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1. Introduction

The field of high quality printing of electronic images is currently in fast
progress. It seems that the well known photographic techniques will get com-
petition from the new electronic imaging techniques. During the last years
several electronic cameras, which deliver the pictures on some kind of digital
storage, have been introduced. Ome of the keys to this technique is the de-
velopment of the CCD-chip, which produces a discrete image with a limited
resolution. Other examples on sources for electronic images are scanners and
computer tomography equipments. The resolution may suit a TV-screen, but
is not sufficient for papercopies or for enlarging. Such applications use inter-
polation, since they need the values at points between the points in the coarse
original grid. Satellite image-reproduction is another tempting area, that is
in need of interpolation. Here one needs to magnify the images, or to make
corrections by means of resampling. In this area there is a need for good and
rapid algorithms.

It is quite obvious that the simple approach of copying each point in the
coarse grid into several points in the fine grid will not give a satisfactory result,
but for some few applications. This pixel-replication method introduces dis-
turbing edges in the image. The second approach, which partly avoids this ef-
fect, is bilinear interpolation. The values of the pixels in the fine grid are then
obtained by a two-dimensional linear interpolation in the coarse grid. This
method gives a good result for images without sharp edges. Sharp edges how-
ever get blurred, since they are spread out over several pixels. Consequently,
images with sharp edges need more sophisticated interpolation methods. An
algorithm, based on potential theory, has been proposed in a master thesis
by Hansson (1989). Some experimental results were presented. However the
results were not fully satisfactory.

One purpose of this thesis has been to make an implementation of the
algorithm that supports further development. A large problem was the long
execution times for the program that Hansson used. The new implementa-
tion considerably reduces the execution time. Using this implementation, the
properties of the algorithm have been explored. The main problem was the
treatment of edges. Consequently, this thesis has been mainly devoted to this
problem. A thorough investigation of the edge detection algorithm has been
made and some improvements are suggested. A new scheme for interpolation
is also proposed. Chapter 2 is an introduction to the concepts behind this
kind of image interpolation. The third chapter is devoted to the edge detec-
tion problem. Chapter 4 discusses the interpolation methods and presents
some experimental results. A presentation of the program can be found in the
appendices.



2. Basic Concepts

This master thesis is based on the hypothesis that to achieve a good result
from an interpolation it is necessary preserve the edges. Other parts of the
image, that may contain diffuse edges or slow variations in intensity, are less
critical.

The ideas, underlying this interpolation algorithm, are borrowed from
the potential theory. The intensity in the image is interpreted as a potential,
caused by distributions of charges. Then edges correspond to curves with a
dipole layer. The interpolation should preserve these dipole curves. A way of
doing this is to interpolate the edges in a sourceplane. The edges may then
be added to the rest of the image, that have been interpolated by some less
sophisticated method.

2.1 Analytic Formulation of an Image

From a mathematical point of view the intensities of an image can be consid-
ered as a function of two variables, f(z),z € R?, which is given the value 0
outside a bounded set 2 (= the image). Suppose that f is twice continuously
differentiable, except for at a finite number of smooth curves, 7;, where either
f or its first derivatives has a finite discontinuity. Assume that the curves i
are non-intersecting. Let {Af(y)} denote the piecewise continuous function
obtained by pointwise application of the Laplacian. Let (f)+ denote the jump
in the function values across +;, and let in the same way (8f/ On), denote the
jump in the normal derivative. Then holds

f(z) = /n (A F(9)} o(z - v)dy

' z.: /v.' (g_;z)i (¥)9(z — y)dsy

-2 L.(f)i(y)g—fl(z — y)dsy (2.1)

where the two latter terms are curve integrals (Kellogg, 1954, p.219 ff; Sparr,
1984, p5.7 f). The function g(z) = ;L-log|z| is the fundamental solution to

the Laplace operator A = 822,- + aiz,- that is:
Ty ot

f=gxAf

In an electrostatic analogy, comparing with Poisson’s equation Au = — p, the
three terms have the following interpretations:

®  The first term is the potential caused by a piecewise continuous distribu-
tion of charges p = —{Af} (which may have discontinuities on Ur;).

®  The integral in the second term is the potential caused by a curve iy

covered with a single layer of charges of density — ( g'i‘)d:'



o  The integral in the third term is the potential caused by a curve v;, covered
with a double layer of charges (i.e. dipoles) with a moment density (f)+
in the normal direction of ~;.

(Admitting discontinuity curves to intersect, one would also have to consider
contributions from multipoles.) These parts of the function corresponds to
the following visual effects:

o  background or illumination, caused by the piecewise continuous charge
distribution.

e  diffuse edges or shades, caused by the ”charge lines”.
o  sharp edges, caused by the "dipole lines”.

The algorithm developed will assume that the contributions from the second
term in equation 2.1 is negligible. This means that diffuse edges and shades
should not be present in the images. This is a quite hard constraint, since
explorations have shown that most images are blurred, and blurred edges
correspond to the second term. Since the second and first terms are treated
jointly in the algorithm, blurred images will give bad results. However, for
images that contains no blurred edges a good result can be expected.

2.2 The Images

The original image is represented by pixels placed in a coarse grid. Inter-
polating the image transforms the coarse grid into a finer one. Some of the
testimages are mondrian since the edge detection algorithm shall give optimal
results for such images. Speaking in mathematical terms a mondrian image
is a two-dimensional stepfunction. This means that the intensity is constant
except at a limited number of curves where the image contains edges.



3. Edge Detection as a Preprocess
for Interpolation

Since the treatment of edges is important to achieve a good result of an inter-
polation, the method for edge detection is a critical part of an edge-preserving
interpolation-scheme. When a Laplace template is applied to an image we get
a pattern where nonzero values indicate the presence of edges. The Laplace-
image is treated as a two-dimensional array of squares rather than an array
of pixels. By looking at a square it is possible to obtain information of an
edge. It is possible to estimate its height, direction and also its behavior in a
neighborhood of the square.

3.1 The Laplacian

A digital image is represented in a discrete form, so a suitable discretisation
of the Laplacian has to be found. There are a number of possible ways to
discretisize it. The following one has been used in this work:

0 1 0
A=1 -4 1
0 1 0
Other possible choices of are:
1 0 1 1 1 1
-4 0 1 -8 1
1 0 1 1 1 1

All the three alternatives give similar elementary cases for edges. However
for the two latter choices, edges give contributions to larger areas than the
first one. Edges get, so to say, spread out in the Laplace-image. This may
complicate the edge detection. Therefore it is not obvious that the latter
templates would give better result than the first one.

3.2 The Laplace-Image

Suppose the discretisized Laplacian is applied to the bilevel image in Figure
3.1. Then the image shown in Figure 3.2 is obtained. The Laplace-image
is interesting since various patterns of numbers, not equal to zero, gather
around the edges. The patterns depend on the direction of the edge, and
the magnitude of the values depend on the height of the edge. In Figure 3.2
the same pattern can be found in several squares. Sometimes a rotation or
reflection of a square will result in a pattern that can be found elsewhere. It
is obvious that there are a limited number of possible patterns in a Laplace-
image, when the original image only contain edges of unity height. This leeds
to a division of the different patterns into elementary cases.



0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 3.1 Original bilevel image.
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 1 2 -2 -2 2 0 0 0 0 0 0
0 0 1 -2 -1 0 0 -2 2 0 0 0 0 0
0 0 2 -1 0 0 0 0 -2 1 0 0 0 0
0 1 -2 0 0 0 0 0 -1 2 0 0 0 0
0 1 -1 0 0 0 0 0 0 -2 1 0 0 0
0 1 -2 0 0 0 0 0 0 -1 2 0 0 0
0 0 2 -2 -1 -1 0 0 0 0 -2 1 0 0
0 0 0 1 1 2 -2 0 0 0 -1 2 0 0
0 0 0 0 0 0 2 -2 0 0 0 -2 1 0
0 0 0 0 0 0 0 2 -2 -1 -1 -2 1 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.2 The Laplace-Image.

3.3 The Elementary Cases

Choosing the Laplacian as in Section 3.1 some of the possible cases for edges
are shown in Figure 3.3. This figure illustrates the seven elementary cases. All
other cases can be created by rearranging the vertices in Figure 3.3, or through
multiplication by -1. This makes a total of 68 different patterns. Note that
the cases are chosen so that edges in adjacent squares will fit to each other.
These cases cover neither thin lines (that are one pixel wide), nor intersecting
edges. Neither does the catalog cover other strange formations, like U-turns
around a single pixels. Consequently, if thin lines or intersections are present in
an image, they will not be detected. Thus a good result for the interpolation of
such images can not be expected. Actually, such patterns will be interpolated
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Figure 3.3 The elementary cases

together with the background. In the future, the algorithm may be extended
to handle these kinds of edges. In that case the edge-catalog has to be extended
to cover also intersections and thin lines.

An edge that is spread out over several pixels can be considered as a series
of parallel edges separated by one pixel. Such edges have properties similar to
the thin lines in the Laplace-plane. This is due to the fact that dipole-curves



separated by only a single pixel interferes with each other in the Laplace-plane.
As mentioned in Chapter 2, blurred edges correspond to the second term in
equation 2.1. Consequently, these edges will be not be detected.

3.4 Determination of Elementary Cases

For each square in the Laplace-image the corresponding elementary case must
be determined. For each square there are three variables:

o  The height of the edge.

e A background value in the Laplace-image, coming from the second term
in equation (2.1). This should not be confused with the background in
the original image.

o  The index of the different elementary cases is a third, discrete variable.
The method of least squares is used to find an elementary case that best de-
scribes each square. It also gives the corresponding height and "background”.
The following algorithm requires quite a lot of calculations, so it is desirable
to minimize the number of times it is executed. It is of no use to apply the
algorithm to squares whose corners in the original image have about the same
intensities. Therefore it is advisable to test whether the maximum difference
between the four corner-values in a square is large enough, before applying
the least squares method.

The Method of Least Squares

Arrange the four corners of a square in a vector:

a5 Ait1,j

T
8 = [a.',j Qit+1,j Qit+1,5+41 ai.a’+1]
@ij+1 Q41,541

Let the elementary case k be stored in a vector:

T
€ = [eko,o €kio  Cki, eko,1]

Create another vector which corresponds to the background in the Laplace-
image:

f=[1 11 1]T

Group the latter two vectors in a matrix:

h= (e 1)

The two variables to estimate are put into a second matrix:
o= (he &)

where h; is the estimated height of the edge and by, is the estimated back-
ground in the Laplace-image. The geometric interpretation of the least squares
method is given in Figure 3.4 for the case of two dimensions (cf Sparr, 1984).
The vectors hy and by, define a plane and the least square estimate of the vec-
tor s is its orthogonal projection onto that plane. The values on hj, and by, are
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Figure 3.4 Least squares method.

then given by the projection. Different values on the index k means different
planes. The plane that gives the least distance between the the vector s and
its projection is the one to choose.

Let the vector with tail in s and arrow at its projection be labeled ¢
The length of € is calculated for every k. If a plane can be fitted exactly, the
equation

8= A 0

holds. Since the matrix Aj is not quadratic, the pseudoinverse is used to
calculate ). This is equivalent to a least squares estimate of the §-matrix:

0= (AT - Ap)™* AT -s=Ry-s

The vector ¢, is then given by:

~

€= Ay -0, — s
=Ap- (AT - Ap) AT .s— s
=(Ar-(AF - Ap) - AT - 1) -5
A

Hence ék need not to be calculated to find the value on €. Another useful
property is that the matrices P and Ry may be calculated in advance and
stored in a array. The calculation is repeated for each elementary case and
its rotations. A multiplication by -1 of an elementary case can be handled by
letting the variables h;, and by, attain negative values. Consequently the index
i € [0..33]. The value €, is then calculated as:

€min = min(IEOI, |51|, eeey |633|)

and the index of the least € is the value on % that minimizes the loss-function
above. The estimates of the height and the background are then given by the
equation

b= (AT - A) 1 AT -s=Ry-s



Here it must be decided whether the value of €min is small enough. A
large value means that it is not possible to fit any elementary case to the
actual square. If €., is sufficiently small then an edge is considered .to be
present in the square in question.

The algorithm may be designed to exactly fit mondrian images. Mondrian
images contain no background, so the matrix A, can be simplified to only
contain the single ej-vector. In geometrical terms this is equivalent to a least
squares minimization with respect to a line instead of a plane.

Parameters in the Edge Detection Algorithm

The algorithm needs values for two parameters:

o the value which is used to single out those squares that contain an edge,
eg. the minimum height to be detected (mindiff ).

¢ The maximum tolerance for €min (mazeps ).

The optimal situation is that all squares with edges are found and that ele-
mentary cases can be fit to each of these squares. The parameter values are
not critical for mondrian images. For other images it is not easy to find sat-
isfactory values on these parameters. Scanned images or images created with
a video-camera are difficult to treat. Such images always contain some noise.
Another complication is that the image may be blurred, which means that the
edges are spread out over several adjacent pixels. The experience is that the
value for mindiff should be rather large so that only the squares that contain
significant edges are detected. Also the value for mazeps must be rather large,
to allow quite big differences from the elementary cases. Otherwise a lot of
squares with edges are found, but the corresponding elementary case for most
of these squares can not be found. The values depend strongly on the particu-
lar image. Often one has to iterate several times before getting a satisfactory
result.

3.5 Properties of the Edge Detection Algorithm

Ambiguity in the Edge-catalog

Introducing the possibility of background values in the Laplace-image makes
it impossible to separate some of the elementary cases that covers horizontal
and vertical edges, by just using the least squares method. Squares like the
following one, that contains a vertical edge, fits three different cases in the
edge-catalog:

" 1 _2 3

1 9 height = 1.0, background = 0.0
\ —< )
1 -2 (1 -1)

hei =1. k = —0.

[ 1 _2] <= 1 | 1 —IJ eight 5, background 0.5
-2 1) )
height = —1.0, background = —1.0

(-2 1

The same of course also holds for the corresponding cases with horizontal
edges. These squares have to be treated separately together with the ones
that contain thin lines and intersections. The problem should however not



be to hard to solve - it is only necessary to examine the nearest neighbors of
the square, to be able to resolve between the different cases. However, this
ambiguity never appears when the background is set to zero.

It is also possible to make the following simplification, probably without
disturbing the result too much. When running the examples in this report all
cases that descend from:

were removed from the edge-catalog, since they will fit the cases descending
from:

This implies that in some cases the edge-catalog does not make it possible to
fit edges in adjacent squares.

Discretisation of the Angles

Figure 3.5 shows an image containing edges of different angles and the corre-
sponding detected edges in a rather strong magnification.

Figure 3.5 Edges of different angles and the result of the corresponding Edge
detection.

Apparently, the treatment of an edge depends on its direction. Edges
with directions that do not precisely fit the elementary cases get a bit ragged.
Interpolating such an edge results in zig-zag-effects that get worse the more
the image is enlarged. This effect is not as bad as the edges that are introduced
by the pixel-replication method, but may just as well be quite unattractive.

A closer examination of the elementary cases explains the reason for this
problem, namely that there are a limited number of angles that can be rep-
resented when making the inverse Laplacian. Moreover, these angles are not
equally spread over the circle. Edges are represented by means of 16 different
directions. These are described by the angles

10



arctan(0.0) = 0.0°
arctan(0.25) = 14.0°

arctan(0.5) = 26.6°
arctan(0.75) = 36.9°

arctan(1.0) = 45.0°

and their complementary and alternate angles.

This effect may be avoided if the algorithm is extended to examine larger
areas of the image than only a single square at the time. The algorithm
should then try to identify connected edges in the image. This implies that
the algorithm should be able to recognize circles and other geometric patterns.

v

7
N\,

Figure 3.6 Straightening of edges in adjacent squares. The dotted line is the
result of the edge detection.

Figure 3.6 illustrates a less sophisticated modification of the algorithm
that may improve the result. Once the edge detection has been made, the
edge image is scanned and one tries to straighten edges in adjacent squares.

Such a treatment may, however, be dangerous if the image contains a lot of
fine details.

11



Figure 3.7 Edge Detection for a some oval patterns

Another interesting geometric form is a circle. Figure 3.7 shows some
oval patterns and the resulting edges. The result seems rather pleasing, partly
because this image is not magnified as much as the image in Figure 3.5. This
implies that the algorithm will give satisfactory results as long as the image
does not contain very fine details.

3.6 Effect of the Second Term in Equation 2.1

Edge detection of an image which originates from for example a video-
camera or a satellite, introduces other problems. The experience is that these
kinds of images always are a bit blurred. Figure 3.8 shows a test-image that
was made artificially to simulate a blurred image. This image was used as
the input to the Laplacian. The result is quite unpleasingly. This is due to
the fact that edges are spread out over several pixels. This implies that the
edge detection algorithm in some places has to deal with two or more parallel
edges, i.e. a case for which the algorithm is not intended, in its present shape.
Therefore, mazeps , has been chosen large to permit large errors. Otherwise
one gets large gaps in the edges surrounding the pattern. On the other hand,
the effect of the large value on mazeps is that edges that fit rather badly are
accepted. This can be seen at several places in Figure 3.9, where edges do not
cling together, or make some ladder-like patterns. Unsharp edges correspond
to the second term in equation 2.1. It is obvious that when treating images of
this kind, the influence of the second term is not negligible.

Why the result of the edge detection gets that bad can be explained in
the following way. The part that is marked by the rectangle in Figure 3.9
contains
000 033 067 1.00
033 0.67 0.67 1.00
033 0.67 1.00 1.00
0.67 0.67 1.00 1.00

in the original image. Applying the Laplacian on the same part gives the

12



Figure 3.8 A simulation of a blurred image.

Figure 3.9 The result of the Edge Detection of a blurred image.

following result:
066 0.02 -0.35 —-0.66

-032 -0.68 0.66 —0.33
035 —0.01 -0.66 0.00
—0.68 0.66 -0.33 0.00

A comparison of the values in the Laplace-image and the result of the edge
detection gives that squares, where edges with erroneous directions have been
fitted, contain patterns that can not be found in the edge-catalog. However,
since the mazeps has been set to a large value, even erroneous edges are ac-
cepted. There is no simple solution to the problem. From another point of
view there is no problem, since the algorithm is intended to find sharp edges,
and not blurred ones. As a matter of fact, if an edge is blurred in the original
image it should also get blurred in the interpolated image. Consequently, one

13



solution is to set mazeps to a reasonable small value, to avoid that the blurred
edges are detected at all. A better approach may of course be to alter the
algorithm in some way so that even blurred edges can be handled.

An interesting property of the edge detection algorithm is shown in Figure
3.10. It illustrates the result of the edge detection when the value on mazeps
has been set to a quite small value.
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Figure 3.10 Result of the edge detection of the image in Figure 3.8 when mineps
has been set to a small value.

Only edges that are horizontal or vertical and some few others are de-

tected. This is due to the fact that such edges are transformed into patterns
that can be exactly fitted to the edge-catalog.

14



4. Interpolation Schemes

Some different interpolation schemes have been considered. It is quite obvious
that the simplest ones, like pixel-replication and bilinear interpolation (Pratt,
1978), cannot give a satisfactory result for images that contain anything but
smooth variations. This is at least the case if one wants magnification by fac-
tors greater than two or maybe three. A bilinear method extended with some
edge handling has been suggested by Hansson (1989) and is quite attractive
since it is fast and seems to give a good result for at least mondrian images.

In this thesis a scheme that divides the original image into two images is
proposed. One image contains the edges, and the other contains only smooth
variations. Such methods need some more computing time, but might give
better result than the former one for non-mondrian images. The qualities of
this scheme have however not been thoroughly explored.

4.1 Bilevel Edge

The basic idea for this method is to use a simple bilinear interpolation method,
but to avoid interpolation over edges. First detect the edges in the original
image using the algorithm in Chapter 3. In the square in Figure 4.1, where an
edge is present, two surfaces above the square are created, one on the upper
level and one on the lower level.

a01

b10
Figure 4.1 The bilevel edge interpolation scheme.

When calculating the value of the pixels on the upper side of the edge,
make a bilinear interpolation in the square (a00, a01, al0, all). For pixels on
the lower side, use the square (b00, b01, b10, b11). The values of the corners
of the two squares are calculated by adding or subtracting the height of the
edge on the lower and upper side respectively. The figure illustrates the case

15



of a mondrian image, but the method will obviously also work for images with
nonvanishing first derivatives.

4.2 Edge Interpolation

Using the theory of electromagnetic fields, a method for interpolation of the
edges may be developed. From a mathematical point of view, the edges are
interpolated in the Laplace-plane.

Assume that the image can be considered as mondrian. This means that
the image shall have its first derivative equal to zero except in a limited number
of places where edges are present. It can then be shown that each pixel in the
image can be calculated as

Spinsaria(®) = 3 P a(z, )

(Hansson, 1989) where 3 is the height, counted with the signs of the edges. a
is the angle under which the endpoints of the edge, v; is seen from the pixel
z. However this formula implies that when calculating the intensity of every
single pixel in the fine grid, all squares must be examined. It is also necessary
to have a special treatment of the edges that reach the border of the image.
Finally, some uniform background value must be added to the pixels to finish
the interpolation. Speaking in mathematical terms, what one does is to solve
the Poisson equation analytically.

One can not afford to scan the whole image for each single pixel, so some
simplification must be done. A reasonable simplification is to introduce a
circular window around each pixel. The reason for making the window circular
is that the properties of a circular window are independent of the direction of
the edges.

The Figure 4.2 shows the situation for an image that is magnified by
a factor four in each direction. The radius of the window in the figure is
chosen as twelve pixels in the fine grid. The straight line represents an edge
of unit height which crosses the whole image. Since the window is limited, the
contribution from an edge decreases with the distance between the edge and
the pixel. When reaching the border of the window a step is introduced in
the fine grid. This interpolation results in an image that only contains edges.
There are several possible continuations of this scheme. One way includes the
solving of the Poisson equation numerically for the rest of the image and is
extremely slow. This thesis proposes another, faster way.

Examining the result of an edge interpolation, the similarity to a highpass-
filtered image is easily seen. The image only contains edges. Having also a
lowpass-filtered version of the same image, one could add these two filtered
images to create the interpolated image.

Suppose the result of the edge interpolation is sampled. Then the sampled
image can be viewed as the highpass-filtered, original image on the coarse grid.
Consequently, if this image is subtracted from the original image the original
image has been divided into one highpass-filtered and one lowpass-filtered
version. Since the lowpass-filtered image does not contain any sharp edges,
it may be interpolated by the simple bilinear method. Finally, the result of
the bilinear interpolation is added to the result of the edge interpolation. The
scheme is illustrated in Figure 4.3.
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Figure 4.2 Interpolation of edges using a window.

Unfortunately this method has a disadvantage due to the edges that was
introduced by the limited window. Since the lowpass-image is bilinearly in-
terpolated these jumps will cause some shadows in the final image which may
be disturbing. This indicates the need of some more complicated window-
function. (As edges get closer to the circle their weight shall be reduced.)

4.3 Experimental Results from Interpolations

This section contains some results from interpolations made by different meth-
ods. The result should be compared with the result of the pixel-replication
and bilinear interpolation respectively.

Interpolation of an Oval Pattern

Figure 4.4 shows the result from an interpolation of the image in Figure 3.6,
using the modified bilinear scheme of the image in Figure 3.6. The magni-
fication factors are chosen to be four in each direction. The result is quite
satisfactory at least compared to the pixel-replication image. One can observe
that the interpolated image does not become quite oval where it ought to
be. It is easily understood why, when looking at the pixel-replicated image.
This is an indication on the fact that one can not expect a result from the
interpolation that is better than the original image.

Highpass Lowpass Interpolation of Images

The origin to the image in Figure 4.5 is a bilevel-image with unit height.
In the image, where no weighting was made, one can see a slight shadowing
mainly on the brighter side of the edge. Apart from this shadow the result
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Figure 4.3 An interpolation scheme.

is satisfactory and the edges are sharp. Using a correction of the window-
function the shadowing is reduced. Due to the bad reproduction technique
the difference can hardly be observed, in this report.

Interpolation of a Satellite Image

The image in Figure 4.6 shows a part of northern Skine. To be exact it is an
image of Séderasen filtered trough a green filter. When examining the images
below, one shall have in mind that the reproduction technique of this report
tend to blur the images.
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Figure 4.4 Left: Pixel-Replication method. Right: Modified bilinear method.

Figure 4.5 Interpolated image: Left: Without correction. Right: With correc-
tion.

Figure 4.6 A satellite image of a part of northern Skine.

The image is run trough a lowpass-filter to reduce the influence of noise
and then sampled by excluding every second pixel. Sampling the image reduces
the problem with blurred edges. However all problems are not eliminated.
The sampled image is used as input to the interpolation schemes, where it
is magnified by a factor eight in each dimension. The image in Figure 4.7
has been produced by pixel-replication and is shown mostly for comparison.
Figure 4.8 contains an image that was interpolated using the simple bilinear
method. It can be seen that all edges get quite blurred. Figure 4.9 shows the
result of an image that was interpolated using the modified bilinear scheme
discussed in Section 4.1. In some parts of the image it can be seen that the
edges are a bit sharper than in the image in Figure 4.8. In other parts of the
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Figure 4.7 A pixel-replicated satellite image.

Figure 4.8 A result of the simple bilinear interpolation method.

image it is obvious that the edge detection has failed due to the blurred edges.
A very close look may reveal that the structure of the edges in Figure 4.9 differ
from the edges in Figure 4.8. No image is shown which has been produced
using the scheme mentioned in Section 4.2. This is because the result of this
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Figure 4.9 A result of the modified bilinear method.

scheme only slightly differs from the result of the modified bilinear method,
at least as long as the edge detection does not give a better result.
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5. Conclusions

The results in this master thesis indicate that one important condition for
getting a good result of an interpolation is that the edges are preserved. Con-
sequently, the problem can be divided into two subproblems. The first one is
how to find the edges in the original image, and the second is how to interpo-
late.

This thesis has been mainly devoted to the edge detection problem. It has
been shown that the algorithm works well for mondrian images. As long as a
mondrian image contains neither intersecting edges, nor very fine details, the
result gets.rather satisfactory. Images that comes from sources like satellites or
video-cameras are harder to handle, since they always are a bit blurred. The
results for such images are not very satisfactory. This is not surprising, since
the corresponding part of the image model has been omitted in the present
implementation. To get really useful for ordinary images, the algorithm needs
first of all to be extended to handle blurred edges. Then, in order to improve
the results even further, it may be necessary to extend the method to handle
intersections and thin lines.
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A. An Image Processing Program

All the examples in this report have been produced by an image process-
ing program. The program was been written especially to support the oper-
ations needed for interpolations. It replaces an older one written by Hansson
(1989). Many ideas from that program have been transferred to this one, and
the programs support mainly the same features. There are, however, some
important differences. The new program was intended to run under the X-
windows-system, which makes it possible to execute it from remote terminals.
Also it needs less memory than the former. An important advantage is that
the program can be executed on a SPARC-station, which increases the speed
by almost a factor of ten.

A.1 The Images

All images are stored as files. This means that nothing is lost, but the results
of the running operation, if a program is interrupted. Internally the program
only deals with files stored as a matrix of floating numbers between 0.0 and
1.0. These files have the extension ’.float’. When making an edge detection
the edge-image is stored in a special type of file with the extension ’.edge’.

However, there are interfaces to other systems, that use other represen-
tations of images. The interface uses a number of different extensions for files
as it handles images of various types:

e Images may be imported or exported as a matrix of bytes. This kind of
images is used by the videointerface (’.byte’).

¢ Printing images on an ink jet plotter demands a transformation to a
special format, that fits the plotter (’.ink’).

e Images may be transformed to a series of numbers in a textfile which can
be printed or examined in an editor (’.ascii’).

o  The program also contains a PostScript interface which makes it possible
to present images and edgefiles on a laserprinter (*.ps’). Files that are
supposed to be included in a tex-document are labeled (*.PS’).

e Itis also possible to create .pgm-files that fit to a general image processing
system. Actually these files are identical to the .byte-files apart from that
they also contain a header (*.pgm’).

e  Finally it is possible to import images in a Fortran format used for satellite
images (’.tm’).

The program requires the user to be aware of the different types of files. For

example, images may have the same name as long as they are of different

type. However, the user need not know the type of images that are needed

for a certain operation. The program itself opens and creates only files of the

correct types.
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A.2 User Interface

Not so much work has been devoted to the user interface. It is very simple
using menus in an xterm window. Sometimes it may ask too often whether to
continue or not. However, it gives you the opportunity to cancel operations,
which you otherwise would have to wait on for minutes, or to interrupt.

The structure of the user interface is shown in Figure A.1. When the
program is started two questions must be answered before the main menu is
shown on the screen. The first question tells the program if the X-windows
system is available. This means that the program may be executed from any
kind of terminal, but only those that run X-windows make it possible to display
images on the screen. The second question offers a possibility to change the
directory where the images are to be stored and fetched.

File Handler

This submenu makes it possible to handle files from inside the program. The
menu requires knowledge of the type of the file. Apart from the elementary
options, like copying, listing and deleting files, there are options for compress-
ing and uncompressing files. Images require quite a lot of diskspace, so it is
advisable to store images, that are not in current use, in a compressed for-
mat. This compression of images is the one supported in the UNIX-operating
system.

Export and Import of Images

This menu contains all the interfaces to other systems. The options offers
conversion between different formats.

When importing or exporting bytefiles the default size is 512 times 512
pixels. This can be changed. There are no checking of the correctness of the
values. Erroneous values may cause an error or an unpredictable result.

This option may also be used when importing files of type ’.pgm’ The
fileheader must be removed from the file in an editor. It is of course necessary
to remember the size of the image since it must be specified if it differs from
512 times 512 pixels.

Converting images to PostScript-format is quite simple. The answer to
the question about tex-documents has no greater importance. Both kinds
of files can be directed to a laserprinter using the ’lpr’-command. However
converting edge-images to PostScript contains a couple of options. Firstly
there is a question of scaling the image. This means the scaling of each square
in the image. An excessive scale does not permit the whole edge-image to be
shown. Then it is possible to decide whether the exact position of the pixels
in the coarse grid is needed. It takes the printer quite a while to compute all
the pixels, so if they are not absolutely needed, answer 'no’ to the question
about dots in the background.

When formatting an image for the ink jet plotter the plotter maximizes
the width to 2400 pixels and the height to 3600 pixels. Larger images are
truncated. The plotter actually permits 2800 times 4000, but the program
gives some margin. The file created can not be directly sent to an ink jet
plotter. It has to be run through a VAX-program that creates 5600 bytes
large records. Then it shall be written to a tape with the block size set to
5600 bytes.
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Figure A.1 The user interface
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Converting images to ascii-file only permits images that are less than 20
pixels wide and 25 pixels high, since larger images will not fit on one paper.
Too large images are truncated.

The ’.tm’-files are supposed to be in a Fortran format where each pixel is
represented by three digits. To import this kind of images one has to remove
the numbers in the file that gives the size of the image. Then all spaces must
be replaced by underscore. This can be done in an editor like emacs.

Arithmetic Operations

This submenu contains addition and subtraction of images. Note that the same
file-name must not be specified more than once. Consequently, the name of
the two operands must not be the same. Neither is the name of the result
allowed to be the same as the name of any of the operands. Of course the two
operands must have the same dimensions.

Transformation of Images

The operations in this menu transform images, by using various operators, to
images of the same size. The Laplacian is the one chosen in Section 3.1.

Two different lowpass-filters have been implemented. Both filters are
two-dimensional and noncausal. The first one is a simple rectangular filter. It
requires you to specify the size of the filter. The size must be odd and greater
or equal to three. The second filter is a 3 times 3 or 5 times 5 filter with the
following weighting functions:

T 0.607 1.000 0.607
) 0.368 0.607 0.368

0.000 0.000 0.368 0.000 0.000
0.000 0.607 0.779 0.607 0.000
0.368 0.779 1.000 0.779 0.368
0.000 0.607 0.779 0.607 0.000
0.000 0.000 0.368 0.000 0.000
These filterfunction were created since there was a suspicion that the rectan-
gular filter affected the edges in a bad way.
Inverting an image is identical to subtract the image from an image filled

with 1.0’s. Reflecting an image yields the image reflected in a vertical line
located at the center of the image.

0.368 0.607 0.368]

1
8.016

Edge Detection

When detecting edges the variables mindiff and mazeps should be chosen in
accordance with the discussion in Section 3.3. The values are critical for
the result of the edge detection, unless the image is a simple bilevel image
or mondrian image. Reasonable values for simple video images are 0.05 on
mindiff and 0.05 to 0.5 on mazeps . When an edge detection is finished one
gets some statistics on the result. From the statistics one may find out if
the edge detection has given a satisfactory result, although the best way is to
convert the edge-image to PostScript and print it. It is possible to get a list
of the locations where the program has found an edge, but has not been able
to fit any of the elementary cases. Usually it is necessary to iterate a couple
of times before satisfactory values on mindiff and mazeps can be found.
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Interpolation

Four different kinds of interpolation are supported. The simple ’pixelreplica-
tion’ scheme has been implemented mostly as a comparison. The ’bilinear’
method creates a fine grid by a two-dimensional linear interpolation within
each squares in the coarse grid. The ’bilinearedge’ is the modified bilinear
method described in Section 4.1. Finally ’edge-interpolation’ is the method
described in Section 4.2. All the methods permit the magnification in each
dimension to be chosen as any value larger than or equal to one. The values
need not be integers. The ’edge-interpolation’ also requires a value on the
radius of the window-function.

Display Images

This menu makes it possible to display images on the screen. A dithermatrix
is mapped over the image to create a bitmap. However, a bilevel image is
not a satisfactory way to evaluate the interpolation-methods. Sometimes the
image may never show up, or disappear from the screen for some reason. In
that case the option 'Refresh images’ can be used.

Edit Images

This is not editing in the usual manner. The ’extract image’ makes it possible
to cut out a smaller part of an image and sample it. It is also possible to make
a sampling of the entire image. 'Insert image’ means pasting a smaller image
on a specified position in a larger image. An image that does not fit will get
truncated.

Create Testimages

Sometimes it is useful to have some testimages to use as input to different
procedures. This menu produces some that have been found useful. The
'noise image’ is produced by running a random number generator (0 to 255)
to each pixel. If the value is less than the specified level the pixel is set to black
(1.0), otherwise it is set to white (0.0). Also the last one called ’empty image’
requires a comment. When making, for example, ink-jet-plots it is desirable to
place images beside each other in the same image. An empty image is useful
as the location of such an image.

Inspect Images

It is useful to be able to examine the value of single pixels in images. The
option ’inspect images’ requires the name of the image and a pair of coordi-
nates, and then returns four values in the corresponding square. One can also
inspect edge images, and in that case the program returns the contents of the
specified square in the edgefile.

Set Preferences

The last menu makes it possible to switch on and off the dots that are printed
while the procedures are running. One can also reduce the number of questions
that asks if one wants to continue. Finally, one can change the directory where
images are fetched and stored.
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B. The Implementation

This chapter discusses the implementation of the program in more detail.
Understanding the program requires some knowledge of programming and the
language C++. The chapter is mainly devoted to parts of the program that
may be of general or certain interest.

B.1 Structure of the Program

The program consists of more than 6000 lines of source code and is divided
into 37 different files. Each file usually contains an option in one of the menus.
Consequently, the structure of the program corresponds well to the structure
of the menus shown in Figure A.1. However, some utility routines are found
in their own files.

One may think that the number of files is too large, but my experience
is that it makes it easier to make changes in the program. Compiling is no
problem, since the ’make’-utility in UNIX has been used.

B.2 Description of the Files

This section describes the files in alphabetical order.

arithmetics.C

The file contains the routines for addition and subtraction of images.

bilinear.C

The routine for the simple bilinear interpolation.

bilinearedge.C

The routine for the modified bilinear interpolation. When calculating the value
of a pixel, its location in the coarse grid must be found, since it is necessary
to know which square to use for the calculation. If there is an edge present in
the square, two surfaces above the square are created, one on the upper level
and one the lower. For pixels on the upper level, the upper square is used for
the interpolation and vice versa. Consequently, interpolation over the edges
is avoided according to the discussion in Section 4.1.

byteinterface.C

This file contains the procedures for conversion between the byte format of
images and the internal format of images. In the byteimages 255 means white
and in the program 1.0 means black so a subtraction has to be made for each
pixel. The conversion from float to byte may seem more complicated than the
conversion from byte to float. The reason is that images that do not fit to the
specified size, when converting from float to byte, are centered.
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createimage.C

The file contains routines for creating testimages. The direction of the edges
in the ’lines-image’ are chosen so that they are equally spread over 1 /8 of a
circle. The basic idea for the ’edgeimage’ is that pixels that lie closer to the
center of the image than any of the points in the array, are set to black. Also
observe that no extra code needs to be written to create an empty image,
since the class 'DestImages’ automatically initiates an new image to zero. All
images are of course of type ’.float’.

edgeclass.C

This is a utility file that contains the classes 'Edge’, 'SourceEdgeImage’ and
'DestEdgeImage’, which are used when reading and writing edge-images. The
class. Edge is prepared to permit several edges in one square. Only the type
of the edge is stored, not its coordinates, since the type only is needed to find
the coordinates of the edge in the global edge-library.

A simple buffer has been implemented in the classes ’SourceEdgelmage’
and 'DestEdgelmage’ to reduce the need of memory. This buffer makes it
possible to keep only a small number of rows in the memory at the time.
However, the files are sequential so rows older than the ones in the buffer can-
not be accessed, unless the member 'ReRead’ of the class *SourceEdgelmage’
is called. The class 'DestEdgeImage’ does not contain the member ’ReRead’,
so these images must always be accessed in order, except for the lines kept
in the buffer. When creating image-objects the size of the buffer may be
specified. 'DestEdgelmage’-objects also need a specification of the size of the
image. The buffer automatically initiates the edges so that squares that have
not been accessed by 'PutEdge’ will contain no edge.

The file format for the edge images is text. Hence, the files can be exam-
ined in editors like emacs. Two numbers in the beginning of the file specify
the size of the image. Each row then represents one square. A zero in the left
column indicates that no edge is present in the corresponding square.

edgedetect.C

This file contains the routine that performs the edge detection. The algorithm
is the one presented in Chapter 3. Squares that do not fit any elementary
case are stored in.the ’SpecialList’, so that they can be treated later on. The
background is never calculated since it is not used at the time being.

edgeintp.C

This is an implementation of the edge interpolation with window. For each

pixel the squares that need to be examined are found and then the program

enter the inner loops. For each square, that contains an edge, there are four

possibilities:

e Both endpoints of the edge lie on the outside of the circle, and the edge
does not intersect with the circle.

e Both endpoints lie on the outside of the circle, but the edge intersects
with the circle.

e  One endpoint lies on the inside and the other on the outside of the circle.

e The edge lies entirely inside the circle.
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In the last case the endpoints shall not be changed. In the rest of the cases
the endpoints that lie on the outside are moved along the edge until the edge
crosses the circle. This is performed by solving a second order equation. For
the first case the equation has no solution and this identifies the case.

If a square still contains an edge-segment, the angle under which the
edge-segment is seen is calculated by the function ’Angle’ which implements
the cosines theorem. A crossproduct is calculated to determine the sign of the
angle. Finally, a correction factor is found. The correction is based on the
distance between the middle of the edge-segment and the actual pixel. Edges
that lie closer to the pixel should get a larger weight than edges that lie far
away from the pixel. The correction used in the program is

CorrFact = 0.5 x (1 — sin(d/R x 7))

where d denotes the distance between the center of the edge segment and the
pixel and R denotes the radius of the window. It gives rather good results
although one could ask for better.

One may be led to believe that a better result could be achieved if the
orthogonal distance between the edge-segment and the pixel is used, instead
of the distance between the center of the edge and the pixel. This gives an
optimal result for straight edges. However, this is not the case for edges that
are not straight as shown in figure B.1.
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X X X X XX XXX XXMXXXXNMXNXXNMNNMXNXNXNNXXXXXX
XX X XXX XX XX X XXXXXXX XX X
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® X X X® X XO®OXXX®XXXOX XX XX®XXX®O
X X X X XXX XXXXXXXXX XX X X XX X X X X
b XX XXXXXXXNXXXXXX X X X X X X X
X XXXXXXXXX’(XXXXXXX X % X X
[ ] X e X .XXXQXXXOXXXCXX XX X®
X XXXXXXXXXXXXXXXXXXX X X X
X XX X X X XX X X X X X
X XXXXXXX XX XXX XXX X X X X
[ ] XX0®XXX®X XXXO®XXXOX X X @
x XXX XXX XXX £ X X X X X X X X X K X X
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@ XX®XXX0XXXOX XO®0XXXOXXX® X X0
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XX XXXXXXXXXXXXXXNXXXXXXXXX XXX
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Figure B.1 The consequences of a filter-algorithm, based on the orthogonal dis-
tance between the pixel and the edge-segment. The angle marked in the figure gets
the wrong sign. Besides the sign it gets a large weight, since the distance between
the marked point and the dotted line is small (the orthogonal distance).

Is is obvious that the edge segment marked in the figure adds a value with
the wrong sign. The value also gets large compared to the rest of the edge,
since the orthogonal distance is short.
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edgelib.C

All the matrices that are used in the handling of edges are stored in this utility
file. All matrices have been created using MatLab.

edgetops.C

Conversion of edge images to PostScript-code which can be directly output to
a laserwriter. The scale asked for in the program is used to determine the size
of each square on the paper.

editmenu.C

This file should really not need any comments. It only implements the edit
images menu.

exportimport.C

This file should not need any comments. It is the menu for export and import
of images.

extract.C

This image implements the extract function. It is quite straightforward.

filehandler.C

This is one of the utility files. It contains procedures that are used when
manipulating files in the program.

fileserver.C

The procedures in this file build a user interface to the procedures in the file
filehandler.C’.

floattoascii.C

Conversion of an image to an asciifile. Such a file can be sent to a printer or
examined in emacs.

floattoink.C

Conversion of images to a format that fits the ink jet plotter. Each pixel on the
plotter corresponds to 16 bits, four for each color. Since only black is used all
bits are set to zero but the lowest four. The intensity produced by the plotter
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is not proportional to the value but follows the following table (Hansson 1989):

bitcode intensity

0 0.000
1 0.068
2 0.134
3 0.206
4 0.288
b 0.378
6 0.468
7 0.558
8 0.642
9 0.722
10 0.784
11 0.848
12 0.892
13 0.914
14 0.956
15 1.000

An error diffusion technique is used to translate the image to sixteen levels.

floattops.C

This procedure converts an image to PostScript-code. PostScript contains an
operation ’image’ that makes a rastration of an image. The image should be
input to the operation as a series of bytes in hexformat.

gaussfilter.C

This is the implementation of a lowpass filter with the weighting factors men-
tioned in Section A.2.

imageclass.C

This utility file contains the classes 'Sourcelmage’ and 'DestImage’. From
the file ’imageheader.H’ the class 'ImageHeader’ is inherited. The class "Tm-
ageHeader’ is supposed to be able to administrate a header for each image.
This header may contain data and some history about the image. The class
‘ImageHeader’ has not been implemented.

Here also some simple buffers have been implemented. They have the
same properties that the buffers in ’edgeclass.C’. Note that pixels, that are
not explicitly set to a value, automatically are set to zero.

The imagefiles are stored in byteformat with four bytes per pixel. In the
beginning of each file there are 32-bit words that represent the size of the
image.

imageserver.C

This utility file contains the most used routines in the program. It takes care
of the input of names of images from the user. It is supposed to give the user
an opportunity to cancel the operations.
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insertimage.C

Code for inserting small images into larger ones.
inspectimage.C

Code for inspecting images at pixel level. Also edge images can be inspected.
The code gets a bit complicated, since the procedures have to use the 'ReRead’
operation to allow one to examine pixels in any order.

interpolation.C

This implements only a menu.

laplaceoperation.C

This is a fast implementation of the Laplacian. Code has been written to
handle every special cases, that arises in the corners and at the borders of the
image.

lowpassfilter.C

This a straightforward implementation of the two-dimensional rectangular low-
passfilter.

main.C

The code for the main menu is found in this file. Pleasingly short, just the
way a main program should be.

opcom.C

This utility file contains the visible part of the user interface. If a more sophis-
ticated user interface is required, this file is to be rewritten. The routines for
input are quite complicated, since the are supposed to take care of erroneous
input.

pixelrepl.C

Code for pixel-replication of images.

preference.C

Code for changing preferences.

transform.C

Apart from the transform-menu this file also contains code for inverting and
reflecting images. There is no option to rotate images, since such a routine
would require a lot of memory.

xinterface.C

This utility file contains the code used for exposing images on the screen. To
create a bilevel image the rastermatrix

16 8 14 6
14 12 2 10
1713 5 15 7

1 9 3 11
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is mapped over the image. Every window on the screen is implemented as
a classobject. The procedure ’ClearMemory’ is used to clear the underly-
ing bitmap which corresponds to each image. After a call of the procedure
"ClearMemory’, calling 'RefreshImage’ has no effect and may cause an program
error.

B.3 The Program’s Environment

The program also includes files from the system. To use the X-windows system
the files 'X.h’, "Xlib.h’ and ’Xutilh’ are required in the C++ versions. Be-
sides those, the program uses a string-packet in the file ’strings.C’ and some
definitions in 'defs.H’, both written by Dag Briick. Of course the program
also uses some of the standard libraries for maths, filehandling and standard
input/output.
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