MEDIUM LEVEL PROGRAMMING LANGUAGES
FOR MICRO PROCESSORS

JAN-ERIC ASPERNAS

RE -177 May 1976
Department of Automatic Control
Lund Institute of Technology

MEDIUM LEVEL PROGRAMMING LANGUAGES

FPOR MICRO PROCESSORS.

Author Jan-Eric Aspernis
Supervisors Leif Andersson

Johan Wieslander

ABSTRACT,

This report of master thesis describes two programming
languages for micro processors namely:
MLP for Intel B008 developed at C.B.R.L., Great Britain and
HILP 80 for Intel 8080 developed as master thesis at Tund
Institute of Technology.
The compilers generate assembly code and are intended to be
implemented on a host computer. The compilers are based on
the macro processor STAGE 2, and need about 15 K of core
on a PDP-15, The report is written in two parts, whieh could

be read separately.

Dettes examensarbete beskriver itvd programmeringssprik
f6r mikro-processorer némligens
MLP fér Intel 8008 utvecklat vid C.E.R.L., Great Britain och
HILP 80 for Intel 8080 utvecklat som ett examensarbete vid
Lunds Tekniska Hogskola.
Kompilatorerna genererar assembler kod och &r avsedda att
implementeras pd en vird-dator. Kompilatorerna Br baserade
pé makro processorn STAGE 2, och kriver ungefédr 15 K minne
P& en PDP-15. Rapporten Br skriven i tvd delar, vilka kan

ldsas separatb.

THE MEDIUM LEVEL PROGRAMMING LANGUAGE MLP

FOR THE MICRO PROCESSOR INTEL 8008.

Author Jan-Eric Aspernés
Supervisors Leif Andersson

JdJohan Wieslander

CONTENTS.

IHTRODUCT IO

THE WORK WITH MLp AT LTH

Be1.2 DATA DECLARATIONS

Betl.3 WDIRECT REGISTER CONTROL
B.1.4 1L0OOPS

B.1.5 SUBROUTINES WITH ARCGUMENTS
6 OTHER CHANGES OF MLP

MLP FOR ITHTEL 8008

B.2,1 GENERAL FORMAT

B.2,2 ABBREVATIONS

B.,2.3 DATA DECLARATIONS

B,2.4 REGISTER CONITROL

B.2.5 INDIRECT REGISTER CONTROIL

B.2.6 ASSIGHMENTS FOR BXPRESSIONS

B.2.8 LOOPS

B.2.9 LABLES, BRAWCHES, SUBROUTINE DECLARATIONS
B.2.10 SUBROUTINE CALLS

B.2.11 OUHER ITHRTRUCTIONS IN MLP

B.2,12 COBDITIONS IH MLP

B.2.14 HARDWARE REGISTER USAGE
B.2.15 LIST OF LANGUAGK WORDS

B.2.16 DETAILED SYHTAX

NDIX ¢ TESTPROGRAM TN MLP

A, INTRODUCTION. 1.

This report describes a medium level language for
the micro computer Intel 8008. The language lg called
WILP and is develoned at C,E.R.L Great Britsin.
Thisg report ig based on a part of master thesis
at Imnd Ingtitute of Technology (LTH), Sweden, The aim
of the work at LTH was to btest MLP and make 1t fit a
POP=15, which ig the host machine used at LTH. The aim
was algo to try to improve MLP and increasse the efficiency
of the generated assembly code,

The next page shows the way from MLP source program

to a loaded Intel 8008 Computer.

=

)
i

}
et
sy

Chapter B.,1 contains a discussgion of the work at
The semantics of MLP is described in part B.2.
Appendix C contains an MLP program, which shows the

generated code from some of the MLP statements.

MLP source prograM.sscoesse

|

TemplateBeccosocooo

Intel Asgembly Code...
POP-15
Macro

Assembler

Binary file.,.ceeoesees

PDP=15
TLoader

Paper tape with
Intel absolute codgss.

Intel 8008
W i + h
loader

fig 1. From MLP +o Intel 8008,

The macro asgsmbler holds
the macro definitions for
the mnemonic symbols,

The loader holds the
Subroutine libwary.

Boelo1,

Be1.2e

B.1 THE WORK WITH MLP AT LTH, 3

GENERAL

The original MLP from C.E.R.L used PROM banks for
the data. As the usage of RAM banks for the data would
inerease the efficiency of the bank address manipulation,
the whole part of the data declaration has been rewritten.

For optimization of the bank address setting during
the translation, MLP has an internal wvariable LASTH, which
holds the bank value from the last memory reference., When
a new memory reference is made, HMLP could check LASTH against
the bank address of the wvariable, and if necessary generate
a "LHI instruetion?. Because of this technique MLP got the

opportunity to test for undeclared variables.

DATA DECLARATIONS.

A1]1 the variables used must be declared and their
bank addresses specified. The above mentioned optimization
could be further increased if all the variables are
declared in the same bank. In this case LASTH will not
be destroyed after a label, as when the jump to the label
takes place, the last bank address must be equal to the
bank address at the label. For this purpose a SAME BARK
statement should be given and could be used provided that, when
8ll statements generating labels are reached, the H register
holds +the desired bank address. Used subroutines must not

change the H register when SAME BANK is valid.

Be1.3,

B.1.4.

Bc1050

INDIRECT REGISTER CONTROL. ' 4.

Experience has shown that many applications regquire

very much address manipulation. The indirect register
control allows the user to work with addresses in an
efficient way. This extension of the original MLP has

proved to be very useful.

LOOPS

The programming language PASCAL has given the
idea to the three loops implemented.

SUBROUTINES WITH ARGUMENTS,

The usage of arguments gives a technique to give
entry values to registers before calling a subroutine.
The arguments are register operations, which are carried
out before the subroutine is called. The subroutine
conld be called with any number of arguments.,

OTHER CHANGES OF MLP.

In some s%atements of the original MLP the
optimization has been improved, why the efficiency of
the generated code has increased,

Bvery digit in the source program is converted
to octal by MLP, This is because of the PDP-15 assembler,

Some minor errors in the original NLP templates

have also been corrected.

B,2., M L P PFCR INTEL 8008. 5.

B.2.1 GENERAL FOIIIAT.

The general format of the language is: |

Declarations

Statements

Subroutine declarabtions
BIWIEH

¥ain rules Tor statements in MLP:

1 Only one MLP statement is allowed per line, except
for IT statements,

2 Leading tabg and spaces are allowed.
MILP words ghould be separated with one space.
Logical operators,+,=,= should not be separated
by spaces.

3 Two types of comments may be used:
a) comment string
b) statement;comment string

4 Wames may consist of up o six characters,

starting with a letter.

T

Empty lines may be used.

6 Octal digits are defined by starting with ¢g
7 Integers in MLP should be within the ranges:

-128 %o 255 or -@20¢ to ¢377.
Hotes Integers »=128 will set the sign bit,
and therefore be egual to a negative number,

Be2,2 ABBREVATTIONS,

e, = registers (A,B,0,D,B,H,1, or M)
= numeric constant
d = identifier
a. = address reference: id, id(id), id(zc)
rac = either of », a, ¢
ra = either of ©, a
me = machine code’
M = memory location addressed by H and L

v

N

DATA DECLARATIONS,

Variables used in the program must be declared and

their bank addresse
BAWK <constant>
WORDS (list of id ox

The user may define addre
or id(c)Te freely in the
consecutively. i

The first
doeg not declare a gstart

GLOBAL dist of id se
If you make

the loader program has

id(e

referenc
to know these

y gpecifieds

) separated by commas>

esses for the words by setting idle
list. The words are defined

word is defined ¢/ if the user
address.

ated by commas)

es to names in other programs,

names ag global,

otherwise the loader may not be able to set up & common
address for these nanmes,
SANE DARK

This statement is used when all the words are
specified in the same bank.
BATK IS <Jconstanty

Thisg = must be glven if SAME BAVK is used,

atemend
g

"
and generate

Totes Array index runs
Only one=dimen

a IHI dnstruction.

from ¢ to i-1.
gsional arrays arve allowed.

No variasbles may be preset.

Datadeclarations of sgeparately compniled

subroutines.

What is said
In special cases
program and the
the data declarabion
Words gstatement as above
SAME BAWK

above about main programg is valid.
when the H-reg is
subroutine doeg not change the Herveg,
cshonld be:

get in the main

Twads v, with the contensts of rgac@

REG r=ra+l

&

Loads © with the conbents of ra and increments v,
REG r=ra-1

Loads » with the contents of ra and decrements =,

oads a memory locabion with the contents of ».

Loads the address of a into H and 1.
MASK <Lexpressiony WITH rac

The expression ig evaluated and loaded into A-reg.,
which then is masked with »rac.

B.2.5 IUDIRECT REGISTER CONTROL. (r # M)

REC rlac
REG »Tatc
REG rfa-c
v will be loaded with an address

?3‘.‘ 1 =1 _ &

P

H
™
&
I

o
=
o]
=
=g

1 2
REG ?r?m1ﬁzoe
The address specified by Ty r1+17 1m1 will be loaded

The contents specified by the address sgpecified by
T T4ty ro=1 will be loaded into »
27 T27 Y T 1°

PUSH ?r+1ﬁlis% of rc zeparsted by comma
pUsH fr-1=list of rc separated by comma

Takes each element in the list and loads them into
the address aspecified by r and then increments owx
decrenents .

4
POP list of 7= tr +9

POP 1list of o= Tw -9

Mecrements or increments r, and then loads r from the
.

address specified by r,. This is carried out foir each

£

element in the list,

POR BXVRESSTONS.

SET ra=expression
ra=cxpresglion

The expression may start with an IEPUT-gtatement owm
an unconditional CALL-statement.

Allowed overators in expressions:

E

. OR
o AR

. AHD
. Rotate Ingstruction in machine code

Ho brackets are allowed in empressionsg.

IF condition THE

e
THT T
J‘;i,{.‘a\}_hﬁ

statements on separate lines

on separate lines

o=

gtatements on separate lines
END

IP condition THEN statement BLSE statement END
I condition THEN stabtement END

B.2.8 LOOPS.

arsbe lines

%
f\'
s

> @
s
o

=]
ok
0
©
=
m
K
8
9

aeparate lines
BNDWH

LOOP

statements on separate line
BXIT TF condition

statements on sevarate line
EEDLOOY

%
EA

to]

[0

9209

B.2.10

2)

LABLES, BRANCHES, SUBROUTINE DECLARATIONS.

Label ratatenent
Label:
The label 1s set at the beginning of a line,

GOP0O label
Unconditional branch to a label.

GOTO label IR condition
Conditional branch to a label.

PROC label
Subroutine heading

EWNDPROC
Subroutine end.

g

RETURK
{

nmeconditional exit g sunbroutine.

bty
i

]

=]

RETURN IF condition
Conditional exit from a subroutine.

SUBROUTINE CALLS.

With Arguments:

Arguments arve in fact register operations, which
are carried out before calling the subroutine.
List of allowed arguments:

REG rerac
REG r=ra-i
REG r?a@

REG fr=rc
7RG Trii=rc
REG r=Tr
REG r=fri

e

Wote: In this version of MLP "REG" must be omitted.

CALL labeldd

igt 0? argunentsy
Unconditio

al branch to a subroutine

CALL labelddist of argumentsy IF condition
Conditional branch to a subroutine.

With expresgion.

The expression is first evaluated and then loaded
into the A-reg.

CALL label(expression)
Unconditional branch to a subroutine.

CALL label (expression) IF condition
Conditional branch to a subroutine,

¢) Without expression or arguments. 10.

CALL label

Unconditional branch to sibroutine,

o

CALL 1label IF condition
Conditional branch to a subroutine.

B.2.11 OFHER INSTRUCTIONS TH MLP.

ut=chanel ch.

1 ¢ and ¢7

loaded Trom
a digit betwee

OUTPUT (ch) =expression
The value of the expression is sent to chanel ch.
Ch is a digit between ¢ and @F27.

Halte the computer.
of machine code separated by commas,

The instruetions are divectly transfered to
the generated code.

tatoment must be given at the end of the
a

TIPLE character string
This stotement makes newpage and the string
is printed on top of every new page.

The conditions refere to the state of the four
flip-Fflops ZERQ, CARRY, SIGN, PARITY. These {1lip-flopns
may be affected by:

JAr QXOfebgloﬁ XJTH rac

SET ra=expresgion

Machine code instructions

Increment or decrenent instructions

COMPARE statement the flip-flops sets as Tollows:

" expression 1ls equal to rac
expression is legs than rac
the result of an expression has bit & set
the regult of an expression has even parity

{eonditiony c:=<flin- IOD)T?UJ/<?11DQ lopy FALSE

L—

a

b) {onditiond : :=PARTTY OF expression IS ODD/
PARTT expresgion IS BYEHN

o
£
}

h

2
<
x-;Lj

o
Ny

B.2.1%

condition i:= 1?93@@0& comparator rac 11,
comparator ti=/= / £ /> /<§ o

When the compars%OL.,; and < ls used, the numbers
are considered to be positive (¢ to P55>7 with the
exception of < ¢ where the numbers are congidered
to be a signed integer (=128 to +127).

1 TLLBGAL SYWPAX
2 TLLEGAL CONDITION
3 IF/EHD DITF.= woe
4 LOOP/ENDLOOP DIFFe= ooss

5 REPEAT/UNTIL DIFF.=
6 WHILE/ENDWHILE DIFF.= oo..
7 ILLEGATL USE OF REG

8 HMISSING DECLARATION OF ...,

doeg not check if any array relerences excseds
its permitted size.

MLP does not oh@ok that the declared data type i
used in the program, i.e, both Arr and Arr(3) will
be accepted.

g
]

HARDWARE REGISTER USAGE,

A-veg
The A-reg ls used to evaluate expressions and is
therefore overwritten when a statement containing an
e g

ypregsion is used, except when expression is A,

Note: The 3BT instruction does not use the A-veg
when the expression is a constant # g.
The INPUT ingtruction loads the A=reg with
the input silgnal,

.,
=
5
o]
TJ
k-.n

reg will be overwritten when an array reference
is made, except for id(e).

» will be overwritten when a memory reference
ister

H L
is madeg T% will also be used in indirect reg
1 except for:

REG é:a (-c)(+¢), vwhen a is id or id(c)

B,C, D-res
Will never be implicity used by HLPE.

i
1
:
i

LIST OF LAWGUAGE WORDS.

AMlphabet (A-7)

wumeral (f-9)

Spaces

Integer orx Octal Avithmetic
Operators: +, =, ., OR, .XR, .AND
Comparators: =, %,z;?<

Tip-flops: ZERO/CARRY/SIGN/PARITY
States: ODD/EVEN/TRUE/FALSE
Registers: A/B/C/D/E/H/L/M

PARITY OF IS

CODE

COMPARE WITH

REG

OUTPUT

THPUT

SET

IF THEW BLSE END

CALL (T1)
| T

WHILE DO BWDWHILE
LOOP EXIT IF ENDLOOP
HALT

PROC BEDPROC

WORDS

BATK

SANME BANK
BATIK IS
TITLE
GLOBAL
PINISH

12,

B.2.16

DETAITLED SYNTAX OF MLP IN BACKUS NURMAL FORM (NAUR, 19640). 13.
PHIE S A I 0 S IR T e R R <l - A IR L < M o R KR I IR R A R IRl R Tl 3 - O A= NG g - o

CPROGRAM> 12
COATA DEC LIST2<TATEMENT LIST><SUgROUTINE LISTOC<END STATEMENTD

KGTATEMENT LIsTri:=
COTATEMENT>SNL><CTATEMENT LEST>/7<NULLY
CEUBROUT | ME 301

NEXCHUBROUTINE LIST>/7<NULLY>

CEND STATEMEMNT>
FinigaH

e ¢
s e =

CHUBROUT TNE>
PROC CITDENTIF IER>CNL>CSURBRUUTINE STATEMENT LISTOENDPROC

LHURROUTINE STATEMENT Lisi»zes
COTATEMENT 2 CHNLCSUBRUUT I AE STATEMENT LIST>/<RETURN STATEMENT>
CHLDCBUBROUT I NE STATEMENT LIaT>/<NULL>

CPATA DEC LiSTriiz
CHANK DECPCHORES DEC LIST2<SAME BANK STATEMENTOCHBANK STATEMENT>

CHAME BANK STATEMENT>»: iz
SAME BANKCHML > /Z<NULLD

CHANK UECri1=
PBANEKE <INTEGER>CNL> /<NULLY

CHANK STATEMENT>
BAMK 15 <INTEGERICHLZ Z<NULLY

CWORDS

DEC LISTHNl>/<nULL>

CADDRESZS =
PCINTREGER? y ADDRESS TEC \‘“T}

B> 0 IWIFEPR>]1gl\TrL&<>,<AJUH DEC LIST>
nFENc kH),&A Fleos DEGC LiaT>

/\IIFleri§ >[\lNiiu%a5],<Anﬂ?%SR DEC LISTS>
AECIDENT I TERD [KINTEGER> 1 /CIDENTIF TERD

CHTATEMENT > 1=
\anPLh STATEMENID/<BASTIC STATEMENT >
SEINDIRECT STATEMENT> /< CUMMENT. STRING2 /HALT

CHIMPLE STATEMENT2 =
CLABEL? <SS | MPLE STATEMENT > /<5 | MPLE STATEMENT» s <COMMENT STRING>
JECGUTO STATEMENT 7<CALL STATEMENT>/KASEIGN STATEMENT>
/ELUOP STATEMENT> /KCONDITIONAL STATEMENT> /< INPUT STATEMENT >
SLOUTHFUT STATEMENT > /<NULL >

CHASTC STATEHENT > 1=
CLABEL > 1<BASIC ST#F;*in}i(H~GISTFR LOADD /CKREGISTER CHANGE
JLHEMORY REGISTER LOADY/<HMEMORY LOCATION LOADD/<MASK STATEMENT 2
/ECOFPARE 5TA T:uttT>/<!A‘1im! CODE LIST>/<NULL>

CITHDAIRECT STATEMENT> =
|

LASEL <INDIRECT STATEMENTX /ACINDIRECT REGISTER LOAD>

ATNITRECT MEMORY LOCATIORN LOADD/LSTACK OFERATIOND 14.

CLOMMERNT STRING> 1 1=
COMARZCCOMMENT STRING> /<NULL >

<LOOF STATEMENT>::=
REPEATCNL2SESTATEMENT LISTUNTIL <CONDITIOND
AAMTLE KCONDITHUONY> DOKNL>COTATEMENT LIST2ENDWHILE
JLDOPCHUDCBTATEMENT LIST2EXIT IF <CONDITION><HLY
CETATEMENT LISTOENDLUOR

<LOTO STATEMENT> 1=
GOTO CLABEL>/ZGOTO <LABEL> IF <CONDITION)

CCALL STATEMENT» =
Call <IDENTIFIER>/CALL <IUENTIFIER> |F <CONDITIONS
JUOALL <H }im ; IFieR>T </’\H(1L)iii T LIST>]
JGALL <IDENTIFIER> [<ARGUMENT LIST>1IF <CONDITIOND

COONDITIONAL STATEMENT> =
P <O
JF <L

TTIONZ THEN <STATEMENT LIST>END

CASSIGHN ATEMENT2 =
ET <BTUORE>2<EXPRESSIOND /<HTORE>=<{EXPRESSIOND

SET
CHMPUT 3T/Tr"“)"m
CRTORE>2INPUTCCINPUT CHANNEL 2D

<QGUTRPUT QTGTFUZNT}"
OUTRUT(LOUTRUT CHANNEL>) =2<eXPRESSIOND>

CREGIBTER LUAl»:=
REG <USEH BEGISTER> =<{PRIMARY>
CHEMORY LOUATIODN LODAU>:i=
LHTURE2=REG (USER REGISTERD

CHEMORY REGISTER LUAL>I!=
MadADDRESS REFERENCED

CHEGISTER CHANGE> 2 @ =
REG CUSER HEGISTER>=2<USER REGISTERDCARTITH OPERATOR>1

CLOMPARE STATEMEMT > =
COHPARE <EXPRESSTUON> WITH <PRIMARY>

CHASK HTATEMENT>» =
MABK <BEXPRESSTON2 WITH <PHIMARY)>

IMOBIRECT BEGEISTER LOAD> 1=

CREGISTERD T <KAUDNRESS REFERENUE?
CREGISTER> 2 CADURESS REFERENCERCARITH OPERATOR> L
CREGISTER> *CCONSTANT >

CREGISETER> =t <CREGISTERY

AREG CREGISTERPt<REGISTER>CARITH OPERATOR>1

SEMORY LOCATION LOAU»::=
Vi K REGISTER2<CONSTANT 2
G 1<REGISTERICARITH OPERATOR>1=2<CONSTANT>

3 PKREGIBTER>=2{REGISTER,
FREG 1<REGISTEHRPCARTITH OPERATURD1Iz<REGISTERY

CHSTACK DPERATIOND>: i =

IPTIONS THEN <OTATEMENT LIST> ELSE <STATEMENT LIST>EN

D

PUSH 1 <REGISTERXCARTITH OPERATOREDL=2<LIST 0OF RC» 15,
JROR CLIST OF REGISTER>»=¢<{REGISTERXCARITH OPERATOR>1

KLIST OF sBGUM L\!f}***
CARGUMENT 2, <L 12T OF ARGUMENT2 /<{ARGUMENT>

CARGUMENT> 1=
{REGIRTER Lﬂm;)/iﬁ,bi&Tﬁk CHANGE>
ATHDIRECT R ISTER LOAD>
JCTHDTREECT MEHORY LOACTION LUOAD>

<LIST OF BC>ii=
REGTSTER>, <L UF RU>/<REGTISTERD
/<OUNSTANT },<le| OF RE>/<CONSTANT

LIST OF HEGISTER> 1=
CREGISTER>,<LIST 0OF REGISTER>/<REGISTERY

LCONDITHOMN> 1=
HTATUS FLAG>CTRUTH STATL}
FCEAPRESS JUNSCCUMPARATOR>CFRIAARY >
APARITY OF <EAPRELLTON? la CPARITY BTATE>

<CBTORE>» =
CUBER REGISTER>/CADDRESS REFERENCED

CEXPRESS UMD =
<uaLL STATEME
/<CALL STATE

‘f)(A”lTH DPERATUOR>CORUINARY BXPRESS|IOND

NT >, <L i - ¥ |- ;\}T}Qlj 10 NARY FxpP HajfaiUI\‘>

/INPUT STAT HT2CARTTH OPERATOR>CORDINARY EXPRESSION>

JLURPUT STATEMENTY (<CUDE STATEMENT2CORDINARY EXPRESSIOND
FLORDINARY EBEXPRESSTUNS

CORLINARY EXP be!il)een
\X.>/<!ﬂ 'T PL"T\ATU ><I ek
f{’w:l TARY EXPr txﬁlﬂ“?%Ahll{ JPéHATUR><TERN>

CUSER REGISTER>/CADDRESS REFeRENCE>/CCONSTANT2

LGODE STat

'(1 Ulw“

IEN STATEHMENT STRING>
/CODE STATEWENT>

<TERM> 2=
CPRIMARY > /<PRIMARY> <C0DE STATEMENT >

{LABRL>: =
CLETTER DIGET STRING>

CADDRESS FEERENOE>?
i|ﬁrﬂ1|%|%ﬁ FEXEDENTIFTER> [I NDEXD]

»
s

<IMNDEX» 1=
CCOMSTANT /<REGTISTERP /<IUENTIFIER>

CIDNENTIFIER> =
CLETTER>CLETTER QiG1T STRINGI/KNON-REGISTER LETTERD

CCONSTANT> 1=
CINTEGER2/<ARITITH OPERATUOR>CINTEGER>/"CCHARDY

KPOSTTIVE CUONSTANT2 =
CINTEGER2 /v INTEGER> /P CCHARD Y

CLETTER DIGIT S5IRING>: 1=
CLETTERCLETTER DIGHT STRING>
JEOHGIT><LETTER DIDIT 5TRINGD

CUSER REGISTER» e
CREGISTER» /M

EGISTER> 1=
A/S/C// /ML

<INPUT G

<UUTRUT

(HANGE: U-07, 10-417, 20=027)

CTaATUS FLAG> =
LERU/CARRY/STGHN/PARYITY

CTRUTH 5TATE» 1=
TRUE/FALBE

SHARITTY

<CARITH GPERATOR> 1 =
o

CCOMPARATOR> !
P A S

LI

CODE STATEMENT> 13
(DEFAINED TN PARTICULAR TMFLEHMENTATION)

31

CINTEGER> 1=
CDIGTT STRINGZ70COOTAL STRING?

CUlGIT STRING> =
CHGTT20I6IT STRING2/<D1GLT?

CUCTAL STRING =
COCTAL DIGIT><UCTAL STRINGS/COCTAL DIGIT

CLETTEHE> =
[\/=J/antan"/?¢

CHON=REGI53TER LETTERZ 1=
FrG/V /R0, 0077

<UlGlT»rs
Qrisi/3/74/9/6/7/8/9

CLUCTAL DIGIT»r:=
GAL/ 2/ 374757677

1

CCHAR> I

(ANY OF THE SET RECUGNISED CHARACTERS

Gip PNA
PARTICULAR [MPLEMEN TAI[UM EXCERPT FOR <HNL>)

ChULL>»r =

~ S

APPEEDIX C

s
LM

(I

beL

CONTROL

-GlaTER

031

D=TENMP (247141
TEHP+030

R

DzTEMPITY]-1

TEMPLULIR 1=REG A
TeMP+012

METEMF P

MASK 24+G1 wWliTH 2585

#axxr [NDIRECT REGISTER
BrTerHPi200]1+8

0
BeTEMPIQLI-077

Hi
TEMP+GA10+0
REG

TENP =377

REG tLel=zd

td=l =l

C1.

Pleeh, 0L, R1I+060,51 2100, TEMP(20]1,T1

43 W W

CONTROL

RS

Lid
SUM
Al
Lid

LHA

POR A, C=rl -1

dwawt ASS | UNMENTS ##eaes
SET A,v,0=0

ST TiempP1+7

[EipP+07
~01¢

SET TEMPIWLISTENMP(PL)-TENP(TL]
Pl

SET B=INPUT(5)+51

c2.

Bars1ul V C3.
Lid S

/ ST C=CALL SUB+19

wwaad LABLES,GOTO=5TM, , IF-STH, #zxss

GUTO Labd

~
i
[
™.
2

/ ” ‘ GUTO LABL IF PARITY OF w1 1S 00p

CPi a
JTF Lasl
/ TF PRI THEN G1=0
LT i
O &
JFS X1
KA
L1 W1
LA
/ FLSE o1=0 FnND

Xl=,
WA
L o5
LFA

e

iF PRIl THEN
Lid Fi
L oAH
CPi]
JFS X
/ P Q1=0 THEN
Lid W1
LAM
CH ¥
J¥ 7 X 4
KA
Lo Hi
LMA
/ S5i=40
Lo o1
LA

o
k]
o/

‘J i\\ "4} ;g\ Li:)‘

A

L] Ti
LFid

/ END
X

JEP ré

Awli=,

17

G

JFC

.
-
{

Ty g
X

C4.

Fon i)
gawrd DO0- U0PS 4% %%
Lunp
EXHIT IF ZeRD TRUE

ENDLOOP

REPEAT

UNTIL £58=L
0377

XRY

WHLE A¢Lo DO

> T

PR EN
IR

ENTIWHLE

X110

wxwas SUBROUTINE CALLS #uawnn
Call slg

CALL SUB iF a7

CALL 2UB4<a,8,0=7,10=C,L2TEMPIG]>

FAuTaH

HILP 80

A HIGH LEVEL PROGRAMMING LANGUAGE
FOR INTEL 8080

J. E. ASPERNAS

Report 7626 (C) May 1976
Department of Automatic Control
Lund Institute of Technology

A HIGH LEVEL PROGRAMMING LANGUAGE FOR INTEL 8080,

Avthor Jan<=Eric Aspernis
Swpervisors Leifl Andersson

Johan Wieslander

CONTENTS.

1, IRTRODUCTION

2., SYNTAX OF HILP 80

3. SEMANTICS OF THE LANGUAGE HILP 80

1. General rules

2, Abbreviations

3, Head

4. Bank address manipulation
5. Register operation

6. Double register operation
To. Procedure calls with srguments
8., Conditions in HILP 80

9. INC and DEC statemenits
10. Hardware register usage
11. Brror reports

12, Ligt of language words

APPENDIX

A, Optimization technique

B, Direct load and store in single precision

C. Test program in HILP 80

1. INTRODUCTION. 1o

This report describes a High Level Programming
Language, HILP 80, for micro processors. This version
of HILP 80 is made for INTEL 8080, but could be changed

to f£it any simular micro processor.

The compiler is based on STAGE 2 (Waite, 1973).
The compiler generates assembly code. A flow diagram
(fig 1) shows the way from HILP 80 source program to
a running Intel 8080,

The compilation is intended 4o take place on a
host machine. At Lund Institute of Technology (LTH),
a PDP=15 is used as a hogt machine. The compiler is
almost machine independent, and could be implemented
on other computers. The macro processor STAGE 2
requires about 3 K of core, and the templates need
about 12 X with high degree of packing. The translation
time for the in appendix given exemple was about 65

seconds.

The langunage HILP 80 could be used at different
levels dowvn to assembly code. The medium and low level
statements are valuable to increase the efficiency

e.g. in loops.

Improvals of the limited data structures and

arithmetic facilities are under discussion.

EFFICIENCY OF HILP 80.

The main responsibility for the efficiency of
the generated code lies in the hands of the user. Thus
it is up to the uger to decide e.g. whether registers
should be used instead of address references in order

to inerease the efficiency.

2.
I+ is hard to measure the efficiency of HILP 80
depending on the various levels of the statements.
However it is always possible to generate a code with

very high degree of efficiency.

When addressing the data, INTEL 8080 uses register
pair H&L, where H contains the high address (= bank)
and L contains the low address, However, the A register
conld be loaded and stored directly using a two word
address or loaded and stored indirectly using register
pairs B&C or D&E, The different addressing facilities
an& the hardware usage of register pair H&L as an
accumulator in double precision makes it hard 4o control
the addressing in an efficient wa&. However, HILP 80
mostly solves this problem for the user, but in some
cages the user could act in order to increase the
efficiency. For this purpose HILP 80 has two "Bank

manipulation statements®,

REFERENCE,

Waite, Welle, 1973, Implementing Software for Non-Numeric
Applications, Prentice-Hall,

HILP SOURCE PROGRAM

TEMPLATES

Stage 2

INTEL ASSEMBLY CODE

PDP-15
Macro
Assembler

BINARY FILE

PDP=15
Loader

PAPER TAPE WITH
INTEL ABSOLUTE CODE

|

INTEL 8080
with
loader

The macro assembler holds
the macro definitions for
the mnemonic symbols,

The loader holds the
subroutine library.

fig 1. From HILP 80 source to loaded INTEL 8080.

2. SYNTAX OF HILP 80. da

The syntax of HILP 80 is described in flow diagram form.
The terminal symbols of the language are enclosed by
circles or by ovals e.g. « The nonterminal
gymbols are written with small letters and enclosed

by rectangles e.g. ‘identifierl .

The semicolon is the "end of statement" marker,
Tn the actual source program it has the following

equivalent forms (2 denotes carriage return):

1. L)
20 2

3. s Any sequence of characters

program

-{headj -{body

————(PROC }——+] identifier l————@——‘ head |-——=| body HENDPROC)—‘QD
FINTSH)

@

body (I T
statement —

®
ce
ooz —()

head

. CONST

6

UNDEFINED

SINGLE

D

DOUBLE

GLOBAL

statement

———-————(BANKiEi}————-—loonstant1

~ SET BANK constant

'———————><?ET STACK:}———'+constanfw————*(::}————*{Egiggggg]——————-

OUTPUT

constant

expression

addr. ref.

\REG } '{register operation}*‘

condition

register operation

identifier

double register
operation

N
_ @ 0 body ENDWHILE
° UNTIL condition]
° bodyJ—O@XIT IE>—~! condition body }—ﬁNDLOO@——

e condition THEN ° body T END)—=

®
——————-(@OTQ)————-{identifief}
addr. ref.
H
fe—

register

expression

COMPARE

cont

statement continued

-~—<:>———~fréssembly language statement}

Te

@ ,oltiouble register

DREG double register operation

double register F

register operation

,—1 addr. ref. ,_\

O—fzerstans]

)
o

register

double register
operation

unsigned constant

l

double register }———’(E)

addr. ref.

double register

expression

TN
INPUT ((constant —{)
X]

unsigned constant

Liperator

operator

56 Go o &

rot. operator

? z
'

condition

expression

constant

PARITY

register

560000
R

addr. ref. r____——————j

expression

identifier ipoveuns

digit

constant

unsigned constégg}————————~—

unsigned constant

I

[

3.2

SEMANTICS OF THE LANGUAGE HILP 80. 10,

GENERAL RULES.

Main rules for statements in HILP:

1 Only one statement is allowed per line.

2 Leading tabs and spaces are allowed,
HILP words should be separated by one spaoce,
Logical operators, +, =, ., = should not be
separated by spaces.

3 Comments may be used in HILP:
a) jcomment string
b) statementjcomment string

4 Names may consist of up to six characters,
starting with a letter, and for constants
starting with §f.

5 Empty lines may be used.

6 Numbers are interpreted as octal if they start
with ¢ and decimal otherwise.

T Integers in HILP should be within the ranges:
SINGLE : =128 to +127

=0200 to +0177
DOUBLE : -32768 to +32767
-0100000 to +O0TTTT7

ABBREVIATIONS.

r register (A4,B,0,D,E,H,L)

c constant

id identifier

a address reference (=id, id[expression])

rac either © or a or & above

ra either v or a above

re either r or ¢ above

code Intel assemdbly code

il memory location addressed by H and L

dr double register (BC,DE,HL)

3.3

HEAD.

11,

a) CONST declaration.

The user may define constants, which will be replaced
by the assembler with their current values.

The constants could be useful e.g., in the bank
declaration.

b) VARIABLE declaration.

1.

2.

BAFK ¢

Variables used in the program must be declared and their

bank addresses specified. The bank number given in the
declaration is valid until snother bank declaration is
made.

SINGLE declaration.
DOUBLE declaration.

The user may define addresses for the variables by
stating #c¢ after the variables in the list, or state
4¢ for the first variable and then let the others be
defined consecutively until another address is stated.
The first word declared in a bank is given the address
@ if the user does not give a start address, No error
report will be given if the usexr declares addresses

greater than 255 (¢377).
BANK UNDEFINED

This bank declaration could be used in procedures,
where the variables define different memory locations
(different high addr., same low addr.) depending on
the actual value in the H register.

SINGLE declaration as above.
DOUBLE declaration as above.

¢) GLOBAL declaration,

d) SET

NOTE:¢

If references are made to names in other programs,
the loader program has to know that these names ave
global, otherwise the loader will not be able to set
up common addresses for these names,

STACK c:c.

As HILP implieitly uses the stack, this statement
must always be given. The first constant is the
bank address and the second is the low address,

Array index runs from ¢ to i-1.
Only one dimensional arrays are allowed.
No variables may be preset.

3.4 BANK ADDRESS MANIPULATION, 12,

a) GENERAL.

HILP $ranmslates the source program statement by
statement going once from top to bottom. This
technigue causes some optimization problems when
a label is generated by HILP e.g. in loop
statements. The problems mentioned arise fronm
the fact that vhen a label is jumped to during
the execution, the translation path is different

from the execution path.

FPor optimization during thé translation, HILP

uses internal variables:

LASTA last value of the A register.

LASTM last memory reference addressed by M (H&L).
LASTH last bank value in the H register.

As for LASTH, when M is to be set to an address

of a variable, HILP will be able to check LASTH
against the bank address of that variable and

if equal not update the H register. In case of
BANK UNDEFINED, LASTH is not used since the user
in this case is supposed to take full responsibility
for the bank address setting (HILP will always

assume that the H register is correctly set).

BANK ADDRESS MANTPULATION STATEMENTS.

SET BANK e,

The constant c¢ is loaded into the H register
if LASTH is different from c.

BANK I8 c,
This statement sets LASTH %0 ¢. It is an

information to the translator and will

never generate any code,

b) THE BANK ADDRESSES ARE SPECIFIED IN THE HEAD, 13,

1) GENERAL PROGRAIMMING.

HILP 80 will take full respongibility for the bank
address nmanipulation. Thus the user does not have %o
care about the internsl usage of LASTH. Some
optinization of the bank address setting could be
obtained, especially if 211 the variables are

specified in the same bank. See Appendix A,

2) THE USAGE OF POINTER OPERATIONS.

The statements: REG tecc=ces
REG‘ .oo=tcac
ING Teea
DEC fﬂ"

will assume that the H register is correctly set.
To prevent errors, HILP 80 will generate an error
report (NO BANK IN THE H REGISTER) if LASTH has been
destroyed when one of the above mentioned statements

is reached., In this case the user must give:

1. SET BANK ¢ if the walue of H is wncertain.

2. BANK IS ¢ if the value of H is the desired
bank address.

LASTH will be destroyed in the following statements:

REG’ H=o-0

H=expression

POP HL

DREG Hl=s..

DREG dr=a,+a,-a (£1,2)

DX e a6 =os 00

.code when H is changed.

When 1M is incremented or decremented.
label:

PROC

CALL

REPEAT

LOOP

ENDLOOP (See Appendix A for further details)
WHILE "

ENDWHILE il

END "

NOTBEs Some statements containing variables will
implicitly set the bank address in the H
register. See Appendix B for further details.

¢) BAWK UNDEFINED, 14.

This type of bank declaration could be used e.g.

in procedure declarations., All variables deelared
in the head must refer to BANK UNDEFINED, The user

must garantee that the H register is updated bhefore

using statements containing variables with their

bank addresses unspecified,

No error report will be given if LASTH is destroyed

in following statements:

REG’ fooo=ooo
REG oaa"—'?o-o
IRC ¢...
DEC Qcca

In double precision the DX statement is reduced to the

following allowed types when variables with their

bank addresses unspecified are used:

NOTE:

DX a=dr
DX dr="expression with dr and ¢. The expression
may start with a, +a, =a."

For internal procedures, where the main
program has specified bank addresses for
the variables, a reference to such a
variable could caunse an adjustment of the
H register according to the rules for
addregsing given in Appendix B,

d) FO VARTABLES DECLARED,

This type of head could be used e.g. in procedure

declarations. No error report will be given if

LASTH is destroyed in following statements:

NOTE:

REG"ooo=eoo
REG‘ 000’31000
INC te.s
DEC ¢...

For internal procedures, where the main
program has specified bank addresses for
the variables, a reference to such a
variable could cause an adjustment of the
H register according to the rules for
addressing given in Appendix B.

3.5 REGISTER OPERATION. 15,

a) r =22ac(i1)

Register T will be loaded with the value of T80,

then r1 will be incremented or decremented if

necessary.

1

b) rfa(Zt)
Register » will be loaded with the low address of

a’ a""], a+1.

¢) Mia(x1)
Regigter L will be loaded with the low address of a.
The bank address of a is loaded into the H register.

Register H&L is incremented or decremented if necessary.

a) 121(i1)=r20(i1)

The value of . is moved to register L.

1
Register L is incremented or decremented if necessary.

The value of rzc(i1) is moved to the memory.

e) 1M(t1)=r20(i1)
Register H&L is incremenited or decremented if necessary.
The value of rze(i1) is moved %o the memory.

£) r1=Tr2(i1)

The value of r, is moved %o register L.

2
Register L is incremented or decremented if necessary.

Register r, will be loaded from the memory,

g) 1'1 =,M(i1)
Regigter H&L is incremented or decremented if necessary.

Register r, will be loaded from the memory.

NOTE: Any memory reference d) to g) above will assume

that the H register is correctly set,

%3.6 DOUBLE REGISTER OPERATION, 16,

a) dr,=c

1
The constant will be loaded into double register dr

1'
b) dr, =dr,,a (%1,2)

Double register dr, will be loaded with the value of

1
drz,a. Then if necessary, dr1 will be incremented or

decremented once or twice,

c) dr,=-dr,,a (£1,2)
The valune of drg,a is complemented via the A register
before loaded into dr1. Then dr, will be incremented

1
or decremented once or twice if necessary.

3.7 PROCEDURE CALLS WITH ARGUMENTS.,

Argunents are register operations or double register
operations, which are carried out before the procedure
is called, The same procedure could be ecalled with
any number of arguments.
fxample: CALL SUB(A=B,DE=O7745) is equivalent to:

REG A=B

DREG DE=0T745

CALL SUB

3.8 CONDITIONS IW HILP 80.

The conditions refer to the state of the four flip-flops:
ZERO, CARRY, SIGN and PARITY., These flip-flops may be
affected by:

COMPARE rec WITH expression
expresgion evaluating

Assenbly code

Increment or decrement instructions

In the COMPARE statement the flip-flops are set:

ZERO 1t (expr. - rac) = 0
CARRY 1f (expr. - rac) <O

3,9 INC and DEC statements.

Thege statements shall be interpreted as:
Set up the pointer to the memery, then increment
or decrement the value addressed by M.

3,10 HARDWARE REGISTER USAGE. 17.

a) SINGLE PRECISION,

The A register is used to evaluate expressions and is
therefore overwritten when a statement containing
an expression is used, except for:

ra=c (c#0)
a=a+1
a=2= 1

a=r

HOTE: The INPUT statement loads the A register.
The OUTPUT statement taskes the value frem A.

M (H&L) will be overwritten when & memory reference
is made, except for special cases., BSee Appendix B.

b) DOUBLE PRECISION,

Any address reference in double precision will
use Hl.

In the DX statement HL is used to evaluate
expressions. DE is used for temporary storage
when address references or constants # 1,2
are used.

Sinece the hardware only allows double add to HI,
subtractions of address refeorences and double
registers will be carried out via complementing
in the A register.

3,11 ERROR REPORTS.

ILLEGAL SYNTAX

ILLEGAT CONDITION

IF/END DIFF =
LOOP/ENDLOOP DIFF =
REPEAT/UNTIL DIFF =
WHILE/ENDWHILE DIFF =

NO EXIT IN LOOP/ENDLOOP
WO BAWK IN H REGISTER
MISSING DECLARATION OF
MISSING BANK DECLARATION
REMOVE TRATILING SPACE FROM

WOTE: HILP does noet check that the declared data
type is used in the program, e.g. both
ARR and ARR(3) will be accepied.

HILP does not check if any array references
exceed their permitted size.

3,12 LIST OF LANGUAGE WORDS. 18,

Alphabet (A-3%)
Integers (0-9)
Spaces

T #

Operators: + - .ADDC .SUBB .XOR .OR .AND
Rotate operators: .RAR .RAL .RRC ,RLC
Comparators: = /= <= >
Flip-flops: ZERO CARRY SIGN PARITY
Statess TRUE FALSE PLUS MINUS ODD EVEN
Register: AB C DEH L

Double register: BC DE HL

M

CORST

BANK

SINGLE

DOUBLE

GLOBAL

BAWK I8

UNDEFINED

SET BAWK

SEP? STACK

OUTPUT

IwpUT

REG

CALL (IF)

goTo (IF)

RETURY (IF)

WHILE DO ENDWHILE

REPEAT UNTIL

LOOP EXIT IF ENDLOOP

IF THEN ELSE END

COMPARE WITH

POP PUSH

PSSV

INC DEC

DREG

X

PROC ENDPROC

PINISH

T

APPENDIX A : OPTIMIZATION TECHNIQUE.

REGISTER USAGE,

At,

The usage of registers instead of address references will

inerease the efficiency, which is very valuable in loops.

Congider the following example, where V and I refer to bank 1.

Source code.

I=0

REPEAT
V[I1=0

T+

UNTIL I=031

SET BANK 1
REG 14v[0] -1
REG Atv[030]
REPEAT

BANK IS 1
REG % I+1=0

UHTIL L=A

XR1=,

XR1=,

Generated code,

XRA A

STA 0400+1
LDA 0400+1
ADT v

MOV L,A
MVI H,1
XRA A

MOV M, A
MVI L, I
INR i

MVI A,031
CMP M

ING XR1
MVI H,1
MvI L,V-1
MVI A,V+030
INR L

MVI M,0
CMP L

JNZ XR1

2. OPTIMIZATION OF THE BANK ADDRESS SETTING. A2,

a) STATEMENTS WHICH IMPLICITLY DESTROY LASTH.

Label:
The label could be jumped %o with different banks

in the H register.

Incrementing or deecrementing M.
As H&IL is incremented or decremented in this case,
the H register also could be adjusted,

CALL
The procedure may have changed the H register,

PROC
The procedure could be called with different
bank values in the H register.

END (from IF THEN)
LASTH will be destroyed if LASTE after the condition
is evaluwated, is different from LASTH just before END.

END (from IF THEN ELSE)
LASTH will be destroyed if LASTH just before ELSE
-ig different from LASTH just before END.

REPEAT
LASPH just before REPEAT could differ from LASTH
after the condition in UNTIL is evaluated.

LOOP
LASPH just before LOCP could differ from LASTH

juet before ENDLOCP.

ENDLOOP (Two or more EXITs in the LOOP)
LASTH after the condition evaluating in the EXITs
conld differ.

WHILE
LASTH just before WHILE could differ from LASTH
just before ENDWHILE.

ENDWHILE
LASTH will be desgstroyed unless the condition
evaluating in WHILE will set LASTH,

b) OPPIMIZATION USING BANK IS c, A3,

When a label is generated by HILP, LASTH will be destroyed.
Thus an adjustment of the H register will take place when

M is to be set to & variable. This updating of the H register
could he unnecessary if the value is egual to the value of H
when the Jjump takes place. To inhibit an unnecessary
adjugtment of the H register, the user may give a BANK IS e
statement after the following statements:

label:
PROC
CALL
REPEAT
Loop
ENDLOOP
WHILE
ENDWHILE

In this case the uger must garantee that:

The problems discussed under a) could not occur,

The H register already holds the value ¢,
The SET BANK ¢ statement could be used to
update the H register.

Consider the following example, which is the same as
given in 1). V and I are specified in bank 1.

Source code. Generated code.
I=0 XRA A
STA 0400+1
SET BAFK 1 MVI Hy1
REPEAT XR1=,
BARK I8 1
VII1=0 LDA 0400+1
ADI ¥
MoV L,A
XRA A
HOV H, A
I=T+1 MVI L,I
INR M
URTIL I=031 MVI A,031
CHP M
JNZ fRr1

Compared to the example given in 1) the improval is that
the instruction "MVI H,1" is moved outside the loop.
The technigue given is most valuable when all the
variables are specified in the same bank,

APPENDIX B.

DIRECT LOAD AND STORE IN SINGLE PRECISION.

Most memory references use H&L (M), when addressing
variables, but the A register could be loaded and
stored directly without using M. In this case the
instructions LDA and STA are used instead of

MOV A,M and MOV I, 4.

Definition: simple addr = id or idlecl.

Direct load snd store of the A register will be useds

1 When the expression has no address references,

except that it may start with a simple addr.

2 Simple addr=expression

3 REG A=gimple addr(X1)

B,

APPENDIX C.

GENERATED CODE. HILP 80 STATEMENTS.

COMST oBRK1=011,0R882219,08TRK=23

FAMK OBEK]
SINGLE X1+96,Y1,21,V10101,TEMPL

X1=014n
YisxXlenl

Zl=yl+01

Vi=71+01

TEMPL=0377

/ BAMK DRK?

/ STRGLE VEL91,X2,Y2,722
Ves

Y2zxp401
lezYE+i]
/ NOUBLE DV2I61,0X2,0Y210350,072

1l&f;3://+x 1

U%X

SINMGLE TEMPR0ET77

GLORAL SHB,LAHFL
CELOBL SUR,LABEL

NT %TACE O8THKIZHS
HA00+0377

wad REGISTER OPEFRATINONSG #+4

REG A=

REG C=virsl
LX| Hy BBEL#0400+V1+06

/ RED CsV2[XHl=%X21=1
i1/ C1#0400+%1
H, 2BK2%0400+%X2

M
g
/

i
/ REG Moyl
X He 2BK 1 =0400+Y1 40
/ REG LrvY?
AT L,YZ
/ SET BANK woRK1

C1.

10377

~

S

/3\

FEG C=20-1

tLedlsn+d

pHar ASS|LHNMENTS
V2ixXdlasvz2ixil=-1
Lor1#0400+%1
vz

LsA

ViiGI=sv2i4i1+Y1

K1#0400+Y1L+0

WRKIw(0400+V L+

Zi=U

#0400+ 71
.

<P {4

G+722+0

Yi=08
(BRI 0400+Y1+0

ye2(2l=n
GBHEKP2H0400+ YR+ 00

c2,

(OF EXPRESSIONS #a»

QUTPUT(aY 2 INPUT(LE Y+ X1

SN

R e

=

neE

PUSH

Al
MOV

pwaw |FORTH, GOTO

IF =v2{X1) THEN
ZER10400+%,

Xl=X1 =1
H, ARKL¥0400+X1+0
FLSFE

V2Ixi1=0

GOTO LABEL |F 71=0

A
M, 2BK1#0400+721+0
M
Latpl

GOTO L

L Laop

h=a ,RAR

EXLT OF
X4

Az=p

EXIT IF

ENDLOOR

WHILE B<=4 DO

REG AzA=-1

ViTAT=A
P&y
Vi1
Ly A

CARRY TRUE

1

o

R N 4
Z

~

>~

fPrap
My
MOV

Nl Kl

VR2ID1=av2iDl+l
A,f}

V2

MOV Los A

Py BpKe

EXIT IF v2i0l=0
XT3 A A
LY Hy ZBKZ2#0400+VE+0

QFET BANK 0ORK1

NEC 9

EXIT 1F €C=030

Jmp ALB

TROUT INE CALLS s

CALL SUR IF 2=|NPUT(6)

CALL SUB(A=R,5217,DE=DV2&],MtX1)
A4
H,u21

AEK2#0A00+LVZ+N 6406

SRS RNE D SRR

. PRECIS I ON® %

DREG

DREG BCO=DVZ2{01~-1
K2#0400+0V2+0+0

ODREG BC=2DV2 Y1}

K1x0a00+x1

DX DXZa=-0YE4+RC=-1337+DVE{21)
(2R 0400y ER N0

s ~024717

AURL#0400+71

R4 00+0X2 00
DX DVEIX1)1=NE~BC-00V2IY1)

%BKL#0400+Y1

C5.

