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1. Introduction

Given a system to be controlled, what complexity of the regulator do we
need? To answer such a question, we need to define the notions more exactly.
In particular, we need a measure of the complexity and criterion on acceptable
control properties. This thesis will treat systems that can be represented by
a rational transfer function

B(s)  bps™+---+ by
A(s) s"+a18" 1+ +an

and regulators that can be represented by an output feedback gain, —D/C
like in the following figure:

e
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The order (complexity) of the regulator is defined to be the number ¢ =
max(deg C,deg D). (In the applications deg D < degC.) The rational func-
tion, D/C, is called a stabilizer of B/A, if the polynomial AC + BD has all
its zeros in the open left half of the complex plane.

Our question can now be restated as a mathematical problem: Given the
rational function B/A, what is the lowest order of a stabilizer to B/A?

For example, [MAartensson] shows that knowledge of this kind is of par-
ticular interest in adaptive stabilization. Several attempts have been made to
answer the question (e.g. [Anderson-Bose-Jury], [Anderson-Scott]). Still there
is a lack of effective methods for computing the order required.

This thesis is an attempt to give easily calculated upper and lower esti-
mates of the number in question. In Chapter 2, we introduce some necessary
definitions and notations. Then the methods of estimation are developed in
Chapter 3 and 4. Two programs are written to compute the estimates for
any particular system. For a given rational function, B/A, the first one tries
to calculate a low order stabilizer, —D/C, the other computes an order of
D/C, for which stabilization is impossible. The codes are supplied in the
appendixes A and B. Chapter 5 also includes a some results related to the
problem of finding the exact order required.



2. Definitions and Notations

In this chapter the ¢*-function is defined and some of its properties are exam-
ined. We will use the notation IR[s] for the set of polynomials in one complex
variable having real coefficients. A polynomial, B € IR[s], is called a Hur-
witz polynomial if all zeros of B have negative real parts. The subset of R[]
consisting of all Hurwitz polynomials, is denoted IH[s]. We will in the sequel
refer to rational functions B/A, and implicitly assume that A and B € R][s],
A monic, and that they are relatively prime. For such a rational function, we
define deg(B/A) = max(deg B,deg A).

DEFINITION 2.1 By a stabilizer of B/A, we mean a rational function, D/C,
such that AC+ BD € H[s| and deg(AC + BD) = max(deg AC,deg BD). The
stabilizing order of B/A is

4'(B/4) = min_deg(D/C)

where M is the set of stabilizers for B/A. a

Remark 1. It follows that if D/C is a stabilizer of B/A, then BfA is a
stabilizer of D/C, B/C is a stabilizer of D/A and C/D is a stabilizer of A/B.

Remark 2. The absence of degree conditions above might seem confusing to
a control engineer, since for systems, B/A, with deg B < deg A, he wants
compensators, D/C, with deg D < deg C. Theorem 3.3 will show that such a
degree condition would make no difference.

It will be convenient to identify each polynomial, B(s) = bgs™ + - - + by,
with a row matrix (bo...bm). The product D(s)B(s) is then represented by
a matrix product

bo ... bn 0
(do ... dg)
0 bo oo bm ) (ky1)x(mtk+1)

In the study of AC + BD we will use the following definition.
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DEFINITION 2.2 For two polynomials, B(a) = bgs™ + --- + by, and A(s) =
ags" + - -+ + ap € R|s|, define Resj ;(4, B) by

[ Gpntk—r <+ Onik )

Resi (4,B)= | " = %
! bm+l—r bm+l

b oon b (E+142)x(r+1)

where b; = a; = 0 for4,5 < 0 as well as fors > m and 5 > n. Whenr = k+i+1
we just write Resg (A, B). o

EXAMPLE 2.1
If A(s) = ao8® + a;8 + az8 + a3 and B(s) = bys? + bys + b2, then

g Gy a2 ag 0
0 ay a; ar a3
Resl,g(A, B) = bo bl bz 0 0
0 b bl bz 0
0 0 bo by b

The following proposition shows that the ¢*-function is always well de-
fined.

PROPOSITION 2.1

q¢*(B/A) < max(deg B —1,deg A —-1).

Proof: Infact, Resp—y n—1(A4, B) is the ordinary resultant of the polynomials.
It is well known [van der Waerden] that det Resy,—; n—1(A, B) # 0 if and only
if B and A are relatively prime. Since

( €Co ... Cop—} do o dn—l )Resm_l',._l(A, B)

is the coefficient matrix of the polynomial AC + BD, where C(s) = cos™ ! +
«+++ e;m—1 and D(8) = dps"~! + --- + d,—1, this guarantees the existence of
polynomials, Cy and Dy € IR[s], with deg Cy < deg B—1 and deg Dy < deg A—
1, such that ACy+ BD, € H|[s] and deg(ACp+ BDy) =deg A+degB—-1. =

The notion of reciprocal polynomials will be useful in the sequel.

DEFINITION 2.3 Consider a polynomial, P € R[s], of degree n. For m > n,
define its m:th degree reciprocal polynomial, P*™, through

P*™(s) = s™P(s7").

We use the notation P* = P*desP, o



PROPOSITION 2.2 The reciprocal polynomials have the following proper-
ties:

(4) Py*™ py*me = (P py)*(matma)
in particular Py*P* = (P Pp)*
(ii) (P1 + Pz)*m =P+ Pp*™
(7%%) P e H[s] & P* € H[s]
(3v) PcH[s]=> P(0)#0=>deg P* =degP = (P*)*=P

for P, P2 € R[s] and m,my,mg € Z.
Proof: (1), (4%) and (iv) follow immediately from the definition and (if%) is
true since

P(s) =po(s —a1)(s —a2)--- (s — ap) =

= P*(s) = s"P(s71) = po(1 — a18) +++ (1 — ap8).



3. Upper Bounds

This chapter is devoted to giving upper bounds on the g*-function for cer-
tain cases. The central theorem gives an upper estimate for all kinds of sys-
tems. The approach will make use of Routh-Hurwitz’ determinant criterion
on Hurwitz polynomials [Lancaster-Tismenetsky]. The Hurwitz matrices of a
polynomial, A(s) = aps™ + a18™ ! + -+ + an, a0 # 0, are defined as

a a
) =a, m(a)= (2 2]

’

ai a3 as ... 0

ap 4az a4 .
oy 2p(4A)=10 a1 a3 o1,

\.0 e 0 wala QAp /

where a; = 0 for k < 0 and k > n. The Hurwitz determinants are Ay(A) =
det(A), k= 1,...,n. If ag > 0, Routh-Hurwitz’ theorem says that A is a
Hurwitz polynomial if and only if all the Hurwitz determinants are positive.

Remark. By continuity, it follows that {(u1,...,un) : us" 4+ .o 4y, €
H[s]} is an open subset of R™.

Next follows an example that will reveal the most basic idea of this chapter.

EXAMPLE 3.1
Does the transfer function, B/A = 1/(s® + §% + 2s — 1) have a zero order
stabilizer, D/C = dp € IR?

The answer is yes as we shall see. The feedback gain D/C = dp gives
AC + BD = s® 4+ 5% + 25 — 1 + dg and obviously only the last coefficient
depends on dy. The Hurwitz determinants of AC' + BD are

-1+4d
A((AC+BD)=1, A(AC+BD)= H 1; °| and
1 —-1+dp 0
A3(AC+ BD)= |1 2 0
0 1 —1-+dp
For a sufficiently small positive value on —1+ dg, they all become positive and
D/C = dg becomes a stabilizer of B/A. o

In the following lemma, the essence of this example is given a more genaral
form.



LEMMA 3.1 Consider a polynomial, P, € IR[s], whose coefficients are
continous functions of ¢ € R. If Py € H[s] has positive coefficients, then
8P.(s) + € € H[s] for all € in an interval, 0 < € < 6.

Proof: Put n = deg Py. By Routh-Hurwitz’ criterion Ay(Pp) > Ofor1 < k <
n. If Q¢(s) = sPe(s) + ¢, we have lim,,o Ax(Qc) = Ax(Po) > O0for1 < k < n,
hence A(Q.) > 0 for €:s in some neighborhood of zero. For k = n+1, we have

0n(Q.)

*

An+1(Qe) =

0| = ean@a

which is positive for small positive €:s. The lemma follows by another use of
Routh-Hurwitz’ criterion. =

In Example 3.1 the zero order feedback only affected one of the coefficients
in the characteristic polynomial, but because of the fortunate values of the
other coefficients, it was possible to stabilize the system. This will now be
generalized by the use of the matrix notation for polynomials.

EXAMPLE 3.2

Consider B/A = (s — 1)/(s® — 3s? + s + 5) and suppose we are looking for a
stabilizer of the form D/C = d,s+d;. Using the matrix notation of chapter 2,
we may write

1 -3 1 5

AC-I—BD:(]. do dl) 0 1 -1 0 =(1 a1 & 51)
0 O 1 -1

(7 °)

is nonsingular, thus 6y and 6; can be given arbitrary values. For example,
do=6,d; =5 gives §o = 6; = 0 and

The lower right submatrix

AC+BD=(1 3 0 0)=s%s+3).

This is not a Hurwitz polynomial, but not very far from. By applying Lemma
3.1 twice and change 8y and &; a little bit, we can give a negative real part to
the last two zeros as well. This would provide a first order stabilizer, D/C, of
B/A. Theorem 3.1 will do the construction in the general case. o

LEMMA 3.2 Consider a rational function, B/A, with deg B = m,deg A =
n, and two integers, k and [, such that | < n -1, m+4+ 1 < n+4 k and
det Resg—1,(A, B) # 0. For any polynomial, § = Sos®t 4 oo 4 854y, there
are unique polynomials, C = s¥ + ¢ys*~1 4+ ... + ¢, D = dys' ++--+ d; and
R,f,,(B/A) =ros" 1+ ...+ 1,11 € R[s], such that

A(s)C(s) + B(s)D(s) = s’“"'l"'lR,i'l(B/A)(s) + §(s)-
Proof: The determinant condition guarantees that the linear equation
(50 5);.}.1) - (1 T ... Ck do dl)ReSk,l(A,B)

determines the polynomials C and D uniquely and by that also the third
polynomial, R ,(B/A), is fixed. n



If the conditions of this lemma are fulfilled, we say that R} ;(B/A) is well
defined. For § = 0 we write Ry 1(B/A) instead of R} ,(B/A).

Remark. In the previous example we had R{ ;(B/A) = s+ and RJ,(B/A)
=s+3.

THEOREM 3.1 Consider a rational function, B/A, and integers, k,l,m,n,
obeying the assumptions of Lemma 3.2. If R ,(B /A) is a Hurwitz polynom1a1
of degree n — I — 1, then B/A has a stabilizer D/ C withdegC =k, degD = 1.
In particular ¢ (B JA) < max(k,l).

Proof: For simplicity, we write R’ instead of R,f.,(B/A). Suppose R has

positive coefficients. R(60.0,-..0) ig a continous function of 6y, hence by Lemma
3.1, sR(5°'0""'0)(s) + 8o € H]s] for some §, > 0. We can continue choosing
81,...,0k+1 > 0 sufficiently small, such that the polynomial

sk+l+1R(5o,...,5k+l)(s) + 608k+l =g AL 5k+l —

= s(s(. . (sR(s"""'a"'“)(s) + 50) . ) + 5k+l—1) + bk+1

becomes a Hurwitz polynomial. Then, by Lemma 3.2, there are polynomials,
C and D, C monic, of degree k and [ respectively, such that AC + BD is a
Hurwitz polynomial of degree n + k. Thus D/C is a stabilizer of B/A and
we are finished, since the case with negative coefficients in R° is completely
analogous. .

COROLLARY. Suppose B/A is a rational function such that deg A = deg A*
= n, deg B = deg B* = m and further that B*/A* together with the integers
k,1,m,n satisfy the assumptions of Lemma 3.2. If R,(c’ (B*/A*) is a Hurwitz
polynomlal of degree n — I — 1, then B/A has a stablhzer D/C, with deg D <
n—m+kanddegC <k. In partlcula.r ¢*(B/A) < n-— m+k

Proof: By Theorem 3.1, B*/A* has a stabilizer Do/Cp, with deg Co = k and
deg Doy = I. Since

AC} + Bs™ ™th=IDt = (A*Co + B*Dy)* € H]s]
we may finish the theorem by putting C = Cyp* and D = s" ™t*={Dy*, "

Remark. Theorem 3.1 has a simple heuristic interpretation. Suppose Cj
and Do make ACqo + BDg € HH[s]. Then, when changing C and D from
C=1,D=0to C = Cy, D = Dy, we move the zeros of AC+ BD into the left
half plane. Unstable zeros have to pass over the imaginary axis or through
the “infinity point”. In the case of Theorem 3.1 the last & + ! unstable poles
pass simultaneously through origo. Actually, we move the last zeros to origo,
when we choose D/C such that AC+ BD = s¥t1+1R, . ,(B/A). Then we force
them all into the left half plane by changing C and D appropriately.

The interpretation of the corollary is essentially the same, but the last
k + I zeros pass through the infinity point instead. o

Theorem 3.1 can be given an easier, though less powerful formulation, by
means of polynomial division.



10

For a rational function, A/B, with deg B = m < deg A = n, define the
partial remainders, Py, Py,..., of A/B through the polynomial divisions

A= BQo+ Py, forsome Qq, Py, where deg Py < m —1,

A= s‘BQ.- + P;, for some Q;,P;, where deg P, < m+1i—1,

Obviously @; = 0, P; = A for 1 > n — m. All the P;:s are acquired as partial
results when the polynomial division A/B is computed the ordinary way.

THEOREM 3.2 Consider a rational function, B/A, with deg B = deg B* =
m and deg A = n. If the r:th partial remainder, P,, r < n — m of the rational
A*/B*, is a Hurwitz polynomial of full degree, deg P, = m + r — 1, then the
inequality ¢*(B/A) < n — m — r holds.

Proof: The condition b,, # 0implies that deg B* = m and deg @, = n—m—r.
We have

by 0 ... 0
bn— b
detRes_1 p—m—r(A4,B) = m-1 " #0
0
b2m—n+r b2m—n+r+1 ses bm

and A BQj=(4 - &'B'Q)"™ = " = 5" IR,

hence Rgp—m—-r(B/A) = P} € H[s] and the statement follows from Theorem
3.1. N

EXAMPLE 3.3
We apply Theorem 3.2 to the rational function B/A = (s—1)/(s®—3s?+s+5)
from Example 3.2. The division A*/B*:
— 55 — 6s
-8+ 1|53+ 82 -3s+1
5s° — 5s?
65’ —35+1
65> — 6s
3s+1

Thus P, = 6s® — 3s + 1 ¢ H[s] but P, = 3s + 1 € H[s] and Theorem 3.2 says
that ¢*(B/A)<3-1-1=1. o

The stabilizer, D/C, of Example 3.2 is not proper, i.e. deg D > degC.
This is often not acceptable in practical control engineering. Therefore, it
would be interesting to know, whether there is a polynomial, E, with deg E >
deg D—deg C, such that D/CE is a stabilizer of B/A, or equally, ACE+BD €
H[s]. Theorem 3.3 will answer this question.
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THEOREM 3.3 Suppose P,Q € R[s], P+ @ € H[s] and deg(P + Q) =
max(deg P, deg Q). Then, for any positive integer, 1, there is an E € R[s], of
degree ¢, such that also PE 4+ Q € H[s] and deg(PE + Q) = max(deg P +
i, deg Q).
Proof: 1t is sufficient to prove that the theorem is true for ¢ = 1. The
corollary then follows by induction over 1.

When deg P < deg @, the statement is obviously true, since

deg(P(eos + e1) + Q) < deg(P + Q), and

lim (P(eos+e1)+Q)=P+QeH[s]
(e0,e1)—(0,1)
(See remark in the beginning of the chapter.)

When degQ < deg P, we set n = deg P = deg(P + Q) = deg(P + Q)*
and put A = s(P+ Q)*,B = P**k = | = 0 into Theorem 3.1 We get
det Res_1,0(s(P + Q)*,P*™)) = po # 0 and A(s) -1+ B(s):-0= (P + Q)*s,
ie. RY,(A,B) = (P+ Q)" € Hs] and the theorem shows that there is a
number do, such that s(P + Q)* + P**dy € H[s|]. Hence P(dgs + 1) + Q@ =
(s(P + Q)* + P*"do)*("*1) c H[s] and we are finished. .

Finally, we use Theorem 3.1 and an argument similar to the proof of
Lemma 3.1 to prove a well known result about ¢*(B/A), when B € IH[s]
(minimum phase systems).

THEOREM 3.4 Suppose A(s) = s® + a1s" 1 + -+ + a, € R[s], B(s) =
s™+4 -+ bp € Hs] and r =n —m > 1. Then ¢*(B/A) < r — 1. Further, if
aj > by and r > 2, the stronger inequality ¢*(B/A) < r — 2 holds.
Proof: Choose any monic P € HH[s] of degree r — 1 and put Bg/Ag =
A*/(PB)*™ and k =l = 0 into Theorem 3.1. We get det Res2; (Ao, Bo) =
1# 0, deg Ao =n and Ag+1+ Bo- 0= s(PB)*, i.e. Roo(Bo/Ac)=(PB)*is
well defined and a Hurwitz polynomial of full degree, n— 1. The theorem gives
Ap + 1+ Bodp € H for some do € IR, thus Adg + PB = (Bodo + Ao)*" € ]H[s]
and we have finished the first part.

If a; > by, choose the polynomial P(s) = s" 2+ p;s"™ 3 +..-+p,_3 € H[s]
in such a way that Q(s) = s""2 + ¢18" 3+ --- + g2 = B(s)P(s) € H[s]
makes a1 > b1 + p1 = ¢1. Then we have

lir%Ak(szQ* +eA*) =Ar(Q*) >0, 1<k<n—2
e—

1 _3(s?Q* +eA*) 0O
lim _An—l(s2Q* 4+ EA*) = lim l Qp 2(3 Q" +e ) -
e—0¢€ e—0¢& 0 €ay

=01Ap,-2(Q*) >0, and

Qp—3(s?Q* +eA4%) 0
.1 2 o 1 l+ea; € O]
ZI_I’I(I) g2 An(s Q + e ) o elgr(l) g2 0 q1 +€eaz ea 0 -
g2 +€ay4 eaz €
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Qn—s(szQ* + €A*) 0
. 1+ eay 1 0| _ B i
= 11_1.1(1) 0 Gl EEa) @ 0 = (a1 QI)An—S(Q ) > 0.

q2 +e€ay e€az 1
Consequently, for a sufficiently small ¢o, we have Aco+BP = (s2Q* +cod*)* €
H][s] and deg(Aco + BP) =n, ie. ¢*(B/A) <r—2. .

The results of this chapter may be used in a computerized search for low
order stabilizers of given rational functions. Appendix 1 contains a CTRL-C
program for that purpose.



4. Lower Bounds

Since all coefficients of a monic Hurwitz polynomial are positive, a nec-
essary condition for ¢*(B/A) < k is that there are polynomials, C and D, of
degree k, which make the coefficients of the polynomial AC + BD positive.
Since these coefficients are obtained by matrix multiplication

AC+BD=(1 ¢ ... ¢ do ... dg)Resgy(A,B)

the question is whether there is a linear combination of the rows in the matrix
Resy (A, B) having only positive coefficients.

The Pascal-program in Appendix 2 calls the NAG-library for linear pro-
gramming to check the condition above. The programs of Appendix 1 and 2
together give upper and lower bounds on ¢*(B/A) for any rational functions,
B/A. Next we give the pole-zero diagrams of some rational functions, together
with the respective estimates of ¢*.

EXAMPLE 4.1

In the figures, the estimates of ¢*(B/A) are shown in some different cases. A
zero of A is marked with ’x’ in the complex plane. Parenthesis are used to
indicate multiplicities greater than one. A zero of B is marked with ’o’. For

example, the first figure indicates that ¢* ( - +2"_18_2 ) =1,

[ [ 3
n=2: rl=3:>< n=4“x(2)
+ +1 T
— —I—i—)ﬁ——]i.——-l—i—b —— —t
L1 + L1
J 4 x + x(2)
1<g*<1 1<g*<1 2<q*<3
n=5 | n=5 | n=s |
i7(5) (2) i--(@ o R )
e e - st —i— T
11 Lio f1
+ + + o0
4<q*<4 3<q*<4 2<q*<4
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n=47 n=4 | n=4 7
i+ il i+
+——& [gl:(}: i —-}-——?-—t—-e[%lt - —+—t {%]—Q—l’—’
2<q*<2 2<q*<3 3<q*<3

The next theorem is just a different formulation of the previous condition.

THEOREM 4.1 If the equation Resy,(4,B)§ = 0, r = max(k + deg A,-
I + deg B),has a solution, § = (6,...60)T # 0, with &,...,8, > O, then
there is no stabilizer, D/C, of B/A, with deg C < k,deg D < I, in particular
q*(B/A) > min(k,l).

Proof: The condition implies that

(1 C1 vee Ck do d;)Res,';,,(A,B)(S,. 60)T=0,

so D/C with deg C = k and deg D < [ can not be a stabilizer since the poly-
nomial AC + BD must contain at least one negative coefficient. By Theorem
3.3 no stabilizer of lower degree can exist either and we are finished. .

EXAMPLE 4.2
Consider
B(s) _ 8—2 . 8—2
A(s) (s+1)(s—2+14)(s—2-1) T 83-38s2+s5+5

Gaussian elimination gives

1 =3 0 g“
0 1 1 5 3
Res] 1(4,B)6 =0 & o 0 9 0 62| =0
61
0 0
bo

&6T=(1 5 4 2 1)8,
and by Theorem 4.1 we have ¢*(B/A) > 2. Since the system is of third order,
equality must hold. o

We will now use Theorem 4.1 to find a class of systems that need a full
order regulator for stabilization.

THEOREM 4.2 Suppose
A(S)—s +alsn 1+ tap = (3_ﬂ1) (s—ﬂn)a ﬂl)"')ﬂnEIR'+-

Then 1/A has no stabilizer D/C with deg D < n—1. In particular, ¢*(1/A4) =
n—1.
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To prove this theorem we will need a lemma.

LEMMA 4.1 The function f: IR — IR defined by
f(z) =c1Pi®+ -+ cnfn”

where f1,...,8, € RT and cy,...,c, € IR, has at most n — 1 zeros.

Proof: The statement is true for n = 1. Assume that it is true for n = m.
We have

z z
0=01ﬂ1z+"°+6m+1,3m+1z¢>—cm+1:c1( A > +...+< ﬂm) .
ﬁm+l ﬂm+1

Thus, putting g(z) = ¢1(81/Bm+1)% + -+ - + cm(Bm/Pm+1)*, We want to prove
that the equation g(z) = —cgm+1 has at most m solutions. This follows however
from the facts that

¢'() = c11n(B1/Bme1) ( & )z + v+ c1 10(Bm/ Bmra) (ﬂ_m>

Bm+1 Bm+1

by the induction assumption, has at most m — 1 zeros, and that between every
two zeros of g, there must be a zero of g’ (Rolle’s theorem). The proof is
completed by induction over n. m
Now we are ready to prove the theorem.

Proof of Theorem 4.2: Define (6;)52, through the difference equation

Ok4n+ @1bgrn—1+ -+ anb =0

and the initial conditions 6y = «++ = 6,2 = 0, 6,1 = 1. If the numbers
B1,..., 0, are all different, it follows from the theory of difference equations
that there are ci,..., ¢y, such that §, = clﬂlk 4. -+cnﬂnk, k > 1. Lemma 4.1
together with the initial conditions show that §; > O for k > n. By continuity
the inequalities §; > 0 must hold even if A has multiple zeros. It is obvious
from the definition of 6 = (61 -+ 8,1x)7, that

Res:;’iz(A, 1)6 =
(1 ai ven Qg 0
5n+k
_ 1 a1 a2 an —o.
1 0
0 T 60
\ 1)

The statements to be proved now follow from Theorem 4.1 and the fact that
¢*(B/A) < max(deg B — 1,deg A — 1) (chapter 2.). n

EXAMPLE 4.3

1
* > 2
! <(s — (s +i)(s - 1)3> =
since if D/C is a stabilizer of (s—i)(s-l—li)(s—l
bilizer of E_Ll)-g-, thus Theorem 4.2 implies that deg D > 2. o

iL then C(s+g(a—i) must be a sta-
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Finally follows another proof that ¢*(1/(s — 1)*) = n — 1. This may seem
unnecessary, but being a bit more explicit, it could serve as an illustration
of the previous proof. The convention (':) = 0 for ¢t < 0 and ¢ > n, will be
convenient.

LEMMA 4.2

(j—1)<n+i) (j—l)(n+i—1) (n+i—1)< n )
. A B ol . = . . )
3 J 1—1 J 1 J—1

fors>0,n,7>1.

Proof: For1<1<j—1<n+1—2 we have

(TG0
(7 — D)Y(n +9)! (G- (n+1-1)! _
G- 1- ) +i-g  G-DIG-)n+i—j-1)

- =G

The generalization tot > 0,n,5 > 1 includes nothing more than checking some
special cases were some of the terms are zero. This is left to the reader. ]

THEOREM 4.3 The rational function 1/(s— 1)" has no stabilizer D/C with
deg D < n — 1. In particular, ¢*(1/(s — 1)*) =n — 1.
Proof: Put 6 = (8u4x ... 6)T, with &= (;_},,). Then

Res;:";'iz((s -1)"1)6 =

(1 —n 1 0y ((TFH))
_ 1 -n (3) 1 1
- 1
0 -
\ 11 L 0 )

Only the first k 4+ 1 elements of this product need to be calculated:

Zj:(_l)j_(jii) ("i77)-
B )
) )

for 1 < j < k+1. The rest of the elements are trivially zero, i.e. Res;c‘;’i 2((s—
1)",1)6 = 0, and the theorem follows from Theorem 4.1. .

Il



5. An Invariant Theory Approach.

This chapter, I guess, deserves its own introduction. The one who first pro-
posed the stabilizing order, ¢*, as a subject for my master thesis, was Prof.
C.I. Byrnes when visiting Lund in April 1986. He asked me to try to deter-
mine the ring of all output feedback invariant polynomials in the coefficients
of a transfer function. This ring is interesting, since also the ¢*-function is
an output feedback invariant function of those coefficients [Byrnes-Crouch].
Theorem 5.1 gives a set of generators of the ring while Theorem 5.2, totally
independent of the rest of the chapter, will prove that ¢*(B/A) is a function
of some such output feedback invariant polynomials in the coefficients of A
and B.

The action of feedback with constant gain, k, on a finite dimensional linear
system is illustrated below:

B
A

@ I B N
A+kB

-k | g—

This motivates the following notations and definitions. Let I' be the the
group of all matrices of the form

1 0
= k
O [’C 1], EIR.,

under multiplication. T is obviously a subgroup of SL(2).

DEFINITION 5.1 The group I' operates on polynomials, I : IR?* — IR, in
the following way:

(ak ‘ I)(xlayl:' .. ’zm'yn) . I(xl,yl + kxl: ey TnyYn + kxn)-

Observe that
ak-(a;-I) S (O'ka'l)-IZ ak.H-I
O * (I1I2 + I3) = (0’], . Il)(O'k . Iz) + [ I3

for polynomials, I, I;, Iy, I3 : R?® — IR, and k,I € R.

17
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DEFINITION 5.2 A polynomial,I(z1,y1,%2,¥2,---,Zn,¥Yn), in 2n variables,
is said to be a polynomial invariant of the group ' if I = o}, - I for all g € T.
The set of polynomial invariants of I' in 2n variables forms a subring, R(n),
of R[zy,...,yn] o

By [Byrnes-Crouch], (z:;); and (z:y; — ;¥i)1<i,j<n are elements in R(n).
These correspond to the fact that the zeros of a system, as well as the branch-
points of the rootlocus, are output feedback invariants. Below (Theorem 4.1)
it will be proved that they generate all of R(n). First we need some definitions
and lemmata. Lemmata 5.1 and 5.2 are found in [Schur].

DEFINITION 5.3 A polynomial I(z1,y1,%2,9Y2,---,%n, Yn), is said to be ho-
mogeneous of degree r in the pair (z;,y;), if every term in I contains exactly
r factors from the pair (z;, y;). o

LEMMA 5.1 Every element in R(n) can be written as a sum of terms in
R(n), all of them being homogeneous in each pair (z;,y;),1 < 5 < n.
Proof: For afixed j, any I € R(n) can be written asa sum, I = Hy,+H,,_ 1+
»+++ Hop, where H;,0 < 1 < m, are homogeneous of degree 7 in (z;,y;). We
would like to prove that the terms, H;, are also invariants of T'.

For o} € T it is clear that oy - H; is also homogeneous of degree 1 in (z;, y;)
and from the polynomial identity

I=0k'I=0k'Hm+0‘k'H _1+"-+0'k'H0,
follows that H; € R(n) for all i. Repeated use of the argument for all pairs

(z;,y;) completes the proof. .

LEMMA 5.2 (POLARIZATION.) Given any polynomial I € R(n), homo-
geneous in each pair (z;,y;), there is another polynomial I € R(m),m > n,
homogeneous of degree 0 or 1 in each pair (z;,y;), such that

I(xlr' i 7yn) . j(ftl,..- sYn> Ting s Yingys- "1xim1yt'm)

for some values of the indexes 5, 1 < ;< n,n+1<I< m.
Proof: Suppose I(z1,...,yn) € R(n). Then for a fixed 1,1 < i < n,

9 ) - or , ol
i\Z1, - -, Yn; Tntl; Yntl =  ZTn+1 9z yn+16y'_
belongs to R(n + 1).This is evident since
o arI a1
o ly; = zpp (Uk . 8_:::,) + (Ynt+1 + kxn+1)(‘7k : 3y.') =
al al oI
= ZTpy1 ldk'a—x‘_-i-k(ak'ayi):l +yn+l(0'k' 3y.-)
Aox-I AMog- I a
= ""‘“(aT,-) + y"+1—(6_y.-—) = L.

Also, if I is of degree r in (z;, y;), we have j,-(:cl, e Yna Tiy Ys) = rI(Z1, .., Yn)
so I can be recovered from I;. Obviously, the new polynomial invariant is of
a lower degree in (z;,y;), and by repeated use of the construction we get a
polynomial invariant with the desired property. m
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By Lemma 5.1 and 5.2, in searching for a set of generators of R(n) it suf-
fices to consider I'-invariant polynomials, which are linear in each of a number
of variable pairs, (z;,y;). Let S(n) denote the set of all such polynomials
R2" - RR.

LEMMA 5.3 No polynomial in S(n),n > 1 has a term with more y-factors
than z-factors.

Proof: Suppose [ is the greatest number of y-factors present in any of the
terms of the polynomial I(z1,...,yn) € S(n). If | > m = n — [, then for some
choise of the indexes, #1,...,4i, € {1,2}, the polynomial J(z1,y1,%2,y2) =
I(%iys Yirs - - » Tin» ¥i) € R(2) would be homogeneous of degrees ! and m in
the pairs (z1,y1) and (z3,ys2) respectively and also contain some term with
exactly ! y-factors. We want to show that such a polynomial does not exist.
In other words, assuming that

J(z1,y1,%2,92) =

( \
61_1 vae Cl,m x;"'
m—1
- 2 Y2
= (xi :L‘i lyl e yll) cl—m+1,m : € R(Z),
48
\ Cl,1 0 J
m < I, we want to prove that ¢;_;;1; =0, 1 < ¢ < m. Note that
o (2 'y ... wh)=(ab o Mmt+ke) ... (w1t ke))
=(zt 2y ... y})Si(k)
1 l
1 (k ... (
where Sj(k) = 1

(Lok
0 L7 e (+1)
The fact that o - J = J may be written in terms of C = (¢ ;).
C = Si(k)CSm (k)T = Si(—k)C = Si(k)~1C = CSp (k)T
*
Clemm — (I — m+ Dkci_mi1,m

Cl—m+1,m = Si(—k)C =
c—1,1 — lkeyy
CL1 0
4 * A
Cl—m,m
= CSp(k)T = Cl-mtlm |
ci—22 + 2kci—3,3
ci-11 + kep-12 Ci-1,2
\ Cl1 0 s
= 0= Cl-mt+1,m = Cl-m+2,m—1=""* = Cl,1-

By that we are finished. B
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Now we are ready to prove the main theorem of this chapter.
THEOREM 5.1 Forn > 1, let P(n) be the subring of R[zy,. .., y,] generated
by the polynomials (z;)%, and (z;y; — ;¥i)1<i,j<n. Then R(n) = P(n).
Proof: It is easy to check that these polynomials belongs to R(n), so that
P(n) ¢ R(n). It remains to prove that R(n) € P(n). Lemmata 5.1 and
5.2 show that it is sufficient to show that S(n) ¢ P(n). To do this, we use

induction over n. Obviously the only elements in S(1) are the multiples of i,
so the theorem is true for n = 1.

Now suppose that S(m) C P(m) for 1 < m < n. Let I € S(n+ 1). Then
I(z1,- -y Yn+1) = Znt1Jda(@1,- - -y Yn) + Ynt1d6(21, - . ., yn) Where J, and J; are
linear in every pair (z;,%;),1 < 4 < n. We have

I=0pI=2n41(0k " Ja) + (Yn+1 + kzny1)(ok - Jp) =
= Zp11(0k - Jo + k(ok - b)) + Yn+1(ok - b)),
so I € S(n+ 1) implies oy - Jo = J; — k(ox - Jp) and oy - Jp = Jp. Hence
Jy € S(n) C P(n) (the induction assumption). Since I = xn11J4+Yn+1Jp and
I € S(n+1) Lemma 5.3 shows that every term in J, must have more z-factors
than y-factors. By these facts, it is possible to write Jy = 11 + ... + 2,1,
where I1,..., I, € P(n—1). Put Jo=y11 +... + ynln to get
Ok * (Ja+ Jc) =0k Ja+ (yl + kxl)Il +...+ (yn+kxn)In e
=Ja—k(ak-Jb)-l-ka-l—Jc:Ja+Jc,

ie. Jo+ J. € §(n) € P(n). Thus, since
I= mn+1(Ja. + Jc) + Ynt1Jp — Tny1de =
= Znt1(Ja + Jo) + (€1Yn+1 — Tar1y1) 1 + - - -+ (TnYnt1 — Tnt1Yn) In,

it follows that I € P(n + 1) and we are finished. =

The next theorem is completely independent of the theory above, and
shows how polynomials in P(n) arise in the stydy of the ¢*-function.

THEOREM 5.2 The quantities (b;)%; and (bia; —bja:)1<i,j<n determine the

number
" blsn_l+"'+bn )
T \s"Ffas" T+ tap,

uniquely.

Proof: Suppose that B/A; and B/A; are rational functions and B'A; —
BA! = B'A;, — BA,. Then (A1/B) = (A3/B), ie. A1 = Ay + kB and
q*(B/A1) = ¢*(B/As). This shows that ¢*(B/A) is a well defined function
of B and B'A — BA', and since the coefficients of B'A — BA' are all linear
combinations of elements in (b;a; — b;jai)1<i j<n, the proof is complete. =
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Appendix A.

This is a CTRL/C-program computing low order stabilizers according to chapter 3.

disp([’Given two polynomials, A and B, with degA>=2 and degA>=degB>=0,’
'the procedure tries to calculate polynomials, C and D, of a !
'relatively low degree, such that AC+BD has all its zeros in the’
'left half of the complex plame. '

m=size(B) ;

m=m(2)-1;

n=size(A);

n=n(2)-1;

if min([n-2,n-m])<0,

disp([’You have to define A and B as two row matrices according to the’;...
‘conditions given above, before calling the procedure. 3 D I
return, ...

end;

//

//Define the resultant matrix.

//

Psia=A;

for i=1:n-1, Psia=[Psia,O%ones(i,1) ;O*ones(1,i),A];

if n=m,P=B;else,P=[0*ones(1,n-m),B];

Psib=P;

for i=1:n-1, Psib=[Psib, O*ones(i,1) ;0*ones(1,i),P];

Psi=[Psia;Psib];

q0=n-1;
t0=3;
//
//Check the minimum phase case.
//
if min([m-1,max(real(roots(B)))]1)<0,
£0=2;
Cc=1;
if n=m,D=1,;P=1;q0=0;...
else, ...
if n=m+1,D=1;P=[0 1];q0=0;
else,

D=poly(-ones(1,n-m-1))’;P=[0 1];q0=n-m-1;
if m>=1,u=A(2)/A(1)-B(2)/B(1) ;else,u=A(2)/A(1);end,
if uw»0,

if n=m+2,D=1;P=[0 0 1];q0=0;
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else,...
D=poly(-.b*u*ones(1,n-m-2)/(n-m-2)) ' ;P=[0 0 1];q0=n-m-2;
end,
end,
end,
end, ...
while max(real(roots(A+conv(conv(D,P),B))))>=0,D=2%D;
end,
//
//t=0: Put poles in origo.
//t=1: Put poles in infinity.
//
for t=0:1,
for k=0:min([q0-t*(n-m),n-1])-1,
for 1=0:min([q0-1+t*n,n-2,n-m+k]),
Alpha=Psi([n-k+1:n,2%n-1:2%n] , [2%n-k-1:2%n]);
if cond(Alpha)<1D+03,
Beta=Psi{([n-k+1:n,2%n-1:2*n] , [n-k:2%n-k-1-11);
CD=-[A(n-1+1:n+1),0%ones(1,k)]/Alpha;
RO=A(1:n-1)+CD*Beta;
si=max(real(roots(RO)));
if 8i<o0,
if RO(1)<> o0,
q=t* (n-m+k) +(1-t) *max([1,Kk]);
if g<qoO,
q0=q; kO=k;10=1; t0=t; AlpO=Alpha; ri=RO(1);
if k»0,C0=[1,CD(1:k)];else,C=1;end,
D=CD(k+1:k+1+1);
qklts=[q,k,1,t,8i];
end,
end,
end,
end,
end,
end, ...
if t0<>1,
A=A(n+1:-1:1) ;B=B(m+1:-1:1);
Psia=Psia([n:-1:1],[2%n:-1:1]);
Psib=Psib([n:-1:1],[1:n-m,2*%n:-1:n-m+1]);
Psi=[Psia;Psib];...
end,
end;
if t0=3,...
disp(’No such polynomials of degree less than degA-1 are found.'),...
return, ...
end;
//
//Move the last poles into the left half plane.
//



if t0<2,
k=kO0;
1=10;
Delta=O*ones(1,k+1+1);...
for j=1:k+1+1,
8ig=0;
Beta=Psi([n-k+1:n,2%n-1:2*n] , [n-k:2*n-k-1+j-1]);
Delta(j)=ril;
while sig>=0,
sig0=sig;
CD=(Delta-[A(n-1+1:n+1) ,0%ones(1,k)])/AlpO ;
RO=Psi(1,1:n-1+j)+CD*Beta;
sig=abs(RO(2))*max(real (roots (RO)));
Delta(j)=Delta(j)/2;
end, ...
ri=Delta(j);
end;...
if k>0,0=[1,CD(1:k)] ;else,C=1;end;...
D=CD(k+1:k+1+1);...
if n+k-1-m>0,P=[0*ones(1,n+k-1-m),1];else,P=1;end,
if t0=1,
A=A(n+1:-1:1) ;B=B(m+1:-1:1);
C=C(k+1:-1:1) ;D=conv(D(1+1:-1:1) ,P(n+k-1-m+1:-1:1));
P=1;R0(1)=RO(nt+k+1);
end;
end,
//
//Make the regulator proper.
//
while size(D’)>size(C’),...
ACBD=conv(A,C)+conv(B,conv(D,P));
c=[ACBD(1)*A(1) /abs (ACBD(1)),C];P=[0,P];.
loop="C(1)=C(1)/2;C=2%C;D=2%D;";...
while max(real(roots(conv(A,C)+conv(B,conv(D,P)))))>=0,]1loopl;...
end, .
end,
A,B,C,D,
zero=roots (conv(4A,C)+conv(B,conv(D,P))),

An execution in CTRL-C would look like this:

[> a=[1 -2 08 -12 8]
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[> roots(a)

ANS =

-2.0000 + 0.0000i
1.0000 + 1.0000i
1.0000 + 1.0000i
1.0000 - 1.0000i
1.0000 - 1.0000i

[> b=[1 03 6 10]

[> roots(b)
ANS =

1.0000 + 2.0000i
1.0000 - 2.0000i
-1.0000 + 1.0000i
-1.0000 ~ 1.0000i

[> do qlow

10.

GIVEN TWO POLYNOMIALS, A AND B, WITH DEGA>=2 AND DEGA>=DEGB>=0,
THE PROCEDURE TRIES TO CALCULATE POLYNOMIALS, C AND D, OF A
RELATIVELY LOW DEGREE, SUCH THAT AC+BD HAS ALL ITS ZEROS IN THE
LEFT HALF OF THE COMPLEX PLANE.

A =

-12. 8.

10.
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1.0D+04 =*

0.0001 3.4369 6.5536

1.0D+05 =*

-0.3432 0.0381 2.4408

ZERO =

-24.2256 + 0.0000i
-0.9724 +13.76101
-0.9724 -13.7610i
-4.8951 + 7.4825i
-4.8961 - 7.4825i1
-0.6446 + 2.7620i
-0.6446 - 2.76201i



Appendix B.

This is a Pascal-program that calls a NAG-program to compute a lower bound on ¢*
according to chapter 4.

program underq(input, output) ;
const max=20;
bigmax=400;
maxint=1E+20;
type vector=array[l..max] of double;
bigvector=array[1..bigmax] of double;
intvect=array[l1..max] of integer;
matrix=array[l..max] of vector;
var m,n,1i,j,k,liwork,lwork,ifail: integer;
istate,iwork:intvect;
objlp:double;
b,a,bl,bu,x,clamda:vector;
work:bigvector;
r: matrix;
procedure EO4MBF (itmax,msglvl,n,nclin,nctotl,nrowa:integer;
a:matrix;
bl,bu,cvec:vector;
linobj:boolean;
var x:vector;
var istate:intvect;
var objlp:double;
var clamda:vector;
var iwork:intvect;
var liwork:integer;
var work:bigvector;
var lwork,ifail:integer ) ;extern;
begin
lwork:=bigmax;
liwork:=max;
bul1]:=1;
bl[1] :=bu[1];
for i:=2 to max do

begin
buf[i] : =maxint;
bl[i] :=0;

end;

writeln(’Give the coefficients of the numerator, B.');
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i:=1;
vhile not eoln do
begin
read(b[i]);
i:=i+1;
end;
m:=i-2;
readln;
writeln('Give the coefficients of the demominator, A.');
i:=1;
while not eoln do

begin
read(al[il);
i:=i+1;
end;
n:=i-2;
k:=-1;
ifail:=1;
while (k<n-1) and (ifail<>0) do
begin

(ot st ek s s sk e ok ok ek s ok sk ok o ook o ks ok o
Compute the resultant matrix.
sk ok sk ke ok sk e ok s ke ke s ke ke o e s ok ok ok sk ok ok )
k:=k+1;
for i:=2 to 2%k+2 do
bl[i] :=-maxint;
for i:=1 to 2+k+2 do
for j:=1 to 2*n do
rli,jl:=0;
for i:=1 to k+1 do
for j:=1 to n+l do
r[i,i-1+j]:=alj];
for i:=1 to kt+1 do
for j:=1 to m+1 do
rlk+i+i,n-m+i-1+j]:=b[j];
(et ok ke e e ke ke ke ks o ok s se o ok ks o ok ook o
Search for a feasable point.
s s ok s ok ok koo ok ok s e el ook sk e o sk ook )
E04MBF(—1,-1.2*k+2,n+k+1,n+3*k+3,max,r,b1,bu.b1,false.x,istate.objlp,
clamda, iwork, liwork, work, lwork,ifail);

end;
writeln(’gstar>=",k);
write('D=");

for i:=k+2 to 2%k+2 do
write(x[i]:6:3);
writeln;write(’C=");
for i:=1 to k+1 do
write(x[i]:6:3);
end.
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An execution of the program looks like this:

Give the coefficients of the numerator, B.
103610

Give the coefficients of the denominator, A.
1 -1 -4 16 -20 12

gstar>= 1

D=-0.917 5.917

C= 1.000 1.917



