CODEN: LUTFD2/(TFRT-5374)/1-33/(1987)

Towards an experimental set-up
for robot learning

Par Kvist

Department of Automatic Control
Lund Institute of Technology
November 1987

Department of Automatic Control
Lund Institute of Technology

P.O. Box 118

S-221 00 Lund Sweden

Document name

Master thesis

Date of issue

November 1987

Document Number

CODEN: LUTFD2/(TFRT-5374)/1-33/(1987)

Author(s)
Par Kvist

Supervisor
Lars Nielsen

Sponsoring organisation

Title and subtitle
An experimental set-up for robot learning

Abstract

Usually robot tasks are well defined and preprogrammed. An approach to make the robot perform ill defined
tasks is to let it have a learning behaviour. Here a system for investigation of different aspects of different
kinds of robot learning is developed. The system is based on a simplified version of table tennis, where the
ball is rolling on a table. Supervised learning is treated and experiments are done.

Key words
Real-time system, Robot control, Supervised learning

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

ISBN

Language Number of pages
English 33

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

Contents

Preface « « ¢ voa v % v v s 5% a 8 8 8 6§66 5% 5 5 o o 2
1. Introduction e e e e e 3
2. TheGame i 4
2.1 The Arrangement 4
2.2 Possible Rules of the Game 5
2.3 The Actual System 5
3. Physical Equipment ¢ o a6
31 TheRobot 6
3.2 The Computers 7
3.3 The Software 8
4. System Description 9
4.1 The Game Computer v 9
4.2 The Control Computer 14
4.3 The Outside World 17
5. Robot Control 22
5.1 Kinematics 22
5.2 Inverse Kinematics 23
5.3 PID-Regulators 25
6. Principle of Learning 27
6.1 Algorithm of Learning 27
6.2 One typical experiment 29
7. Conclusions 32
8 References 33

Preface

This Master thesis was done during the very rainy summer of 1987 at the
Department of Automatic Control, Lund Institute of Technology. Due to
unforeseen circumstances, the aim of the work was changed. I had a great
deal of freedom of selecting this new aim. Under Lars Nielsen’s supervision,
the work has been interesting and stimulating. Lars Nielsen’s criticism and
proposals for improvements have been very valuable.

I wish to make a collective thank to all the personnel at the Department
of Automatic Control, specially the supportive help from Rolf Braun. I am
also indebted to the Department of Industrial Automation for being able to
use their robot, and to the helpful assistance of Per Géran Nilsson. A special
thank is due to Lars Nielsen.

1. Introduction

There are two extremes of learning behaviour. Biological systems, e.g. humans
or animals, learn from external stimuli, partially autonomous and partially su-
pervised by e.g. parents. Industrial robots, on the other hand, are very rigid
in behaviour and need well defined (preprogrammed) tasks. An interesting
topic of study is partially learning systems. Here we think of robots where
some functions are well defined (as usual), but with some added capability of
learning ill defined tasks. Learning systems have, with varying intensity, been
studied over the past decades, but the interest has currently been reinforced
due to new hardware. There are now commercially available VLSI chips im-
plementing neural networks, and there will probably in the near future be plug
in expander boards to personal computers implementing the same or similar
functions.

The purpose of the present work is to develop a system such that a robot
could play a simplified version of table tennis, where the ball is rolling on
the table. Many interesting aspects of different kinds of learning could be
studied. We have concentrated the work on basic building of the system and
made it in a way such that a future extension should be straightforward. The
system consists of a man-robot interface for flexible interaction, robot control,
simulation of the outside world, a monitoring capability for animation of the
ball and the robot hand, ball prediction, and supervised learning of basic
shots. We use three computers, a Control Computer, a Simulation/Monitoring
Computer, and a Game Computer, implementing these features. The Control
Computer does the robot control and communicates with the operator via
the man-robot interface. The simulation of the ball and the monitoring are
done in the Simulation/Monitoring Computer. In the Game Computer, the
algorithm of supervised learning and ball prediction are performed.

In the next chapter, Chapter 2, the game will be described. Chapter 3
is devoted to the physical equipment, that is, the robot and the computers.
A system description is done in Chapter 4, where each computer’s software is
presented. How the interface to the user is working is also treated here. Two
fundamental problems in robotics, the problem of kinematics and the problem
of inverse kinematics, are penetrated in Chapter 5. A brief discussion about
PID regulators concludes the chapter. The algorithms and formulas which
are used to implement the specific type of learning used here, are treated in
Chapter 6. A typical experiment is also presented in this chapter. A final
discussion and some conclusions are done in the last chapter, Chapter 7.

2. The Game

The physical set-up, the rules of the game, and the actual system will be
presented.

2.1 The Arrangement

The arrangement consists of a black rectangular table with borders at the
long sides, a white ball rolling on the table, a TV camera hanging above the
table, a Computer Vision unit that, given an image from the TV camera,
gives the ball position (z,y) in a coordinate system attached to the table, two
Game Computers containing prediction algorithms and learning facilities, two
Control Computers doing coordinate transformations from Cartesian space
to joint angle space and performing the controlling of the robots, two Robot
Interfaces mapping control signals from the Control Computers to control
signals to the robots and gives measured signals from robot joint angles, and
two robots with air blowers as their tools, see Figure 2.1.

Game Computer Game Computer

Computer Vision

Control Computer : \ Control Computer
I TV Camera
Robot Interface X Robot Interface
] [
-

O

Robot Robot

Figure 2.1 The scenario

Each player consists of a Game Computer, a Control Computer, a Robot
Interface, and a robot. When the ball arrives at one short side, the player
positions the robot tool at the point where the ball is predicted to hit the
short side. The air blower blows at the ball, and, if the air pushes the ball in
the right direction, the ball leaves the short side and rolls against the other
player, possible after one or several bounces at the borders. The shooting
at the ball affects the direction of the ball velocity in a complicated manner,

4

and therefor this relation is suitable for learning instead of explicit formula
programming,.

2.2 Possible Rules of the Game

A match is played best of five sets with a short pause between the sets for
consultation with the trainer. The player who first wins ten balls wins the set.
The players serve five times each in a set.

This game gives us possibilities to study several aspects of learning. Some
properties, such as prediction of the ball position, could be preprogrammed.
Other properties, such as selection of an appropriate game strategy, could be
modified during the match. Before the match supervised learning could be
used to learn basic shots. Between the sets the trainers could have the possi-
bility to make basic changes in the tactic- and strategy learning capabilities.

2.3 The Actual System

In this system basic shot learning is studied. In principle it is possible to
model the shots by study of the aerodynamic interaction between the blower
and the ball. The idea here is instead to simplify the modelling by training the
robot so that after each shot it learns more about the effect it causes on the
ball. The ball, the TV camera, and the Computer Vision unit are simulated
in the Simulation/Monitoring Computer.

3. Physical Equipment

The physical properties of the robot and the interface to the outside world
are discussed in the first section. A description of the actual computers, the
connection between these and the Robot Interface are treated in the second
section. The third section is devoted to the software.

3.1 The Robot

A five linked robot with five joint angles is used, see Figure 3.1. The first link
is at the robot base and has length 0. The robot is built at the Department
of Industrial Automation, Lund Institute of Technology. An interface to the
outer world is available. The measured signals are measured from the interface.
The joint angles 61, 62, 83, 64, and 05 (in radians) vary in the following intervals

-0.88 <64, <0.88
121 <60, £2.05
-2.0<L60;<-1.13
-17<60,4 <1.7

—-3.23 <65 <3.23

These angles are mapped into measured signals in the interval -10 V to +10
V.

Figure 3.1 The robot

The geometric description of the robot is based on a Cartesian coordinate
system with origin at the robot base, with z-axis in a direction orthogonal
against the floor and z-axis in the same direction as the robot arm, when the
robot is at the initial position, see Figure 3.1. When the first joint angle is
changed the robot rotates around the z-axis. Except the joint angle at the
hand, this joint angle is the only one which is rotational around the z-axis.
When we want to reach a point with the tool, we first direct this joint angle
in the right direction. When this is done, the problem is a planar one. When
the second joint angle is changed, the second link is rotated around it’s base
relative to the 2y-plane. The third and fourth joint angle is rotational around
the intersection between the actual link and the previous one, relative the zy-
plane. Notice that when the second, third, or fourth joint angle is changed,
the robot tool is changed in one plane.

The actual link lengths A, Az, and A3 (in meters) are

A1 =0.38
)\2 = 0.40
A3 =0.10

3.2 The Computers

Three IBM PC-AT compatible computers, Tandon, equipped with AD/DA
plug in boards, are used. Communication with other computers and with the
Robot Interface is achieved using these. The voltage range is -10 V to +10 V.
The connections between the different computers and the Robot Interface are
listed below. The following notations will be used: SC, GC, CC, RI mean-
ing the Simulation/Monitoring Computer, the Game Computer, the Control
Computer and the Robot Interface respectively. Further, we will write, for
example,

SC0i — CCIj

meaning channel number ¢ in the Simulation/Monitoring Computer’s output
section is connected to channel number j in the Control Computer’s input
section. The connections due to the Simulation/Monitoring Computer are

SCO0 — GCI0
SC0O1 - GCI1
SCO04 - GCI4
SCO5 — GCI5

SCI0 — CCO0
SCI1 « RIO3
SCI2 — RIO2
SCI3 — RIO1
SCI4 — RIO4
SCI5 «— RIO5

Next the connections seen from the Game Computer are listed.

GCO0— CCI0
GC04 — CC1I6
GCO5 - CCI7

GCI0 « SCO0
GCI1 ~ §CO1
GCI4 — SC04
GCI5 — SCO5

Finally, the Control Computer’s connections are listed.

CCO0 — SCI0
CCO1 — RII3
CCO2 — RII?2
CC0O3 — RII
CCO4 — RIIA
CCO5 — RII5

CCI0 — GCO0
CCI1 < RIO3
CCI2 « RIO?2
CCI3 « RIO1
CCI4 «~ RIO4
CCI5 «— RIO5
CCI6 — GCO4
CCI7T — GCO5

Note that some information is redundant, but we have listed it for convenience.

3.3 The Software

The programs are written in Modula-2 (Astor, 1986). There are several ad-
vantages of using this kind of language, one is that the program can be divided
into modules. Large programs can be easily read, if data and the operations
on data are structured together in modules. It is also desirable that the rest
of the program only can operate on data via the operations. If the operations
change the data in a consistent way and if data only can be accessed via these
operations, the data can never be brought to an inconsistent state. This fact
can be used when we want to isolate errors in large programs.

A real-time kernel, developed at the Department, is used to implement
parallel processes. Real-time programming concepts such as processes and
monitors are used (Young, 1987; Peterson and Silberschatz, 1985). Modules
containing primitives for communication via AD/DA, for mathematical func-
tions, for conversion between numbers and strings, and primitives for graphical
presentation is also used.

4. System Description

The system will be described by discussing the following sections, the Game
Computer, the Control Computer, and the Outside World respectively. The
description of the software is built on process graphs. We will use the following
convention here : active parts, parallel processes, will be illustrated as ellipses
and passive parts, monitors or passive procedures, will be viewed as rectangles.
The arrows can be seen as communication links. Very often several processes
communicate with each other via a monitor. The reason for this is to guarantee
mutual exclusion. In Figure 4.1 we can see the interaction between the different
units and the robot.

Ball Position
Game COMPULET | qmmm— Computer Vision

Desired Robot Position

Time until shoot in Cartesian coordinates

Robot Action

A 4 A 4 Measured
Signals
_

Control Computer Robot
Control Signals
—’

Figure 4.1 A schematic description of the system

The simulation of the Computer Vision is done in a computer, the Simu-
lation/Monitoring Computer. We can see the simulated system in Figure 4.2.
In Section 4.4, where we will discuss the Outside World, we will also discuss
the Simulation/Monitoring Computer and the models we use there.

4.1 The Game Computer

The Game Computer can, in its current state of development, be trained to
predict where the ball will hit the short side.

Ball Position | Simulation/Monitor

Game CoOmputer | e—
Computer

A

Desired Robot Position

Time until shoot in Cartesian coordinates

Robot Position

 / A 4 Measured
Signals
_

Control Computer Robot
Control Signals
ﬁn

Figure 4.2 A schematic description of the simulated system

Process Description

From the outer world the ball position is gotten into the computer. The
process CalcBallPosVel calculates the ball velocity v, and vy, see Figure 4.3.
The monitor BallPosVelMonitor is the storing place for the ball position and
velocity. With this information the process CalcRobotRef can calculate where
the ball will hit the short side. The fact that the ball can bounce against a
border must also be taken care of, and is so. CalcRobotRef sends the desired
position of the robot, in Cartesian space, to the Control Computer.

During the learning phase the angle of the air blower is chosen at random.
The distribution of this stochastic variable is a rectangle distribution i.e. all
angles in an interval have the same probability. In this context we mean
by stochastic the pseudo stochastic mechanism which can be supported by a
computer.

The time until the ball will arrive at the short side is also sent to the Con-
trol Computer. The Control Computer needs this information for knowing
when to shoot. The reference values for the robot is also stored in RobotMon-
itor together with some properties about the ball. The purpose of storing this
information in a monitor is that the processes which handles the learning will
have to know these parameters.

The operator can communicate with the system via the process OpCom.
The estimated value of the ball position and velocity, the robot reference value
in Cartesian space, and the time until the ball will arrive at the short side can
be viewed on the screen.

A process, Learner, has been implemented for the purpose of learning
the position where the ball will hit the opponent short side, in relation to
the position and angle of the air blower and ball position and velocity. This
relationship is a scalar valued function of several variables. The value is the
point in which the ball will hit the opponent short side and the variables

10

From Simulation Computer To Control Computer

GAME COMPUTER 4

Calc Ball Pos Vel

Ball Pos Vel
Monitor

r==

Calc Robot Ref

Robot Monitor

1

Op Com

Leamn Monitor

i

Figure 4.3 A description of how the processes in the Game Computer commu-
nicate with each other and with external units

are parameters in RobotMonitor. When the ball is arriving at our short side
all the variables are known. The only variable which we have the ability to
affect is the angle of the air blower. In Learner we are using the algorithm
of supervised learning, which is discussed in Chapter 6. When the system is
running in Learn mode, the operator must decide which of the robot hits is
good enough for using as parameters to Learner. These parameters are stored
in a buffer, LearnMonitor, where Learner can get them. The operator has
also the possibility of seeing how the parameters are updated and how and
if these parameters converges. It is for this purpose that the process Plotter
has been written. The operator has the possibility of selecting different scales
and different parameters for plotting. In PlotMonitor, information of in which
Plot mode the Plotter is to be runned in and the parameters of learning, are
stored.

11

Exit Show Learn

Figure 4.4 The basic menu

The communication with the operator

In the basic menu, which is presented when the system is started, the operator

has three different choices : Press one of the mouse buttons when the cursor
is inside the Exit box, or when the cursor is inside the Show box or inside the
Learn box. A selection of the Exit box will cause the system to shut down.

If the Show box is selected some parameters are viewed, see Figure 4.5. A
second mouse button press in the Show box will hide the viewed parameters
and the operator will be returned to the basic menu.

The selection of the Learn box will cause the system to go into Learn
mode. This menu can be seen in Figure 4.6. If the operator presses the mouse
button inside the Learn box a second time the system will go out of the Learn
mode and back to the basic menu.

Three different collections of learn parameters are used, Straight, Down,
and Up. Straight is chosen when the ball, on it’s way to the opponent short
side, does not bounce, Up is chosen if the ball bounces against the upper border
and Down if it bounces against the lower border. When the operator confirms
a stroke, that is, when the robot has done a hit, which the operator is pleased
with, the operator just press one of the mouse buttons inside the Confirm box.
The operator cannot select the Confirm box before the ball has reached the
other short side. The reason for this is that when the operator confirms some
parameters, of which the point where the ball hits the opponent short side is
one, are stored in a monitor. However, the point where the ball will hit the
other side is not available until the ball has reached it. The box next to the
Confirm box, that one which is marked by Straight in Figure 4.6, must be
in a proper state when the Confirm is chosen. By pressing the mouse button
inside the box, the state can be changed to Up and Down.

Sometimes it is desirable to have the parameters of learning viewed in a
diagram, to see if and in what way they converge. The last row of boxes are

12

ExlIt

Show

Learn

BallPar

Figure 4.5 The menu when Show is selected

Exit

Show

Learn

Confirm

Straight

ShowPlot

X =

VX=

Vy=

RobotPos

y=

th=

Straight

All

1.000

Figure 4.6 The menu written when Learn is chosen

plotting command boxes, that is, if the state of one of these boxes is changed
only the plot is affected, not the parameters of learning. The boxes can be set
in different modes independently of each other. As will be shown in Chapter

13

6, we have an estimation function with terms of the form
ai;zir; 14,j=0,...,5

where a;; is an unknown constant and z; is a known quantity. The y box can
be set in the following states : y, 0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 23, 24, 25, 34,
35, 45, 11, 22, 33, 44, or 55. The different numbers refer to the constants in
the different terms in the estimation function. For example, number 2 refers
to az = apz and number 14 refers to a;4. If this box is set in the first state, y,
the estimated function, the estimation function and the error between these,
are plotted. In this state the box marked by All can be used. If this box is
set in the initial state all the parameters are plotted. By selecting the A1l
box, only one of the plots are shown. When the y box is selected and set into
another state, the constants belonging to different terms in the estimation
function will be plotted. The box marked by Straight has the same meaning
as the Straight box above, except that this affects the plotting. The last box
is a plotting scale box. By pressing the mouse button inside it, the operator
can change to different scales. When pressing, different numbers are viewed.
The actual plot is that number multiplied with the real value. When the plot
is outside the plot window a scale less than one is desirable to chose, and if
the plot is almost undiscernible from the z-axis a scale larger than one is to
be chosen. Notice that the selection of different modes does not affect the
purpose until the Confirm or the ShowPlot box is selected.

4.2 The Control Computer

The Control Computer’s task is to, given reference signals in Cartesian space,
calculate reference signals in joint angle space and control the robot with PID-
regulators.

Process Description

The problem of inverse kinematics, i.e. the problem of calculating the joint
angles from the desired position in Cartesian coordinates, is taken care of in
the process InvKin. The formulas are derived in Chapter 5. When InvKin has
done the calculations the result is stored in RobotRefMonitor. OpCom is a
process which handles the communication with the operator. It is possible to
change the PID-parameters in OpCom. The PID-parameters are then stored
in PIDMonitor, where they are available for the process Regul. When the sys-
tem is started OpCom reads the PID-parameters via FileHandler from disk,
and when the system is shut downed the parameters are written back onto the
disk via FileHandler. The process Regul does the basic controlling, i.e. imple-
ments the PID-regulators. These formulas will be discussed in Chapter 5. The
PID-parameters and the reference values are available in monitors. Command
of shooting is coming from the Game Computer directly. The measured an-
gles and the reference angles are stored in AngleMonitor continuously, where
OpCom can get them. The angles which are stored in AngleMonitor can be
viewed via OpCom and is done so with help of the procedures in AngleWriter.

14

From Game Computer

CONTROL COMPUTER

e o T e R A A i

1

'

i

]

i Angle Writer

i

i

i

1

i

: Robot Ref

5 Monitor

i

i i

1 1

i i

i Op Com Angle Monitor !

| i

i i

1]

: :

! # PID Monitor :

i i

]]

H File Handler i
I

| :

]]

] I

: :

i i

j E

e b Bl e e e ittt b L L LT peo————————— A P

Robot

Figure 4.7 A description of how the processes in the Control Computer com-
municate with each other and with external units

The communication with the operator

When the Control Computer is started the basic menu, see Figure 4.8, is
shown. If the operator presses one mouse button when the cursor is inside the
Exit box the system will save the actual PID-parameters on disk and shut
down. When the system is started the latest parameters are read from disk.
On the screen the five parameters of each of the five regulators, K, Ty, T}
b, and N can be seen. On the upper right corner of the screen two boxes
marked by H and T, can be seen. The meaning of these parameters and in
what way a change of them affect the control are discussed in (Astrém, 1987).
The operator has the ability to change these parameters during controlling.
A change of a certain parameter is done in the following way : Press a mouse
button inside the box, which is to be changed. When this is done it is just
to enter the new value in the box. The new parameter is sent to PIDMonitor
when the operator is selecting the Store box by pressing one mouse button
inside it. If the new performance of the regulator is bad, we can restore the
old parameters by selecting the 01d Param box.

15

Store Angle Exit Old Param H= Tr=

CONTROLLER 1 <-> ROTATION

K= Td= Ti= b= N=
CONTROLLER 2 <-> LOWER ARM
K= Td= Ti= b= N=
CONTROLLER 3 <-> UPPER ARM
K= Td= Ti= b= N=
CONTROLLER 4 <-> HAND
K= Td= Ti= b= N=
CONTROLLER 5 <-> TOOL
K= Td= Ti= b= N=

Figure 4.8 The basic menu

Angle Exit
theta1ref thetai
(o] t1=
theta2ref theta2
2= 12=
theta3ref theta3
3= 13=
thetadref theta4
4= t4m
thetaSref theta$S
rS= 15=

Figure 4.9 The menu when Anglae is selected. Angle and Exit boxes in same
position on the screen as in the main menu

A selection of the Angle box will cause the system to show the menu in
Figure 4.9. The reference angles and the measured angles are continuously
written in the different boxes during operation. To return to the basic menu,
select the Angle box.

16

4.3 The Outside World

The outside world is simulated in Simulation/Monitoring Computer and, as
the name say, some monitoring is done here to.

Process Description

SIMULATION COMPUTER

To Game
Computer

Simulate Ball

New Ball Monitor

Ro Pos Monitor

Robot Pos

[e - - - - - —

Robot

Figure 4.10 A description of how the processes in the Simulation/Monitoring
Computer communicates with each other and with external units

The basic process is Animation. The table, the robot end-effector, and
the ball is animated on the screen. It is possible for the operator to select
different initial positions, different initial angles, and different initial velocities
for the ball. It is also possible for the operator to have some basic parameters
viewed. The basic parameters are the ball position, the ball velocity, the robot
position, and the angle of the air blower. The robot position is fetched from
RoPosMonitor, where the process RobotPos is storing it. RobotPos calculates
the position in Cartesian space given the measured joint angles. This problem,
the problem of kinematics, is treated in Chapter 5, where the formulas which
are used is derived. RobotPos is also communicating with Animation directly,

17

when the commands of shooting is transferred. The fact that the robot is
shooting can be seen on the screen as the robot turns white. The simulation
of the ball is done in SimulateBall. The ball position is transferred to the
Game Computer and to Animation for monitoring. To decide whether the
robot really hits the ball SimulateBall needs information about the robot po-
sition and if it is shooting. This information can be fetched in RoPosMonitor.
When the operator wants to shoot another ball against the robot the process
Animation stores this information in NewBallMonitor, where SimulateBall can
get it.

The communication with the operator

Exit Show

Hit Miss

0 0
Shoot

/ StartPar

y =
fi=
V=

Figure 4.11 The basic menu

The menu written on the screen as the system is started can be seen
in Figure 4.11. In the upper left corner two boxes, Exit and Show, can be
seen. When the operator presses one mouse button when the cursor is inside
the Exit box the system will be shut down. If the operator selects the Show
box, the ball position, the ball velocity, the robot position, and the angle of
the air blower, will be viewed. The screen when Show is selected is shown in
Figure 4.12. A second selection of Show will make the system hide the viewed
parameters and go back to the normal mode.

In the centre of the screen the table can be seen. A brown rectangle with
a red line on it is at the table’s left short side. This rectangle describe the
robot hand. The red line is the air blower. The angle of the air blower can be
seen as the angle of the red line relative the normal to the short side of table.
A coordinate system is associated with the table. The lower left corner has
the coordinate (0,0) and the upper right has the coordinate (1,0.7). When
the operator has changed the initial position, y, the initial angle, ¢, and the
initial velocity, v, by pressing one mouse button when the cursor is inside one

18

BallPar

Exit Show X =

Robot Hit Miss y =

VX=

Vy=

Shoot

/ StartPar

y=

fi=

Figure 4.12 The menu when Show is selected

of the three boxes marked by y, fi, or v, and the correct value has been written,
the operator can shoot a ball with the specified initial position, initial angle,
and initial velocity, by pressing a mouse button when the cursor is inside the
Shoot box. Above the upper right corner of the table two boxes can be seen,
Hit and Miss. In the Hit box the number of hits the robot has done is shown.
The number of misses can be seen in the Miss box.

The simulation model

In Figure 4.13 we can see the robot tool, centre in point A, and the ball,
centre in point F, as the robot is shooting. The angle of the air blower is 6.
We define the distance between the ball centre and the robot centre to be 7
in the y-direction and £ in the z-direction. The radius of the ball is p. In
the following we will calculate @,ut, that is, the velocity of the ball when it
leaves the short side. We assume that when the air blower blows, the ball
gets a velocity component in the direction against the centre of the ball. We
see from Figure 4.13 that if the angle of the air blower is § the ball will get a
velocity component in the direction . Thus the angle relative the z-axis will
be ¢ = 6 + . We assume that the ball will get a velocity of the magnitude
k cosp, where k is constant, from the air blower. From Figure 4.13 we can
write down the following two equations

¢ =¢étand
,\:77—C=77—§tan0

The two triangles ACD and EBC have one right angle and one angle in
common and hence their third angle must be the same. The conclusion is that
the angle BEC is 6. The distance R can now be calculated

R =MXcos8 =ncos@ — £sind

19

rJ "\

Figure 4.13 The ball and the robot

We can write the angle ¢ as
(p = arcsin B
p

Finally we can calculate the velocity of the ball Vgzout, Vyout aS the ball leaves
the short side

2
Vgout = k COS @ COS Y + vy, = k41 — (%) cos Y + vgin

2
Vyout = Kk COSsinth + vy, = kyf 1 — (_Ipi) Sin 9 + vyin

In summary we have, within the model used here : The ball velocity after the
shot, vzous and vy.yt, can be calculated if the ball velocity before the shot, vy,
and vy, the ball radius, p, the distance between the centre of the ball and
the robot, 7 and ¢, and the angle of the air blower, 0, are known.

We assume that the ball does not bounce against one of the borders on it’s
way to the opponent short side. We define the distance from the ball centre to
the lower border to y, and the distance from the ball centre to the opponent
short side to zp. The distance from the ball centre, when the ball has arrived
at the opponent short side, to the lower border is defined to y. By inspecting
the geometry, we find the following relationship

Y—UW _ Vyout

Ty Veout

20

The point in which the ball will hit the opponent short side is

2
km sin(@ + arcsin %) + Vyin

Y=Y+ 3
ky/1— (%) cos(6 + arcsin l:—) + Vzin

Let the robot y-coordinate be r. Then it follows that

(4.1)

n=%—-r

and
R=(yp—r)cos — £ sinf

We assume that £ is constant, i.e. the distance, in the z-direction, between the
robot hand and the ball, at the moment of shooting, does not change much.
We can now apprehend y as a function of the ball velocity vzin, vyin, the robot
position r, the ball position y;, and the angle of the air blower §. We will
return to this function in Chapter 6, except that the velocity will be written
in polar coordinates.

21

5. Robot Control

The problem of how to control a robot will be treated in this chapter. In the
first section we will derive the equations of kinematics for the robot. This
is done in a straightforward manner by projecting links on coordinate axis.
We will use the notation 7—784\, meaning the projection of A on the vector €.
In our calculations A will be the robot links and € will be unity vectors in
a Cartesian coordinate system i.e. €, €, and €,. In robot control we are
more interested in the equations of inverse kinematics. We will derive these
equations in Section 5.2. For a detailed discussion about robotics see (Craig,
1986). A brief discussion of PID-regulators will be done in Section 5.3.

5.1 Kinematics

If the link lengths and the joint angles are known, we can calculate the position
of the tool in a Cartesian coordinate system, with the origin at the robot base,
simply by using a "bottom-up” approach. We start from the robot base and
work ourselves up. The method will be illustrated in the following where we
will calculate a point (z,y, 2) as a function of the link lengths X and the joint
angles 6. It is custom to have a link at the robot base with length 0. We will
also use this convention here.

Figure 5.1 The configuration with five links and five joint angles

Let us calculate the coordinates of point P, see Figure 5.1. If we project
the second link on the z-axis we obtain

P = A1 cosfy cos 0, €,

€z

22

the projection of the third link on the z-axis will be
'Pé‘: = Ag cos(fz + 03) cos 01€,
and finally the fourth link projection will be
'Pé‘:' = Az cos(0y + 03 + 64) cos 61 €,

To obtain the points z-coordinate we only have to sum the three links projec-
tive on the z-axis. If we instead project on the y-axis we obtain

'Pei\y1 = M cos Oy sin b€,
"Pé\; = A2 cos(f2 + 03)sin 61€,
'Pei\ys =)\3 COS(02 + 03 + 04) sin 01'531
In the same way we obtain the z-coordinate by projecting on the z-axis.
PAI = A sinf,e,

€z

'Pé‘j = A sin(02 + 03)€z
23 = A3sin(f; + 03 + 04)z,

Finally we can calculate the point P:s coordinate as

Yp = (A1 cos Oy + Ay cos(82 + 03) + Az cos(f2 + 03 + 64))sin 6, (5.1)

{ &p = (A1 cos B2 + Az cos(82 + 03) + Az cos(b + 03 + 64)) cos 6y
Zp = M 8infy + Agsin(fy + 03) + Azsin(f2 + 03 + 04)

The fifth link projective on the z-, and y-axis will be Aqcos(6; + 65) and
A48in(6y + 65) respectively. To obtain the tool coordinates we have to add
Agcos(fy + 05) to P:s z-coordinate and Agsin(f; + 05) to the y-coordinate. If
P:s coordinates are (&p,yp, 2p), the tool coordinates (zy,yt, 2¢) will be

Yt = Yp + Aasin(fy + 05) (5.2)
2t =Zp

{ zy = Zp+ Agcos(by + 05)

5.2 Inverse Kinematics

In this section we will treat the inverse kinematic problem, that is, given a
point (x,y,z) in a Cartesian coordinate system with the origin at the robot
base and with axis as in Figure 5.1, find the joint angles such that the tool is
positioned in (z,y, 2). This problem can be solved by solving the equations of
kinematics (5.1), (5.2) in the previous section. We will use a approach here,
basically built on the theorem of cosine. = We can make things easier if we
observe the fact that the fourth link, A3, always will be parallel with the z-axis.
Thus, we can consider the point, ¢}, where the third and fourth link intersect.
We define r as the distant from the origin to @

23

Figure 5.2 Robot with auxiliary angles

We can calculate the joint angle 6y, see Figure 5.1, by projecting the point
(%,9,2) to the zy-plane i.e. (z,y,0). More precisely we calculate 6; as

0, = arctan y
T

The angle 8 in Figure 5.2 is calculated as

z
B = arctan ————
A/ 22 + y2
If we apply the theorem of cosine to the angle a we obtain

g2\

cosa =
2A1’I‘

We see that the joint angle 6, is simply the sum of o and g i.e.

,\2 2 _)‘2
0, = a+ B = arctan ?z:? + arccos ——1%

To calculate 3 we apply the theorem of cosine to the angle ¢ in Figure 5.2

o5 — A2+ 22— 2
A
From Figure 5.1 and 5.2 we see that ¢ — 83 = 7 and hence

)\f + /\% —r? B
2A1 2

03 = ¢ — = arccos

24

We can calculate 84, if we observe the fact that the three angles 6;, 63, and 64
lies in one plane. In the way we have defined the joint angles we can simply
add them and obtain the final direction of the fourth link relative the positive
z-axis. If we want the direction of link 3 to be —7/2 we obtain

02+93+04=—7r/2¢>04=—7r/2—03—02

The angle 05 can be changed independently of the other angles. If we position
the robot so that the point P:s coordinate will be (z,y, z), we can position the
tool to any point which lie on a circle with origin in (z,y,2) and with radius
A4, by changing 65.

5.3 PID-Regulators

Each joint angle was controlled by a PID-regulator implemented in a computer.
A continuous time PID-regulator can be written as

wt) = K (e(t) +re % / ") dr)

—00

where e(?) is the difference between the reference signal, 7(t), and the measured

signal, y()
e(t) = r() — y(1)

We see that the control signal, u(2), is a sum of three terms. The first term is
simply proportional to the error, the second is proportional to the derivative of
the error, and the third is proportional to the integral of the error. An intuitive
way of understanding this regulator is to reason as follows : The derivative can
be associated by a prediction of the error in future. The integral can be seen
as bearer of information about the past. Thus the control signal is composed
of information about the past, the prescent, and the future. To implement
this regulator in a computer, we have to modify the structure a bit. A first
modification is to substitute the continuous time regulator by a discrete time
one. However, this is not enough. To obtain a well functional regulator some
further changes will be needed. How these modifications should be done is
discussed in (Astrém, 1987). We will just summarize the equations we have
used.

u(te) = P(te) + I(tk) + D(tk)

where
P(tx) = K (br(tk) — y(tk))
Htign) = T(0) + e(ti) + - (ulte) = o(t8))

Ty KTyN
D(t) = Td-|-—NhD(tk‘1) - m(y(tk) — y(tk-1))

25

REGULATOR

ANGLE

Figure 5.3 Block diagram of the control system

26

6. Principle of Learning

In this chapter we will consider the problem of learning and training basic
shots. The purpose of learning the robot is thus to make it learn how to
change the angle of the air blower, so that when the robot is shooting at the
ball, the ball will hit the opponent short side at a given position.

6.1 Algorithm of Learning

In Figure 6.1 we can see the table, the ball, and the robot hand. Consider the
situation when the ball arrives at the robot short side. We define the angle
of the air blower to 8, the angle of the ball to ¢, the ball velocity to v, the
distance from the lower border to the ball to y;, and the distance from the
lower border to the robot hand to r. We define the position where the ball
hits the opponent short side to be y. Introduce = y — 7.

Figure 6.1 The table with the robot and the ball

We grasp y as a scalar valued function of five variables i.e.

y=y(0,0,v,1,ys)

Assume that we have an estimation function

§(07 ¥y Uy Ty yb) = a—T 6-(07 »,v,17, yb)

(3

is a vector with n + 1 unknown components, and

where

@0(9, P07, yb)
?5(0’ ®,, T’ayb) = »
@n(oa ©w,V, 1, yb)

27

is a n + 1 dimensional vector valued function of five variables, i.e.
3: R — R

When we are training the robot, we shoot balls with different initial positions,
different initial angles and different initial velocities. Thus the ball will arrive
at the robot short side with different velocities, in different positions and with
different angles, depending on the initial conditions. By varying the initial
conditions, we can influence ¢, v, and y;. The robot position, =, is also
affected because the robot hand must be positioned where the ball arrives.
The angle of the air blower, 6, is chosen at random. Hence, by training the
robot N times we observe

01,9017’”17"717:’/517 n

ON, N, UN,IN, YoN,» YN

where
Ye = y(ak,(pok,vk’nk,ybk)’ k= 1,...,N
The idea is to approximate the rather complicated function y(4, ¢, v s Yp), see

equation (4.1), with the simpler 5(8,¢,v,n,v). Let the notations 7 and 3
mean

:’q\k = i/\(okﬁokylvkank’ybk)
D = D(bk, Pk, Vi, Mk Yoi)

We can now state the problem formulation, (Tsypkin, 1971). Find the vector
@ such that the loss function

LN
J(@) = 52(.% ~ Tk)?
k=1

is minimized. This is the well known least square method. In the least square
terminology we have the regression vector ®, and the parameter vector @. It
is possible to formulate the solution to this problem in a recursive manner
(Séderstrom, 1984; Astrom and Wittenmark, 1984). The solution is

€k = Yk — Tk = Uk — O Tpy
— Pp_1 O
1+ 3, Py B
T =1 + Ki e

=
=
[

€k is a scalar saying how much the real position y; differs from the estimated
one ;. The components in the vector I}, can be interpreted as weights saying
how much of the error, ¢, should affect the new estimate of the components
in the vector @;. An interpretation of the matrix Py is, except for a factor,
the covariance of @j.

28

We will now have to choose the regression vector, ®. Assuming that we
have none, or very little, a priori information about y, we choose the regressors
as

— T
‘I’(97<P,v,77,yb)= [1 6 --- Yo 0()0 o NYb 62 .- yg]

al® will now be a polynomial of degree two in five variables with unknown
coefficients. The choice of regressors above is not as innocent as it may seem.
We try to estimate a function with a second degree polynomial. If we, for
simplicity, consider the one dimensional case, we try to estimate a function
with a parabola. If we only was interesting in good estimation near a point, we
could, according to Taylors formula, hope to get reasonable results. However,
our intention is to find a parabola that fits well with the unknown function
in an interval. In the worst case, where the unknown function vary much, the
result will be bad.

6.2 One typical experiment

0.6 / \A |
A O AN 1
04 - %jt f l\
/ I
AT Y
| 1A

0 20 40 60 80 100
Figure 6.2 A plot over ¥, 1, and ¥, 2.

The results of a typical experiment of supervised learning is presented in
Figures 6.2 - 6.6. The training session consisted of 250 shots. The point in
which the ball hits the opponent short side, y; and our estimation of y, 7,
are plotted in Figure 6.2. We have selected the last 100 shots. Some of the
parameters are plotted in Figure 6.3 - 6.6. These plots have been chosen so
that different behaviour are illustrated. Figure 6.3 shows a parameter with
relative fast rate of convergence. A parameter with slow rate of convergence is
plotted in Figure 6.6. In these plots we have omitted the transient behaviour,
that is, the first 50 shots. The reason for this is that the transients were large
and caused large scales on the plots. From the figures we can draw several
conclusions. First, the accordance between y and ¥ is acceptable, see Figure
6.2. Secondly, although we did a training session of 250 shots with the ball,
some of the parameters have not yet converged as indicated in the figures. We
know, from equation (4.1), that y is proportional to y,. Thus all but one of

29

50 100 150 200
Figure 6.3 A plot over the v coefficient

50 100 150 200
Figure 6.4 A plot over the ¥y coefficient

the different terms in the estimation function containing y, should be zero.
We can use this fact to investigate the reasonableness of the parameter values.
Two plots containing y; are shown, Figure 6.4 and 6.5. The curve in Figure

6.4 tends to 1 and the curve in Figure 6.5 tends to 0. In fact, those of the plots
omitted containing y, also tends to 0. Figure 6.3 shows that the v coefficient
tends to 0.

30

0.5 -

50 100 150 200
Figure 6.5 A plot over the oy} coefficient

50 100 150 200
Figure 6.6 A plot over the '!)2 coeflicient

31

