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Sammanfattning

De nollstdllen som erhdlls vid samplingen av ett tidskontinuerligt
system behandlas, Satser ges som, om den tidskontinuerliga dver-
foringsfunktionen dr ki&nd och av dndlig ordning, ger uppskattningar
pa samplingsintervall, f8r vilka det tidsdiskreta systemet kommer
att ha en stabil invers., Fér fallet att bara Nyquistkurvan &r

kdnd ges nigra resultat.
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1. Introduction

It is well known that zeros cutside the unit circle in the
transfer function of a time discrete control system severly
limits its performance, since it has not a stable inverse,

As will be shown i chapter 2, if the time continuous transfer
function G(s) is of order n, the sampled transfer function
will in general have n-1 zeros, regardless of the number of
zeros in G(s). While the sampling maps the poles according to
p~ eph, where h is the sample interval, no such simple trans-
formation exists for the zeros. Further, it is shown in [1]
that if the system is sampled fast enough, every time continuous
system with a pole excess larger than 2 will give rise to a
time discrete transfer function with zeros outside the unit

circle.

The purpose of this paper is to give criteria which will
guarantee the time discrete transfer function to have a

stable inverse,

In chapter 2 we introduce some notations, and give a few basic
results. Most of these are well known. The main chapter is
chapter 3, where estimates of sample intervals are given,

such that the time discrete system will have a stable inverse.
Theorems 2-4 are more special, since they deal with different
variants of the special case G{0) = 0. Probably the method used

is of more importance than the theorems we prove. Finally, in
chapter 4, results are given which concerns only with the behavior

of the Nyquist curve.



2. Notation and basic facts

We let Nu(f) (Pu(f)} denote the number of zeros (poles) of the
function f outside the unit circle in the complex plane, while the
number of zeros (poles) inside or on the unit circle are denoted
by Ns(f) (Ps(f)). Finally, the zeros {poles) strictly inside the

unit circle are denoted by Nas(f) {Pas(f)).
The argument f will be omitted when no ambiguity can result.

Many results will be based on the following extension of the well~

known Rouch&'s theorem to meromorphic functions:

Theorem Let O be a simply connected domain containing a Jordan
contour Y. Let £ and g be meromorphic functions in @, analytic
on vy, £ # 0 on y and assume that ‘f(z)[ > [g(z)l z € y. If we
denote the number of zeros (poles) of f inside vy with N{£) (P(£))
we have N(f) — P{f) = N(ft+g) - P(f+g).

1 pE'{z) + Ag'(z)

Proof. Consider I(A) = == dz
e 2ni fi{z) + Ag{z
Y() g{z)

The argument principle gives that I(0) = N(f) - P{£f)}, and I(1) =
N(f+g) - P{f+g). Due to the assumptions, I(A) is a continuous
function of A; the argument principle implies that it is integer-

valued: hence it is constant. a

Next we state a few wellknown facts about the transformation

D: G(s) - H(z). As definition we take

H(z) =BG = (1 -z ) 2 1L (a(s) /s) (2.1)
Using the inversion formula for the Laplace transform and computing

the Z-transform we dget

Ytice esh

Yo b sh
y=ie z — €

1

H{z) = (1 - z_ ds (2.2)

G{s)
s

where ¥y is a real number greater than the real part of all poles
of G{s}/s. If G is sufficiently small at infinity, the integration
contour can be closed either to the left or to the right without
changing the value. The integral can the be computed using residue

calculus. Closing the integration contour to the right gives



1 § cl(log z + 2mik)/h]

k=—oo log 2z + 2wik (2.3)

H(z) = (L - 7

Next we consider the special case of G(s) beeing a rational,
strictly proper transfer function of order n, with a pole of order
n, in By i=1,40.,%. If G(s) is analytic at the origin, it can
he written in the form

e i A,
G(s) = s (gégl +3 -—~53—-§ ) (2.4)
i=1"4=1 {s.~ pi)
2 B
where Z n, = n. (2.1) gives us
H{z) = G(0) 2z~ + (1 - z 7Y £1402) (2.5)
where f£,, is defined by
ij 3-1
b Pib o asan It (7 - P (2.6)

£,.(z) = A,, v
13( ) ij (-1t
If G{s} has a pole at the origin, i. e. P = 0, formulas (2.4) =~
(2.5) will be valid if we delete the G{0)-term and replace ny

R + 1.
with nk 1

Since H(z) has a ni—tuple pole in z = epih, i =1,0ee,d, H(z)

must be a rational function of order n (provided that no pole-
zero-cancellation occors). It is easily seen from {2.5) and (2.6)
that H(z) will in general have n-l zeros. The only possible
exception from this is when

1) a pole-zero-cancellation occurs, or

ii)} the coefficient before the leading term in the nominator
vanishes. Since this coefficient is an analytic function of h,

this can be the case only for isolated h € R+, and it can be shown,
for example with Rouché's theorem, that in every neighbourhood of
such a h, H(z) will possess a zero with arbitrarily large medulus,

Therefore, this case lacks interest for us.

We conclude that for all h € E+, except possibly at isolated points,
the following criterion is valid: H(z) has the same number of
unstable poles and zeros, i. e. Nu = Pu' if and only if H(z) has
one more pole than zero inside or on the unit circle, i. e.

N +1=27,_.
s s

If the leading term in the nominator vanishes, this can be -.viewed
as an additional zero at infinity. With this interpretation, the

criterion will be valid for all h € R+.



Two special cases of transfer functions

For the future work we will need the time discrete transfer functions
corresponding to two special classes of time continuous transfer
functions. The first one concerns the n-tiple integrator:

n
h Bn(z)

Lemma 1. D s = —, n=20,1l,... {2.7)
nt (z-1})

“where Bn(z) ig defined by

Bo(z) = z“l
B (z) = b® 271 + b7 2 L.+ bt n=1,2 (2.8)
5 1 A e " 1 Z2rees .
and
n K k=% n {n+l
b =L ()77 2 (k_g) k= 1,00a,n
2=1

outline of proof (details are given in [1]): From the preceding and

from the mapping of the poles it follows that H{z) = D s " is on the form

n-1
A

b + ... ¥ b
I

H(z) =
(z-1)"
Using a step function as input, we get the output y(t) = tn/nl t > 0.

Identification gives the desired result, o

Remark. Comparing with (2.4) - (2.6) we get

n 1

ES--’—'(}.‘-‘ZH 1

y (/n!) (-z d/an” (z -~ 1) (2.9)

which can be rewritten as a recursion formula for Bn(z). o

Tt can be shown, for example with the recursion formula for b;
(2.10)Hin [1], that b2~k+1 = b?. Hence, if z = N is a zero of Bn(z),
z =z is also a zero of Bn(z). We claim that the zeros of Bn(z)
are simple and lie on the negative real axis, and therefore Bn(z)
will have zeros outside the unit ecircle if n > 3. Since BZ(Z) =z + 1
this is obviously true for n = 2, and to prove the general case

we assume that Bn_l(z) has its n-2 zeros at the negative real

numbers Xy < X, < 44 < X 9 < 0. Comparison with (2.9} gives that
for all n Bn(z) has the same zeros as Cn(z) = (=~z d/dz)n {z - l)“l,
except for the zero in z = 0. Rolles theorem applied to Cn_l(z)

now gives us that C;_l(z), and hence Bn(z), has a zero in each of

the real intervals }xk,x [, k=1;.0.,n=-3, and in ]xnuz,O[.

k+1
Since Bo(z) and Bl(z) has no zeros, the statement is proved,



Corollary. D = j? e I A z ) ERE {(2.10)

(s - p)3

where 3 = 1,2,... and a

Proof. D s/{s - p)j = {(1 - 21z 1 s - p)"j} (z) =

[}
©

-ty @ = -2 hi L"ls"j}(g)
Since we have

1,-1 o ~{3-1)

{3 L_ls_j} (z) = (L-2 ) B (z)

lemma 1 gives the desired result, o

Remark 1. We note that the zeros are z = 1 and the zeros of
-ph . . —

Bj—l(z e P ). If Re p < 0, the latter j=-2 zeros will be inside

the unit circle, provided h is sufficiently large. In

Remark 2. Comparing with {(2.4) - (2.6) we get

£f,.(z) =A,, (1L - zml)”1 D S =
13 1] _ 3
-1 (s - py)
hj—l a, Z Bj_l(z/ai)

=25 G '

3 :} . (Z"‘ a.)j

i

where ai = epih. Hence fij(z) has its zeros at 2z = 0 and at the
zeros of Bj_l(z e_pih), which, if h is large enough, will be inside

the unit circle. (|



3. Theorems on G(s) known and of finite

order

We are now in position to prove several
us with estimates of intervals in which
the time discrete transfer function will

a practical viewpoint, the first one is

theorems which will provide
h can be chosen so that
have a stable inverse., From

probably the most interesting.

Theorem 1. Let G{s) be a strictly proper, asymptotically stable
transfer function of order n with G{0) % 0, with a pole of order

n, in Py i=1,.4.,% Assume that G{s) is on the form (2.4) and define

A = max IAij/G(O)l
1,3
¢ = ~ max Re P, {3.1)
i
m = max n,
: i
i
Then H(z) will have a stable invers if
-ch
m-1 e 1
max {i,h ) S < (3.2)
(L -e )

Ifm 1 {(i. e. only simple poles) (3.2) can be rewritten as

h > In(2An + 1}/0. {3.3)

The left-hand function in (3.2) is a decreasing function of h if
h > (m-1)/0; hence there exists an hO such that (3.2} is fulfilled

for h > h .
o

In order to prove this theorem we first need a lemma:

Lemma 2., Let fi.(z) be defined by (2.6). If IZI = 1 we have
[A"l hj—l eRe pih
|fi:(z)| S » Re pih.j
J (1 - e Pi )J
Proof. Let g,. be defined by
oo -1 pih, -1 f
9;4(2) = (-z d/az) (z -~ e"47)
We have to prove that
. Re paih, j
lo;5() ] = G-/ - e PiYYY
If 7 > 1 and Izl = 1 we have E
= —_ —_ 1 = L ]
95 = |2 /ae oy | = Jallagy | = logy |
Hence 1
lg..] = [a. 37D - |(—1)3 (ol (3= 1)1
ij il (z - eplh)j (1 eRe pih)j
which proves the lemma. o



Proof of the theorem. We can without restriction assume that

G(0) = 1. If so, (2.5) gives us

H(z) = 2 % + (1L - 2 1)2L £, (2) (2.5")
iy H
where fij is defined in (2.6). If the first term dominates absolutely

on the unit circle, Rouché's theorem will give us that Naé{H{z}} -
1 -1

PaS{H(z)} = Nas(z ) - Pas(z } = Q -~ 1 = ~1. The criterion in
chapter 2 will then give us that NU{H(Z)} = 0 since H{z) due to
assumptions is asymptotically stable. For lz[ = 1 lemma 2 and
elementary inequalities give the estimation
_ _ . Re pih

(1 - =z l)zzfi.] <2 zla,.| v ! TR

J ] (1-~e Pi )J

- - -ch
< 2ma max(1,h™ ) /1 - 7T (3.4)

Since the first term in (2.5') dominating absolutely on the unit
circle is the same as the above estimated guantity beeing < 1,

{3.2) follows.

The derivation of (3.3) from {(3.2) is elementary. Finally, if we

-1 =g
e

observe that h b has a negative derivative forh> (m~1)/c,

the last statement follows immediately. n]

Probably the qualitative part of the theorem is the most important:
All time continuous transfer functions satisfying the conditions
will giQe rise to a time-discrete transfer function which has a
stable inverse provided it is sampled slowly enough. This qualitative

part, in the case of simple poles, was proved in [1].

1 -8
(s + 2Y(s + 3)
inverse in the time continuous case. Calculation of H{z) shows

Example 1. Consider G(s} = ; which has an unstable
that H{z) has a stable inverse if h > 1.2485, (3.3) gives us the

estimation h > 1.8055, n

The following example shows that when two poles approaches each
other to form a double pole in the limit, theorem 1 can give very

weak estimations.



1+ €

. = >
Example 2. Consider GE(S) NS e >0
Clearly

1L
G (8) > 1 yy7 T G, (s)

Theoxem 1 gives that DG_ has a stable inverse if h > Inl4(l + a_l) + 11,
which grows towards infig%ty when £ = 0. However, mGO has a stable

inverse if max(1,h) -nE——mE-E < =, i. e. h > 2,4665, o

f1-e™

-

In cases like this, it might be possible to use the technique

of the proof directly.

Remark 1. With poles on the imaginary axis, i, e. ¢ = 0, it is in
general not true that the sampled system will have a stable inverse
just if the sample interval is large enough. A simple counter
example is G(s) = s—3, where H{z) has a zero -2-/3 =~ -3,732, See

also examples 4 and 5 in [11]. o

Remark 2., If we have one or more unstable poles, different things
can happen, Say for example p; = 1l is a simple, unstable pole,
while all the other poles are asymptotically stable. From (2.4) -
(2.6) it follows that £, = Ay, PLR/( _ GP1Ry Ay, when h > =,
For large h, H{z) will then come arbitrarily close to G{(0) z—l +
1- z"l)All. if [Alll < |G(0)|/2 the first term will dominate
absolutely on the unit circle, and hence H{z) must have an unstable
zero, If lAll[ < ]G(O)I/z it is not possible to use this technique.

(Direct calculation shows us that H(z) will asymptotically have

an unstable zero if and only if [Alll < |G(0)|/2.) n]

If G(0) = 0 the situation is slightly more complicated, which will
be shown by the complexity of the following theorems. It follows
from (2.5) that H{z) will always have a zero at z = 1, In general,
it is not possible to get the other zeros inside the unit circle
just by choosing h *large enough", However, if G(s) possesses a
real pole, closer to the imaginary axis than all the rest, the
conclusion will still hold. More precisely, we have the following

thecrem:



- 10 ~

Theorem 2. Let G{(s) be a strictly proper, asymptotically stable
transfer function of finite order with G{0) = 0., We assume that

Py = ~0 is a p-tiple pole, and

Re Py i -G 1= 2,00e,8

-If Re P, = -0 for some k > 1 we assume that these poles has
multiplicity < p. Under these circumstances, H{z) will have a stable

inverse provided h is large enough.

For G(s) having only single poles we give this theorem in a slightly

stronger version:

Theorem 2'. Let G{s) be as in theorem 2, of order n, and with single

poles. Define

0 = -~ max Re p,
. i
1=2,...,n
A = max |res G(s)/s] / lres G(s)/s|
i=2,.00,n  Ti Py
Then H{z) will have a stable inverse if
-ch
e(ou - o)h 1 =-e > (n - 1)A (3.5)
-ch
1l + e

The left-hand function is an increasing function of h.

Proof theorem 2. If G(s) is on the form (2.4) H(z) is given by (2.5):
-1
H{z) = {1 -~ =z )EEfij(z)

where fij is defined in (2.6). It follows from {(2.6) and our assumptions
that flp will dominate absolutely on [z| = 1 for sufficiently large h.
It was shown in remark 2 after the corollary to lemma 1 that for h
sufficiently large, fij has all its zeros inside the unit circle.
Rouché&'s theorem now gives that NaS{H(z)} - PaS{H(z)} =

Nas{flp} - Paé{flp} = =1, Since the factor (1 - z_l) does not affect

Nﬁ{H(z)} - Pﬁ{H(z)} the theorem is proved. u]
The proof of theorem 2' is similar:

Proof theorem 2'. With obvious notation we hgve

. - pih
H(z) = (1- 2 )3E,(2) = (1-2 )5 h, Se—s
i 1, _ pPi
if
n .
£ ] = |§fil‘ g (3.6)

when |z| =1 N {i(z)} will be = 0.
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Now, if Izl =1

6] > Ia| — s

£ > |a,| =—e————
1l = 1% T ok

and

e, a, | —S
f.] < max A ——
UL A I

{3.6) will clearly be fulfilled if

e-ch e—ah
(A, ] ~—= > (n ~ 1} max 2,1 -
LR K=2,.00,m 5 1 -0
which is the same as (3.5). o

If G(0) = 0 and the conditions in theorem 2 are not fulfilled,

H({z) may have unstable zeros for arbitrarily large h. An example

of this is given in example 3. We will give two theorenms concerning
this phenomena. If G{s) has a complex-conjugated pair of poles

which are closer to the imaginary axis than the other poles,

theorem 3 will give intervals in which the sample interval can

be chosen go that H(z) will have a stable inverse. Theorem 4,

which is given more sketchier, is more general, and deals with

the case of G(s) having several poles with the same real part,

one complex-conjugated pole pair of these having larger multiplicity

than the rest.

Theorem 3. Let G(s) be an asymptotically stable, strictly proper
transfer function on the form (2.4) with G{0) = 0, and of order

n > 3, Assume that

pl = —g 4+ i

Pz = =0 - 1w

are simple poles, where

-o > Re p. i= 3700448 and
w > 0

Define

A = max lAijl/lAll‘
¢ = arg All
¢ = — max Re pi
m = max ng

where all max is to be taken over i = 3,..4,%.
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Under these circumstances H{z) will have a stable inverse if

(6 = oyh (1 + e %2

(1 - e-ah)m

¥or large h, the right hand function is monotonically decreasing, and

h n -

|cos (uh +8) ] > |cos¢| e 7" + 2% (3.7)

2 A max(l,hmﬁl) e

approaches 0 asymptotically.

Proof. Defing

A

. _11 . _12 )

. Py 87 F

il * —Alz this is not a strictly proper transfer function. It

can, however, be an additive part of a strictly proper transfer

id _ aoid
' A12 = pe .

Gl(s) =g

(If 2

function,) Since G.(s) is real, we can write All = pe

1 ¢
Simple computations give us ~oh
-gh cos{wh + ¢) z - e cosg

-1
DG, =H._(2) ={1~2 ) 2Zpe (3.8)
1 1 (z ~ ePlh) (z - ePZh)
With the notation above, in (2.4) and (2.6), we have
o A -Aij
G(s) = Gl(s) +'Z‘ Z _— -
. i=3 3=1 (s - p,)°’
{2.5) gives us i
-1
H(z) = Hl(z) + {1 -2 )EZfij(z)
Now we use ah estimation very similar to {3.4):
m=1 e_ah
IZZfi.[ < (n = 2) max [Ai'l max{l,h ) pupe: v
J 123, 000,0 OF (1 - e %
{3.8) now gives us that if (3.7) is fulfilled the term (1 - z_l)—l Hl(z)
will dominate absoclutely in (1 - z'_l)_l H(z)} on the unit circle.
-1 -1

Since (3.7) also implies that {1 - z ) Hl(z) has its only zero

inside the unit circle, the theorem is proved. R

Consider the following example from [1]!

Example 3. Let G{s) = 17577 1)7 i 1l(s + 2)

The zeros of H(z) are z = 1 and

e_2h(sin h + cos h) - e“h . -1

Z, = o
2 e—h + sin h - cos h I+ eh(sin h - cos h)

Fig 1 shows z, as a function of h.
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i
22
|
O->///frf——- *\k‘ 1 Y 1
-1 .
- : -
0 5 10 h
"Fig l. The zero z..

2

We list some of the first intervals in which h can be chosen so H(z)

will have a stable inverse, together with the estimations given by (3.7):

Exact intervals Intervals given by (3.7)

0 - 3,926623 1.323840 - 3,897698
3.954452 ~ 7,067378 3.954629 ~ 7,067375
7.068583 -~ 10,210176 7.069789 - 10.210123
10.210207 - 10.21023) - o

Next we prove the following, purely qualitative, extension of thecrem 3:

Theorem 4. Let G{s} be a strictly proper, asymptotically stable
transfer function on the form (2.4) with G(0) = 0, and of order
n > 3, Assume that

Re P; < =g i=1,...s2

where equality holds for the first 2k+1 poles, i. e.

p2m—l,2m = -0 * lw s ow > 0, m= 1,...,k
Pok+1. = 70
Further, we assume that n, > 1 and

1

n, > nj 3= 3;040,2k+1
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Under these circumstances, if h is large enough, H{z) will have a
stable inverse, except for h in neighbourhoods of the points

: + . . R
{h €1 cos(mlh + 6) = 0}, where ¢ = arg Alnl' When h ig increasing

these neighbourhoods become arbitrarily small,

Remark. It is not a restriction to assume that G(s) has a real pole

Pops1 = ~g, because if it has not, it can be represented in (2.4)
. : = 0. O
as a single pole with A2k+l,l 0]
Proof. For typographical reasons, we define n' = ny - 1= n, - 1 >0,

Let the part of H(z) which corresponds to A and A be denoted
lnl 2nl

by Hl(z). We have to show that for suitable h

-1,~1

i)y (L -2 7 Hl(z} dominates absolutely over (1 - z—l)

(H(z) - H (2))
on the unit circle.
ii) Hl(z) has only stable zeros.

Since G(s) is real, we can write

id ~i¢
A = pe ', A = pe
1nj 2ny
{2.10) and some simple calculations give us
n'l
-1,-1 h Z -n'ch
(L ==z 7) " H(2) = /57~ p¢ .

ei(n'wlh+¢)(Z_epzh)nan'Eze(o-iml}ﬁl + e—i{n'mlh+¢)(z—eplh)nan![ze(d+im1)h}

2 - —20h
(z - 2e oh cos wih » z + e 20 ]nl
t
Since bi = 1, the nominator on the last line will for large h come

arbitrarily close to

2 220" PITHN os b + ¢

If h is sufficiently large, and selected so that the cosine-term is

not too small, it will follow that Hl(z) has only stable zeros. Finally,
the statement i) is proved using the same type of estimations as in

the preceding proofs. 1]

Time delays
One of the pleasant properties of time discrete systems is that

given a time continuous transfer function with a time delay, i. e.

a system of infinite order, it will, when sampled, become a system

of finite order. It is possible to use the technique developed in this
chapter to show that if G(0) #* 0 it is also possible to get a system
with a stable inverse, which can never be the case in the time continuous
case. For G(s) beeing a raticnal function times an exponential, with

only single poles, we have the following theorem:
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Theorem 5. Let G{s) = e_ST

Gl(s), where Gl(s) is a rational,
strictly proper, asymptotically stable transfer function with
G{0) # 0. We write G(s) on the form

n A,
N

i=1 Py
and define

A = max lAie"PiT[/]G(O)[
i
Then H{z) will have a stable inverse if

h > max{t,1n{(2an + 1)/c}
Remark. Note that the condition is asymptotically linear in T. o

Proof, We use the representation (2.2) of the time discrete
transfer function. If h > T the integration contour can be closed
to the left, and the integral evaluated using residue calculus.

Doing so, we get

- - pith - )
H(z)=c;(0)zl+(1—zl)ZA,E
g - epih
If we apply theorem 1 with Ail replaced by Aie-PiT the theorem
follows. o

Remark. It is obviously possible to prove similar theorems for

the multiple pole case. =
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4. Nyquist curve coriented methods

Next we consider the situation of only G(iw),w € R, beeing known,
and when no assumption of for example finite order of the system can
be made., Since G(s) is meromorphic, the knowledge of G(iw) implies
that G{s},s € €, is completely determined (theoretically!). We use
the representation (2.2) of H{z) and assume that G(s) is so small at
infinity in the half plane Im s < y that the integration contour
can be closed to the left. If G(s) has only finitely many poles,
evaluation of the integral using residue calculus will give us a
rational time discrete transfer function. We can then use the
methods of chapter 3, and the problem will be solved., Now the
Bolzano-Weierstrass' theorem implies that a function which is
bounded at infinity will have only finitely many poles, and is
therefore rational. This means that every strictly proper transfer
function will satisfy the condition above. Further, if G(s) is a
meromorphic function such that the complex plane can be divided

into two parts, G(s) beeing bounded at infinity in one and analytic
in the other, the conclusion of finitely many poles will still hold.
Therefore the situation with G(s) beeing a strictly proper transfer
function times an exponential (i. e. a time delay) is also solved,

provided eShG(s) ig small at infinity in the sense made precise above.

For the case of the Nyquist curve beeing strictly below the real

axis, we have the following theorem:

Theorem 6. Let G(s) be a strictly proper transfer function with
Im G(iw) < 0, w > 0. Then
i) If G(0) > O then N ( Nﬁ{H(z)} ) =P
ii) T£ G(0) < 0 then N =P =~ 1

u u
iii) If G(0) = 0 and G'(0) + 0 then Nu = Pu -1

I

u

Further, if G({s) is an asymptotically stable transfer function,

then N = 0.
u

Proof. For the proof we are going to use the argument principle
to compute Nas{zH(z)} - Paé{zH(z)}. (2.3) gives us
zH(z) = (z - 1)F(z), 2z * 1, where

Flz) = E Gl (log z + 27ik)/hl

: 1
log z + 2wik z *

=e—-00
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First we assume G{0) % 0., We evaluate zH(z) at the unit circle,

ig

z =e ', where -1 < ¢ <7

Gli(é + 2mk)/hl

- (it
zH{z) = (e 1) ) O b * 0
Since G(-iw)} = G(iw} we have
g < arg F(el¢) < %; b ¥ 0
and, because
g < arg (el¢ - 1) < %; 9 * 0

we deduce that the image of the unit circle under the mapping given
by zH(z) avoids the negative real axis, except possibly at the point
corresponding to ¢ = 0, i. e, H(1) = G(0). If G{0} > 0 the image
curve cannot encircle the origin, and if G{0) < 0 it will do so
exactly once. To prove that it will encircle the origin in a
positive direction, we have to prove that it is "going down" when

it passes the negative real axis. If d/dz {=zH(z)}{1) + 0, this
followe immediately from conformallity. Otherwise, we can always
make a suitable perturbation of the contour so that the conclusion

will still be valid.

If G(0) = 0 and G'(0) # 0, then F(z) is analytic and # 0 on all of
the unit circle. The condition Im G(iw) < 0, w > 0, implies that
the image of the unit circle under the mapping given by F{z) lies

strictly to the left of the origin.

Finally, since Nu > 0, case ii and 1ii of the theorem implies that

G(s) is unstable, which proves the final statement. o

Remark 1. If the leading term in the nominator of H(z) vanishes
for some h, it should be interpreted as an additional zero at infinity

in order for the theorem to be fully correct. Compare chapter 2. in]

Remark 2. If G(iw) > 0, w > 0, it is possible to prove a theorem
similar to theorem 6 just by exchanging certain inegualities.

It is however a better idea to consider -G(s}). O
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The conditions on G in theorem 6 are very strong, and will not be
satisfied by many systems in the real world, It ig a natural
question to ask if the conditions can be weakened slightly, for
example if Im G(iw) < 0 when 0 < w < @, is there an ho such that

h > hO will imply that the sampled system has a stable inverse? The
following example will show that without further conditions, there

is no such ho.

Before giving the example we prove the following simple lemma:

1

Iemma 3. Let G(s) = 5 0 < <1
and s * 2§mos * wo
fC o (w) = Re [G(iw)/iw] w € {0}
F

Q
Then
. 1

-+ = - —Ca
i) fc,mo(_wo) 525;3 -+ r & 04
ii) £ (8) <0 w € B0}
Crwo

iii) f;rmo(m} + 0, T >0+, w#* iwo

Proof. We have

2CLL'IO
f (m) = -
wao (w 2 - w2)2 + 4C2m 2m2
o o
From this the lemma follows immediately, o
Examgle 4, Let
G{s) = L - 5 = 5 =
s + 2;ys + 1 S5 4 20508 + ug

. 2
2(Col, —~ . Ti)s +ing = 1 -
(32 + 298 4+ l)(s2 + 205058 F moz)

We assume that mo >> 1 and cl > ;2 > 0 are "small", It is clear from
theorem 1 that for Cl and ;2 fixed, it is possible to find a ho such
that h > h0 implies that DG = H(z) has a stable inverse, For the

parameter values mo = 10, ¢ 0.1, = (.05, the argument curve

17 %2
and the Nyguist curve are shown in fig 2.
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It is obvious that there exists a Lul (ﬁﬂwo) such that

-7 < arg G{iw) < 0 when 0 < » < Wy .

We are going to show that for every hO there isanh > ho and a
C2 so small that H(z) has an unstable zero. (In theorem 1, this
corresponds to letting o - 0+.)

o
Define ¥(z) = (1 = z ¥)"T H{z) = 2 i G[(izg i i ;;;E)/h]
If the leading term in the nominator of H(z) does not vanish,

the following is valid: H{z) has a stable inverse if and only if
F(z) has the same number of poles and zeros inside the contour
shown in fig 3, where r > 0 is selected so small that the contour
avoids all poles and zeros inside the unit circle.

‘Imz

iig 3. The contour uééd_in example 4,

If the leading term in the nominator vanishes for some h,

we showed in chapter 2 that in a neighbourhood of this h, H(z) has
a zero of arbitrarily large modulus, so this case will not rupture
our results. Now we select a h > ho such that (Zko + 1}w/h = W
for some integer ko. If so, {¢ + 27k)/h # w, for all integers k

if ¢ is not an odd integer multiple of T.

We let the small "semicircle" with radius r be parametrized by

z =1 - rel¢, where - g + ¢O <20 < g - ¢O. In a neighbourhocod of

z =1 F(z) can be written
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_ G(0) + rKj(z) -i¢

F(z) e + K3(z)

2
-r + r Kz(z)

. where Kk(z) k =1,2,3 are bounded, Letting r + 0, the image of the
small "semicircle" will come clese to a semicircle which lie in the

Jeft half plane, except possibly at its ends.

Next we examine the curve F(ele), 0 <6 <2m~-6_. Let £ and
o o Clrl

£ be as in lemma 3. Then we have
Corlig

© ®
Re F(eie) = % ( 7 fC l[g_iggﬂﬁ) - ) f [g“iﬁgﬂﬁ )

k=—oo C17 k= C1r¥
Lemma 3 glves ug that for Cl fixed, we can select a Cz so small that
Re F{e ) < 0, except in a neighbourhood of 6 = 7, where it will
be positive. Since the image curve is symmetric with respect to
the real axis it will encircle the origin exactly once. Hence H(z)

has a zero outside the unit circle. o
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