CODEN: LUTFD2/(TFRT-5394)/1-73/(1988)

Expert Systems for Planning of
Hydro Power Production

Olof Wickstrom

Department of Automatic Control
Lund Institute of Technology
December 1988

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

Master Thesis

Date of issue

December 1988

Document Number

CODEN: LUTFD2/{TFRT-5394)/1-52/(1989)

Author{s)
Olof Wickstrom

Supervisor
Jan Eric L.arsson

Sponsoring erganisation

Title and subtitle

Expert Systems for Planning of Hydro Power Production,

Abstract

and KEE) have also been studied.

This report describes different ways of using expert system techniques when making programs that should
simplify the planning of water flows through harnessed rivers. An expert program and a critic program has
been implemented in Scheme and Prolog respectively. Two other ways to implement expert systems (Pascal

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical informstion

ISSN and key title

ISBN

Language Number of pages
English 73

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

5-221 03 Lund, Sweden, Telex: 33248 lubbis Jund,

Contents:

0.

el S A

10.

o N b

Introduction
Two Important Concepts
Water Planning

The Different Kinds of Knowledge
Needed in Water Planning

Tools for Implementation
The Planner

The Examiner

Further Developments
Conclusions

Notes

Sources

Appendices

A

Q T m g O w

Abstracts From a Typical Water Right
A Pricecurve

Map of Nedre Ljungan

Program Code for the Planner
Program Code for the Examiner

User Manual for the Planner

User Manual for the Examiner

0. Introduction

This Master Thesis has been written during the summer and autumn of 1988
at Sydkraft AB and at the Department of Automatic Control, Lund Institute
of Technology.

The project, which can be divided in three quite distinct parts: the
identification and classification of knowledge, the examination of different
ways of implementation, and the implementation of a primitive expert and
of an equally primitive critic, is intended to study different ways of using
expert system techniques when planning the water flow through the power
stations and reservoirs in Sydkraft’s power generation system

It must already here be stressed that the written expert program is not a
traditional expert system i.e. consists of a database with if-then-else rules
and an inference engine using these rules to see if something is true. Instead
all the rules are functions which are applied to the data on the data’s way
from input to output. The critic is more like traditional expert systems
program but its rules works on numerical data.

In the same way as the project was divided this paper can be divided in three
parts: in chapter one through three the problem is described and the
available knowledge is classified, in chapter four different ways to
implement expert systems are studied, and in chapter five and six
respectively, an expert program and a critic program is described with a
discussion of possible further developments in chapter seven. The
conclusions are to be found in chapter eight.

I would here like to express my thanks fo my two supervisors, Bengt-Tore
Sondh of Sydkraft AB and Jan Eric Larsson of the Department of Automatic
Control, for their invaluable help and support.

1. Two Important Concepts

Yattendomar

The swedish laws that govern the harnessing of rivers states that before any
work can take place the plans must be put forward the water rights court, in
Swedish Vattendomstolen. This court consist of jurists, representatives from
the local population and representatives from the company which wants to
harness the river, These makes an inquiry of the effect of the harnessing on
fishing, tourism, farming, etc. Based on this inquiry they then writes the
water rights, in Swedish Vattendomar, Henceforth, whenever I will use the
word water rights I will mean this Swedish version.

These water rights do not only regulate maximal and minimal flow through
the stations and the maximal and minimal water level in the reservoirs but
also stipulate what the power company has to do to minimize the damage
the harnessing would do to all kinds of interests.

The problem with the water rights is that the water rights court’s
composition often leads to peculiar water rights, For instance is it rather
usual that the water rights stipulates certain water flows on major holidays.
To further complicate things the water rights could be as old as from the
first decades of this century, This gives trouble as the society around the
rivers has changed quite a bit since they were written!,

The Grinskraftpriskurva

This is the major central control instrument when making plans for the
usage of different power sources at Sydkraft, It is the expected energy price
for the last in the system generated megawatt each hour in the week and it is
a function of the expected power requirements. Its importance lies in the
fact that it is the only short time plan that is made for the whole hydro power
generating system. Henceforth I will call it pricecurve?,

2. Water Planning

The main purpose of the planning of the water flows through Sydkraft’s
power stations and reservoirs, henceforth water planning, is to get as much
power as possible from the available water.

The Timescale

The water planning is done in three timescales: yearly, weekly, and daily.
This study has its focus on the weekly planning but parts of it can be applied
on a more general program. The reason for this is that the shorter timespan
the plans are made for the more written rules exist, the making of yearly
plans involves a lot of experience based prognostication. The choice of
weekly planning instead of daily is based on that the daily planned stations
are run using a real time control system which is unable to communicate
with other computer systems. Therefore have I in this study used
Jirnvigsforsens power station in the river Ljungan3, which is not run in real
time, as example when writing my programs,

Problems

One of the problems when making water plans is to stay inside the limits
that are put up by the water rights at the same time as the water plan should
be so efficient as possible. The knowledge needed for this is further
described in the next chapter but it can already be unveiled that it consists of
a lot of rules.

How It Is Done Today

Today when doing the weekly planning the planner has to his aid the rules
which are described in the next chapter, the average water flow for the
week, which he gets from the yearly plans, and the pricecurve. With these
aids the planner uses a spreadsheet to make the water plans. The expert’s
main problem when doing this is to remember all the rules. This is further
stressed by the fact that shift working and yearly variations in the water
flows makes the time between the times the expert has to consider the same
rules several years.

3.The Different Kinds of Knowledge Needed in
Water Planning

The knowledge at Sydkraft about how to plan the water flow through their
power stations and reservoirs, henceforth water planning, can be divided in
three distinct sets of rules.

First there are the so called water rights. These are written by the water
rights court before any waterfall could be harnessed and are legal
documents. As such they are easily assecible. Henceforth this class of rules
will be called class A.

The second set of rules consists of rules that are more or less empirically
gained. The set consists of rules that gives advice about how to plan the
water flow so that the the water rights should not be violated and other
useful things, such as by a certain flow through a certain station the turbine
starts to oscillate with its natural frequency. Also these rules are easily
assecible as the information are kept in folders at Sydkraft. Henceforth this
class of rules will be called class B.

The sets of rules above has in common that each of the rules are valid for
only one or a couple of stations and reservoirs.

The rules of the third set are quite different from the rules above, they are
the rules which describe a “good” system. These rules are personal for each
operator even if there naturally exists an unofficial department standard. The
rules are very complex and dependant of a lot of variables. In general the
operators can easily decide if a solution is bad but they can not always tell
why. Henceforth this class of rules will be called class C.

Examples of these rules can be found in sections 5 and 6.

4.Ways of Implementation

Four tools for implementation of an expert system has been studied, three
languages and an expert system development tool. The languages are Pascal,
Prolog and Scheme (a Lisp dialect) and the development tool is KEE. The
reason for choosing these is mainly that they have been available to me.

Pascal

The advantages of using Pascal as an expert system language are:
It is widely spread, there exists a Pascal compiler for every real
computer, except Lisp machines, which gives programs written in it a
large portability.
The expert, who probably has some knowledge of Algol oriented
languages, can easily understand the code, which makes it possible
for him to suggest, or even self make, improvements in the code.
It is rather efficient.
It is rather easy to construct complicated datastructures, especially if
these do not have to contain any rules.
The disadvantages are:
It is not made for construction of expert systems and therefore containg
nothing to support any such activities. This results in very complicated if-
then-elseif... statements whenever one tries to implement rules.
Another big disadvantage is that the code are so strongly separated from
data.

Prolog

The logic programming language Prolog is naturally very good for solving
problems that can be expressed by using predicate calculus. This makes it
easy to implement rules of the form if A and B and... then X, The
language’s inherent mechanism for backtracking takes care of parts of the
programmer’s problem to write program driving rules. The language’s
rather unique programing style makes it necessary for the expert to study it
rather thoroughly before he can understand the program code. Another
disadvantage is Prolog’s limited set of data structures, there only exists one:
lists, and the fact that the only operations you can do on these lists are Head
and Tail (These divides a list in its first element and the rest), Other
disadvantages are the low portability which comes from that there exists no
language standard and that it is not so efficient for numerical calculations®.

Lisp

The list processing language LISP has much more datastructures than
Prolog and a lot of useful operations on them. It even has some possibilities
for object orientation through its property lists. Many Lisp dialects has non
standardized overlays, some times called flavors, which supports object
orientation (For instance: when editing this thesis I have got information of
the CLOS’s (Common Lisp Object System’s), an object orientated overlay,
acceptance as and inclusion in Common Lisp). At the same time the
language does not make any difference between functions and variables, a
very useful feature. Among its drawbacks is its large demand for
computational power on ordinary computers®,

KEE

The Xnowledge Engineering Environment is an expert system development
tool from IntelliCorp, Its graphics are very good and it is very usable for
making structured Lisp programing but its knowledge representation is quite
complex, and I did not have the time to get a good grip of it during the
project®,

The strong overweight of languages depends, as stated previously, on that
they were available to me. What was not available but I would have liked to
study are an object orientated language like Smalltalk and a smaller tool like
Nexpert Object.

5.The Planner

This expert program tries to imitate the way a real expert plans the water
flow through a station. He starts by giving the most costly hours,
accordingly to the pricecurve, the highest practical flow, in the case of
Jirnviigsforsen the flow with the highest efficiency when using both
turbines: 120 m?%s. This is done to get the highest possible power out of the
water, The amount of water that are placed in this way depends on what the
expert thinks he will do in his next step. In this he adjusts the flows he
already has planned and adds some new one to fulfil the class A and class B
rules. Doing this he naturally also looks at the class C rules.

The program tries to imitate this behavior but it only uses these rules:

b The reservoir available can only hold 600 t.e. (1 t.e. is the volume that by
a flow of 1 m%s would pass during 1 hour i.e. 3,600 m®.) This is a typical
class A rule.

2 If the sum of the flow through Jarnviigsforsen and Torpshammar is more
than 200 m®*/s for more than ten hours then the flow through Jirnvigs-
forsen can not be zero for more than seven hours afterwards. This is to
make sure that one of the water rights concerning Torpsj&n, this makes
this rule a class B rule.

» 1If you are using both turbines you would not stop for just one hour and
then start them again, instead you would run over this single hour without
noticing it. This rule and the next is of class C.

% You will have to wait at least half an hour after you have started/stopped
one unit before you start/stop the other

The idea to make the program imitate a persons behavior makes traditional
expert systems programming techniques unsuitable. Instead I have used a
more traditional programming style where the rules are represented in
functions which does a good deal of work when applied to data.

Flow of Centrol

To get an idea about the program’s flow of control let us take a look at the
main program:

{define (mainprogram}
{do
{(str “Jj"” str))
((not (member Str (list \\j.rr “J” \\y” \\Yu \\jan \\Jan \\JAH
“yes” “Yes” “YES"))}))

(init)
Initiate stuff

(p}age_minfloys stgtion) . .
This is to make it possible to define the minimal flow a certain hour. It

is to be used when implementing rules that put constraints on this
matter.

{let work {(price (car pricelist)) (list_a (cdrpricelist))
{(x (- 1 {read =x)}))
(cond
{(null? list a) (})
{ (> Amount of water (* x Initial amount_of_ water))

(place_evenly Week price x)
(work (car list_a) (cdr list_a) x)}))
This loop places the maximal flow on the highest priced hours until x

of the available water is placed.

(clean up Station)
Takes care of the third rule.

{apply_reservoir rules Week))
Reduces the flows that was planned in (place_evenly) and gives the

most efficient flow to some henceforth unplanned hours to fulfil the
first rule.

(print_flows Week)
Writes the result.

{display “One more time?”)
{set! str (symbol->string (read}))
{newline))

)

To further explain how the program works I will, on the next two pages, give
some snapshots from an execution.

>» {malnpregram)

wnich station?ifn

what 18 the average flow?33

What is the initial armount of waterld

which 1a the first day of the wesk (yym:dd}?880810

In which file is the pricelist kept? {prislista.dat)~prislista.dat”
How big part of the water should be placedil,.®

day 1 day 2 day 3 day 4 day § day & day ?

con flw price con fiw price con flw prica con flw price cen flw price con flv price con flw price
0 1] L] o o 0 [+ 9 0 0 0]] 0 "] Q 0 o [4]]
0 1 b 1] 0 0 o Q 1] 0 a 0 ? o 0 9 ¢ 1] 1] a 0
0 0 0 0 0 3 Q] 13 0 a 0 0 4 0 0] 0 2] L] 0
0 Q 0 L] [¢ [[1] 1} [1} Q 9 1] o L] Q 0 0
1]] 0 0 [o 9 0 b [0 1} ¢ 0 0 [a 0 D] [
Q a a 0 [0 0 0 Q M) 0 o H o 1]] 1] 0 0 G 4]
[+] [+] a o Q b Q Q [} Q 1] o L] 13 '] 0 [0 o]
0 129 ap 0 120 90 0 120 90 ¢ 120 o0 0 120 90 g 120 8¢ ¢ 120 90
0120 a0 0 120 Eu] ¢ 120 90 9 120 a0 9 120 20 4 120 a0 0 120 90
0 120 90 o 120 80 ¢ 120 90 0 120 a0 0 12p 90 0 12¢ a0 o0 120 EL]
0 120 30 o 129 20 o 120 a0 0 120 20 0 120 a9 ¢ 120 a0 9 120 S0
0 120 a0 0120 LD 0 120 g0 0 120 o0 o 1z0 90 G 120 80 0120 90
q [+ 50 Q 0 50 1] Q 50 [+ 0 50 ¢ 0 50] Q9 50 a o 30
9 120 90 9 120 20 g 120 a0 o 120 80 b 120 90 9120 20 ¢ 120 20
0 0 a0 Q o ag Q 1] [0 1} 1] 0 0 4 30 a 0 a¢ ¢)] a0
0 i) 80 4 [} o0 [o 30 o 4] 90 '] 1} 30 0 3 80 [0 %0
1] Q0 i} 0 [+ 0 [2]]]] 0 L] [a 0 4]] 1] D 0
a Q & 4] o] a o 1]] 0 L]] [a Q]] 0 0 0
H 0 o ¢ 0 Q [0 0 0 0 0 0 o]] 0 1} L] [+] [
] 0 0 [+ 4 0 [} o] 3 o 1] 0 o 0 [+] a [\] 0 o 0
] [+ a 1]) 1]] g 3 [] L] [} [+ 1] 1} o 0] 0 o]
] o 0 q 0 1] Q 0 o o 0 1] s} Q [+])] 4] [1]] L]
k]] o] 0 o] 0 Q o 1) 0 1] b & L] 0 o [} i) 9
0] 1] o o 0 0 o 0] 4] 0 4] 0 0 0 1] a o 0 0
o 30 o 30 [1+ 0 30 0 3¢ 0 ao 9 30

CON = reservoir contents in t.e.

flw = flow

price = price

Here we have started with an average flow of 33 m®s and an empty reservoir.
After the loop which contains place_evenly the program has placed 90% of the
available water on the most costly hours.

day 1 day 2 day 3 day 4 day 5 day 6 day 7
con fiw price cen flw price con flw price con flw price con flw price con flw price con flw price
1] L] 3 1} 1] 9 [+ [} [1} 1} q 0 0] 0 [} 4] 3 o 4] o
3 Q [} 1] a L] o 0 0 1} o 1]] 1] 0 [L] a 0 i}]
1] 0 [+ [i 0 o] 1] 1] 9 0 [y 1] 0 0 0 ¢ [a i}
] o o [+] 0 0 o 0 0 9 1] 4]] o o 0 o [} D]
[+ 0 [+] 4] [+ 0 0 Q [[0 [[+ 4] ¢] o [H [} 0 0
[+] 0 4] 4] a 0 Q a ¢ o 0] o Q Q 0 0 o (1] 9 1]
o 32 bl ¢ 32] 0 32 [o 32 [+ o 32 [+ g 32 0 o 32 0
0 120 20 0120 a0 0129 14 ¢ 120 ap o 120 a0 g 120 20 0 120 90
0 120 30 0 120 a0 9 120 - 14] o120 20 0 120 a0 0 120 a0 0 120 20
0 120 30 0 120 a0 9129 14 o 120 1 o 120 a0 0 120 90 o 120 =113
0 120 20 0 120 a0 a 120 S0 0 120 a0 0120 30 0 120 30 0 120 a8
0 120 99 0 120 20 0 120 a0 0 320 a0 0 120 90 9 120 20 g 120 an
0 120 50 0 120 50 0 120 50 0 120 s0 0 120 50 0 120 50 9 120 50
0 12¢ 20 g 120 a6 o 120 0 0 120 a0 0 120 20 D 120 a0 9 120 ap
a 32 20 o 32 30 o 32 a0 o 32 90 o 32 80 0 3z -1} 9 32 a0
0 [+] a0 Q 0 80 4 0 a0 a ¢ a0] 0 o0 0 1+ h-1} 9 o a0
0 ¢] 9 [[+ k] 0 b]] ¢ o 1] 1] 1] 0 1] L]] o]
[} [] 1] 1]] 0 Q 1] ¢ 4 Q Q 0 Q 0 o] L []
Q [+ k] i} 0 o [+ 13 Q a [+ o aQ 0 a o [} 0 L] o 0
Q [+]] Q a] 0 1} o] o o Q a Q Q [} 0 L] Q o Q
a 1] Q i} 0 o 0 13 Q9 o [+ o a o 1] 0 0 0 0 1]]
] Q 9 aq o 1] 0 1] 1] a [+ 0] a 1] 1]] 0 0 0]
Q [+] Q] 3 1] 0 14] 1] o Q a] aQ o 0 1] i} 9 9
Q [+ Q 1] o [H [[1]] "] 1}] ¢] 3 0 0 i [+ 0

a 37 g 37 0 37 o 37 4 a7 o 37 0 a7

After clean_up we have this situation, Clean_up has started and stopped one
turbine, of the two in Jirnvégsforsen, 30 minutes before the other by placing 32
m?/s flows. It has also skipped the one hour stops.

10

day 1 day 2 day 3 day 4 day 5 day & day 7
con fiw price con fiw price con flw price con flw price con fiw price con [lw price con flw price

a3 39

] 0 o 0 399 0 ¢ 407 0] 415 o 9 423 0 4 m 0 0
6 0 0 424 0 0 432 0 ¢ 440] 0 448 0 0 456 0 1] 404 0]
39 0 0 457 © 0 465 9 0 473 0 0 481 0 0 439 0 0 437] 0
132 0 o 4350 9 o 498 o 0 506 0 6 514 0 1] S22 0 0 470] 0
le5 1] o 523 0 0 531 o o] 539 0 ¢ 547 @ [555)] ¢ 503 k] 0
198 [o 556 0 ¢ 584 0 o 5§72 0 o 580 0 o 588 [0 538 0 [
199 32] 557 32 o 565 32 D 573 32 0 581 32 0 583 32 0 537 3z)
112 120 99 4749 120 90 478 120 90 486 120 30 494 120 Bl 502 120 90 450 120 90

25 120 L1 383 120 90 391 129 90 3929 120 80 407 1zo 80 415 120 90 363 120 20
26 296 120 90 304 120 9¢ 312 120 90 320 120 0 328 120 20 276 120 920

w
~N
o
o

59 0 30 209 120 g0 217 120 a6 225 120 30 233 120 20 241 120 20 188 129 a0
- F | 20 122 120 50 130 120 90 138 120 20 146 120 an 154 120 80 102 120 30
125 0 50 35 120 50 43 120 50 31 120 50 59 120 50 £7 120 50 is 120 50
23 63 90 s 32 a0 44 32 90 5z 32 30 €0 32 20 8 92 30 16 32 o
§l 65 90 6% 0 -1 T 9 85 ¢ 90 53] 90 41 © 90 49 o 30
54 0 90 102 0 20 110 o 90 118 o 20 126 © 30 4 0 30 8z 0 90
127 1] Q 135 o o 143 ¢ 0 151 a] 159 0 0 107 4 0 115 Q [}
160] Q 168 o] 176 @ 184 a D 192 0 140 O 148 Q 0
153 [0 201 a a 2p9 0 e 217 9 1] 225 0 [173 0 ¢ 181 0 0
226 o 9 234] Q 242 0 0 250 0 0 238 9 ¢ 206 O 0 214 o [+]
259 0 0 267 0 o 275 o 0 223 0 o 281 0 o 23¢ 0 0 247 [0
292] 0 e 0 0 308 9 o 3s a o 324 a a 212 0 o 280 [} 9
325 0 o 333 ¢ 0 M1 a4 3438 ¢ o 357] < 30y 0 o 313 Q k]
3¢ @ ¢ 368 O 0 374 0 0 382 o a 390]] 338 0 0 EL L3 0
146 18 296 32 304 32 312 3z 320 32 301 35 276 32

One wore time?n

This is the final result where the 120 m*/s runs have been shorted to avoid
emptying the reservoir and 65 m*s flows has been placed to avoid getting to
much water in the reservoir and to have as much water as possible in the
reservoir before the 120 m®s runs.

For more information see the code which is kept in appendix D.
The Distinction Between Knowledge and Inference Machine

One of the fundamentals of expert system programming is the easy
interchangability of knowledge. This is done by separating the knowledge
from the rest of the program. In this program the knowledge is kept in four
functions, in initiate_station, in clean_up, in work_on_blocks _station, and
in apply_reservoir_rules,

In initiate_station is kept basic numerical data about the powerstations such

as the maximal reservoir contents and the possible flows through the power
stations.

In clean_up is kept a list of rules that are general for all stations such as the
rule that says that you will have to wait at least half an hour after you have
started/stopped one unit before you start/stop the other. These rules are kept
as functions which are applied one after the other to the plan.

In work_on_blocks_station is kept a list of rules that regulates the main

flows through a certain station, also these are applied one after the other to
the plan.

In apply_reservoir_rules is kept the rule that says that you should neither
keep more water in the reservoir than its maximal possible content nor
empties the reservoir,

11

Implementation

The program has been implemented in Chez Scheme version 2.0 on a VAX
780 working under VMS version 4.5, It took around 180 hours to produce
1460 lines of code.

The major problem during this work has been the lack of good debugging
facilities in the interpreter which has made the development of the program
unnecessary cumbersome. The other main problem has been to make sure
that rules does not nullify previously applied rules when applied to the data.

12

6.The Examiner

As opposed to the Planner program, which tries to imitate a real expert, the
Examiner, a critic program, is an aid to the real expert which checks that his
plan does not violate any rule. If it does it gives notice and gives a short
description of the error. This makes the programers task much simpler as he
does not have to formalize all the class C rules as many of these are un-
necessary for a well functioning program. To keep it simple the Examiner
does not give any advice when it finds an error. If it should have this feature
it would have had to have full knowledge of the class C rules.

The BExaminer, as it is written, checks if a water plan is in accordance with
three rules:

b That the available reservoir would not become empty or overfull. A class
A rule.

» ‘That if the sum of the flow through Jirnviigsforsen and Torpshammar is
more than 200 my/s for more than ten hours then the flow through
Jirnviigsforsen would not be zero longer than seven hours afterwards. A
class B rule.

» ‘That the station would not be started more than twice daily. A class C
rule.

Flow of Control

In a Pascal like fashion the Examiners flow of control could be described as
follows:

begin
init
for each day in the week do
for each hour of the day do
allowed
examine_weekend
finish
end

where init initiates stuff, allowed checks if a certain flow is allowed a
certain hour, examine weekend checks the rules that applies to the end of
the week and finish closes files and tidies up the database.

13

Examples of Execution

Here are some output from the program to show how it reacts on different input.
The leftmost column is the number of the day thereafter comes the number of
the hour and the flow on that hour, These are the program’s input along with the
planned average flow of the week and the flows through Torpshammar. The
fourth column is the content of the reservoir in t.e.

In this first example the input to the
program are actual figures from
Jarnvigsforsen. The program has, not
surprisingly, nothing to complain on,

This is the end message which tells
that the program has invoked
examine_weekend. As the program
does not check any rules that applies
to the end of the week the program
only echoes this message.

Day Hour Flow Contents
100 1 0 288
100 2 0 320
100 3 0 352
100 4 0 384
100 5 ; 416
100 6 0 448
100 7 0 480
100 8 0 512

E

i

I
106 17 0 61
106 18 0 93
108 19 0 125
106 20 0 157
106 21 0 189
106 22 0 221
106 23 0 253
106 24 0 285

Examiner weekend is not
implemented but can be used
for checking rules that
are valid for weekends,

14

In the second example the figures are
the same but the day is in the summer
when the available reservoiris 600 t.c.
accordingly to the water rights. This
gives an overfull reservoir and an
message in accordance with this.

Day Hour Flow Contents
200 1 0 288
200 2 0 320
200 3 1] 352
200 4 4] 384
200 5 0 416
200 6 o 448
200 7 0 480
200 8 0 512
200 9 Q 544
200 10 0 576
To large contents
200 11 0 608
To large contents

i

I

I
206 18 0 93
206 19 0 125
206 20 0 157
206 21 0 189
2086 22 0 221
206 23 0 253
206 24 0 285

Examiner weekend is not
implemented but can be used
for checking rules that
are valid for weekends.

In the third example the inputhas been
manipulated in a way so that the tur-
bine is started tree times on day 106.
This is against the implemented rules
and the program promptly gives an
appropriate message.

Day Hour Flow Contents

100 1 0 288
100 2 0 320
100 3 0 352
100 4 0 384
100 5 0 416
100 6 4] 448

|

I

!
105 23 0 395
105 24 o 427
106 1 65 459
106 2 65 426
108 3 65 393
1086 4 Q 360
1086] 65 392
106 6 65 359
106 7 65 326
106 8 65 293
106 9 0 260
108 i0 65 292

The unit should not be started
more than two times each day.

106 1 65 259
106 12 65 226
106 13 65 193
106 14 65 160
106 15 0 127
106 16 o 159
108 17 0 181
106 18 0 223
1086 19 0 255
106 20 0 287
106 21 0 319
106 22 Q 351
106 23 0 383
106 24 0 415

Examiner weekend is not
implemented but can be used
for checking rules that
are valid for weekends.

16

Inthelastexamplethe sumoftheflow Day Hour Flow Contents

through Torpshammar and igg L 188 223
Jarnvigsforsen is more than 220 m*/s jgq 100 152

2
3
for more than seven hours and 100 4 100 84
Jirnvigsforsen stands still more than 199 S 100 16
C 100 6 100 -52
seven hours thereafter. This violates |, 4 100 120
the third rule in the program and re- 100 8 100 -188
sults in an appropriate message. No- 190 5 100 =256
. p) tcheckif 1% 10 100 -324
tice that the program does notc 100 11 100 292
the reservoir contents is negative and 100 12 100 -460
therefore does not give any error 100 13 0 -528
message when this happens 100 M 0 ~496
' 100 15 0 -464
100 16 0 -432
100 17 0 ~400
100 18 0 -368
100 19 0 -336
100 20 0 -304

If the flow through thr + jfn
»>= 200 for more than ten hours
then Jfn must not be stoped for
more than 7 hours thereafter,

100 21 0 =272
106 21 ¢ -881
10% 22 0 -849
106 23 0 =817
106 24 o —785

Examiner weekend is not
implemented but can be used
for checking rules that
are valid for weekends.

For more information see the code which is kept in appendix E.
The Distinction Between Knowledge and Inference Machine
In this program the check of the rules is done by one function for each rule.

These functions are called from allowed and examine_weekend one after the
other and they do not interact with each other or the rest of the program.

17

Implementation

The program has been implemented in C-Prolog version 1.5 on a VAX
8530 working under VMS version 4.7. It took only something like 35 hours
to write 283 lines.

The program’s simple structure makes the programming rather
straightforward. The main problem has been to make the interpreter work
the way the manual said it should. It showed itself to be necessary to adjust
(increase) the global and local stacks to 1 Mbyte and 1,9 Mbyte respectively
and the trail to 500 kbyte of the interpreter, This should work fine according
to the manual but on the Department of Automatic Control’s VAX 780 it
did not work at all. A shift to the School of Electrical Engineering’s VAX
8530 where the interpreter worked as it should solved the problem,

18

7. Further Developments

It is possible to further develop both programs by incorporating more rules.
The main difference comes in the amount of time needed to get an usable
program. The Planner program, where there is a risk of interaction between
rules and with it’s demand for formalization of the complex class C rules,
needs much more time than the Examiner. In the latter the rules does not
interact which makes the development effort more or less linear with the
number of rules incorporated. It also uses already formalized rules, thereby
getting rid of most of the knowledge engineering needed for the
development of the Planner, To get a hint of the difference of time needed
for further development, one can look at the fact that it took me 180 hours to
write the Planner program but only 35 hours to write the Examiner program.
The Examiner can also be developed by making it able to read data directly
from the spreadsheet that the real expert uses when he makes the water
plans, If instead execution time becomes a problem the possibility to rewrite
the program into Pascal should be considered.

Another way to develop this project is to look at other ways of
implementing expert systems. Previously in this thesis has Smalltalk, an
object orientated language, and Nexpert Object, a smaller expert system
shell, been mentioned.

19

8. Conclusions

The possibility of making programs both for planning of water flows and for
criticizing plans already made has been shown. The critic has shown itself to
be much simpler to implement, and thereby resulting in a smaller project,
than the planner, At the same time the critic is as capable to solve the
problem that initiated this study as the expert system. The making of a big
planner program seems to me to be a big project of little use. Especially as a
human expert probably can do the work faster than the machine if he has an
aid that notifies him about rules that he has overseen.

Furthermore four different ways to implement expert systems: Pascal, Lisp,
Prolog, and KEE, have been studied. In this study the languages have turned
up best and the expert system development tool has shown itself to be too
complicated to be mastered in the short time that I have had to my disposal.

9, Notes

1 Abstracts from a typical waterright can be found in appendix A.
2 An example of a grinskraftpriskurva can be found in appendix B.
3 A map of the area is found in appendix C.

4 For more information about Prolog see for instance:
Prolog Programming for artificial intelligence, by Ivan Bratko,
Addison-Wesley Publishers Limited 1986
or
BDPROLOG-Un implementation de Prolog en Lisp, by Bjém
Davidsson, EPFL Hiver 87/88 (not published).

5 For more information about LISP see for instance:
Structure and Implementation of Computer Programs, by Harold
Abelson and Gerald Jay Sussman with Julie Sussman, MIT Press
1987.

6 For more information about KEE see for instance:
Expert Systems, Artificial Intelligence in Business, by Paul Harmon
and David King, John Wiley & Sons Inc 1985

21

10. Sources

Besides the sources mentioned in the previous chapter I have used the
following:

Programing in Prolog, by W. E. Clocksin and C. S: Mellish, Springer-
verlag 1984

Artificial Inteligence, by P. H. Winston Addison-Wesley 1977

Introduction to Artificial Inteligence, by E. Charniak and D, McDermolt,

Addison-Wesley 1985

Various document in internal use at Sydkraft.

22

A Abstracts From a Typical Water Right

LJUNGANS ﬁEGLERINGAﬁgﬁﬁ b3/61)

TORPSHAMMARS KRAFTSTATION OCH UTVIDGAD KORTTIDSREGLERING T
GIMAN (AA31/68) a

~om angéende 1dr1fttagn1ng m.m, meddelad den 22 augustl 19?5.

Transumt

I ek Rl Bl Tl Bl Tl Bl Rl Tl Tl Rl S S Rl B el Tl B Rl Tl S R R B A B Tt Bl Tl Rl]

~,, VATTENHUSHALLNINGSBESTAMMELSER

L P I PRI T I L I R IR N e el R Ral et Rl bk Tl ek it Bl Rt

7.4, Sammanfattning av beslutade.vattenhushdllningsbestdZmmelser

25,1 Nedre Ljungans korttidsreglering

Vattendomstolen faststdller f&ljande vattenhushdllningsbestém-
melser att gidlla f6r den vid Jarnvidgsforsens kraftverk bedrivna

dygnsreglering, till vilken tillsténd ldmnas i denna dom,

A, Korttidsreglering vid J&rnvigsforsens kraftvéfk~ —

1. Med iakttagande av de fir Holmsjdns éréregleriné gidllande be-

qtémmelﬂerna med visst undantag ehligt punkt A 2 nedan samt de
~d vart tillf#lle for Gimans korttldsreglerlng gallande bestam.

meleerna -och med iakttagande.av-vad i Gvrigt av nedanstaende
vattenhushdllningsbestimmelser framgir, ma sdkandena. utdva

~ gnsreglering vid Jarnvagsforsens kraftverk och diarvid ut-
nyttja.drsregleringsmagasinet i Hblﬁsjﬁn i sadan omfattning att
skillnaden mellan hSgsta och ldgsta vattensténd i Holmsjén i
vad pd koritidsregleringen beror per dygn icke Gverstiger 10

cm.

2. Korttidsreglerad tappning skall framsldppas genom kraftsta-

-2 -

tionen, varvid vattenfdringen fér variera mellan O och 145 n/s.
Fér Holmsjons Arsreglering faststdlld minimitappning far da .
dygnsreglering bedrives tappas som dygnsmedeltal. Dock skall
vad i punkt A 3 nedan stadgas 1akttagas. ' :

3, For Jarnvégsforsens kraftverk givna freskrifter om minim.

tappning genom regleringsdamnen skall uppfyllas.

4. Dygnsregleringsn skall aterregleras helt vid Skallbsle kraft-

~

verk enligt bestZmmelserna i punkt B 5.

5. Dygnsreglering far ej bedrivas nir drsreglerad vattenfring
vid Skallbdle kraftverk Overstiger 250 1/s.

6, Vid regleringen skall tillses att i vad pd dess skotsel be-
ror gdllande vattenhushdllningsbestimmelser for nedstroms be-

ldgna féretag kan uppfyllas.

B. Bestdmmelser fOr nedstrims beldgna kraftverk

1. _Perteboda kraftyerk (fagesisn) .
For anpassning av den vid Jéarnvigsforsens kraftverk bedrivna .
dygnsreglor;ngen ma stkandena utnyttja ett dygnsmag331n i ﬁnpﬂ—

sjtn mellan ddmningsgrénsen +158,05 m och +157.85 m.

1

2, Hermansboda kraftverk -

F5r anpassning av den vid Jérnvigsforsens krafiverk bedrivna
dygnsregleringen md sUkandena utnyttja et dygnsmagasin upp- .
stréms kraftverksdammen vid Hermansboda kraftverk i sidan om-
fattning att vattenstandet vid dammen varierermellan démnings-

grinsen +123,50 m och +123,35 m. -

tloner 1 Bth‘under dygnet storre én, 15 eme,

s L . .
T P " .t
i . " . . 3 -l l"‘: . Y
> ‘:'1; ‘ oy ."_‘; T : A ‘.

Loyt

..--—-.¢_._.—-..-_--—-

For anpassnlng av den vzd Jarnvagsforsens kraftverk beérl%ﬁa'

‘dygnsreglerzngen ma, sokandenn utnyttja ett dygnsmagaaln upp-

stroms kraftverksdammen vid Ljunga kraftverk av hogst sédan
omfattnlng att vattenstandet vid dammen varierar mellan damﬁ
nxngsgransen +112 00 m och +111,50 m.rDygnsregleringen far\
endast utnyttjas pa sadant satt att vattenstandet i Borg-

530n pa grund av regleringen aldrig overstzger +112,50 m och

aldrlg understlger +112 OO . och inte ger Vattensténdavari;-

BN

: 5:1 o foepliy

b Nederede kraftverk (Torpsgon) o o '*?‘?’;

...--—_—-——_—---_-n--c—

Under- en provotld av tre ar raknat fran 1dr1fttagandet av den

'senaste av; de bad& regleringarna i Lgungan och- Glman akall~

Lo,

gdllakfoljande' Sklllnaden mellan hogsta och ldgsta vatten—

stand 1 Torpsgon far i vad pa dessa korttidsreglerlngar berox
icke - oversthga €0 cm per dygn och skallxunder tiden 16 5f§0 ¢
inriktas pa én bé;ransning till ﬁogst QO cm per dygn. &llt“

ruhte

mdtt vid kontrollpegeln i Torps;qn._Darest sa erfcrdraé for

w”att Uppfylla desﬂa v1llkor berattlgas -och forpllktaa sokan-

dena att i erforderllg man avsanka vattenstandet vid Nederade

qaw “ll

‘kraftverksdamm.,Avsanknlngen fér dock max1malt uppgé- txll -

hogst 40 cm under damnlngagransen +58 60 m. I ovrlgt far na—

“Fgon avsanknlng ej ske vid: kraftverksdammen annat &n 1 form
“av sidana mindre variationer som normalt kan erfordras av

'.rent drlftm3551ga Bkal. Dock ma under prdvotiden avsanknlnga

tlllfalllgtvxs ske vid kraftverksdammen dven da sa- enllgt
ovan icke &r tlllatet i syfte att utrdna sambandet mellan

avainkning vid dammen och variationer i Torpsjon.

8. KONTROLLFURESKRIFTER

Sokandena har foreslagit att foljande beatimmelser skall
gdlla fSr kontroll av regleringarna sivil i Ljungan som i
Gimin (aktbil. 399 och 703, bil. A:34 samt prot.bil. 7 till

aktbil. 786 i mdlet A 43/61/a och aktbil, 79 1 malet .
A 31/68): ' -

L

SMHI férordnas att pi sUkandenas bekostnad vara kontrollant
for korttidsregleringen och i denna egenskap Svervaka, att
de for regleringen gillande vattenhushdllningsbestimmelserna
iakttages. Det aligger stkandena att tillhandahilla insti-
tutet alla de uppgifter som institutet finner erforderliga
for uppdragets fullgdrande,

Overtrider stkandena gillande vattenhushidllningsbestimmelser,
gkall detta av kontrollanten anmilas till vattenridttsdomaren,

Stkandena har att sd snart ldmpligen kan ske anordna och
for framtiden vidmakthdlla de peglar eller skalor som SMHT
finner erforderliga ur kontrollaynpunkt., Platserna fdr de

olika anordningarna skall anvisas eller godkinnas av SMHI,

Vattenstind skall avlisas pi det sttt och pi de platser som
SMHI med beaktande av parternas onskemil fireskriver. Reg-

lerade och oreglerade vattenstind och vattenféringar skall
beraknas i den omfattning som SMHT féreskriver.

Sckandena skall 1lita anteckna och hilla tillghngliga uppgif-
ter om vattenstindsobservationer och andra omstdndigheter ¢
som enligt SMHI:s uppfattning kan vara av virde f&ér bedim- ,
ning av hur regleringen utivas,

Part som Snskar dndrade eller utvidgade kontrollbsstimmelser
kan begéra detta hos SMHI. i

Atnsjes ej part med besked som SMHI lHmnat i friga rijrande
kontrollen av regleringarnas handhavande mi frigan understil-
las vattendomstolens provning.

Motparterna har godtagit de silunda foreslagna fsreskrifterna
(prot.bil. 7 till aktbil. 786 i wAl A 43/61 och aktbil. 79
i m3l A 31/68). ;

T,
Tk

OOV

LJUNGANS REGLERINGAR (A 43/61)

Nedre L jungans korttidsreglering, etapp II (VA 15/75)

Celdom meddelad den 25 januari 1983

Transumt

5, HOBJIDSYSTEM (VA 15/75 och A 43/61)

I domen angivna hdjdsiffror hanfir sig till de hd&jd-
system, som gdller for respektive kraftverks- och reg-
leringsforetag utmed den aktuella delen av L jungans

vattensystem.

6. TILLSTAND TILL NEDRE LJUNGANS KORTTIDSREGLERING,
ETAPP II, (VA 15/75)

6:2.2._Tillstdnd

Regeringen har i sitt beslut 5.7.1979 medgivit att
tillstand lamnas till etapp II med den inskrinkningen
att fullstédndig &terreglering &ret om skall ske vid
Viiforsens kraftverk. Vid detta forhdllande och enir
vad direfter férekommit i malet ej utgir hinder dére-
mat, lémnar vattendomstolen stkandena tillstand att
utdva korttidsreglering i Nedre L jungan enligt nedan
angiven precisering.

T e R T TR R e e m e g mm e e e e e =, =

2.

Vattendomstolen fireskriver, att tillstdndet att ut-
nyttja amplituderna i Holmsjén skall vara anknutet

till den angivna, nuvarande utbyggnaden av Jérnvidgs-
forsens kraftverk samt att erforderlig skadereglering

skall anpassas hirefter.

Skulle i en framtid begéras tillstand stt avlieda mers
vatten genom kraftverket #n 145 m3/s, varigenom det
skulle bli'mﬁjligt att utnyttja de i denna dom till-
stadda amplituderna i stirre omfattning &n vad som

fér ndrvarande kan ske, skall i anslutning hirtill
behandlas de skador som kan uppkomma savial i Holms jon
som nedstroms kraftverket av ett sidant stirre utnytt-

Jande.

Vattendomstolen féreskriver sdsom sirskilt villkor fir
tillstandet, i vad det avser Stodesjon, att sdkandena
till etapp II skall svara for de berdkningar, som
erfordras fir kontroll av att regleringsmagasinen i
Gimdn icke anvéndes i hégre grad #n som féljer av den
begrénsning av utnyttjandet som punkt 3 i vattenhus-
hédliningsbestédmmelserna f&r Gimdns utvidgade korttids-

reglering ger upphov till,

Sveriges Meteorologiska och Hydrologiska Institut
(SMHI) forordnas att utdva kontroll Bver ovan angivna
berakningar och drift. Kostnaden hidrfior skall bestridas

av sdkandena till etapp II.

Med ovan angiven bakqrund har vattendomstolen i nedan
angivna vattenhushallningsbestimmelser sammanfattat
de tillstand till korttidsreglering som ldmnats ovan
och de Bvriga bestdmmelser fGr vattenhush&llningen

som domstolen funnit skola gdlla fir etapp II.

Vattendomstolen faststdller f6ljande vattenhush&llnings-
bestdmmelser f8r Nedre Ljungans korttidsreglering,

etapp IIL:

A. Korttidsreglering vid Jarnvdgsforsens kraftverk

1. Med iakttagande av dels de for Holmsjons arsreglering
gédllande bestammelserna med det undantag som anges i
punkt A 2 nedan och dels vad som i Ovrigt f@reskrives

i nedanstdende vattenhush&llningsbestimmelser ma sbkan-
dena utova kortfidsreglering vid Jérnvidgsforsens kraft-
verk och darvid utnyttja &rsregleringsmagasinet i
Holmsjon i sédan omfattning, att skillnaden mellan
hdgsta och lagsta vattenstand i sjon i vad pad korttids-
regleringen beror icke dverstiger 20 cm per dygn och
vecka under tiden 16.5 - 30.11 och icke Sverstiger

20 cm per dygn och 50 cm per vecka under tiden 1.12 -
15.5.

2. Korttidsreglerad tappning skall framsl&ppas genom
kraftstationen, varvid vattenfdringen far variera
mellan 0 och 145 m3/s. For Holmsjéns arsreglering
foreskriven tappning enligt dom 25.6.1970 punkterna

2 och 4 far da korttidsreglering bedrives tappas som
dygnsmedeltal. Dock skall vad i punkt A 3 nedan stadgas
iakttagas.

3. For Jarnvdgsforsens kraftverk givna foreskrifter

om minimitappning genom regleringsdammen skall uppfyllas.

4, Vid korttidsregleringen skall tillses att i vad
pad dess skitsel beror gdllande vattenhushiallningsbe-

stdmmelser f6r nedstroms beldgna féretag kan uppfyllas.

B. Korttidsreglering vid Partebeda kraftverk

For korttidsreglering vid Parteboda kraftverk md - med
iakttagande av vad som foreskrives i nedanstdende vat-
tenhushdllningsbestdmmelser - utnyttjas ett magasin

i Angesjon mellan dimningsqrinsen + 158,05 m och

+ 157,85 m.

C. Korttidsreqlering vid Hermansboda kraftverk

Fér korttidsreglering vid Hermansboda kraftverk m& -

med iakttagande av vad som fSreskrives i nedanstdende
vattenhushdllningsbestimmelser - utnyttjas ett magasin
uppstrims kraftverks-dammen i sddan omfattning att
vattenstandet vid dammen varierar mellan damningsgriansen
+ 123,50 m och + 123,35 m.

B A Pricecurve

et M oL B et e L e

Delglves PDP, PDER, PDN-KRD, PDN-HEU, PDN-NBO, PDN-MRP, PDN-NS&

|'r"’“"‘"r'-'?a"‘,. AN

___________________ __PROGNOSERAT GRANSKRAFTPRIS . VECKA. ﬂ...?;.
1lzis{d}s{s{—7lsisi1olnl1zl1ai14l15‘116
Granspris kr/Mwh '
Kl ‘I-)—aé"[datUm N I O D
LS s& Mo~ Cns 77'»& ' Fre 70w pE
A 1194 20~ 12. & 23.6 1y- psie | - lzee
7-8 | W0 25" L0 §0 Y0 |© T 2
8— 9 (Y% Yo Yy Vo
9—10 {SD by~ by .
. 10-1] | i) Yo
-1z | | S0 78 (,J/
12-13 | S 20 20
13-14 | 4y~ by ' i
“ -1 ¥0 30 >0
15— 16 L0 L0
1617 JO YD
1718 vo { Yy by
18—19 by I v O Yo
19—20] Ly |
2021 i \ |
21-22 ' by SO | Y6
2-2 | Yy v) 4y~ 4y %
23-24 | kO vo Yo
0 1
) 1— 2
B
3 4
-6 |0 Y0 Yo ‘ 7%
- 5— 8 |> iy~ 28 ys~
6-7]937 7 7| bo 27 Sy
7—7
Hehn §§96/7

C Map of Nedre Ljungan

ANNASS JON
220 B e
Oky mYy £4S% F D3

[TRANGFORS I
Eﬂ |+ Tum Bhetm C0Sals

|Dtln)

3 £ 0% FsX

RATAN Ts
A STww BEita C00alA
U’B 0l £330 F1me

TURINGE B
A HW B 22am C 0ot
B 5Im?/s € 0 h FHs2 _J

=

BURSNAS el
H_—_U AYHW BEzw L niats !
D 33adAE Y i Fage.

HAYERN-MELL ANSION
A n2 M-’, 213m

N £
BESAR] RS A I

HOLMS JON | GIMAN

A i~ Boom
1459
D_“_‘J‘\ KR LTNET T

MS JOM= LERINGEN
AT uad BG7a
- . Daiaks E ML 8 ¢

" [sarnvagsForsen 1] . o

& § P}\ﬁ IAEw (5% -.J.’s: m] U:D l]LERINGSFORSEN J/

D67 mds E M. F 1978 ATHN B1E0A RN
; | O Jamdiy £ 33% F 15ae

lparTEBODA [EX
iasimw BNDm C340-0%
o ety £ AL T uaag ,IB
HERMANSBODA - L1 T .
A rtem B am 10 | NEL . ‘ ' ‘
D el E3sen Fagsy) ‘ : o
LJUNGA 2 :
= - 436 #m 4930 CtaSadfs T TORPSHAMMAR t
. iy e o —— ™ A0 ex 3128 0m € 100N
i B Fedrs £ 3 F15L}eTY
f
|NEDERE DE o —
1o g um H_}‘,t'ﬁa’,’\m i o
Ja eyt 320e's 1351 | =
SKALLBOLE 2
A Lbuw BILSe LIS PO
CERLZAE S AT '
1}
MATFQRS - . ;‘H]
P I SO N .
LT PSS DU 17)
Y S = 13 V
VIFORSEN - ml
[T O Y R RTT T !

prray i AL E 0

D Program Code for the Planner

This code has been “Englified” to make it possible for an English speaking
person to pronounce and understand the variable names. The code was

originally written in Swedish,

kAR AR A A AT AAR A AKAAAAAARAA AR AKAR AT IR ek Ak kA h kA hhrAhhkhAhhdhbhdhdr bt khhdhrs

. e

*kk INITTATION Rlakd

L

R AR A AR AR AR AR A A AR A AR R AR R AR A AR AR AR A AAR T AR KA A AR ARARA KRR AR RA AN AN A ARk A LA h ARk k

INET INITIATES THE GLOBAL VARIABELS:

Station : The power station
Number of hours : Number of hours for which the
plan are made. Must be 168 = a week.
Maximal flow : Maximal flow through the station.
Prices : List of the power prices for each
hour,
Pricelist : List consisting of the used priciles.
Week : List of the hours of the week, every

hour has the properties flow,
day, contents, and price.

Na Ma Ve e e e Ma e e Wa e e e wa

read first day

read average flow

read station

initiate station
read_initial amount of water

Average flow : Average water flow through the

river in km3/s.

; Amount of water : The total flow through the river.

: Initial amount of water: Same as Amount of water.

; Initial content : The reservoir contents when you

; start planning.

F rirst day : The first day of the week (yymmdd).

r

H INIT USES THE FUNCTIONS:

: read prices

H create pricelist

!

(define {init)
(set! Station (read station})
(set! Number of hours 168)
(set! Average flow (read L average flow))
(set! Initial content (read initial amount of water))
(set! First day (read first day))
(initiate station Station)
{set! Maximal _flow (getprop station 'maximalflow))
(set! Max content (getprop station 'max content))
(set! Prices (read prices))
{set! Pricelist (create pricelist Prices))
(init week Fixst day Prices)
(set! Amount of water {(* Number of hours Average flow})
(set! Initial amount of water Amount _of water)

Akkd*x READ STATION AEKEARERRAARARRIAKEAR AR AR AR AR A AR ARAARA AR AR AR KR A AT TS hdh&d

R TY

RETURNS STATION
READ FROM SYSSINPUT

.. e

{define {read station)
(let ({ station ""))
{do ((1 0 1))
{{not (eqv? station ""}) station)
(display "Which station?")
(set! station (read))}

)

; *kk**x END OF REBD STATION * kA kdkk Ak KAk k kX kX KAKARA KKK KA KKK KR KKK HAK AR HKRFIXK

.
h

.
r

* J ok kA REALAD AVERAGE FLOW ***k***

RETURNS THE AVERAGE WATER FLOW, READ FROM SYSSINPUT

(define

(let

(read_average_flow)
({ flow 0)

{ do ({ flow 0 flow))
((and (nmumber? flow) (positive? flow))
flow
)
{ display "what is the average flow?")
{ set! flow (read))

i F¥AEEE END OF READ AVERAGE FLOW FRwhkhdkhkkd sk k ko dedrdok s d o 5o o o o b Fo Jo ok o % 7k ook e e o oo e

*hkkkk READ INITIAT, AMOUNT OQF WATER AR EA A A I AR A AR KA R AARRA A AR A A A A A KA AR A AN A A A r R R RA

. W

RETURNS THE INITIAL AMOUNT OF WATER IN THE MAGASINE
H THIS IS READ FROM SYSSINPUT

{(define (read initial amount of water)
(let ((contents -1)}) ~—
(do ((contents -1 contents))
((and {number? contents) {>= contents 0))
contents

)
(display "What is the initial amount of water?")

(set! contents (read))

: kA K E K END} OF RELD INITIAL AMOOINT oF HWATER **:

Aikkkk READ FIRST DAY ****************k**********************************

RETURNS THE FIRST DAY OF THE WEEK ON THE FORM YYMMDD
FROM SYSS$SINPUT

- me wy e

(define (read_first day)
(let ((day 0 })
{ do {{ day 0 day})
{{and (number? day) (positiver? day})
day

)
(display "What is the first day of the week (yymmadd) ?")

(set! day (read))

§ FFFKE END OF READ FIRST DAY Ahkdhkokok ko sk ko sk ko f ok e f kK o & ok ok ok o ook e ok ook ook

; KEFHK INITIATE STATION *F&kkokkkohd koo ook ded o dokk oo ok ok o ok ok oo o e ok ok o ok o ok ok e e o
H
{define (initiateﬁstation station)

(case station
{ {jfn jaernvaegsforsen jarnvagsforsen Jaernvaegs forsen

jarnvags forsen
) (initiate station jfn))

)

{(define (initiate station jfn)
(putprop 'jfn fflows (list 65 65))
{(putprop 'jfn 'maximalflow 120}
{putprop 'jfn 'tillirinning (make-list Number of hours Average flow))
(putprop 'jfn ‘'minimalflows (make-list Number of hours 0))
(putprop 'Jjfn 'max content 600)
(putprop 'jfn 'torpshammarflows (make-list Number of hours 0})
)

: **%% END OF INITIATE_STATION KERRREAKRERAKKIARRKA KKK IARkRARRkAhhkhAhhkkkhkrhhikhkirrdkrhkkdhiihisx

Kk ek READ PRICES #*fFFAXA kA XA A KA AAA Ak A AAAAbhhhhhdhrdRArAhRdhrhkdhdhhk

~ e e

RETURNS A GRAENSKRAFTS PRIS KURVA READ FRCM
pricelist.dat

CALLS THE FUNCTIOMS read prices 1

: read pricefile

~. e

(define (read prices)
(read-char}
(let ({file (read pricefile)))
{let ((port (open-input-file file))}
(let ({ 1 (read prices 1 port}})
{ close-input-port port)
1

}
)
)

(define (read prices 1 port)
{ let ((x (read port)))
{cond ((eof-obiject? x} {))
(#t (append! (list x) (read prices 1 port)))
)

)

(define (read pricefile)
(display "In which file is the pricelist kept? (pricelist.dat)™)
{(let ({ch {read-charx}) (stx "™))
(cond
{ (char=7? ch #\newline)
"pricelist.dat"
)
({char=? ch #\")
{(unread-char ch)
(read)
)
(#t
(clear-input-port)
(read pricefile)
}

*%k*k* END OF READ PRICES *AKAARAAARARKRAAARAARAARA AR AR AR AA R AR R KR AR

p KkEERX CREATE PRICELIST K*AKAARAARFAARAXARKAARAARAARRK AR KRR ARRA AR AR KA KA XA AR AR A K
/
’

RETURNS A LIST WHERE THE ELEMENTS OF PRICELIST APPEAR ONCE FOR

; EACH KIND OF ELEMENT
; CALLS THE FUNCTION create pricelist_1

(define (create pricelist pricelist)
(create_pricelist_l {sort > (list-copy pricelist)})
}

{define (create_pricelist_; pricelist)

{ cond
{({null? pricelist) ' (})
{{(=1 { length pricelist)) (list {car pricelist)})
{{ eqv? (car pricelist) (cadr pricelist})

(create pricelist 1 (cdr pricelist))
)
{ #t {(cons ({(car pricelist)
{create pricelist 1 (cdr pricelist))

1)

} *%%%% END OF CREATE PRICELIST ***dkAEdkAdhhkdhdddhhhhkhkhrhhAhkkARRAAARIARATIAIN ALK

kkEkrREk TNIT WEEK FA*EREAAAAR AR AR EARKRAAREA A AR ARA AKX A A ARARAA KK AT R AR KA AT A A A hhhdhd

-

CREATES THE GLOBAIL, LIST WEEK AND GIVES EVERY HOUER THE
PROPERTIES flow, price, day, contents

e e e e e

INIT WEEK CALLS THE FUNCTION init week 1

(define (init week first day pricelist)
(set! Week (let ({(i 0) (v (make-list Number of hours 'hour))
(day (remainder first day 10000))
(year (quotient first day 10000}))
)

(init week 1 day year pricelist i)

)

(define (init_week 1 day year pricelist i)

(cond
{((=1 128) ()
((= 1 (length pricelist)}
(let ((post (gensym)))
(putprop post 'flow 0)
(putprop post 'day day)
(putprop post 'price (car pricelist))
{(putprop post 'contents 0}
{list post)
)
)
(#t (1+ 1)

{let ((post (gensym}))
{putprop post 'flow 0}
{putprop post ‘'day day)
{putprop post 'price (car pricelist))
{putprop post 'contents Q)
{cons post
(init week 1 (if (= 0 (remainder 1 24))
(datum+ day year) day) year (cdr pricelist) i
)

~e e e wa

*kkAikk END OF INIT WEEEK Rk Ak Ak kA A A A Ak ARk A Ak kA A AR A A Ak A A A Ak A K hrh kA hk ki

AREAF DATUME H AR A AR A AR AR A AR A A AR A A A A A AR KA AR AAKRAAAAA KRR AR AR R AR T h A+ h kA kdd

INCREMENTS day IN AN INTELIGENT WAY

(define (datumt+ day year)

.

.
L
.
r
.
r’
.
r

(case day
{0131 0201)
(0228 (if (= 0 (remainder year 4)) 0229 0301))
(0229 0301)
(0331 0401)
(0430 0501)
{0531 0601)
(0630 0701)
(0731 0801)
(0831 0901)
{0930 1001)
(1031 1101)
(1130 1201)
{1231 0101)

(else (1+ day)})

)

*hkkk FND OF DATUMF *AAXAXRAAREAAAAAKRAAT AR AR R AR A RRAT AR AR AR AR AR KA R AR h A hhkhhh ks

*k K END OF INIT *%%

*hkkk PRINT FLOWS *H A ARk kA Ak h Ak h AR AR A AR A A A A AR AR A A AR I AR A AR AR AR A AR AR R AR ARk k&

WRITES WEEK,CONTENTS AND WEEK.FLOW IN A HANDSOME WAY
TO SYSSQUTPUT

{define (print flows week)

(lLet ((contentsvect (make-vector 7 0)) (flowvect (make-vector 7 0})

{pricevect (make-vector 7 0)))
(newline)
{display ™ day 1 day 2 day 3 day 4
{newline)
(display " con flw price con flw price con flw price con flw price
{newline)
(newline)
{do ((L 0 A+ 1)))
{((= 1 24))
(do ((j 0 (1+ 3)))
{{(= 3 7) ¢(newline))
(let ({ hour (list-ref week (+ i {* 4 24)})))
(let ({contents (getprop hour 'contents))
(flow (getprop hour 'flow))
(price (getprop hour 'price))

da:

cO1

(vector-set! contentsvect j {(+ (vector-ref contentsvect)

contents)

)

(vector-set! flowvect j (+ (vector-ref flowvect j)
flow)

)

.
r

~

N+ Se Sa N v e v T

)

(case (floor (* (log (abs contents)} 0.434294482)) ;LOG 10

N = O

)

(display (format ~a" contents)))
(display (format " ~a" contents)))
(display (format " ~a" contents))}
(display (format *~a' contents)})
(display (format "~a" contents))})

(case {floor (* (log flow) 0.434294482}) ;L0OG 10

(

Db W N = O

)

{(display (format ~a " flow)))
{(display {(format " ~a " flow)))
{display (format " ~a " flow))}
{display (format "~a " fliow}))
{display (format "~a " flow}})
{display (format "~a " flow)))

(case (floor (* (log price) 0.434294482)) :L0G 10

(

N WNHEO

)
)

{newline)
(do ((1 0 (1+ 1}))
((=17)

(display (format " ~a " price)))
(display {format " ~a " price)))
(display (foxrmat "™ ~a " price)})
{(display (format "~a " price}))
(display (format "~a " price}))
{(display (format "~a " price)))

{let ((contents (quotient (vector-ref contentsvect i) 24}))
(flow {(quotient (vector-ref flowvect i) 24))

)

{ case (floor (* {(log (abs contents)) 0.434294482)) :1L0OG 10

{ 0 (display {format '
(display {(format
(display (format
(display {(format
(display (format

o~
B Lo N

~a" contents)))
" ~a' contents})))
" ~a" contents)}}
"~a™ contents)))
"~a" contents))}

{ case (flooxr (* (log flow} 0.434294482)) :LOG 10

{ 0 (display {(format '
(display {(format
(display {format
(display {format
(display {format
(display {(format

o~
N W

)

{(newline)

FOR TIME:= 1 TO 24 DO
FOR DAY:= 1 TO 7 DO

~a " flow)))
moo~a " flow)))
"o~a " flow)))
Ma T flow)))
o " flow)))
Mg " flow)))

*k%k%k*x END OF PRINT FILOWS R*xA*IAETAAAF b AAhhFdAdrhkrRdrhdhhhhhhhbhhkhrrrd ik orkx

kkk PLACE FVENLY *FAXK Ak AR ARARARAARRARRRNIA LA hkdkdk ko hhkhhkkdokdhkk* v hkkhkhsk

IF HOUR.PRICE= price AND Amount of water > x * Initial amount of water

THEN
HOUR.FLOW := MAXIMALFLOW

CALLS THE FUNCTION place hour

{define (place evenly Week price x)
(let ({mon ()) (tue () (wed () {Ehu) (fxri () (sat ()) (sun (1))
{(let work ({i 0) (Head (car Week)) (Tail {cdr Week }))
(cond
({=1 (1- Number of hours))
{(set! sun (append! sun (list Head)})
)
(#t (case (quotient i 24)
{0 (set! mon (append! mon (list Head))
{1 (set! tue (append! tue (list Head))
{2 (set! wed (append! wed (list Head))
{3 (set! thu (append! thu (list Head))
{4 (set! fri (append! fri (list Head))
{5 (set! sat (append! sat (list Head))
{else (set! sun (append! sun (list Head))))
)
(work (1+ i) {car Tail) {cdr Tail)}

)
)
{map place hour mon tue wed thu fri sat sun
(make—-list 24 price) (make-list 24 =x)
)

(define (place hour hourl hour2 hour3 hourd hour5 hour6é hour?
price x)
(let ({ 1 (list hourl hour2 hour3 hourd4 hour’ hourét hour?})
(waterlimit (* x Initial amount of water))
)
(let place hour 1 {((H {car 1)) (T (cdr 1)))

(cond
((= price (getprop B 'price))
(cond
{(> Amount_of water waterlimit)
(putprop H "flow Maximal flow)
{set! Amount of water (- Amount_pf_water Maximal_flOt
(if T “(place hour 1 {(car T) (cdr T)))
)
}

)
(T (place hour 1 (car T} (adr T)))

Hhkhk END QOF PLACE EVENLY ®AARAAKAAAXAARIAREAATANAARAAAKREAAAR KA RKAREFAA AR AR K AL kK)

AR AR R AR A TR AR A AR A AR AR AR A AR A KRR A AT R A AL ARAARANA AR R AR ARRARRARAARR A AR T I AR AN A R H s

*okk CLEAN UP *%*

AR R A KA AR A A A R A R AR AR A AR LA R A AR R E A A A AA R R A KA AR AR A AR ARAARRRAR AR FT A A AN A A A RRA

e e e we s

TAKES THE RULES IN rulelist AND APPLIES THESE TO WEEK.
TO INTRODUCE A NEW CLENING UP RULE JUST WRITE IT IN RULELIST

~e e wa wa

(define {clean up station)
(let ((rulelist (list clean up 1 clean up start and stop)))

{let work ((Head (car rulelist}) (Tail (cdr rulelist)))
{Head station)
(if Tail {work (car Tail) (cdr Tail}))

H KR A AR A AR AR A AR AR AR A A R IR AR R R AR A AR AR ARAFTARARARA R AR AR A AR A A AR AR AT A K ATk n*

H i END OF CLEAN UP hkk

FRAA KA KA ATA A AR A AR A A A A A A AR A AR AR A RRAAARIA AR A RRRAR AT AR A A AR A AR AR A ARk hkkkAk

Fhhkkd COTEAN UP I HFHEA A A A A A A AR AR A A AR AR R AR AR AR AL AR A F AR A AR AR AR R KK hrhkdok

~. ma e

IF THE TIME BETWEBEN TWO HQURS WITH Maximal_flow IS ONE HOUR TBAT
HOUR IS GIVEN THE FLOW Maximal flow.

~

~

{define (clean L p 1 station)
(let work { (v Week })
(cond
{(null? {(cddr v)) ()}
(#t (cond
({and (= Maximal flow {getprop {car v) 'flow}
{getprop {caddr v) 'flow))
(< (getprop {cadr v) 'flow) Maximal flow))
(set! Amount of water {~ Amount of water Maximal _flow))
(putprop {cadr v} ‘flow Max1ma1_flow)
(putprop {(cadr v} 'flag 'haal)
)
}
(work (cdr v))

;O XKREAX END OF CLEAN UP 1 Frrkr kR rr ko r A A A A AR R AR A AR AR R A AR R AR R AR AR ARk h A kA kR

-

k*kk4*% CLEAN UP START AND STOP *AARAAAKRAARRAXAAKARKRAARKRAI KKK ARk kA kXK & H AT A K&

STARTS AND STOPS CNE UNIT PER 30 MINUTES

CALLS THE FUNCTIONS: clean up 2
clean up 4
running?
stoped?
create startflows

e ME N e e We e e

-

(define (clean up start and stop station)
{clean up 2 station)
{clean - L up 4 station)
{clean - L up 5 station)

*khkk*k CTEAN P 2 *FkFA KA A KA A KA A AT AT AT IR A A AR AR AR R AL A AN A KRR ARR AT A AR ALK

-~ e

REPEAT
K:= K+1
IF {(STOPED x HOURS) AND (RUNNING CEILING{ NUMBER OF UNITS/ 2)
HOURS THEREAFTER) THEN -

e we ma e

~a e e

~

e e e A e e

FOR J:= 1 TO CEILING{ NUMBER COF UNITS/ 2) DO

BEGIN
WEEK[K] .FLOW:= STARTFLOWS[J]
WEEK[K] .FLAG:= START

END
UNTIL FOUR ELEMENTS LEFT IN WEEK

CALLS:

stoped?
running?
create startflows

(define {(clean up 2 station)
{let ((starttime (ceiling {/ {(length (getprop station "flows}) 2)))

e s e e Me e e e e we wa

e e e

e e e e e

)

(startflows (create startflows station))
(x 1)

{let work {((v Week)})

*kkkk END QOF CLEAN UP 2 *hkhkdAA X hdAAAXAAAAARNAARAARREAKR I AR ARRARIAF AR A A KA XK

{cond
((and (steoped? v 0 starttime) (running? v starttime x)
{not (eqv? {(getprop (car v) 'start) 'stop)}
)
(work
(let place startflows ((vl v) (s startflows))
{cond
({(= (length s) 1)
{putprop {(car vl) 'flow (car s))
{putprop {car vl) 'flag 'start)
vl
}
{(#t (putprop (car vi) ‘'flow (car s))
{putprop ({(car v1) 'flag 'start)
(place_startflows {cdr vl)
{cdr s))}

)
)
{((null? (cdr v}) (})
((null? (cddr v)} ()}
{({nall? (cdddr v}))
((null? (cddddr v)) (})
(#t (work ({(cdr v}))

FhikkE CTEAN UP 4 * A AR A AR AR X AR AR R AR A AR R A A AR A AR A AR KA AR A A A AR A AR ERA KRR A ATk ok

REPEAT

Ki= K+1
IF (RUNNING x HOURS} AND (STOPED CEILING{ NUMBER;QF_UNITS/ 2)

HOURS THEREAFTER) THEHW

BEGIN
K:=K+x
FOR J:= 1 TO CEILING{ NUMBER OF UNITS/ 2} DO

END

BEGIN
WEEK [K] .FLOW:= STARTFLOWS [J]
WEEK [K] .FLAG:= START

END

UNTIL FOUR ELEMENTS LEFT IN WEEK

CALILS:

stoped?
running?
create startflows

(define (clean up 4 station)
{let ((stoptime (ceiling (/ {length (getprop station 'flows)) 2)})
(stopflows (reverse (create startflows station)))
(x 1}
)
(let work ((v Week))
{(cond
({and {(running? v 0 %) (stoped? v x stoptime)
{(not (egqv? {(getprop (car v) 'flag) 'stop))
)

(work
(let place stopflow ({vl (list-tail v
x)) {s stopflows)

)
(cond

({= {(length s) 1)

(putprop {car vl) ‘'flow {(car s})
(putprop (car vl) 'flag 'stop)
vl

)

(#t (putprop (car vl1} 'flow (car s})
{(putprop (car vl) ‘flag 'stop)
(place_stopflow {cdr vl)

{cdr s))

}
)
({(null? {cdr v)} ()
({(null? {cddr v}) ()}
((nmall? {cdddr v)} ()
((null? (cddddr v} ())
(#t (work {cdr v)})}

; FRERX END OF CLEAN UP 4 * xkkkr kA h kR krkak kA Rk A Ak R AR A A AR A AR A RAR AR AR A AR A Ak hkk

~a ™e

IF week(1l].flow >0 THEN week[l]}.flag := start
IF week [Number of hours}.flow >0 THEN
week [Number of hours}.flag := start

-~ e

-~

{(define (clean up 5 station)

(if (> (getprop {car Week) 'flow)} O) {putprop (car Week) 'flag
"start)
)

{1f (> {(getprop {car (last-pair Week }) "flow) 0)
{putprop {car (last-pair Week })) 'flag 'stop)
)

H TRUE IF FLOW=0 THE HOURS x TO =+ y

{define {stcped? week x y)
{cond
(({ null? week) #£)
((> 2 0} (stoped? (cdr week) (1- x} y})

ARKAK CLEAN TP 5 ARAAAARARIRAAAARARRRAARA KA R AR AR A AR AAR AR KA TR IR IR IR R h Tk Ak k

*kAkE FND OF CLEAN UP 5§ ARAAARRARERRAAAAARK AR KA AR ARARAAR KA AR KRR RAA TR AR IR A AR

FhrkEk QPOPED? A KA AR A A R AR AR R AR AR AR A A AR A AR AR A AR A AN T A AR AR A ARA AR R AARAR KA AR AT A A KK

({zero? (getprop {(car week} 'flow))

(if (= yv 1} #t (stoped? (cdr week) 0 (1- y)))
)
(#t #£)

**k&% FND OF STOFED EHAKEEAKRKEAAKRAKARAAKARAAANARAARAEARARRAAAAAAAN K AR RS AN AR A AR AK KK

*HEEF RITNMNINGT AR A AR A AN A A AR A AT K AARAARA AR A AR T AFRRARFTRAANRA AR AL LA b b hTkdhhhhidk

. wa we

TRUE IF FLOW<>0 THE HOURS x TO x+ y

(define (running? week z y)

(cond
{({(nuall? week) #£)
{(> x 0) {running? {(cdr week) (1- =} ¥))
{ (positive? {getprop (caxr week} 'flow))

(if (= vy 1) #t (running? (cdr week) 0 (1- y)))

)
(#t #1L)

*kk*x*% FEND OF RUNNINGT? * e o Fo e ok R R R e ok R kot o e ok R T o o R ok o ok ok e o o ok e ok v R e ke ok R o R R O R e e e ke ke ke e o

hkk CREATE STARTFLOWS FAAAA AR ARA AR AXAAEARRIREARFAKRERA IR IR R KT RIRFRFARAFH R LA

RETURNS A LIST THERE EVERY ELEMENT GIVES THE FLOW NEEDED TO START
ONE UNIT IN station EVERY HALF HOUR

~a wa e e wa

(define (create startflows station)
(let work {((1 ({(sort < ({(getprop station 'flows)))
(number (length (getprop station "flows)))
{earlier Q)
)
(cond
{({= 1 numbex} (})
({even? number)
(cons (quotient (car 1} 2)
(work {cdr 1)} (1- number) (car 1})
}
)
(#t (cons (+ (car 1) (quotient {(cadr 1) 2} earlier)
(work {(cddr 1) (- number 2)
(+ {(car 1) {(cadr 1) earlier)
)

-

*k*k4%%k END OF CREATE STARTFIOWS FhERAKKEAKAAK KR IAAA I AKX A RR A AR AA A A A A AR F A A A A AR R AN

A AR A AR T AR A A A A AR AR A AT A AR AARKEAKRAAAARAKA AR AART AR ARNAT AR AR AR AR ARk AR AkhkkkFrhhhhhhikhih

; **%%%x* END OF CLEAN UP_START AND STOP *¥#%%

H A A A AR A AR A AR A I AR A A AR A AR AAAARA AL AR AALA A AL AR A AL A AR AN A AR AR A hhhkh A b rhkhhdrdk

H *hkkkk MAINPROGRAM **

.
r

(define (mainprogram)

{do
{(str "J" stx))
((not (men]ber Str (list I!jll IIJII "Y" I!Y" lljall IIJaII
lIJAH "Yes" I!Yesll IIYES")
)
}}
(init)

{place mimflows station)
(let work ((price (car pricelist)) {(list a (cdr pricelist))
(x (= 1 {read =)))
)

{cond
((null? list a) ()
({ > Amount_of water (* x Initial amount of water))
(place evenly Week price x)
(work (car list a) (cdr list_a) x)

)
)
(clean up Station)
{apply reservelr rules Week)
(print flows Week)
(display "One more time?")
(set! str (symbol->string (read)))
(newline)

)
"FORTRAN STOP"
)

(define (read_x)
(do {(x 0 x))
({and (number? x) (positive? x})

)
(display "How big part of the water should be placed?")
{ set! x (read))
)

¢ XFEER BND OF MATNPROGRAM F* KA AR dkdhkhhkhdkkhkkh Rk h kT h ko hkhkhhdkhdok ki kk ke hkkhkh s

khkkk PLACE MIMELOWS A AR R KA IR AR A KRR AR AR AT AR I A A A AR R AR AR AR R ARk Nk b hd sk

I

H

H FOR I:= 1 TO Number of hours DO

e Week [I].flow := station.minimalflows|[I]

(define (place mimflows station)

(let work ((v Week) (minlist (getprop station 'minimalflows)))
{cond

{{nuli? v) ()

(#t (putprop (car v) 'flow (car minlist))
(work (cdr v} (cdr minlist))

)

* Fr koK END OF PLACE MIMFLOWS * A ARKAAR AR IR KR AR T AR KA KA Ak dk K& doh & ok &k Aok 7 & % o de de i

H Lt UPDATE CONTENT ***

N N e e

FOR I:= 1 TO Number of hours DO
Week [I].contents := Week [I-1].contents+ Average flow- Week [I].flow

(define (update content list a)

e e e e e

KExAk*x

*hkkk

(define

.
r

[
r
.
L
r
.
r
r
r
.
r

Khkhkhx

*Rkkk

(let work (({contents Initial content) {1 list a))}
{cond
{({null? 1) contents)
{#t
(let ((s (-(+ contents Average flow) (getprop {(car 1) 'flow))))
(putprop {(car 1) 'contents s)
{work s {cdr 1))

END OF UPDATE CONTENT ®#*k&kkkdhkhkiddhkhdohdohdkkhdhkdkkkkhdrhktfhdkkkhn ks

APPLY RESERVOIR RUIRS #&kikkdkdhkdhkirhhkhkhhdrhhddrhhhhhhhhhhhhhhhhthrhhhrs

UPPDATES CONTENT AND ADJUSTS FLOW IN ACORDANCE TO THE RESERVOIR
RULES

CALLS: update content
work between blocks

(apply reservoir rules list a)
(update content Week)

(update content Week)}

(work between blocks list a)

END OF APPLY RESERVOIR RULES #A#kikkAkkARkAhIkhhkahhhdhhhhrhh ik sk hr Ak k&

WORK BETWEEN BLOCKS #*AXAAKAERRAKIEAKRRAKAERKARKAKEAKREAKAXAKRKAKRAAKAARA XA RRA AR AR AN

CHECKS THAT THE RESERVQIR NOT BECAMES TQ BIG BETWEEN THE MAIN RUNS

CALLS: water left
flow<>zexro
place best _side
work on blocks
place costliest

(Gefine {work between blocks list a)

(let ((before (}) (now {car list a)) (after (cdr list a))
{(water 0) (i 0)
)
(do ((i 0))
{{or {> ({(getprop now 'contents) Max content)
(null? after)
{equ? {(getprop now 'flag) 'start)
Y ()
{set! before (cons now before))
{set! now {(car after))
{set! after (cdr after))
)
{cond
({null? after) ()
((> (getprop now 'contents) Max content)
(set! water (water left (cons now after)))
(set! i (flow<>zero list a})
(cond

({(and (> 1 0) {< i {length before)})
(place best side i list a water)
{set! now (car (list-tail list a 1)))
(set! after (cdr (list-tail list a i)))
(1f {not (mull? after)) (work on blocks (cons now after)))
}
(#t
{set! i (place costliest 1list a before water})
(place best side i list a (- water
(car {getprop Station "flows))}
)
{set! now (car (list-tail list a 1)})
{set! after (cdr (list-tail list a 1))}
{if (not (null? afterx)} {work on blocks (cons now after}))
)
)
)
(#t
{(work on blocks (cons now after))
}
)

kkk END OF WORK BETWEEN BLOCKS F*dkkkhkanhRAARAKAA AR ARARKE IR Khkhh ko dof ko hokhok kohdod kok

*AkKkk WATER LEFT **hkkAkdRARRARAFRARRARR AR R AR KT KA RF R IR K IR Ahhhhkdhkhhdkddokk

RETURNS THE AMOUNT OF WATER THAT MUST FLOW THROUGH THE STATION
UP TO THE FIRST START TO ENSURE THAT THE RESERVOIR SHOULD BE
FULL ATT THE MOMENT OF START,.

e Ms e we e

-~

(define (water left list a)
(let work ((water 0) (1 list a})
{cond
({rmull? 1) water)
{({egv? (getprop (car 1) ‘*flag) 'start} water)
{(#t
{work (+ water (- Average flow (getprop (cax 1) 'flow))

E Program Code for the Examiner

This code has been “Englified” to make it possible for an English speaking
person to pronounce and understand the variable names. The code was

originally written in Swedish.

/* The C-Prolog 1.5 interpretator is started with the comand
prolog —g 1000 -1 1900 -t 500 */

/* Representation of a unit
unit (name, flow). */

unit (jfn, 65).
unit (3fn, 120},
unit (j£n, 0).

unit (}fn, 145) .,
unit (1ju,0).

unit {1ju,55).
unit {(1jujfn, 110} .
unit (1jujfn, 145).

/* Representation of a station

station (name, Flow,beauty water, day number):-
unit (name, Flow) .*/

station(jfn, Flow, 3, _):- unit (jfn, Flow},

station(ljn, Flow, Beauty, Day):-
unit (1ju, Flow),
(Day>= 136, Day=<243, Beauty= 0.5);
{Beauty=0) ,

/* Representation of number of starts each day

nmumber of starts (name, daynumber, number) */

increase number _of starts (Name,Day) :— number of __starts (Name, Day, X},
retract(number of _starts (Name,Day, X)),
X1 is X+#1,
Y=.,. [number_pf_ﬁtarts, Name, Day, X1],
asserta{¥).

/* Representation of allowed flow in a ceartain river at a ceartain time.
allowed{name, Earlier flows, Flow, Hour, Day):i- */

allowed (jfn, Earlier flows, Flow, Hour,Day):-
write (Day),
write (' 3,
write (Hour},
write (' "}
write (Flow)},
write (' 'y,
contents below limit (jfn, Earlier ~ flows, Flow, bay),
maximal amplltude - variation(3jfn, Earlier - flows, Flow, Hour),
no more than twe starts (jfn, Earlier _flows, Flow,
Day) .

contents below limit (Stn, Earlier flows, Flow, Day):-
weekﬂplan(Averageflow),
count content(Earller flows, Contents, Averageflow),
wrlteln{Contents),
max content (Stn, Day, Max ._content),
to blg content {Contents, Flow, Max . content, Averageflow}.

to blg content (Contents,Flow,Max content, Averageflow) :-
Contents- Flowt Averageflow =< Max ._content.

toﬁbig_pontent(Averagecontents,Flow, Max content,):-
writeln('To large content'},

abs (X, X) :— ¥X>= 0.
abs (¥, Y):- ¥ is -1* X.

max content (jfn, Day, Max content):- Day< 136, Max content= 1200.
max_content (jfn, Day, Max content):- Day=< 273, Max __content= 600.
max_content (jfn, Day, Max content):- Max _content= 1200.

count_content ({1,0,_}).

count content {[H|T], Contents, Averageflow) :-
count_content (T, Contents 1, Averageflow),
Contents is (Contents 1 - T H+ Averageflow) .

maximal amplltude . variation (jfn, Earlier - flows, 0, Hour):-
flow _in thr(Flow thx, Hour),
amplltude_;ule_pK_thr(Flow_ﬁhr, Earlier flows,
1.

maximal _amplitude varlatlon(jfn, Earlier flows, 0, Hour):-
writeln ('If the flow through thr + jfn >= 220 '),
writeln{'for more than ten hours'},
writeln{'then Jfn must not be stoped'),
writeln{'for more than 7 hours thereafter.'),

maximal amplitude variation(jfm, _,X, _):- X=\=0.

flow in _thr (Flow _thr, Hour):
flow(thr, Flow 1lst),
count_thr(Flow_llst, Flow thr, X, Hour}.

count_thr ({1, [1,0,_).

count thr({[H|T], L, X, Hour):-
count thr (T, Ll, Xi, Hour},
X is X1+ 1,
countl thr (X, Hour,L,H,L1) .

countl thr{X, Hour,L,H,Ll):-
=< Hour,
L= [H|Ll].

countl thr(X, Hour,L,H,L1):-

X> Hour,
L= L1,

amplitude_rule_QK_thr({HIT], [HL|T1]), X):-

H1 =\=0,
X=< 7.
amplltude rule OK thr([H|TF]), [H1}T1}, X):-
Kl 7T,
H1=0,
X1 is X+1,

amplitude rule OK thr(T, T1, X1).

amplltude rule OK thr{{H|T], [H1}T1], X):-
x>7,

X=< 17,
H+ H1l< 200.

amplltude rule OK thx ({HIT], [H1|T1], X):-
0 7,
X=< 17,
B+ H1>= 200,
X1 is X+ 1,
amplitude rule OK thr(T, T1, X1).

amplitude rule OK thr ([}, ,).

amplitude_;ule_QK_ﬁhr(_, {1, .

no_more than two starts (Name, 1., .

no_more than two starts (Name, [H|T], Flow,_}:- H=\=0.
no_more than two_starts (Name, [H|T], Flow,):- H=0, Flow=0,

no_more than two starts (Name, [H[T], Flow, Day):—
H=0,
Flow=\=0,
number of starts(Name, Day, X),
less_than_two_starts(Name, Day,X) .

less_than_two_starts(Name, Day, X):-
X< 2,
increase nmumber of starts (Name, Day).

less_than - two starts (Name, -

wrlteln('The unit should not be started?'),
writeln('more than two times each day.").

examine ' week (Name} : -
init (Name, First _day,Flows, New _flows),
writeln (' Day Hour Flow Contents’ },
Last day is First _day+ 7,
examine day (Name, First _day, Last day,
Flows,New flows),
flnlsh(Name, First _day, Flows}).

examine day(Name, Last_day, Last day, Flows,New flows) :=-
examine weekend(Name, Last_day, Fiows).

examine day(Name, Day, Last day, Flows,New flows) :
examine hour(Name, Day, Flows, 1,New flows),
Next day is Day + 1,
transfer24(Flowsl New flowsl,Flows,New flows),
examine day (Name, Next _day, Last day, Flowsl,New flowsl).

examine_hour(_!_!_f25,ﬁ).

examine hour (Name,Day, Flows, Hour,New flows):-
car (Flow, New flows),
allowed(Name, Flows, Flow, Hour, Day},
Next hour is Hour + 1,
Flowsl = [Flow[Flows},
cldr (New_flowsl, New flows),
examine hour (Name, Day, Flowsl, Next _hour,New flowsl).

init (Name, First _day, Flows, New flows):
write ('Inputfile: '),
read (Inputfile},

nl,

see (Inputfile),

read (First day),

read (Weekly plan),

read (Flows),

read (New flows),

Y=..[week plan, Weekly plan],

assert (Y},

create number of starts(Name, First day, 0).

create number of starts(, ,7).

create number of starts (Mame, Day, X):-
T Y is Day+ X,
Z=,., [number of starts,Name, Y, 0],
assert (Z),
¥l is X+ 1,
create number of starts (Name, Day, X1}.

finish (Name, First day, Flows):~
retract (week_plan()),
remove number of starts(Name, First day),
close {'inputfile.dat'},
¥=.. [flow, Name, Flows],
assert {¥).

remove number of starts(Name, First day):-
retract (number of starts(Name, ,)),
fail.

remove number of starts(,).

read list(,3).

read list ([H|T}, X):- X1 is X+ 1,
read list (T,X1),
read(H) .

writeln (X) :- write(X},
nl.

cax (X, [1).
car (B, [HiT]).

cldr (0, {]).
cldre (T, [H|T]).

transfer24 (Beforel, Afterl,Before, After) : -
transfer24 1 (Beforel,Afterl,Before,After,1).

transfer24 1 (Before,After,Before,After,25),

transfer?24 1 {Beforel,Afterl,Before,After,N) ;-
Nl is N + 1,
transfer24 1 (Beforel,After2,Before,After,N1},
car{¥X,After2),
Beforel = [X| Before2],
cldr (Afterl, After2).

examine weekend{ , , } :-

“writeln ("Examiner weekend is not'),
writeln('is not implemented but can be used'),
writeln ('for checking rules that'),
writeln('are valid for weekends.').

/* Test data */

flow (thr, [0,0,0,0,0,101,105,110,111,102,103,104,105,116,117,118,102,102,102]) .

F User Manual for the Planner

Below will be described how to run the Planner, an expert program for
planning of waterflows through powerstations and their reservoirs, written by
Olof Wickstrom as part of his Master Thesis in the summer and antumn of
1988 at the Department of Automatic Control, Lund Institute of Technology
and Sydkxaft AB.

If you are using a VAX 780 under VMS version 4.5 and Chez
Scheme version 2.0

Move to the directory where you keep the file:

expert,ss
Start the scheme interpretator by the command

scheme
The computer will now welcome you to
Chez Scheme version 2.0 Copyright (¢) R. Kent Dybvig
and will show the prompt
>
You will now load the program by writing
{(Load "expert.ss"™)
Now everything is set to start the program by writing
{mainprogram)
The program will respond by asking what station you would like to plan.
Which station?
At the time of writing only the answer
ifn
is valid as it is the only station for which rules have been implemented.
The program will respond by asking for the average water flow.
What is the average flow?
You answer with a positive number.

The program will respond by asking for the content of the reservoir at the
start of the week that should be planned.

What is the initial amount of water?

You answer with a positive number,

The program will now ask you for the first day of the week that should be
planned.

Which is the first day of the week ({(yymmdd) ?

You answer in the form yymmdd,

Now the program will ask for the file in which the pricecurve is kept.
In which file is the pricelist kept? (pricelist.dat)

Your answer should be of the form " VMS_filename " and do not forget the
double quote (") signs,

The file should bee a standard ASCI file containing 168 numbers
representating the price for each hour. An typical example is:

0000000 90 90 90 90 90 50 90 90 S0 0 0 0 0 © 0 O 0
0000000 90 90 90 90 90 50 90 90 90 0 0 0 0 0 0 O O
000000090 90 90 50 90 50 90 S0 90 0 0 G 0 0 0 O O
G 600000 9 90 90 50 90 50 90 50 90 0 0 0 0 0 0 0 O
0 000000 90 90 90 30 90 50 90 90 90 0 0 0 0 O O 0 0
0000000 90 90 90 90 90 50 90 90 90 0 0 0 0 0 0 0 0
0000000 90 90 90 90 90 50 90 90 90 0 0 0 0 0 Q0 0 ©

After a little while the program asks for how much of the available water that
should be placed on the most costly hours.

How big part of the water should be placed?

The available water is defined as the average water flow times seven *
twentyfour (number of days times number of hours).

Your answer should be a positive number preferably around 1.0.

The program will after a while show you its plan. After this it will ask you if
you want a second run,

Once more?

Your answer would be
yes

or
no

If you answer yes you will be asked for a station and if you answer no the
reply from the machine will be

>

If you now want to leave Scheme you write

{exit)

G User Manual for the Examiner

Below will be described how to run the Examiner, an critic program for
planning of waterflows through powerstations and their reservoirs, writ-
ten by Olof Wickstrdm as part of his Master Thesis in the summer and
autumn of 1988 at the Department of Automatic Control, Lund Institute
of Technology and Sydkraft AB.

If you are using a VAX 8530 under VMS version 4.7 and C-Prolog
version 1.5,

You start the prolog interpretator with the command

prolog -g 1000 -1 1500 -t 500

If you do not use these options the program will run out of
memory.

The machine will answer with the message
C-prolog version 1.5

ves
I 7=

The last is C-prolog’s command prompt.
Now you load your program by writing
consult (‘examiner.pl').

Po not forget to always put a full stop at the end of a
command.

The interpretator’s answer would look something like
examiner.pl consulted 7644 bytes in 2.28333 sec
yes

You start the program by writing
examine week (jfn)

The answer would be

inputfile:

Now you write the name of the file that contains the input
data on the form

‘' 'VMs_filename *

A typical file looks like

100.

32.

(0,0,0¢,0, 0,0,0,0,01.

(0,0,0,0,0, 0,0,0,0,0 0,0,0,0, 0,0,0,0,0, 0,000,0,
65,65,65,65,65, 65,65,65,65,65, 65,65,65,65, &HEEEH
65,65,65,65,65, 0,65,65,65,65, 65,65,65,65,17,
0,0,06,0, 0,0,0,0,0, 0,0,0,0,0, 65, 65,65,65,65,
65,65,65,65,65, 65,65,0,0, 0,0,0,0,0, 0,0,0,0,0,
65,65, 65,65,65, 65,65,65,65,65, 65,65,0,0, 0,0,0,0,0,
0,0,0,0,0, 65,65,65,65,65, 65,65,65,65,65, 5, 65,0, 0,
0,0,0,6,0, ©0,0,0,0,0, 65,65,65,0,65, 65,65,65,0,865,
65,65,65,65, 0,0,0,0,0, 0,0,0,0,0 1.

see (user),

seen,

Where
100

is the number of the first day of the week that should be criticized, with 1
as January the first,

32

is the average waterflow,

[0,0,0,0, 0,0,0,0,0]
is the flow the nine hours before the week that should be criticized starts,
and

[0,0,0,0,0, 0,0,0,0,0, 0,0,0,0, 0,0,0,0,0, 0,0,00,0
65,65, 65, 65,65, 65,65,65,65,65, 65,65,65,65,
65,65,65,65,65, 65,65,65,65, 65,

0,65, 65,65,65, 65,65,65,65,17, 0,0,0,0, 0,0,0,0,0,
¢,0,0,0,0, 65,65,65,65,65, 65,65,65,65,65, 65,65,0,0,
0,0,0,0,0, 0,0,0,0,0, 65,65,65,65,65, 65,65,65,65,65,
65,65,0,0, 0,0,0,0,0, 0,0,0,0,0, 65,65,65,65,65 GE6G6E
65,65,0,0, 0,0,0,0,0, 0,0,0,0,0,

65,65,65,0,65, 65,65,65,0,65, 65,65,65,65, 0,0,0,0,0,
0,0,0,0,0 1.

is the flows for each hour of the week that should be criticized.

Observe thatall ,{] ,are necessary and that the two lines

see (user) ,
seen.

must be at the end of the file.

The program will now print out the day, the hour, the flow, and the
ICSErvoir contents with possible error messa ge for each hour in the week.

If you want to leave the interpretator after that the program has termi-
nated you should write

(halt) .

