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"- S0 you claim that you can count, said the queen
doubtfully. What is then one and one and one and
one and one and one and one and one and one and
one and one and one and one and one and one and
one and one and one ?

- 1 dont know. I lost count, said Alice.

- Ha, she can’t even do simple addition, said the

queen laughing"

Lewis Caroll



1. Introduction

The purpose for this M3 dissertation has been to explore the possibilities of
using fast recursive parameter estimation methods for fault detection in

electrical power system. This included the following tasks:
o Learn recursive parameter estimation methods.
o Study and select appropriate hardware.
o Develop software.
o Perform experiments with fault detection.

A power system is an electrical network. When short circuité or other faults
occur the properties of the network changes. One possibility to detect a fault
is thus to monitor the network parameters. The final goal was defined as
follows : Determine the feasibility to estimate the R & L parameters from a
given data record in less than a period i.e. 20 ms. This goal was successfully
completed. 3ince rapid estimation is crucial a lot of effort was devoted to
factors which influence convergence rates. This involves both algorithmic and

hardware issues.

After several considerations it was decided to use a signal processor TMS 320.
This was based partially on cost and availability. A drawback of the signal
processor is that it has to be programmed in assembler. To make this in a
convenient way a code generator was developed which generates TM3

assembler based on a high level description of the estimation algorithm.
This report is organized as follows :

Parameter estimation with practical aspects on implementation is discussed in
Section 2. The problem of detecting changes in the parameters (‘faults’)
on-line is also discussed here. Different possibilities to implement the
algorithms proposed in section 2 on-line have been investigated. The choice
stood between using a floating point array processor to an IBM personal

computer and a signal processor TMS8 320 normally used for other applications.



The TMS 320 with development boards is described in Section 3. The new TMS
32020 processor with enhanced possibilities to floating point calculations is

also discussed.

A drawback with today’s signal processors is that they lack floating point
numbers. Either all calculations must be done using fixed point numbers or
floating point routines must be implemented in software. This is discussed in
Section 4. A little unusual suggestion for the arithmetic format called the
FOCUS number system with fractional exponent and no mantissa is also

described here.

A procedure based system for automatically generating assembly code for the
TMS 320 is described in Section 5. The code generator is written in Pascal, it
is also shown how it could have been written in Prolog making an interactive
programming environment possible.

The practical experiments performed are described in Section 6.

Section 7 contains a reference list and five appendices with programs etc..



2. RPacursive Parametsr Estimation

Models of physical, economical, social or biological systems can all be
obtained in at least two different ways : by use of prior knowledge about the
system or by experimentation and observation. Successful modelling is usually
a combination of both. Often some parameters of the model have to be
determined from experiments. Due to the development in computer technology
and VLSI design the technics of parameter estimation can now be applied to
new areas. 1f knowledge about the system is needed quickly the time for
calculating good guesses of the parameters can be critical. Cne then has to
settle with faster, less sofisticated algorithms. This is particularly the case
for relay systems where decisions must be taken quickly. It is important that
the algorithms be robust against disturbances. Reliability is especially

important for relay systems that has to work, say once in ten years.

2.1 The ARMA Model

For a survey over the field of parameter estimation see [12]1. We will here
restrict us to one specific family of models often used for linear systems, the

ARMAX-processes:
Alq)y(k) = B(giu(k) + C(gle(k) Kk = ..-1,0,1,.. (2. 1)

Here y is the output, u the input and e a disturbance often modelled to be
white (often also Gaussian) noise. A, B, and C are polynomials in the

forward-shift operator q, e.g. qy(k) = y(k+1).

The coefficients of the polynomials A,B and C might be time-varying. The
impedance of a power net-work will e.g. change drastically when short-circuit
occurs. This is the idea behind the ASEA RELAYS interest in these problems.
'Fault detection’ means to discover when these parameter changes occurs. For

the moment we will however assume that A,B and C are time-independent.



2.2 The Least Squares Criterion

The signals y and u are assumed to be known and the problem is to fit the
polynomial-coefficients to experimental data as well as possible. To measure
how well the model corresponds to data some criterion must be introduced.
The resulting ‘optimal’ parameter estimates will be highly dependent on how

this criteria is chosen. The least squares criterion

J(A,B,C,N) = Z: ez(k) (2.2)

A
is commonly used. Here e(k) is some kind of prediction error. The equation

(2.1) can also be written more compactly as

y(k) = @Tw(k) + e(k) ’ (2.3)
wvhere
8 = ( b b ,c c )T
= al.. 'anﬂ 1verbpreqeeioy

(-y(k-1)...-y(k-m+1),u(k-1)...u(k-n+1), e(k-1).. .e(k-j))T

N2

The signals e(k-1)...e(k-j) are not measurable. They are replaced by estimates
calculated from prior measurements, see [1]. The parameter which minimizes

the least square criterion is given by

T 1. T

@ = [d°¢1 ~d°Y (2.4)
vhere
<,oT Y
1 _ 1
& . T and Y = :
N N

It can be shown that if C{q) = qn and e(k) is white noise with zero mean and
finite variance. then the parameters ® in (2.3) can be estimated unbiasedly by
(2.4). With some restrictions on the input signal ("sufficient richness") the
variance of the estimates will approach zero. This means that the parameters
can be estimated arbitrary well if N is large enough. The 'convergence-rate’

is determined through

A

var 8 = 02(¢T

#t

If Clgq) <> qn the estimates (2.4) will be biased using the least squares
‘¢riterion. Unbiased estimates can be obtained if other estimation methods are
used, see [1]. Neither of these methods are suitable for on-line computation
because a large matrix has to be inverted every time new data is obtained.
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criterion. Unbiased estimatss can be obtained if other estimation methods are
usged, zee [1]. Neither of these methods are suitable for on-line corhputation
because a large matriz has to be inverted every time new data is obtained.
This will make on-line computation practically impossible which is a major
drawback if the results are needed quickly. The time for detection of a short
circuit in a power system should e.g. be less than one period i.e. 20 ms. For a

discussion of fault detection in power systems see [21.

The least squares algorithm (2.4) can be written as a recursive formula. This
means that new guesses of the model parameters are obtained in terms of old
guesses. This speeds up the updating. It allows higher sampling rates and uses

less memory.

2.3 Recursive Computation

The recursive least squares algorithm can be written as

1 T,-1

P(N+1) [P(NY ~ + @(N+1)@(N+1)" ] (2.5)

A

A
O@(N) + P(N+L)e(N+1)[y(N+1) -~ @T(N)<p(N+l)]

B(N+1)

, see [101. This can be interpreted as a steepest descent method with
decreasing gain given by the Hessian rn.atrix P. Similar algorithms can be
found in optimization literature. The equations (2.5) can also be viewed as a
Kalman filter for a system having constant parameters as state variables and

white measurement noise e :

B(k+1)

I

8 (k)

y (k) = E)Tcp(k) + e(k)

The most time consuming part of (2.5 is the matrix inversion. By use of é
matrix inversion lemma one can take advantage of the fact that cpcpT is a rank
one matrix to rewrite the updating of the P matrix in (2.5). The new formula
will require a computation time proportional to n2 instead of n3 where n is the
number of parameters, see [10]. Even after this improvement the recursive

formula (2.5) may be too demanding computationally. Different simplifications

-8 -



have therefore been developed.

In stochastic approximation the matrix P is replaced by the scalar

-1
P(k) = [% (_pTcp]

The convergence of the estimates with this algorithm will generally be slower
but with proper conditions on the input the estimates will still be unbiased.
The properties of the parameter estimation depend of course on the model and
on the nature of the disturbances. If there is no disturbances the estimates
from (2.5) will converge to the correct values after a finite number of steps.
For stochastic approximation we have instead the following sufficient

conditions on P(k) for consistent estimates :

P(k) 2 O
Z P(K) = w
2

Z P (k) < =

1f these three conditions are fulfilled the estimates will eventually converge
to the correct values. Nothing is however said about the convergence rate
which usually is slower than with the Hessian matrix P. Kestin and Lapidus has

suggested that P(k) only should be decreased if A® changes sign. This, and

k
similar tricks, can increase the convergence rate.

A third alternative is to have constant. scalar gain P. This is called ’‘the
MIT-rule’ or just a ’‘constant gain algorithm’. The calculations can then be
performed even faster,see [231. A correct choice of P is important and may be
troublesome. The choice is to be a trade-off between convergence rate and
robustness against noise. A large P will give a fast but nocise sensitive
adaption. The choice of P is unfortunately also very sensitive to changes in
the input signal. Too large a P will give an unstable algorithm as seen by the
following calculation :

~

A
Introducing the prediction error ® = 8 - ® equation (2.5) can be written as

~

Op = H B 1+ P ooy

where

T
1]

T
£ I - P PPy (2.6)



T
The matrix Ht has the eigenvalues 1, with multiplicity n-1, and l—Pgot'(pt . The

recursive ecuation (2.6) is thus unstable if P is negative or larger than

- 2
Pc T
Pp Py
If
1
P T
(pt(pt

then H becomes a Householder projection-matrix. This will give the minimal
prediction error. A proper choice of P therefore requires good knowledge
about the magnitude of the input and output signals. This knowledge can be

obtained e.g. through simulations of the system with ‘typical’ input signals.

With a constant P the variance of the estimates will not converge to zero. Still
the method has the advantage of being very simple and can easily be
implemented on a signal processor like the TMS 320. That the variance of the
estimates not converges to zero should not worry to much. There is a general
conflict between fast convergence and possibility to follow system variations.
The constant gain algorithm has the advantage of being able to follow system

variations fast.

Ex 2.1 Figure 2.1 shows some simulations of the constant gain algorithm with
y(k) = agp(k) + ell), a=1, e(k) is white noise with zero mean and variance
Vie)
V{p)

0.1. @(k) is randomly generated with a Gaussian distribution and

it

1. P is a constant equal to (a) 0.1, (b) 0.5 and (¢) 5.

_10_
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A Comparison between methods

Figure 2.2 shows how the parameter estimates typically change when using the

different algorithms discussed up to this point.



13 F = Heszlan matrix, BLE algorithm,
2y P = Decreasing scalar galn, Stochastic approximation.

3) P = Constant scalar gain, MIT-rule.

Comparing the calculation time needed in 1,2 and 3 one sees that the following

is needed

1) Inversion of n¥n matrix (n= number of estimates).
2y Inversion of scalar, otherwise like 3.

3) Scalarproduct of n-vectors.

Comparing the convergence rate one sees that in the case of no noise the RL3
method converges to the correct value in a finite number of steps and that
algorithms with a scalar P converge exponentially instead (provided that the
input u is ’sufficiently rich’). Generally the stochastic approximation
algorithm gives slower convergence and using the MIT-rule the variance of the
estimates will not converge to zero at all. This can be seen from the following

example :

Ex 2.2 y(k+1) = ay(k) + bu(k) + e(k)

Vie) = 0.1

a=0.8

b=1

u = Random binary sequence with amplitude 1
1) RLS with ®(0) = 0 and P(0) = 100 I

2) Stoch. approximation P(k) = I/ZcpTcp

3) Constant gain P = 0.05



[
o

R
T T T T T T T -1
. 50. 100. 150. 200.
T T T T T T 1
0 100 150 200.

1
50. 100. 150. 200.

Fig 2.3

Numerical Problems, the UDUT—Alqorithm

The recursive least squares algorithm described above is poorly conditioned
numerically because it requires inversion of the matrix <I>T<I> in (2.4) whose
elements are products of measured signals. Algorithms which avoids squaring
the signals can be obtained by writing P as U D UT and derive recursive
equations for U and D. These class of algorithms are called square root
algorithms. They are discussed in debth in Biermann [3]. These algorithms are

all rather computationally complicated.
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2.4 Sufficient Richness or Persistent Excitation

To estimate the parameters unbiasedly and consistently from input - output
data the input signal has to fulfil certain requirements. The more parameters
we want to estimate the ’richer’ the input signal has to be. The input signal
should excitate all modes. Another way to say the same is that to find n
unknowned one has to have n equations. There are a number of criterions on
when it is possible to estimate n parameters consistently. The most useful is

perhaps :

Theorem
sufficient conditions for estimating n parameters consistently in an

ARMAX-model is that

(1) u = yim % ? u(k) exists.
(2) R(i) = lim % % {ulk+i)-ur{u(k)-u) exists for all i.

(3) The Teoeplitz matrix An= {aij = R(i-j)?r 1i=1,...,n

is positive definite. (2.7)

This implies consistent estimates for the least square algorithm, the maximum
likelihood algorithm and the maximum likelihood method with white
measurement noise, see [4]. Observe that since a matrix is positive definite
if and only if its leading principal minors are positive, an input signal that do
not satisfy the conditions for an order n do not satisfy them for any greater

order,
For instance if the input is a pure sinusoidal we can see that the conditions

are satisfied for order two (unless there is some aliasing effect) but not for

order three or greater :

_14_



A pure sinusoidal is not persistently excitating of order three. The connection
between the input and output is given by the transfer function at the
frequency of the sinusoidal input. This transfer function is a complex number
and therefore totally determined by two parameters. Yet another way to say
this is that the sinusoidal output is determined by its amplitude and phase. In
the same way if the input signal is a sum of n different sinusoidals at most 2n

parameters can be estimated consistently.

A frequency domain variant of conditions for sufficient richness in the input

signal can be found in [4].

2.5 Time Varving Systems

Up to this point only time invariant models have been discussed. That is, the
parameters to be determined are constant but unknown. A little different
problem arises when it is known that the system parameters can change and
the goal is to detect or adapt to such changes. These changes are often called
'faults’, although these ’faulis’ does not necessarily correspond to
malfunctions of the system. When having time-varying systems the least
squares algorithm above is not satisfactory since the decreasing gain will
make parameter-changes hard to detect. The influence of old data therefore
has to be decreased. This can be done by introducing so called
forgetting-factors. The loss function can e.g be changed to give exponentially

decreasing weights to old data :

J(@) = z: ANK 2200

The stochastic approximation algorithm will then be

1

P(N+1) [ A PO T4 ol (N+#1)g(N+1)1 1 (2.8)

A

A A
B(N+1) B(N) + P(N+l)q>(N+l)[yN+l— @T(N)q)(N+l)]

The scalar P will now not approach zero. The forgetting factor, A,will make it
possible to adapt to system variations. The choice of A will be a trade-off
between fast adaption and robustness against noise, as can be seen from the

following example.
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The stochastic approximation algorithm will then be

1

P(N+1) LA POD o ol (N+#L)p(N+1)1 . (2.8

B(N+1)

®(N) + P(N+l)fp(N+l)[yN+l~ @T(N)<p(N+l)]

The scalar P will now not. approach zero. The forgetting factor, A,will make it
possible to adapt to system variations. The choice of N will be a trade-off
between fast adaption and robustness against noise, as can be seen from the

following example.

Ex 2.3 y(k) = aulk) + e(k)

A =1, 0.99, 0.9
a = 0 (k<250 and 1 (k 2 250)
V(e) = 0.5
1 W T T T T T 1
0 I 250. 500. 750. 1.E3
i Avww“ A
lL'\an
Lt = AT T T T T T ~—
0. 250. 500. 750. 1.E3




Detecting Sudden Parameter Changes

Different methods have been suggested for finding large changes in the
parameters. For a summary see [35]. Most methods require good knowledge
about the disturbances which are often modelled having Gaussian
distributions. This can partly be motivated by the central limit theorem,
however if this fails to be true the properties of the algorithms might change
drastically. It is probably not true that the disturbances occuring in power

systems have Gaussian distribution.

The most obvious method for fault detection is perhaps to look at the
magnitude of the estimation errors ;(k). This has also been suggested in the
literature. Large estimation errors suggest that a change in the parameters of
the system has occured. Diffsrent schemes for implementing the above idea

has been proposed, see e.g. [51.

Drawbacks of the above suggested methods are easily found. Only faults that
have a large influence on the output signal can be detected. Better fault
detection methods can be obtained by looking at the parameter estimates E,;
directly and try to detect a change in these instead. One way of doing this is
discussed in [51. Introduce the difference between two consecutive estimates
A A A
ABQ, = @t— 8

t t-1

If Aé is large this suggests a change in the parameters. A way of fault
detection would therefore be to look at the norm of A@At. If the norm is larger
than some threshold it is concluded that a fault has occurred. The threshold
must be a compromise between low false alarm frequesncy and high sensitivity
for faults., The test can be improved if one looks at more than one consecutive
samples, e.g. by setting WU_1 = 7\Wt + Aé\)t where 0SA<1

Another possible fault detection method uses the direction of the parameter
variations. In case of constant parameters the variation of the estimates has

no trend and therefore

AT _ AT 1
P (AB,W, > 0) = P (AB W, < 0) = 3

In case of a fault this will however no longer be true. The trend of the

parameter estimates will then give.

_17_
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Thiz method has been suggested by Higglund in [3]. It is a development of
similar arguments used on the output estimates. For a discussion of this see

[61.

Example 4 shows how the method of looking on the magnitude of the estimation
error can be used to detect a change in the gain of a very simple system. For

other examples, see [31.

Ex. 2.4 ytk) = autk) + e(k)
a=0if k<250 else 1
u = random signal with V(u)=1

Vie) = 0.1

PP ¢ P s WY 0.~V N ,J"M“‘*—
\-guann 2

| va\n/\mv""r

250. 500. 750. 1.E3

! L e )

Ao A | -
WMWUACsto'. ' 500. "'UM.W " Wi

Flg 2.5
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he success of all fault-detectlion algorithms described abave will be rather

In the theory thess are often

dependent on the naturs of the disturbances.
modelled to ke Gaussian. If this fails to be true the fault detection might
detoriate. The conclusion is that the applicability of the chosen methed has to

be carefully checked in practice on real input output data.
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3. The THMSIS 32010 FProoessor with

TDevelopment Boards

3.1 Introducticn

The digital signal processor TMS 32010 is a member of Texas Instruments new
digital signal processing family, designed especially for high-speed
numeric-intensive applications. It is a 16/32-bit single-chip microcomputer
with an on-chip array multiplier which offers an inexpensive alternative to

rmultichip bit-slice processors.

The TMS3320 is capable of performing 5 million instructions per second. This is
due to the highly pipelined Harvard architecture and the reduction of the
instruction set to incorporate only those operations normally needed for

digital signal processing algorithms.

Table 3.1 lists some ’typical applications’ of the TMS 320 as presented by
TEXAS INSTRUMENT. It should be noted that those are possible applications,

all have probably not been tried out in reality.

SIGNAL PROCESSING : TELECOMMUNICATIONS IMAGE PROCESSING
@ Digital filtering @ Adaptive equalizers @ Pattern recognition
® Correlation @ . A law conrwersion @ Image enhancement
® Hiibert transforms ® Time generators © Image compression
® Windowing ® High speed modems ® Homomaorphic processing
@ Fast Fourier transforms ® Muitiple-bit-rate modems @ Radar and sonar processing
® Adaptive filtering e Amplitude, frequency, and phase
@ Waveform generation ) modulation/demodulation HIGH-SPEED CONTROL
® Speech processing @ Data encryption @ Servo links
@ Radar and sonar processing ® Data scrambling ® Position and rate control
® Electronic counter measures @ Digital filtering @ Motor control
@ Seismic pracessing @ Data compression @ Missile guidance
® Spread-spectrum communications @ Remote feedback control
@ Robotics
INSTRUMENTATION NUMERIC PROCESSING SPEECH PROCESSING
@ Spectrum analysis ® Fast multiply/divide ® Speech analysis
@ Dignal filtering @ Double-precisio;operations @ Speech synthesis
@ Phase-locked loops ® Fast scaling ® Speech recognition
@ Averaging ® Non-linear function @ Voice store and forward
® Arbitrary waveform generation computation @ Vocoders
® Transient analysis {i.e., sin x, eX) @ Speaker authentification

Table 3.1
- 20 —
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The key features of the ribed by Texas Instrument,

collected in table 3.

e 200-ns instruction cycle
e 288-byte on-chip data RAM
o ROMiless version — TMS32010

{

e 3K-byte on-chip program ROM — TMS320M10

External program memory expansion to a total of 8K bytes at full speed

16-bit instruction/data word

32-bit ALU/accumulator

16 x 16-bit multiply in 200 ns

0 to 15-bit barrel shifter - f

Eight input and eight output channels

16-bit bidirectional data bus with 40-megabits-per-second transfer rate

e |nterrupt with full context save

Signed two’s complement fixed-point arithmetic
e 2. 7-micron NMOS technology

e Single 5-V supply

e 40-pin DIP

Table 3.2

The processor costs 50 $ and the delivery time is said to be about 8 weeks
(Texas Instrument, Stockholm). This has been verified (for the processor and
evaluation board) by the author. The analog interface however took about 4
months to get. The ewvaluation module costs 995 ¢ and the analog interface

board 830 $ (spring 1983).

The easiest way to become familiar to the TMS is probably to read [111,
{191, [20] and [21]. These manuals are available from TEXAS INSTRUMENT.
Another good introduction is presented in the collected papers [29]1 which

_21._



1

also contains a summary of digital signal processing techniques. It |
advisable to do small experimental programs in parallel to reading and use
the simulator to test and verify these. The architecture is described in
section 3.3. The system development tools including a simulator on VAX, an

emulator board and a analog interface board is described in section 3.4.

3.2 Why the TMS 320 Was Chosen, Some Alternatives

When this work was started the choice of implementation stood between using
an array processor-floating point processor attached to an IBM personal
computer and using a DSP-chip such as the TMS 320. The market for array
processors was investigated by reading articles and advertisements. The best
alternative found was a product available from SYSTOLIC SYSTEMS called the
PC-100 and PC-1000 DESKTOP ARRAY PROCESSOR.

The PC-100 is a array processor that can increase the computational speed of
the IBM PC over 100 times or a factor 3-10 if compared to a PC with 8087
coprocessor. The PC-100 features IEEE standard arithmetic, a 32-bit floating
point processor, parallel 170 on the IBM PC bus, an extensive mathematical

software library and a high-resolution graphics package.

The PC-100 is programmed in ANSI 77 FORTRAN via subroutine calls to the
PC-100’s math library. The math library consists of commonly used
matrix/vector routines, linear equation solvers, numeric integration methods,
simulation tools, optimization algorithms and least square curve fitting.
Fortran callable routines are provided to evaluate trigonometric and

transcendental functions.

A signal processing library is also available with the PC-100. It contains
Fortran callable routines for fast Fourier transforms, digital filtering,
correlation, convolution and spectrum analysis. The PC-100 costs 2995 $
(October 1984) plus about 2000 $ for software library routines for signal

processing, matrix operations and high-resolution graphics.

A short summary of the math library is given in below.

- 22 -



LINEAR MATRIX/VECTOR OPERATIONS
e Matrix/Vector Clear

Matrix/Vector Addition
Matrix/Vector Subtraction
Matrix/Vector Muitiplication
Matrix Inversion (Vector Division)

SIGNAL PROCESSING LIBRARY

Fast Fourier Transforms (FFTs)
Digital Filtering

Window Functions

Auto/Cross Spectrum
Convolution/Correlation

Solution of Linear Equations Coherence Function

Solution of Triangular Equations
Least Square Curve Fitting

SIMULATION/INTEGRATION LIBRARY

e Trapezoidal Rule Integration
¢ Runge-Kutta Integration
¢ Predictor-Corrector Integration

NONLINEAR MATRIX/VECTOR OPERATIONS

* Matrix/Vector Absolute Value
Matrix/Vector Squared
Matrix/Vector Square Root
Matrix/Vector Logorithm
Matrix/Vector Exponential
Matrix/Vector Sine/Cosine
Random Number Generator

UNCONSTRAINED OPTIMIZATION
e Steepest Descent Method
e Davidon-Fletcher-Powell (DFP) Method
s Broyden-Fletcher-Shanno (BFS) Method

PC-100 HARDWARE SPECIFICATIONS

e Wordlength (24-bit mantisa, 8-bit exponent)............ ... .o i R 32 bits

s Multiply Time (32-bit floating point) ... ... . i 500 nsec
e Addition Time (32-bit floating point) . . ... ... i 500 nsec
e Computational Speed ... ... .. i e "1 MFLOP

Table 3.3 contains some benchmarks of the PC-100 as presented by SYSTOLIC

Calculation IBM PC IBM PC + 8087 IBM PC + PC 100

100#100
Matrix
Multiply

38 min S min 21 sec

100%100
Matrix
Addition

12 sec 4 gec 0.31 sec

1024 point

Real FFT 4.1 sec 0.9 sec 0.06 sec

Table 3.3
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The PC-1000

Thiz is how the PC-1000 is described by the manufacturer, Systolic Systems :

" The PC-1000 desktop array processor is the new industry standard for
real-time data acquisition, estimation and control because now you can
do it all for less than $20,000. Applications like classical control, digital
filtering and adaptive control can all be solved in real-time on the IBM
PC and PC 1000. Control system designs based on frequency domain and
multivariable control methods can all be implemented on the PC 1000 in a
matter of minutes to improve engineering productivity. Decision analysis
and graphics are performed on the IBM PC based on data received from
the PC 1000. The PC 1000 can also be used in the laboratory for

evaluating several engineering designs in the same day. "

Application software to the PC-1000 can be written in high-level language such
as FORTRAN or ADA on the IBM PC. The PC 1000 consists of a master
processor, slave processor and data acquisition system. The is designed with
a iAPY 8086 CPU, iAPX 8087 math coprocessor and 256K memory. The master
processor performs numerical computations, coordinates each slave processor
and communicates with the IBM PC. Two 32-bit slave processors can be
installed in the PC 1000 to evaluate control functions at measurable throughput
rates of up to 9.2 MFLOPs.

The data acquisition system provides 32 analog 1/0 channels with a maximum

sampling frequency of (only) 2000 Hz.

The speedup of the PC-1000 system is 1000 times compared to the IBM PC

(without coprocessor) when performing multiplication and addition.

The PC-1000 costs 20,000 $ (Sept. 1984). It was therefore not consider any

further in this project.

The TMS 32020 Processor

The TMS 32020 has been introduced during the spring of 1985. Its main features
are collected in fig 3.4. There will also be development boards available for
the TMS 32020. The system cost will however be so much greater so that the
TMS 32020 can not be regarded as an alternative to the TMS3 32010.
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170 ns instruction cycle time

544 words of on-chip RAM (288 words are élways data memory,
256 words are programmable as either data or program memory)

128K words of total program/data space

16-bit data word with internal 32-bit operations

lé-bit instruction word

Block moves for efficient data/;ode management

32-bit ALU and accumulator

Single-cycle 16x16-bit multiply / 32-bit accumulate instruction
Floating point operation suppo;t through instruction set

0-16 bit input scaling shifter{

Fracfional/integer arithmetic support

variety of bit-manipulation and logical instructions

5 auxiliary registers (ARs) for indirect addressing and .temporary
storage '

A register arithmetic unit (RAU) dedicated to the AR file for
arithmetic operations on AR and for auto-indexing by 1l6-bit numbers

16-bit parallel multiprocessor interface
A harcdware global memory interface

Serial port for multiprocessing and interfacing to codecs and
serial A/D converters

On-chip timer for control operations
3 external maskable user interrupts
1 non-maskable interrupt for test and emulation

On-chip clock generator

Fig 3.4
A very important factor when choosing the equipment to use is to check that

the processor and development tools will be available with not toé long

delivery time. This can not be enough stressed.
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Conclusions

The PC-100 (PC-1000) zystem needs an IBM PC. It is a suitable system f{or deoing
extensive simulations - of different estimation algorithms off-line with
simulated input data. As an component of a small intelligent relay system it is
both too expensive with a system cost of 5-10,000 ¢ and too slow for on-line
calculations. Another disadvantage was that those systems were, when this

project was started in November 1985, rather new and untested.

Instead it was decided to look into signal processors. Those have until
recently only been used for a restricted type of applications like digital
filters, FFT calculations or voice recognition. They are now being used in new

areas where computational speed i5 of importance.

This inheritance of technique has had some drawbacks. The algorithms for
which signal processors normally have been used can be characterized by
very simple calculations being performed very fast. The signal processors are
therefore programmed in assembler and use fixpoint arithmetics. This is the
best trade off between complexity and speed in traditional applications. In
control applications a slower sampling rate is used and often much can be
gained by using a more advanced, and therefore more computationally

complicated, algorithm.

It is therefore desirable to program in a higher, signal-processing oriented,

language and to use floating point arithmetics.

The question arising was therefore: Is it possible to implement e.g. a
parameter estimation algorithm on todays signal processors? And if not, what
features are lacking? Which components should a signal processor contain if it
is going to be used for e.g. adaptive control algorithms? How should it be

programmed?

Future Trends for Signal Processors

(The comments inside paranthesis stands for the TMS 320)

o Faster clock cycle, (170 ns instead of 200 ns)

o More RAM on-chip. (544 ¥ 16 bit words)
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o More address space for program,external data and I/0. (64 K + 64 K)

o Floating point support. (Instructions for normalize and computed shifts)
0 Multi address machines.

o More addressing modes. (Register ALU for e.g. auto-indexing)

o More functionality: timers,communication ports. (On chip timer and serial

port).

g Loop and repeat hardware.(repeat counter)

o Better ALU.(logical operations on 32 bits etc)

o More interrupt support, context switch support. (3 external maskable)

o Lowering of external hardware speed requirements. (Wait states for slow

Memorys)

o Multi processor interfaces.

o Higher level programming languages.

o Higher degree of complexity. (More instructions)

In November 1985 the TMS 320 was believed to be the most promising signal
processor. This opinion has just been strengthen during the project. There
have appeared a lot of articles describing the use of TMS 320 in different
applications, see [341, [351, [361, [371 and [381. The TMS 320 has almost

got a status of ’industrial standard’ in the United States. Much of this is due

to its simple architecture.
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3.3 Architecture

The Harvard Architecture

A block diagram over the TMS 320M10 is shown in figure 3.5.
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The TMS 220 has a modified Harvard architectures. In a Harvard Architecture
the data (RAM) and program memory (RAM or ROM) are separated to make
concurrency between instruction fetch and instruction execution possible.
When the processor fetches an instruction from program memory, it can fetch
the data that it needs from data memory at the same time since each bus

operates independently. This of course increases the speed.

The TMS modification allows for transfering of data between program and data
memory. An almost necessary modification since the data memory is only 144
double-bytes long. As an example data tables longer than 144 words can
reside within program space so that the designer can make tradeoffs between
the amount of table space and program space needed for a specific
application. This can be used e.g. when storing the filter coefficienis for a
digital filter. It takes three instruction cycles to execute each of these
transfers of 16 bit data. Future TMS chip will probably have a larger amount

of on-chip data-RAM as finer (e.g. 1-micron) technology becomes available.

With some extra hardware, the IN and QUT instructions can be used to read
and write from an external RAM storage addressed as a peripherel. The price
will of course be larger execution times since ’in’ and ’'out’ takes at least two
cycles to execute, more if slower memory have to be used. Except for the
transfer-instructions, TBLR and TBLW, all instructions operate on the data

memory.

Program memory can lie both on-chip (in a 1536 ¥ 16-bit ROM) and off-chip.
The TMS 32010 processor has no program ROM on chip. The ROM version,
called TMS 32010M is used for large series (say more than 1000 ex) signal
processors for the same application Since the program counter is 12 bits wide
the maximum amount of program memory that can be addressed is 4096 % 16-bit
words. Fast memories with access times of under 100 ns are required if
instructions in off-chip memories should be executed at full speed. Figure 3.6

shows how off-chip memory is addressed.
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DATA LINES
yi S
14
TMS32010 16
. ADDRESS LINES 4K X 186
—tppmed] MC/MP Y . STATIC RAM
12 AND/OR PROM
— MEN -
WE OUTPUT
ENABLE
\ CHIP 4 WRITE
—\ SELECT ENABLE

{Only for
RAM)

EXTERNAL PROGRAM MEMORY EXPANSION EXAMPLE

Fig 3.6

The data memory consists of 144 % 16 bit RAM divided into two pageé. Page 0
contains 128 double-bytes, page 1 contains 16 double-bytes. The reason for
this unusual arrangement is probably that there was some space over on the
chip after the preliminary layout. This is modified in the new TMS 32020

processor

Multiplier, ALU, Accumulator and Shifters

All arithmetic operations are performed in fixed-point two’s complement
arithmetic. Different kinds of arithmetic formats are discussed in the next

section.

The 16 * 16-bit multiplier consists of : the T register (16 bit) which holds one
of the factors, the P register (32 bit) that stores the product and the

rmultiplier.

In order to use the rmultiplier the T-register must first be loaded with one of
the operands. Then a MPY or a MPYK instruction is executed. The second factor
is taken either from data memory (direct or indirect addressing) or defined by
the instruction (immediate addressing). The product is in the third instruction
cycle either added to or subtracted from the accumulator where from it can be
loaded to data memory.

800 ns.

In this way a single multiplication takes 4 cycles = However when
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several consecutive multiplication~add operations are to performed, e.g. when
calculating scalar products, the operatiohs can be pipelined in such a way
that the overall multiplication-add time will be 400 ns. The architecture could
be said to be optimized for calculations of scalar products which breaks down

to the calculation of
ACC := ACC + ¥1 x X2

In TMS instructions this will become

LT X1
MPY X2
AFPAC

There is also a multiply immediate instruction which multiplies with 13-bit

constants. For example :

LT X1
MPYK 35192
APAC

will accomplish the multiplication

ACC := ACC + X1 % 35192

The pipelining of multiplications in scalar products works as follows:

ZAC CLEAR ACCUMULATOR

LT X1 )

MPY Y1 FIRST MULTIPLICATION
LTA X2

MPY Y2 SECOND - " -

LTA X3

MPY Y3 THIRD - " -

APAC STORE THE RESULT

The LTA instruction will load the T register and add the product register to
the accumulator. In this way a scalar product of two vectors of length N can

be accomplished in 2(N+1) instructions, (each taking 200 ns).

The ALU is 32 bit arithmetic logical unit which can do the operations add,
subtract, abs, and, or and xor. The first operand is always the accumulator
the second operand is fetched from data memory (16 bits possibly left shifted
0-15 bit, the rest are zerofilled) or from the product register.
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Note that the logical operations and or and zor only operates on the rightmost
16 bits of the accumulator. This is of course an annoying drawback when
operations on the full 32 bits are wanted. The only possible solution is then to
do these operations in several steps and store intermediate results in data
memory. This will be rather time consuming. The TMS 32020 has a more

flexible ALU

The ALU can be put in overflow mode under program control. If an overflow
occurs when set in this mode, the most positive or negative representable
value of the AL.vaill be loaded to the accumulator. This models the saturation
processes inherent in analog systems and increases the chance of getting
useful results even if an overflow have occured. Note though that the
multiplication of -1 * -1 will yield the answer -1 even in overflow mode ! The
overflow flag is not affected. This is a documented error which is corrected in
the new TMS 32020 processor. Better would in this case be to load the
accumulator with the largest representable positive number and set the

overflow flag.

The accumulator has a 32 bit word length. Instructions exist for storing the
high or low-order bits in data memory with shift (SACH and SACL). However
only 0,1 or 4 bit left shift have been implemented and this only on the high
order part. SACL has no shift facility at all. This is changed in the new
processor to enhance the flexibility. The shifting facility is needed in the

scaling operations.

There are two shifters available. Both are 16 bit and can only do left shifts. A
right shift by n can however be implemented by loading the accumulator with
the operand shifted 32-n bits and storing the high order part. This takes 2

clock cycles.

Registers

These consist of two 16 bit auxiliary registers (ARO, ARI1) one auxiliary

register pointer (ARP) and the data memory pointer (DP).

The auxiliary registers are used for indirect addressing in data memory and
loop control. Indirect addressing uses the least significant bits of the
auxiliary registers. There is only one operations that can be used for loop
control, BANZ, branch on accumulator not zero.
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Stack
The stack iz four levels deep and 12 bits wide. It can be used to store return

addresses when using nested subroutines.

Status Register

The status register consist of five status bits containing information of the

processor state.

OV - overflow has occurred

OVM - overflow mode is on

INTM - interrupt is enabled

ARP - current auxiliary pointer is AR1

DP - current data page is 1

The status register can be saved and reloaded by the 88T and LST

instructions.

Input/output
There are 8 parallel input ports and 8 parallel output ports on the TMS 32010

all 16 bits wide. Data is transfered to and from the data memory by the

strobes DEN (data enable) and WE (write enable).

Technology
The TMS 32010 is made in a VLSI 2.7-micron NMOS technology. The next

generation will probably be made in even finer technology making a larger

number of on-chip registers and data memory possible.
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3.4 The system development tools

To help the engineer in the design of the hardware and software TI have some

development facilities :

o An assembler

O A linker

a A simulator.

] An evaluation module (EVM) with emulation support.

| An analog interface board (AIB) that is used with the EVM.

The assembler, linker and simulator reside on a host computer, VAX 11/780 or

IBM PC. There is also an assembler on the EVM-board.

See also figure 3.7.
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The design process

The design of a complete system could go as follows,see figure 3.8

D

m

TMS32010 EVALUATION MODULE

SYSTEM SPECIFICATION

?

SYSTEM DESIGN

!

CODE PROGRAM g

SOFTWARE LIBRARIES

1

TRANSLATE TO MACHINE CODE

EXECUTE XDS/320 ASSEMBLER

{

VERIFY PROGRAM

{ER

XDSi320 SIMULATOR

?

HARDWARE/SOFTWARE INTEGRATION

XDS/320 EMULATOR

Fig 3.8

System specification/design.

The function of the system must be exactly defined and generally how
the system will be implemented. It is probably advisable to do
extensive simulations of the system with different solutions if the
problem is complicated. In this stage a preliminary algorithm flow chart
and hardware block scheme should be drawn. Based on the requirements
and functionality an implementation approach is chosen. This will
include the selection of processor and other hardware together with how
software will be developed (e.g. programming language). In the design
of signal processing systems the designer is unfortunately forced to
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3

4)

3)

write in assembly language since there is no alternative available
today. The use of an code generator, described in section S, can

however fasten up the process.

Hardware/software design.

Here the design engineer choose an implementation of the parts left out
under point 1. A detailed schematics over ithe hardware together with a

high level pseudo language description of the software is made.

Software coding/Hardware fabrication,

Due to the lack of suitable languages with compilers for signal
processing one is often forced to produce the assembly code for the
processor by one self. The code can be generated either 'by hand’ which
is the most used way, or by a code generator. (If a high-level language
compiler is available the code generator will be part of the compiler.)
The advantages of this and an example of a simple code generator is
described in section 5. The output in this stage will be assembly
language which is then inputted to an assembler which produces machine
code. This has been done with the problem of fast recursive parameter

estimation as an example. This is also found in section 5.

Software/Hardware test.

Before the final implementation of the system it is necessary to test the
software in the real environment. The design up to this point has only
been based on a, more or less accurate, model of the real world and it
must be checked that not too much information has been lost in this
process. This can be a time consuming part of the design process. A
normally good tip is that the software and hardware first should be
tested out separately if possible. For the TMS 320 there is a simulator
available which make it possible to test the assembly program

extensively before going to point 5.

Final implementation.

In the last step the hardware and software that now has been tested and

verified are integrated into the application environment.
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The following is a demonstration of how the software programs is run on a VAKX

11/780 at the Department of Automatic Control, Lunds Institute of Technology.

The Assembler

For an extensive description see [20]. The files concerning the assemblation

are collected in

{BOB. IMPORT. ASM3]1

They are

README. DAT - Installation and verification guide
XASM. COM - Executes the assembler

LINKASH. COM- Re-links the assembler

PARSE. C25 Parses pathnames for VAX 2.5 0.S.
PARSE. COM

Used by the above procedures to parse
pathnames for 3.0 0.S.
ASM320. EXE

Executable code for the assembler.

ASM. OBJ - Assembler objet code, used in re-linking
RUNTIME - Source/ object library

TEST. ASM - Source for the assembler test program
TEST. LIS - Correct listing for the test program
TEST. MPO - Correct object for the test program

The #.com files contains information that has to be changed if the files are

copied to another directory. E.g. the command

$ @[BOB. IMPORT. XASMIPARSE

in XASM.COM should be changed to the new directory-name. If one puts

xasm == "@[BOB. IMPORT. ASM1XASHM"

in the login-file the assembler can be started with the command

XASM FILENAME

FILENAME.ASM should then contain the assembler program in VMS-format. The
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file should start with the line :
IDT *FILENAME’

and end with
END

It is important that capital letters is used in FILENAME.ASM.

The assembler will produce two output files :

FILENAME.LIS - information about errors during assemblatic

FILENAME. MPO - relocatable module. Is used by the linker.

A four pages long assembly program takes only a few seconds to assemble.

The Linker

For an extensive description of the linker see [20].

The files concerning the linking are collected in

[BOB. IMPORT. LINKERI

They are

README. DAT - Installation and verification guide

LINKER.COM - Executes the linker

LINKLINK.COM - Re-links the assembler

PARSE.C25 - Parses patnames for VAX 2.3 0.S.

PARSE.COM - Used by the above procedures to parse
pathnames for 3.0 0O.S.

LINKER. EXE - Executable code for the assembler.
LINKER.OBJ - Assembler objet code, used in re-linking
LINKRTS.OLB- Source/ object library

TEST1.ASM - Source for the assembler test program
TEST2. ASM - Scurce for the second test program
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TESTL1.LIS - Correct listing for the test program

TESTZ2.LIS - Correct listing for the test program
TEST. CON - Contreol file for the test

TEST. MAP - Correct map file

TEST. LGD - Correct load module

The *.com files contains information that has to be changed if the files are

copied to another directory. E.g. the command

$ @[BOB. IMPORT.LINKERIPARSE

in LINKER.COM should be changed to the new directory-name. If one puts

xlink == "@[BOB. IMPORT.LINKERIXLINK"

in the login-file the assembler can be started with the command

¥XLINK FILENAME

The linker takes relocatable units and links them together to an object file. To
execute the linker one has to write a command file, see [191. It could look

like (capital letters) :
{BOB. EXJOBB. TMSIFILENAME. CON :
TASK KOD
PROGRAM >0000
DATA >0000
INCLUDE [BOB.EXJOBB. TMSIFILENAME
END

The linker preduces two output files:

FILENAME. MAP - contains the errors during linking
FILENAME.LOD - object code

The object code can then be used as input to the simulator.

The linking takes less than ten seconds.
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The Sirmulator.

The simulator is a software program that is available for VAX and IBM-PC. It
can, off-line, simulate the behaviour of a real TMS 320 and is a very useful
tool when testing out the software. A thorough description of the simulator can

be found in [19].

To start the simulator write

RUN [BOB.IMPORT.SIM1SIM.EXE

(Or, better, you can define this as X5IM in your login-file).

On the prompt 0/1 ? answer O (return) and then strike return again. You will
get a list of all the commands available. The list is slightly hierarchical, for

example you can get all the 17O commands by writing IOH.

The TMS assembly program to be tested should now have been written with the
host computer editor. It is loaded into the (artificial) TMS memory by the

command :

L [DIRECTORY_NAMEIFILENAME.MAP

Note that capital letters must be used everywhere (slightly irritating). Now

suitable breakpoints can be set. Investigate this by writing :

BH

This will list all the commands for setting and resetting different kinds of
breakpoints. For a thorough description see {191. To start the simulation

write

A simulation can be halted with Ctrl-c at any time. It is also possible to

single step by writing

93]
03]

To display the current status of the processor write
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This will display all registers, the current instruction and the number of clock

pulses since the last reset.
To look at the data or program memory write

MH
which will display all the commands available for doing this. Input and output
files can be ’connected’ to the simulator. Write IOH to learn more about this.
The input data should be in TMS arithmetic format, e.g. 7FFF is the largest
representable positive number. More about the arithmetic format can be found
in section 4.

To save your commands in a journal file write

JF
[DIRECTORY_NAME1JOURNAL_FILE

To execute the commands in such a file write

EX
{DIRECTORY_NAME1JOURNAL_FILE

Finally to stop the simulation write

Q

The Evaluation Module

The Evaluation Module (EVM) enables a user to test if the TMS 320 meets the
speed requirements of the application. A firmware package contains a debug
monitor, editor, assembler, reverse assembler, EPROM programmer,
communication software to talk to two EIA ports and an audio cassette
interface. Either source code or object code can be downloaded into the EVM
via the EIA ports provided on the board. These supports baud rates of
110-19200 baud. There was however some problems when using baud rates of
over 600 baud when dumping an assembly program from the mass storage. The
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board contains a Debug Monitor including over 60 commands with 8

breakpointz, zingle step and software trace.

The board can be configured either as a stand alone unit with just a cassette

recorder or with a host CPU as mass storage, see figure 3.9.

T™M990/518
e POWER
SUPPLY

"'u"n_(:.;_- .

I |

If a host computer is used there is of course no reason for using the on board

editor or assembler.

For more information about the Evaluation Module, see [211].
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The Analog Interface Board

The analog interface board has A/D and D/A converter (12 bit) together with
an anti-aliasing lowpass filter. It iz compatible with the evaluation module.

C
The maximum sampling rate is limited by the A/D converter to 20,000 Hz.



S Arithmeatics

i

4 Signal Frooes

The TMS 320 has like most other signal processors fixed point arithmetics. No
true floating point signal processor is yet available, although for example the
Hitachi’s HD 61310 has floating point support for a number representation with
a 16 bit mantissa and 4 bit exponent. Floating point support normally only
means that instructions are available for implementing floating point
operations. The new TMS3 32020 processor have e.g. floating point suppeort in
the form of instructions for normalization of the mantissa and calculation of
computed shifts. (Shift the accumulator x bits where x is stored in a register

or data memory.)

4.1 Floating Point Software Routines

An example of how floating point operations can be implemented on the TMS
32010 is given in appendix 1 in the form of some floating point macros. The
lack of proper instructions for shift of the accumulator and normalizing of the
mantissa makes this approach slow. Floating point multiplication will be about
100 times slower than fixed point multiplication. This is probably not
acceptable. Another drawback with those routines is that IEEE standard for

floating point representation on microprocessors is not used.

Software floating point procedures for the TMS 320 are further discussed in
[71, where it is suggested that additional hardware should be cludged to the
processor to speed up the normalization of the mantissa. The 7.8 microsec.
multiply and 18.4 microsec. addition time mentioned there could be compared
to the 24 and 25 microsec. of the 8086/8087 co-processor arrangement. IEEE

standard is used. This is not a very attractive alternative either.

The lack of floating point operations is a major problem with signal
processors. This problem can sometimes be avoided by choosing the algorithm
in such a way that all data can be represented in the same way internally. The
TMS 320 makes implicit use of the left point two’s complement format which
means that all 16 bit numbers represent real numbers in the interval [-1,1).
The 16 bit of the TMS is used as one sign bit and a 15 bit mantissa. Therefore
all numbers between -1 and 1 should be multiplied by a factor 215 and rounded
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to the nearest integer before conversion to internal binary form.

A program for conversion between 16 bit left point two’s complement format

and real numbers is shown in appendix 3.

4.2 Scaling Factors

Due to the fixed point number format it is up to the programmer to interpret
the 16/32 bit data correctly. The binary pattern 0100.0000.0000.0000 might
stand for the real number 0.5 as well as 0.5*28 if a scaling factor of 28 is
assumed for that number. The most practical would be to use the same scaling
factor for all data. If a larger dynamical range is needed one must however
use different scaling factors for different data. Another way to interpret fixed
point format with scaling factors is that only mantissas are stored and the
exponents are fixed for each data. Since they are not stored they must be
remembered by the programmer. A way to handle this automatically is to use
the automatic code generator proposed in section 5. The scaling factors for

each data can then be supplied by the user and the correct code can be

generated automatically using correct scaling factors for each data.

The problem of choosing appropriate scaling factors is often ’solved’ by
guessing or in the best case by performing simulations of the algorithm in
'typical situations’ on a floating point processor. Procedures for simulating
calculations in fixed point format can easily be written in Pascal e.g. by

representing fixed point numbers by records :

type data = record
begin
case isinteger of
1: array[(0..31] of 0..1;
2: rireal;

end;

Another possibility is to use the ’chop(x)’ instruction in the program package

CNTLC, see [91.

The scaling factors are most often chosen as exponents of 2 since conversion
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between different scaling factors then corresponds to simple binary shifting of

data.

The performance of the algorithm can be very dependent on the scaling
factors. If a to small factor is used i.e. the data x is represented internally
by x*Zn where n is smaller than required there will be loss of accuracy since
the data are shifted out to the right. This loss of accuracy will build up

during the computations and can eventually result in erroneous results.

On the other hand if the scaling factor is chosen to large there is an increased
risk of overflow occuring i.e. the data are shifted out to the left. This is even
worse since it is in this case the most significant bits that are lost. If one
uses the TMS 320 the errors can be made smaller setting the processor in the

saturation mode described in section 3.

Choosing appropriate scaling factors is a problem with fixed point arithmetics
and this is why changeable scaling factors, i.e. floating point numbers, where

invented.

When finally the suitable scaling factors have been chosen there must be ways
of operating on pairs of data with different scaling factors. E.g. there should
be instructions for addition,subtraction, multiplication and division of data
represented in different forms. For instance when two numbers with different
scaling factors should be added one of them must be shifted before performing
the addition. Such instructions is not directly available in the TMS 320 but can
be implemented in the automatic code generator as macro’s. Such macros
ADDSC (add scaled numbers) and MULSC (multiply scaled numbers) are shown

below.

Here again the advantages with automatic code generation are appreciated.
The scaling procedure when writing assembly code ’'by hand’ is a great burden
on the programmer. Taking care of a number of different ways to represent
data and an even greater way of combining different data with different
representations is quite troublesome. This is easily taken care of by the

automatic code generator.

Remember though that the problem only arises when different scaling factors
must be used for different data. In e.g. applications with digital filters,
(which is the normal use for this processor), this can usually be avoided by
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scaling the filter coefficients by the same factor. (E.g. the largest coefficient
or the sum of the absolute values of the coefficients, the later is called worst

case scaling).

Macros for different scaling factors

ADDSC (A,B,C,EA,EB EC)

2—EC(A*2EA + B*ZEB)

C :=
Adds two 16-bit numbers A and B stored in data ram with, possibly different,
scaling factors EA and EB. The sum, C, is stored in data ram with a third

scaling factor. WARNING: The overflow flag is not set if an overflow occurs.

Ex. ADDSC(A,B,C,-15,-14,-15) where A=4000H and B=1000H (hexa decimal
numbers) yield the answer C=6000H. This corresponds to the fact that

2000H*2 12 + 1000H%2 1% = 6000H*2"1°, That is 0.5 + 0.25 = 0.75

Since overflow and underflow has to be avoided in the intermediate steps the
procedure has been divided into three cases. Case 2 requires that a macro for
shifting a double word left and storing the upper 16 bits in data RAM has been

written. (The SACH instructions normally only works with shifts of 0,1 and 4.}
D EA £ EB 2 EC

LAC (A,EA-EC+16)

ADD (B,EB-EC+16)

SACH (O)
2) EA £ EC £ EB

LAC (A,EA-EB+16)

ADDH (B)
SACHE(C,EB-EC)
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3 EC
LAC (A,EA-ED)
ADD (B,EB-EC)

SACL (O)

MULSC (A,B,C,EA,EB,EC)

C o= 2 EC ax2ER & px2E0)

Multiplies two numbers A,B in data RAM with possibly different scaling
factors and stores the product in data memory C. The procedure is divided

into two cases. Case 1 requires the extended SACH macro. Case 2 requires

that a macro for shifting the accumulator left and storing the lower 16 bits has

been written.

1 ~-16 < EA+EB-ECZ0

LT (A)

MPY (B)

PAC

SACHE (C,EA+EB-EC+186)

2) 0 < EA +EB-EC<16
LT (&)
MPY (B)

PAC
SACLE(C,EA+EB-EQ)

Summary of 4.2

It is not advisable to try to implement floating point routines on the TMS
32010. Better is to store only the mantissa and attach each data a constant

exponent called scaling factor. The choice of scaling factor is important.
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Remark
Another possible solution is to only store an exponent and have no mantizsa.
The exponent can be fractional not to give to large quantization steps. This is

described in the next section, and is there called the FOCUS number system.

4.3 FOCUS Number System

FOCUS is a number system especially useful for computer control and signal
processing applications on processors which lack a hardware multiplier /
divider. It is based on a representation of numbers without any mantissa and
with fractional exponent. In this number system multiplication and division
becomes very fast. Addition and subtraction can be performed using a

one-dimensional lookup table, see [15], [16] and [181.

The name FOCUS was chosen to emphasize that this representation concentrate
available states near zero as an analogy to how the human eye concentrates
near ’a center of focus’. This is however true also for a normal floating point

system.

The choice of number representation in computer systems have been
extensively debated, see [271. The rich variety of different systems existing
today proves the nonexistense of a universally superior solution. When
implementing floating point numbers on a fixed point processor one can choose
the number representation oneself. The IEEE standard format for 32 bit floating

point numbers is

32 31 22 0
[ s l EEEEEEEE | MMMMMMMMMMMMMMMMMMMMMMM |

Where S is a sign bit, the E:s eight exponent bits and the M:s 23 mantissa bits.

When choosing number representation for a digital control system or a signal
processing system one must remember that many systems should have the
possibility to represent both large and small numbers with high accuracy. The
choice of number representation one makes will be a trade-off between a large
number range and high accuracy i.e. possibility to represent numbers

separated with small steps. The instruction set of the processor might also
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influsnce the choice. The TMS 320 has possibilities to handle 16 bit quantities

only and it is advizsable to store the exponent and mantissa separately:

15 14 0
Mantissa [ S ’ MMMMMMMMMMMMINY ]

15 14 0
Exponent [ S ] EEEEEEEEEEEEEEE |

The roundoff error introduced through the finite number length can be
modelled by random noise. The FOCUS system has a constant quotient between
two neighbouring representable numbers. This gives a logarithmically uniform
distribution of representable numbers. The quantization noise introduced
thereby is in some cases smaller than with a 'normal’ number representation.
This is true under some conditions of the probability distribution on the data

to be quantizised, as we shall see in a later section.

The FOCUS representation

FOCUS is a logarithmic coding system in which no mantissa is given. This
separates it from usual floating point systems. The numbers are represented

with one sign bit and an offset binary for the integer part of the exponent.

Ex. A system with 8 bits is used and one decides upon using 3 fractional bits.
[s] [ele|le|e] . [F|F|F]
sign exponent fraction

If an offset of 1000 for the integer part of the exponent is used one will

have:
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1000 = 0
1001 = 1
1010 = 2
1011 = 3
1100 = 4
1101 = 5
1110 = 6
1111 = 7
0111 = -1
0110 = -2
0101 = -3
0100 = -4
0011 = -5
0010 = -6
0001 = -7

The smallest representable number is thus

2 * 2 = —== = 0.0078

The dynamic range is thus 235 % 128 = 30.000 .

EX. O 1000.000 = 1
1 1001.000 = -2
1 0101.010 = -2 °"2/8. 5. 149
0 1011.100 = 2°7%/8 - 11,3

A-D and D-A decoding.

To translate analog measurements to digital FOCUS-form one can of course
build special hardware devices. One possible solution would be to selectively
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multiply instead of add a constant associated to esach bit or to construct
converter compound of a number of linsar segmentz approximating 2
logarithmic curve. Another proposed method is to uss the exponegntial
characteristics of semiconducters together with ordinary linear decoders. ses
[181. It is however gquestionable if this gives sufficient accuracy for
converters with more than 8-bits. Considerations for compensating for the

temperature drift must be taken.

Arithmetic operations.

The main advantage with the FOCUS number system is that multiplication and

r

D

il

division are performed by binary adders. Therefore those operations

[l

almost trivial. So is calculations of square roots and exponentiation by 2,4,8...

(They can now be performed as binary shifts.)

Addition and subtraction can be performed quickly with a (rather small)

lookup table by use of the identity:
A+ B=AC(1+ B/ A)
Or in the logarithmic domain

log. (A + B) = log.A + log.(1 + B/A) = log.A + F(log_ A-log,B)
< <~ = - - = =

The multiplication and division is, as remarked, easily performed and the
addition problem has been reduced to an addition with the constant one. In

this way only a one dimensional lookup table for the function F has to be used!

The function F is defined by

F(x) = log (1 + 2 )

With an extra test one can assure that a > b so when tabulating F(x) one only
has to consider x > 0. The signs are handled separately. When a>>b one will
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have a + b = a within the accuracy of the number representation. This
observation can save a large amount of the table but an extra test has to be

performed.
The addition of two 8-bits numbers can in this way be carried out fast,
requiring only two binary additions, a single memory reference and some

overflow detection. The lookup table will be at most 256 bytes long.

Ex. To add 4 and 2 with FOCUS arithmetic :

X =4 0 1010.000
Y = 2 - 0 1001.000
0 0001. 000

F(O DO01.000) = O 0000.101 (from table) >

X+ Y 0O 1010.000 + O 0000.101 = O 1010.101

2
¥ o+ Y 6%2“5/8

Summary of 4.3

The FOCUS number system is an unusual way to solve the problem that
multiplication and division are slow on normal processors. The proposition
that FOCUS gives better accuracy to the calculations is overestimated. This is
further discussed in section 4.4. The choice of bits representing mantissa
respectively exponent will in general be a trade-off between dynamic range
and step size. The choice of no mantissa and fractional exponent can be seen
as just one choice of parameters in this trade-off and can of course be stated
to be optimal using the ’‘right’ criteria. To discuss this trade-off more
seriously there must be made assumptions on the probability distribution of

the numbers to be represented.

It is questionable if FOCUS will ever attract any attention, especially when

fast on-chip multipliers (dividers ?) becomes available.
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4.4 Quantization Effects

When representing real numbers with finite accuracy the numbers will
necessarily be quantizised. This can have a drastic effect on the results. As a
measure on the quantization effect one often takes the signal distorsion ratio,

see [251].

2
SDR = 10 log ( Elx ) ) (4.1)

E{x - x )
q

Here x is the numbers to be quantizised, Xq the quantizised data and E
mathematical expectation. This ratio should be as large as possible. It is
questionable if this is an appropriate measure in all situations, e.g. there is

no extra penalty for underflow.

To use the SDR (signal-disturbance ratio) criteria when choosing number
representation one has to have knowledge about the probability function p(x).
It is in the following assumed that p(x) is an even function, that the number of
quantization steps is large and that p(x) is approximatively constant over
each such step. Assuming this approximative formulas for the SDR can be
found. For instance when using fixed point format with all numbers in [-1,11

(no overflow) and an uniform quantization, the following formula is valid :

SDR ~ 6r + 10 ng(S*E(XZ)) (dB) (4. 2)

where r is the number of bits used for representing xq. From this it is seen
that the SDR will increase with the number of bits and that one should try to

use the available range as well as possible.

When using floating point numbers or the FOCUS system the quantization will
not be uniform. If the number of quantization steps is large and there is no

risc for overflow one can get the following approximative formula, seel25] :

-1

SDR = 10 log dx (4. 3)

T RZ (g’(x))

R
3 E(x“ E(x° [ _p(x)
R -R

Here R is the range, 2" the number of steps, p{x) the probability function and
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g(x) determines the step size through :

g(-RY = -R
g(R)y = R
Ai(x) = i R
2 Tgfix)

where Ai is the step size near x. A large g’(x) will thus give small steps. The

problem of choosing g(x) to maximize (4.3) is solved by the following result:

The SDR is maximized for the g(x) satisfying

g’ (x) = const p(x)l/3 (4. 4)

A proof of this is given in appendix 2.

The particular choice of g’(x) given by the FOCUS number system where the
numbers are logarithmically distributed is thus seen to be optimal for one
special p(x). There is however no way to make statements about which number
system that introduces the least noise without further knowledge about p(x),

as done in [ 18] (at least not with the normally used SDR-criteria).

Different g(x) has been tried to minimize the quantization noise in e.g. A/D
converters for signal applications. These g(x) has been motivated by

knowledge about p(x), e.g. when x represeﬁts speech. The choice of

gix) = _c%?r:sl_t. (except near x=0)

is called the p-law and is standard in the USA for A/D converters.

Summary of 4.4

The major trade-off is between large dynamic range and small step-size. The
FOCUS number system uses a constant quotient between adjacent
representable numbers but there is no reason for favouring this from a SDR
point of view. Usual floating point systems will also have a large dynamic

range FOCUSing (using smaller step sizes) near zero.
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S. Automatic Code Genaeration for the

TM= 32010

5.1 Introduction

The TMS 232010 is programmed in an assembly language that is special for the
processor. The instruction set consists of approximatively 60 different
instructions including branches, subroutines and interrupts. All calculations
are performed in two’s complements fixed-point arithmetics. The assembly

language is further described in {113, [20] and [29].

TMS assembly code can easily be created in two ways. The first alternative is
to use a line oriented editor on the evaluation board called TMS EVALUATION
MODULE (EVM). For a description of this see [21]. The second and more
attractive alternative is to create the code on a host computer and dump the
source code to the TMS processor. The dumping is easily performed with help

of the EVM board, see [21].

When using a host computer the code can be generated ’‘by hand’ with any
available editor. This is a little faster than using the EVM-editor, since one
then probably can use a screen oriented editor. Another possibility, and this
is what will be described here, is to use a.program written in some high-level
language, e.g. Pascal or Prolog, which produces an assembly code {ile as
output. This has several advantages. The number of parameters, the values of
certain coefficients or the number of iterations in some loop in an algorithm
can be determined automatically and changed when needed much faster than by
rewriting the whole assembly program by hand. This of course shortens
program development time considerably. Also small deterministic loops can be
expanded and addresses that are knowned in advance can be precalculated.
This shortens the execution time. Other advantages of automatic code

generation are collected in the next section.

Automatic code generators have existed for some time mostly for digital filter

applications e.g.
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a IBM for Real Time Signal Processor (IEEE ASS P Feb 83)

a Atlanta Software Digital Filter Design Package for TMS 320

a Helsinki University, for NEC 7720 (Eur. Conf. on Circ. Th. and Design,
Stuttg art 9/83)

a Twente University, for NEC 7720 Special language for digital filter impl.,
simulator (LISP-based software) (EURASIP, 1983)

o Mechanical Engineering Automatic Control Group, University of

Paderborn, West-Germany Code generation for digital controllers.

5.2, Advantages With Code Generators.

The following is a a citation from L.R. Morris, Automatic Generation of Time

Efficient Digital Signal Processing Software,see [29] :

" The technique for generating correct in-line code is simple. An existing
high-level language signal processing program which employs looping
structures and involves arithmetic/logical computation to select data or effect
loop control (and thus program sequencing) is modified to produce another
related high-level language program which, at run time, automatically
generates an in-line program.

The generated program is most often assembly language but may be
high-level language for some applications. The modifications to the original
program consists mainly of replacing the signal processing computational
kernel with one or more WRITE statements. As suggested earlier, the code thus
generated can effectively incorporate (and thus eliminate) all explicit
deterministic runtime calculation. The generated program will then consist of
a time-optimized linear instruction sequence, with the optimization occuring
at program generation time rather than at run time.

A valuable attribute of this technique is that future changes in the
algorithm can first be implemented and tested by modification of the original
high-level language program. The results of the modifications can then be
rapidly propagated into fast operational code by simply changing the
generator program to reflect the altered ‘original’ program, and then

automatically regenerating a new time efficient in-line program."
To summarize the arguments for automatic code generation :
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Different macro facilities becomes avalilable. E.g. for scalar products,
matrix products, matriz inversion, FFT-calculation or digital filter
design. For an example of a macro for butterfly operaticons (used in FFT

calculations) see figure 3.1,

Arithmetic-logical possibilities to choose data or program flow

completely automatically.

Fasier debugging and rewriting of programs.

Easier to change parameters of the algorithm.

In-line code can be produced with less effort. This means that all data
independent operations are performed at code generation time instead of
at run-time and that loops are broken up into several pieces of linear
code. This is positive since branching is slow on the TM5 320, due to the
high level of pipelining of instruction fetch and instruction execution
which has to be broken up at branches. Therefore loops and subroutines
should be avoided. An example is given in [29]1 where an in-line coded
program is compared to a program with subroutines. The algorithm was a
64 - point FFT which run at 0.97S ms-when in-line code was used and at
1.897 ms when coded with subroutines. It should however be remarked
that in-line code gives longer programs. The choice of method has to be a
trade-off between execution speed and program length. The new
generation of signal processors will probably have more program space
available making in-line code even more advantageous. In fact, in the
last decade a number of new algorithms have been developed in which a
reduction in data-dependent operations is achieved at the expense of
relatively increased algorithm complexity. All of these algorithms will

increase the advantage of in-line code. For a discussion of this see [291.

Better documentation of programs is possible.



]
Bild 6. Elementaroperation verginfacht {,,decimation in hme”)
»Butterfly”, vereinfacht O
(,,Decimation in Time") |
‘
° Wy -1
# UNTERPROGRAMM INPLACE-BUTTERFLY N
*
# PARAMETER IM DATEN-RAM:
* WR REALTEIL/WURZEL
® Wl IMAGINARTEIL/WURZEL
#* ADUP DATENRAMADRESSE REALTEIL/OBERER AST (REL)
* ADDW DATENRAMADRESSE REALTEIL/UNTERER AST (RE2)
* .
BUTT LAR 1,ADUP ADRESSE OBERER AST
LAR Q2,ADDW ADRESSE UNTERER AST
LT t 2] REZ2
MPY WR REZ % WR
PAC PRODUKT IN ACCU
LT E 14 M2
MPY Wl In2 & Wi
SPAC {RE2 & WR ~ IM2Z ¥ WI)
SACH ZWR,1 ZWISCHENERGEBNIS IN ZWR (#2)
MPeY WR IM2 & WR
PAC PRODUKT IN ACCU
LT #.1 RE2
mPY Wl REZ # I
APAC {RE2 % Wl « INM2 ¥ WR)
SACH ZWI, ZWISCHENERGEBNIS IN ZW1 (#2)
LAC *,195,8 REL
sua ZWR, 1S REL =~ ZWR
SACH i*(’ﬂ. I eeeaa ERGEBNIS RE2 t12)
ADDH ZWR REL + 2WR
BACH =+ . mmeea ERGEBNIS RE) (123
LAC #.18.8 IM)
SUB ZW1.13 IMl -~ ZW1
SACH #4d,1 = ee-ma ERGEBNIS IM2 (/2)
ADDH ZWL 1ML » Zul
SACH *#, 2,8 0 @ eena- ERGEBNIS IMi (/12)
RET RUECKSPRUNG
Bild 7. Butterfly-Code fiir TMS320
.
Fig 5.1

There are of course problems with automatic code generation as well :

| In-line code is longer.
o No code generator might be available.
u| There is some extra work in learning how the code generator works. This

makes the technique inefficient for short programs.

o The code will not be as optimized as when written by hand.
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An example of a dialeg when using a codegenerator for automatic digital filter

)]

design iz shown below.
TMS CODE GENERATION PROGRAM
(CYCOPYRIGHT (1984): ATLANTA SIGNAL PROCESS0RS INC., VERSION 1.02
THIS PROGRAM GENERATES ASSEMBLER CODE FOR THE TMS 32010 SIGNAL
PROCESSOR CHIP FROM DIGITAL FILTER DESIGNS BENERATED BY THE
IIR, KFIR, AND PMFIR DIGITAL FILTER DESIGN MODULES OF THE
Digital Filter Design Package (DFPD)
FILENAME OF FILTER FILE: LPF.FLT

DO YOU WISH TO SPECIFY THE FILTER I/0 LOCATIONS: N

NEW SAMPLING FREQUENCY (KHZ): 10

Specifications of the Data Memory Organization

Specifications of the Program Memory Organization

After all the options have been selected and the appropriate data entered,
CGEN puts together a TMS32010 program as specified, and writes it into the
specified disk file. Then, a summary of program characteristics is displayed

on the screen as in the following example
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INFINITE IMPULSE RESPONSE (IIR)
ELLIPTIC LOWPASS FILTER
16-BIT QUANTIZED COEFFICIENTS

FILTER ORDER = 4

SAMPLiNG FREQUENCY = 10.000 KILOHERTZ

ACL, 1) ACl, 2) B(1, 0) B(1, 1)
-. 554849 . 204315 . 165970 . 277723

#% CHARTERISTICS OF DESIGNED FILTER %%

LOWER BAND EDGE . 00000
UPPER BAND EDGE 2. 00000
NOMINAL GAIN 1. 00000
NOMINAL RIPPLE . 01000
MAXIMUM RIPPLE . 00908
RIPPLE IN DB . 07849

B(1,2)
. 163710

The TMS program is completely automatically generated, with initialisation:

routines for the A/D-D/A card etc:

>
FILIN EQU ‘ 0
FILOUT EQU

.

(4 pages)

SACH 18
RET
END
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5.3, The Code Generator CODEGEN.PAS

This is an example of how the code generation technique can be used to
implement an identification algorithm on a TMS 320. The program produces
TMS assembly code for recursive parameter estimation of the A and B

polynomials in the ARMAX model
Ay = Bu + e

It is written in Pascal on a VAX 11/780. When reading this section compare
with the Pascal code in appendix 4. The program can be partitioned into the

sections:

Declarations.

The first part of the program defines tabulator positions and a default name,

*outfile.asm’ on the outfile to which the assembly code will be produced.

Code generation procedures.

These procedures are used to produce assembly code on the output file
'outfile.asm’. They are used by the assembly instruction procedures and the
main program as described later. Source statements in TM3 assembler contain
four ordered fields separated by one or more blanks. The source statement
line may be as long as the source file format allows, however, the assembler
will truncate after 60 characters without warning. Therefore nothing else than
comments may extend past column 60. The function ¢ converts an integer to a
varying of char (special for VAX/VMS - Pascal). The comment procedure
allows the programmer to write TMS comments which always should start with
an asterisk (¥ in the first character position. Comments have no effect on the

assembler.

Assembly directive procedures

Each of these procedures creates when called from the main program an
assembly directive, see [201. Assembler directives supply the assembler with

information of the following categories:

o Directives that affect the location counter.

a Directives that initialize constants.
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a Directives that provide linkage between programs.

o Mizcellaneous directives,

All directives accepted by the assembler are not included, since they was not

needed for the application. New directives are however easily added.

Assemblv instruction procedures

Each of these procedures creates an assembler instruction on the outfile when
called from the main program. All instruction are included, however all
combinations of instructions and operands have not been implemented (e.g. the
operations for indirect addressing is not complete). The instruction set is

however easily extended when noted that:

o All text should be written with capital letters for the TI assembler to
accept it.

] All instructions are written at tabl by the w procedure.

] All assembly instruction procedures end with a win (write line).

(] The function ¢ converts an integer to an identifier

o No instruction should have a name that coincides with a reserved word in

Pascal. Therefore e.g. ’and’ is changed to 'and_’.

Main program

The main program consists of calls to assembler directives and instruction
procedures which creates the assembly code. Here all the Pascal facilities can
be used which is a large advantage. Only the main program has to be
rewritten if another algorithm than the recursive parameter estimator is to be

implemented.

The main program in appendix 4 asks for the number of parameters to be
estimated in an ARMAX - model and the name of the assembly output file. The
algorithm used for the parameter estimation iz the MIT-rule and is described

in [61 and [231].
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As a test of how the code generator might have been written in Prolog the
program codegen.pro was written as a *direct’ translation of the Pascal
program to Prolog. The reason for this test was to see if a more interactive

programming envirenment could be possible in Prelog.

There was no major problems when rewriting the program. One difference
petween the languages is that prolog lacks global variables. This can however
be simulated by use of the predicates retract and asserta (or assertz) which
adds or subtracts a rule from the database, see [301. For instance putting the

global parameter col to 13 one might write

retract{col())

assertalcol(13))

There was however some problems with stack overflow after a while using this
solution and therefore the global parameter col was skipped. This is the
reason why the assembly program has no straight left margins as seen in
appendix 5. This is just an esthetic problem since the TEXAS assembler needs
no straight left margins. Another small problem on the computer VAX 11/780
was that the prolog outfile was in UNIX format while the Texas assembler only
accept VMS files as input. These UNIX files was therefore converted to VM3

files by use of the ’unixtovms’ command.

Since the code generation in it self is such an easy programming problem (it is
really just some write commands), there is no large difference between using

different programming languages.

The advantage with Prolog is the interactive programming environment. The
disadvantage is that Prolog is not a very well knowned language. For most
code generation applications Pascal or even Fortran will do.

The Prolog version of the automatic code generator program and the assembly

program generated by it is presented in appendix 5.
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& Practical Experiments
On—line Estimation of Two

Parameters in a R—L. Circuit

6.1 Theorvy

Consider the following network, a first degree R-L circuit:

y R

The connection between the current y and the voltage u is given by

where R and L are unknowned. The sampled version of this will be :

Yie T @y fPU
where
R
_ Tk
a = e
1 h gh
b = =(l-e ) (6.1)
R -
That is
_1-a
R = =5
- _ _h i-a
L = o s B (6.2)

The parameters a and b have no direct physical interpretation but can
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nevertheless be used for fault-detection. There is a one-to-one correspondance
between the physical parameters (R,L) and the parameters (a,b). Any domain
of the (R,L) space can be translated to a corresponding domain in the (a,b)

space.

ASEA RELAYS uses different domains of (R,L) space for signaling alarm when
parameter changes occurs (the impedance decreases). For instance the

following domains are used in different equipment :

< <
1) R_Roandl_._.]_.o

2 2 2

Here RO and LO’

switches.

or A can be set by the operator on a panel of control

Figure 6.1 and 6.2 show the corresponding (a,b) domains. A disadvantage with
the (a,b) domains are that they are harder to describe. Either (6.2) can be

used or an approximation with e.g. polygons has to be made.

b
i 2. |
1. 4
R &
T ] 0. T T 1
0 0.5 1 1.5 0 0.5 i N3
Fig 6.1



b
2. |
- _\'/
R
I T ] 0. I T
0.5 1 1.5 0 0.6 1

Fig 6.2

Sensitivity, Choice of Sampling Rate

Since

o

a = e = e vhere T =

Simple calculations show that

dT

T

da
a

T3

For a given relative coefficient precision the equivalent precision of the time
constant is thus inversely proportional to the sampling period. Therefore the

sampling period should not be chosen to small. Moreover

dL 1 1 1
L [_ 1-a a ln c—z:I da - b db
dR _ _ _L B ;

R - 1-a da 5 db
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This again shows that a too small sampling period should not be used.

A reasonable value on T/h is around 2-4, see [101.

6.2 Code Generation

The code generator is now used to generate code for fast recurzive parameter

estimation of the two parameters in the model:

Y(k)Y = a¥(k-1) + bU(k-1)

The method with constant scalar gain is used, see section 2. A suitable

constant P, see section 2, has been chosen by trial and error, P=0.8.

RUN CODEGEN

The user program should now be in userscode.pas

Outfile ([ bob.exjobb.tmsloutfile.asm) : (carriage return)

na=1

nb=1

Scalefactor for a and b = (-15) : =15
adaption factor p : 0.8

ok

The assembly program is presented in appendix 4.

6.3 A Simulation With the Assembly~Program on VAX 780

As a test of the code generation, the algorithm and the TMS-simulator on VAX

780, a file with input and output data from a first order circuit was generated.

Input and output data Y and U was obtained from IDPAC, see {31]. The a and b
coefficients was chosen by the supervisor, Sten Bergman, and kept secret. The
input signal was a Pseudo Random Binary Sequence with amplitude of 0.5.
There was no noise in this example. The sequences was converted to ASCII

format and used as input file to the simulator.
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The assembly file obtained from the code generator was loaded into the
simulator. When the simulator was started the estimates presented in fig 6.3 -
6.5 was produced on an output-file. The figures correspond to different

choices of the scaling factor.

After 100 samples the estimates had converged to 3 decimal places:
a = 0.850 and b = 0.333

These were the correct values.

By calculating the number of operations performed, (this is done automatically
by the simulator), one could see that a maximum sampling-rate of 100 kHz
would have been possible in this example. The A/D converter would however

had limited this to 20 kHz in practice.

1f the matrix gain algorithm would have been used, see section 2, the
estimates would in this case have been exactly correct after only two
iterations. Such an algorithm would however have been much harder to
implement making a much lower sampling rate necessary. The trade-off
between algorithm complexity and sampling rate are further discussed in

section 2.

Different scaling factors for the a and b estimates have been used. Here the
necessity for choosing a proper scaling factor is shown again. 1f a too large
scaling factor is used the calculations will overflow. On the other hand using a
too small scaling factor will result in lost accuracy. This is what has

happened in figure 6.5 where the estimates converged to

a= 0.812 and b = 0.359

The same estimation has also been done in Pascal with double precision. The
result is shown in figure 6.6. It was found to agree perfectly with the output

file from the simulator, see fig 6.3.
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Appendizx 1 Fleoating Point Routines

Appendix 1 contains software routines for floating point operations on the T™ME
320. They have been tested and found to work. The routines are taken from the
master thesis from Karin Sjdholm and Anders Tosteberg, LTH. It was written at

ASEA ROBOTICS, Vasters in July 1984,

In the program some macros like $ASG, $MACRO or $VAR have been used. For

a description of these see [20].

The routines was unfortunately found to be rather slow. The multiplication of
two floating point numbers took around 100 times longer than the fixed point
multiplication. The routines are also rather hard to check for bugs since they

are long. Another drawback is that they take memory space from the user.
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# MULTIPLY FLOTING-POINT WORD E AND G,
# STORE THE RESULT IN I

#
FruL

OVs:L,.S5V:

RA$:L.SV:

KR$:L.5V:

I0%:L.5V:

$MACRO E,G,I
$VAR J,JE,L

$A5G “TMP1” TO J
$ASG ‘TMP2° TO JE
$ASG “$$LAB° TO L.S
$ASG L.SV+1 TO L.SV

UNL

LT :G:

MPY :E:

PAC

SACL :J:+1
SACH :J:

BZ 5L$:L.5V:
SUBH €000
BZ KR$:L.SV:
LAC :G:+1
ADD :E:+1
SACL :JE:
LAC :J:

AND OCH
ADD J:,
AND OCH

pz ZOos$:L.5V:
LDAX :J:
ADD ONE, 14
SACH :J:,1
LAC :JE:

B SL$:L.SV:
LDAX :J:

B OV$:L.5V:
LAC ONE, 14
SAaCL :J:
LAC :G:+1
ADD :E:+1
ADD ONE

B SL$:L.5V:
LDAX :d:
ADD ONE,13
SACH :J:
SACL :J:+1
LAC :J:

AND OCH
ADD :J:,2
AND QCH
BNZ BAS$:L.SV:
LDAX :J:
SACH :J:,1
SACL :J:+1
LAC :d:+1,1
AND MINUS
ADDH :J:
SACH :J:,1

STOPPAR LISTNINGEN

MANTISSA C NOLL?

ADDERA EXPONENTERNA
LAGRA NY EXPONENT

LEADING ZERO

NORMAL ISERAT
AVRUNDING OCH -

SHIFT UT AV -

EXTRA NOLLA ELLER ETTA

AVRUNDNING  LEADING ZERO

=Tl =



SL$:L.SV:

LaC JE:
SUR ONE
SACL :I:+1
LAC :J:
SACL :1:
LIST

$END

=TH=

STARTAR LISTNINGEN IGEN



#ADDERAR FLYTTALEN F OCH H
#RESULTATET LAGRAS I I (MANTISSAN)
¥EXPONENTEN LAGRAS I I+1
#
FADD $MACRO F,H,l
s$VAR B,D,TE,L,L1,E,G
§ASG “$sSLABR” TO L.S
$ASG “$NSUB® TO L1.S
$ASG "TMP1® TO B
$ASG ‘TMP2" TO D
$AGG TMP3” TG T
$ASG ‘TAL1® TO E
$ASG "TALZ” TO G
$ASG L.SV+1 TO L
UNL STQPPAR LISTNING
LST CLOV NOLLSTALLER OV
LAC :F:+1,2
SUR :H:+1,2
SACL :PB: . .
BGEZ OT$:L.5V: HOPPAR OM EXP-F >»= EXF-H
LAC :H:
SAacL @
LAC :F
saCL :G:
LAC :H:+1
SACL :1:+1
B Oks$:L.SV:
0Ts:L.5V: LAC :F:
SACL :E:
LAC :H:
SACL :G:
LAC :F:+1
SACL :I:+1
OK$:L.5V: LAC :BE:
ARS
SACL :B:
SUB ONE, &
PLEZ PL$:L.SV: HOPP OM ADDITIONEN SKA SKE
LAC :E:
SACL :1:
B SL$:L.5V:
ov$:L.5V: LAC e I:+1 KQRRIGERA EXPONENTEN
~+  ADD ONE
sAaCL :1:+1
LAC :1I:
AND NOCH
SACL :1:
ZALH :TE: 7 LADDA IN TECKENBIT
ADD :I:,15 OVERFLOW AVKLARAT
B QR$:L.5V:
$1F L1.5V=0
$456 5 TO L1.5V
SuUeo ZALH :E: SUBRUTINER FOR BER. AV-
ADDH :6G: ADDITIONEN I-
RET KORREKT POSITION

=T 6=
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PL$:L.5V:

RO$:L.5V:

QR$:L.5V:

SL$:L.8V:

RET

NOFP

ZALH :E:
ADD :G:,1
RET

NOP

ZALH :E:
ADD :G:,0
RET

NOP
$ENDIF
LAC :E:
AND C0O00
SACL :TE:
LAC :B:
LT ONE
MPYK SUROD
APAC

CALA

SACH :1:
BY OV$:L.SV:
SACL :D:
BZ SL$:L.SV:
LAC :1I:
AND OCH
ADD :I:,1
AND QCH

BNZ RCG$:L.S8V:
FNORM :1:,:0:

ZALH :I:
ADDS :D:
ADD ONE, 15
By Ov$:L.5V:
SACH :1:
EQU ¢

LIST

$END

yilevd

=T 8w

TAR FRAM TECKENEITEN -
(+1BIT) LAGRAR DEN I TE

KALLA PA SUPRUTINEN-
FOR ADDITION
HOPP VID OVERFLOW

TEST OM TALET-
NORMAL ISERAT

HGPP OM TALET-
AVRUNDNING

HOPP VID OVERFLOW
LAGRA RESULTAT AV-

ADDITIONEN ,
STARTAR LISTNING IGE



#LAGRAR DET TILL PELGPPET MINSTA FLYTTALET
#(AY 2 STYCKEN) I :G:

#
FAMIN

TE$:L.SV:

Fri$:L.SV:

EM$:L.5V:

SL$:L.5V:

$MACRO E,F,G
$VAR A,B,L

$ASG “TAL1® TO A
$ASG ‘TAL2 TO B

$45G "$sLAB” TO L.5
$ASG L.SV+1 TO L.SV

UNL

SOVM

LAC :F:

BZ Fr$:L.SV:
LAC :E:

BZ EM$:L.S5V:
LAC :E:+1

SUB :F:+1
SACL :G:+1
ABS

SUB ONE

PGEZ TE$:L.5V:
ZALH :E:

AES

SACH :A:

ZALH :F:
ABRS
SACH :P:

LAC :8B:

SUE :A:

BGZ EM$:L.SV:
B FM$:L.5V:
LAC :G:+1
PLZ EM$:L.5V:
LAC :F:

SACL :G:

LAC :F:+1
SACL :G:+1
LAC ONE

SACL XY

B SL$:L.S5V:
LAC :E:

SACL :G:

LAC :E:+1
SACL :G:+1
ZAC

SACL XY

ROVHM

LIST

$END

=7 Q=

STOPPAR LISTNINGEN

sE:EXP-:F:EXP>=1
EXP. LIKA STORA

APS:F:~-ARS:E:
HOFPP GM ARS:F:>ARS:E:

HOPP OM :E:EXPL:F:EXP

STARTAR LISTNINGEN IGEN



#NEGERAR ETT FLYTTAL

#RESULTATET LAGRA

#QCH H+1 (EXPONENTEN)

#
FINVER

NE$:L.5V:

KL$:L.5V:

$MACRQ F,H
$VAR L

$ASG “$SLAR TO L.S
$¢ASG L.Sv+1 TO L.SV

UNL

LAC :F:+1
5ACL :H:+1
ZAC

SUB :F:,D
SACL :H:

pGZ NE$:L.SV:

LAC :H:,1
AND OCH

B7 KL$:L.SV:
LAC :H:+1
SUB ONE
SACL :H:+1
ZALH :H:
SACH :H:,1
B KL$:L.5V:
LAC :H:

SUR OCH

BNZ KL$:L.SV:

LAC :H:+1
ADD ONE
SACL :H:+1
LAC ONE, 14
SACL :H:
EQU $

LI1sT

$END

=30

SIH (HANTISSAN)

STOPPAR LISTNINGEN

STARTAR LISTNINGEN IGEN



#PLOCKAR BORT INLEDANDE NOLLER RESP ETTOQR
#DVS NORMALISERAR TALET
#
FNORM $MACRO I,J,K
LAC :1:
SACL THMP4
LAC :J:
SACL TMP&4+1
LAC :K:
SACL TMPEXP
CALL SHIFT
LAC TMPEXP
SACL :K:
LAC ThMP4+1
SACL :J:
LAC TMP4
SACL :1:
$END
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MLIE *DUAD:ACONSULT.KSJOHOLM.MACROA®
OPTION SYMLST,XREF
TITL ° MATSYSTEM TMS32010°
PROG SHIFT
PSEG
DEF SHIFT
REF ONE,F,THREE,TMP4, TMPEXP,MINUS, TMP5
REF FIVE,NINE,SEVEN,B,D
PAGE

SHIFT1 LASX TMP4,TMP4,1
LAC TMPEXP
SUB ONE
SACL TMPEXP
RET

SHIFTZ LASX TMP4,TMP4,Z
LAC THPEXP
SUB ONE, 1
SACL THPEXP
RET

SHIFT3 LASX TMP4,TMP4,3
LAC TMPEXP
SUB THREE
SACL TMPEXP
RET

SHIFT4 LASX TMP4,TMP4,4
LAC THPEXP
SUR ONE,Z
SACL THMPEXF
RET

SHIFTS LASX TMP4,TMP4,5
LAC THMPEXP
SuB FIVE
SACL TMPEXP
RET

SHIFT& LASX TMP4,TMP4,6
LAC TMPEXP
SUB THREE,1
SACL THPEXP
RET

SHIFT7 LASX TiP4,THP&,7
LAC TMPEXP
sUB SEVEN
SACL TMPEXP
RET

SHIFT8 LASX TMP4,TMP4,8
LAC THPEXP
SUB ONE,3
SACL THMPEXP
RET

SHIFT9 LASX THP4,THP4,9
LAC THPEXP
SUB NINE
SACL TMPEXP
RET

SHIFTA LASX TMP4,TMP4,>A
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SHIFTE

SHIFTC

SHIFTD

SHIFTE

SHIFTF

SHIFT

2000

L0800

L0200

L0080

LAC TMPEXP

SUB FIVE,1

SACL TMPEXP
RET

LASX TMP4,THMP4,>E

LAC THPEXP
sue B

sacClL THMPEXP
RET

LASX THP&,TMP&4,>C

LAC TMPEXP
SUB THREE,Z2
SACL TMPEXP
RET

LASX THMP4,TMP4,2D

LAC THPEXP
SUe D

SACL TMPEXP
RET

LASX TrP4,TMP&,>E

LAC TMPEXP
suB SEVEN,1
SACL TMPEXP
RET

LASX THMP4,THP4,>F

LAC THPEXF
SUE F

SACL THPEXP
RET

LAC TMP4
PLZ NEG

SUEB ONE,7
ELZ LOCBO
SUB F,7

ELZ LO80O
SUB THREE, >R
BLZ LZ000
B SHIFT1
ADD ONE,>C
BLZ SHIFT3
B SHIFTZ
ADD THREE,9
PLZ LDz00
SUB ONE,9
BLZ SHIFT5
B SHIFT4
ADD ONE,8
BLZ SHIFT7
E SHIFT6
ADD F,3

BLZ LOOOS
SUB THREE,J
BLZ LDOZO
SUB ONE,S
BLZ SHIFT9

NGRMALISERAR TALET I THP4,
TMP4&+1 OCH TMPEXP
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LOO0Z0

LOOO8

NEG

LFFFE

LFFFa

LFFED

LFF80

LFEQD

LFa00

B SHIFTS
ADD ONE,4
pLZ SHIFTB
B SHIFTA
ADD THREE,1
BLZ SHIFTE
SUB ONE,1
RLZ SHIFTD
B SHIFTC
ADD ONE,7
pLZ LFF&0
SUB F,3
BLZ LFFF8
SUR THREE, 1
BLZ LFFFE
SUB ONE
BLZ SHIFTE
B SHIFTF
ADD ONE,1
BLZ SHIFTC
B SHIFTD
ADD THREE,3
BLZ LFFEOD
SUB ONE,4
BLZ SHIFTA
B SHIFTR
ADD ONE,S
BLZ SHIFT8
B SHIFT?
ADD F,7
PLZ LF800
SUB THREE,9
PLZ LFEDO
SUB ONE,8
BLZ SHIFTé
B SHIFT7
ADD ONE,9
BLZ SHIFT4
E SHIFTS
ADD THREE,>B
BLZ SHIFT1
SUB ONE,>C

"BLZ SHIFTZ

B SHIFT3
PAGE
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*OMVANDLAR HELTALET I A TILL ETT
#FLYTTAL I B OCH B+1
#4 INLAST FRAN ADC OCH SHIFTAT EN BIT REDAN
. ,
FLT $MACRO A,B
$VAR L,I,J
$ASG “TMP1” TO I
$ASG “TMF2° TO J
$A5G "$$LAR” TO L.S
$ASG L.SV+1 TO L.SV
UNL STOPPAR LISTNINGEN
LACK >6 EXPONENTEN MAX 6

SACL :=J:
LT :A: BINARJUSTERING AV
MPY BINAR TALET FRAN ADC
PAC
SACH :1I:
BZ NO$:L.5V:
SACL :I:+1
FNORM :I:,:I:+1,:J:
NO$:L.SV: LAC :I:
SACL :B:
LAC :J:
SACL :B:+1
LIST STARTAR LISTNINGEN IGEN
SEND
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Apprpendclizx 2 Quantization Effects

1

Proof

_Emna

1

VIR
T

1/7p

e

{The extended HEldsrs inequa
.

Define Ifl = ¢ P17 4z
If 1/p + 1/gq = 1l/r then
if sign(pgr) = 1 then for all functions f and g we have
£gl bt £ i
I£gll I Hp dgﬂq
if sign(pgr) = -1 we instead have
£f > hil
I£gll Il Hp Hgﬂq
Equality occurs if fp = caonst * gq

Case 0 p,q,r all positive

. . . . *
Since the exponential function is convex we have

P g
r ln!fl + T lnlgl
L T L =1 P SE A A r lal
N P - I SN
f
b0 loll |
Integrating both sides from -« to « and using J 1£1Pdx = “fﬂg
[ 1£g1Tax L1
< T < ptg T
£f
Il Hp Hgﬂq
£ < £
I£gll I Hpugﬂq
Case 1 g < 0, pand r > 0O _
Put £’ = fg , g’ = g—l, p’ =r, q' = -gq, r’ = p and apply O

T PRE N E AN B A0
I£1_ < 1f£gl_lg
p r

-gq

I£gll . 2 anpﬂguq

(%) A function f is said to be convex iff for every x,y and p,q > 0 with p+g=1 it

is true that f(px + qy) £ p {(x) + q {(y).
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Case 2 p and r <0, g > 0

Put £’ = g, g’ = (fgy ~, p’ =g, g’ = -r, r’' = -p and apply
fu ’ ’S fl , [N} ,
R I I Hp (e} dq
-1 -1
<
£ H_p— Hqu hefg) “l_

Ifgll . = HprHQHq

Case 3 p,q,r all negative

Put £’ = f—} g’ = g—l, p’ = -p, o' = -q, r' = -r and apply O

f! ’ ’S lfl 'l ? ,
h£ gl e R

e T S A B
E=IIENN ETW T

In 1,2 and 3 we have used the fact that
-1 -1
£ H_p= Hpr
The equality statement is easily verified by direct calculat:

Proocf of (4.3)

To maximize the SDR measure the following integral should

be minimized

w ~

J pl=) g’(x>_¢dx
- 00

under the condition

o]

[ g’ ) dx = glw) - gt-=) = 2 R
- 00

one elegantly uses the HOlder inequality with

£ = p(x), g = g'(x) 2, p=1/3 , q=-1/2 and r=1

-2
1/3dX 3

| ptxd g’ (x) % dx 2 « [P )T % [ grodx )T =

( J p1/3 3

-
P

dx )~ (2 R)
The SDR will be maximized when equality occurs here, that is

g’(x) = const * p(x)l/3
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Apprendi 3

The Program Convert

PROGRAM CONVERT(input, output);
{
Author: Bo Bernhardsson, ASEA RELAYS, April 1983

This program will convert numbers between the TMS format and
16 bits real numbers. The TMS arithmetic format should be left
point two’s complementary. E.g. (EOQ0OO)Hex = -0.73

Before conversion to the TMS form the real numbers will all

be scaled by a constant factor (an exponent of 2) to get into
the intervél (-1, 1).

Another way to see this is that all the TMS numbers

should be interpreted as mantissas in [-1,1) having the same
(not stored) exponent.

The numbers should be stqred one at a line in ASCII-format.

answer = 0O:
Infile contains real number

Dutfile will contain hexadecimal numbers in TMS format

answer = 1:
infile contains hexadecimal numbers in TMS format
Outfile will contain real numbers

}
type string = varying (801 of char;
var infile, cutfile: string;

answer : integer;

exp: real;

procedure conv(infile, outfile:string; exp:real; answver:integer);

const konst = 2%%135;
var r:real;
i : integer;
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function valuel(ch:char):integer;

begin
if (ord(’0’)<= ord(ch)) and (ord(ch)
value := ord(ch)-ord(’0")
else
value := ord(ch)-ord(*A’)+10
end;

begin {(procedure conv}
open (f,infile,old);
open (g,outfile, new);
reset(f);

rewrite(g);

if answer = 0 then {real -> tms:
begin

while not ( eof(f) ) do

begin

readln(f, r);

r 1= r¥2%%{(-exp);

if r<-1 then r:= -1;

if r>=1 +then r:= 1-1/konst;
if r<0 then r := 2+71r;

i := round(r*konst);

writeln(g, hex(i, 4));
end;

end

else if answer = 1 then {tms -> real}
begin

while not ( eof(f) ) do

begin
r:=0;
repeat
read(f, ch);
until ch<>’ ’';
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while ch<>’ '’ do
begin
r:=1G6%r+valus(ch);
read{(f, ch);
end;
r:=r/konst;
if r>»=1 then r:=r-2;
if (r<-1) or (r>=1) then write(’*x%%%*% error : r = ', T
TISr¥2%%exp;
writeln(g, r);
end;
end; {(if}
close(f);

closel(g);

end; {conv}

begin {main}
WEIEELIn (/M # Xk kR AR AR R KRR KRR R R R RN R AR R R R R AR R R R R RN AR AR RN AL LR R RN NR
writeln(’This program converts between tms format and real numbe
repeat

writeln;

wvriteln(’real->tms : 07 ;
wvriteln('tms ->real : 1‘);
writeln(’'quit ¢ 270

writeln;

write(’> ’);

readln{answer);

if answer in [0, 11 then

begin
writeln;
write(’infile :’); readln{infile);
write(’outfile :'); readln(outfile);
write(’exponent(0)’); readln(exp);
conv{infile, cutfile, exp, answer);
vriteln(’ok’);

end;

until answer=2;

end.
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Appendizx 4

The Program Codegen.oas

program CODEGEN {kod, input, output);

-

{ This program creates assembly code for the TMS 32010

~——

{ VAX/YMS version 3.4 pascal is used.

-

{ The main program should reside in userscode.pas

const 0 = 1; {tabulator positionz I
t1 = 10;
t2 = 16;
t3 = 30;
defaultname = '[bob.exjobb.demoloutfile.asm’;

type identifier = varying [801 of char;

var outfile: identifier; {name of assembly output file!}
kod . text; {text file for assembly code 1}
col : integer; {column pointer ¥
%“include ’'proc.pas’ - {includes procedures needed }

{for the code generation

%include ‘userscode.pas’ {this should be a file
{containing the users code-
{generator. The file should

{start: procedure userscode;

begin {main}
writeln(’The user program should be in userscode.pas’);
write(’'Outfile (’'+defaultname+’) : ’); readln(outfile);
if outfile.length=0 then outfile := defaultname;
open (kod, outfile, new);
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rewyrite(kod?;
col 1= 01

userscode;

close(kod);
write(’ok’);

end.

The code generator for the

—~

desired algorithm should be

——

{ in userscode.pas in the form

-~

of a procedure.
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Proc.mpras

{ This section contains
{ procedures to create an assembler file for the TMS 32010.
{ It should be included in the codegen.pas program by

{ %include ’‘proc.pas’. Note that capital letters must be used

procedure w(a:identifier);
begin
writel(kod, a);
col:=col+a. length;

end;

procedure wln;

begin
writeln(kod);
col:=t0;

end;

procedure tabl;

var i:integer;

begin
for i:=1 to tl-col do w(’ *"};
col :=%t1;

end;

procedure tabZ;

var i:integer;

begin
for i:=1 to t2-col do w(' *);
col := t2;

end;

procedure tab3;
var i:integer;
begin
for i:=1 to t3-col do w(" ");
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J

col :=

end;

function c(i:integer) : identifier;
{converts the integer i to an identifier
ex ’SAMPEL’+c(13) = SAMPELI13 }
var a:identifier ;
begin

a := ;

if i>=10 then

begin

as=a + c(i div 10);

ar=a + c(i mod 10);

else if i>=0 then

a:=za + chr(i + ord(’0’));

c := a;
end;
procedure comment ( aridentifier := ’’; tab:integer := t3);

var i:integer;
begin
wi{’'*% ");
for i:=1 to tab-col do w{(’' '1};
wia)l;
wln;

end;

{ This section contains

{ procedures to create assembler directives

procedure bss( a:identifier ; i:integer := 1);
begin

w(a)l;

tabl;

w('BSS’);

tab2;

wlc(i));
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wln;

end;

procedure data
begin
tabl;
w('DATA');
tabZ;
w('>");
w(a);
wln;

end;

{a:identifier

procedure def(a:identifier);

begin
tabl;
w("'DEF’);
tab2;
w(a);
wln;

end;

procedure dend;
begin
tabl;
w(’DEND’);
wln;

end;

procedure dseg;
begin
tabl;
w(’'DSEG");
wln;

end;

procedure end;
begin

bl;

)
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w(’END*);
wln;

end;

procedure idt(a:identifier);
begin

tabl;

w('IDT’);

tab2;

w(’’"7");

wia)l;

w7y,

wln;

end;

procedure pseg;
begin
tabl;
w('PSEG’);
wln;

end;

{ This section contains procedures for creating assembler

{ instructions for the TMS 32010

procedure abs ;
begin
tabl;
w(’ABS"’);
wln;

end;

procedure add (a:identifier;i:integer:=0);
begin
tabl;
w(’'ADD’);
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wi(c(i));
wln;

end;

procedure addh (a:identifier);
begin

tabl;

w{(’”ADDH’);

tab2;

vin;

end;

procedure adds (a:identifier);
begin

tabl;

w(’ADDS ") ;

tab2;

wia);

wln;

end;

procedure and (a:identifier);
begin

tabl;

w(”AND’);

tab2;

w(a);

wln;

end;

procedure apac ;
begin
tabl;
w(’APAC");

wln;
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end;

procedure b (a:identifier);
begin

tabl;

w(’B");

tabZ;

wia);

wln;

end;

procedure banz (a:identifier);
begin

tabl;

w('BANZ’);

tab2;

wia);

wln;

end;

procedure bgez (a:identifier);
begin

tabl;

w(’'BGEZ");

tab2;

w(a);

wln;

end;

procedure bgz (a:identifier);
begin

tabl;

w('BGZ’);

tab?2;

w(a);

wln;

end;
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procedures bioz (a:identifier);

w(’'BIDZ");
tabZ;
wla);

wln;

end;

procedure blez (a:identifier);

begin
tabl;
w{’'BLEZ");
tab2;
w(a);
wln;

end;

procedure blz
begin
tabl;
w(’BLZ");
tab2;
w(a);
wln;

end;

procedure bnz
begin
tabl;
w('BNZ’);
tabZ;
wia);
wln;

end;

procedure bv
begin
tabl;

(a:identifier);

(a:identifier);

(a:identifier);
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w('BV’');
tab2;
wla);
wln;

end;

procedure bz (a:identifier);
begin

tabl;

w(’'BZ’);

tabZ2;

w(a);

wln;

end;

procedure cala ;
begin
tabl;
w(’CALA’);
wln;

end;

procedure call {(a:identifier);
begin

tabl;

w(’CALL");

tab2;

wlal;

wln;

end;

procedure dint ;
begin
tabl;
w{’DINT");
wln;

end;

procedure dmov (a:identifier);
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procedure eint ;
begin
tabl;
w(’EINT’);
wln;

end;

procedure in (a, b:identifier);
begin

tabl;

w(’IN");

tab2;

w(a)l;

w(’,’);

wi(b};

wln;

end;

procedure lac (a:identifier ;i:integer:=0);
begin

+tabl;

w(’'LAC’);

tab2;

wla);

wi(’, ')

wlc(i));

wln;

end;

procedure lack (i:integer);
begin
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tabl;

w( ' 'LACK');
tab2;
wlc(i));
wln;

end;

procedure lar (a,b:identifier);
begin

tabl;

w(’'LAR’);

tab?2;

w(a);

w(’,');

wi{b);

wln;

end;

procedure lark (a, bridentifier);
begin

tabl;

w(’LARK");

tab2;

wia)l;

w(’,”);

w(b);

wln;

end;

procedure larp (i:integer);
begin

tabl;

w('LARP’);

tab2;

wlc(i));

wln;

end;

procedure ldp (a:identifier );
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begin
tabl;
w(’'LDP’);
tab2;
w(a);
wln;

end;

procedure ldpk (i:integer);
begin

tabl;

w(’LDPK’);

tab2;

wi(c(i));

wln;

end;

procedure lst (a:identifier );
begin

tabl;

w(’'LST’);

tab2;

wi(a);

wln;

end;

procedure lt (a:identifier );
begin

tabl;

w{’'LT’);

tab2;

wia);

wln;

end;

procedure lta (a:identifier );
begin
tabl;
w(’LTA’);
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tab2;
w(a)l;
wln;

end;

procedure ltd (a:identifier );
begin

tabl;

w(’LTD");

tab2;

w(al;

wln;

end;

procedure mar {a:identifier;i:integer);
begin

tabl;

w{’'MAR");

tab2;

w(a);

w(’, ")

wlc(i));

vln;

end;

procedure mpy (a:identifier);
begin

tabl;

w( ' MPY"’);

tab2;

w(a);

wln;

end;

procedure mpyk (i:integer);
begin
tabl;
w{'MPYK");
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tabZ;
w(c(i));
wln;

end;

procedure nop;
begin
tabl;
w(’NOP’);
wln;

end;

procedure or (a:identifier);
begin

tabl;

w(’0OR");

tab2;

wla)l;

wln;

end;

procedure out (a,b:identifier);
begin

tabl;

w('0OUT’);

tab2;

w{a)l;

wl', ")

w(b);

wln;

end;

procedure pac ;
begin
tabl;
w('PAC');
wlin;

end;
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procedure pop ;
begin
tabl;
w( 'POP");
wln;

end;

procedure push ;
begin
tabl;
w('PUSH’);
wln;

end;

procedure ret ;
begin
tabl;
w(’RET’);
wln;

end;

procedure rovm ;
begin
tabl;
w{’ROVIM’");
wln;

end;

procedure sach (a:identifier ; i:integer :=0);
begin

if not (i in [0, 1,41) then

comment({’'error sach ’'+c(i));

tabl;

w(’SACH’);

tab2;

wla);

wi’, ")

wlc(i));

wln;
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end;

procedure =zacl (a:ideantifier);
begin

tabl;

w{"S5ACL’");

tab2;

wla);

wln;

end;

procedure sar (a, b:identifier);
begin

tabl;

w(’'SAR’");

wia);

wi(’,’);

wib);

wln;

end;

procedure sovm ;
begin
tabl;
w(’S0OVM’);
wln;

end;

procedure spac ;
begin
tabl;
w(’SPAC’);
wln;

end;

procedure sst (a:identifier);
begin
tabl;
w(’SST’);
- 107 -



tabl;
w(a);
wln;

end;

procedure sub {a:identifier;i:integer:=0);
begin

tabl;

w(’'SUB’);

tab2;

wia)l;

wl(', "),

wic(i));

wln;

end;

procedure subc (a:identifier);
begin

tabl;

w(SUBC’);

tabZ;

wla);

wln;

end;

procedure subh (a:identifier);
begin

tabl;

w(’'SUBH");

tabZl;

wla);

wln;

end;

procedure subs (a:identifier);
begin
tabl;
w('SUBS’);
tab2;
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wln:

end;

procedure tblr (a:identifier);
begin

tabl;

w(’'TBLR");

tab2;

w(a);

wln;

end;

procedure tblw (a:identifier);
begin

tabl;

w(’'TBLW’);

tab2;

w(a);

wln;

end;

procedure xor (a:identifier);
begin |

tabl;

w('XOR");

tab2;

wia)l;

wln;

end;

procedure zac ;
begin
tabl;
w(’'ZAC’);
wvln;

end;

procedure zalh (a:identifier);
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begin
tabl;
w(’ZALH’ )
tabZ;
w(a);
wln;

end;

procedure zals (a:identifier);
begin

tabl;

w('"ZALS’) ;

tab2;

wia)l;

wln;

end;

{ procedures for (extended) assembler macros
{ when using macros the main program has to be started with

{ the assembler directive ’'main’.

procedure macrouse,;

begin
PSEg;
lack(1l);
sacl('ONE’");
zac;

sub("ONE’);
sacl("MINUS’);
dseg;

bss( "ONE’ ) ;
bss(’'MINUS’);
bss(’XR0O’);

bss(*XR1’);
bss(’'XR2');
bss("¥R3’);
def(’ONE’);
def('MINUS’);
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def ( "HRO"}

i

def("¥R1°);
def(*XR2’);
def("¥R3");
dend;

end;

procedure initdatal(dma:identifier; i:integer);
{lovads dataram dma with the decimal constant i}
begin

lack(i div 256);

sacl(’XR0O’");

lack(i mod 236);

add('XRO’, 8);

sacl{(dma);

end;

procedure mov(a,b:identifier);
{moves a to b in data memory)
begin

lac(al;

sacl(b);

end;

procedure negx;
{negates accumulators 32 bits!
begin

sach ('XRGC’,0);

sacl (’XR1’);

zac;

subh (’XR0O’);

subs ('XR1’);

end;

procedure not;
{inverts lower 16 bits of accumulator}
begin
xor ( "MINUS ") ;
end;
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procedure lasx(a, biidentifier; i:integ

1i]
o}

{ arithmetic left zhift (O - 15) of a and a+l
{ and store in b and b+l 1}
begin

lac(a+’+1’,1);

sacl (b+’'+17);

sach(b, 0);

lac ("MINUS’, i);

not;

and (b);

add (a, i7;

sacl(b);
end;

procedure rlsh(a,b:identifier; i:integer);
{logical left shift (0-135) of accumulators 32 bits?
begin

lac (a, 16-1i);

gsach (b, 0);

lac ('MINUS’, 16-1i);

not ;

and (b);

sacl(b);

end;

procedure rasx(a,b:identifier; il:integer);
{Arithmetic right shift (0-13) of accumulators 32 bits?
begin

rlsh (a+’+1',b+"+1’,1);

lac (a, 16-1i);

sach (b, 0);

or (b+’+1’);

sacl (b+7+1');

end;

procedure sache (a:identifier; i:integer);
{Extended SACH; left shifts of -16 to 31 possible}
{The accumulator will be changed }
begin
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if (i<-1€6)Y or (i>31)
comment (7 ERROR
elze 1if 1<0 then
begin
sach("XR0O’, 0);
lac(’¥XRO", 16+1);

ach(a);

0]

end

elgse if 1 in [0, 1, 41
sach (a, i)

else 1if i<16 then

begin
sach(’"XR0O", 0);
sacl(’"XR1");

&
SACH WITH

then

lasx(’¥XRO'’, "¥R2"', i) ;

zalh(’XR2");
adds(’"XR3’");
sach(a);

end

else if i=16 then
sacl{(a)

else

begin
sacl{("XR1°);
lac(’XR1’,1i-16);
sacl(a);

end;

end;

procedure gcalarproduct(a, b:identifier;

{ acc:= alllx*blll +
var J:integer;
begin
zac;
lt(a+c(l));
mpy(b+c (1)) ;
for j:=2 to na do
begin

ltata+c(3));

SHIFT OF

alnal*blinal }

Tz (1Y

na:integer);



mpy (b+c(3));

?

procedure mpyv{a, b:identifier; prod:identifier :=
{ prodfil:= alil#bli] i:=1 to na; all scaling
var Jj:integer;
begin
for j:=1 to na do
begin
1t (a+c(j));
mpy(b+c(j));
pac;
sach(prod+c(j), 1);
end;

end;

procedure bssv(a:identifier; na:integer);
{ Declares a vector alll...alnal }
{ na = number of vector elements }
var j:integer;
begin
for j:=1 to na do
bss(a+c(j));

end;

procedure dmovv(a:identifier; na:integer);

{ Moves the vector alll...alnal one step !}
var j : integer;
begin

for j:=na-1 downto 1 do
dmov(a+c(j));

end;

procedure addv(a, b, sum: identifier; na:integer:=1)

{ sum{il := afil + blil for i:=1 to na }
var j : integer;
begin
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for j:=1 to na do
begin
lac(a+c{(3j));
add(b+c(j));
gsach(sum+c(j));
end;

end;

procedure addsc(a:identifier;
ea:integer;
b:identifier;
eb:integer;
c:identifier;

ec:integer )

{adds two numbers with different scaling
{the result is in ¢ and is scaled ec
{eb >= ea otherwise swap !}
var duml :identifier;
dumZ :integer;
begin
if eb<ea then
begin
duml:=a;
a:=b;
b:=duml;
dum2: =ea;
ea:=eb;
eb:=dum2;
end;
if (ec-ea>16) or (eb-ec>16) then
comment(’error in addsc’);
if eb<=ec then
begin
lac(a, 16-(ec-ea));
add(b, 16-(ec-eb));
gach(c);
end
- 115 -
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else if ec<=ea then
begin
lac(a, ea-ec);
add (b, eb-ec);
sacl(c);
end
else
begin
lac(a, ea-eb+16);
addh(b);
sache(c, eb-ec); {this required extended sach}?
end;

end;

procedure mulsc(a, b, c:identifier; ea, eb, ec:integer);
{multiplies scaled numbers!
begin
if (-16<= ea+eb-ec) and (ea+eb-ec <=0) then
begin
lt(ayr;
mpy (b);
pac;
sache(c, l16+eat+teb-ec);
end;
{note the restriction on the scalingfactors}

end;
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Uzserscode.pras

procedure userscode;

{ This main program will generate code for parameter estimation

using the MIT-rule for an arbitrary number of coefficients in

a

n ARMAX-model. It uses CODEGEN.PAS and PROC. PAS.

const inportY = 0O;
inportlU = 1;
cutport = 0O;
scale = 2%%135;

var na : dinteger;
nb : integer;
i : integer;
theexp ! integer;
pin : integer;
preal : real;

begin

WEAtELln(/ FERXARXKRRERRRA XX KRR R AR AR AR R RRRH R XK KRR ARRARX KRR A RS ) ;
writeln(’This program will generate code for the THMS processor’)

writeln(’for fast parameter estimation of an arbitrary number’);

writeln(’of parameters in an ARMAX-model. ’);
writeln(’The MIT-rule is used and the scalar P should be 7)

writeln(’given by the user’);

writeln( T Y 322223333223 2222222222222 22 22222 R DN

write (’na = ’'); readln (na);

write (’nb ’); readln (nb);

write (’scalefactor for a and b =(-15): ’); readln {(theexp);
write (’adaption factor p [0,1) : ’); readln (preal);
pin := trunc(prealx*scale);

writeln(pin);

idt ("OQUTFILE ") ;

COMMENnt (" XX XK AR KKK R RRRKH AR KRR ARK XXX XK R AKX XX R XX A% ®®%", LO);
comment (’ IDENTIFIES A SYSTEM AY = BU + E 7, t0);

comment(’ WITH ’'+c(na)+’ A- AND ’'+c(nb)+’ B-PARAMETERS’, t0);
cOommMENnt (" ¥ XX XX XXX XRERRARK XXX R XA RARRR XXX XXX KRR XA RX®’, £0);
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macrouse;
comment ( "MACRO FACILITIES AVAILABLE’);

comment () ;

dseg;

bssv('F1’, na+nb);
bssv('THE’, na+nb);
bss (’P’);

bss ('EPS’);

bss (’PEPS’);
bss(’'Y’);

dend;

comment () ;

initdata('P’, pin);

w(’'SAMPEL");

in(’'Y’, c{inportY¥));
in('FI’+c(na+l), cl{inportl’);
comment (’READ Y AND U’ );

scalarproduct(*THE’, "FI', na+nb);
sub(’Y’, -theexp);

negx;

comment ('Y-THE*FI');
sache( "EPS’, 16+theexp);

comment (’EPS := Y - THEx*FI');

mulsc (’P’, 'EPS’, 'PEPS’, -15, -15, theexp);
comment ('PEPS := P*EPS5’);

1t (’PEPS’);
for i:=1 to na+nb do
begin
mpy(’FI’+c(i));
pac;
add(’'THE' +c(1i), 13} ;
sach(’'THE ' +c(i), 1);
comment (' THE +c(i)+’ := THE’+c(i)+’ + PEPS*FI’'+c(i));
- 118 -



end;

for i:= 1 to natnb do
out (’THE’ +c (i), cloutport));
comment ( OUTPUT ESTIMATED PARAMETERS');

dmovv(’'FI’, na+nb);
if na>0 then
mov(’'Y’, 'FIl’);
comment ( 'DELAY MOVE THE FI-VECTOR');

b(*'SAMPEL’ ) ;
comment ( ’NEW SAMPEL’);
end;

end;
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The Assembler FProgram

IDT

"OUTFILE’

IR RS EEEEEEEEEREEEEEEREEEEEEE A EEEEEESEREEREEEEERS

x*

¥ WITH 1 A-

IS EEEEEEEEEEE R EEE SRR SR EEEEEEEERES EEEREEEEREN]

ONE
MINUS
XRO
XR1
XR2
XR3

FI1
FIZ2
THE1
THEZ2

EPS
PEPS

PSEG
LACK
SACL
ZAC
SuUB
SACL
DSEG
BSS
BSS
BSS
BSS
BSS
BSS
DEF
DEF
DEF
DEF
DEF
DEF
DEND

DSEG
BSS
BSS
BSS
BSS
BSS
BSS
BSS
BSS

IDENTIFIES A SYSTEM AY = BU + E

AND 1 B-PARAMETERS

ONE

ONE, O
MINUS

e S N

ONE
MINUS
XRO
XR1
XR2
XR3

MACRO FACILITIES AVAILABLE

D N T T = T SOy =
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SAMPEL

DEND

LACK
SACL
LACK
ADD
SACL
IN
IN

ZAC
LT
MPY
LTA
MPY
APAC
SUB
SACH
SACL
ZAC
SUBH
SUBS

SACH

LT
MPY
PAC
SACH

LT
MPY
PAC
ADD
SACH

MPY
PAC
ADD

102
XRO
102
XRO, 8

Y, O

FI2, 1

THE1
FI1
THEZ
FI2
Y, 13
XRO, O
XR1

XRO
AR1

EPS5, 1

P
EPS

PEPS, 1

PEPS
FI1

THEL, 15
THEL, 1

FIz

THEZ, 15

READ Y AND U

Y-THE*FI
EPS := Y
PEPS :=
THE1l :=
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SACH THEZ,
THE2 := THEZ + PEPESx*FIZ
ouT THEL1, O
ouT THEZ, O
QUTPUT ESTIMATED PARAMETERS

pMOV  FIL
LAC Y, O
SACL FI1l
DELAY MOVE THE FI-VECTOR
B SAMPEL

NEW SAMPEL
END
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Appenddi= 35

The Program Codegen. pro

/% This is a prolog version of the codegenerator
/% which implements recursive parameter estimation.

/% The outfile is an assembly program for the TMS 32020

appendstring(X, Y, Z) :-

/% appends X and Y to Z */
name (X, L),
name(Y, M),
append(L, M, NJ,

name (Z, N).

append([1, X, X).
append([AIBl, C, [AIDl):-append(B, C, D).

w(X) -

write(X).

wln :-

/% new line x/
nl,
put(13).

tabl :-
/% prints some blanks ¥/

tab(10).

tab2 :-
tab(4).

comment (Comm) :-
/% to write comments in the assembly file */
Wi’ * "),
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w(Comm),

wln.

/% This section contains

/% procedures to create assembler directives

bss (¥, N) :-
w(X),
tabl,
w(’BSS "),
tab2,
wi(N),

wln.

data(A) :-
tabl,
w('DATA"),
tab2,
w('>"),
w(A),

wln.

def(A) :-
tabl,
w(’DEF "),
tabZ2,
w(A),

wln.

dend :-
tabl,
w(’DEND"),

wln.

dseg :-
tabl,
w(’DSEG" ),
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wln.

end -
tabl,
w(’END "},

wln.

idt(A) -
tabl,
w(’IDT '),
tab?2,
Wiy,
w(A),
w(rrrny,

wln.

pseg :-
tabl,
w('PSEG’),

wln.

/% This section contains procedures for creating assembler
/% instructions for the TMS 32010
/% All instructionz are implemented. Indirect addressing (which is

/% done using ARO and AR1) is not implemented since it was not needs

abs s
tabl,
w(’ABS '),

wln.

add(A, NY -
tabl,
w('"ADD "),
tab2,
w(A),
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addh(A) :-
tabl,
w(’ADDH"),
tab2,
w(A),

wln.

adds(A) -
tabl,
w(’ADDS "),
tab?2,
w(A),

wln.

and_(A) :-
tabl,
w(’”AND "),
tab2,
w(A),

wln.

apac t-
tabl,
w("APAC’),

wln.

b(A) :-
tabl,
w(’'B "),
tab2,
w(A),

wln.

banz(A) :-
tabl,



w{(’'BANZ"),
tab2,
w(A),

wln.

bgez(A) :-
tabl,
w(’'BGEZ’),
tab2,
w(A),

wln.

bgz(A) :-
tabl,
w(’'BGZ '),
tabZ,
w(A),

wln.

bioz(A) :-
tabl,
w(’'BI0Z’),
tabZ,
w(A),

wln.

blez(A) :-
tabl,
w(’BLEZ’"),
tab?2,
w(A),

wln.

blz(A) :-
tabl,
w('BLZ "),
tab?2,
w(A),

wln.



bnz(A) -
tabl,
w(’'BNZ "),
tab?2,
w(A),

wln.

bv(A) :-
tabl,
w(’BY "),
tab?2,
wila),

wln.

bz (A) -
tabl,
w('BZ "),
tab?Z,
w(A),

wln.

cala e
tabl,
w(’'CALA’),

wln.

call_(A) :-
tabl,
w(’CALL"),
tab?2,
w(A),

wvln.

dint -
tabl,
w('DINT'),

wln.

dmov(A) :-
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tabl,
w('DMOV’),
tabz,
w(A),

wvln.

eint : -
tabl,
w(’EINT"),

wln.

in_(4A,B) :-
tabl,
w(’IN "),
tab2,
w(A),
w(’, "),
w(B),

wvln.

lac(A,N) :-
tabl,
w(’LAC "),
tab2,
w(A),
wl’,’),
w{N),

wln.

lack(N):-
tabl,
w(’LACK"),
tab2,
wi{N),

wln.

lar(A,B) :-
tabl,
w(’LAR 7)),



lark(A, B) :-
tabl,
w(’LARK"),
tab?2,
w(A),

larp(N):-
tabl,
w(’LARP’),
tab2,
w(N)},

wvln.

ldp(A) :-
tabl,
w('LDP "),
tab?2,
w(A),

wln.

ldpk (N) : -
tabl,
w{'LDPK’),
tab?2,
w(N),

wln.

1st(A) -
tabl,
w('LST "),
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tab2,
w(A),

wln.

1tCAY -
tabl,
w(’'LT '),
tab?Z,
w(A),

wln.

ltatA) :-
tabl,
w(’LTA '),
tab?2,
w(A),

wln.

ltd(Aa) :-
tabl,
w(’'LTD "),
tab2,
w(A),

wln.

mar (A, N) :-
tabl,
w('MAR '),
tab2,
w(A),
wi’, "),
w(N),

wln.

mpy (A) :-
tabl,
w('MPY ’),
tabZ2,
w(A),
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wlh.

mpyk (N)Y @ -
tabl,
w{'MPYK"),
tab2,
w(N),

wln.

nop :-
tabl,
w{’NOP "),

wln.

or_(A) -
tabl,
w(’OR '),
tab2,
w(A),

wln.

out_(A,B) :-
tabl,
w('0UT "),
tabZ2,
w(A),
w(’, "),
w(B),

wln.

pac -
tabl,
w(’'PAC "),

wln.

pop -
tabl,
w('POP "),

wln.
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push -
tabl,
w("PUSH’),

wln.

ret : -
tabl,
wv(’'RET '),

wiln.

rovm -
tabl,
w{"ROVM"),

wvln.

sach (A, N) :-
(N=0 ; N=1 ; N=4),
tabl,
w('SACH’),
tab2,
w(A),
w(', "),
w(N),

wln.

gach(_, ) -

comment ( "ERROR IN SACH').

sacl(A) :-
tabl,
w('"SACL’),
tabZ2,
w(A),

wln.

sar(A,B) :-
tabl,
w{’SAR '),
w(A),

-1
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sovm -
tabl,
w(’SaviM’y,

wln.

spac -
tabl,
w(’'SPAC’"),

wln.

sst(A) -
tabl,
w('3ST "),
tabZ2,
w(A),

wln.

sub(A, N) -
tabl,
w({’SUB "),
tab?2,
w(A),
w(’, "),
w{(N),

wln.

subc(A) -
tabl,
w(’'SUBC’),
tab?2,
w(4),

wln.

subh(A) :-
tabl,
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w(’SUBH"),
tab?2,
w{A),

wln.

subs(A) :-
tabl,
w(’'SUBS"),
tab2,
w(A),

wln.

tblr(A) :-
tabl,
w(’TBLR"),
tab?2,
w(A),

wliln.

thlw(A) :-
tabl,
w(’'TBLW"),
tab2,
w(A),

wln.

xor(A) :-
tabl,
w(’X0OR "),
tabZ,
w(A),

wln.

zac -
tabl,
w(’'ZAC '),

wln.

zalh(A) :-
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tabl,
w(’ZALH"),
tab2,
w(A),

wln.

zals(A) -
tabl,
w(’2ZALS’),
tab2,
w(A),

wln.

/% Procedures for (extended) assembler macros
/% When using macros the main program has to be started with

/% the macro macrouse.

macrouse :-
pseg,
lack(l),
sacl(’ONE’"),
zac,

sub('ONE’, O),
sacl(’'MINUS’),
dsegqg,
bss(’0ONE’, 1),
bss(’MINUS’, 1),
bgs("XRO’, 1),
bss("XR1’, 1),
bss(’XR27, 1),
bss(’XR3’, 13,

def(’ONE’),
def(’MINUS’),
def('XR0O"),
def(’XR1"),
def("XR2"),
def (’XR3'),
dend.
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initdata(Dma, N) :-
dataram Dma with

236,

/¥loads
M1 is N //
lack(N1),
sacl(’XR0D’),
N2 is (N mod
lack(N2),
add('"XRO’', 8),

236,

sacl(Dma).

the

deci

mov (A, B)Y :-

/¥moves a to b in data memoryx/
lac (A, O,
sacl(B).

negx :-

/%*negates accumulators 32 bitsx/

sach(’XR0O’, 0),
sacl(’XR1’),
zac,
subh("XRO"),
subs(*XR1").

not HES

e

1

-
o
a5

~

ma constant

fir

/¥inverts lower 16 bits of accumulatorx/

xor( MINUS’).

lasx (A, B, N) :

/#%arithmetic left shift

(0
appendstring (A, "+17, ALY,
lac(Al, N),
appendstring(B, "+1", B1),
sacl(B1l),

sach(B, 0),
lac('MINUS’, NI,

not_,

and_(B),

add (A, N,

sacl(B).

13)
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rlsh(a, B, N) -
/#logical left shift (0-135) of accumulators 32 bitsx/
N1l is 16-N,
lac(A, N1,
sach(B, 0),
lac(’MINUS’, N1),
not_,
and_(B),
sacl(B).

rasx(A, B, N} :-
/*Arithmetic right shift (0-1S) of accumulators 32 bits*/
appendstring(A, "+17,Al),
appendstring(B, *+1’, Bl),
rlsh(Al, B1l, N),
N1 is 16-N,
lac(A, N1y,
sach(B, 0),
or_(B1l),
sacl(Bl).

sache(A, I) :-

/% extended sach. shift of —lé to 31 possible %/
(I < -16 ; I > 31),
comment (’ ERROR : SACH WITH ILLEGAL SHIFT ’).

sache(A, I) -
I < 0,
sach(’XRO’, 0),
Il is 16+1,
lac(’'XRO’", I1),
sach(A, 0).

sache(A, I) :-
(I=0 ; I=1 ; I=4 ),
sach(A, I).

sache (A, I) -
I < 16,
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sach(’XR0O’, 0},
1L('¥R1 )Y,

lasx("¥RO’, "XRZ2", I},

zalh("XR2'),

adds(’XR3"),

sach (A).

sache(A, I) -
I = 16,
sacl(A).

sachel(A,I) :- /% I>16 »/
sacl(*¥XR1’),
Il is I-16,
lac(’¥XR1",I1),
sacl(A).

scalarproduct (A, B, N) :-

/% acc:= alllx*bll1l] + ... alnlx*binl */
zac,
appendstring(A, 17, Al),
appendstring(B, "1°, Bl),
1t (ALY,
mpy(B1),
loopl (A, B, N),

apac.

loopl(_, 1) :-

loopl (A, B, N) :-
N1 is N-1,
loopl (A, B, N1),
appendstring (A, N, Al),
appendstring(B, N, Bl1),
lta(Al),
mpy (B1).

bssv (A, N) -



/% Declares a vector alll...alN]l =/
/% N = pumber of vector =lements */

loopZ2(A, N).

laop2(_, 0y - L.
loop2(A, N) -
N1 is N-1,
loop2(A, N1)Y,
appendstring (A, N, Al),

bss(Al, 1).
dmovv (A, N) :-
/% Moves the vector alll...alN]l one step */
/% alll := al21 ...; alN]l is not changed */
N1l is N-1,

loop3 (A, N1).

loop3(_,0) :— 1!.

loop3 (A, N) -
appendstring (A, N, Al),
dmov (Al),
N1 is N-1,
loop3(A, N1).

mulsc(A, EA, B,EB,C,EC) :-

/¥multiplies scaled numbersx/

/¥ T := A%B ; EA,EB and EC %/
/% is the number of bits */
/% that A,B and C should bex/
/% scaled */

ltca),

mpy (B),

pac,

N is 16+EA+EB-EC,
sache(C, N).

updatetheta(N) :-
/% THE := THE + PEPSxFI x/
1t ('PEPS’),
- 140 -



loop4(N).

loop4(0)

loop4(N) :-

N1 is N-1,

loop4 (N1),
appendstring(’'FI’,N,FIl),
mpy (FI1),

pac,

appendstring(’THE’, N, THELl),

add (THE1, 13),
sach(THE1, 1).

outv(_, 0, )

outv (A, N, PORT) :-

/% The vector A is send to %/

the outputport PORT */

/¥

N1 is N-1,

outv (A, N1, PORT),
appendstring (A, N, Al),
out (Al, PORT).

movy (NA) :-

/ *®

FI1 := Y ¥/
NA > (O,
mov ("Y', 'FIl’).

movy(_).

/%
/¥

Here follows Userscode

codegen(Qutfile) :-

write(’NA
read(NA),
nl,

write(’NB
read (NB),

’)’

1
-
~—
~
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write(’Adaptionfactor (e.g. 0.8¥Z%x13) = "),
read(Pin),

nl,

tell(Outfile),
idt (’OUTFILE’),
macrouse,

dseg,

NAB is NA + NB,
bssv(’'FI’, NAB),
bssv(’'THE’, NAB),
bss('P’, 1),
bss(’EPS’, 1),
bss (’PEPS’, 1),
bss(’'Y", 1),
dend,
initdata(’P’, Pin),

w{(’SAMPEL’),
in_('Y’",0),
NAl is NA + 1,
appendstring(’FI’,NAl,FIl),
in_(FIi, 1),

scalarproduct(’THE’, 'FI1", NAB),
Minustheexp is 0 - Theexp,

sub(’Y’, Minustheexp),

negx,

Theexpl is 16 + Theexp,

zsache(’'EPS’, Theexpl),

comment(’EPS := Y - THE % FI’),
mulsc('P’, -1S, "EPS’, -15, "PEPS’, Theexp),
updatetheta (NAB),

camment (* THETA VECTOR UPDATED’),
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outv(’'THE', NAB, 27,
dmnavv ('FI', NAB?,
movy (NA)Y,
b("SAMPEL"),
end_,
tell(user),
write(’ck’),

told.
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The Assaemnbhly Frogiormam

IDT *DUTFILE”
PSEG
LACK 1
SACL ONE
ZAC
SUB ONE, O
SACL MINUS
DSEG
ONE BSS 1
ﬁINUS BSS 1
XRO B5S 1
XR1 BSS 1
XR2 BSS 1
XR3 BSS 1
DEF ONE
DEF MINUS
DEF ¥XRO
DEF XR1
DEF XRZ
DEF XR3
DEND
DSEG
FI1 BSS 1
FIZ B5S5 1
THE1 BSS 1
THEZ2 BSS 1
P B5S5 1
EPS BSS 1
PEFS BSS 1
Y BSS 1
DEND
LACK 102
SACL XRO
LACK 102
ADD XRO, &
SACL P

- 144 -



LT
MPY
PAC
SACH
LT
MPY
PAC
ADD
SACH
MPY
PAC
ADD
SACH

ouT
ouT
DMOV
LAC
SACL

END

THE1
FI1l
THEZ
Flz

Y, 15
XR0O, O
XR1

XRO
XR1
EPS, 1

P
EPS

PEPS, 1
PEPS
FI1

THE1, 15
THE1, 1
FIZ2

THEZ, 15
THEZ, 1

THE1, 2
THEZ, 2
FI1
Y,0
FI1
SAMPEL

EPS

THETA VECTOR UPDATED
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