CODEN:LUTFD2/(TFRT-5382)/1-042/(1988)

Object-oriented Graphics for the
Future Instrument Panel

Anders Nilsson

Department of Automatic Control
Lund Institute of Technology
September 1988

P.O. Box 118

Department of Automatic Control
Lund Institute of Technology

5-221 00 Lund Sweden

Document name

MASTER THESIS REPORT

Date of issue

September 1988

Document Number

CODEN:LUTFD2/(TFRT-5382)/1-042/(1988)

Author{s)
Anders Nilsson

Supervisor

Sven Erik Mattsson, Dag Briick

Sponsering organisation

Title and subtitle

Object-oriented Graphics for the Puture Instrument Panel

Abstract

for graphics.

This report describes the design and implementation of a simulated Future Instrument Panel (FIP). The
purpose of FIP is to provide a more natural operator environment by applying new hardware and new
programming methodologies.

This implementation uses a COMPAQ 386 personal computer with an additional high-performance graphics
card. Object-oriented programming is used in building o library of graphical objects that make up the
instrument panel. The programming language is Objective-C; the Computer Graphics Interface (CGI) is used

Object-oriented programming has proved to be well suited for implementation of operator communication.

Key words

“

Classification system and/or index terms [if any)

Supplementary bibliegraphical information

Security classification

ISSN and key title ISBN
Language Number of pages Recipient's notes
English 42

The report may be ordered from the Department of Aulomatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Table of Contents

1, Inmtroduction eeriiiion i i e i e et e b
1.1 The FIP-project «oonveiii ittt itiernresennnsasnsanns b
1.2 Backgroundceriiiiiiiiiiiii it s e 5
2. Project descriptionovvvuen. e e e 10
2.1 Development conditionsooiiiiiiiiiiiiiiiiiiriieiiaies s 10
2.2 The goals of the master thesis project e 10
0.8 Realizabion v irerenreenrneatnroesnsannasnnsrsnnaranasens 11
3. Programming concepts ...ovvviriiiiiiiiiiii it e 13
3.1 Concepts of Objective-C .. oot 13
3.2 The Computer Graphics Interfacecooiiiiiii 14
R I3 ¥ & + 17
4.1 Overview of the inheritance structure coviveiv s, 17
4.2 ‘Full copy objects’ and ‘non full copy objects’covvivuiint 17
4.3 Thebase class ...oouurrviiiiinnrrnioneriinsristssanarsnisrsnes 21
4.4 Dialogue primitives oottt it i s 24
4.h Presentation primitivesviviiiriiiiiiiiiiiiiiii e 27
4,6 Device classes .. .ovviviriiiriiirrrterisinrrrrnssarsestriinaneanias 29
47 Other classes .vvvvrerrnr v teanterranieianessstesnsieteesanseas 31
4.8 Main PrOograml o ouvvuet it rnreiartianitisseranssosnseraneerass 33
4.9 Theinchude files ... ivviuvieiinniri it iiiiiiiiiiiniaranronns 33
5. Concluding remarks .. .vuvviniiiiiiiiiiiiiiiii ittt 35
5.1 Results and experiencesceeieriiiniiateiianerianianerinn 35
5.2 Problemsciiiiiiiiii i F Y 35
5.3 Possible improvementsvovvrineiintiiiiiiiiiriiiiiiiiieiiaas 36
5.4 Objective-C ..uiriiiirriienr ettt iiriiirnas 37
98 1 €5 1 O 37
Acknowledgements «....viuviiiui ittt e 38
2 3¢ Ve Y: R 39
Appendix A. 2D-transformationscooiiiiiiiiii i 40
Appendix B, Compilationcooiiiiiiiiiiiiiiiiii i 42

Table of Objective-C classes

4.3 Thebaseclassc00uvunn e e e rerer e, 21
Primoooiiiiiinn, et ae e b e et e et e e aaann 21
4.4 Dialogue primitives PP 24
EDIER1SY: 4+ R e as s ia e vo24
Calculatorcvnvensn, e e neerereaann, 25
Menu ..ot ittt i et e e eesme i arr e 25
Slidepot ..vivviiiiiii et Ceenes 26
Padiconcoiiiiiiiniiiiiinnnans. e e r et 26
4.5 Presentation primitives e et e e B N 27
Presprimooeiiiiiiiiiiii, e e et ia e 27
Handinsccovviiiiiiiiiininnenann. e aaean e 27
POy gon i e e 27
Keyboard .. i e 28
Menubitcoovvviniiinn.. Cerrean Ceeeneaas Cerere e .. 28
Serew et aree feerreas e, 28
Window e eaeae, e ey .. 29
Padloek e eraaaii e et 29
4.6 Device classes 29
S 29
L TR 1o R 30
e T 30
DIy i e 31
47 Otherclassescocivviirinnnn. e et e e e 31
Pipe e e e et 31
B 32
Demo e e e e e e e 32
R385 o 33

1. Intr(j duction

This report describes a master thesis project conducted as a part of the FIP-
project at Asea Brown Boveri {FIP stands for Future Instrument Panel}. The
purpose of the FIP-project is to test flat panel displays, new graphics hardware,
an object-oriented language, and to build a library containing graphics objects
used to represent distributed control systems on a flat panel display. The parts
that the report will treat are the graphics library and some conclusions about
the hardware and the object-oriented language used,

During the past several years the development of graphics applications has
been fast. Computers become more powerful and calculation times decrease.
This fact makes it possible for demanding graphics applications to progress.
The theories used today in the graphical domain have often been well-known
for a long time. An example of this is the concept of homogeneous coordinates
which is used in all graphics applications when scaling, rotating and translate
visible objects on the screen. This theory was well-known as early as in the
1920’ies. Homogeneous coordinates are described in Appendix A. '

This chapter will give a background to the FIP-project and the master
thesis project described in this report. The report will treat the hardware,
the object-oriented language and the graphics used during the project. In
Chapter 3 we will explain the object-oriented programming technique and
how CGI {Computer Graphics Interface) works, Chapter 4 gives a description
of the classes developed in the project. This description is intend to make it
easier for programmers that will continue the FIP-project. Finally Chapter
5 will summarize all those experiences gained during this project, and some
possible improvements will be suggested.

1.1 The FIP-project

The goal of the FIP-project is to offer a more human and intelligent way
of man machine communication compared to current systems. In the future
this may be used in distributed process control, to make it feasible for the
operator to communicate in a more natural way with the process. The goals
of the FFIP-project are to:

(i) Use an object-oriented language in a graphics application
(ii} Test new fast graphics hardware

(iii) Build a presentation-object library

(iv) Test flat panel displays

The master thesis project covers itemns (i) and {iii).

1.2 Background

To test the new concepts a sawmill simulation was used. Following features
were desired in the sawmill simulation:

s Possible to set the speed reference of the motor. Different types of di-
alogue primitives would support this, for example, the calculator, the
slide-potentiometer or the pushbutton,

» The speed should be visible on the screen, The circular-pointer instrument
would provide this quality.

¢ Communication between dialogue primitives and presentation primitives
should be provided by pipes; the pipe concept is described in Chapter 4.7, -

Figure 1.1 and Figure 1.2 give an apprehension of the concepts above. The
classes in Figure 1.1 are all described in Chapter 4. Figure 1.2 gives an expla-
nation of the symbols used in Figure 1.1,

Figure 1.1 shows the communication lines between the different classes in
the sawmill simulation, more correctly the instances of the classes. In this
description pushbuttons are used to set the speed reference. The worksta-
tion manager in the figure is implemented in the main program. Also the
PTC Class methods were implemented in the main program. PTC stands
for Presentation Type Circuit. The definition of a PTC is a composition of
dialogue primitives, presentation primitives and pipes. The pipes provide the
connections between the dialogue primitives and the presentation primitives
and other FIP objects like the database. The pushbutfon is an example of
a dialogue primitive (described in Section 4.4). To the left in the figure is
the circular-pointer instrument class which is an example of a presentation
primitive {deseribed in Section 4.5).

Figure 1.3 shows a picture of a flat panel display with a possible config-
uration. Notice that the picture of the screen is in natural size. The scroll
bar menu on the top of the screen is an example of a dialogue primitive. The
dotted bar to the left in the picture show a pull-down menu. The choice de-
cides what menu you will get. The padlock in the lower left corner tells if it’s
possible to change the process parameters. A shut padlock means that you
must have a special code to open the padlock, and by that get access to change
the process parameters. When trying to open the padlock there will appear a
calculator on the screen. If you know the code you just click at the buttons of
the calculator using the mouse. The padlock will open if it was the right code.
The padlock is a typical dialogue primitive. In the lower right bar you can see
three objects. The start/stop button and the reset button are also examples
of dialogue primitives. In the middle there is a display showing the time, this
is a presentation primitive. The circular-pointer instrument and the %-display
are together describing a Presentation Type Circuit (PTC). The blank area
normally shows a dynamic process picture.

'SAWMILL STRUCTURE

Workstation
Manager

gun

aDrive

4 \

aSawmill

PTC
Class

methodes

anintPipe
[I |

Drive

Class
Pipe
methodes Class
methodes
—
aPushbut
[

aPrePipe

Pushbutton
Class
methodes /

S~

!

-

Pipe
Class
methodes

/—

aninstr g

Polnterinst
Class
methodes

Figure 1.1 The structure of a sawmill process, simulated in the project.

Class

, I” /WSubclasses

<] Individual part
|
E /Shared part

Workstation manager

o ——t T . .
communication path
B <t Pipe communication

Pipe control

Class with only
one individual

Workstation
Manager

Main program

_—Physical Object

Operator

Figure 1.2 TFxplanations of the symbols in Figure 1.1.

L2265 0L
[dois/1ielg)

"Lopue|eppPon 191, %09

HWed||v

nokeq djeH [euBis npol uuQ

B

€ - L leubis ‘ginpon ‘Lyug

‘lensbalg

Figure 1.3 A typical configuration of the screen in natural size.

2. Project description

2.1 Development conditions

In this project an object-oriented language was used. The advantages of a
program written in an object-oriented language is the natural modularity of
the program, which makes it possible to replace and make changes in parts of
the program without compiling all code.

It was desirable to use a 640 X 480 pixels monochrome flat panel display
type electroluminescent (ELD) or LCD, Neither of these were available when
the project started, so the flat panel display was simulated by using a normal
CRT screen. The typical ELD yellow-brown color was used. The wish to use
flat panel displays was because of their robustness and slim performance in
comparison with conventional screens. It was intend to communicate with
the system by touching the screen, because of that it was necessary to use a
touch-screen; the touch-screen was simulated by using a mouse.

For pure graphics applications Graphics Software Systems CGI {Computer
Graphics Interface) version 2.0 was used. CGI is a standard interface between
device-dependent and device-independent code in a graphics environment. It
makes all device drivers appear identical to the calling program,

The program was developed under MS-DOS version 3.31 using a PC. The
PC was a COMPAQ 386/20 with a numeric coprocessor, and a NEC color
monitor (640 x 480 pixels).

A nice graphics card called PG-641 from Matrox Canada was also used
in the project. This card has a graphics processor called 34010 from Texas
instruments, Almost every graphics function of this card is directly realized in
hardware. For example, when drawing a circle, the card only get the informa-
tion about the center-point and the radius, the rest is directly implemented in
hardware. Other functions are: drawing bars by giving the coordinates of the
lower left corner and the upper right corner, filling polygons with predefined
patterns by giving the polygons coordinates, drawing lines and much more,
The hardware implementation increases graphics performance considerably.

2.2 'The goals of the master thesis project

The goals of the master thesis project were to get an apprehension about us-
ing these tools mentioned in Section 2.1 together in a graphics application.
Creating an object-library containing dialogue primitives and presentation
primitives. The presentation primitives wonld be used to present values and
symbols on the screen. The dialogue primitives which would be created were
the following, a calculator, a slide-potentiometer and a padlock. The dialogue
primitives would all be built by using encapsulated presentation primitives
(encapsulation is explained in Section 3.1). They should all be possible to
translate and scale continuously, and some of them should be rotatable too.
The master thesis project began with a start-project which was to create a
circular-pointer instrument, this is the most important presentation primitive

10

in the subproject. These small building blocks would be used to simulate a
sawmill-process on the screen, The communication between the operator and
the process was a major part to be implemented as well. Specifically it was
very interesting to see if object-oriented programming was the right tool to
use in this domain. The choice of Objective-C was not very important, it was
the object-oriented programming as a concept that was interesting,

Today, the most common way to translate pictures on the screen is by
showing a dotted contour-picture instead of the real picture showed when
the object is stationary. One of our goals was to test for the possibilities of
‘translate objects on the screen in a continuous way showing the real picture
of the object. This might be possible with a powerful hardware described in
the previous section.

2.3 Realization

As mentioned before the programming language Objective-C was used in
this project. Objective-C is described in Chapter 3.2. The first task was
to learn object-oriented programming in general and objective-C in particu-
lar. A course called ‘Thirty minutes tutorial’ in the objective-C manual was a
good help to learn objective-C. Before the real project we began with a smaller
start-project which would result in a circular-pointer-instrument on the screen,
Figure 2.1 will give an apprehension of the structure of the project. In Figure
2.1 you can see the communication lines between the CGI and the hardware.
Everything above the dotted line are written in Objective-C. The ellipse con-
taining Graphics Subroutines is an interface between the graphics routines
written in Objective-C and those written in C. This part is not implemented
in the master thesis project. The interface is intend to make the FIP-system
more portable and independent from the system below the dotted line in the
figure.

When the main project started an inheritance-structure for the classes
was made. This is thoroughly treated in the Chapter 4. To make the vis-
ible objects scalable, translatable and rotatable it was necessary to build a
library containing those functions. Homogeneous coordinates were used in the
implementation. This concept is described in appendix A.

To form an opinion of how the objects would behave on the screen demon-
stration programs were used during the project. In the final demonstration
program all objects which had been developed during the FIP-project were
used. As a process model a program that simulate a sawmill machine was
used, in which the motor was PID-controlled (see Figure 1.1).

11

FIP Software
@@@E@_nga@

FIP
OBJECTS

Interaction
Object

CGl

Matrox CGI| Driver

£

A

Mouse Hardware

PG 641 Hardware

Figure 2.1 An overview of the including parts in the FIP-project.

12

3. Programming concepts

This chapter will give a brief description of objective-oriented programming,
particularly in Objective-C, and the Computer Graphics Interface (CGI). The
purpose is not to explain details of these programming tools, but to review
major concepts and terminology, so that those not familiar with them can
understand the following chapters. The concepts that are common to all
object-oriented languages are described from the Objective-C’s point of view
mainly. This is done to avoid misunderstandings when meaning concepts differ
between the object-oriented languages.

3.1 Concepts of Objective-C

Objects

Objects are a combination of data and procedures. Unlike conventional pro-
gramming systems, which require the programmer to manage the interaction
between data and procedures, object-oriented programming systems combine
data and the procedures that operate on that data. The Jjoint entity is called
an object. To invoke an objects procedure, you send the object a message. In
Objective-C an invocation of a method can look as below:

[instancename methodname: parameter].

Classes

In terms of general programming, classes is a good example of an abstract
data-type. It is not possible to change the data of the class except using
the included methods. Objects which respond in the same way to the same
messages are said to be of the same class. Each object is called an instance
of its class. A class is defined by describing the names and types of the data
the instances should keep, as well as listing the messages to which the ob jects
of the class should respond. The basic idea is that the class describes the
structure of the data and how the messages should operate on that data,
while the objects themselves contain the variable data.

Methods

All classes define functions that know how to operate on the object’s data.
These functions are called methods, Methods are invoked when sending a
message to an object. It is the combination of data and methods that together
is the definition of a class.

Inheritance

An important concept in object-oriented programming is inheritance. By let-
ting a class inherit another class, it inherits all variables and methods defined
in the ancestor class. In this way, you do not have to explicitly describe the
message behaviour of each class. Classes have all the message behaviour and
variable data as some other, inherited, class. This means that all classes are
arranged into a tree called the inheritance hierarchy,

13

id keyboard; /% variables in the calculator class */
id window;

keyboard = [Keyboard new]; /* method calls */
window = [Window new];

Listing 8.1 FExample of encapsulation in Objective-C.

Encapsulation

The term encapsulation is called ‘composite classes’ in some other object-
oriented languages. Encapsulation means to use other classes in a new class-
definition. Encapsulation was quite frequently used in this project. The dia-
logue primitives use presentation primitives to build themselves. For example,
the calculator encapsulates the window c¢lass and the keyboard class (List-
ing 3.1 shows a bit code of the calculator class). The keyboard class encapsu-
lates the pushkey class. This is a very important tool in graphics applications
because you very often want to use predefined building blocks your own classes.

Ordered collection

This is one of the predefined classes in the basic library of Objective-C. In-
stances of this class can store a collection of other objects. There is no re-
striction concerning what number of objects the instances can hold {except
the memory capacity of course). This predefined class was used in the main
program to keep track of all visible objects and the non-visible objects as pipe
and drive,

3.2 The Computer Graphics Interface

The Computer Graphics Interface (CGI) is a standard interface between de-
vice dependent and device independent code in a graphics environment. It
provides an interface that allows a computer to control several graphics de-
vices simultaneously without regard for their individual characteristics.

The Virtual Device Coordinate system

The VDC system allows graphics information to be specified for all devices in
an identical way, for example, the mouse or the display. The VDC area is an
abstract space in which graphical functions define virtual images. With 16-bit
integer coordinates, the VDC range is the set of integers in the range —32768
to 32767, in other words —32K to 32K. The visible area is machine dependent.
There are four different screen modes to choose between,

0 Full screen: maps 0 through 32K in 2 and y to the full extent of the
display surface.

1 Preserve aspect ratio: maps 0 through 32K to the full extent of the geo-
metrically longer display surface only, it maps a sub set of VDC space to
the shorter axis,

2 Device units: all coordinates are specified in physical device-dependent
units.

14

24K

visible

(-32768, -32768)

Figure 3.1 The visible region of the VDC-area when choosing mode 1.

3 Short axis: it maps 0 through 32K to a subset of the longer display surface
axis in such a way as to preserve a unity aspect ratio.

In this project mode 1 was used, which result in a visible region of 0 to 32K in
the horizontal plane, and about 0 to 24K in the vertical plane. See Figure 3.1,

15

Graphics functions

The CGI provides for the output of graphics primitives (for example: polylines,
polymarkers, text, bars, circles, ellipses and arcs) and control over primitive
-attributes (for example: color, fill, line style). It is also capable to rotate
text, it has different text fonts and have many different patterns which can be
used to fill bars, polygons and circles. One of the most important functions
that CGI provides is the bitmapping functions which make it possible to draw
pictures in an off-screen bitmap. A bitmap can be copied to the screen in any
position. When updating visible objects very frequently this is a necessity to
get a flicker-free screen. In this project the screen is updated every 100 ms.

The workstation

The model defines a workstation as zero or one output devices and zero or
more input devices such as a keyboard or a mouse. The CGI uses identifiers
to refer to a single generic graphics device such as a display or a mouse. See
[GSS, 1986a] page 3—-122 and page 3-128 for more detailed information.

16

4. Design

In this chapter we give a brief description of the most important data struc-
tures in the code, and we describe the use of methods and their behaviour.
Names of methods which begin with a ‘4’ are factory methods, which means
that they are only reachable when invoking a class, they cannot be reached
by an instance call. The opposite are the instance methods which begin their
names with a ‘~’. They are only reachable when invoking an instance of a
class. Returning the receiver means that the invcked method returns its own
identity. The datatype short means a 16 bits integer, the data-type double
means a float point number with double precision. In this brief description
we cannot give a complete description of the behaviour and appearance of the
visible objects.

4.1 Overview of the inheritance structure

Inheritance is one of the basic ideas of object-oriented programming. Figures
4.1, 4.2 and 4.3 show the inheritance structure of the different objects. Notice
that the library classes that Objective-C provides are not included in the
figures. The sons in the inheritance structure have their local data stored in
a local structured data-type. The name of the structured data-type makes it
easy to understand at what level the data are inherited. Dialogue primitives
are those objects that provide two-way communication, and the presentation
primitives are those objects that present data on the sereen.

4.2 ‘Full copy objects’ and ‘non full copy objects’

Considering the approach to presenting visible objects on the screen there are
two different approaches used in this project. This causes two different types
of visible objects. The reason to introduce a second type of object was that
some visible objects are updated quite frequently. When updating the values
frequently, the accuracy soon will deteriorate because of rounding error. After
every graphic transformation there will occur a rounding error that adds to
the current error. Some objects are updated every 100 ms, so it is not difficult
to understand that the error grows. To avoid this to happen the ‘full copy
objects’ were introduced. They copy their parameters into a copy before any
graphics operation such as scaling translation or rotating, The copy is then
used in the graphics actions. As a consequence of this, ‘full copy objects’
always begin their graphics actions from the state they once were defined.
These classes have an exira method named copy. The ‘non full copy objects’
store the parameters describing the current state, they cannot remember the
initial parameters.

Let us explain with an example: object A is a ‘full copy object’, and
object B is a ‘non full copy object’. Both of them have the following default
values: size = 1.0, position in VDC coordinates is (x=1000, y=1000). When
showing the objects on the screen they will have the size 0.2 and the position
will vary between (500, 500) and (200, 100). The first action will be to shrink

17

2 Demo

)
o
=z
D

4 ™
Presprim

W,
Ty

[Obhject } Dialogpr

\., W,
-
H Wketrl E
\,

H Interdev
-
Display }

Mouse }
L !

Figure 4.1 The top of the inheritance hierarchy.

18

,{ Handins E
" N
Pir1
Pol ‘é
olygon -
Pointer
\.. .
{ Screw E
(
1 Keyboard E
\,
Vg
(Presprim }- Pushkey }
El\
(‘
H Menuebit E
..
e
. Window E
\,
Openlock }
{ Padlock '
Shutlock }
L :

=)

Figure 4.2 The inheritance tree of the presentation primitives.

19

{ Calculator E

-
2 Lockmen }
L
(
{ Menu }- Headmen }
Dial : /|
ialogpr ; p
i L] Headmen2 }
\,,
-
a Slidepot 7
e _
4 ™
- Padlockicon
N e

Figure 4.3 The inheritance tree of the dialogue primitives.

20

down to the size 0.2. Then move to position (200, 100) and then to position
(500, 500). The following actions will just be translations between the two
mentioned positions in this example, The local parameters of object B always
contains the values defining the current state. It will always remember it’s
size 0.2, because that parameter will never change more. Further object B
only have to do the graphic translation between the two positions. Object
A just remembers the initial state and must always shrink down to size 0.2
before the translation to the actual position. In addition to the disadvantage
mentioned above, the ‘full copy objects’ also add some overhead because they
use the method copy before doing graphics actions. Those classes that are
‘full copy objects’ are: Polygon, Padlock and Menu. ‘Non full copy objects’
are for instance; Calculator, Handins and Slidepot.

Problems with rounding errors did not occur immediately in the project,
this fact explains way ‘full copy objects’ were not used at all from the begin-
ning, After a time those objects which were necessary to keep the accuracy
were changed to ‘full copy objects’. Because of the powerful hardware used in
the project the advantages of the ‘non full copy objects’ are very small. The
conclusion is that only ‘full copy objects’ should be used further in the project,

4.3 The base class

clags Prim

Inherits from: Object
Classes used:

Source file: prim.m

Prim is the superclass of all visible objects in FIP. Prim itself cannot create
a visible object. It contains a lot of methods and variables that can be used
when creating new classes.

+ new Method
Returns a new instance with all default values initiated., It invokes
the methods setDef and setOrig.

- setDef Method
Sets the default-values of the instance, It is only invoked from the the
method new.

set ActDev:(short JaDevicehandler "~ Method
Sets the workstation handler. In fact a pointer to the handler of the

workstation. More detailed information about the concept worksta-
tion in Section 3.2.

- (short)getActdev Method
Returns the identity of the workstation handler.
- setActive:(BOOL)aBoolean Method

Sets the boolean active. This parameter tells if the object is in active
mode or not. This method is usnally invoked from the method hit:
which detects where the mouse-clicks hit. If the curser hits inside
the area of the object when active is FALSE, active will change to

21

TRUE. If active already is TRUE, active will not change. Finally

when hitting the outside, active wxll change to FALSE.
setMovable:(BOOL)aBoolean Method

Sets the boolean movable. If movable is set to TRUE, then the object

is movable on the screen, The default value of movable is TRUE.

setIntDevId:(id)anld Method
Sets the device-handler of the interaction-device. The interaction-
device provides the communication between the mouse and the screen.

setHeadTxt:(char)aString Method
The variable headTxt assigns aString. The text do not have to be at
the top of the object as the name says, the position is optional.

printHdTxt Method
Prints the head-text at the screen with start from position head TxtPos
which contains the print-position.

set Val:(double)aDouble Method
The parameter value assigns aDouble. It is used by classes like Hand-
ins and Slidepot. The value can describe the normalized position of
the pointer of the circular-pointer instrument, for instance. It can
also contains the output value of the calculator,

(double)getVal Method
Returns the contents of value.
setOrig Method

Sets the instance’s origin in the center of the hit-area, which defines

by the variable hitrec (described later in this section).
setBncaps:(BOOL)aBoolean Method

Sets the boolean encaps. Tells if the instance is used by another

instance.

moveToAbsOrig Method
Moves the visible object to the absolute origin of the VDC system.
setScalPRi(struct pos * JaStruct Pos Method

Sets the scaling-point relative the instance origin. The scaling-point
is the center in a scaling action on the object.

setScalPA:(struct pos *)aStructPos Method
Sets the scaling-point relative the origin of the VDC system.
setRotPR:(struct pos *)aStructPos Method

Sets the rotating-point relative the origin of the instance, This method
is only used by rotatable objects.

setRotPA:(struct pos)aStructPos Method
Sets the rotating-point of rotatable objects relative the origin of the
VDC system.

rubb:(short JaDevicehandler Method
Clears everything inside the hit-rectangle. Is invoked from method
show: before drawing.

moveA:(struct pos x JaStruct Pos Method
Moves the object to position aStructPos relative the origin of the VDC
system.

moveR.i(struct pos *)aStructPos Method
Moves the object to position aStructPos relative the old position.

22

- setSizeR.:(double)aDouble : o - Method
Sets the size relative the old size (size = size % aDouble).

- setSizeA:(double)aDouble _ Method
Sets the size of the object. _

- (double)getSize Method
Returns the size.

- (struct pos x)getPlace Method
Returns a pointer to the current origin-position of the object.

- (BOOL)getMovable Method

Returns the boolean movable which decides if the instance is movable
or not on the screen.

insidehit:(struct pos *)aStructPos Method
Tells if the position aStructPos is inside the hit-rectangle. The hit-
rectangle is the area which defines where the object is sensitive for
mouse-clicks.

hit:(struct pos %)aStructPos Method
At the base class level the method hit: is equal with the method
ingidehit:. See the description of the other classes about the method
hit:.

shifthit Method
It handles the updating of the rub out area oldrec. If is invoked
from the method show:, to prepare for method rabb: which erase
everything inside oldrec.

update:(short)aDevicehandler Method
Update all the dynamic parameters of the instance. It also updates

the look of visible objects if the changed parameters are visible on the
screem.

T

1

Following methods give the same result as the methods above with the same
name except the capital ¥, they are used by the ‘full copy objects’.

- PmoveA.:(struct pos *)aStruct Pos Method
See explanation of moveA:.

- Fshifthit Method
See explanation of shifthit:,

- Fhit:(struct pos * JaStructPos Method
See explanation of hit:.

- Finsidehit:(siruct pos * JaStructPos Method

See explanation of insidehits.

In this part the most important variables are mentioned, those variables that
are necessary to understand the program when reading the code. The common
type struct pos is defined in file owndefh.

hitrec(struct pos [2]) Variable
Defines the hit-area. The hit-area is an unvisible rectangle, which
defines where the object is sensitive for mouse-clicks. The instance
method insidehit: check if the cursor is inside the hit-area.

23

oldrec(struct pos {2]) ' ' Variable
Before an operation like scaling, rotating and translation can occur
on the screen, the old picture must be erased. Method show: invokes
rubb; to erase the old picture. The oldrec decides what area to be
erased. The method shifthit: takes care of the updating of oldrec.

origin(struct pos) Variable
The origin of the object absolute the VDC system (see Section 3.2).

rotpoini(struct pos) _ Variable
Describes the rotating-point of rotatable objects.

scalep(struct pos) : Variable

Describes the scaling-point. The scaling-point is the point which the
object will shrink and grow around.

size(double) Variable
Normally this value is between 0.1 and 1.0, It is a normalized value
that describes the relative size to the original size, that is 1.0,

value(double} : Variable

Varying from 0.0 to 1.0. Some classes like Handins use this parameter
to store the actual pointer-position for instance. The class Slidepot
use it to store the current value,

encaps(BOOL}) Variable
Tells if the instance is encapsulated by another instance.
movable(BOOL} Variable

Decides if the object is movable on the screen, which means that the
object can be moved by using the mouse-interaction. Default value is
TRUE.

active(BOOL) Variable

Tells if the instance is in active mode or not. If the instance is in
active mode it can feel and ‘obey’ the mouse-clicks that hit the object
on the screen. It is significant in method hit:.

4.4 Dialogue primitives

class Dialogpr

Inherits from: Prim
Classes used;

Source file: dialogpr.m

The class Dialogpr is a link between the dialogue primitives and the super-
class Prim. Tor the moment the function is to provide a good structure in
the inheritance-tree, The dialogue primitives are classes that supports two
way communication. That means that the operator can control the dialogue
primitive, usually by using the mouse.

24

class Caiculator

Inherits from: Dialogpr .
Classes used: Keyboard, Window, Pushkey

Source file: calculator.m

The calculator class implements the dialogue primitive that provides commu-
nication between the user and the program with an object that looks like an
calculator. The calculator is intend to provide a powerful way of generate and
send values in the system, The method hit: is quite complex in this class
definition. All local variables are stored in the structured type calcType. See
the code for more information. Only methods that differ much in performance
from those in super class Prim are treated in the subsequent text.

~ hit:(struct pos %)aStructPos Method
When the method hit: is invoked, different issues will occur depend-
ing on the mouse-buttons status, if aStructPos is inside the hit-area
or not, and finally the status at the variables active and movable,

- show:(short)aDevicehandler Method

This method makes the instance visible on the screen and updates
dynamic data.

class Menu

Inherits from: Dialogpr
Classes used: Menubit

Source file menu.m

The methods in the class Menu support drawing of menus. A menu is not
capable itself to decide what will happen in each mouse-button event. The
class that uses Menu have to implement these actions at local level, The local
variables for the menu class is stored in the structured variable menu, of type
menuType.

+ new:(short JaShort nrRow:(short)aShort nrColl:(short)aShort Method
Returns a new instance of menutype. The first parameter will tell
how many characters each row in the menu can contain. The second
and the third parameter describe the wanted menugrid.

- setMenText:(char = JaStrpointer Method
row:(short JaShort coll:(short)aColl
This method puts a character-string into the string-matrix of the in-
stance,
- show:(short }aDevicehandler Method
This method will show the specified menu at the screen. It will show
a grid with text sat by the method setMenText,

- setOrig Method
This method setOrig differs from the supermethod. Instead of setting
the origin in center of the hit-rectangle it places the origin in the lower
left corner of the menu.

25

class Slidepot

Inherits from: Dialogpr
Classes used:

Source file: slidepot.m

The slide-potentiometer class provides methods which can be used in different
applications where a potentiometer is convenient. The variables that differ
from the superclass is stored in the structured variable slidepot, of type slid-
potType. *

- setVal:(double JaDouble Method
This method differs from setVal in the superclass because it also sets
the vertical sledge-position, proportional to the input value.

- update:(short JaDevicehandler Method
Updates the slide-potentiometer only if the value are changed. It draw
the whole slide-potentiometer.

-hit:(struct pos %)aPosition Method

The method hit: control the performance of the slide-potentiometer
depending on the mouse-buttons status and the cursor position. If the
slide-potentiometer is in active mode and the mouse-click is inside the
hit-area the sledge will move to the actual position. The method hit:
invokes update: to perform this.

class Padicon

Inherits from: Dialogpr
Classes used: Openlock, Shutlock, Lockmen, Calculator

Source file: padicon.m

The Padicon ¢lass supports an icon that can be used to control the commu-
nication between different instances of different classes. The structured type
for this class is padlconType. The data of the instance is stored in variable
padIcon of mentioned type,

- hit:(struct pos *)aStructPos Method
When hit: is invoked, different issues will occur depending on the
mouse-buttons status, if the position aStructPos is inside the hit-area
or not, and finally the status of the variables active and movable,

- show:(short)aDevicehandler Method
Shows the padlock on the screen either as an opened padlock or a
closed one, depending on the status of variable padleon.open,

- (BOOL)getOpen Method

Returns the status at the boolean padlcon.open which tells if the
padlock-icon is open or not.

26

4.5 Presentation primitives

class Presprim

Inherit from: Prim
Classes used:

Source file: presprim.m

The characteristics of presentation primitives is that they only provide one-
way communication. You cannot control them by using the mouse for instance,
except moving them. You can use them to build other objects, like the class
Calculator use the class Keyboard and the class Window in its class definition.

class Handins

Inherits from: Presprim
Classes used: Ptrl, Screw

Source file: handins.m

Provides a circular-pointer instrument that can be used to make parameters in
a process description visible. The structured variable handIns contains local
variables of the class Handins.

- setUnit:(char x)aUnit Method
Put the string aUnit in the variable handIns.unit. Invoking method
printunif which write the text on the instrument.

- printunit:(short)aDevicehandler text:(char *)aText Method
Printing the unit on the instrument.
- setVal:(double)aVal Method

A value 0.0 - 1.0 corresponds to a pointer-angle of 180 - 0 degrees.
The new pointer-position will be visible when the method update:
or method show: is invoked.

class Polygon

Inherits from: Presprim
Classes used:

Source file: polygon.m

Supports all kinds of polygon drawing. Polygon itself cannot create visible
objects. The approach is to create a subclass with the wanted look. Polygon
is the only class (so far in the FIP-project) that supports rotation. Polygon
and all its subclasses have their local variables stored in the structured type

polygon of polyType,

- setOrig Method
Sets the origin equal to the scaling-point of the polygon-instance.
- rotateR:{double)anAngle Method

Rotates the object anAngle degrees relative the old angle.

27

- rotateA:(double)anAngle " Method

The polygon will point in a direction corresponding to the value of
anAngle after invocation. Not visible until show has invoked.

Polygon have two subclasses named Ptrl and Pointer, both are used as pointers
by the circular-pointer instrument. They are not treated separately in this
report, but the code will provide necessary information. The source files are
pirl.m and pointer.m respectively.

class Keyboard

Inherits from: Presprim
Classes used: Pushkey
Source file: keyboard.m

Keyboards are principally used by other classes like the Calculator class,
The structured type keybrdType describes the local parameters used in the
keyboard-class, There are no unigue methods in this class regarding to their
performance.

class Menubit

Inherits from: Presprim
Classes used:

Source file: menubit.m

Menubits are mostly used as building blocks for menus. The structured vari-
able menubit of menbitType contains local variables not inherited.

- setTxtLgth:(short)aLength Method
Decides the maximum length of the text.
- setTxtSize:(short)JaTxtSize Method

Sets the size at the characters of the text. The size varying from 1 to
100. :

setText:(char x JaText Method
Put the string aText into the instance-variable menubif.text. This
text will be visible when show: is invoked.

(char *)getText Method
Returns a pointer to the string menubit.text.

r

class Screw

Inherits from: Presprim
Classes used:

Source file; screw.m

Provides a picture of a screw. It can be used as an adornment by other classes,
as the class Handins dees for instance,

28

class Window

Inherits from: Presprim
Classes used:

Source file: window.m

The Window class provides in fact a display. The bad chosen name be due to
the name Display is already taken by another class. The windows is used by
classes that need a display. The Calculator class is a good example.

- setText:{char *)aText Method
Put the string aText into the instance-variable window.text.
- {char x)getText Method

Returns a pointer to the string window.text.

class Padlock

Inherits from: Presprhﬂ

Classes used:

Source file: padlock.m

The function of the class Padlock is as father of the subclasses Openlock and
Shutlock. The classes Openlock and Shutlock offer pictures, representing an

open padlock and a shut one respectively, These fwo classes is used by the
class Padicon. The source files of these classes are openlock.m and shutlock.m.

4.6 Device classes

class Interdev

Inherits from: Object

- Classes used:

Source file: interdev.m

The interaction device supports the interaction between the screeen and the
mouse. The status at the mouse is decided by the variables xyOut{short[2]),
pressed(short), released(short) and keystate(short). Following methods make
them available.

- update:(short Janlnhandle out Handle:(short JanOutHandle Method
This method updates the status of the mouse-device. The parameters
annhandle and anOutHandle decides what workstation you want as
input station and output station respectively.

- (struct pos *)getxyOut Method
Returns a pointer to the instance-parameter xyOut. This contains
the current cursor-position.

29

- (short)getReleased) | Method
Returns a code for which buttons released since the last invocation to
the method update:. -

0: none

1: button 1

2: button 2

3: both buttons

- (short)getPressed Method
Returns a code for which buttons pressed since last invocation to
update:.

0: none

1: button 1

2: button 2

3: both buttons

- (short)getKeystate Method
Returns a code describing the pressed buttons.

0: none

1: button 1

2: button 2

3: both buttons

class Device

Inherits from: Object
Classes used:

Source file; device.an

In this project two devices are used, mouse and display. Mouse and Display
are subclasses of the class Device.

class Mouse

Inherits from; Device
Classes used: Wketrl

Source file; mouse.m

The Mouse class supports the workstation of the mouse. The inHandle is a
pointer to the workstation.

- close Method
Closes the workstation.
- (short)getInHandle Method

BReturns a pointer to the workstation of the mouse.

30

class Display

Inherits from: Device
Classes used: Wketrl
Source file: display.m

The Display class supports the workstation of the display. The outHandle is
a pointer to the workstation.

- close Method
Closes the workstation.
- clear ' Method
Clears the screen,
- (short)getHandle Method
Returns a pointer to the workstation of the display. ,
- (short)workout:(short))anindex Method

Returns devicedependent parameters stored in the workstation in-
stance, More about this in the description of the class Wkctrl.

4.7 Other classes

class Pipe

Inherits from: Object
Classes used: Presprim, Dialogpr

Source file: pipe.m

Provides the communication between dialogue primitives and presentation
primitives, or between two dialogue primitives. Al methods implemented
in the class Prim ought to be implemented in Pipe. The syntax for the usual
methods can be seen helow.

-~ alethod {
if ({aReceiver isXindOf:Presprim])
return [aReceiver aMethod];
else if ([aReceiver is Kind0f:Dialogpr])
return [aSender aMethod];

}

- setOpen:(BOOL)aFlag Method
Sets the boolean open and then returns the receiver. If open is FALSE
no communication is possible. Default value is TRUE,

- setRecek:(id)JanObject Method
Sets the receiver and returns its’ identity.

- setSend:(id)anObject Method
Sets the sender and returns the receiver.

- getRecel Method

Returns the receiver of the pipe.

31

- getSend : Method
Returns the sender of the pipe.

- setMult:(double)mult Method
Sets the gain-factor aMult of the pipe.

- (double)getMult : Method
Returns the gain-factor aMult,

aMult(double) Variable
Is the gain-factor between the sender and the receiver in the pipe.

open{BOOL) Variable
Tells if the pipe is open or not.

aReceiver(id) Variable
A pointer to the receiver in the pipe connection.

aSender(id) Variable

A pointer to the sender in the pipe connection.

class Drive

Inherits from: Object
Classes used:

Source file: drive.m

The Drive class simulate a PID-controlled sawmill. The simulation is con-
trolled by the system time. The sample-time is 100 ms.

- setVal:(double)aVal Method
Sets the speed reference and returns the receiver.

- (double)getVal Method
Returns the speed.

- update Method

Change to a new value if this is sat, returns the receiver.

class Demo

Inherits from: Object
Classes used:

Source file; demo.m

The Demo class provides some demonstration methods that can be useful
when creating new primitives.

- moveRD:(id)anld devh:(short)aDev dist:(short JaDist Method
angle:(double JanAngle

Move the object anld the distance aDist in the direction anAngle.
The parameter aDev decides the workstation. The distance will be
given in VDC-units.

- ellipse:(id)anld devh:(short)aDev x:(short)aX y:(short)anY Method
Move the object anld in an elliptical orbit. The ellipse is characterized
by x and y in VDC-units.

32

- rotz;teD:(id)andId devh:(short JaDev Method
Rotate the object one round around its rotating-point. This method
is only valid for rotatable classes as Polygon. ‘ :
~ sizeUpD:(id)anld devh:(short)aDev - Method
Size up the object anld, and then shrink it down again.

class Wketrl

Inherits from: Object
Classes used:
Source file: wketrl.m

The workstation-controller provides methods that operate on the workstation.
The variable work_out(short[66]) describes the machinedependent parameters.
Invoking the method workout: if you want information. Read more about
the workstation in Section 3.3 and [GSS,1986b].

- open _ Method
Opens the workstation if no error occurs.

- close Method
Closes the workstation.

- clear Method
Clears the workstation, in practice it clears the screen,

- (short)workout:(shert JanIndex Method
Returns the value of instance-variable work_outfanIndex],

- {(BOOL)error_sign ‘ Method

Returns an error-flag describing an eventual error occured when at-
tempt to open a workstation.

4.8 Main program

In this project the main programs that have been developed were used to test
the classes. They are not relevant by themselves. The program listing includes
code for maind.m and mainf.m. These are the two most important files as they
are the main programs for the two demos fipview.exe and drivel.exe. The PTC
is a nonimplemented class that will be implemented in FIP. This class will take
over the role of the mainprogram in this version.

4.9 The include files

These files are standard in C. They have the extension h to show that they
are include files. There are many standard h-files used in this project. But
they are not treated here. If you want more information about the predefined
h-files, see the code and [Microsoft,1986b]. However there are some h-files
created in the project. A brief description of them is below.

cgi.h

Includes all those constants used in function-calls to CGL All constants are
written with capitals to distinguish them from variables.

33

owndef.h

Includes some useful constants and structured type-definitions used in the
program. All constants are written with capitals to distinguish them from
variables, o

matrix.h

A very important file in this project. This file includes all those functions
that support the graphics actions like scaling, rotating and translation. To
understand what these functions do, read appendix A first. Notice, this file
just have to be included in the main file. A brief description of the most
important functions is below,

rotatévect,n,angle,rotpoint) Function
Rotate the n first elements in vector vect angle degrees around rot-
point.

scaling(vect,n,size,scalep) Function
Scale the n first element in vector vect with factor size around position
scalep.

moveA (vect,n,distance,origin) Function

Translate the n first element in vector vect the distance distance rel-
ative the absclute origin.

mat3mult({ml,m2,m3,resm) Function
Multiply the matrices ml, m2 and m3. The result is in resm.,
vectmult{vect,n,M) Function

Multiply vector vect and matrix M. The result is in vect.

34

5. Concluding remarks

5.1 Results and experiences

One result of this master thesis project, was the learning about all problems
that occur in graphics applications. We have seen that it is important to have
a strict design and choose good names for methods. Since the classes are a
kind of abstract data-types, it is a good help for the next programimer if the
names of the methods describe what the methods really do, without having
read the code,

A special aspect regarding object-oriented language is inheritance. We
have learned how to structure the inheritance tree for future project. This
project suffer from some ‘inheritance-bugs’, We also have learned about en-
capsulation. In the beginning when the objects were built, there were too
much code in each class, instead of encapsulate from a few but smaller classes.
A describing example was our first realization of the circular-pointer instru-
ment. In the beginning the pointer was implemented directly in the Handins
class. But in the last version of the Handins class the pointer class is encap-
sulated. The benefits of this action were, for example: the code got more
structured, the Handins class code became smaller and gives a better survey
of the code, it is now easy to shift to another pointer in the circular-pointer
instrument in just a moment. Section 5.3 describes possible improvements. It
has also resulted in a graphics object library which contains all those classes
described in Chapter 4. A library for 2D-transformations was developed too,
see Section 4.9,

Many discussions took place during the project about how to rub out old
objects or parts of objects when they were updated. At the beginning the
objects to be updated were erased from the screen by drawing the ob ject in
black. This approach worked well for static objects which did not change
their look. The circular-pointer instrument was more difficult to update with
this method, because the position of the pointer must be known exactly. The
conclusion was to rub out the whole display of the instrument when updat-
ing, then it was hot necessary to know the old position of the pointer. The
disadvantage of this approach was that objects which were not changed must
be drawn again, When erasing the whole object the approach was to fill the
whole area with the background color. The result was quite a big drawback
that we have not considered. Although the hardware was powerful it tock
long time to fill whole areas. A facility that was not planned to be included
was the possibility to edit the given process picture. It became implemented
simply because it was so easy to realize, The best way to form an opinion of
the result is to run the demo-programs, if they are available.

5.2 Problems

During this project, there have been some problems. Most of the problems
refer to the CGI software. In fact it was not the CQGI itself that did not

35

work, it was the driver between the CGI and the hardware. The reason was

that a beta-release of the CGI-package was used. The CGI driver was under -
development during the current work and better versions came after a time.

We also had problems with the memory, which has not been sufficient for all

intended applications. Some functions which were desirable to us, were bit-

mapping and those functions which support output of text, but these functions

still do not work very well in the latest release,

In the beginning of the project good help came from Per Sevrell who
had made a graphics editor in Objective-C before. But there were a lot of
differences between the new Objective-C version and the old one, also the way
of compiling and linking differed a little. This fact sometimes made it difficult
to use the old experiences of Objective-C and CGI. The total impression of
the environment is good. All problems we have experienced are solvable.

5.3 Possible improvements

Because this project has been a way of getting more experiences about the
MMC-domain, we have not done something about all improvable points during
the time of this project. One point that we would have done something about
was the flickering screen. When we updated the screen very frequently the
screen flickered. This is due to the drawing method that was used. Instead of
drawing the objects direct at the screen-map, it would be better to draw the
objects in a hidden map. When ready, you map the picture into the screen.
This action would have stopped the flicker. But the bitmap functions did not
work, so this was not possible to implement in the given time.

When we choose the number of bits to represent coordinates, short inte-
gers (16 bits) were chosen, This was a mistake. Although the VDC-system
only requires 16 bits representation it would have been better to represent the
coordinates with 32 bits during the graphics calculations. At the first consid-
eration it seems unnecessary to use 32 bits when the VDC-system only allows
16 bits. When calculating the involved matrices, the intermediate results can
cause an overflow, which can be avoided with 32 bits representation. This
causes some extra overhead to convert back to 16 bits representation before
calling the CGI-functions.

Many methods used are quite often overridden now {overriding means that
the class does not inherit the method from its father, it has its own version of
the method). If we had made them more general this sometimes could have
been prevented. Another aspect of this is that general methods are almost
always slower because they have more tests included.

The inheritance-structure could have been better, but this partially de-
pends on Objective-C. Sometimes one finds out that the recently created class
has features in common with another class. If it would have been possible to
have more than one father, this would have solved these problems (multiple
inheritance is possible in some other object-oriented languages). A possible
improvement worth mentioning is about the classes Display and Mouse. They
now inherit from the class Device, but it might be better if they inherited from
the class Wketrl instead.

36

5.4 Objective-C

Although we were not very experienced in Objective-C when starting this
project, our opinion is overall good about this language, except execution-
time. We have done comparisons between ordinary C and Objective-C regard-
ing execution-time. Objective-C increase the execution-time about 3 times.
Another object-oriented C-dialect is C4+; this language increases the time
Jjust 10 percent.

It is very important to understand the concept 'self’ in objective-C be-
fore you start serious programming. Otherwise you will get some unpleasant
experiences of this quite soon.

Objective-C offer a lot of predefined classes. In this project we have used
the predefined class OrdCltn, that stands for Ordered Collection.

The base in Objective-C is the programming-language C. About C one
can have many different opinions. We take the advantages first. It can be
said that it is a very flexible language that supports a lot of good functions,
You nearly have the same possibilities to bit-manipulations as in assembler-
programming. Another advantage of C is that it is a very fast language. The
compiler generates fast code,

Now the disadvantages. Since C offers this flexibility it is easy to fall into
traps that destroy the structure in the program. A big disadvantage in C
is the hierarchy of the procedures. C only allows one level at the function-
declarations. If you are familiar with Pascal or another high-level language
you know the benefits to have functions declared inside other functions. The
possibilities of bit-manipulations can be regarded as a risk, If you are not a
very experienced programmer you should not use these functions.

Another point that could be improved in C is the symbols for logical
comparisons. C uses the character combination ’1=’ that stands for not equal.
If you happened to write ’=!" but 'l==’, the compiler will understand that as
assigning NOT, because a single '’ stands for the logical NOT. This can be
avoided by define your own symbols.

Some of the bad things with C can be avoided in Objective-C anyway. One
disadvantage in C that can be avoided in Objective-C is the bad procedure-
hierarchy. Because there is a built-in inheritance-hierarchy in Objective-C
there is no greater need for procedure hierarchy.

5.5 CGI

Our overall impression of CGI is positive. The bugs in CGI (in fact the CGI
driver) are only relevant for our beta-telease. It is quite easy to learn using
the CGI packet. The manuals are a bit confusing the first times, and they
continue to be that the whole time, in other words, they could have been
better. The only thing we have been lacking in the CGI are windows which
are standard in VDI, which stands for Virtual Device Interface. The graphical
actions like scaling, translation and rotation could have been implemented in
the CGI concept as well.

37

Acknowledgements

This report is a documentation of the final work of my computer engineering
education at Lund Institute of Technology, University of Lund, during the
spring 1988. The work was done at ASEA BROWN BOVERI, department
KLL at IDEON in Lund. Primary instructor was Henrik Palsson at KLL, and
secondary instructors were Dag Briick and Sven-Erik Mattsson at Department
of Automatic Control, LTH.

I wish to thank all the people at ASEA BROWN BOVERI in Lund for
their great support and patience during my time here, It has been a very in-
structive period in my education. The work has not always went the straight-
est way, it’s probably a taste of the real world outside the safe school, with
all their well defined problems. Per Sevrell and Bo Johansson were a good
help for me in the beginning of the project. I also want to thank Dag Briick
and Sven-Erik Mattsson for their help and comments during the writing of
this report. Finally I will thank my instructor Henrik Palsson for our great
collaboration during the time of this project.

38

References

WAITE, MITCHEL, STEPHEN PRATA and DONALD MARTIN (1985): Program-
mering i C.

Luctano, Davip, GEOFF PASCOE, JERRY PRIES AND ALAN WATT (1987):
Objective-C Reference Manual for the PC, Release 3.3.1, Productivity
Products International, Inc.

MICROSOFT (1986a); Microsoft C Compiler for the MS-DOS Operating
System, Run-Time Library Reference, Microsoft.

Microsorr (1986b): Microsoft C Compiler for the MS-DOS Operating
System, User’s Guide, Microsoft.

GSS (1986a): GSS*CGI C Language Reference Booklet, Graphic Software
Systems, Inc. '

GSS (1986b): GSS*CGI Programmer’s Guide, Graphic Software Systems,
Inc.

39

Appendix A. 2D-transformations

Overview

The concept of transformation is to move a several primitives from one position
to another. This can be done in three different ways. Figure 1 illustrates this
for a rectangle. ‘ -
By adding a number D, to all @#-coordinates and another number D, to
all y-coordinates, the rectangle will be moved to a new position in the =,y
plane, This is translation.
By multiplying all z-coordinates with a number S, and all y-coordinates
with a number S, this will result in a scaling of the rectangle,

The third form of transformation is rotation, this will be possible by using
trigonometric functions as sine and cosine. '

Homogeneous coordinates

The three transformations can be written as follows

—

(=,9') = (&,9) +

(T)

(2',9) = (2,9) + (5)
(=,9') = (z,9) *(R)

where 7" is a row-vector, S and R are 2X 2 matrices, As we can see, translations
means addition, but scaling and rotation means multiplication. To be able
to treat all three of them as multiplication we introduce the homogeneous
coordinate concept. By using this technique it is now possible to write the

Translation Scaling

Figure 1.

B~

] 4

B X

y
A

Rotation

A

‘b.x

A rectangle transformed by translation, scaling or rotation.

40

11 0 o Sx 0 0 r11ri20
=10 1 0 S= {0 Syo R= {r21r220
Dx Dy 1 0 0 1 0 0 1

Figure 2. Transformation matrices used in 2D-transformations.

equations above as follows

(z’) y': 1) = (:n,y, 1) * (T)
(m’: ylﬁl) = (miyil) * (‘9)
(2, 9',1) = (2,9,1) = (R)

where T', R and S are all 3 x 3 matrices. See Figure 2 for the contents of the
matrices. There are occasions when you want to do several transformations in
a sequence. An example of this, move an ob Ject to the origin, change the size,
then move back to the first position again. It can be proved that it is feasible

to do an arbitrary number of transformations using a single 3 X 3 matrix M,
where M =T+« Rx S.

41

Appendix B. Compilation

Compiling

Since Objective-C offers a natural modularity, you save a lot of time when
compiling. It is enough to compile those files containing the changed data-
area, There are some exceptions of this point however, If you add a new
method to a class it is necessary to compile all files. But if you override
a method already declared by its father you just have to compile the file
containing the overriding method. Overriding means to create a new method
with the same name as the the super-method (a super-method is a method
inherited from the ancestor-class). The command used to compile is objcc
~c filename. See [Luciano, 1987} and [Microsoft, 1986b] if you want more
information about compiling. During this project we have had problems when
compiling since the memory is not sufficient for the compiler. A necessary
action is to shut off the drivers before compiling because they demand a lot of
memory. This can be done by making the drivers transparent. The option /T
written after the assignment of the driver in file config.sys will achieve this.
When the command drivers /R is given before compiling, the drivers with
the option T will be shut off, See also the file cmpall.bat.

Linking

Al files used in the program must be linked together before running. This can
be done automatically by running the makefile link.bat, If you will complete
with more files, it's just to put them into the code. The file objlink.Ink contains .
all those files that demands for this project. See also [Luciano, 1987] and
[Mierosoft, 1986b] about linking.

42

