
showed exactly at what line it went wrong. This facility, among others, made this debugger
a good help when searching for errors.

Compiling and linking the C++ program was something I tried to do as seldom as
possible. The reason for that was that the linking part took a while to finish. Having a lot
of different files that had to be linked together, which I had, did not make it faster.

For more information see [C] and [C++].

I have never used any graphical user interface before InterViews, therefor I have nothing
to compare it to. Anyhow I thought that InterViews was easy to use after a while. The
manuals to this interface contains descriptions of what the different functions connected to
a class do. But how to use them in your own program was not always that simple to find
out. .
I could not get the Panner, used to control the subwindows containing pictures, to work
as it is supposed to. Sometimes when zooming back and forth the pictures are not drawn
as they should be, and if the size of the whole subwindow becomes smaller the top of the
controllers are cut off. T have not been able to find any solution to these problems, so
maybe there is something wrong in InterViews.

Another problem is that if the user changes the size of any window before anything has

been drawn in the consists-of relations subwindows, the next picture drawn can be difficult
to find.

30

Chapter 7

Conclusions

The prototype knowledge base used in this project was very small compared to a knowledge
base containing all the information about a process plant. This makes you wonder how
much slower the browser will work using the complete knowledge base. Maybe some changes
of the structure in it will be necessary. Everything I wanted to implement, I was able to do
using InterViews classes. Hence, InterViews suited the project very well. While InterViews
is built up by C++-classes, using C++ in the application I think made the whole project
easier.

Concerning further developments of the graphical browser I have some suggestions.
First the Multi-view object browser. In this window it might be of interest to show “con-
nections” in a graphical way. Maybe in the same way as the consists-of relations are
displayed. Currently in the consists-of relations windows all components of a composite
object are shown independently of what view of the composite object they belong to. An-
other solution might be for the user to be able to select a view of the composite object and
show only the components belonging to that particular view.

Another facility that could be added is a subwindow containing the attributes of the
last selected multi-view object or class. At the moment the only way to find out what
attributes an object have, is to look in the subwindow that displays how it is implemented
in the knowledge base.

Finally, I would like to thank all employees at ABB, KLL Lund, for their support and
kindness.

I also wish to thank Nicholas Hoggard, my first instructor and his stand- in Bo Johans-
son.

As my second instructor, I finally thank Karl-Erik Arzén from the Department of Au-
tomatic Control at Lund University of Technology.

31

Appendix A

(Glossary

Attribute A property of an object. Also called slot.

Browser The browser constitutes a graphical interface to the knowledge base that is com-
mon to all users of the KBCS.

Child class = subclass

Class A group of objects that share the same attributes and behaviour. Organized into
an inheritance lattice.

Composite object An object that has an internal structure comsisting interconnected
objects representing subparts of the superior object.

Functional view The functional view describes an object in terms of the goals that it
should fulfill, the functions needed to fulfill these goals, and the process components
that realize these functions.

Geographical view The geographical view describes a physical object in a geometrically
and isometrically correct way.

Graphic Father class for structured graphics objects in InterViews.
Graphic block An interactor that displays a structured graphics object in InterViews.

Inheritance A process where new objects in a hierarchical structure can get new attributes
deduced from more general objects in the structure.

Instance An object that describes a unique member of some object class.
Interactor Father class for interactive objects such as menus and buttons in InterViews.

KBCS Knowledge-Based Control System. A control system that integrates conventional
programming techniques and knowledge-based techniques using a common data or
knowledge base.

Multiple inheritance An inheritance mechanism where a class may have more than one
parent class. Contrasts with single inheritance.

32

Multi-view object An object in the main knowledge base that represents all the indi-
vidual views that the object can be described from.

Object-oriented programming A style of programming based on directly representing
physical objects and abstract

Panner An interactor that supports continuous two dimensional scrolling and incremental
scrolling and zooming in InterViews.

Parent class = base class = superclass
Picture Parent class for structured graphics composition objects in InterViews.

Single inheritance An inheritance mechanism where a class may have only one parent
class. Contrast with multiple inheritance.

Structured graphics A graphics model in InterViews that supports hierarchical compo-
sition of graphical elements; Support is usually provided for coordinate transforma-
tions, hit detection, and automatic screen update.

Topological view The topological view described the internal structure of a physical
object. :

View A structuring primitive in the main knowledge base. Describing an object from
several views is a way of structuring the knowledge of the object into “natural” parts.
The most general views are the topological, the geographical and the functional view.

33

References

[IT4)

[C]

[C++]

[IV1]

[IV2]

[TV3]

[IV4]
[DAG1]

Asea Brown Boveri AB, Satt Control AB, Department of Automatic Control
Lund Institute of Technology. Knowledge-Based Real-Time Control Systems I'T4
Project:Phase 1. .

Al Kelley, Ira Pohl. A Book on C. The Benjamin/Cummings Publishing Com-
pany, Inc.

Stephen C. Dewhurst, Kathy T. Stark. Programming in C++. Prentice Hall
Software Series, Inc.

Mark A. Litton, Paul R. Calder, John M. Vlissides. The InterViews User Inter-
face Toolkit. Stanford University.

Mark A. Linton, Paul R. Calder, John M. Vlissides. InterViews: A C++ Graph-
ical Interface Toolkit. Stanford University.

Mark A. Linton, Paul R. Calder, John M. Vlissides. Composing User Interfaces
with InterViews. Stanford University.

John Vlissides. A Tutorial for InterViews Programmers. Stanford University.

Gansner, E.R., S.C. North, K.P. Vo. DAG - A program that draws directed
graphs. John Wiley and Sons. Software — Practice and Experience Vol 18(11),
1047 -1062.

34

