CODEN: LUTFD2/(TFRT-5336)/1-80/(1985)

EXPERIMENTS WITH USER INTERFACES

FOR

COMPUTER AIDED CONTROL ENGINEERING

Lena Peterson

Department of Automatic Control
Lund Institute of Technology

September 1985



Document name

Department of Automatic Control | p\asTER THESIS

Lund Institute of Technology Date of issue
P.O. Box 118 September 1985
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-5336)/1-80/(1985)
Author(s} Supervisor

Lena Peterson

Sponsoring organisation

Title and subtitle
Experiments with User Interfaces for Computer Aided Control Engineering

Abstract

The development of new user friendly computer tools for Computer Aided Control Engineering re-
quires new user interfaces which are more powerful and easier to use.

The idea of using an existing interactive symbol manipulating language such as LISP is investigated.
Some existing interface modules used today in CACE programs are described and compared. The
history behind LISP and the general structures in LISP are covered. Formal polynomial arithmetics
is used as an example of formula manipulation. Represention of polynomials is discussed. A small
package for polynomial arithmetics, written in LISP, is presented. The symbol manipulation program
MACSYMA is used for investigation of the possibilities of a symbol manipulation features. MAC-
SYMA is briefly described and a small package for polynomial synthesis, written in MACSYMA, is
presented.

Finally some conclusions are drawn on the use of an interactive language such as LISP as user
interface.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient’s notes
English 80

Security classification

The report may be ordered from the Department of automatic control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Telex: 33248 lubbis lund.




CONTENTS

Chapter

1 Introduction

2 Implementation of Interactive Programs

3 LISP - History and Structure

4 Formal and Numerical Representation of Polynomials

5 POLIS - A Polynomial Manpulation Package

6 MACSYMA

7 MACPOL - Polynomial Synthesis using MACSYMA

8 Conclusions

9 References

Appendix A Code for POLIS

Appendix B Code for MACPOL

15

29

33

46

51

61

62

65

76



CHAPTER 1

Introduction

Extensive research projects on computer aided control systems design (CACSD)
have been carried out during the last fifteen years at the Department of
Automatic Control at Lund Institute of Technology. These resulted in several
programs which have been used around the world. All these programs use a
common interactive communication module, INTRAC, as user interface. The
purpose of this thesis is to investigate the possibilities, advantages and
disadvantages of exchanging INTRAC with an input processor based on symbol

manipulating language such as LISP.

The work was carried out as follows. Some existing CACSD systems were first
investigated, their input command structure was described by EBNF notation and
compared. Formal and numerical manipulation of polynomials suit as an example
for implementation of a minor experimental system. Some experience of LISP was
obtained and representation of polynomials was investigated. A small polynomial
package was written in LISP. MACSYMA, a formula manipulation programs was

then used when writing a a small package for formula manipulation.

Chapter 1 introduces the subject. In Chapter 2 different kinds of interactive
programs are described. Two different interactive programs Intrac and Ctrl-C are
compared. The history behind LISP and the general structures used in LISP are
covered in Chapter 3. General ideas on representation of polynomials are
described in Chapter 4 and in Chapter 5 a small Lisp package for formula
manipulation is described. Chapter 6 and 7 concerns Macsyma, a formula
manipulation program. In Chapter 7 a package written in Macsyma for polynomial
synthesis is presented. Finally, in Chapter 8, some conclusions are drawn

considering the use of LISP system as user interface and the use of Macsyma.



CHAPTER 2

Implementation of Interactive Programs

Ideas and Examples

HISTORY

In the early days of the computer age persons involved with computer
calculations were experts both in the calculations to be performed and in the
computer programs to be written and run. The user could run his programs
himself on the computer and could check the results and make corrections
immediately. Later on large computer centres were created. The user no longer
had direct contact with the computer. All computations were performed in batch
i.e. all data was submitted in a batch, the program started and run without
interaction with the rest of the world. Those were the days of the cardpunches

and paper tapes.

By the Seventies the CRT terminal replaced the teletype used in the Sixties as the
common interface between the user and the computer. This gave birth to a new
kind of programs - interactive programs. The user interacts with the computer in
order to achieve a solution to the problem. In the Eighties the personal computer
and the concept of the workstation emerged. This brings the user back to the
original position, in charge of his own machine, but now with much more

powerful and user friendly tools at hand.
CONSIDERATIONS

When designing an interactive program package one must take into consideration

that there will be several kinds of users of the system:

The one-time user may, for example, be a student solving a laboratory exercise.



In this case a fairly simple and rigid system would be preferred for solving a
well-defined problem. The user is not interested in anything but the elementary

facilities needed for his task.

The beginner is in the same situation as the one-time user. He wants simplicity to
get started. But he also wants to become an advanced user one day. A facility of

rapid help and instruction is what he needs.

The experienced user already has prior knowledge, skill and intuition. He
requires a system which gives him a maximum of freedom. It is important to see

the result of one step and to have the ability to make further steps directly.

MEANS OF INTERACTION

Question and Answer

The question and answer method is a commonly used technique of interaction.
The programs asks questions regarding parameters, values and other information
that is needed to solve the task. These questions are answered by the user.
There may also be questions regarding the future steps of the program. For

example in choosing from a list of procedures to be run next.

This kind of interaction gives good guidance to the one-time user and allows
checks to be made on the answers to the questions to ensure security. The
experienced user however might find this kind of interaction tedious. It restricts

his choices and limits use of his knowledge of the subject.

Menu Driven Programs

Menu driven interaction is another method which is very much related to the
question and answer approach. In this case the program becomes less rigid than
in the general question and answer program since there are more answers to

choose between. Menus do of course provide excellent guidance to the



inexperienced user but as soon as he becomes familiar with the program the
routine going through the menus will seem tedious and constraining. One reason
why menu driven programs have become so popular is that they are very easy

to write since only one big if-then-else structure for each menu is needed.

Command Driven Programs

Commands is another way to interact with the computer. The user submits a
commandline telling the computer what to do next. A command usually consists of
a keyword together with values and flags specifying what action to be taken. Here
the the experienced user has full freedom to do what he choses, whereas the

one-time user is left on his own.

Command Languages

A more versatile and advanced variant of command driven dialog is the command
language. To the user, this kind of interaction may not look very different from
command driven programs, however the commands are defined in a grammar for
a language (the command language). A parser checks that a command submitted to
the program is correct according to the grammar. This allows more flexible

command constructions and permits different syntax for different commands.

Extra Features

If the user is given the possibility to create his own commands he can easily (or
not so easily depending on the function structure) create his own tools. The
easiest way to define commands is by means of macros. When a macro is called,
the text of the macro is submitted to the command interpreter and is interpreted

as if it was input directly by the user on the terminal.

To aid the one-time user and the beginner it is suitable to include extensive
help-functions. These should give descriptions of all existing commands but also if
possible general guidance to the in-experienced user. When new to a system, it is

not always easy to remember the name of the commands.



Graphics facilities have recently been included in common computer systems.
Newly developed graphic terminals in combination with increased computer speed
and memory size has made it possible to use graphics features without increasing
the response time too much. Windows and pop-up menus are commonly used
features. These can aid the beginner by letting him see both help instructions and
the working-area at the same time. All different kinds of symbols and small
drawings can of course be used to aid the inexperienced but it is important not to
trifle away the basic principles and bore the experienced user. Extra help should

be optional but easy to access.

EXAMPLES

Two interactive modules commonly used in design of automatic control are
INTRAC and Ctrl-C. To get some idea of what interactive programs used today
can look like these will be described. EBNF (Extended Backus Normal Form) is

used for describing their syntaxes.

EBNF

EBNF is a formal language that is used for describing context-free grammars.
EBNF is an extension of the Normal Form designed by John Backus during the
development of Algol 60. There are three kinds of symbols in EBNF. The first
kind are the symbols of the grammar to be described. These are called terminal
symbols. The second kind are symbols which are names of parts of the language,
so called nonterminal symbols. The third group are metasymbols used in the
rules. The grammar is described by a set of production rules. On the left side of
each rule there is a nonterminal symbol. The right-hand side can be a arbitrary
string of terminal and nonterminal symbols. Metasymbols that are used in EBNF
are ::= | ( ) * and +. The symbol $ denotes an empty production. | means ‘or’
and parentheses are used to group symbols together. the symbol * means that the
previous symbol or group of symbols may be included none or any other
number of times. The symbol + means the same as * with the difference that the

previous symbol or group of symbols must be included at least once.



INTRAC

Intrac is a interactive language developed at the Department of Automatic Control
at Lund Institute of Technology, described in Wieslander & Elmqvist (1978). It is
employed as a user interface in several programs developed at the same
department for example Idpac, used for identification, Modpac, which is an
interface program, Synpac used for synthesis, and Simnon which is a simulation

program.

Intrac is totally command driven, i.e., action is initiated by the user by giving a
command. There are two modes, in normal mode (or command mode) commands
are entered from the keyboard of the users terminal. In this mode almost any

command is legal though not necessarily meaningful.

The second program mode is the macro mode. In this mode the commands are
read from a special macro file. There are special commands to be used in macro

mode which allow looping testing and jumping such as if-goto and for-next.

In the macro mode, a special input command (READ) is available. Together with
the above mentioned special commands it allows the user to write functions
where parameters can be entered when the function is run. Alternate steps in

the function can also be chosen by answering questions.

A command has this generic form:
CMND LARG1 ... LARGNL < RARG1 ... RARGNR



EBNF description of Intrac

command :== 'MACRO' macro_identifier (formal-argument | delimiter |

termination_ marker )+ |

'FORMAL' (formal_argument | delimiter | termination.marker )* |

'END" |

'LET' (variable '=')* (number ( $ | ("+' | ' | *' | '/' ) number )
| ('+' ] '-') ( number | variable )
| identifier ( $ | '+' integer )
| delimiter
| unassigned variable ) |

'DEFAULT' (variable '=')+ argument |

'LABEL' label_identifier |

'GOTO' (label_identifier | variable) |

'IF' argument ('EQ' | 'NE' | 'GE' | 'LE' | 'GT' | 'LT' ) argument
'GOTO' (label-identifier | variable ) |

'FOR’' variable '=" (number | variable ) 'TO' ( number | variable )
( $ | 'STEP' ( number| variable )) |

'NEXT' variable |



10

'WRITE' ($ | variable | 'DIS | 'TP' | 'LP')($ | variable | 'FF' | 'LF')
(variable | string )*
'READ' ( (variable ('INT' | 'REAL' | 'NUM' | 'NAME' | 'DELIM’ |
'YESNO') | termination_marker )+ |
'SUSPEND' |
'RESUME' |
'SWITCH' (variable | 'EXEC' | 'LOG' | 'TRACE')
(variable | 'ON' | 'OFF') |
'FREE' (global_variable® | '«.s') |
'STOP’
CTRL-C
Ctrl-C is an interactive program language for the analysis and design of
multivariable systems. It was developed by Systems Control Technology, Palo Alto
and the first version was released in January 1984. Ctrl-C is totally command
driven. Ctrl-C is a derivative of Mathlab. Matrix-X and PC-Mathlab are similar in
structure.
In Ctrl-C the only data structure is matrices.
Ctrl-C uses macros which are files of commands. The commands will be executed
when typing DO FOO if the filename is FOO.CTR. There is also an INPUT

command which facilitates the use of questions and answers and menus.

There is also a possibility for the user to define his own functions. User defined



11

functions have the following structure

// [output1 output2,.....]=function_name(input1,input2,....)

. function body
Outputl,output2 ... are the variables to be returned by the functions and inputl,
input2 ... are the input variables passed to the functions. Ctrl-C functions are
call-by-value i.e. if the arguments are modified in the body of a User-Defined
function, they do not affect the values of the variables in the calling routine. The

user can easily create own "commands™ by defining own functions.

EBNF description of Ctrl—C*

statement :== environ_state | flow_state | comment

flow_state :== assignment | for_state | if_state | while_state

assignment :== name '=' ( expr | ' string ')

for_state :== 'FOR' name '=' expression ', ( statement ( ', | "}’ ))*
end_flow

if_state :== '[F' expression conditionop expression

( statement ( ', | ;' ))* end_flow

($ | 'ELSE' ( statement | (') | "}’ ))* ) end_flow
while_state :== '"WHILE' expression conditionp expression

x Only the parts of Ctrl-C corresponding to the commands of Intrac are included

in this description.



12

( statement | (') | ' ))* end_flow

end_flow :== 'END' | 'CR'
environ_state :== 'BROWSE' |

'CLEAR'(name*l'-'(v|f|l|t))|

'DO’ filename |

'EDF" |

"EXIT® |

'HELP' |

'KEY' |

'LIB' 'name’ ( '<' filename | § )( '>' filename | § )

($1(-"(d]le]l]Db))

'NEWS' |

'PAUSE' |

'QUIT’ |

'"WHO' |

'WHAT' |

'$' vms_command )

comment :== '//' ( commentline | '[' parameterlist ']' '=' name '(' parameterlist ')' )



13

condition_op == < | > | <> | >< | =

expression :== numeric_expression | ']' string '[' |

name '(" parameterlist ')’ | matrix | predefined

matrix :=='[' number” ((5']'CrR") number" )* T
numeric_expression :== number ( op rest | ":' number ( $ | ":" number ) |
name ( op delim | '(* parameterlist ')’ | ":' name ( $ | ":' name ))

op i== | L [N LR L L] e

rest :== ( name | number )( $ | op rest )

COMPARISON BETWEEN INTRAC AND CTRL-C

Intrac is influenced by the flow control structures of FORTRAN IV. The flow
control statements in Ctrl-C resembles those of the C language. This shows that
Ctrl-C is a younger language than Intrac. The structure of a complicated function

will be easier to follow in Ctrl-C than in Intrac. since many jumps can be avoided.

The general command structure is "cleaner” in Intrac. This is partly because
Intrac is smaller. The ending of flow control statements and the significance of CR
in Ctrl-C is rather inconsequent. Some parts of Ctrl-C cannot be described using
EBNF. The size of a matrix is defined implicitly as it is entered. All rows of the
matrix must have the same length. This can not be described by a finite state

machine, as is EBNF. A system with some kind of memory is required.

Both these interactives modules suffer from lack of generality. They both
resemble another programming language but not as much as to enable someone
used to the other language to easily switch to the module. This is the problem

faced by every user of applied technical programs. For each new program there



14

is a new input syntax to learn. If these programs used standard input modules as
for example existing programming languages then life would be much easier for

the designer engineer.



15

CHAPTER 3

LISP - History and Structure

HISTORY

LISP was one of the first symbolic programming languages. Today symbolic
programming is very popular, but what was it that made John McCarthy start the
LISP project in as early as in the fifties? In History of Programming Languages
by Wexelblatt (1981) the history of LISP is told by McCarthy himself. Lisp's early
history can be divided into two parts. The first one concerns John McCarthy's
work with different artificial intelligence projects where he develops features of a
programming language suitable for Al The second part is the implementation of

LISP at MIT.

Prehistory

LISP's prehistory runs from summer 1956 through summer 1958. In 1956 John
McCarthy participated in the Darthmouth Summer Research Project on Artificial
Intelligence, this was really the first organized study of Al. There his desire for
an algebraic list-processing language for Al work arose. There already existed
one list-processing language, which was described at the project, it was IPL 2
made for RAND Corporation's JOHNNIAC. But this language wasn't really what
McCarthy wanted, he was attracted of the FORTRAN idea of writing programs
algebraically.

The new language was to be developed for the IBM 704 and this was for two
reasons. First, IBM was establishing a New England Computation Center at MIT,
which Darthmouth would use. Second, IBM was undertaking to develop a program
for proving theorems in plane geometry, where McCarthy was to be an

consultant. It seemed likely that IBM would support future artificial intelligence



16

projects.

McCarthy's own research in artificial intelligence led to his proposal of the
Advice Taker in 1958. It involved representing information about the world by
sentences in a suitable formal language and a reasoning program that would
decide what to do by making logical inferences. Representing the sentences by list
structures and using a list-processing language for programming the operations

involved in deduction seemed appropriate.

This internal representation of symbolic information gave up the familiar infix
notations in favour of a notation that simplifies the task of programming algebraic

simplification, logical deduction and other substantive computations.

If infix notations are to be used externally, translation programs has to be
written. Thus most LISP programs use a prefix notations for algebraic
expressions, because they usually must determine the main connective before
deciding what to do next. In this LISP differs from almost every other symbolic

computation system.

In connection with IBM's plane geometry project it was decided to implement a
list-processing language within FORTRAN, because this seemed to be the easiest
way to get started and in those days it was believed that writing a compiler was
to take many man-years. This work led to FLPL, standing for FORTRAN List
Processing Language. While expressions could be easily handled in FLPL, and it
was used successfully for the Geometry program, it had neither conditional
expressions nor recursion, and erasing list structures was explicitly handled by

the program.

The conditional expression was invented by McCarthy while working with a set
chess legal move routines in FORTRAN. The IF statement in FORTRAN | and
FORTRAN II was very awkward to use, and he then invented a function
XIF(M,N1,N2) whose value was N1 or N2 according to whether the expression M
was zero or not. The function was very useful but had to be used sparingly
since all three arguments had to be evaluated before XIF was entered. This led to

the invention of the true conditional expression which evaluates only one of N1



17

and N2 according to whether M is true or false and to McCarthy's desire for a

language that would allow its use.

McCarthy spent the summer of 1958 at the IBM Information Research Department
where he chose differentiating algebraic expressions as a sample problem. It led

to the following innovations beyond FLPL:

Writing recursive function definitions by using conditional expressions.

The maplist function that forms a list of applications of a function to the elements

of the lists.

When using functions as arguments, a notation for functions is needed, and

McCarthy decided to use the \-definition of Church (1941).

No solution for the erasure of abandoned list structures created by the recursive
definitions was apparent att that time, but the idea of complicating the beautiful

definition with explicit erasure was unattractive.
The differentiating program was never implemented that summer, because FLPL

allows neither conditional expressions nor recursive use of functions. At that

point a new programming language was necessary.

The Implementation of LISP

In the autumn of 1958 McCarthy became an Assistant Professor of
Communications Sciences at MIT, and he and Marvin Minsky started the MIT
Artificial Intelligence Project. Within this project the implementation of LISP
began. The original idea was to produce a compiler, but this was considered a
major undertaking, and some experimenting in order to get good conventions for
subroutine linking stack handling and erasure was needed. Therefore various
functions were hand-compiled into assembly language and subroutines were
written to provide a "LISP environment”. It is not clear whether the decision to

use the parenthesized list notation was made then or whether it had already been



18

in discussing the differentiation program.

The programs to be hand-compiled were written in an informal notation called
M-expressions intended to resemble FORTRAN as much as possible. It also
allowed conditional expressions and the basic functions of LISP. It was intended to
compile from some approximation of the M-notation, but the M-notation was never
fully defined, because representing LISP functions by LISP lists became the

dominant programming language when the interpreter later became available.

The READ and PRINT programs induced a de facto standard external notation for
symbolic information e.g. representing x + 3y + z by (plus X(times 3 Y)Z) and
(vx)(P(x)VQ(x,y)) by (ALL (X)(OR (P X)(Q X Y))). Any other notation necessarily
requires special programming since standard mathematical notations treat

different operators in syntactically different ways.

The erasure problem also had to be considered, and since McCarthy found it
unaesthetic to use explicit erasure as did IPL, there were two alternatives left.
The first alternative was to erase the old contents of a variable whenever it was
updated. The second was to use a garbage collector, in which storage is
abandoned until the free storage list is exhausted, the storage accessible from
variables and stacks is marked, and the unmarked storage is made into a new
free storage list. The second alternative was chosen since it didn't require
reference counts, which turned out to be necessary in the first case. After
deciding on garbage collection, its implementation could be postponed since only

short programs were run.

Some simplifications were made to LISP during the implementation which gave a
method to describe computable functions. McCarthy wanted to write a paper
showing that LISP was neater than Turing machines for describing recursive
functions. One way to do this was to write a universal LISP function EVAL[e, a] ,
which computes the value of a LISP expression e, the second argument a being a
list of assignments of values to variables (a is needed to make the recursion
work). Writing EVAL required invention of a notation to represent LISP functions
as LISP data. Such a notation was devised for the purposes of the paper with no

thought that it would be used to express LISP programs in practice.



19

One of the students in the implementation group noticed that eval could serve as
an interpreter for LISP, promptly hand coded it, and a programming language

with an interpreter was obtained.

This unexpected appearance of an interpreter tended to freeze the form of the
language, although some of the decisions made for the paper later proved
unfortunate. Another reason for the initial acceptance of awkwardnesses of the
internal form of LISP was that it was still expected that a switch would be made
to writing programs as M-expressions. The project of defining M-expressions
precisely and compiling them or at least translating them into S-expressions was
neither finalized nor explicitly abandoned. It just receded inte the indefinite

future.

From LISP 1 to LISP 1.5 and beyond

The LISP described above was LISP 1. This version was extended with several
new features some of which fitted neatly in the LISP structure and others which

did not fit so very well.

The two principal dialects of LISP developed after the LISP 1.5 are MACLISP and
INTERLISP. MACLISP is the dialect used in Franz Lisp on VAX/VMS. The dialects
have some principal differencies in their structures. However in both of them the
basic functions are the same, although there are some discrepancies concerning
the numbers of arguments of basic functions and how functions behave when
applied to empty lists. The most important differences are described in Appendix
1 of LISP by Winston & Horn (1981). There are also greater differences in

underlying structures, but these do not matter to the user.

STRUCTURE

Lists and Atoms

LISP has two basic types of data, atoms and lists. Atoms can look like these



20

johnny apple good

and a list may look like

(picking up good vibrations)

Lists may also include other lists as in this example

(life is (like a beanstalk) isnt it)

Take Apart and Put Together

Lists can be taken apart by using the functions CAR and CDR where CAR will
return the first element in a list and CDR returns the list without the first
element. In LISP the function name is written inside a parenthesis with the
arguments following also within the same parenthesis. For example

(CAR '(we all came down to montreaux))

returns

(CDR '(we all came down to montreaux))
gives

(all came down to montreaux)
Incidentally these names are heritages from the IBM 704 used for the original
LISP implementation. CAR originally stood for "Contents of the Address part of

Register number" and in CDR "Data" was substituted for "Address". IBM 704 had

special instructions that made the implementation of these two functions easy.



21

Since programs and data have the same structure, there must be a way of telling
the LISP interpreter whether the argument should be evaluated as a function or
not. For this purpose the function QUOTE is used. It indicates that its argument
is not to be evaluated. To save space and writing effort 'apple can be substituted

for (QUOTE apple).
To put together lists there are several functions. CONS will insert an element
first in a list. APPEND makes one list out of two lists and LIST will make a list of
the submitted elements.

(CONS ‘alibaba ‘'(and the forty robbers))
returns

(alibaba and the forty robbers)

and
(APPEND '(pandoras)'(box))

gives

(pandoras box)

Arithmetics

Arithmetic expressions in LISP are written the same way as other function calls

i.e. the function name first and then the arguments. Addition can look like this

(PLUS 2.19 5.03)
7.22

The other rules of arithmetic and some basic arithmetic functions like max, min,

absolute value, square root and so on, are also available.



22

Atoms have Values

LISP's goal is always to evaluate an expression and return a value. If just typing

in the name of an atom like this

LISP tries to return a value for it, just as for any other expression. But in the
case of an atom the value is something bound to the name of the atom and not
the result of a computation. The value of an atom is established by the function

set. The expression

(SET 'y '(a b c))

returns
(abe)

but as a sideeffect it also makes (a b c) the value of y. The value can be either a
list or an atom. Numbers are special atoms in that the value of a number is just

the number itself.

The function SETQ is even more used than SET. It treats the second argument as
if it was already QUOTEd. The above example with SETQ looks like

(SETQ 'y (a b ¢))

but the result is of course the same.

EVAL

When an expression in typed in by a LISP user, it is automatically handed to the

function eval. It evaluates the expression according to a certain scheme.



Yes

Is S an atom? |—>=—| Is S equal to T? |—>—| Return T

No Y

7
No § Is

S equal to NIL? |—>=—| Return NIL

Is quote the first

No 1
Return value of S

Yes Return second element

element of S 7

No |

i of S

Is the first element of
S a name indicating
that special handling
is needed?

Either do not evaluate

_ Ygs all of the arguments
or accept a variable

number of arguments

or both

No {

Use EVAL on all of the
elements of S other
than the first

{

Apply first element of
S, a function, to the
resulting values and
return the new value
computed

Definition of EVAL

EVAL can also be called explicitly causing an extra evaluation to be performed.

New Functions

23

New functions can be defined using the function DEFUN. The syntax of a function

looks as follows



24

(DEFUN <function name>
(<parameter 1> <parameter 2> ... <parameter n>)

<process description>)

DEFUN establishes a function definition which can be referred to later on by
having the function name appear as the first name of a list to be evaluated. The

function name must be a symbolic atom.
Predicates

A predicate is a function that returns one of two special atoms, T or NIL. The
atom T corresponds to logical true and NIL to logical false. The atoms T and NIL
are special in that their values are preset: the value of T is T and the value of
NIL is NIL. There are a lot of predicates defined in LISP most of them have a
name ending in P e.g. LESSP, GREATERP, NUMBERP, ZEROP, MINUSP and LISTP.
However some important ones does not end in P: ATOM, EQUAL and NULL. New
predicates can be created by means of the AND, OR and NOT functions. AND and
OR take any number of arguments. The arguments are evaluated from left to

right, but only as many as needed to determine the value of the predicate.

The COND expression

The branching function in LISP is called COND. Together with predicates it can be
used to determine which one of several expressions should be evaluated. The

syntax is a bit peculiar:

(COND (<test 1> ... <result 1>)

(<test 2> ... <result 2>)

(<test n> ... <result n>))

Each list following COND is called a clause. The first expression in each clause is

evaluated until one is found that is nonNIL, i.e. if anything else than NIL is



25

returned. Then the other expressions in the clause are evaluated and the last
value computed is returned. Even though a clause may contain any number of
expressions it usually only consists of the test expression and a result

expression.

Recursion and "Normal" Programming

The traditional way to write a LISP function is to make it recursive i. e. it makes
a function call to itself. The structure of LISP with every expression returning a
value and no common statement by statement structure makes this the
easiest approach. Algorithms can very often be defined recursively. Here is an
example with a function computing the Fibonacci number for n. Fibonacci
numbers are defined recursively as fib(n) = fib(n-1) + fib (n-2) and fib(1) and

fib(2) equals 1.

(defun fibonacci (n)
(cond ((equal n 0) 0)
((equal n 1) 1)
(t (+ (fibonacci (- n 1))
(fibonacci (- n 2))))))

In the original LISP there were no possibility to make a statement program but
this was later included. Actually it was one of the extensions made in LISP 1.5.

The feature is called PROG and has this syntax
(PROG (<local variables>)

(statement1)

(statement2)

(statementn))

There are some functions that can only be used inside a PROG. They are



26

RETURN and GO. RETURN causes the PROG to be terminated returning the value
of the of the argument to the RETURN that stopped the PROG. (GO <tag>)
transfers control to the expression following the tag. A tag is a atom appearing
as an argument to PROG. Tags will not be evaluated. PROG is not a very neat
instruction and therefore in more modern LISP versions other language elements
like FOR and WHILE have been included. These makes it easier to write
structured code and the mess that frequent use of GO creates can be avoided.
The fibonacci numbers can of course also be computed iteratively using a PROG.

It could look like this:

(defun fibonacci (n)
(prog (a b foo count)
(setq a 1)
(setq b 0)

(setq count n)

loop

(cond ((equal count O)(return b}))
(setq foo a)

(setq a (+ a b))

(setq b foo)

(setq count (- count 1))

(g0 loop)))



27

What to Think about when Learning to Write LISP programs

It is easy to get confused when writing programs in LISP. At first the language
itself and all the parentheses will confuse you. Its advisable to get a good LISP
text-book and start by reading the first chapters and work through some of the
examples. The first ones can be written down on paper only, but as the examples
get more complicated its needed to get their behaviour confirmed by running

them.

The next step is to get used to the run time system. It is important to learn the
debugging as thoroughly as possible. Most LISP systems have facilities for tracing
and stepping through the functions. Many systems also have the possibility to
invoke an editor from inside the LISP. Since loading the whole LISP usually takes

some time this will speed up work when testing new functions.

How to write in LISP is not obvious especially not if one is used to sequential
programming languages like Fortran or Pascal. LISP is very suitable for writing
recursive functions. It takes time to get used to this new approach to a given
problem. When working with the exercises in the text-book it is important to
really make an effort of solving the problem yourself. It is also important to
compare the solution with the one of the text-book and to understand how the

latter works.

As the problems get more complicated so do the programs and soon enough they
get too big. In LISP it is necessary to break up a problem in smaller parts and
code each of them as a small function. If each function is given an good
mnemonic- the main program will not look as incomprehensible as will an
enormous pile of "cars”, "cdrs” and "conses". When writing the "small parts" it
is necessary that every part has a goal. Giving the different predicates, used for
testing in cond statements, names by defining them as functions will also add

readability to the programs.

A large LISP package has many function names. It is easier to keep track of the
names if they are inserted in a special list automatically when they are defined.

This can be done by using a special function instead of DEFUN in LISP which both



28

defines and inserts the function name in a special list. Also the variables used
inside the package may get mixed up with user variables if the same names are
chosen. In newer LISP versions like Common LISP modules have been included.
Writing a package of functions as a module gives the programmer the opportunity
to decide which variables and functions are to be imported into and exported

from the package.
When having written some programs in LISP it is important not to forget to go
back and study the text-book to find out what useful features could have been

used and which functions were forgotten.

Can LISP be Used as a Base for Command Language

To use LISP as a base for command language has several advantages over writing
an entirely new input processor. Firstly a standard program is being used. This
means it is being maintained by someone else. Further more a user familiar with
LISP does not need to learn a new obscure command syntax to get started. A
user not earlier acquainted to LISP will learn something that is generally used.
Secondly LISP has much more power than a "home-made" input processor will
get with reasonably much time and effort spent on it. Thirdly the symbolic

manipulation functions in LISP which can be very useful are there for free.

There are of course also some disadvantages. If a modern LISP e.g. Common LISP
is used problems with variable and function names getting mixed up can be
eliminated. Of course there might be some difficulties when trying to interface

LISP with the underlying programs written in another programming language.

To get some idea of what it is like to write a symbol manipulation package in LISP
the subject of polynomial algebra is chosen. Writing a package of his own will be
possible for the user of a future system equipped with LISP. The question is this:
Is it enough to give a relatively unexperienced user the tools of LISP or does he

need more powerful tools to get any result?



29

CHAPTER 4

Formal and Numerical

Representation of Polynomials

WHAT IS A POLYNOMIAL?

Before deciding on how to represent polynomials it is essential to define what a
polynomial is. Polynomials are normally defined relative to certain variables. For
simplicity we will restrict ourselves to polynomials having just one indeterminate
(so-called univariate polynomials). Usually we define a polynomial to be a sum of
terms each of which is either a coefficient, a power of the indeterminate or a
product of a coefficient and a power of the indeterminate. A coefficient is defined
as an algebraic expression which is not dependent on the indeterminate of the

polynomial.
Another question when dealing with polynomials is this: Is the polynomial

3x3 + Tx + 2

the same as the polynomial

3y3 + 7y + 2

or not? The answer is yes if just the purely mathematical function is considered
but no if a polynomial is regarded as a syntactic form. In the following discussion
of polynomial representation only the mathematical function will be considered.

However the syntactical representation can be divided into one part representing



30

the mathematical function of the polynomial and another part containing the
syntactic information. Thus the restriction to the mathematical function of the

polynomial is not very limiting.

The coefficients of the polynomials are restricted to real numbers and
expressions, since the polynomials to be described are polynomials in control

theory .
REPRESENTATION OF POLYNOMIALS

There are three basically different approaches to the representation of univariate

polynomials, that is they can either be represented by their coefficients:

or by their roots in a factorized representation:

k(x + rl)(x +r,)) ... (x + rn)

2)

The third way is to represent a polynomial of the degree n by its values in n+1

points.

Converting from factorized form to coefficients form is done by multiplying the
roots together. This can easily be done formally. Converting the other way
around, from coefficients to factorized form is difficult since it means solving a
n:th degree equation formally. That is only possible to do up to the fourth degree

in the general case.
REPRESENTATIONS BY COEFFICIENTS

When representing a polynomial by its coefficients one straightforward approach

is to just make a list of the coefficients

. C

(cn cn—l 0)

The degree n is easily computed by the LENGTH function in LISP. In languages

which do not have the possibility of using lists arrays could be used. Either the



31

order could be reversed so that the coefficient of zero degree comes first

(e cqy -.. ¢

01 n)

or the number of the highest degree n could be inserted first in the array.

C ce0 €

(n n-1 )

c
n
The latter has the advantage of the degree n being much easier to compute than

in the former representation.

This way of representation is good for dense polynomials, but for sparse

polynomials like this one

x100 = 3x3 + 2

the list will become unpractically long. In this case one can either put exponents

in one sublist and coefficients in another one like this
((100 3 0)(1 3 2))
or combine them as pairs, one for each term.

((100 1) (3 3)(0 2))

Representation by coefficients is suitable for formal polynomials since there is no
need to transform to any other representation form when performing addition or

multiplication.
REPRESENTATION BY ROOTS OR FACTORS

An unvariate polynomial can also be represented by its roots. In case of only
real roots there is no problem. The polynomial will be represented by a list
beginning with k, the coefficient off the highest power term, and then all the roots

like this:

. r)

(krorl.. n

If there are also complex roots different ways of representing these may be

chosen. Each root can be represented as a complex number e.g. like this



32

(k (r0 io)(r1 il)"' (rn in) )

where r denotes the real part and i, the imaginary part of the complex number.

k k
If complex numbers are unwanted the complex poles could be combined to second
order expressions. Since complex poles are complex-conjugated, when the

coefficients are real, this is possible to do.

(k (c00 c01)(c10 °11) ........

The complex pol pairs are represented by the two real coefficients of the second
order expression ko and 1 and real poles by ry as in the first example.

Representation by factors is not very suitable when working with formal
polynomials since generally only polynomials up to the fourth degree can be
factorized formally. Multiplication is easily performed by just appending the lists.
Addition and subtraction on the other hand may be impossible to perform since
transformation to representation by coefficients and following factorization is

needed.
REPRESENTATION BY POINTS

A n:th degree polynomial can also be defined by its values in n+1 points. To
transform back to a more familiar representation the Lagrange Interpolation
Formula can be used. Addition and subtraction of two polynomials of the same
degree is very easy to perform by just adding or subtracting their wvalues at
corresponding points. When multiplying two polynomials of nth degree 2n+1
points are needed to make transformation back possible. Of course a fixed
number of points could be calculated for each polynomial to be represented and
thus a limit is set for how high degrees it is possible to calculate with. This way
of representation may be suitable in languages which do not have lists since

arrays of fixed length could be used.



33

CHAPTER 5

POLIS

A Polynomial Manipulation Package

INTRODUCTION

POLIS stands for polynomials in Lisp, it is a small package for manipulation of
polynomials. It is run in Franz Lisp, a Lisp implemented at University of
California, Berkeley. Franz Lisp can be run under Unix or other Unix resembling

operating systems.

To run Franz Lisp on a Vax system under Eunice (which is a program that
simulates Unix on a Vax running under the VMS operating system) some
commands ought to be included in the login file. These however differ from one
VMS/Eunice system to another wherefore it is advisable to ask the system

manager for information.

With this piece of information added, the command "lisp™ will start Franz Lisp and
return some text and the prompt ->. It's important to notice that Franz Lisp does
make a difference between upper and lower case letters. Subsequently since all
commands described in this manual is defined in lower case letters they must also

be typed in that way to be understood by the Lisp.

When having entered Franz Lisp the POLIS package, if it is available on your

computer, will be loaded by the following command

(load 'polis)



34

Observe the single quote mark which denotes that "polis" is not to be evaluated.

REPRESENTATION AND DEFINITION OF POLYNOMIALS

In POLIS a polynomial is represented by its coefficients in a Lisp-list.* The
zero-order coefficient is placed first followed by the others. For example the

polynomial
x>+ 2% + 5
is represented by the list

(5023).

A polynomial can be entered by just specifying the coefficients. The above

polynomial can be defined by this LISP expression
(setq pol '(5 0 2 3))

Standard Lisp functions, like 'setq’ above, are used for different purposes as

defining polynomials.

The coefficients of the polynomial does not have to be numbers. They can of

course also be names or expressions like in this case:
52 + 20zs + 92
This polynomial can be entered like this

(setq pol2 '(1 2sxwxz w-2))

* The acquaintance of Lisp necessary for running and understanding POLIS is
provided in chapter 3.



35

If the polynomial is known defined by its poles it's not necessary to calculate its
coefficients by hand. The function poles-to-coeffs can be used for conversion to
the normal representation used in POLIS. If the poles are real then the
conversion is straightforward. For example

(x + 3)(x - 5)(x + 4)

gives the representation

(3 -5 4)

It can be defined the same way as the polynomial above

(setq polyn '(3 -5 4))

In order to be able to use this polynomial in POLIS it must be transformed into
the normal POLIS representation form. The list of wvalues defined above is
transformed by the command

(poles-to-coeffs polyn)

which returns

(-60 -23 21 2 1).

This is the representation of the polynomial

x4 + 2x3 + 21x2 - 23x - 60.

If there are also complex poles as in this example

(s+2)(s+1+i)s +1-i)(s - 3)



36

then it's necessary to combine the complex pole-pair to a second-order

expression with real coefficients. The example above thus yields

2
(s + 2)(s” + 2s + 2)(s - 3)
(setq complex-polyn '(2 (2 2) -3))
defines the polynomial above. Apparently polynomials with complex roots can
only be introduced in POLIS if the complex poles are complex-conjugated. This
however does not put any restrictions on the use of POLIS in control design

where complex poles always are conjugated, since coefficients are real.

The complex-polyn polynomial can now easily be transformed by the

poles-to-coeffs command.

(poles-to-coeffs complex-polyn)

returns (-1 -14 -6 1 1).

This is of course the representation of the polynomial

x4 + x3 - 6x2 - 14x - 12.

ARITHMETICS

All arithmetic functions in POLIS take two Lisp-lists, representing polynomials as
described in the former part of the manual, as arguments. The polynomials can

be defined in advance with setq or explicitly defined when needed.



37

Addpol

Addpol performs an addition between two polynomials by adding each coefficient.

The form is (addpol poll pol2) which means poll + pol2.

Example:

(addpol '(a 2 4 €)'(12 0 2 b 1))

returns

((12 + a) 2 6 (e + b) 1).

Subpol

Subpol performs a subtraction between the two polynomials. The syntax of the

instruction is (subpol poll pol2) which means poll - pol2.

Example:

(subpol '(a 24 ¢€) '(120 2 b 1))

returns

((- 12 + a) 2 2 (e - b) -1).

Multpol

Multpol performs multiplication between two polynomials. The syntax of the

instruction is (multpol poll pol2) which means poll # pol2.



38

Example:
(multpol '(a 2 4 €)'(120 2 b 1))
returns

(12+a)24 (48 + (2*a))(12xe+ 4+ (axDb))(8+ (2+«b)+a)(2+ (2+e + (4
* b)))(4 + (b * e)).

Divpol

Divpol performs a div between two polynomials. The div function is defined such
as poll divided by pol2 equals the highest degree non-zero term of pol2 divided

by the non-zero term of highest degree of poll.
llx2 + 4x + 2 div 2x2 + x - 6 thus equals 2
whereas 4x2 + 4x + 2 div 2 equals 2x2.
Examples:

(divpol '(a b ¢)'(2 ¢ f))

returns

(c /1)

(divpol '(a b c)'(2))

returns

(00 (c/2)



39

Modpol

modpol performs an modulo function between poll and pol2. The syntax of the
instruction is (modpol poll pol2). This means poll - (poll div pol2) * pol2 where
div is defined as in divpol.

Example:

(modpol '(a b c)'(d e f))

returns

((@-(c/f*xd)b-(c/fxe)c-(c/fxf)).

EVALUATING POLYNOMIALS

It is also possible to evaluate polynomials in POLIS. Le. insert some value for x in

an polynomial like
4x2 + 2x + 4.

If x is given the value 2 this would give the result 24.

Evalpol

Evalpol will perform the evaluating of a polynomial. It is required that each
variable that occurs in the coefficients is assigned a value. This can be done

using lisp function setq.



40

Example:

(setq poly '(a b c))

returns

(abc)

To evaluate the polynomial poly first assign values to a, b and ¢. This is done by

the following commands.

(setq a 3)

3

(setg b 2)

2

(setq c 1)

1

After all variables have got their values the evaluation can be performed.
(evalpol 3 poly)

returns

19

If the value of one of the coefficients is changed for example c by
(setq c 3)

then (evalpol 3 poly) returns 36.

To get the current value of a variable just enter its name and the value will be

returned.



41

It is also possible to evaluate a polynomial with a complex base. The complex
number is then represented by a list with two atoms in it. 3 + i thus is
represented by (3 1). The result will be returned the similar way.

Example:

The polynomial poly from above is used.

(evalpol '(3 1) poly)

returns

(33 22).

OBTAINING INFORMATION

In POLIS it is possible to obtain information about the system while working with

it.

Info

The help command will provide information about available POLIS commands, their

syntax and other subjects closely related to POLIS.

Example:

(info multpol)

returns information about the function multpol.

(info ?)



42

returns all the topics available in the help function.

(info all)

returns the help text for all topics available in help.

ERRORS AND TERMINATION

If an error occurs during the session, for example when trying to evaluate a
polynomial with an undefined variable, an error message will occur on the screen
and Lisp will enter another level.

Example:

(setq wrong)

Error: odd number of parameters to function setq

<1>:

To return to the top level just type in a Ctrl-Z.

<1>:Ctrl-Z

[Return to top level]

->

Thereafter the Lisp is ready to continue. All defined parameters are still defined.

The POLIS session is terminated by entering Ctrl-Z when in top level (i.e. when

the prompt looks like ->).

Example:

->Ctrl-Z
Goodbye



43

When leaving Franz Lisp all defined variables are cleared and has to be redefined

when entering Lisp the next time.
POLIS SESSION EXAMPLE

An entire POLIS session will be presented exactly as it appears on the screen.
The command entered by the user are the ones appearing after the prompts ($ in

VMS and -> in Franz Lisp).

$lisp

Franz Lisp, Opus 38.79

->(load 'polis)

[load polis.1]

t

->(setq poll '((w * w)(2 * z * w) 1))
((w * w)(2 %z *w)1)

->(setq pol2 '((a * w) 1))

((a x w) 1)

->(setq denomg (multpol poll pol2))
(Wews(w=*a))wsw+ (22w (w=xa)))(2+
z*w + (wxa)) 1)

->(setq z 0.7)

0.7

->(setq w 0.5)

0.5

->(evalpol 2 denomg)

Error: Unbound varijable a
<1>:(return 1)

14.125

->Ctrl-Z

Goodbye



44

Comments

Franz Lisp is started and the POLIS package is loaded. Poll is set to
52 + 2zws + w2

and pol2 is set to

s + aw.

These two polynomials are multiplied by the function multpol and the result is
assigned to the atom denomg. To the atom z 0.7 is assigned and to w 0.5. The
polynomial denomg is then evaluated but since no value is assigned to "a" an
error occurs. the atom "a" is given the value 1 in the return statement and the
result of the evaluation is displayed. The exit from Franz Lisp a Ctrl-Z is typed

in.



45

Writing Formal Polynomial Algebra in LISP

The problem is principally rather simple and writing the short functions
performing the arithemtic operations on polynomials is easily done. The results
returned will however look rather messy and will be hard to read. One would
want something that cleans up and simplifies the results. This is however not so
easily done. The major part of the programming time spent on a project like this

is spent on postprocessors for the results. These tend to get very complicated.

A symbolic simplification package would make the problems smaller. Functions for
simplification, factorization and other similar functions would be available and

these could be included in functions written by the user.

It is suitable for a future input processor with LISP as a base to be equipped with
a symbol manipulation and simplification package. Such a package will make it
easier for the user to make own symbol manipulation commands. If the LISP is
not enhanced in this way there is a obvious risk for the not so experienced user

to get stuck.

To investigate the possibilities of a symbol manipulation package some functions

were written in MACSYMA.



46

CHAPTER 6

MACSYMA

A Symbolics Manipulation Program

INTRODUCTION

MACSYMA is a symbolics manipulation program written in Franz Lisp. It was
developed at MIT laboratory for Computer Science and is now supported by

Symbolics Inc.*

MACSYMA is an interactive program. It is command driven and can perform
symbolic manipulations like formal integration, solving differential equations
formally etcetera. As control design often means a lot of formal calculations it
can be very useful e.g. for calculating the transfer function from an equation
system of node equations. Pattern matching and plotting facilities are also featured

in MACSYMA.

There are several hundreds of commands (functions) and over one hundred flags
to control the behaviour of MACSYMA during execution. Therefore MACSYMA

may seem a bit vast to the beginner.
GENERAL STRUCTURE

Every command (the lines written by the user) in MACSYMA has a label which is

* MACSYMA is a large symbolic manipulation program developed at the MIT
Laboratory for Computer Science and supported from 1975 to 1983 by the
National Aeronautics and Space Administration under grant NSG 1323, by the
Office od Naval Research under grant N0O014-77-C-0641, by the US Department of
Energy under grant ET-78-C-02-4687, and by the US Air Force under grant
F49620-79-C-020, and since 1982 by Symbolics, Inc. of Cambridge, Mass.
MACSYMA is a trademark of Symbolics, Inc.



47

written to the left on the screen e.g.

(c13) a: 3;

where (c13) is the C label of the command where 3 is assigned to the atomic
variable a. Every command must be concluded with a semicolon for the value to
be returned. If concluded with an dollar sign $ the result will not be displayed on

the screen. The above command will return

(d13) 3

The D labels are used for output expression and there are also E labels for
intermediate output expressions. Earlier output expressions can be referred to by

their label in following commands.

In MACSYMA the user can define his own functions. The approach is very
LISP-like, naturally enough, with every expression returning a value. The syntax

of the functions is :

foo (bar) := <expression> $

The angle brackets are used to delineate descriptions of things. A user defined
function will look exactly as the default functions of MACSYMA when used and

will become a part of the "language™ just as in LISP.

An atomic variable may have different properties. A property is a piece of
information which may be used during the user's session with MACSYMA. In the
above example the atomic variable "foo" will get the property "function”. There
are other properties like value, array, macro and so on. Most of the properties
are set automatically while working with MACSYMA but there are special

commands to display properties and to remove them.

There is a conditional expression working like the "cond"-expression in LISP i.e.

by returning a value, but with a syntax similar to Algol with IF ... THEN ... ELSE.



48

When wanting to perform traditional statement by statement programming a
BLOCK can be used. A BLOCK is a set of statements separated by commas. The

first statement is a list of the local variables. Statements to use in BLOCKS are :

GO statements which causes control to transfer to the statement which

is labelled by the argument of the GO.

RETURN statements which causes the block to exit with the value of
the argument of the RETURN. A BLOCK whose execution is not
terminated by a RETURN statement will return the value of the last

statement.

FOR statements which are used to repeat a statement (or a set of
statements) a certain number of times or until a certain condition is

fulfilled.

Here is two examples of a functions which computes fibonacci numbers, the first

one recursively and the second one iteratively using a block.

fibonacci-rec (n) := if n = 0 then O else
if n =1 then 1

else fibonacci-rec(n-1) + fibonacci-rec(n-2)$

fibonacci-iter (n) :=
block([fo.fn foo],
fo:1,
fn:1,
loop,
if n = 0 then return (fn),
foo:fn,
fn:fn+fo,
fo:foo,
n:n-1,

go(loop) )$



49

SOME IMPORTANT FUNCTIONS

The EV function is one of the most powerful functions in MACSYMA. EV (exp,
argl,...,argn) evaluates the expression exp in the environment specified by the

arguments. This is done in steps, as follows:

1. First the environment is set up by scanning the arguments. The
arguments causes different actions to be taken e.g. extra
post-evaluation, expansion, evaluation of predicates. The arguments can
be given in any order but since they are picked up from left to right
the order may effect the result.

2. The variables, including subscripted variables, in exp are replaced by
their global values. Variables whose substitution is indicated by
arguments are not replaced.

3. If any substitutions are indicated by the arguments they are carried
out in this step.

4. The resulting expression is re-evaluated (unless one of the arguments
is NOEVAL) and simplified according to the arguments.

5. If one of the arguments are EVAL steps (3) and (4) will be repeated.

SOLVE (exp, var) solves the algebraic equation "exp" for the variable "var" and
returns a list of solution equations in "var". There is also a version SOLVE
([eal, ..., eqn], [v1, ..., vn]) which solves a system of simultaneous (linear or

non-linear) polynomial equations.



50

WHAT TO THINK OF WHEN WRITING IN MACSYMA

Writing in MACSYMA very much resembles writing in LISP, only that in
MACSYMA there are many more functions. LISP techniques with recursion and

lists can be used in MACSYMA.

The first main problem with MACSYMA is to get a view of the functions that are
already there. It is not quickly done to read through the manual. The easiest way
to get started is to talk to someone who has already got some MACSYMA
experience and can guide and give hints on what functions to use. However if no
such person is available there is a short introduction available from Symbolics
Inc. In MACSYMA there is also a function called PRIMER(). It provides an on-line
primer for the novice including an introduction to MACSYMA syntax, assignment
and function definition, and the simplification commands. If really wanting to
explore the possibilities of MACSYMA there is no other way than reading the
manual. Of course some chapters are more important where other special

functions are just interesting to specialists.

To load MACSYMA into the system takes at least a minute, therefore it is not
desired to exit and enter very often. There is an built-in command editor but
when writing longer functions it is better to use a standard editor. Since it is
possible to exit to LISP inside MACSYMA, a LISP function that invokes the editor
can be used. Other operating system functions can also be used from inside

MACSYMA this way. Especially getting rid of old program versions can be useful.

Since there is no text-book or tutorial the only way of overcoming the obstacles
of MACSYMA is by trial and error and by reading the manual. It is likely that a
few days of reading the MACSYMA manual save many days of programming

effort.



51
CHAPTER 7
MACPOL

Polynomial Synthesis using MACSYMA

INTRODUCTION

Polynomial synthesis is one important way of performing synthesis in automatic
control. It is fairly simple once decisions have been made concerning the wanted
system and the observer, but the calculations get rather extensive with a lot of

unknowns and that's where Macsyma can aid the designer.
USER'S MANUAL

This package is used when wanting to calculate the controller of a system that is
described by its transfer function. The observer function has to be determined
manually and also the desired denominator of the controlled system has to be

supplied.

The transfer function of the system will be regarded as

if its a continuos time system and as

if is a discrete time system. The observer polynomial will be called Ao(s) and

nljun



52

Ao(z) respectively and the desired system denominator as Am(s) or Am(z)

respectively.

If the B-polynomial of the given system is known not to have any zeros, that
could cause instability if cancelled, then the easiest way is to use the polynomial
synthesis package is to apply the polsynth-function to the polynomials A, B, A0
and Am' There are to different versions ,one for continuos time systems called

polsynthc and one for discrete time called polsynthd.

The closed-loop characteristic equation of the total system will be
AR + BS = A_A
Om

The function will return the polynomials R(s) and S(s) or R(z) and S(z) and these

will form the transfer function of the controller

S
Hont = &

If however the B-polynomial does have zeros, which will cause instability when
cancelled, then the B-polynomial will have to be divided such as:

B=BB
where B~ has all its zeros in the stability zone and B+ is monic. In this case the

function polsynthb will take the arguments (A, B, B+, AO‘ Am). Observe that the

closed-loop characteristic equation in this case becomes

AR + BS = B'A A
Om

Function Syntax

Both functions look like this in continuos time version :

polsynthc ( A(s), B(s) , Ao(s) , Am(s) )

polsynthbc ( A(s), B™(s). B'(s), Ay(s). A (s) )



53

The discrete time versions of course look very much the same:

polsynthd ( A(z), B(z) , Ao(z) ] Am(z) )

polsynthbd ( A(z), B™(z). B'(z). Ay(z). A (2) )
The polynomials submitted can be in factor or coefficient form or any
combination of the two. Naturally they can also be expressed as a Macsyma
variable i.e.
poly : s-2 + x;
or as a Macsyma function

poly(z) := z~2 + x*z + y;

Error Messages

Some conditions have to be fulfilled by the submitted polynomials, otherwise
error messages will be returned. In case there is a polynomial equal to zero, the
package will send an error message e.g.

AO-polynomial is zero
if the observer polynomial is equal to zero. Checks will also be made on the
degrees of the polynomials. In order to describe a real system the degree of the
A-polynomial must be greater or equal to the degree of the B-polynomial. If that
is not the case this error message occurs on the screen:

degree of Apol less than degree of Bpol
Also the right-hand side of the closed-loop characteristic function must have a
degree that is greater or equal to the one of the A-polynomial. In case of the
polsynthc and polsynthd functions this message will be returned:

degree of AOx*Am less than degree of Apol
and similarly in the divided B version in the functions polsynthbc and
polsynthbd:

degree of Bplus*AOxAm less than degree of Apol.



54

IMPLEMENTATION MANUAL

The package consists of four input functions and one main function with five
helpfunctions. The input functions are polsynthc, polsynthd, polsynthcb and
polynthdb. AXBYC is the main function and the subfunctions are CreateX, CreateY,

Equsys and Removelist.

Input Functions

The input functions are used as interface with the user. Polsynthc and polsynthd
are used for systems with totally stable inverses of the B-polynomial and take the
arguments A, B, AO’ Am in this order. The c¢ stands for continuos time and
polynomials must be in s whereas d stands for discrete time and there
polynomials must be in z. Polsynthbc and polsynthbd are used when B has to be
divided in two parts and thus take five arguments A, B, B+, AO and Am’ The
letters ¢ and d at the end of the function names defines the same as above. All
four functions first expand the passed polynomials whereafter checks are made to
ensure validity of the indata. If no error is detected any of the input functions

will result in one single call of the function AXBYC.
Main Function

AXBYC first expands all the polynomials to get them on term form. Then it checks
that input data is valid, i.e. polynomial is nonequal to zero and degree(Apol) >
degree(Bpol) and degree(Cpol) > degree(Apol). The degrees of the x-polynomial
and the y-polynomial are computed and those polynomials are created by the
subfunctions CreateX and CreateY. The righthand side of the equation AX-+BY=C is
computed and expanded (local variable inter) and all coefficients from the
X-polynomial and the Y-polynomial are put in the list xandy. Subfunction equsys
makes an equation system from inter and cpol. This equation system is solved by
MACSYMA function solve and the its solution is assigned to the local variable
solution. To obtain the answer the X and Y-polynomials are evaluated with the
values from "solution" assigned to the variables. The evaluated x and

y-polynomials are then returned.



55

Subfunctions

createX (base, deg) creates a polynomial in the base "base" with the degree "deg".
The polynomial is monic that is the coefficient of the highest degree is one.

createx (z,3) returns z-3 + x2 z~2 + x1 z + x0.

createY (base, deg) creates a polynomial in the base "base" with the degree "deg".

createy (s,2) returns y2 s-2 + yl s + y0.

equsys (expl, exp2, base) creates an equation system from the two polynomials
"exp1" and "exp2 " of base "base". "Exp1" must be of the highest degree and one

equation is created for each exponent of "base" from the highest degree to zero.

removelist (var, list) removes "var" from "list" if "var" is a member of the "list"
(though not inside expressions). If "var" is a member more than once all

occurences are removed. removelist (a, [a, f, d, a, g]) returns [f, d, g].



56

AN EXAMPLE

As an example for the polynomial synthesis function the following problem was
chosen. A motor is connected to a heavy wheel which is connected via a spring

to another heavy wheel.

The transfer function from the motor current to the position of the second wheel

will then be:

k

> | W

s ( s2 + 2zws + wz)

The desired denominator will look like this:

2 2
A, = (s +2;mwms+wm)(s+a)

The observer will have the following form:

2 2
Aol(s +2g0uos+w0)

Since B doesn't have any zeros in the right halfplane the equation which has to

be solved in order to determine the regulator S/R looks like this:

AR + BS = A_A
Om

The degree of the R and S polynomials must be chosen properly.

2
R=s" + rls + ro

2
S = szs + sls + s0

The obtained equation system when all exponents of s have been removed:



57

1=1

2 + r, = 2wm;m + 2w0g0 + a

1

2 2 2
2w§r1 + ry +w = 4u0;0wmgm + Zawmgm + 2awog0 e +uln

2 2 2
20gr, + ks, + w r, = 4awowm§ogm+ Zwmegm + 2u0wm;0 +

0 2
awﬁ + awg
ks1 + u2r0 = sawgwmgm + Zawowﬁgo + wgwi
ks0 = awﬁwg

The above can with some effort and carefulness be solved by hand and will give

the following solution:

rog = 4w0;0wm;m - 4w;w0;0 + 2awmgm + 2au0§0 - ngwogo +

4w2§2 - 2awg - wz + uﬁ + wg

r, = Zwmgm + 2w0wo -~ 2wt + a
awzwz

0 k
= 2 3 2 2
Sy = [ -4w woumgogm + 4w um; ;m + Zauoumgm - 2aw wmgm +
3 2 2 2 2 2 2 4

4w woggo - 2aw wogo + Zawowmgm + Woln ~ @ Y, +w -

4w4;2+ 23&3; - uzwg ] | k
2 2 2
S, = [ 4aw0wmg0;m - Bwuoumggogm + 8w WS S T 2w R

2 2 2 2 3
4awwmggm + 2w0wm;m + 8w wog go - 2w wogo - 22w g -



58

2 2 2
+ Zawowmgo + Woy "

4aww
m

2 2
0“0 + Zqumgo - 2aw wogo

2 2 4 4 2 2 2
wu e - 4wt +wug ] / k

These calculations are of course not mathematically difficult but to ensure the
correctness of the results, checks and rechecks, which will take valuable time for
the control designer, are needed. Also when numerical values of these functions
are wanted a lot of calculations has to be performed. The engineer is nowadays
always aided by a calculator or even a computer, but even so the complex
functions has to be entered into the machine, without any errors being added.
When using the Polynomial Synthesis package, all that has to be done is entering
the polynomials in Macsyma and use the function polsynthc. The session for the

above example could look like this:

$macsyma

This is REX MACSYMA Release 305

(c) 1976,1979 Massachusetts Institute of Technology

All Rights reserved.

Enhancements (c) 1983, Symbolics, Inc. All Rights Reserved
Type describe(trade_secrets); to see Trade Secret notice.

(c1) batch(macpol);
The macpol code appears here

(d11)  BATCH DONE

(c12) apoly: s*(s~2+2sxwsxzxs+w~2);

2 2
(d12) s (2swz+w +5s)
(c13) bpoly: k;
(d13) k
(c14) aOpoly: s~2+2+xw0xz0xs+w0-~2;

2 2

(d14) 2 s w0z0+w0 +s



59

(c15) ampoly: (s~2+2xzmswmxs+wm~2)#*(s+a);

2 2
(d15) (s +a) (2swnzm+wm +5s)

(c16) polsynthc(apoly,bpoly,aOpoly,ampoly);
Dependent equations eliminated: (6)

(d16) [wm (4 wO 20 zm — 4 w z zm + 2 a zm) + s (2 wm zm + 2 w0 20 - 2 w z + a)

2 2 2 2 2
+w0 (2a20-4wzz0)+w (42 -1)-2awz+wm +w +s,
2 2 2
s (wm (WO (4 az0zm-8wzz0zm) +w (82 -2)zm-4awzzm
2 2 2 2
+2w0 zm) + w0 (w (8z -2)20-4awzz0)+wn (2wD20-2wz+a)
3 3 2 2 2
+w (4z-8z)+aw (4z -1) +w0 (a-2wz2z)}/k
2 3 2 2
+s (wn (-4w wOz0zm+4w zzm+2awd zm-2aw zm)
3 2 2 2 2 4 2
+w0 (4w z20-2aw 20) +wn (2aw0z0+w0 -w)+w (1-42z)
2 2
3 2 2 a wl wm
+2aw z-w W)k + e ]
k

(c17) ev(d16,[w=1,2=0.01,wm=1,zm=0.5,w0=2,20=0.707 ,k=1]);

2
(417) [s + (a + 3.808) s + 2 (1.414 a - 0.02828) + 0.98 a + 6.8084,

(2 (1.414 a - 0.02828) - 0.0196 a + 4 (a - 0.02) + 2 (- 0.02828 a - 1.4134344)

2
+5.848392) s + (5.848 a + 2 (0.02828 - 1.414 a) - 2.8084) s + 4 a]

(c18) ev(d17,[a=1]);

2 2
(d18) [s + 4.808 s + 10.55984, 9.6368032 s + 0.2681600000000001 s + 4]

(c19) ev(d78,[w=1,2=0.01,wm=1,zm=0.5,w0=2,20=0.707 ,a=1]);



60

2
2 9.6368032 s  0.2681600000000001 s 4
(d19) [s + 4.808 s + 10.55084, + _ -

COMMENTS

In (c1) the package is loaded into Macsyma. All the listings of the functions have
been left out. Command (c12) to (c15) defines the polynomials describing the
existing system, the observer and the wanted denominator of the controlled
system. (c16) is the call of the polynomial synthesis package and (d16) contains
the expressions for R(s) and S(s). (c17) on the next line evaluates the solution
(d16) with the values and the result is (d17) where the only remaining variable is
a. In (c18) an evaluation of (d17) is performed with the variable a set to 1. In
(c19) (d16) is evaluated another time but without a value being assigned to the

variable k.



61

CHAPTER 8

Conclusions

To use LISP as a base for command language has several advantages over writing
an entirely new input processor. Firstly a standard program which is maintained
by someone else is used, secondly LISP has more power than a homemade system
will get with reasonable effort spent on it and thirdly the symbol manipulation
functions of LISP will be there for free. Furthermore users that already have
experience of LISP need not learn another language and those unfamiliar with

LISP will learn something which can be generally used.

If symbol manipulation facilities are included in this programming environment
then the possibilities for the user to create his own tools are even greater. These
facilities may very well resemble those of MACSYMA, but they need to have a
cleaner structure. It is also of great importance that all functions added to the

LISP system are thoroughly documented for those functions to be useful.

The input system described above has potential of being a solution for the

computer programs to be used in control systems design in the future.



62

CHAPTER 9

References

Abelson H. and Sussman G. J. (1983): Structure and Interpretations of Computer

Anonymous (1981): The muMATH/muSIMP-80 Symbolic Mathemayhics System
Reference Manual for the Apple I Computer. Document No. 8742-210-04
Microsoft Corp. 10700 Northup Way, Bellevue, WA,

Anonymous (1983): CTRL-C: A Language for the Computer-Aided Design of
Multivariable Control Systems, User's Guide. Systems Control Technology, Palo

Alto, CA.

Baase S. (1978): Computer Algorithms: Introduction to Design and Analysis.

Addison-Wesley Publishing Company, Reading, Mass.

Bagley S. C. and Shrager J. (1982): The P-LISP Tutorial. Pegasys Systems Inc.

Cherry S. (1982): P-LISP Version 3.0 for the Apple II/ll+. Pegasys Systems Inc.

Goodfellow S. (1984): Input Processors. Control Systems Centre UMIST.

Goodfellow S. (1984): CILT - A Draft Functional Specification Version 1.0. Control
Sustems Centre UMIST.

Mathlab Group Laboratory for Computer Science MIT (1983): MACSYMA
Reference Manual Volume One. Massachusetts Institute of Technology & Symbolics

Inc. Cambridge Mass.



63

Moses J. (1984): An Introduction to MACSYMA. Masschusetts Institute of
Technology & Symbolics Inc. of Cambridge Mass.

Shrager J. and Bagley S. C. (1982): The P-LISP Tutorial. Pegasys Systems Inc.

Wexelblatt R. L. (editor)(1981): History of Programming Languages. Academic
Press, New York, NY.

Wieslander J. {1980): Interactive Programs - General Guide. Dept of Automatic
Control, Lund Institute of Technology, Lund, Sweden, Report CODEN:
LUTFD2/(TFRT-3156)/1-30/(1980)

Wieslander J. and Elmquist H. (1978): INTRAC, A Communication Module for
Interactive Programs. Language Manual. Dept of Automatic Control, Lund Institute
of Technology, Lund, Sweden, Report CODEN: LUTFD2/(TFRT-3149)/1-60/(1978).

Winston P. H. and Horn B. K. P. (1981): LISP. Addison Wesley Publishing
Company, Reading, Mass.

Wittenmark B. (1984): Analysis and design of control systems using Ctrl-C. Dept
of Automatic Control, Lund Institute of Technology, Lund, Sweden, Report CODEN:
LUTFD2/(TFRT-7272)/1-022/(1984)

Astrém K. J. (1982): A Simnon Tutorial. Introduction to language. Dept of
Automatic Control, Lund Institute of Technology, Lund, Sweden, Report CODEN:
LUTFD2/(TFRT-3168)/1-52/(1982).

Astrém K. J. (1983): Computer Aided Modeling, Analysis and Design of Control
Systems - A Perspective. Control Systems Magazine, May 1983.

Astrém K. J. and Schéntal T. (7777): Pcalc a Polynomial Calculator - A User's

Manual. Dept of Automatic Contirol, Lund Institute of Technology, Lund, Sweden.



64

Astrém K.J. and Wittenmark B. (1984): Computer Controlled Systems - Theory
and Design. Prentice Hall Inc. Englewood Cliffs. N.J.



APPENDIX A

Code for POLIS

R T T T T T Ty T T e e T T S Lt L)
*

¥ POLIS

This package can transform a polynomial from zeros-representation
to coefficient-representation. It can perform formal arithmetics

with two polynomials. It can evaluate a polyncmial either with a
real variable or with a complex variable. The coefficients which

are written in infix are converted to prefix notation and ex-
pressions are evaluated.

?

.o

ER R

’
»

I3 322222222233 S 2332223222 2322338422322 2 2322222333332 33 3222033 8F 3
N

;# This version was created 20 February 1985 at LTH

¥

it 2222232222322 233 I3 33232333 E 3233233333333 3 32238323333 32323 3%

sEERIRRE KRRk kokkkkkkkkkkkkkkkkkokkkkRkkkkkkkkkkkkkrkkkkkkEk kxR kRkk Rk kkkkkkkk
R

;¥ Arithmetic section.

;#  All arithmetic procedures use infix representation

MEIEE 2RSS 2 2222222222222 2222323332322 222233333323 32 23222 2

;Adds two polynomials represented by their coefficients starting with the
;degree of zero.

;Example: (addpolc '(a 3 b) '(2 a ¢ b)) returns ((a + 2)(3 + a)(b + c)(b)).
R T L L L Y Y T e IS S st lat,

(defun addpol (poll pol2)
(mapcar 'sortout (addpolc poll pol2)]

(defun addpolc (poll pol2)
(cond ((and (null poll)(null pol2)) nil)
((null poll) pol2)
((null pol2) pol1)
((zerop (car poll))(cons(car pol2)
(addpole(cdr poli)(cdr pol2))))
((zerop (car pol2))(cons{car pol1)
(addpolc(cdr poll)(cdr pol2)}))
(t (cons (list (car poll) '+ (car pol2))
(addpolc (cdr poll)(cdr pol2)]

65



;******************#*************#*******************##‘*#*****t***********t
;Subtracts two polynomials represented by their coefficients starting with
;the degree of zero.

;Example (subpolc '(2 3) '(a b ¢)) returns ((2 - a)(3 - b)(- c))

DREKERKRRRKE KR KRR ERRRERRR R KRR KRR R KRR R RN KKK R KRR R R RO E KRR

(defun subpol (poll pol2)
(mapcar 'sortout {subpolc poll pol2)]

(defun subpolc (poll pol2)
(cond ((and (null poli)(null pol2)) nil)
((null pol2) pol1)
((null pol1) {mapcar '(lambda (e) (cond ((equal e 0) 0)

(t (list '- e))))
pol2))

((zerop (car pol2))(cons (car poll)
(subpolc(cdr poll)(cdr pol2))))
((zerop (car pol1))(cons (list '- (car pol2))
(subpole(cdr poll)(cdr pol2))))
(t (cons (list (car poll) '- (car pol2))
(subpole (cdr poli)(cdr pol2)]

SRREERRRRERERRRRRREERE R R AR AR R R KRR KRR RN R R KRR
;These functions multiply two polynomials represented by their coefficients
;starting with the zero degree coefficient.

;Example: (multpolc '(1 2)'(a b)) returns ((1 = a)((1 * b) + (2 * a))

;3(2 = b)).

SRRERAKKKKRKRKRR KRR R RRERRKR KK AR R ERE R R KRR KRR RRR AR KRR Rk Rk Rk X

(defun multpol (poll pol2)
(mapcar 'sortout (multpolc poll poi2)]

(defun muitpolc (poll pol2)
(cond ((or (null poll)(null pol2))nil)
((lessp (length pol1)(length pol2))(multpaux O poll pol2))
(t (multpaux O pol2 poll)]

(defun multpaux (exponent short long)
(cond ((null short) nil)
((zerop (car short))(multpaux (add1 exponent) (cdr short) long})
(t (addpolc (multipaux O exponent (car short) long)
(multpaux (add1 exponent)(cdr short) long)]

66



67

(defun multipaux (m termexp term pol)
(cond ((null pol) nil)
((equal O term)(list 0))
((lessp m termexp)
(cons 0 (multipaux (add1 m) termexp term pol)))
((equal 1 term) pol)
((equal O (car pol))
(cons 0 (multipaux m termexp term (cdr pol))}))
({equal 1 (car pol))
(cons term (multipaux m termexp term (cdr pol))))
(t (cons (list term 'x (car pol))
(multipaux m termexp term (cdr pol))]

sRkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkEkkkrRkRkkkrkkkkkkkkkkkkkkkkkkkpkkkkkk
;Gives you div of the two polynomials.

; Examples:

; (ax+2 + bx + c¢) div (dx~2 + ex + f) equals a/d and

; (ax~2 + bx + c) div d equals a/dsx~2

Ri132332 2232382232223 3333333333332 33 3233332323233 2 3333333328333 33333332 3

(defun divpol (poll pol2)
(mapcar 'sortout (divpolc poll pol2)]

(defun divpolc (poll pol2)
(divaux (car (reverse poll))(car (reverse pol2))
(diff (length poll)(length pol2)]

(defun divaux (first1 first2 n)
(cond ((lessp n 0)(print '(This div operation is not possible)))
({(zerop n)(list (list firstl '/ first2)))
(t (cons O (divaux firstl first2 (sub1l n)]

skERkRRRR kR Rk Rk Rk Rk Rk kR k Rk kR kR kkhkhkkkkhkkk ek kkkkkkkkkrkkrkkkkx
;Gives you mode of the two polynomials.

;Poll mode Pol2 can be defined as:

;Poll - (Poll div Pol2)+Pol2

i3 2332233322323 2233332323333 3333232333333 3223333333833 3823333333323 33333

(defun modpol (poll pol2)
(mapcar 'sortout (modepolc poll pol2)]

(defun modepolc (poll pol2)
(subpolc poll (multpole (list (divpolc poll pol2)) pol2]

(defun firstn (lista n)
(cond ((equal n 0) nil)
(t (append (list '* (car lista))(firstn(cdr lista)(subl n)]



68

(defun kombn (lista n)
(cond ((lessp (length lista} n) nil )
(t (append (list '+ (cons (car lista)(firstn(cdr lista)(subl n))))
(kombn (cdr lista) n)]

(defun komb (lista n)
(cond ((equal n 1) (list '1))
((equal (length lista) n) (cons (car lista)(firstn(cdr lista)
(subt n))))
(t (cons (cons (car lista)(firstn (reverse lista)(subl n)))
(kombn lista n)]

(defun sortout (exp)
(calenumbers (numbersfirst exp)]

;****##*************#t**********t*******##**********t#***t***#*****#*******
; Poles-to-coeffs converts a polynomial represented by its poles (real or
; complex) to coefficients representation. Complex poles must be complex-
; conjugated and multiplied to a second order polynomial with real

; coefficients.
;************************************#***t*****************#***********#***t

(defun poles-to-coeffs (polyn)
(mapcar 'sortout (p-t-c polyn)]

(defun p-t-c (polyn)
(cond ((and (null (cdr polyn))(atom (car polyn)))(list (car polyn) 1))
((null (cdr polyn))(reverse (cons 1 (car polyn))))
((atom (car polyn))(multpolc(list (car polyn) 1)
(p-t-c (cdr polyn))))
( t (multpolc (reverse (cons 1 (car polyn)))
(p-t-c (cdr polyn))]

SRERERARRRR R R KRR R R AR KRR R R AR R LR R KRR R AR KRR S KRR R RN R Rk kkkk
; Evalpol is a polynomial evaluator . If x is a real number evalpolr will per-
; form the evaluation, if x is a complex number evalpolc will do it in stead.

PRRKERERRR R KRR KRR R KRR KRR R R KK RE AR R AR R AR R KRR AR A RR R AR RE kR KR

(defun evalpol (x pol)
(cond ((atom x)(evalpolr x pol))
(t (evalpolc x pol)]



T g e L e S i i s s
; Evalpolr is a polynomial evaluator

; It operates with Horners scheme

; X is a number, possibly negative and pol is the

: description of the polynomial
SRRRRRRE R KRR R KRR R R R ERE AR K KRR R R KRR R R R KRR R

(defun evalpolr ( x pol )
(cond ((equal nil pol)
'no_polynomial)
(( not (cdr pol))
(getnum (car pol)))
(t (add (getnum(car pol))
(times x (evalpolr x (cdr pol))]

;**#****************#*************t#*****#*********##********##*******#***t*
; This is another polynomial evaluator where xc is

; a complex number like (3 -4) which means 3 - 4i
;******************#*****************#************************#*************

(defun evalpolc ( xc pol )
(cond ((equal nil pol)
'no_polynomial)
(( not (cdr pol))
(list (getnum (car pol)) 0))
(t (cons (add (getnum (car pol))
(car (compmul xc
(evalpolc xc (cdr pol)))))
(cdr (compmul xc (evalpolc xc (cdr pol)]

;#********************************#*****#***************#**##********t*t****

;This function performs an complex multiplication
T T s s e L L s el

(defun compmul ( comp1 comp2 )
(list (difference (times (car compl)(car comp2))
(times (cadr compl)(cadr comp2)))
(add (times (car comp1)(cadr comp2))
(times (cadr comp1i)(car comp2)))]

(defun getnum (infexpr)
(eval (inf-to-pre infexpr)]

69



;*************#***#*******t*******t*#******#t*t***#****#t*******##t*********
; In this file I intend to try patternmatching to do some things

; for example inverting infix to prefix notation.

; This matcher can also give atoms in the patterns values as it

; moves along in the matching. Atoms that begin with > and + act

; as > and + for matching purposes, but if match succeeds, there

; values are made to be whatever they matched.

B T T T e T PP I e e e e T R S R T S S P e P L fE

(defun match ( p d )
(cond ((and (null p)(null d)) t)

((or (null p)(null d)) nil)

((and (not (atom (car p))) ;Restricted >.
(equal (caar p) 'restrict)
(equal (cadar p) '>)
(testpred (cddar p)(car d)))

(match (cdr p)(cdr d))) ;Restricted > variable.

((and (not (atom (car p)))
(equal (caar p) 'restrict)
(equal (atomcar (cadar p)) '>)
(testpred (cddar p)(car d))
(match (cdr p)(cdr d)))

(set (atomcdr (cadar p))(car d))

t

((o)r (equal (car p) '>) ;Equality or >.
(equal (car p)(car d)))

(match (cdr p)(cdr d)))

((and (equal (atomcar (car p)) '») ;> variable
(match (cdr p)(cdr d)))

(set (atomedr (car p))(car d))

0

((equal (car p) '+) +

(cond ((match (cdr p)(cdr d})) ;drop +
((match p (cdr d))}))) ;keep +

((equal (atomcar (car p)) '+) ;+ variable

(cond ((match (cdr p)(cdr d))
(set (atomcdr (car p))(list (car d)))
t
((r)natch p (cdr d))
(set (atomcdr (car p))
(cons (car d)(eval (atomcdr (car p}))))
t]

70



;**#**************#***#********#**#t**#******##****#*#*t*t##*t#*******#**#**
; Atomcar and atomcdr returns the first letter of "word"

; and the rest of it respectively.
;***********#**#t*******************#*#*t**********#********#***t***t*#*****

(defun atomcar (word)
(car (explode word)))

(defun atomcdr (word)
(implode (cdr (explode word))))

HITEIIIIRITEERS PRS2SR 222282222222 2R 22222 22 222222 222 Lt Lottt S Al d
; Testpred tests if the predicates "predicates” are fulfilled

; by "argument", if so it returns t.
R T s L e T e e 2 PP R e SR LS Il

(defun testpred (predicates argument)
(prog ()
loop
(cond ((null predicates)(return t))) ; All tests T?
(cond ((funcall (car predicates) argument); This test T?
(setq predicates (cdr predicates))

(go loop))
(t (return nil))]

;*******************t***************#*************#****t**t*****t***#****#**
;Here comes a converter between infix and prefix notation.

;It will never truncate when performing division.

R T L e e 2 e e e e L LI T P

(defun inf-to-pre (e)
(prog (v1r)

(return

(cond ((atom e) e)
((match '(>v) e)
(inf-to-pre v))
((match '(+1 (restrict > oneplus) +r) e)
(list 'plus (inf-to-pre 1)(inf-to-pre r)))
((match '(+1 - +r) e)
(list 'difference (inf-to-pre l)(inf-to-pre r)))
((match '(+1 * +r) e)
(list 'times (inf-to-pre l)(inf-to-pre r)))
((match '(+1 / +r) e)
(list 'quotient (float (inf-to-pre 1))(inf-to-pre r)))
((match '(+1 ~ +r) e)
(list 'expt (inf-to-pre l)(inf-to-pre r)))
((match '(- +r) e)
(list 'minus (inf-to-pre r)))

71



72

(t e)]

;***********************************#*#t******##***#******#***#**#*#*#******
: For avoiding confusion between the match symbol + and the arithmetic

; symbol + the following predicate is used.
;**********************************##tt****#***t********#***#t*****#********

(defun oneplus (X)
(equal X '+))

B e R e R R TR T s L L S SR S S e L L S L Ll L L
;:This function will place numbers first in the expression exp.
SRR KRR KRR KRR RN AR KRR KR KRR R R R R R KRR R KRR NN RR R R KRR RN

(defun numbersfirst (exp)
(prog (new) (setq new (numbersfirsta exp})
(cond ((or (atom new)(noop (car new))(equal (car new) '-))
(return new))
((equal (car new) '/){return (cons 1 new}))
(t (return (cdr new))]

(defun numbersfirsta (exp)
{(cond ((not exp) nil)
((atom exp) exp)
((nonumbers exp) exp)

((and (noop (car exp))(numberp (car exp))) s (3 + ...
(cons (car exp)(numbersfirsta (cdr exp))))
((and (noop (car exp))(atom (car exp))) ; (a+ ...

(inlast (cadr exp)(car exp)(numbersfirsta (cdr exp))))
((and (noop (car exp))(onlynumbers (car exp})) ; ((3 + 2) * ..
(cons (car exp)(numbersfirsta (cdr exp))))
((noop (car exp)) ;((B+a) .
(inlast (cadr exp)(numbersfirst (car exp))

(numbersfirsta (cdr exp))))
((numberp (cadr exp)) (-4 +...
(append (list (car exp)(cadr exp))(numbersfirsta (cddr exp))))
((atom (cadr exp)) , s (+a-....
(append (numbersfirsta (cddr exp))(list (car exp)(cadr exp))))

((onlynumbers (cadr exp)) s (+(3%x2)-..
(append (list (car exp)(cadr exp))(numbersfirsta (cddr exp))))
(t ;(+(2%a) - ..

(append (numbersfirsta (cddr exp))
(list (car exp)(numbersfirst (cadr exp)))]



73

;t**#***************#*****************t*******t***#*****#*t*******#*t#******
; Onlynumbers returns t if exp only contains numbers and operators (+.-.%./])
;*************************#******###***#********#**#***#***#ttt****#**#*##*#

(defun onlynumbers (exp)
(cond ((not exp) t)
((and (atom exp)(numberp exp) t)
((atom exp) nil)
((or (numberp (car exp))(operp (car exp))
(and (listp (car exp)){onlynumbers (car exp))))
(onlynumbers (cdr exp)))

(t nil)]

RETITTEEE 2222223333222 S22 R2 2222223222222 222222 2ttt it sl ta st dd il

;: Nonumbers returns t if exp doesn't contain any number.
SRERRRREREERARRRERRERRRRRAERRRRR R R R R AR RR R KA KR RR KR RR KRR SRR KRR RRKSE

(defun nonumbers (exp)
(cond ((or (not exp)(and (atom exp)(not (numberp exp)))) t)
((atom exp) nil)
((or (and (atom (car exp))(not (numberp (car exp))))
(nonumbers (car exp)))
(nonumbers (cdr exp)))

(t nil)]

(defun operp (a)
(condt((and (not (listp a))(or (= a +)(= a '-)(= a "#)(= a '/)))

(defun noop (a)
(not (operp a)]

{(defun inlast (sign part whole)
(cond ((or (equal sign '-)(equal sign '+))
(append whole (list '+ part)))
(t
(append whole (list "+ part))]

:***#************t**#***********t*#**ttt**#**tt******#****t#**t*#****t***t**
; Calcnumbers will calculate the numbers in an expression which first has
;been processed numbersfirst

JRERKERRERR AR R R KRR ER R KRR AR AR RA R R AR AR R KRR AR RN KRR R R RR KA R

(defun calcnumbers (e)
(prog (result)(cond ((atom e)(setq result (list e)))
(t (setq result (calcaux (reverse e)))))
(return
(cond ((equal (cdr result) nil)(car result))
(t (reverse result)]



74

(defun calcaux (exp)

(cond ((not exp) nil) ;exp = ()
((atom exp) (list exp)) ;exp = atom
((and (listp (car exp))(not (cdr exp))) ;exp = ((exp2))

(calcaux (reverse (car exp))))
((and (listp (car exp)){onlynumbers (car exp))) ;exp = ((2 + 2))
(calcaux (cons (calcnumbers (car exp)) (cdr exp))))

((listp (car exp)) ;exp = ((exp2)+..))
(cons (calcnumbers (car exp))(calcaux (cdr exp))))

((not (numberp (car exp))) ;exp = (a+ ...
(cons (car exp)(calcaux (cdr exp))))

(t (list (eval (inf-to-pre (reverse exp))] iexp= (3 + ...

I P T s e 2R S S E T L E it RS S el Sl
’

: Info is a function to provide information on commands in POLIS and other
; subjects closely related to POLIS.

?

:‘-t******#***#*******t******#t****#***#*****t****ttt#**####*#*#*t#**#****t***

(def info (nlambda (command)
(prog ()
(cond ((equal (car command) ‘addpol) ;ADDPOL
(print 'ADDPOL)(terpr)(terpr)
(print '(Performs an addition between two polynomials represented
by their coefficients))
(terpr)
(return '->))
((equal (car command) ‘all) ;ALL
(print 'ALL)(terpr)(terpr)
(info 'addpol)(terpr)
(info 'commands)(terpr)
(info 'divpol)(terpr)
(info 'evaluate)(terpr)
(info 'info)(terpr)
(info 'multpol)(terpr)
(info 'poles-to-coeffs)(terpr)
(info 'subpol)(terpr)
(info '?)(terpr)
(return '->))
((equal (car command) 'commands) ;COMMANDS
(print '"COMMANDS)(terpr)(terpr)
(print '(The following POLIS commands are available ))
(terpr)
(print '(addpol subpol multpol divpol modepol))
(terpr)
(print '(poles-to-coeffs evaluate help))
(terpr)
(return '-»))



75

((equal (car command) 'divpol) ;DIVPOL
(print 'DIVPOL)(terpr)(terpr)

(return '->))

((equal (car command) 'info) ;INFO
(print 'INFO)(terpr)(terpr)

(print '(Info is a function to provide information on POLIS

commands))

(terpr)

(print '(and subjects related to POLIS. The arguments available
in info))

(terpr)

(print '(are given by (info ?7)))

(terpr)

(return '->)) 3

({equal (car command) 'modepol) ;MODEPOL

(print 'MODEPOL)(terpr)(terpr)

(print '-»))

((equal (car command) 'multpol) ;MULTPOL

(print "MULTPOL)(terpr)(terpr)

(print '->))

((equal (car command) 'subpol) ;SUBPOL

(print 'SUBPOL)(terpr)(terpr)
(print '(Performs a subtraction between two polynomials
represented by their coefficients))

(terpr)
(return '->))
((equal (car command) '?) H S

(print '7)(terpr)(terpr)

(print '(Info can be obtained for the following arguments))
(terpr)

(print "(addpol subpol multpol divpol modepol))

(terpr)

(print '(poles-to-coeffs evaluate info ))

(terpr)

(print '(all commands polynomial 7))

(terpr)

(return '->))

(t ;UNKNOWN
(print (append '(There is no information available on)
(list (car command))))
(terpr)
(print '(To obtain additional information type (info 7) ))
(terpr)
(return '->)



APPEND!X B

Code for MACPOL

/+ Four input functions as interface to the user */
polsynthc (apol,bpol,aOpol,ampol) := block ([].

/+* Expand all polynomials to get them on termform x/
apol : expand(apol),
bpol : expand(bpol),
aOpol : expand(aOpol),
ampol : expand(ampol),

/* Check if all conditions are fullfilled otherwise */
[+ send error message #/

if is (apol = 0) then
error ( "A-polynomial is zero" ),
if is (bpol = 0) then
error ( "B-polynomial is zero" ),
if is (aOpol = 0) then
error ( "AO-polynomial is zero" ),
if is (ampol = 0) then
error ( "Am-polynomial is zero" ),
if is (hipow(apol,s) < hipow (bpol,s)) then
error ( "degree of Apol less then degree of Bpol"),
if is (hipow(expand(aOpol*ampol),s) < hipow (apols)) then
error ( "degree of AOsAm less then degree of Apol"),

axbyc(apol,bpol,aOpolsampol s) )$

polsynthd (apol,bpol,aOpol,ampol) := block ([],

/* Expand all polynomials to get them on termform x/
apol : expand(apol),
bpol : expand(bpol),
aOpol : expand(aOpol),
ampol : expand(ampol),

/+ Check if all conditions are fullfilled otherwise #/
/* send error message */
if is (apol = 0) then
error ( "A-polynomial is zero" )s
if is (bpol = 0) then
error ( "B-polynomial is zero” ),



7

if is (aOpol = 0) then
error ( "AO-polynomial is zero" ),
if is (ampol = 0) then
error ( "Am-polynomial is zero" ),
if is (hipow(apol,z) < hipow (bpol,z)) then
error ( "degree of Apol less then degree of Bpol"),
if is (hipow(expand(aOpol*ampol)z) < hipow (apolz)) then
error ( "degree of AO+Am less then degree of Apol"),

axbyc(apol,bpol,aOpolsampol,z} )$

polsynthbc (apol,bminuspol,bpluspol,aOpol,ampol) := block ([],

/* Expand all polynomials to get them on termform #/
apol : expand(apol),
bminuspol : expand(bminuspol),
bpluspol : expand(bpluspol),
aOpol : expand(aOpol),
ampol : expand(ampol),

/+ Check if all conditions are fullfilled otherwise =/
/* send error message x/
if is (apol = 0) then
error ( "A-polynomial is zero" ),
if is (bminuspol = 0) then
error ( "Bminus-polynomial is zero" ),
if is (bpluspol = 0) then
error ( "Bplus-polynomial is zero" ),
if is (aOpol = 0) then
error ( "AO-polynomial is zero" ),
if is (ampol = 0) then
error ( "Am-polynomial is zero" ),
if is (hipow(apol,s)
< hipow (expand(bminuspolsbpluspol),s)) then
error ( "degree of Apol less then degree of Bpol"”),
if is (hipow(expand(bpluspol*ampolsampol).s)
< hipow (apol,s)) then
error ( "degree of Bplus*AO+«Am
less then degree of Apol"),

axbyc(apol,bpluspolsbminuspol,bpluspolsaOpolsampol s) )$

pelsynthbd (apol,bminuspol,bpluspol,aOpol,ampol) := block ([],

/* Expand all polynomials to get them on termform =/
apol : expand(apol),
bpol : expand(bminuspol),
bpluspol : expand(bpluspol),
aOpol : expand(aOpol),
ampol : expand(ampol),



/* Check if all conditions are fullfilled otherwise &/
[+ send error message %/
if is (apol = 0) then
error ( "A-polynomial is zero" ),
if is (bminuspol = 0) then
error ( "Bminus-polynomial is zero" ),
if is (bpluspol = 0) then
error ( "Bplus-polynomial is zero" ),
if is (aOpol = 0) then
error ( "AO-polynomial is zero" ),
if is (ampol = 0) then
error ( "Am-polynomial is zero" ),
if is (hipow(apol,z)
< hipow (expand(bminuspol«bpluspol),z)} then
error ( "degree of Apol less then degree of Bpol"),
if is (hipow(expand(bpluspol*ampol+«ampol).z)
< hipow (apol,z)) then
error ( "degree of BplusxAO+Am
less then degree of Apol"),

axbyc(apol,bpluspol*bminuspol,bpluspol+aOpolsampol.z) }$
/* Main function #/

axbyc (apol,bpol,cpolbase) := block ([degx.degy inter xandy.isolution,
xpol,ypol],

/* Expand all polynomials to get them on term form x/
apol : expand (apol),
bpol : expand (bpol),
cpol : expand (cpol),

/* Check if all conditions are fullfilled otherwise */
/* send error message */
if is (apol = 0) then
error ( "A-polynomial is zero" ),
if is (bpol = 0) then
error ( "B-polynomial is zero" ),
if is (cpol = 0) then
error ( "C-polynomial is zero" ),
if is (hipow(apol,base) < hipow (bpolbase)) then
error ( "degree of Apol less then degree of Bpol"),
if is (hipow(cpol,base) < hipow (apolbase)) then
error ( "degree of Cpol less then degree of Apol"),

[+ Compute the degrees of X and Y polynomials */
degx : hipow(cpol,base) - hipow(apol,base),
degy : hipow(apol,base) - 1,



/* Create X and Y of the right degrees, observe that &/
/* X is monic */

xpol : createx(base, degx),

ypol : createy(base, degy),

[+ Inter is the left side of the equation; AX+BY=C &/
inter : expand(apol * xpol + bpol * ypol),

/* xandy contains all unknown xn and yn */
xandy : removelist(base , listofvars (xpol + ypol)),

/* equsys creates the system of equations which is solved #/
solution : first(solve (equsys(inter cpol,base)xandy )),

/* xpol and ypol are evaluated */
/* "solution" contains values to be applied before evaluation %/
return (ev ( [xpol,ypol], solution ))

)$

/* creates a polynomial of the base 'base’ with X-coefficients from =/
/* X0 (lowest coefficient) to Xdeg-1 (i.e. Xpol is monic) %/

createX(base,deg) := block ([xpolx.i],

if is (deg = 0) then
(xpol : 1)
else
(xpol : 1,
for i : deg-1 step -1 thru 0 do
(xpol:xpol * base + concat(x,i)) ),
return (expand(xpol)) )$

/* creates a polynomial of the base 'base' with Y-coefficients from =/
/* YO (lowest coefficient) to Ydeg */

createY(base,deg) := block ([ypol,y.i],
ypol : concat(y,deg),
for i :deg-1 step -1 thru 0 do
(ypol: ypol * base + concat(y.i)),
return (expand(ypol)) )$

79



/* creates an equation system from two polynomials of the base 'base’ =/

/+ and of the same degree by equaling the coefficients of the both =/
/* polynomials for each exponent %/

equsys{exp1,exp2,base) := block ([list],
list : [],
for i : hipow(expi,base) step -1 thru 0 do
(list:cons(coeff(exp1,base,i)=coeff(exp2,base,i), list)),
return(list) )$

/+ removes var from the list 'list’ if var is a member of list »/

removelist(var list) :=
if is (list = [] )
then [}
else if is ( first(list) = var )
then removelist(var rest(list))
else
cons(first(list) , removelist(var rest(list)))$

80



