CODEN: LUTFD2/(TFRT-5443)/1-58/(1991)

Qualitative Model-Based Diagnosis —
MIDAS in G2

Anders Nilsson

Department of Automatic Control
Lund Institute of Technology
September 1991

. Document name

Department of Automatic Control Master Thesis
Lund Institute of Technology Date of issue
P.0O. Box 118 September 1691
§-221 00 Lund Sweden Document Number

CODEN: LUTFD2/(TFRT-5443)/1-58/(1991)

Author(s) Supervisor
Anders Nilsson Claes Rytoft, ABB, Karl-Erik Arzén, LTH
Sponscring organisation
iT4, NUTEK

Title and subtitle
Qualitative Model-Based Diagnosis - MIDAS in G2

Abstract

This report is the documentation of the master thesis project ”Qualitative Model-Based Diagnosis — MIDAS
in G2”. MIDAS is a fault diagnosis methodology using a gualitative causal process model. It can be used for
plant processes working at a nominal steady state.

The process model used for the diagnosis is an event graph, where events concerning the measured variables
are causally related. An event is a transition of a variable between two of the qualitative states high, normal
and low. During diagnosis such events are detected, and the system compares the detected events to the
process model and creates hypotheses about the present faults. In the project, this diagnostic function has
been developed in the expert system shell G2,

A structured way of obtaining an event graph for an arbitrary process is presented in the report. Basically,
for each process unit a Signed Directed Graph (SDG) is constructed. The SDG expresses the qualitative
relations between the variables describing the unit. Then the process SDG is built by connecting the unit
SDQGs according to the process flowsheet. When the feedback effects have been analyzed, the propagation of
any fault can be determined, and the event graph can be constructed.

In the project, an event graph for the sterilization process Steritherm has been created manually and tested
against the diagnosis module and a simulation model of Steritherm.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical infermation

ISSN and key titie ISBN
Language Number of pages Recipient's notes
English 58

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5.221 03 Lund, Sweden, Telex: 33248 lubbis lund,.

1.3 Specifications

This master thesis project can be divided into two parts. Firstly, the on-
line part of the diagnostic methodology in MIDAS has been implemented in
G2. The implementation has been done in a way that it can work against any
possible event graph for any kind of industrial process. Basically, the diagnosis
module follows the behavior of MIDAS as described by Finch (1989).

Secondly, a process model for a part of Steritherm has been developed,
and tested against the diagnosis implementation and the existing simulation
model of Steritherm in G2. The process model has been developed using the
guidelines given by Oyeleye (1989). The process was first described as a signed
directed graph (SDG). To deal with feedback effects, the SDG was modified to
form an Extended SDG (ESDG). In the last step the ESDG was transformed
into an event graph, which serves as the process model used by the diagnosis
module.

1.4 Thesis outline

In Chapter 2 the derivation of the process model is described together
with the diagnostic methodology of MIDAS. Chapter 3 deals with the imple-
mentation of these parts in G2. In Chapter 2 and 3, examples such as a simple
tank process, are used to demonstrate process models and diagnostic behav-
ior, The derivation of the Steritherm process model and the results from fault
simulations using this model are described in Chapter 4, Chapter 5 contains
some of the results and conclusions from the project, including some suggested
improvements, A brief description of G2 can be found in Appendix A, and in
Appendix B all class definitions in the G2 implementation are listed.

2. MIDAS — Qualitative Fault
Diagnosis

2.1 Overview

MIDAS (Model Integrated Diagnosis Analysis System} is a computer pro-
gram for diagnosing malfunctions in plant processes. It was developed at Mas-
sachusetts Institute of Technology by Kramer, Oyeleye and Finch and is fully
described by Oyeleye {1989) and Finch (1989). Besides handling the diagnosis
on-line, MIDAS also, more or less automatically, creates the process model
used for the diagnosis. Since this master thesis project is an implementation
of the MIDAS concept and not an exact copy, the word "MIDAS” is mostly
referring to the methodology used in the program rather than to the pro-
gram itself. In fact, only the diagnostic function was implemented, the actual
process model was built manually following the guidelines by Oyeleye (1989).

MIDAS belongs to the diagnosis methodologies based on qualitative caus-
al reasoning. The process model is an event graph where different events {(e.g.
*The level of the tank was NORMAL and is now LOW?”) and root causes
{(e.g. "Low inflow”) are linked together by causal arcs. There are two types
of causal arcs. A local cause link originates at a root cause and terminates
at an event and it tells what will be the first symptom of the root cause, A
compiled link connects two events and gives information about the propagation
of disturbances.

During diagnosis all transitions between the qualitative states of the mea-
sured variables are detected, For each transition a copy of the corresponding
event in the process model is created. Such a new recorded event is, together
with the old ones, matched against the process model to see if they are some-
how causally related. If this is the case, they are linked together in an event
cluster. This way it is possible to create a hypothesis about what might have
caused the detected behavior of the process.

2.2 Model building

To make a diagnosis it is necessary to have an adequate process model.
The event graph MIDAS uses for this purpose could be created either from
just heuristics or through a deeper knowledge of the process. Since it is hard
for anyone to think of every little detail in a large process, the first method
might lead to an improper model and probably to incorrect diagnosis, It
would be better if one could derive the event graph systematically from basic
physical equations on a low level of the process. Algorithms for doing this
are presented in Oyeleye (1989} and will be described in this section. From
physical equations a Signed Directed Graph (SDG) is built, containing all
variables in the system and the qualitative relations between them. To resolve
ambiguities due to feedback effects it is possible to add non-physical ares in the
SDG to form an Extended Signed Directed Graph (ESDG). Then the event

7

graph can be derived from the ESDG by eliminating unmeasured variables and
expressing conditions for transitions between qualitative states of the measured
variables.

2,2,1 SDG - Signed Directed Graph

The usual way to deseribe a process mathematically is to set up a system
of first-order differential equations:

() = f(=2(2), u(t)) (2.1)

where z is the state vector and u« is a vector of input variables and interesting
process parameters. If the model is linearized around the steady state ¢ =
zg, U = Ug, Equation 2.1 becomes:

£(t) = A(t) + Bi(t) (2.2)

with 2 = 2 — 2y and @ = u — up. The signs and magnitudes of the elements in
the matrices A and B give information of the behavior of the process near the
steady state. Since the equations are based on physical relations it is quite
easy to determine the signs of the coefficients, but it usually requires too much
effort to get sufficiently exact numerical values, Thus it would have been useful
if one could find a way to use just the qualitative information given by the
process model.

The Signed Directed Graph (SDG) can be seen as a graphical represen-
tation of Equation 2.2 when only the signs of the matrix elements and the
variables are taken into account, The state and input variables are repre-
sented by nodes which can have the qualitative states 0,- or + depending on
if #; (or 4;) = 0,2; < 0, or &; > 0. The elements in the matrices A and B
correspond to signed arcs initiating at any node and terminating at a node
representing a state variable. Consider the 4:th state equation (dropping the
hats):

é,’(t) = ..+ a,-_,-mj(t) + ..+ b,'kuk(t) + ... (2.3)

The arcs from z; and u; to 2; bears the signs of a;; and bjx respectively. When
i = j one gets an arc initiating and terminating at the same node, a so called
self cycle, In order to clear up the SDG as much as possible, some of the arcs
are not shown. Zero-signed arcs just have a meaning for self cycles {indicating
an integrator) and are otherwise omitted. Also, a negative self cycle attached
to a node is not shown since it just indicates that the node is stable.

Along with the sign, an arc might also have a digit attached to itself, indi-
cating the relative delay along the arc. If a variation of a node is transmitted
via an arc instantaneously, or with very fast dynamics, this arc will have a
zero delay, otherwise the delay is set to one. This can be useful when deriving
the event graph to determine the causal order of events. The words fast and
slow must be related to the detection time scale. If effects are transmitted
faster than the process is sampled, then the transmission is quoted as fast,
otherwise it is slow.

Figure 2.1 shows a simple gravity flow tank along with its equations and
its SDG. The 8DG is used in the following way: to determine the process
behavior due to a disturbance, the arcs are followed from the origin of the
disturbance to all other reachable nodes in the graph. If, for instance, an
upstream leak occurs, then the negative sign at the arc to Iy, gives that F,

8

L=ciFin-cyFout

Fout = fb(Rs) V L

Qutlet Blockage
TankLeak ¥ R,
L Upstream Leak
ﬁ _ - (-0)
0
(+1) ’__(_t__)_*

Fin I W Fout
(-1)

Figure 2.1 A gravity flow tank with its equations and SDG

will decrease. Now, the deviation of I can be determined by multiplying the
sign of the deviation of Fj, with the sign at the arc between Fj; and L. In
this case L will decrease, since the deviation of F, is negative and the sign
of the arc is positive. Now this can be done for all nodes downstream of
the disturbance, Since L is decreasing, Fy,; will decrease too. This means
that L will increase which compensates for the decrement predicted above.
The graph must be analyzed more deeply to determine what the final values
of nodes in negative loops like this will be, and this analysis is done in the
following section.

In many cases it is not enough to use ordinary differential equations only.
When partial differential equations occur they are discretized to ordinary dif-
ferential equations. Algebraic equations mostly have a variable that can be
considered the output of the equation. An example of this is shown in Figure
2.1. The second equation,

Fout = f(RIVL (2.4)

where f~ denotes a positive, monotonically decreasing function, is written
in this form since it is actually the outflow F,, that is given by the pipe
resistance R, and the level L. This indicates that causal arcs will initiafe at
R, and L and terminate at F,,, with signs given by the partial derivatives
%%l‘;l and % respectively. When there does not exist one unique way to
write the equations, a single process might lead to different SDGs.

The construction of the SDG for the whole process is done in a few minor
steps. First the process is decomposed into units such as tanks, valves, pumps
ete, Then the SDG for each component is derived from physical relations.
The variables that describe a process unit must be chosen so that they specify
the function of the unit sufficiently detailed. Further, adjacent units must
have a consistent set of boundary variables. When the SDG for a process
unit has been determined, it is possible to use this SDG for all units of the
same class, regardless of the values of unit constants, as long as the underlying
equations are valid. The set of root causes that might affect the unit must
also be specified. All the faults concerning the unit that should be detectable

9

must be incorporated in this set. For each fault there must exist a primary
deviation variable, i.e. a variable (or parameter) included in the SDG which
is first affected by the root cause, and a sign that tells in what direction the
primary deviation variable is deviated, For the tank possible root causes might
include tank leak, affecting I with a negative sign, upstream leak, affecting
Fi, negative, and outlet blockage, affecting R, positive.

When this is done all sub-SDGs are linked together so that shared vari-
ables overlap. It is possible to add more root causes to the SDG on the system
level and to remove root causes that either are not interesting or cannot occur.
Now that the process SDG has been developed it is possible to follow the dis-
turbance propagation through the process just by reading the signs of the arcs
on feed-forward paths. Though, when a negative feedback loop is involved, or
when two or more paths with opposite signs exists between two variables, it is
impossible to determine the actual process behavior from the graph only. The
first case is discussed in the following section, and the second case requires
some knowledge of the relative speed and strength of the paths to determine
the behavior of the process.

2.2.2 ESDG - Extended Signed Directed Graph

Consider the tank in Figure 2.1 once again. Assume that the pipe resis-
tance R, is somehow decreased. Following the arcs gives that F,,; will increase,
L decrease, F,,; decrease, L increase and so on. This leads to a chain of con-
tradictions and the SDG does not tell whether the outflow and the level will
ultimately be low or high, oscillate or return to their initial values.

One possible solution of this problem is to analyze the loops in the SDG
and insert additional non-physical ares into the graph. This will lead to the
Extended Signed Directed Graph (ESDG), which can explain the behavior of
the process through feed-forward paths only. To determine the set of additional
arcs to be inserted, the following definitions must be made:

o A path is a directed sequence of nodes and arcs in the (E)SDG.

* An acyclic path is an open path where all nodes appear only once.
¢ A loop is a closed path where all arcs are traversed only once.

¢ A cycleis a loop where all nodes are traversed only once.

* A strongly connected component (SCC) is a subgraph of the SDG,
such that a path exists from any node to any other node, and this sub-
graph is not a subgraph of another SCC.

» A disturbance node to a SCC is a node, not part of the SCC, such that
there exists at least one arc from the node to any node in the SCC.

o The complementary subsystem of a path is the subgraph obtained
when all nodes in the path are removed.

¢ The acyclic subsystem of a graph is the subgraph obtained when all
nodes involved in cycles {excluding self-cycles) are removed.

o The direct effect of a disturbance on a node are the influences on the
node following acyclic paths.

» Feedback effects are the influences on a node following loops containing
the node.

10

¢ The initial response is the first detectable deviation from the nominal
steady-state value of a node, due to a disturbance.

¢ The ultimate (or final) response of a node is the final qualitative state
of the node when a disturbance is present.

* A nodeissubjected to compensatory response if feedback effects cause
the node to return to its iritial value.

* A node is subjected to inverse response if the final value of the node is
in the opposite direction of the initial response.

The purpose of the SDG is to determine the initial and final response of
every variable caused by any disturbance. The initial response is obtained by
following acyclic paths. The ambiguities that may occur if acyclic paths with
different signs exists must be resolved with a more quantitative knowledge of
the process. This is discussed in the next section. The final response is the
same as the initial response if no feedback loops are present. The variable
is said to be monotonic with respect to the disturbance in this case. If a
variable is a part of a loop it can either have a monotonic behavior or be
stbjected to compensatory or inverse response. It is possible to give criteria,
in terms of the definitions above, for the cases where variables will or may
undergo compensatory and inverse response. The criteria were first given by
Oyeleye & Kramer (1988) but Rose (1990} has replaced the original criteria
with simpler ones.

First the SDG is decomposed into strongly connected components. Then
the criteria given below are applied to every node in each SCC with respect to
any disturbance node of the SCC, including root causes pointing at any node
in the SCC, to determine whether the node is a monotonic, compensatory or
inverse variable. The criteria given by Rose are as follows:

1) Necessary and sufficient conditions for compensatory response of a vari-
able with respect to a disturbance due to feedback effects:
a. The variable is located in a negative feedback loop.
b. The acyclic subsystems of the complementary subsystems to all acyce-
lic paths from the disturbance to the variable each contain at least
one zero self-cycle (integrator).

2) Necessary conditions for inverse response of a variable with respect fo a
disturbance due to feedback effects:
a. The variable is located in a negative feedback loop.
b. The complementary subsystem to one of the acyclic paths from the
disturbance to the variable contains a positive cycle (or self-cycle).
¢. The acyclic subsystem of at least one of the complementary subsys-
tems in (2b) must not contain a zero self-cycle.

Note that the conditions given for inverse variables are only necessary. When
a variable satisfies the criteria for an inverse variable, additional quantitative
information must be supplied to determine if the variable will actually display
inverse, compensatory or monotonic response.

Now that the initial and ultimate response can be determined, it would
have been interesting to know what happens in between. E.g. when a variable
is compensatory due to a controller loop, will the value smoothly return to
its nominal value, or will it oscillate before reaching the steady state? This
depends on if the system is overdamped, underdamped or critically damped,

11

et
""""
»
.
«

Lsp "‘0

Figure 2.2 Two coupled tanks with a PID controller. For simplicity no root
causes or time delays are shown in the SDG. All nodes inside the marked area
_ belongs to the only SCC in the graph

and there does not exist any good way of modeling this qualitatively. When-
ever this situation occur MIDAS will act as if the system is critically damped,
and if it is not, the diagnosis might be inaccurate or at least loose resolution.

When the inverse and compensatory variables (IVs and CVs) have been
discovered ESDG arcs will be added to the SDG. For each IV or CV an arc
that initiates just upstream of the variable and terminates just downstream of
the variable is created. When two or more nodes in a row displays the same
type of response with respect to a disturbance, only one extra arc is added,
from the node just upstream of the row to the node just downstream. For a
string of IVs the sign of the arc is the product of the SDG arcs between the
origin and the termination of the ESDG arc. For a string of CVs the ESDG
arc sign will be of the form +§([d=;]), where § is the "qualitative Dirac delta
function” and 2; is the node just upstream of the termination of the ESDG
arc, The sign is determined the same way as for an IV. [dz;] is the qualitative
state of z;, which can be either -, 0 or +. The é-function is 1 only if its
argument equals 0 and is 0 otherwise. This implies that an ESDG arc derived
from a CV will only be active when z; is at its nominal steady state.

As an example of how to use the criteria above, we will consider the small
process in Figure 2.2, consisting of two coupled tanks where the level in the
lower tank is controlled by a PID-controller. The SDG is composed of two
single tanks as in Figure 2.1 and a simple model for the controller. L,p is the
set-point of thelevel in the lower tank, is the controller error, I is the integral
part of the controller and U is the output signal, assumed to affect the inflow
of the upper tank directly, since the pump is not modeled. This implies that
no faults concerning the pump can ever be detected with reasonable accuracy
and resolution.

The first step is to decompose the SDG into SCCs, and in this case the
SDG consists of only one SCC containing all nodes in the graph except R,;,
R,2 and L,,, which instead are disturbance nodes to the SCC. Each node in
the SCC will now be tested with each disturbance node to see if the criteria
will be satisfied. The first thing one discovers is that no positive cycles or
self-cycles exist in the graph, and thus no inverse response can be found (see
condition {2b}). Zero self-cycles and negative cycles exist though, so there
might be nodes in the graph which can display compensatory response.

As a first example, we will look at F; and the disturbance node R,
12

+8([dE])

oL, Fy R

+) + l‘
Y»\F

\ /Lz"t...:_-' 2

+ /E\

1 e er—————

+8([dED

Lsp -8(dE]

Figure 2.3 The ESDG of the process in Figure 2.2

Condition (1a) is satisfied twice, both the global control loop and the local
loop with Fy and L; are negative feedback loops. In condition (1b) all acyclic
paths must be considered, and in this case there is only the direct path from
R, to Fy. The complementary subsystem of this path consists of all nodes
in the SCC except F;. To get the acyclic subsystem of this complementary
subsystem all nodes still involved in loops, in this case only Ly and F,, are
removed. This leaves E, I, U, Fy and L, as the sought acyclic subsystem,
and this contains two zero self-cycles, making F; a compensatory variable with
respect to R,:.

Next, consider L; with the same disturbance node R,;. Now there exists
three acyclic paths from the disturbance to the examined node, among them
is the one traversing the nodes Ry, Fy, Ly, E, I, U, Fy and L;. This path
leaves only Fy as the complementary subsystem, which is in fact also its own
acyclic subsystem. And since no integrator is left, the criterion (1b) gives that
L, will not be a compensatory variable with respect to R,;.

The results when this procedure has been repeated for all variables and all
disturbances, are that Fy, L,, F; and E are compensatory with respect to Ry,
Ly and E are compensatory with respect to R,s, and E only is compensatory
with respect to L,,. The corresponding ESDG arcs are added to the SDG
and the new graph is shown in Figure 2.3. Note that all self-cycles are now
removed, since they have been replaced with ESDG arcs in those cases they
affect the process behavior. When using the ESDG, disturbance propagation
can be determined through looking at acyclic paths only and this will make it
easier to derive the Event Process Model described in the following section.

2.2.3 The Event Process Model

When MIDAS is working on-line it compares the detected process behav-
ior to an event process model. This model is an event graph, and consists
of events, root-causes and links connecting events with other events and with
root causes. The events in the model correspond to transitions between the
qualitative states of the measured variables. A qualitative state of a variable is
either high, normal or low, compared to the nominal steady-state value, That
is, for every measured variable four events are possible: a transition from nor-
mal to high, from high to normal, from normal to low and from low to normal.
The events in the model bear a prefix "potential” to separate them from the

13

events that are actually detected. Since the potential events are members of
the process model, they cannot be created or deleted, they just exist. When-
ever the state transition associated with a specific potential event is detected
on-line, a realization of the potential event is created. This implies that even
though there exists only one potential event for each state transition, several
realizations of this potential event may exist simultaneously. The same rela-
tion exists between potential root causes in the process model and realizations
of these when creating hypotheses based on detected events. More about this
in Section 2.3. Since this section only deals with the process model, the word
"potential” may be omitted in the following.

It is possible to include other types of events in the event graph, such as
operator actions, off-line test results, and changes in trend. MIDAS also allows
the use of quantitative constraints based on mass balances, energy balances
or other types of equations involving measured variables. These constraint
equations are written in a residual form, and the residual is then treated
as a new measured variable that may be either high, normal or low. These
additional types of events are not discussed further in this report though, since
MIDAS does not contain a structured way of building a model that can express
relations between such events. After the model based solely on variable state
changes has been constructed, other types of events may be added heuristically
to enhance the diagnostic capability.

An event graph consisting of variable state changes is possible to derive
directly from the ESDG, since this contains all variables in the system and the
influence they have on each other, Briefly, the transformation of an ESDG into
an event graph is done by removing all unmeasured nodes in the ESDG, but
for each measured node create four nodes in the event graph, each representing
one of the possible state changes for the variable. The arcs in the ESDG are
translated into arcs in the event graph. There are two types of arcs, one type
called local cause link, connecting a root cause with the event that should
be the first symptom of the fault, and the other type called compiled link,
connecting events to express possible fault propagation. The compiled links
may have conditions attached to them telling when the arcs are valid and
what diagnostic conclusions that may be drawn when two events are linked
together.

An event graph-for the single gravity flow tank in Figure 2.1 where the
level and the outflow is measured is shown in Figure 2.4, The ESDG of the
tank is almost the same as the SDG, only a +8{[dF,y]) arc from R, to L is
inserted, and the self-cycle at L is removed. In addition, the set of root causes
is somewhat modified, including sensor bias, downstream leak and high/low
inflow instead of upstream leak. In Figure 2.4 the circles represent potential
events, the dashed arrows are local cause links and the solid arrows are com-
piled links, When an event has been detected, e.g. the flow gets low, either of
the root causes pointing at this event has probably occurred, in this case outlet
blockage or flow sensor low bias. The :NOT-conditions attached to most of
the compiled links will be interpreted as follows: when the events at both ends
of the link are detected, the root causes in the :NOT-conditions of the link are
no longer likely. Note especially that sensor bias is a member of the :NOT-
conditions for every link, and this is so since a sensor fault will not cause any
process changes unless it is a controlled variable. The :ONLY-IF-TRANSIENT
means that the event at the termination of the link will not occur for any of
the modeled root causes until the root cause has been corrected.

14

Qutlet Blockage Downstream Leak
iHigh Inflow { Flow Sensor High Bias

iLevel Sensor High Bias

i
i
H
¥
H
'
H
]
i
H

:NOT Level Sensor Blas

Level Flow
Normal-High Outlet Blockage > Normal-High
¢t ONLY-IF- :NOT Flow Sensor Bias
TRANSIENT High Inflow

Level Flow
High—Normal High-Nonmal
O Flow
: ONLY-IP~

Level
Low—-Normal 4\9‘9 Low-Normal
TRANSIENT

- :NOT Flow Sensor Bias
Low Inflow
Tank Leak
Level INOT Level Sensor Bias Flow
Nommal-Low A Normal-Low

é Tank 1eak i
% Low Inflow i Outlet Blockage
Level Sensor Low Bias "Flow Sensor Low Bias

Figure 2.4 The event graph of a gravity flow tank

The different steps in deriving the event graph will be described below.
A more detailed description is provided in Oyeleye (1989). The first step is
to copy the root causes from the ESDG to the event graph and to create the
four potential events for each measured node in the ESDG. Then the allowed
state transitions of each measured variable for every plausible fault is listed.
This is done with the sign products of the paths between measured nodes
in the ESDG. Where paths with different sign products exist, quantitative
information must be added to make clear what actually will happen.

Then, for each root cause, a primary deviation path in the ESDG is
determined. This initiates at the root cause and terminates at the measured
node which is likely to be the first symptom of the root cause. This primary
deviation path in the ESDG is translated into a local cause link in the event
graph. It starts at the root cause and ends at either the normal-to-high or
normal-to-low event of the measured variable, depending on the sign product
of the primary deviation path.

Next step is to create compiled links between events. This is done by
finding successor paths in the ESDG. These paths are acyclic paths with min-
imum delay from one measured node to any other measured node. Minimum
delay means that none of the other paths may have less time delay. Since
the time delay is measured by 0 and 1 only it is sometimes hard to find out
which paths have minimum delay. Deeper process knowledge sometimes can
solve this problem. The sign product along the successor paths tells what
transitions of the second node may follow transitions of the first node, and
a compiled link is created for each such transition. This is compared to the
list of allowable transitions to see if any of these are illegal for any of the root
causes. If this is so, these root causes are members of the :NOT-conditions

15

Data from sensors

Qualitative events

Interrogation

User
Interface

Process Hypothesis
SDa _"FSDG_’[Model] [Modcl J

Figure 2.6 The structure of MIDAS

Event
Interpreter

Human
Operator

attached to the compiled link. If a transition is forbidden for all root causes,
the compiled link is never created. When this is completed, all root causes
will be blocked by :NOT-conditions along the links where the disturbances
will not propagate.

In the last step :ONLY-IF-TRANSIENT links are created. These goes
from normal-to-high (normal-to-low) of a variable to high-to-normal (low-
to-normal) of the same variable for those variables that do not display the
corresponding inverse or compensatory response for any process disturbance.

When all this is done the event process model, or the static knowledge-
base, is ready. Depending on how the causality in a process is handled, a single
ESDG may lead to different event graphs. These must of course create similar,
preferably identical diagnoses, but they may differ in diagnostic resolution and
efficiency, It is preferable to have a small, not highly connected event graph,
since this makes the diagnosis faster and probably better. What remains now
is the on-line part that actually performs the diagnosis. This is the subject of
the following section.

2.3 Diagnosis

The previous section described a way to construct the event process model
MIDAS uses for the diagnosis. This is done off-line either by hand or by using
the original MIDAS program, In this section the on-line diagnosis will be de-
scribed. The structure of the diagnostic function and the information flow is
shown in Figure 2.5. The process model is a representation of the event graph
derived from the SDG and the ESDG. It consists of all potential events, all po-
tential root causes and the causal relationship between them. Each measured
variable or constraint equation has an associated monitor which detects devi-
ations from the steady state and creates the corresponding qualitative events.
These events, named recorded events, can be seen as realizations of the po-
tential events in the process model. The event interpreter is a set of rules and
procedures that matches new recorded events against both the process model
and the previous events in order to create clusters of related events. For each
event cluster MIDAS creates a set of ranked hypothesized root causes that
may be responsible for the detected events. All event clusters, occasionally
called inferred malfunctions, are stored in the hypothesis model along with

16

their hypothesized root causes. The hypothesis model can be seen as the ac-
tive, constantly changing knowledge-base, whereas the event graph is the static
knowledge-base, derived from a physical model of the process. The different
diagnostic functional units are described below.

2.3.1 Data collection and processing

The diagnosis unit in MIDAS is linked to the process via a type of ob-
jects called monitors. Every sensor variable has an associated monitor which
is responsible for detecting state changes concerning the variable, This can
be done at any level of complexity, from the simplest ones using raw mea-
surements and thresholds between states only, to more complex schemes using
advanced statistics and patfern matching. Since the primary task for MIDAS
is to create chains of subsequent qualitative state changes, there is no need for
a too advanced detection scheme, Though, it must of course be able to detect
all true events, or at least as many as possible, and be robust against false
detection.

This is achieved with reasonable performance using a quite simple imple-
mentation. The raw measurements are sampled at a specified sample rate and
then smoothed with a first-order lag filter to reduce the risk of false alarm due
to high frequent measurement noise and process noise. Then the filtered value
is compared to the thresholds between the qualitative states to determine the
current state of the variable. If the current state differs from the previously
detected state, MIDAS creates a new recorded event which is taken care of by
the event interpreter,

It is also possible to detect other types of events, not directly related to
those in the process model. Example of such events could be that the signal is
constantly increasing or decreasing, that the noise of the signal exceeds a given
value, or that the measurement is out of range for the given process equipment.
These events would make it easier to diagnose gross sensor failures.

A special type of monitors are the ones used for constraint equations.
A constraint is a quantitative equation that must be satisfied if the process
is working properly. The equation consists of measured variables and known
constants and process parameters. The constraints can be either algebraic,
differential or integral equations, and they are written in a residual form, The
constraint monitor then treats the residual as a normal signal variable, and
detects events when the residual becomes too large in either direction.

In Figure 2.5 there is an arrow labeled "Interrogation” from the event
interpreter to the monitors. This indicates that the event interpreter may ask
a monitor to predict a future event before this has actually occurred. This is
done with polynomial, in its simplest case linear, prediction. If the monitor
predicts an event to happen in the near future, a new predicted event is created
and treated like a true recorded event, only with less probability of accurate
detection, The cases where an interrogation may be done are described in the
next section.

2.3.2 Event interpretation and hypothesizing

When a monitor has detected a new recorded event (RE), this will be
handled by the event interpreter, which is a set of procedures and algorithms
used to link new events with old ones and to make a diagnosis from the obser-
vations. The event interpreter must be implemented in a way that makes it

17

possible to use it with any process model, no matter what size and complexity
this has.

The event interpretation consists of a procedure, called the inference cycle,
that is run for every recorded event. When a new event occurs, the following
steps are performed:

1) The event is created and catalogued in the hypothesis model.

2) The interpreter tries to link the new event together with clusters of old
events. If the search for such a cluster, or inferred malfunction (IM), is
successful, the event will be incorporated in this cluster, otherwise the
event interpreter creates a new cluster containing the new event.

3) The cluster containing the new event is examined to see which events in
the cluster may be source events, i.e. events that can explain all other
events in the cluster.

4) The existing hypotheses are revised to include the information provided
by the new event.

When the inference cycle has completed, the event interpreter will wait for
next event to come.

The first step also contains a check whether the new event is a realization
of a previously predicted event. If this is the case the predicted event is
replaced in its event cluster and the second step may be omitted. Though, the
source and evidence evaluation must still be performed, since MIDAS do not
believe in a predicted event as much as in a recorded event.

The search and linkage phase will examine all existing event clusters to
see if the new event is causally related to any of these. One of the following
results may be the outcome of the search procedure:

¢ The new event cannot be linked to any existing events.
o The event can be explained by previous events.
¢ The event can explain previous events.

* The event can both explain existing events and be explained by the same
or other events.

In the first case the event interpreter may interrogate monitors to see if
any event that might link the new event to an existing cluster can be predicted.
I this is so, a predicted event is created and is inserted in the existing cluster
together with the new event, Otherwise a new inferred malfunction is created
with the new recorded event as its only member.

The situation in the second case is shown in Figure 2.6a. The new event
is incorporated in the cluster. When this situation occurs the diagnosis often
changes very litile, but hopefully the diagnostic resolution increases a little. If
the new event can be explained by more than one cluster, it will be a member
of each one of them, but the clusters will not merge into one.

The third case might look as in Figure 2.6b. In the figure the new event
explains a source event, it is an out-of-order event and becomes a previously
undetected source. The diagnosis will probably change drastically, since the
current hypothesis cannot explain the new event. Though, if the new event
does not explain a source event, e.g. the rightmost event in Figure 2.6b, the
new event will not be a member of the existing cluster. Instead, a new cluster
is created and the new event will be inserted into this along with the events

18

Inferred malfunction

Y

Inferred malfunction

e]

Figure 2.6 a. The new event is explained by others, b, The new event explains
previous events

Figure 2.7 The new event both explains and iz explained by previous events a.
in the same cluster, b. in different clusters

explained by the new event. This is so since otherwise, there would not have
been any source events in the cluster, i.e. no event that can explain all the
others.

The last case, where the new event both explains and is explained, is
shown in Figure 2.7. Here are two major possibilities. Either the new event
can explain and be explained by events in the same cluster, or it can build a
bridge between two clusters. In the later of these cases the two clusters will
merge into one if the explained event in the second cluster is a source event.
Otherwise the new event, along with the events it explains, is added to the
first cluster, and the second cluster remains unchanged.

Now the second step in the inference cycle has completed and the source
evaluation starts. This is done only for those inferred malfunctions that have
been altered by the new event. As mentioned before, a source event is an
event such that every other event in the cluster can be reached from this event
using the causal links, Further, the diagnosis assumes that the source events
in a cluster are primary symptoms of the present root cause. There must exist
at least one source in every cluster. When causal loops occur, like in Figure
2.7a, and no event outside the loop explains any of the events in the loop,
all events in the loop are considered the source events of the cluster. It is
not recommended that the order of detection should determine which of the
events in the loop is the true source, since out-of-order events often occur in
real plants. When the source events of a cluster have been discovered, all root
causes that have any of the source events as their primary symptoms, will be
incorporated in the hypothesis model as hypothesized root causes of the clus-
ter. These hypothesized root causes are copies of the associated potential root

19

causes in the process model, and for each event cluster one (1) hypothesized
root cause is assumed to be the true cause of the cluster.

The last step in the inference cycle is to update the diagnosis to see if
the new event somehow changed it. This is the procedure called the evidence
evaluation, even if the word evidence might seem & far too strong word. The
evidence is computed individually for each cluster, and is basically done by
looking at all the events in the cluster to see which root causes they support
and which they oppose. An event will support a hypothesized root cause either
if the event is a primary symptom of the root cause or if a free causal pathway
exists from a primary symptom of the root cause to the event. A free causal
pathway is a chain of compiled links that is not broken or blocked by any
conditions for the specific root cause, All evenis that are not supporting a
root cause will be assumed to oppose it. _

Now that the sets of supporting and opposing events have been deter-
mined for each hypothesized root cause, this information will be used one way
or another to compute the most likely fault in the cluster. If each event has
a probability of accurate detection and one of inaccurate detection, the likeli-
hood of each hypothesis may be computed in a number of ways using statistics.
Though, such probabilities must be guessed very roughly in most cases, but at
least one must assume that a recorded event must have a higher probability of
accurate detection than a predicted one. It is also possible to designate a prior
probability to each potential-root-cause, indicating that some faults are more
common than others. When the root causes have been ranked, the inference
cycle has completed, the current diagnosis may be presented to the operator,
and the event interpreter may wait for next event.

2.4 Operator interface

One of the most important things to do when writing a computer program
is to design an operator interface. In MIDAS, the most important task for the
operator interface is to display the diagnostic results in an appropriate way.
But it will also be necessary to direct the diagnosis, e.g. by giving parameters
such as threshold values, filter constants and sample rates to the monitors.
It is also desirable that different types of users will have different operator
interfaces. A plant operator should just see the fault presentation and be able
to tell the system when a malfunction has been corrected. A process engineer
should be able to follow the event interpretation, to look into the process and
hypothesis models, and to tune the monitors in order to enhance the diagnostic
performance.

This master thesis project is emphasized on the implementation of a diag-
nosis system and therefore the time spent on making a good operator interface
has been minimized. How it actually was implemented in the G2 prototype is
shown in Section 3.4.

2.5 Features and limitations

The differences between quantitative and qualitative diagnosis systems
are mentioned in Section 1.2, and all of the attributes given to qualitative
systems are valid for MIDAS too. In this section some of the more specific
advantages and disadvantages of MIDAS will be discussed.

20

A causal model implies that the symptoms of a malfunction will appear
in a certain order. Though, in many cases the symptoms will occur out-of-
order depending on monitor tuning, sample rates or any unexpected process
behavior. When MIDAS has detected a series of events, the diagnosis will be
the same, regardless of the detection order. Thus, MIDAS is robust against
- out-of-order events, and this is mostly an advantage. An exception to this is

the case where the detection order in itself bears valuable information, but
these situations are considered to be more rare than the unintentional out-of-
order events and they are therefore neglected.

Another feature is that MIDAS tries to minimize the hypothesis model,
i.e. if a series of events can be explained by a small set of root causes, one
of these is assumed to be the true root cause. Another solution would have
been to include the possibility that some (or all) events are independent and
thus enlarge the set of hypothesized root canses. If all possible cases would be
included, the hypothesis model would grow combinatorially when the size of
the clusters grow. And since simultaneous, independent faults can be assumed
to be relatively rare, it is not considered a too serious limitation to exclude
these possibilities. However, MIDAS can easily be changed so that any possible
event interpretation could be chosen on request.

As mentioned above, multiple malfunctions will be interpreted as a single
malfunction as long as any causal relationship between the symptoms of the
faults exist, On the other hand, when a new event cannot be linked to any
existing event a new event cluster is created, indicating that two faults exist
simultaneously. This implies that multiple malfunctions can be detected if
their symptoms do not overlap in the event process model,

One of the features of the (E)SD@G is that it tells what will happen in
the near future when a specific disturbance, e.g. a root cause, is present. The
arcs in the event graph just tell what might happen when one or more events
have been detected. If one wants to know what actually will happen, one also
must know the present fault, i.e. the diagnosis must be done. This implies
that when an event does not occur, MIDAS in its current version cannot use
this piece of information to refine the diagnosis. If just one event occurs, e.g.
an uncontrolled variable gets high, and nothing more happens during a very
long time, a human operator will conclude that the sensor is broken. MIDAS
though, assumes that all faults that primarily will cause the variable to get

-high are possible. This can be changed by associating a time-out attribute to
each compiled link. When all links initiating at a detected event has timed out,
all root causes not blocked by the link should be removed from the candidate
set. This is not water-proof, but in most cases it would help to increase
the diagnostic resolution. However, this feature is not included either in the
original MIDAS concept or in the current G2 implementation.

21

3. An Implementation of MIDAS
in G2

This chapter will deal with the generic parts of the G2 implementation,
i.e. the representation of the different objects introduced in Chapter 2, and
the rules and procedures that perform the diagnosis. For readers not familiar
with G2 it is recommended to read Appendix A before reading this chapter.

3.1 The process model

The original MIDAS program both performs the diagnosis on-line and
creates the process model used by the diagnosis module. In this project only
the diagnostic function is implemented so the model has to be constructed
manually, When the event graph has been constructed, its components must
be given a representation in G2. From now on, the G2 classes, attributes etc.
will be written in teletype font (1ike this). The event process model consists
of potential-events connected together with compiled-links, and poten-
tial~root-causes connected to potential-events by local-cause-links.
For structural reasons potential-event and potential~root-cause have
the same superior class pm-component. The object-definitions and connection-
definitions for these classes are found in Appendix B,

An event graph for the coupled tanks in Section 2.2.2 is shown in Figure
3.1. The names of the potential-root-causes can be chosen arbitrarily,
but the names of the potential-events must be like 11-n-h, i.e. first a
variable followed by the first letters of the states of the variable just before

[o7 Bt

L1-BIASHE

FLAASHI L2-BASHI CONTROLLER HIGH
A patentiabroot-cause q

L1-8H UH-heH
A potentiakevent —)
A compiledink q

LI-HR

HR

L1-L-N

UH-N

A lecakcause-Enk
LINL
\ LML

™~ R
Oﬂ &<> UL
LEBIASLO Fn-FAILURE FL-BIASLO L2BIASLO <§

TANCG-LEAX CONTROLLERLOW

Figure 3.1 An event process model of the process in Figure 2.2

22

and after the transition. This must be so in order for all initializations to work
properly. Each compiled-1link has the attributes not~conditions, which is
a list of potential-root-causes that are blocked by the compiled-1link, and
only-if-transient which, if set to true, indicates that the associated state
transition only occurs if the fault has been corrected. These attributes are
initialized by rules of either of the following forms:

initially insert 11-bias-lo at the beginning of the
potential-root-cause list the not-conditions of
compiled-link-1
or:

initially conclude that the only~if-transient of
compiled-link-4 = true

When the potential-events and the compiled-links have been initi-
ated, the process model is ready to be used by the diagnosis module.

3.2 The diagnosis module

The diagnosis module is the name for all the parts of MIDAS that use the
process model to make the diagnosis. It consists of monitors, which are re-
sponsible for event detection, the hypothesis model, which contains previously
detected events along with the existing diagnosis, and the event interpreter,
which adds new events to the hypothesis model.

3.2.1 Monitors

The basic task of the monitors is to detect the events in the process
model. The most usual, and in my implementation the only, type of event
is the state changes of variables, either a sensor variable or a residual of a
constraint equation. Detecting such state changes requires knowledge of the
nominal steady-state value and the area around this that should be treated as
the normal state. The class monitor is a fairly simple type of monitor, but it
is sufficient in most cases. The object-definition for monitor can be found in
Appendix B. The subworkspace of a monitor; as shown in Figure 3.2, can be
used to explain most of its features.

The lower half of the subworkspace consists of type-in-boxes which make
it possible to change parameters of the monitor. This way a monitor can be
manually tuned to optimize the detection capability, Though, to determine
the optimal values for the parameters may be very time-consuming. The
parameters that may be altered are threshold levels, the sample rate, the time
constant of the raw data filter, and the prediction parameters trend-time
and prediction-time. As is indicated in the figure, threshold levels can
be specified with hysteresis, which in many cases helps to avoid inaccurate
detection without decreasing the probability of true event detection.

The monitor is sampled at a rate in seconds given by the attribute
sample-rate. The value of the sampled variable is stored in the raw-meas
of the monitor. To reduce the influence of process noise, measurement noise
and other high frequent transients, the raw measurements are smoothed by
a first-order lag filter. This filter is implemented with the generic simulation
formula in Figure 3.3.

23

Monitor L1 [T

{raw measure [a2z] 4z
[fitered vaive | 4026 | 40 /m
[prediction | anzs } Y] =

36
<0300 -02:00 -01:00 49:.48
Bhue: taw measure, red: fiiered valve,
preen: predicled valug

Threshold for high Sample rate [5]
Upper threshold for hormal Filtering time m
Lower threshold for nomal Trend time E
Threshold for low Prediction fime

Figure 3,2 The subworkspace of the monitor M-L1

state variable : d / dt (the filtered-value of
any monitor) = (the raw-meas of the
monitor - the filtered-value of the

monitor) / (the filtering-time of the
monitor), with initial value the current
parameter value

Figure 3.3 First-order lag filter for raw data

In order to support the interrogation, each monitor computes a pre-
dicted-value, by extrapolating the trend of the filtered value during the
last trend-time seconds, looking prediction-time seconds into the future.
When a monitor is interrogated it is asked if a given state of the monitor can
be predicted in the near future. The monitor compares the predicted value to
the threshold levels and then gives an answer according to this comparison.

When a monitor is sampled, the rav-meas of the monitor gets a value
and a procedure UPDATE-MON is started. If the filtered value then has
passed a threshold, the current and previous states of the monitor are changed
according to this. If a monitor has detected a high state, a situation may
occur where the monitor directly detects a low state without detecting the
normal state in between. This situation is treated as two subsequent state
transitions, one from high to normal and, when this is handled by the system,
one from normal to low. If this is not done, the event graph must include the
low to high and high to low events, and this would make the process model
more difficult to develop and more complex.

As for potential~events, the name of a monitor cannot be chosen at
random. The name must start with "M-" and then continue with the name
of the monitored variable. This way the last part of a monitor’s name and
the first part of its associated potential-events’ names are identical. This

24

is used in the initializations to determine which potential-events belongs to
which monitors.

The state transitions of a monitor indicate that events have occurred,
and these are treated by the event interpreter described in Section 3.2.3, but
first the components and the structure of the hypothesis model will be defined.

3.2.2 The hypothesis model

If the process model is seen as the static knowledge-base in MIDAS, the
dynamic knowledge-base would be the previously detected events and the
fault hypotheses based on these. This dynamic knowledge-base is also called
the hypothesis model, and for structural purposes a class hypothesis-model
is defined and one instance, the-hypothesis-model, is a static member of
the knowledge-base. The~hypothesis-model is managing the bookkeeping of
events, clusters and so on,

The components of the hypothesis model are event clusters, hypothe-
sized root causes and different types of events. The clusters and root causes
are instances of the classes inferred-malfunction (IM) and hypothesized-
root-caunse (HRC) respectively. The event class has four subclasses:

» recorded-event (RE), which is instantiated when a monitor actually
detects a new event,

¢ expected-event (EE) and
¢ latent-event (LE), which both represent predicted events, and finally

*» copied-event (CE), which is created when an event is a member of more
than one inferred-malfunction.

The object-definitions of all these classes and their superior class hm-compo-
nent are listed in Appendix B.

Since G2 does not allow naming transient objects, each hm-component has
a list of messages which can be used as the name(s) of the component. When a
hm-component has been placed on a workspace, these messages are displayed
near the icon. Every hm-component has a catalogue name consisting of a
prefix determined by the type of component (IM-, HRC-, RE- etc.), followed
by an index that is incremented each time a new IM etc. is created. Those
components that have corresponding components in the process model, i.e.
events and hypothesized-root-causes, may also have the name of the pm-
component as a second name.

The objects at the highest level of the hypothesis model are the in-
ferred-malfunctions. These IMs contain events that are linked together
and hypothesized-root-causes that may have caused the events. IMs are
created and altered as new events are detected and the diagnosis evolve. Each
IM has an attribute status that depends on which events the IM contains.
For this purpose the events in an IM can be classified in two ways. Firstly, they
can be either source events or consequence events. As mentioned in Section
2.3.2, a source event is an event that can explain all other events in an IM, and
thus are assumed to be the primary symptom of the actual fault. Secondly, an
event can be either abnormal (leading away from the normal state) or normal
(leading to the normal state). Basically, to determine the status of an IM is
to check if the latest event detected by a monitor is abnormal or normal. The
value of status can be either of the following symbols:

25

{Inferred mastinction [IM1" | (Hide |
|

[si2tus: [on geing ransient

f Cutrent Inferred malfunctions l Hide

£1 Gel options linking
i
malfuncliong 2

Ui

HRC-1

LI-BLASLO C-3

PUMP-FAILURE

TANK-LEAK

Figure 3.4 The inferred-malfunction IM-1

s persistent, if there exist source events that have not returned to normal
state,

s on-going-transient, which means that all source events have been nor-
malized, but at least one abnormal consequence event has not,

* completed-transient, indicating that all abnormal events in the IM are
superseded by normal events,

» spurious, used instead of completed-transient if the IM consists of
only one normalized event, probably indicating a false alarm, or

¢ corrected, used when an IM has been archived.

Figure 3.4 shows an example of an ITM. The icon of the IM can be seen
on the small workspace at the upper left corner of the figure. The rest of the
G2 window displays the recorded-events and hypothesized-root-causes
that are members of the inferred-malfunction. The links are of the same
types as the links in the process model, i.e. compiled-links between events
and local-cause-links between HRCs and events. The status of the IM
is on-going-transient, since the source event {RE-1) has returned to normal
state {through RE-6) but one non-source event (RE-2) has not. This IM has
actually been created when MIDAS worked against a simulated tank process
and a tank leak was simulated.

An inferred-malfunction can be seen as a subgraph of the process
model, since the recorded-events and hypothesized-root-causes are copies
of the corresponding pm~components. The IM is displayed in a way that makes
it easy to see the relation with the process model. Compare Figure 3.4 to
Figure 3.1!

26

Each IM has a number of item-lists that contain its members. Besides a
list for all the events, there is one list containing the source events of the IM,
and one containing the events in the IM that may be corrected. Each time
an IM gets the status completed-transient or spurious, all current events
in the IM are inserted into the list of correctable events. When a malfunction
is corrected, the correctable part of the IM is archived, the rest of the events
are treated as new ones. The different types of events are treated nearly the
same way, the only exception to this is that LEs and EEs (and copies thereof)
are considered less significant when the diagnosis is determined. The icons
of the different types of events are also nearly the same, a CE has a dashed
instead of a solid border, and a LE or EE is grey instead of black.

Until now no distinction has been made between EEs and LEs. Both
are predicted events in contrast with REs, but in certain situations an EE is
created, in others a LE is created, An EE is created if the prediction aims at
linking a new event to an existing IM. If the prediction is not done in these
situations a second IM will be created, and MIDAS will, probably wrongly,
conclude that two faults exist instead of one. A LE though, indicates that
an IM probably has a latent, i.e. not yet detected, source event, which will
drastically change the diagnosis when it is actually detected. In this case the
source events of the IM without the LE will first be determined, then the LE
is added as an extra source event,

The current diagnosis is stored as a ranked and sorted list of HRCs for
each TM. Each HRC contains a list of its supporting events, and based on
this a relative likelihood can be computed for each HRC. When the HRCs in
each IM have been ranked and sorted, it is assumed that one of the highest
ranked HRCs from each IM is a current fault. How the faults are presented is
described in Section 3.4,

3.2.3 The event interpreter

When a new event is detected it is incorporated in the existing hypothesis
model. This is handled by the event interpreter, which is a chain of procedures
that perform the inference cycle defined in Section 2.3.2. The event interpreter
is triggered by the rule in Figure 3.5.

whenever the current-state of any monitor

receives a value then start create-new-
event (the monitor)

Figure 3.6 The rule that triggers the event interpreter

The procedure CREATE-NEW-EVENT has two major functions. First,
as the name indicates, a new transient object, a recorded-event, is created
and initialized (given names etc.), then a check is done to see if the new RE
is a realization of a previously predicted LE or EE. If this is so, the predicted
event is replaced with the new event, otherwise the search and linking phase
takes place. This is done by the procedure NEW-RECORDED-EVENT, and
the rules for the linking are the same as those given in Section 2.3.2, though
they are carried out in another order.

If the new event can be linked to any existing IM, i.e. it is explained
by any event in the IM or it explains a previous source event in the IM, the

27

linking is performed directly, without analyzing if the new event can be linked
to any other IM as well. The compiled-links used for the linking are copied
directly from the process model. When the linking has completed, the event
interpreter tries to merge the IM containing the new event with all the other
IMs in the-hypothesis-model. This is repeated until no more merging can
be done.

If the event interpreter cannot directly link the new event to any exist-
ing IM, it searches for possible missing events and interrogates the monitors
responsible for these events to see if any of the events can be predicted. A
missing event is an event which, when it occurs, will link the new event to
an existing IM. Missing events are determined by finding paths in the process
model between the new event and all events in the IM. If such a path con-
tains only one intermediate missing event, an interrogation takes place. If the
interrogation is successful, i.e. the missing event can be predicted, an expec-
ted-event is created and, together with the new recorded-event, added to
the IM. If the interrogation is never performed, or if it fails for all paths, a
new IM is created and the new RE becomes its only member.

Interrogation will also take place as soon as a new RE has been added
to an IM, to see if it is possible to predict any latent source events. I a
latent source exist, but the interrogation is turned off, the risk of inaccurate
initial diagnosis is quite high, since the root causes responsible for the latent
source will probably not be members of the current hypothesis set for the IM.
However, if an interrogation is performed successfully, a LE is created and
added to the IM, Now, the root causes pointing at the LE become members
of the current hypothesis. But since the LE is not actually detected, only
predicted, the possible root causes without the LE in the IM will still be
plausible.

To get an example of how the interrogation may work, reconsider the
tank leak simulation in Figure 3.4, In this case the events are detected in the
following order:

1. L1-N-L (RE-1). Since no other events exist, a new inferred-malfunc-
tion, IM-1, is created, containing RE-1 only.

2. U-N-H (RE-2). In the process model in Figure 3.1, no link exists between
U-N-H and L1-N-L, thus RE-2 and RE-1 cannot be linked together. Fur-
ther, there dees not exist one single event in the process model that could
build a bridge between U-N-H and L1-N-L, and therefore no interrogation
takes place. Instead, RE-2 is inserted in a new inferred-malfunctien,
IM-2. :

3. F1-N-L (RE-3). This event can be linked to L1-N-L, and is therefore
inserted in IM-1.

4. L2-N-L (RE-4). This event can be linked both to F1-N-L and U-N-H,
and since these events are in different IMs, IM-2 will merge into IM-1.

If the monitors are tuned somewhat differently, and the simulation is
restarted, the detection order may be the following:

1. L1-N-L (RE-1). A new inferred-malfunction, IM-1, is created.
2. FI-N-L (RE-2). This event is inserted in IM-1.

3. U-N-H (RE-3). Still, U-N-H cannot be linked to any existing event.
Though, if L2-N-L can be predicted, this event would build a bridge

28

| Inferred mafunction: [i1}
[$tatus: | persistemt]

Moultor L2 “
41 ST?p
linking
[rov mensare[3352 | he w
u
= 8 E-3
I ECT M v e LH FEI
Bl rrw kdsrum, md: ftncad wnua,
graen; peadicted vabuy
UN-H
Treeshold for high [4.05] Strple rate [3]
Upptr trethold for narm-t Fifterdny EmeEi
Lower threshold for nomel Trend ﬁmEl

Threshold for low Predeation tre

HRC-1

L1-BIAS:LO RC-3

PUMP-FAILURE

TANK-LEAK

Figure 3.6 An example of successful interrogation

between U-N-H and F1-N-L. Thus, the monitor responsible for detecting
L2-N-L is interrogated, and if the interrogation is successful, the situation
in Figure 3.6 will occur. The subworkspace of the monitor M-L2 is shown
in the upper left corner of the figure. Note that the filtered value is still
normal, but the predicted value is low. This implies that an expected-
event is created, which is indicated by the name EE-4, and all events are
members of IM-1.

4. L2-N-L (RE-4). This event is the realization of the postulated event EE-
4, and therefore EE-4 is replaced by RE-4. If L2-N-1 is not detected after

a long time, and it no longer can be predicted, the EE is removed and
IM-1 will divide into two IMs,

If the filtering-time of the monitor M-L1 is increased it is possible
to delay the occurrence of L1-N-L and thus achieve a third detection order.
FI-N-L then becomes the first RE in the simulation and when it has been
handled completely, the monitor M-L1 will be interrogated concerning the
possible latent source L1-N-L. If the prediction-time of M-L1 is increased
too, this event may be predicted, and then the resulting IM will be as in
Figure 3.7. Note especially that the root causes of both the RE and the LE
are incorporated in the candidate set, but when the LE is replaced with a RE,
the root causes at F1-N-L will be removed.

Now the search and linkage phase has completed and the next step in the
inference cycle is the source evaluation. This can easily be done directly after
the linking with the following rules:

29

LIBIASLO HAC1

PLMP-FAILURE

TANK-LEAK F1-BlIASL0

Figure 3.7 An inferred-malfunction with a latent source

o Ifanew eventinan IM does not explain a previous source event in the IM,
and if there exists at least one event that explains the new event, then
the new event is a consequence and the other events remain unchanged.

¢ If a new event in an IM explains a previous source in the IM, or if there
does not exist any event that explains the new event, then the new event
is a source and the effects on the rest of the IM can be determined using
the following recursive steps:

1) TFind all successors of the new event that are source events. For each
one of these, remove the event from the source-events of the IM
and repeat step 1) with this event as the new event.

2) Insert the new event in the source-events of the IM, and find all
its precursors. For each one of these, if the event is not a member of
the source-events of the IM, repeat step 2) with this event as the
new event.

This algorithm will cover all allowable configurations of TMs.

When the source events of an IM have been determined, the evidence
evaluation will take place. Its aim is to compute which of the hypothes-
ized-root-causes in the IM is the most likely. To do this the IM must
be analyzed to see which events will be members of the list supporting-
events of each HRC. This is done by a breadth first walk through the IM
from each HRC. A HRC will naturally be supported by its primary symptoms,
and these are therefore inserted in the supporting-events of the HRC. Next
step is fo look at all successors of the primary symptoms. If there exists a link
between the primary symptom and a successor that is not blocked for the HRC,
this successor will also be a member of the supporting-events. When all
successors have been examined, the procedure is repeated for those successors
that are supporting the HRC. This way the whole graph will be traversed
through recursive procedure calls, and the events that are not supporting a
HRC when the whole graph has been analyzed are assumed to oppose it.

When all HRCs have got their supporting and opposing events, some
statistic calculation must be done to rank them. Finch (1989) suggests a num-
ber of methods to rank the HRCs in an IM, and I have chosen one of these
called conditional probability. This method makes it possible to include knowl-
edge of the prior probabilities of the possible faults. Each potential-root-
cause (and hypothesized-root-cause)has an attribute prioxr-probability
which has a default value 1.0, but it may be altered to any positive value. The

30

method also requires some knowledge or assumption of the probability of ac-
curate event detection (f;) and the probability of false event detection («;).
For a RE, f; = 0.95 and o; = 0.05 is a reasonable assumption. LEs and EEs
are less reliable, Finch suggests §; = 0.60 and «o; = 0.40 for these events.

To compute the conditional probability C P of a hypothesis HRC;, another
probability, the probabilistic likelihood PL, must first be computed by the
equation

SE OE
PL(HRC;) =[] 8; - [s (3.1)
i i

where SE are the supporting events of HRC; and OE are the opposing events of
HRG;. If the prior probability of HRC; is given by PP(HRC;) and there exist
n HRCs in an IM, the conditional probability is computed by the equation

PL(HRC;) - PP(HRC;)
n

Y. PL{HRC;) - PP(HRC;)
i=1

CP(HRC;) = (3.2)

MIDAS then uses this conditional probability to rank and sort the HRCs,
When this is done, the current diagnosis is made, and the event interpreter
can wait for next event,

3.3 Operator interface

When all the functional parts of a computer program have been developed,
you can spend how much time you like on making a good operator interface.
If the program is meant to be run by others than the programrners, it is very
important to make it easy to use. It is also important that different types of
users can see and do different things. G2 supports this feature since it allows a
knowledge base to be run in different, built-in or user defined, operator modes.
In other senses too, G2 offers many features, e.g. nice graphics, that may aid
the designers of operator interfaces. In this project, though, the operator
interface is very simple,

In a diagnosis program the only necessary information to display to a
plant operator is the current diagnosis, i.e. plausible current faults. This is
currently done by just giving messages like the ones in Figure 3.8a to the
operator. As new events are detected and the diagnosis evolve, a new message
is displayed if the new events alter the current diagnosis, The last message
typically occurs when a fault has been corrected and the process has gone back
to the nominal steady state. The series of messages in Figure 3.8a will occur
during the tank leak simulation if the detection order is as in Figure 3.4,

It not obvious that only the highest ranked faults should be displayed.
Since the evidence evaluation includes assumptions of a priori probabilities for
faults and probabilities of true event detection, unfortunate choices of these
probabilities may cause an absent fault to be ranked slightly higher than a
present one. The G2 implementation offers a full description of the relative
probabilities of root causes as an option. An example of this is shown in the
fourth message in Figure 3.8b,

A plant operator should also be able to switch the diagnosis on and off,
and to tell MIDAS when all faults have been corrected. This can be done

31

X G2 ' B[R ¢

MIDAS log-board I [MiDAS logbosrd | Hide
#3 111320 am. Plausible current faults: !
#34 123315 pm. A new lnferred matfunction
{T?é{)i(iEAK or PUMP-FAILURE or L1-BIAS- (IM-12) I3 created
#4 111325 am. Plausile current fodlts: "5,?“ :_%3“,3',2(?{&;’;’ F1 was NORMAL and is
(TANK-LEAK or PUMP-FAILURE or L1-BIAS- 1
LO} AND
ONTR #3656 1203325 pnt. The Inferred ma¥unclion
© OLLER HIGH] 1M-12 has now merged into W11
F;AN:(ELIEBAB}? ?ﬁuﬁéﬂﬁrﬁewm: #57 123328 pm. Rypotheszed root causes
(CONTROLLER-HIGH) of the persistent malfunction 1M-11
i TANK-LEAK 1 0499
#& 11335 am. Plausible current faults: i m‘i gﬁ.\g‘f&w 1:332'1439:3
(FANK-LEAK or PUMP-FAILURE) H i
— #58 123720 pm. The makuncan INM-11
J#7 111590 am. No plausire fawits | i my now be comected
§ #53 123732 pm. The Inferred malfunclion
§ 1411 is now comrecied

Figure 3.8 a. A series of fault messages. b. Various types of messages to e.g. a
process engineer

by displaying buttons in suitable places. MIDAS is designed to work around
a specified steady state, and when the process approaches this state it may
display unexpected transient behavior, which may cause MIDAS to get con-
fused. This behavior may occur during start-up and when certain faults are
corrected, and to avoid irrelevant and false diagnostic conclusions, it is best
to turn the diagnosis off until the process has reached the steady state.

Some users, e.g. process engineers, might like to get into the diagnostic
parts in order to understand the system and change the diagnostic perfor-
mance. A process engineer can choose to display other log messages than
just fault presentation, Examples of such messages are shown in Figure 3.8b.
Since the process engineer has access to both the process and the hypothesis
model, he may find all information he wants from the events, root causes and
so on. He can follow the event interpretation and the hypothesizing, and this
may guide him when tuning the monitors. This is done by changing monitor
parameters as was shown in Figure 3.2,

Now all of the generic parts of MIDAS have been developed and they
have also been tested against a simulation of the coupled tank process. In the
next chapter the Steritherm application, the second part of the master thesis
project, will be discussed.

32

4. TFault Diagnosis in Steritherm

4,1 The process

During development, the MIDAS diagnosis module was tested against
a number of small process models, e.g. the two coupled tanks described in
Chapters 2 and 3. In order to see how MIDAS works in a fairly large industrial
plant, a process model for Steritherm was developed. Steritherm is a full-
scale process for indirect UHT (Ultra High Temperature) sterilization of liquid
food products. Indirect heating means that the product is heated by heat
exchangers. The product is subjected to high temperature for a short time,
usually 135-140°C for a few seconds. This will kill all bacteria in the product.
When the product has been packed, it can be stored at room temperature for
months,

A simple block diagram for the Steritherm process is shown in Figure
4.1. The product supply consists of a balance tank, where the cold product
is stored, and a feed pumnp. The product is first heated by warm product in
the pre-heater. After this the temperature is approximately 75°C. Then the
product is fed through a pump to the final heater. Here, the product is heated
to the sterilization temperature, normally 137°C, by hot water. The holding
tube is a long insulated pipe, where the product is kept warm for a couple of
seconds. When the product has passed the holding tube, it is first cooled to
about 75°C in the pre-cooler by the incoming cold product., Then it is cooled
down to the filling temperature, 5-20°C, by cold water in the final cooler,

T

Product supply M
> A
Steam
v A Steam injector
Water supply
nOM Cold
Water A Pre— A4
P Y > heater
™] | - —1
WW W TWW W]y
Final coaler Final heater
LM T AT
Cold water @ I W
Pre—

Outles valve A '
[1 < Helding tube

Product outlet

Figure 4,1 Steritherm block diagram

33

Under normal conditions the product will now be sent to a filling machine or
an aseptic tank. A part of the product, though, is recycled back to the balance
tank.

The hot water system is used to raise the temperature of the product in
the final heater. Basically, it consists of a balance tank, a feed pump and a
steam injector. In the steam injector, steam is added to the water in order
to increase the temperature of the water. This hot water will then heat the
product to the sterilization temperature, The temperature of the product
just after the final heater is controlled by a PI-controller, The output of the
controller affects the stem position of the control valve, which determines the
steam flow into the steam injector. This way the temperature of the heating
water, and thus the sterilization temperature, can be controlled. The hot
water is cooled in a heat exchanger and then recycled into the water tank.
The temperature of the recycled water is controlled by a PI-controller that
controls the flow of cooling water through the heat exchanger,

There are four major phases in the normal Steritherm operation.

¢ Plant sterilization is done by circulating hot water through the product
* line in the plant for about half an hour. This will sterilize the process
equipment and make the plant ready for production.

» Production can be started when the plant has been sterilized. The water
in the product line is led to the drain, and the balance tank is instead filled
with the product. The product pushes the water out of the system, and
when it has reached the outlet valve, this is opened and the production
starts. Normally, the plant will now stay in the production phase for 8-15
hours, depending on the product and the rate of disturbances. After the
production phase, the plant must be cleaned, since hot product will cause
burn-on in the heat-exchangers, thus decreasing their efficiency.

¢ Intermediate cleaning is done under sterile conditions and does not
require a re-sterilization of the plant. This way the production period
can be extended. Since an intermediate cleaning is not as efficient as
norral one, it can only be performed a limited number of times between
two normal cleanings.

* Cleaning will be done after a long production phase. The cleaning pro-
gram depends on the product and it can vary with respect to time, flow,
temperature and types of detergents. After a normal cleaning the plant
must be re-sterilized.

A more detailed description of Steritherm and the simulation model in G2
can be found in IT4 (1990) and Christiansson & Ericsson {1989) respectively.

4.2 Development of the process model

Within this master thesis project only a part, approximately one half, of
Steritherm was modeled for the on-line diagnosis. A schematic of the modeled
part of Steritherm is shown in Figure 4.2. This schematic is only valid during
the production phase, and thus MIDAS will not make an adequate diagnosis
during the other phases. The chosen part consists of the "heart” of Steritherm,
namely the heating and temperature control of the product. The measured
variables are indicated in the figure as transmitters. In addition, the output
signal, U, of the controller is measured.

34

Water Qut

Water In
D ——

Steam
Product In T

A ml @T—Ma g

| St |

oP1

T-42
s T-49 Pl
Product Out i l

T-45

holding-cell

Figure 4.2 Schematic of the modeled part of the Steritherm process

4.2.1 The SDG

The process components that will be modeled are heat exchangers, a
controller, a control valve, a steam injector, a centrifugal pump, and trans-
mitters. Below, the sub-SDGs for these components will be displayed. For a
more mathematically detailed derivation, see Oyeleye (1989), where most of
the units are dealt with, though, in some cases, his models have been modified
a little.

Pl-controller

The model of a PI-controller (proportional and integral controller) is the
same as the one used for the two coupled tanks in Section 2.2.2. X is the
controlled variable, X, is the set point, E is the controller error, I is the
integral part, and U is the controller output. Included faults are Controller Hi
and Controller Lo, When these faults are present, the system will behave as
if the set point of the controller is altered. The SDG is shown in Figure 4.3.

X Controller Ei

+ Controllar Lo

— E‘§+ - U
N

Figure 4.3 The SDG of a Pl-controller

3b

Contirol valve

A control valve can be described as a pipe with variable pipe resistance.
This is modeled by the stem position, S;,, which is affected by the input signal,
8; from the associated controller. For the valve the only modeled fault is that
the stem is stuck, either open or closed. When this happens, the input signal
no longer will affect the stem position, and this is indicated by the possible zero
sign at the corresponding arc in Figure 4.4. The pressure/flow configuration
in the SDG can be found for all units acting as pipes.

+
-
0 Cr s S <_r, D0
- f |
+
S
Pz
Stuck open
*
Stuck closed +/0 * The sign of the arc is zero

if the valve is stuck
oF

Figure 4.4 The 5DG of a control valve

Heat ezchanger (HTX)

The plate heat exchangers used in Steritherm can be described by the
variables shown in Figure 4.5a. P stands for pressure, T for temperature and
F for flow. The indexes w and c are for the warm and cold side respectively.
An additional variable, Q, describes the rate of heat transfer from the warm
to the cold side. The only malfunction considered is burn-on, Depending on
what type of liquid that flows through the HTX, burn-on can occur either in
one side, in both sides or in no side. For Steritherm, burn-on can occur only in
the product line. It will affect the parameters U (the heat transfer coefficient)
and R, (the pipe resistance). The resulting SDG is shown in Figure 4.5b.

a b. ,-—-—-"—"“-
/-t--\ O +
0 P N E, ‘.__/
Pwin l:".t.foul C win wout
T, T +
wm\L E wout + . Burn-0On warm
L4 Twm T Twout
\W/ Warm side + (— _
T
w ‘ +
9]
T Q
/\/\M Cold side + - -
i .
E Tcin T Teout
T ¢ T, Burp-On cold
cout cin _ +
P P. i
t 0
con on c P. m""-—/ Fq N Pwmo "
R

sC

Figure 4.5 a. A schematic and b. the 8DG of a HTX

36

Steam injector

In the steam injector hot steam is added to the incoming water to raise
its temperature. The pressure/flow relation is analogous to the ones already
described. Further, the temperature at the outlet of the steam injector will
increase when either of the input temperatures or the steam inflow increases.
If the water flow increases, though, the temperature of the output liquid will
decrease, since then it consists of a greater amount of cold liquid. Since no
faults are modeled for the steam injector, its SDG is as shown in Figure 4.6.

+
—

=1+

OC m‘-.____/ ut‘ﬂ-._/b/ OTut

Figure 4.6 The SDG of the steam injector

Centrifugal pump
A simple model for the centrifugal pump is found in Figure 4.7. This is

the last unit using the pressure/flow configuration. The flow is affected by the
number of rotations per time unit, N. The only fault considered is a too fast
or too slow rotation, leading to a high or low flow respectively.

o(_ P BVFVPOUQ

+

= +
Failed Lo~ [™™a N "] Failed Hi

Figure 4.7 The SDQ of a centrifugal pump

Transmitter
Sensors or transmitters are modeled since they are very likely to fail. For

each sensor a positive or negative bias can occur. This leads to the SDG in
Figure 4.8. X is the measured variable and X,, is the output signal from the
transmitter.

Bias Lo Bias Hi

_z R
+

————-—
X x5

Figure 4.8 The SDG of a transmitter

37

~outST
Mero sign if valve is sck

'r
T:
[ras |

Temury
T+
LT |
_ .
, P
T EPI_L_..IH
+ +
/
+
e e

T
-
T-42
roller-Blas
¥
+
+10"
v m—;fp
Valve-Stuck”
T T —

Point e Fonsr

woutl

)

+
—Q
+
+
+

+
T - E
ou:?‘ﬁ-:/ wl

0

_()+
water—out

F

Tein1 -
+ +
28] /' < v,
Burn=-On-~1
T
¢
PW

Figure 4,9 The SDG of the modeled part of Steritherm

Now that the SDGs for all the units have been developed, these will be
put together to a SDG for the whole system, The variables of the components
are chosen in a way so that adjacent units either share one variable, or have
an obvious causal relationship. An example of shared variables is the connec-
tion of pipes, where the pressure of the adjacent pipes is the shared variable.
Obvious causal relationship can be found where the temperature in one pipe
affects the temperature in the pipe just downstream through a positive arc.

The resulting SDG for the process is shown in Figure 4.9. To avoid too
much clatter, sensor bias faults are not included in the figure. Burn-on is Jjust
modeled for the final heater. To separate variables in different units, indexes

38

are added to the variable names. The HTXs have indexes 1, 2 and 3, counting
from right to left in Figure 4.2. The other units have indexes PI, SI, HT
(holding tube), valve and pump respectively. The sensor signals, displayed as
boxes in the figure, are given names that are used for the measured variables
in G2. In those cases where variables from different units overlap, one of the
variable names has been chosen arbitrarily,

The SDG consists of several loops. Each pressure/flow circuit is in fact
a local loop, as is the description of the heat transfer in the HTXs. There
are also global loops, namely the controller loop and the loops coming from
the thermal feedback in the liquid systems. Since the loops interfere, several
cycles can be found. These are analyzed in the following section in order to
find the compensatory and inverse variables.

4.2.2 The ESDG

When deriving the ESDG for the Steritherm process, the criteria and rules
given in Section 2.2.2 were used. The SD@ of the Steritherm model consists of
only two strongly connected components (SCC). One SCC consists of the flows
and pressures of the product line, and this contains no compensatory or inverse
response. The other SCC, which is the major part of the system SDG, contains
the controller, and this implies that at least some variables are compensatory.
Since the thermal feedback loops are positive loops, and negative feedback
loops also exist, variables that might display inverse response might be found.
Though, when simulating the process, no inverse response was found for these
variables.

The compensatory variables are found by looking at all the disturbance
nodes that may be deviated by any modeled malfunction. There is no point in
looking at other disturbance nodes, since MIDAS never can create an accurate
diagnosis if these nodes are deviated. When the compensatory variables are
found, the corresponding ESDG-arcs are added to the SDG. The resulting
ESDG is shown in Figure 4.10. The ordinary SDG arcs from Figure 4.9 are
drawn as dashed lines.

4.2.3 The event graph

After the ESDG has been developed it is possible to create the event graph
that MIDAS uses when making the diagnosis. The four potential-events
of each measured variable are created along with a potential-root-cause
for every modeled malfunction. The fault propagation for all root causes is
determined by finding primary deviation paths and successor paths in the
ESDG, as is described in Section 2.2.3. According to this, the corresponding
local-cause-links and compiled-links are created. When this is done for
all root causes, :NOT-conditions are attached to the compiled-links. Each
compiled-link has an attribute not-conditions which is an item-list. A
fault is inserted in this list if the event just upstream the link is likely to
happen when the fault is present, but the event just downstream the link
is not. The last step is to create :ONLY-IF-TRANSIENT links. These will
be created for all back-to-normal events that are not yet connected to any
other event, thus indicating that these events will not occur until the fault
responsible for the deviation has disappeared.

When these steps have been executed for the Steritherm ESDG in Fig-
ure 4.10, one resulting event graph can be seen in Figure 4.11. The figure

39

P R T U - O M S S G
R N A T O B
g Vi . . i
+ Bt T, G, 2.1 }
Broemmenen Tt B B Fodtennn
o l-‘- ;:“ o a‘g ¥ I;- ! ’:
{ “ +H It /l +
i i T+ b
LVARY. || V)
\/ 2 A% CIRE § L
n g I | & i)
.? 2 e B ! i) H
(A i3
H 1 Y B &’
13 |
i] i
Y i
+ Forrn - 1w f i
[—3 t_.‘a.... ;g !.’;. ‘.5 vl 4+ ;f 3!
: j o7 + i
/ , ! P
i i P il .
i v i ‘g {
[l EQRvE \
........... -] ,
i ‘e . ._\ T e T T L n
| 4 ~
o t- I T - Y B~ SO S ?
| esr B] 52 B Y A - L g
e,
.-"‘-
-

Figure 4.10 The ESDG of the process

* +8 for Controller-Ri
& for Contxollax—Lo

- "'—---hn—-

B S

is a hardcopy of the process model in the G2 implementation, and the num-
bers that are attached to most of the compiled-1links, are the numbers of
the potential-root~causes that are :NOT-conditions of the links. In this
case all compiled-links pointing at a back-to-normal event, are :ONLY-IF-

TRANSIENT links.

Note that this is not the only possible event graph describing the fault
propagation in Steritherm. As mentioned in Section 2.2.3 it is possible to
handle the causality in different ways, and this will lead to different, but
equivalent, event graphs. It is desirable to have as few links as possible to
improve efficiency during diagnosis. Further, the causal ordering in the ESDG

40

Q-3YIG-2r-L OJ.Md_m.m_z L

01-59Ig-bh-L
OSYIEEPL 6 OT-SWIS-NILS L
\ y

Q3S0T0-YONLETATIA o._.xijES
TH-zD-L o] ” AW m u.:ﬁz.r
"y
7

M/

0._.m<_m-_‘_.u
0731~ Nd

.MV Q14¥IS-1da

<._.z-z_._..m.._. ! /

T1-MILLS-d

. E 12 NELS-L

H-N-be-L

HN-2t-L,

_:.msm.vv L zmg_o,xoam.m_\:ﬁ,

IH-S¥18-2t-1

I - ”
IH-8¥18-NILS-L
I..mm..uomhzoo

IH-S¥iE-Sp-1 [H-S¥18-EW-L,

HN-EW-L

N RPE

H-N-1 1 HN-1dd

§ % %

IHSYIg-t
el 1H-daLS-dnNd IH-8¥Ig-1dd

Figure 4.11 The event graph of the process

, though it may be changed in order to

should as much as possible be retained

improve the robustness to out of order events,

When the event graph has been implemented in G2 and the monitors

have been tuned with sufficient accuracy, it is possible to start the on-line

diagnosis, In the following section a number of fault simulations are performed

when MIDAS is working against the simulated Steritherm process in G2.

41

4.3 Fault scenario simulations

Since one diagnostic methodology, the Diagnostic Model Processor, has
previously been implemented in the G2 prototype, mechanisms for introducing
faults in the simulation model already exist. The faults that are simulated
include bias in all the sensors and the PI-controller, burn-on in the final heater,
and a change in pump effect. All these faults, except burn-on, can be simulated
as step faults or ramp faults. In addition, I have made it possible to simulate
that the valve is stuck, either at an open or a closed position.

Before the fault simulation can be started, the process must reach its
nominal steady state. Then the monitors must be tuned to detect events
around this steady state. Depending on the process characteristics, it may be
rather difficult to achieve optimal diagnostic behavior., MIDAS works at its
best if the steady state is reached reasonably fast, and if the process is critically
damped, i.e. it displays no unpleasant transient behavior. Unfortunately,
Steritherm {or at least the simulation model) does not satisfy either of these
conditions, When a process fault, for instance the valve is stuck open, is
present, the variables deviate quite fast from the steady state, but when the
fault is removed, some variables approach the steady state very slowly. The
same thing happens during the start-up, and this implies that it can take quite
a long time before the MIDAS diagnosis can be started. However, this might
not be a too serious restriction, since in normal cases Steritherm will run for
several hours in the production mode, and hopefully the start-up will take
only a small portion of that time,

More important is the fact that when certain faults are present, some
variables may display unexpected responses due to oscillatory system behavior.,
Different solutions to this problem can be found. Either one can try to tune the
controller in a way that the underdamped responses disappear, or one could
include the underdamped behavior in the process model, The first solution
is hard, if at all possible, to achieve with a PI-controller, and the second
solution will cause the event graph to contain a lot more links, which will
drastically decrease the performance of MIDAS, Instead, I have chosen to tune
the monifors in a way that they require rather large deviations to detect high
and low states. Further, in the cases where the variables have high frequent
transients, typically the controller output and the controlled temperatures, the
lag times of the smoothing filters are set quite large. The disadvantage of this
solution is that MIDAS may become sensitive to the fault magnitudes of some
malfunctions. Though, when simulating fanlts with different magnitudes, the
interval where MIDAS makes an accurate diagnosis proved to be fairly large.

The simplest type of fault that is simulated is sensor bias for uncontrolled
variables. When, for example, T-STIN-BIAS-HI is simulated, and MIDAS
is told to log the results of the evidence evaluation only, the displayed fault
message is as shown in Figure 4,12,

MIDAS log-board | (Hide j

#7 114106 am. Hypathesized root
causes of the persistent mafunction IvVH1

T-STIN-BIAS-HI : 0667

YALVE-STUCK-OPEN : 0333

Figure 4.12 Log message when T-STIN-BIAS-HI is simulated

42

The reason why T-STIN-BIAS-HI is ranked higher than VALVE-STUCK-
OPEN is that the a priori probability is set higher for sensor bias than for
other faults. The created inferred malfunction, IM-1, only contains the event
T-STIN-N-H, and since this sensor bias will not cause any process disturbance,
no other events can be expected,

i T-STIN-BIAS-HI is not removed before an additional fault, T-45-BIAS-
LO, is simulated, MIDAS will create a second IM since the two events T-$TIN-
N-H and T-45-N-L cannot be linked together. This can be verified by looking
at the process model in Figure 4,11, The resulting fault messages are shown
in Figure 4.13.

MIDAS log-board | [Hide)

#5 1155436 am. Hypothesized oot
causes of the persistent ma¥unetion 1M1

T-STiN-BIAS-RHI HEE v 1:1:Y4

VALVE-STUCK-OPEN 1 0333

#6 11:5436 am. Hypolhesized root
causes of the persistent makunction IM-2
T-45-BiAS-LO : 1.0

Figure 4.13 Log message when T-STIN-BIAS-HI and T-45-BIAS-LO are simu-
lated

In this case MIDAS rightly concludes that the faults T-STIN-BIAS-HI and
T-45-BIAS-LO exists simultaneously.

If the low sensor bias of T-45 is corrected and replaced with a high sensor
bias, the created event, T-45-N-H, will be linked to IM-1 as is indicated in
Figure 4.14. The fault message is displayed in the upper right corner in the
figure.

= 1|

HRC-2 MIDAS log-board (Hide j
HRG-1 #10 120341 pm Hypothesized root
VALYE-STUCK-OPEN causes of the persisient malfunction (i1
VALVE-STUCK-OPEN H 1 i 5]
T-5 i&;IAS-H T-5TIN-BIAS-HI i 952381e-2
E-1 RE-4
hY
s
T-STIN-N-H T-45-N-H

Figure 4,14 ZLog message when T-STIN-BIAS-HI and T-45-BIAS-HI are simu-
lated

This is an example of a situation when MIDAS will create an inaccurate diag-
nosis, T-45-BIAS-HI is not even a possible candidate, and VALVE-STUCK-
OPEN is ranked much higher than T-STIN-BIAS-HI, since the latter is blocked
by the compiled link between the events (compare to Figure 4.11). MIDAS
simply regards the two events as the start of the fault propagation for an
open, stuck valve, and this is built upon the assumption that simultaneous,
independent faults are very rare.

43

So far the fault scenarios have demonstrated how MIDAS deals with a
priori probabilities and multiple malfunctions. Now some of the process faults
will be simulated. These are faults that will lead to process state changes
and not only deviations in the sensor signals, thus causing chains of events to
occur. In the cases where a fault may happen in two directions, e.g. PUMP-
STEP-LO and PUMP-STEP-HI, only one of the faults are simulated here.
However, all modeled faults have been simulated and the created diagnoses
have been verified. In the following examples only the most likely fault in
every IM will be logged. For a better understanding, the reader may compare
each fault simulation to the process model in Figure 4.11,

The only sensor bias fault that will cause process state changes, is the
T-44 bias. Since T-44 is a controlled variable it will indeed affect the whole
process. In Figure 4.15 a positive ramp fault is simulated for T-44.

HRG:-2
[MIDAS log-boaid | (Hide] (et maorcton [} | Hide)
THABIASHI [Satas: . rt
713 L33 pm Plaosid corer et [Saay [enopngyansta |
(T-44+B1A5HI) linking
2114 pazagpm Plausble current fauts
[T-3+B1AS-HI) AND -2
(T-42-B1AS-LO)
£15 12244 pm. Plausye current faults:
(T BIASHI -
-6
-G4H-N
. 4
T-STINMHL %
7 RE-3
Y
T-MHH T-62. ML

Figure 4,15 A simulation of a ramp fanlt in T-44

The detected events follow the expected behavior, even if they appear out of
order as is indicated by the event numbering in the figure. However, this does
not affect the diagnosis very much, since RE-2 can be predicted when RE-1 is
detected. When RE-3 is detected, MIDAS draws the wrong conclusion that T-
42 is biased low (see the second fault message). But in fact, RE-4 is detected
within the same clock tick, and since RE-5 in this case can be predicted,
all events will merge into the same cluster, and the inaccurate diagnosis is
immediately corrected.

Next, a low pump effect is simulated in Figure 4.16, In this example DP1
and FT1 get low at the same time, and when both events have been handled,
MIDAS concludes that PUMP-STEP-LO is present. When the other three
events occur they all confirm the current hypothesis.

The simulations of controller faults and a stuck valve are not very excit-
ing, since they only will produce a chain of low or high temperatures. Thus,
the simulations of CONTROLLER-HI and VALVE-STUCK-CLOSED are pre-
senfed in Figures 4.17 and 4,18 respectively, without any further comments.

44

E 1

foswmm] ()

YT 111 OEYISApA PusiBe CameM by
(PEIASLO

;l!l §5750 pn ik :mukl:.l
HRC-4 (PLRASTERLL)
il

T-STNRL

FTHELAR1D

Figure 4.16 A simulation of a low pump effect

[_lnf:rred rna-’;‘\mc’;on:l'lM—Z']
I_MIDAS log-baard I (Hide j [Status: [persistert]
FI0 111344 am. Plausibla cument
£
IRCE (CONTROLLER-HI
CONTROLLER-HI
18 14
& RE-3—E
T3 % RE-1S T-a2-M-H
- 11 vSa M H
T-STitENH T-45HH
UH

Figure 4.17 Results from a simulation of CONTROLLER-HI

MIDAS fog-board | LHide)

B-H

#34 184339 am Plaustle cumrent
Far
(T-STINBIASLO)

233 1RAZ49 am. Plaushle current
fauis;
IVALVE-STUCK-CLOSED)

IRC-1G

VALVE-STUCK-CLOSED
T-STIN-BIAS-LO

Figure 4,18 A simulation of VALVE-STUCK-CLOSED

45

()

#1353 300%5 pm. Currend glauste fagls:
(EURN-GH-1)

| MIDAS log-board]

%-10 r_T-S
! L.
Tt TradLti
RE-4
Tos-HL
5
TaeHL

FTi-#HASLO

Figure 4,19 Burn-on in the final heater

The last fault to be simulated is the burn-on in the final heater. This is
simulated both by decreasing the heat transfer coeflicient and increasing the
pipe resistance in the product line inside the HTX. The initial fault propaga-
tion is displayed in Figure 4.19. Thanks to successful interrogation, a correct
diagnosis is created during the whole simulated period. After the snapshot
in the figure, some unexpected events occur due to discrepances between the
simulation model and the process model. However, during the initial phase,
which in fact lasts for quite a long time, MIDAS will detect the burn-on and
then the plant will be instantly cleaned. Then MIDAS must be turned off,
and the unexpected events may never occur.

The results of the fault simulations are that MIDAS in all cases succeeds
in creating an accurate diagnosis, if not two malfunctions with interfering
symptoms appear simultaneously. However, a more thorough tuning of the
monitors is required if the transient, inaccurate conclusions will not be drawn.
Before the simulations above took place, not too much time was spent on the
tuning.

46

5. Results and Conclusions

In this chapter some reflections on the thesis project in general, and the
features of MIDAS in particular, will be made. The project has taken about
500-600 hours, far most of this time has been spent on the G2 implementation
of MIDAS.

5.1 Reflections on MIDAS

The goal of this project has been to develop a qualitative fault diagnosis
system for plant processes, and to examine the diagnostic performance of such
a system. Mainly, one must say that the implementation of MIDAS works
as one could expect. That is, for certain types of faults, where the fault
propagation is unique and easy to determine, MIDAS will create an accurate
and, as the fault propagates, more refined diagnosis. In Section 2.5 some
features, limitations and possible improvements of MIDAS were mentioned.
One of the suggested, and T think most valuable improvements to be done, is
to include some information of time in the process model, thus telling when a
certain event is likely to happen for different faults, Though, in many cases it
is hard, or even impossible, to determine the delay along the causal arcs. It
can of course be done by a series of independent simulations, but one of the
strong points with MIDAS is that the event graph should be derived from a
detailed, though qualitative, model of the process.

Like any other diagnosis system, MIDAS must have a correct process
model to be able to create an accurate diagnosis. That is, the fault propagation
must be unambiguous and preferably not too complex for any variable. For
instance, it is hard to include oscillatory process behavior in the process model
without decreasing the diagnostic aceuracy and resolution.

One thing MIDAS is really good at, is to pick the most likely fault out
of a set of candidates having the same event as their first symptom. This
is achieved with the conditional links, the a priori probabilities of different
faults, and the possibility to assign a probability of true detection to events.
In the current version, these probabilities must be guessed quite roughly, but if
the monitors responsible for event detection are further developed, they may
actually compute the probability of true event detection through statistical
knowledge.

During the fault simulations in Section 4.3, the time spent on event inter-
pretation, evidence evaluation etc, was very short, normally shorter than one
clock tick (1 second) in G2. That is, the performance with respect to time of
the whole system, including simulator and control system, depend very little
on the diagnosis, Though, when many events have been detected and the
hypothesis model grow, the diagnosis will naturally take longer time. This is
one reason why oscillatory responses are unsuitable, since these cause a lot of
events, but, except for the first ones, these will not provide any useful infor-
mation. The size of the process model, though, will not affect the time spent
on diagnosis.

The perfect process to apply MIDAS to, would be a fairly big and critically
damped process, with an average delay associated with the compiled links of

47

a few seconds. There may be a great number of root causes with different
fault propagation patterns pointing at each event. For such a process I guess
MIDAS will perform better than most diagnosis methodologies.

I guess that the best diagnostic performance in a diagnosis system is
achieved by combining qualitative causal reasoning with quantitative infor-
mation. When I have studied the performance of MIDAS, I have only used
a pure qualitative process model. The built-in possibility of including con-
straints in the diagnosis will probably lead to more reliable conclusions.

5.2 Reflections on G2

Working with G2 is quite different from conventional programming. Much
of the data structure is not created by traditional programming, but is instead
built by creating objects, connections, buttons etc. using mouse interaction.
This, combined with the graphical representation of most of the items, makes
it very nice to work with G2,

For most mid-sized applications, the response time of G2, when running
on a Sun Sparcstation 2, is not very disturbing. However, in large applications
including simulation, e.g. the Steritherm prototype, G2 runs about 1.5-2 times
slower than real time. This is of course very much depending on the used
platform. The speed will probably increase when new versions of G2 are
released.

Being an expert system shell, G2 is largely emphasized on the use of
rules. In my implementation, though, I use rules basically to trigger the
event interpreter, which consists of approximately 50 procedures. Another 15
procedures handle administration, like pure graphical routines etc. The size of
the knowledge-base of MIDAS is about 270 kBytes (4500 lines). The process
model of Steritherm occupies another 55 kBytes (850 lines).

One feature in G2 that I have made frequent use of, is the possibility to
create and delete objects and connections dynamically. All objects inside the
hypothesis model are in fact created during run-time. For structural purposes
it would have been nice if workspaces and subworkspaces also could be created
dynamically, but this is not supported in the current version of G2.

There are a number of things that would have made it even better to
work with G2. For example, it is hard to understand the restriction that
names cannot be given to dynamically created objects. Further, all proce-
dures, data etc. are globally visible, since it is not possible to modularize the
knowledge-base. Even though G2 has good ways of relating objects, primarily
with connections and relations, a simple pointer, like the ones in other object
oriented languages, would be convenient,

The overall experience of G2 is that it is easy to work with and that
prototypes can be developed in a very short time. The nice graphics, including
the animation possibility, and the built-in buttons, also make it easy to have
a nice operator interface without too much effort.

48

Appendix A

G2 — a Tool for Real-Time Expert Systems

G2 (trademark of Gensym Corporation) is the most widely spread and
technically most advanced real-time expert system tool available today. It is
implemented in Common Lisp and runs on several platforms, in this project
a Sun Sparcstation 2 has been used.

Technical Description

The main parts of G2 are: the knowledge-base, a real-time inference
engine, a procedure language, a simulator, the development environment, the
operator interface, and optional interfaces to external on-line data servers. The
normal way of using G2 is to create a knowledge-base for a desired application
off-line, and then run this knowledge-base in real-time.

Classes and objects

G2 is a strictly object oriented programming environment. This means
that all components in G2, including rules, procedures, graphs, buttons, ob-
jects etc., are items, The items are organized into a hierarchy. All items have
a graphical representation through which they are manipulated by mouse and
menu operations. Operations exist for moving an item, cloning it, changing
its size and color etc. The only type of item that the user has full control over,
are the G2 objects. The user may define and manipulate objects in order to
create the data structure for a certain application.

Objects are used to represent the different concepts of an application.
They can represent arbitrary concepts, i.e. both physical concepts such as
process components, and abstract ones. The objects are organized into a class
hierarchy, i.e. only single inheritance is allowed. The class definition, or using
(2 terminology, the object definition, defines the attributes that are specific
to the class and the look of the icon, Icons can be created with an interactive
icon editor. The attributes describe the properties of the object. The values
of the attributes may be

s constants,

s variables,

e parameters,

s lists, or

s other objects,

Constants can be numbers, symbolic values, logical values (i.e. true or false),
and text strings. During run-time, constants can only be changed explicitly
by the user. Variables or parameters are used to represent entities whose val-
ues change during run-time. Variables are defined from four basic predefined
classes:

49

¢ quantitative variables, i.e. integer- or real-valued variables,
¢ symbolical variables,

o logical variables, and

e text variables.

Parameters can be classified in the same way., The main difference between
variables and parameters is that a parameter always has a value, whereas a
variable must explicitly be assigned a value one way or another. A variable
also has a validity interval, which specifies for how long a newly assigned value
of the variable will be valid.

Lists may contain arbitrary values., The allowed values in a list can be
specified. It is possible to have objects as the values of attributes in other
objects. In that case, the attribute objects have no iconic representation.

Objects can be static, i.e., they are explicitly created by the developer, or
dynamic, i.e., they are created dynamically during run-time. Dynamic objects
can also be deleted during run-time. The G2 language contains actions to
move, rotate, and change the color of an object. Using this, animations can
be created.

Composite objects, i.e., objects that have an internal structure composed
of other objects, can be created using objects as the value of attributes. It
is, however, not possible to at the same time have a iconic representation for
these objects. If such a representation is desired this has to be implemented
using the subworkspace concept. In G2 each object and most items may have
an associated subworkspace. In this (sub-)workspace arbitrary items may be
positioned. The internal structure of an object can be represented on its
subworkspace, It is, however, not possible to define that an object should
have an internal structure of this type in the class definition.

Relating objects

G2 has different ways of defining relations between objects. One way is
to let an object have attributes that are lists containing other objects. An
object can be a member of any number of lists, thus very complex relations
between objects can be defined this way.

A more direct way of relating two objects is to use connections. These
are primarily used to represent physical connections, e.g., pipes or wires. It is,
however, also possible to let connections represent abstract relations among
objects. Connections have a graphical representation and may have attributes.
They are defined in terms of a connection hierarchy. Both unidirectional
and bidirectional connections are allowed. Connections can be used in G2
expressions for reasoning about interconnected objects in a variety of ways, A
connection is attached to an object either at a pre-specified location, a port,
or anywhere on the object. Connections can, like objects, be either static or
dynamic.

A third way of relating objects is to use a special type of G2 item called
relations. These can only be created at run-time and have no graphical rep-
resentation. They have no corresponding relation hierarchy and cannot have
attributes. Relations can be specified as being one-to-one, one-to-many, many-
to-one, and many-to-many. They may actually relate any kind of items, not
objects only. Relations can be used in G2 expressions in a similar way as
connections.

50

The inference engine

G2 rules can be used to encapsulate an expert’s heuristic knowledge of
what to conclude from conditions and how to respond to them. Five different
types of rules exist.

o Ifrules

s When rules

¢ Initially rules

s Unconditionally rules
¢ Whenever rules

‘When rules are a variant of ordinary If rules that may not be invoked through
forward chaining or cause backward chaining. Initially rules are run when
G2 is initialized. Unconditionally rules are equivalent to If rules with the
rule conditions always being true. Whenever rules allow asynchronous rule
firing as soon as a variable receives a new value, fails to receive a value within
a specified time-out interval, when an object is moved, or when a relation is
established or deleted.

The rule conditions contain references to objects and their attributes in a
natural language style syntax. Objects can be referenced through connections
with other objects. G2 supports generic rules that apply to all instances of
a class. The G2 rule actions makes it possible to conclude new values for
variables, send alert messages, hide and show workspaces, move, rotate, and
change color of icons, create and delete objects, start procedures, explicitly
invoke other rules, etc. G2 rules can be grouped together and associated with
a specific object, a class of objects, or a user-defined category. This gives a
flexible way of partitioning the rule-base. The following is an example of a G2
rule,

for any water-tank

if the level of the water-tank < 5 feet and

the level-sensor connected to the water-tank is working
then conclude that the water-tank is empty

and inform the operator that

"[the name of the water-tank] is empty"

The real-time inference engine initiates activity based on the knowledge
contained in the knowledge base, simulated values, and values received from
sensors or other external sources. In addition to the usual backward and
forward chaining rule invocation, rules can be invoked explicitly in several
ways, First, a rule can be scanned regularly. Second, by a focus statement
all rules associated with a certain focal object or focal class can be invoked.
Third, by an invoke statement all rules belonging to a user defined category,
like safety or startup, can be invoked,

Internally the G2 inference engine is based on an agenda of actions that
should be performed by the system. The agenda is divided into time slots of
1 second's length. After execution, scanned rules are inserted into the agenda
queue at the time slot of their next execution. Focus and invoke statements
causes the invoked rules to be inserted in the agenda at the current time slot,

b1

Procedures

G2 contains a Pascal-style procedural programming language. Procedures
are started by rule actions. Procedures are reentrant and each procedure invo-
cation execufes as a separate task, Procedures can have input parameters and
return one or several values, Local variables are allowed within a procedure.

The allowed procedure statements include all the rule actions, assignment
of values to local variables, branching statements (If-then-else and case),
iteration statements (repeat and for), exit if statements to exit loops, go
to statements, and call statements to call another procedure and await its
result, The for loops may be either numeric or generic for a class, i.e., they
execute a statement or set of statements once for each instance of the class.

Procedures are executed by G2’s procedure interpreter. The procedure
interpreter cannot be interrupted by other G2 processing, i.e., the inference
engine or the simulator. Other processing is only allowed when the procedure
is in a wait state. A wait state is entered when a wait statement is exe-
cuted, when the statement allow other processing is executed, and when
G2 collects data from outside the procedure for assigning to a local variable.

Simulation

G2 has a built-in simulator which can provide simulated values for vari-
ables. The simulator is intended to be used both during development for
testing the knowledge base, and in parallel during on-line operation. In the
latter case, the simulator can be used, e.g., to implement filters for estimation
of signals that are not measured,

The simulator allows for differential, difference, and algebraic equations.
The equations can be specific to a certain variable of apply to all instances of a
variable class. Each first-order differential equation is integrated individually
with individual and user-defined step sizes. The numeric integration algo-
rithms available are a simple forward Euler algorithm with constant step size
and a fourth order Runge-Kutta algorithm, also with fixed step size. GSPAN,
an interface between G2’s simulator and external simulators is available as a
separate product.

Development interface

G2 has a nice graphics-based development environment with windows
(called workspaces), popup menus, and mouse interaction. Input of rules,
procedures, and other textual information is performed through a structured
grammar editor. The editor prompts all valid next input statements in a menu.
Using this menu the majority of the text can be entered by mouse-clicking. It
is, however, also possible to use the keyboard in an ordinary way. The editor
has facilities for Macintosh style text selection, cut, paste, undo, redo, etc.

The Inspect facility allows the user to search through the knowledge base
for some specified item. The user can go to the item, show all matching items
on a temporary workspace, write them out on a report file, highlight them,
and make global substitutions.

G2 has facilities for tracing, stepping, and adding breakpoints. The in-
ternal execution of G2 can be monitored using meters.

52

End-user Interface

G2 has facilities for building end-user interfaces. Colors and animation
can be used. An object icon is defined as a set of layers whose colors can be
changed independently during run-time. The meta-color transparent makes it
possible to dynamically hide objects, Different user categories can be defined
and the behavior with respect to which menu choices that are allowed can be
set for each category. It is also possible to define new menu choices.

G2 contains a set of predefined displays such as readouts, graphs, meters,
and dials that can be used to present dynamic data, G2 also has a set of
predefined interaction objects that can be used for operator controls. Radio
buttons and check boxes can be used to change the values of symbolical and
logical variables by mouse clicking. An action button can be associated with
an arbitrary rule action which is executed when the button is selected. Sliders
can be used to change quantitative variables and type-in boxes are used to
type in new variable values,

External interfaces

G2 can call external programs in four different ways: using foreign func-
tion calls, and using GFILE, GSPAN, and GSI. On some platforms, external C
and Fortran functions may be called from within G2, GFILE is an interface to
external data files that allows G2 to read sensor data from the files. GSPAN is
the interface between G2 and external simulators. GSI is Gensym’s standard
interface. It consists of two parts; one part written in Lisp that is connected
to G2 and one part written in C to which the user can attach his own func-
tions for data access. On the same machine, the two parts communicate using
interprocess communication media such as pipes or mailboxes. On different
machines, TCP/IP — Ethernet is used.

Drawbacks

The main problems with G2 stem from the fact that G2 is a closed system.
G2 can only be interfaced with other program modules through the predefined
interfaces. The G2 environment in itself is also a quite closed world, It is
impossible to modify the way that G2 operates internally. If what G2 provides
in terms of, e.g., graphics, class — object structures, etc., is insufficient, nothing
can be done about it,

G2 can not be modularized. Hence, it requires quite powerful computers
even if only a small subset of the functionality is used within an application.

Although G2 is fast compared to many expert system tools, it can be
too slow for certain applications. The smallest time unit is one second. For
applications that require faster response, G2 is inadequate.

b3

Appendix B

Object-definitions in the process model

PM-COMPONERT, an object-definition
Class pm-component
Superior class objeot
Attributes specific to class none

POTERTIAL~EVEST, an object-definition

Class potential-event

Superior class pr-¢omponent

Attributes specific to class asscciated-monitor is given by a symbolic-
parameter; .

pricr-state iz given by a symbolio-parameter;
consequent-state is given by a symbolic-parameter

POTEETIAL-ROOT-CAUSE, mn object-definition
Class potentinl-root-cause
Superior class PR-component
ittributes specific to class prior-probability is given by a probability

POTE¥TIAL~EVERT-LIST, an object-definition

Class potential-svent-list

Superior class item-list

Attributes specific to class nene

Dofault settings eloment type for item-list: potential-event;

allov duplicate elements for g2-list: no

POTEFTIAL-ROOT-CAUSE-LIST, on object-definition

Class potentinl-root-cause-list

Superior c¢lass iten-list

Attributes specific to class mnone

Default settings element type for item-list: potential-root-cause;

allovw duplicate elements for g2-list: no

PROBABILITY, an object-definition

Class probability

Superior class quantitative-parameter

Attributes specific to ¢lass mnone

Dafanlt settings initial valune for quantitative-parameter: 1.0

COMPILED-LINK, a connection-definition

Class gompiled-link
Superior class connection
bttributes spacific to class not-conditions is an instance of a potential-root-
cause~list;
only-if-transient is given by a logical-parameter
Cross section pattern 1 foreground

54

LOCAL-CAUSE-LINE, » connecticn-definition

Class

Superior class

Attributes specific to class
Cross section pattern

laocal~cause~link
connection

none

1 blue

Object-definitions in the hypothesis model

BYPOTHESI5-MODEL, an object-definition

Class
Superior class
Attributes specific to class

hypothesis-model

object

inferred-malfunctions is an instance of an
interred-malfunction-list;

old-inferred-malfunctions is an instance of an
inferred-malfunction-list;

no-of-recorded~svants iz given by a quantitative-
parameter;

no-of-hypothesized-root-causes is given by a
quantitative-paramster;

no-of-inferred-malfunctions is given by =
guantitative-parameter;

plansible-faults is an instance of a hypothesized-
root-cause-list;

fres-vorkspaces is an instance of a symbol-list;

unconnected-svents is an instance of an event-list

HM-COMPONENT, an object-definition

Class
Supsrior class
Attributes specific to class

hm~-¢omponent
object
id is an instance of an item-list

IEFERRED~MALFUECTION, an object-definition

Class
Superior olmss
Atiributes specific to class

inferred-malfunction

hm—-component

stop-linking is given by a logical-paramster;

¢orrectable-evenis is an instance of an svent-
list;

svents—oxplained is an instance of an event-list;

source~events is an instanca of an event-list;

hypothesized-root-causes is an instance of n
hypothesized-root~cause-list;

existing-monitors is an instance of a monitor-
list;

status is given by a symbolic-parameter;

shrink is 1.0;

my-vorkspace is given by a symbolic-parameter

HYPOTHESIZED-ROOT-CAUSE, an object-definition

Class
Superior class
Attributes spescific to class

hypothesized-root-cause

ho-compenent

associated-root-cause is given by a symbolic-
paramster;

primary-symptoms is an instancs of a potentinl-
event-list;

oppesing-events is an instance of an svent-list;
supporting-evenis is an instance of am event~list;
pricr-probability is given by & probability;
likelihood iz given by a probability

55

EVERT, an object-definition

Class
Superior class
dttributes specific to class

event

hm-c¢emponent

associated-monitor is given by a symbolic-
prrameter;

associated-event is given by m symbolic-parameter;

state iz given by a symbolic-parameter;

gopies is an instance of an event-list;

symptom-of is an instance of an inferred-
malfunction-list;

explained-by is an instance of an eveni-list;

explains is an instance of an event-list;

probability-of-accurate-detection is given by a
probability;

probability-of-inaccurates-detection is given by a
probability;

superssded-by is an instance of an svent-list;

time-cf-detection iz given by a text-parameter;

time-of~cessation iz given by a text-parameter

RECORDED-EVEET, an object-definition

Class
Superior class
Attributes specific to olass

recorded-event
svent
none

EXPECTED-EVENT, an object-definition

Cless
Superior class
httributes spscific to class

sxpected-event
event
none

LATEET-EVEHT, an object-definition

Class
Superior olass
Attributes specific to class

Intsnt-event
aysnt
none

COPIED-EVENT, an object-definition

Class
Superier class
dttributes specific to class

copied-event
event
original is an instance of an svent-list

INFERRED-MALFURCTION-LIST, an object-definition

Cluss

Supseriocr class

dttributes specific to class
Default settings

interred-malfunction-list

item-list

none

slement type for item-list: infasrrsd-malfunctioenj
allow duplicate elements for g2-list: no

HYPOTEESIZED-ROOT-CAUSE-LIST, an object-definition

Class

Superior class

httributes specific to class
Default settings

hypothesized-reot-cause-list

iten-list

none

elemsnt type for item-list: hypothesized-root-—
cause;

allow duplicate elements for g2-1ist: no

EVENT-LIST, an object-definition

Class

Superior class

Attributes specifie to class
Default settings

svent-list

item-list

none

olement type for item-list: event;

allow duplicate slements for g2-list: no

56

ITEM-HAME, a messnge-definition

Class
Superior class
dttributes specific to class

item~namse
message
none

HOXITOR, an object-definition

Class
Superior class
Attributes specific to olass

monitor

object

busy is given by a logical-parameter;

rav-meas is given by a quantitative-parametsr;

next-sample is given by a guantitative-parameter;

sample-rate is given by a quantitative-parameter;

Tiltered-value i= given by & quantitative-
paramater;

filtering-time iz given by a gquantitative-
parameter;

trend-time is given by a quantitative-paramster;

prediction-time is given by a gnantitative-
parameter;

predicted-value is given by s quantitative-
parameter;

upper-threshold-for-normal is given by a
quantitative~parameter;

lover-threshold-for-normal is given by a
quantitative-parametsr;

threshold-for-high is given by a quantitative-
paramster;

threshold-for-lov is given by & guantitative-
parametar;

current-state is given by a symbolic-parameter;

previous-state is given by a symbolic-parameter;

potential-events isx an instance of a potentiaml-
event-list;

recorded-events is an instance of an event-list;

predicted-events is an instance of an event-list

HOBITOR-LIST, an object-definition

Class

Supsrior class

Attributes specific to class
Default settings

moniter-list

item-list

nens

elemesnt type for item-list: monitor;
ellow duplicate elemsnts for gi-list: no

57

References

CHRISTIANSSON, M. and P. EricssoN (1989): “Knowledge-based Control
and modelling with G2,” TFRT-5411, Department of Automatic Control,
Lund Institute of Technology.

FincH, F.E. (1989): “Automated Fault Diagnosis of Chemical Process Plants
using Model-Based Reasoning,” Sc.D. Thesis, Massachusetts Institute of
Technology.

IT4 (1990): Knowledge-Based Real-Time Control Systems.

Overeve, 0.0, (1989): “Qualitative Modeling of Continuous Chemical
Processes and Applications to Fault Diagnosis,” Sc¢.D. Thesis, Massachusetts
Institute of Technology.

Overeye, O0.0. and M.A. KraMER (1988): “Qualitative Simulation of
Chemical Process Systems: Steady-State Analysis,” AIChE J., 34, 9, 1441.

Perri, T.F., J. KLEIN, and P.S. DauriaTI (1990): “Diagnostic Model
Processor: Using Deep Knowledge for Process Fault Diagnosis,” AIChE J.,
36, 565.

Rosg, P. (1990): “A Model-Based System for Fault Diagnosis of Chemical
Process Plants,” M.S. Thesis, Massachusetts Institute of Technology.

b8

