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Abstract

In a recent experiment, the partial half-life (t1/2) of proton emission from the Iπ = 19/2−

state of 53Co was accurately measured. A previous estimate is t1/2 ∼ 17 s. The purpose of this
thesis was to explain this decay and give a theoretical estimate for the dominating hindrance
factors.

The angular momentum J in 53Co is coupled to J = 6 for the neutrons, and J = 7/2
for the protons. All of this is transferred to the emitted proton during the decay. In a �rst
approach, the neutron part was ignored and spherical symmetry assumed. Three di�erent
methods to describe this decay were tested and compared. These methods were validated by
comparing computed reference half-lives to [1] and 53Co half-life to results obtained from the
computational code GAMOW [2]. Assuming this model, all of these methods were accurate,
and a method based on probability �ow was selected for further calculations. For 53Co, the
computed half-life was ∼ 17 orders of magnitude too low in the �rst approach.

The method was improved by including the pairing interaction, giving an increase in t1/2
by ∼ 1.4. Next, nuclear deformation was included, and both proton and neutron overlaps were
computed for di�erent deformations β2 of the mother nucleus, assuming axial symmetry. The
proton overlap had only a minor e�ect on the decay time. The increase in angular momentum
from ` = 3 to ` = 9 was estimated to add a factor of ∼ 3 ·106 to the decay time, and the ` = 9
components of the proton wave function another factor of ∼ 4 · 108 − 7 · 109. The remaining
factor was conjectured to come from the neutron overlap, but in the model used, this was
computed to be zero. This was expected to be resolved by extension to triaxial shapes.
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Chapter 1

Introduction

Nuclei on the neutron de�cient side of the chart of nuclides have an excess of protons relative
to the number of neutrons, and therefore decay into more neutron-rich nuclei. Usually, this
occurs through electron capture or β+ decay, i.e., one proton decays to a neutron. For some
nuclei far from the β-stability line, however, another decay branch is possible: proton emission.
This means simply that the neutron de�cient nucleus emits one of its protons, i.e., we have
the reaction

A
ZXN →A−1

Z−1 YN + p, (1.1)

where X is the mother nucleus, Y is the daughter nucleus, and p is a proton. This is quite
similar to α decay observed in heavy nuclei.

In order for proton emission to occur, the reaction Eq. 1.1 must be energetically possible.
This does not mean that the emitted proton is necessarily unbound; instead it may be trapped
as a quasi-bound state within the Coulomb barrier, which is present since protons are charged
(as opposed to neutrons). In a crude picture, the proton may then tunnel through the barrier,
as described in Figure 1.1. This is the basic mechanism of proton emission. In order to describe
the process more accurately, though, one has to take into account structural changes of the
nucleus as well, and a more sophisticated model than considering the proton as a free particle
within a nucleus might be required.

The �rst nucleus in which proton emission was observed is an excited state of 53Co, at
3197 keV [3]. Although the proton emission branch was discovered already in 1970 [4], the
branching ratio for this decay was not successfully measured until 2015, in a not yet published
measurement by a group led by Luis Sarmiento at Lund University. The reason for this is that
the other decay branch, which is a β+-decay, is very similar in both decay time and energy to
the β+-decay of the ground state of 53Co, and these decays are thus very di�cult to separate
[5].

If the branching ratio b for a certain decay branch is known, the partial decay time may
be determined as

tpart1/2 =
t1/2

b
, (1.2)

where t1/2 is the observed half-life, and tpart1/2 is the partial half-life in the interesting decay

channel. If tpart1/2 is known, this may be used to determine theoretical model parameters and
eventually increase the understanding of this decay mode. To start out, however, one needs to
set a theoretical framework and obtain a basic understanding for the decay. Since the mother
nucleus is in a state with Iπ = 19/2−, and the daughter nucleus is in a state with Iπ = 0+

(the remaining angular momentum is transferred to the proton), the proton emission decay of
53Co involves large structural changes in the nucleus and large angular momentum transfers.

1
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Figure 1.1 � Basic principle behind proton emission. One of the protons, represented by the red
wave package is in an orbital where the energy is greater than the free-particle energy, and thus
exists as a quasibound state within the nucleus. The points r1 and r2 are known as the inner and
outer turning points, and de�ne the endpoints of the classically forbidden region. The proton
may eventually tunnel out of the nuclear Coulomb barrier (blue), which happens if it is observed
at a distance from the core r > r2. The point r0 marks the endpoint of the classically allowed
region for the bound state.

Therefore, this is quite a complex decay. As a consequence, the decay time is signi�cantly
longer than in a crude model not involving structural changes.

1.1 Aim and Structure of Thesis

The aim of this thesis is to explain the observed decay time in the proton branch of 53Co.
This is done by starting out from a simple decay model, and then stepwise increasing the
complexity until an adequate description of the decay mechanism is established. In this way,
the main hindrance factors are determined. If successful, these methods may be used to study
other proton emissions from a theoretical point of view.

This thesis is structured as follows. In the �rst part, three di�erent methods are used to
study proton emission in a spherically symmetric model, not including structural changes. In
the second part, structural changes of the protons are added by applying the nuclear pairing
interaction to the original model. In the �nal part, the study is expanded to deformed nuclei,
where a change in deformation occurs. In this part, the e�ects of structural changes are also
studied for the neutrons.

To get a measure for the quality of each model, the results were compared to the previous
estimate (before the new measurement) of the branching ratio for proton emission of b ∼ 1.5%,
which using Eq. 1.2 and the observed half-life of 247(12) ms [3] gives a partial half-life of
∼ 17 s in the proton emission branch.

The computations used for this thesis were carried out by either using Matlab (mostly
used when working in spherical symmetry) or the Fortran programming language (mostly
used for deformed systems). All �gures in this report are generated using Matlab.



Chapter 2

Study of Proton Emission In Spherical

Symmetry and not Involving

Structural Changes

In this part, three di�erent methods assuming spherical symmetry and not involving structural
changes are studied. These are:

• The WKB Approximation, which is a semi-classical model where the proton is treated
as a free particle within the nucleus (cf. Figure 1.1), and the probability of tunnelling
through the proton barrier is calculated.

• The Two-Potential Approach (TPA), where the proton is again treated as a free particle.
Here, the part of the potential outside the potential maximum in Figure 1.1 is treated as
a perturbation to the rest of the potential, and the resulting parts of the wave function
are matched to get a neat expression for the half-life.

• The Probability Flow Approach (PFA), where the total probability �ow was computed
by using the proton wave function, which gives a measure of the decay probability.

These methods were applied to 53Co and were validated by testing each of the models on
other � from a theoretical point of view � more well-known examples of proton emission. The
tests were complemented by using an established computational code for computing energies
and decay widths of nuclear states. Moreover, the energy window and dependence on charge
and angular momentum were tested for each of the methods.

2.1 Methods

2.1.1 WKB Approximation

The WKB (Wentzel-Kramers-Brillouin) approximation is a semi-classical model for approx-
imating half-lives for proton emission. In this simple model, the proton and the daughter
nucleus are treated as separate objects, and the proton is considered to tunnel through the
potential barrier. This model is good as a �rst approach, in order to get an intuitive under-
standing for the mechanisms behind proton emission.

The decay width Γ is generally de�ned as

Γ =
~
t1/2

ln 2, (2.1)

3



4 CHAPTER 2. SPHERICAL SYMMETRY

where ~ is Planck's constant. The partial decay width for proton emission (henceforth, I will
not bother about full decay widths, and the variable t1/2 will refer to the partial decay width
in the proton channel) in the WKB approximation (this is simply the tunnelling probability)
is [1]

Γ = N ~2

4µ
exp

(
−2

∫ r2

r1

|k(r)|dr
)
, (2.2)

where µ is the reduced mass of the proton, k(r) is the classical momentum, de�ned as

k(r) =
1

~

√
2µ(E − Veff (r)), (2.3)

where E = Qp is the decay energy, Veff is the e�ective nuclear potential, r1 and r2 are the
inner and outer turning points, respectively, which are de�ned in Figure 1.1, and N is a
normalisation constant. The reduced mass is in this case

µ = mp ·
mD

mD +mp
, (2.4)

where mp is the proton mass and mD is the mass of the daughter nucleus. The normalisation
constant was calculated according to [1], as

N−1 =
1

2

∫ r1

r0

dr

k(r)
, (2.5)

where r0 and r1 are the endpoints of the classically allowed region for the bound state of the
proton (cf. Figure 1.1). The e�ective potential is constructed by adding the Woods-Saxon
potential generated by the nucleus to the Coulomb potential and a part depending on the
angular momentum `. The result if neglecting spin-orbit interaction is [6, pp. 54 & 64]

Veff (r) = − V0

1 + exp((r −R)/a)
+ VC(r) + V`(r), (2.6)

where

VC(r) =


− Ze2

4πε0R

(
r2

2R2
− 3

2

)
, r < R

Ze2

4πε0r
, r > R,

(2.7)

and

V`(r) =
~2`(`+ 1)

2µr2
, (2.8)

where R = r0A
1/3, A is the mass number and Z is the charge of the daughter nucleus (the

proton does not feel the potential of itself), and V0, a and r0 are model parameters. Analogous
to [1], I have �xed r0 = 1.17 fm and a = 0.75 fm, and I use V0 as a free parameter.

In order to get a potential where the lowest positive proton energy E agrees with the mea-
sured value Qp, the time-independent Schrödinger equation was solved to obtain the energies
and wave functions (the latter are used in Section 2.1.2). This was done by replacing Veff
with Ṽ , where

Ṽ =

{
Veff , r < rmax
Vmax, r > rmax,

(2.9)

where (rmax, Vmax) is the position of the maximum of the potential barrier. This was done
to get a bound state also for quasi-bound states where E > 0. This is expected to be a
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reasonable approximation, since the amplitude of the wave function is expected to be very
low at r > rmax. Then the Schrödinger equation becomes(

− ~2

2µr

∂2

∂r2
r + Ṽ

)
ψ(r) = Eψ(r). (2.10)

This was solved numerically, by discretising the Hamilton operator H = T + Ṽ at grid points
ri, placed at �xed spacings ∆r, according to

H(ri)ψ(ri) ≈
~2

2µ

(
1 + ∆r

ri

)
ψ(ri+1)− 2ψ(ri) +

(
1− ∆r

ri

)
ψ(ri−1)

∆r2
+ Ṽ (ri)ψ(ri), (2.11)

and solving the corresponding eigenvalue problem. The resulting eigenvectors ψ(r) were
normalised (for later use) to satisfy ∫ ∞

0
|ψ(r)|2r2dr = 1, (2.12)

where ∞ was replaced by the upper end of the vector r in the numerical case. The lowest
energy eigenvalue E1 was matched toQp by minimising |E1−Qp| iteratively, using 18 iterations
of Golden Section line search with V0 as a free parameter. As starting values the range
V0 ∈ [30, 70] MeV was used. The �nal value was obtained as the mean of the two endpoints
of the �nal interval.

For 53Co, the grid used was r ∈ [0.01, 45] fm, with ∆r = 5 ·10−3 fm. Here, r was chosen to
start at a non-zero value to avoid complications with in�nities in Eq. 2.11. For this nucleus,
the proton exists in an f7/2 subshell and thus ` = 3. Since this model does not take into
account structural changes, which would give the emitted proton an angular momentum of
` = 9 (setting ` = 9 would not create a bound state in this model, so this is not an option), it
was for simplicity assumed that ` = 3 for the outgoing proton. This was used to evaluate Eq.
2.6. In reality, the Q-value would be negative if not taking into account structural changes
of the neutrons (derived from [3]), and instead the observed value of Qp = 1.53 MeV was
used, along with the measured value mD = 51.93 u [3]. Using the resulting potential Veff and
corresponding energy E1, an approximative value of Γ was obtained by using Eq. 2.2. By
using Eq. 2.1, the half-life was computed.

As a validation of the method, half-lives were computed for the isotopes 105Sb, 113Cs,
147Tm, 157Ta and 165Ir, which have previously been studied in [1]. This was done using the
same parameters as in the original article, which are given in Table II in [1], and estimating the
nuclear mass as 1 u·A, where A is the mass number. For these isotopes, the grid r ∈ [0.01, 165]
fm, with ∆r = 0.01 fm, was used.

2.1.2 Two-Potential Approach

This method (henceforth TPA) is described in detail in [1]. It is another method which does
not take into account changes in structure.

Formally, the potential Veff de�ned by Eq. 2.6 may be split into Veff (r) = Ṽ (r) +W (r),
where Ṽ is de�ned in Eq. 2.9, and

W (r) =

{
0, r ≤ rmax
V (r)− Vmax, r > rmax.

(2.13)

Here, one may introduce W̃ (r) = W (r) + Vmax and solve the Schrödinger equation using
this potential, which is now treated as a perturbation to Ṽ (r) (the reason for adjusting the
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zero-level by adding Vmax is to �nd a solution which vanishes as r →∞). De�ning the regular
eigenfunction for this problem as χ(r), the decay width may then be approximated as [1]

Γ =
~2

µk

∣∣ψ(rmax)(αχ(rmax) + χ′(rmax))
∣∣2 , (2.14)

where k =
√

2µE/~ in this section, α =
√

2µ(Vmax − E)/~, and E and ψ(r) are the solution
to Eq. 2.10, which is lowest in energy E. Since the proton is mainly a�ected by the Coulomb
potential at r ≥ rmax, χ(r) may be replaced by � according to [1] � the regular Coulomb wave
function F`(η, ρ), where ρ = kr,

η =
µe2(Z − 1)

4πε0~2k
, (2.15)

and ` is the orbital angular momentum. This approach is the one used in this section.
The regular Coulomb wave function may be written as [7, p. 538]

F`(η, ρ) =
2` exp(−πη/2)|Γ(`+ 1− iη)|

Γ(2`+ 2)
ρ`+1 exp(−iρ)M(`+ 1− iη, 2`+ 2, 2iρ), (2.16)

where Γ(z) is the Γ function, and [7, p. 504]

M(a, b, z) =

∞∑
k=0

(a)kz
k

(b)kk!
(2.17)

is Kummer's function, where

(a)k =

k−1∏
i=0

(a+ k) (2.18)

for k > 0, and (a)0 = 1, and analogous for (b)k. Numerically, Kummer's function was
calculated by including the �rst 80 terms in Eq. 2.17 (this turned out to be enough for
convergence in the relevant region). The Γ function was computed as Γ(z) = (z − 1)! for
integer z. For non-integer or complex z, Γ(z) was approximated by using Stirling's formula
[7, p. 257],

Γ(z) ∼ exp(−z)zz−
1
2

√
2π

(
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4

)
. (2.19)

The derivative, ∂
∂rF`(η, ρ) was computed as a simple di�erence quotient,

∂

∂r
F`(η, kri) ≈

F`(η, kri+1)− F`(η, kri−1)

2∆r
. (2.20)

By inserting the obtained values for F`(η, krmax) and F ′`(η, krmax) into Eq. 2.14, decay
widths and corresponding half-lives were computed for 53Co, as well as the same reference
isotopes as in Section 2.1.1.

2.1.3 Probability Flow Approach

Original Method

This method (henceforth PFA) is yet another approach for measuring the penetrability for the
proton during proton emission, i.e., the decay time without considering structure changes. In
fact, this method has mainly been used for computing α decay times, but this time � perhaps
for the �rst time ever � it was tested for proton emission instead.
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The basic principle for PFA is that the decay width may be interpreted as a measure of
the probability �ow out of a spherical surface (in fact, any spherical surface) surrounding the
core. The details are derived in [8]. Following some simpli�cations by Gillis Carlsson, the
decay rate may be obtained as

λ = j(r0), (2.21)

where
j(r) = r2

(
ψ(r)ψ′(r)∗ − ψ(r)∗ψ′(r)

) i~
2µ

(2.22)

is the radial probability �ow through a surface, and r0 is an arbitrary distance from the origin.
For large r0, the result is independent of the particular choice of r0. For outgoing waves, as
is the case for proton emission, and assuming k is real, Eq. 2.22 may be simpli�ed as

j(r) = r2|ψ(r)|2 · v, (2.23)

where v =
√

2E/µ is the non-relativistic speed of the proton. For large r0, C ≡ r2
0|ψ(r0)|2 is

essentially constant, i.e.,
j(r0) = C · v. (2.24)

To �nd C, one may match an internal solution, obtained by solving the Schrödinger
equation close to the nucleus, as done in Section 2.1.1, with an outgoing solution, which in
the presence of a Coulomb potential is

ψa(r) =
1

r
(G`(η, kr) + iF`(η, kr)). (2.25)

Here F` is the regular Coulomb wave function and G` is the irregular Coulomb wave function1.
This is required since the internal solution is only a good approximation of the true wave
function at small values of r. Therefore,

ψ(r) =
ψ(rm)

ψa(rm)
ψa(r), (2.26)

for large r, where rm is a matching point. By inserting Eq. 2.26 into Eq. 2.23 and Eq. 2.21,
and taking the limit r →∞, one obtains

λ = lim
r→∞

r2

∣∣∣∣ ψ(rm)

ψa(rm)
ψa(r)

∣∣∣∣2 · v =

∣∣∣∣ ψ(rm)

ψa(rm)

∣∣∣∣2 · v. (2.27)

Here, the last expression is a consequence of the asymptotic behaviour [7, p. 542]

G`(η, ρ) + iF`(η, ρ)→ exp(i(ρ− η ln 2ρ− `π

2
+ σ`)), (2.28)

where σl is a constant, as ρ→∞. Therefore, C = |ψ(rm)/ψa(rm)|2.
The regular Coulomb wave function was calculated as in Section 2.1.2. The irregular part,

G`, was calculated using the relation

G`(η, ρ) =
Γ(`+ 1− iη)

|Γ(`+ 1− iη)|
exp(πη/2)i`Wiη,`+1/2(2iρ) + iF`(η, ρ), (2.29)

where Wa,b(z) is the Whittaker function, which was evaluated numerically using the built-in
function in Matlab. Unfortunately, this is a very slow routine, and therefore G` was only
evaluated at a few points.

1The regular and irregular Coulomb wave functions are two special linearly independent solution to the
Schrödinger equation in the presence of a Coulomb potential, see e.g. [7, p. 538].
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The matching points rm, were selected as 30 equidistant points on an interval somewhere
between the inner and outer turning points of the potential barrier (cf. Figure 1.1). These
matching points were used, since both the internal and Coulomb wave functions were expected
to be good approximations for the true wave function here. The turning points were obtained
from the WKB calculations. In order to accurately evaluate the wave functions in this interval,
these were re-evaluated by solving Eq. 2.10 and replacing Ṽ by Veff , and again optimising
the Woods-Saxon potential depth V0 using Golden Section search. As an outer boundary
condition, a Dirichlet condition was placed at r = rM , where

rM = max

(
r2 +

1

2
(r2 − r1), 2rmax

)
, (2.30)

where r1, r2 and rmax are de�ned as in Section 2.1.1. The reason for not going further out
is that the Dirichlet condition creates a second potential well outside the potential barrier,
which is a false state. Therefore, the state with lowest energy might not be a resonant state
of the nucleus. Therefore, the process of solving the Schrödinger equation was iterated over
increasing energy eigenvalues, until a state for which the maximum of |ψ(r)| was located
within the barrier. For large rM , such a state was di�cult to �nd. The reason for requiring
rM ≥ 2rmax, is that when the barrier is thin, V (rM ) might otherwise be so large that it is
not reasonable to put a Dirichlet boundary condition at this position.

Moreover, Golden Section search requires that the function |E −Q| is unimodal, which is
not the case. On the other hand, it is expected to be unimodal in a small interval around the
correct barrier height V0. Therefore, for the PFA method, Golden Section search was carried
out on the interval V0 ∈ [V 0

0 − δ, V 0
0 + δ], where V 0

0 is the value of V0 obtained from the WKB
method, δ = 30 keV was used for 53Co, and δ = 10 keV was used for 105Sb, 113Cs, 147Tm,
157Ta and 165Ir.

It turned out that the obtained values of λ were reasonably constant on the interval
r ∈ [r1 + 0.15(r2 − r1), r1 + 0.50(r2 − r1)] for all isotopes. Therefore, λ ≡ λ was taken as the
average of all 30 evaluations on this interval. Using this λ, the half-life was computed as

t1/2 =
ln 2

λ
. (2.31)

Improvement of PFA Using an Iterative Method

Although it turned out the results obtained from PFA agree well with WKB and TPA, one
may yet want to improve this method for increased accuracy. In particular, the wave number
k =
√

2µE enters the Coulomb wave functions in Eq. 2.25. Moreover, the simpli�cation Eq.
2.23 assumes that k is real. However, a decaying state is unbound, and thus has complex
energy

E = E0 −
iΓ

2
= E0 −

i~λ
2
, (2.32)

where E0 is the real part of the energy, coinciding with the Q-value.
To improve the solution obtained earlier in Section 2.1.3, Eq. 2.22 was thus iterated until

convergence, where ψ(r) is given in Eq. 2.26. With this wave function, one obtains

ψ′(r) =
ψ(rm)

ψa(rm)

(
1

r
(G′`(η, kr) + iF ′`(η, kr))−

1

r2
(G`(η, kr) + iF`(η, kr))

)
, (2.33)

where ′ denotes derivative with respect to r. Again, this was evaluated using a simple di�erence
quotient. Inserting Eq. 2.33 into Eq. 2.22, one obtains after simpli�cation

λ = C2(O(r0)O′(r0)∗ −O(r0)∗O′(r0))
i~
2µ
, (2.34)
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where C2 = |ψ(rm)/ψa(rm)|2,

O(r) = G`(η, kr) + iF`(η, kr), (2.35)

and r0 is an arbitrary choice of r > r2, where r2 is the outer turning point.
After each iteration, a new value of k was obtained as one solution to k =

√
2µE, where

E is given by Eq. 2.32. Since the di�erent values of λ computed at di�erent grid points
were expected to be almost the same, the average value λ was used in each iteration when
evaluating Eq. 2.32.

During the �rst iteration, λ was obtained using Eq. 2.27. For further iterations, Eq.
2.34 was used instead. To avoid divergence when evaluating the sum Eq. 2.17, the fairly
small value r0 = 1.5r2 was used. The iterations were repeated until the relative di�erence
between two consecutive values of λ was < 10−4. At high energies, there was a problem with
convergence of Eq. 2.32. For this reason, the approximate relation

E = E0 − 0.45i~λ (2.36)

was used instead when testing the method. This was for simplicity done for all energies.

2.1.4 Test of Energy Window for Di�erent Methods

The results from the methods described in Sections 2.1.1, 2.1.2 and 2.1.3 seem to agree very
well for all computed nuclei, which will be seen in Section 2.1. Yet, one may ask for which
energy window each method is valid. In order to test this, the computational code GAMOW,
ref. [2], was used to compute the imaginary part of the energy using outgoing boundary con-
ditions. The code was slightly modi�ed to print out the results at higher precision. Moreover,
certain �ags were used to use double precision during computations, as opposed to standard
�oat position. The computation mode used, �xed the real part of the energy and varied the
imaginary part and potential to �nd a single-node wave function with this energy.

For a resonant state, the decay width may be written as

Γ = −2ImE, (2.37)

and therefore accurate values of Γ were obtained using GAMOW. Corresponding values of
t1/2 were obtained using Eq. 2.1.

A comparison between the above mentioned methods was done by �xing all parameters
for 53Co at energies Q = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 9.8 MeV and computing corresponding t1/2
using each of the methods, as well as GAMOW. For PFA, δ = 1 MeV was used for Q ≤ 7 MeV,
δ = 2 MeV for Q = 8 MeV, and δ = 5 MeV for Q ≥ 9 MeV. Moreover, both the original and
the improved versions of PFA were tested. The value Q = 9.8 MeV corresponds to a state at
the top of the barrier.

As a further check, the half-life for the actual energy, Q = 1.53 MeV, was computed using
GAMOW.

As a �nal check, the computation mode in GAMOW was changed to compute energies
for �xed potentials, which were obtained from the WKB computations. This was done for all
energies used previously in this section, including the Q-value of 1.53 MeV, to see how much
each energy changes. This gave a measure of the stability of the previous results.

2.1.5 Dependence on ` and Z for the Half-Life

To get an intuitive understanding for the circumstances which favour proton emission, one
may further check the dependence on ` and Z to the half-life. The ` dependence was tested
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by varying ` and �xing Q = 1.53 MeV for 53Co. As before, this was done by varying the
potential depth V0. It turned out that it was possible to �nd a bound state at E = 1.53 MeV
for V0 ∈ [30, 50] MeV for 1 ≤ ` ≤ 3. The method selected for computing the half-lives was
PFA.

In order to check whether the half-life depends signi�cantly on A, A was varied between
47 and 59, while �xing Z = 27 and ` = 3, and the corresponding half-lives were computed
using PFA.

Although the results (see Section 2.2.3) indicate quite a weak dependence on neutron
number, one still wants to preserve some properties of 53Co while varying Z, in order to
minimise the small dependence on A to the half-life, which after all is present. For this
isotope it means that nuclei not very far from the line of β-stability (for cobalt, this is de�ned
by 59Co), but on the neutron de�cient side, should be compared. For spherical nuclei, the
condition for β-stability for �xed A is [6, p. 22]

N − Z =

(
3

10
· e2

4πε0RC
A− 1

2
(Mn −MH)c2

)
/

(
asym
A

+
3

10
· e2

4πε0RC

)
, (2.38)

where N is the neutron number, RC is the Coulomb radius,Mn is the neutron mass,MH is the
mass of 1H, and asym is the nuclear symmetry parameter in the liquid drop model. Reasonable
estimates for the model parameters are RC = 1.2249 ·A1/3 fm, and asym = 55.24 MeV [6, pp.
16-17].

I am, however, interested in the condition for β-stability for �xed Z. Since nuclei with
Z ∈ [17, 97] along the line of β-stability satisfy 2Z ≤ A ≤ 2.5Z, it holds that 1.26Z1/3 ≤
A1/3 ≤ 1.36Z1/3. Therefore, the estimate A1/3 ≈ 1.31Z1/3 was made, and RC could be
treated as a constant for �xed Z. By substituting A by N + Z, Eq. 2.38 was solved for N ,
giving the result

Nβ−stable(Z) '

(
55.24 MeV − 1

2(Mn −MH)c2
)
Z + 3

5 ·
e2

4πε0·1.605Z1/3 fm
Z2

55.24 MeV + 1
2(Mn −MH)c2 − 3

5 ·
e2

4πε0·1.605Z1/3 fm
Z

=
54.85Z + 0.54Z5/3

55.63− 0.54Z2/3
. (2.39)

In order to test nuclei somewhat on the neutron de�cient side, and to include 53Co, the number
of neutrons was decreased by 6Z/27 = 2Z/9, resulting in

A(Z) = Z +Nβ−stable(Z)− 6Z

27
. (2.40)

Half-lives for Z = 17, 27, . . . , 97 were computed using PFA for A given by Eq. 2.40,
Q = 1.53 MeV, and ` = 3.

2.1.6 Spin-Orbit Interaction

So far, it has been assumed that l is a good quantum number in the nucleus. This is however
not the case in general, since the orbital angular momentum l couples to the spin s, which adds
a spin-orbit term, VLS , to the nuclear potential. Consequently, each single particle energy
level splits in two, depending on the projection of s (this may be either +1/2 or −1/2 for a
fermion).

In a spherically symmetric nucleus, the spin-orbit term may be parameterised as [6, p. 59]

VLS(r) = λ
1

r

∂VSO(r)

∂r
l · s, (2.41)
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where λ is the coupling strength of the spin-orbit interaction,

l · s =

{
`/2, j = `+ 1

2
−(`+ 1)/2, j = `− 1

2 ,
(2.42)

where j is the total angular momentum, and VSO(r) is the central �eld potential of the nucleus.
For a proton, VSO(r) = VWS(r) + VC(r), where

VWS(r) = − V0

1 + exp((r −R)/a)
, (2.43)

and VC(r) is de�ned by Eq. 2.7. Therefore,

1

r

∂VSO(r)

∂r
=
V0

ar

1

2 + cosh((r −R)/a)
− Ze2

4πε0
min

(
1

R3
,

1

r3

)
. (2.44)

In the case of a modi�ed harmonic oscillator potential, which is another model commonly
used for the nuclear potential, [6, pp. 58-61]

1

r

∂VHO(r)

∂r
= Mω2

0, (2.45)

and

VLS,HO = −2κ~ω0l · s, (2.46)

where ω0 is the frequency of the harmonic oscillator, and κ is a parameter for the l · s coupling
strength. Assuming VLS = VLS,HO, gives the relation

− 2κ~ω0l · s = λMω2
0l · s ⇔ λ = − 2κ~

Mω0
. (2.47)

For protons, the oscillator energy ~ω0 may be estimated as [6, p. 65]

~ω0 ' 41 ·A−1/3

(
1− 1

3

N − Z
A

)
= 41 ·A−1/3

(
2

3
+

2Z

A

)
. (2.48)

Thus,

VLS(r) ' −2κ~2

M

A1/3

41
(

2
3 + 2Z

A

) (V0

ar

1

2 + cosh((r −R)/a)
− Ze2

4πε0
min

(
1

R3
,

1

r3

))
l · s. (2.49)

The proton which is emitted in 53Co, is in the 1f7/2 nuclear subshell; thus, n = 0 and
` = 3. The principal quantum number is de�ned as [6, p. 78]

N = 2n+ `, (2.50)

so N = 3 in this case. Following [6, p. 71], κ = 0.090 at this level. The resulting spin-orbit
term Eq. 2.49 was thus added to the nuclear potential, and the corresponding half-life for
53Co was computed using PFA.
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Figure 2.1 � (a) E�ective potential barrier Veff (r) de�ned by Eq. 2.6, along with the nuclear
potential V (r) = VWS(r) + VC(r), and the angular momentum dependent potential V`(r), com-
puted for 53Co using ` = 3. (b) E�ective potential barrier Veff (r) (blue) for 53Co, along with
lowest energy eigenvalue E1 = 1.53 MeV (black), and corresponding probability density ψ(r)2r2

plotted at E1 (green; scaled to �t into the plot).

2.2 Results

2.2.1 Results from Di�erent Methods

The e�ective potential which was used for 53Co throughout Section 2.1 (except for the spin-
orbit part added in Section 2.1.6), Veff Eq. 2.6, divided into the individual parts V =
VWS + VC , and the angular momentum part Vl using l = 3, is shown in Figure 2.1a. This
potential corresponds to a potential depth V0 = 55.07 MeV. Corresponding probability density
for the wave function, i.e., ψ(r)2r2, along with proton energy E1 and Veff , are shown in Figure
2.1b. The resulting half-life in the WKB approximation was t1/2 ≈ 1.8 · 10−16 s, i.e., a factor
of about 1017 from the experimental estimate of ∼ 10 s.

The WKB results for the isotopes 105Sb, 113Cs, 147Tm, 157Ta and 165Ir are given in Table
2.1, �rst two columns. These agree very well with the results given in [1].

In TPA, the computed half-life for 53Co was 2.0 · 10−16 s, which is similar to the value
obtained for WKB. Analogous computed half-lives for 105Sb, 113Cs, 147Tm, 157Ta and 165Ir
are presented in Table 2.1 and compared with the results in [1]. The results all agree well
with previous calculations.

Regarding PFA, comparisons of di�erent values of t1/2 computed both for 53Co and for
the reference isotopes at di�erent grid points are given in Figure 2.2. As seen, they are all
more or less constant throughout the interval. The values of t1/2, de�ned in Eq. 2.31, for
105Sb, 113Cs, 147Tm, 157Ta and 165Ir are given in Table 2.1, where they are compared with
the results from the WKB and the TPA methods. All calculations agree well between the
di�erent methods. For 53Co, the value obtained from PFA is 1.8 · 10−16 s, which is also in
good agreement with the other methods.

The computed half-life for 53Co using GAMOW and the same parameters as for the other
methods, was t1/2 = 1.8 ·10−16 s, which is in perfect agreement with WKB and PFA, although
slightly lower than the result from TPA. A summary of the values of t1/2 for 53Co obtained
from di�erent methods is given in Table 2.2.

For the iterative improvement of PFA, it turned out that the change in results for 53Co
was marginal.
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Table 2.1 � Calculated half-lives for proton emission for some nuclei, using the WKB, TPA and
PFA methods described in Sections 2.1.1, 2.1.2 and 2.1.3, respectively. These results are compared
with results given in Table II in [1], when applicable, obtained by using the same methods. Note
that the PFA method was not used in [1].

Nucleus WKB TPA PFA
This thesis Ref. [1] This thesis Ref. [1]

105Sb 18 s 19 s 21 s 21 s 20 s
113Cs 490 ns 510 ns 570 ns 570 ns 540 ns

147Tm 380 ms 370 ms 400 ms 380 ms 360 ms
157Ta 210 ms 210 ms 230 ms 230 ms 220 ms
165Ir 120µs 110µs 120µs 110µs 100µs
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2
(s

)
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(b)

Figure 2.2 � Evaluations of t1/2 for di�erent grid points on the intervals r ∈ [r1 + 0.15(r2 −
r1), r1 + 0.50(r2 − r1)] (di�erent for di�erent nuclei) using the PFA method. (a) Comparison
between computed half-lives for 105Sb, 113Cs, 147Tm, 157Ta and 165Ir. Note the logarithmic scale.
(b) Analogous for 53Co. Note: linear scale.

Table 2.2 � Half-lives for 53Co obtained by each of the methods WKB, TPA, PFA and GAMOW.

Method t1/2 (s)

WKB 1.80 · 10−16

TPA 2.00 · 10−16

PFA 1.79 · 10−16

GAMOW 1.78 · 10−16

2.2.2 Test of Energy Window

Obtained values of t1/2 for Q = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 9.8 MeV for each of the meth-
ods described in Section 2.1 are plotted in Figure 2.3, along with values normalised to the
ones obtained by GAMOW. As seen, the results obtained by WKB all agree very well with
GAMOW, except for Q = 9.8 MeV. The values obtained by TPA are consistently too high.
PFA typically falls in between the results from GAMOW and TPA. The original version agrees
well with GAMOW at low energies, Q . 4 MeV. The improved version described in Section
2.1.3 is generally more accurate than the original PFA, but the values are lower than the
WKB results for Q & 7 MeV, and the agreement with GAMOW is poor for Q & 8 MeV.

The change in energy obtained by using �xed potentials in GAMOW, as compared to the
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Figure 2.3 � (a) Half-lives obtained from the methods WKB, TPA and PFA, as well as the
code GAMOW [2] are plotted for 53Co at various energy levels (computed as if there would be
a resonant state with ` = 3 at these levels). Here, PFA1 denotes the original version of PFA,
whereas PFA2 denotes the improved version described in the end of Section 2.1.3. (b) Values
from WKB, TPA and PFA normalised to the results obtained by GAMOW.

original results, are given in Table 2.3. As seen, there are only small changes in decay energy
for Q . 7 MeV, which is consistent with the high accuracy in decay time obtained by PFA
for these energies. At higher energies, the energies obtained by GAMOW start to deviate
signi�cantly from my results. For the potential obtained by my programme for Q = 9.8 MeV
(which is very close to the top of the barrier), GAMOW was not able to �nd any bound state
at all.

Table 2.3 � Change in energy (∆E) when using GAMOW for �xed potentials, obtained from
Golden Section search as described in Section 2.1.3, for Q-values given in the left column. Cor-
responding potential depths are given in the central column. A positive sign for ∆E corresponds
to an increase in energy obtained by GAMOW.

Q (MeV) V0 (MeV) ∆E (keV)

1.0 55.9738 +3.4
1.53 55.0418 +3.4
2.0 54.2027 +3.3
3.0 52.3688 +3.2
4.0 50.4514 +2.0
5.0 48.4367 -7.0
6.0 46.3068 -29.5
7.0 43.8834 +15.5
8.0 40.9409 +186
9.0 36.6824 +729
9.8 31.1966 no bound state found

2.2.3 Dependence on ` and Z

Computed half-lives for di�erent values of ` for 53Co are given in Table 2.4. These indicate
that an increase in ` by one unit increases the half-life by roughly a factor of 12. Extrapolating
this to the observed angular momentum ` = 9, therefore gives in increase in half-life by a factor
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of 3 · 106, i.e., to t1/2 ∼ 5 · 10−10 s.

Table 2.4 � Proton emission half-lives for nuclei with Z = 27, A = 53, and Q = 1.53 MeV,
computed for di�erent values of ` by using PFA.

` t1/2 (s)

1 1.2 · 10−18

2 1.5 · 10−17

3 1.8 · 10−16

Results for the dependence on A for di�erent isotopes of cobalt are given in Figure 2.4a.
These indicate quite a weak dependence on A, with a relative di�erence in half-life between
two nuclei on the interval of . 40%.
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Figure 2.4 � (a) Computed half-lives for cobalt (Z = 27) for A ∈ [47, 59], where Q is �xed
at 1.53 MeV and ` = 3. (b) Computed half-lives for some isotopes on the interval Z ∈ [17, 97],
where A is given by Eq. 2.40, Q is �xed at 1.53 MeV, and ` = 3.

The results for the Z-dependence on the half-life are given in Figure 2.4b. Due to the
increase in thickness of the Coulomb barrier with increasing Z, the half-life increases by more
than two orders of magnitude for each increment in Z by 10.

2.2.4 Spin-orbit Interaction

After adding the spin-orbit term de�ned by Eq. 2.49 to the nuclear potential, the resulting
PFA half-life for 53Co was 1.5 · 10−16 s, i.e., a slight decrease from the result in Section 2.1.3.
Moreover, the potential depth decreased to V0 = 49.72 MeV.

2.3 Discussion

The half-lives calculated using each of the methods described in Section 2.1 agree very well,
both for 53Co and for each of the isotopes. Moreover, the results for the reference isotopes
agree well with the results in [1] and the results for 53Co agree well with the results obtained
by GAMOW, which were computed using a di�erent approach. Therefore, I conclude that
all calculations in 2.1 are indeed correct and that the methods WKB, TPA and PFA are
interchangeable for a simple, spherical symmetric model, at least for states with a Q-value
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well below the height of the potential barrier. This also validates that PFA may be used to
compute half-lives for proton emission, which has likely not been tested before.

The iterative approach described in Section 2.1.3 indeed gives improved results in most of
the energy range. However, the underestimate in decay time close to the top of the potential
barrier makes this method quite unpredictable. This is something which should be further
studied, and may be connected to the problem with convergence at large Q-values if iterating
Eq. 2.32 directly. The modi�ed formula for computing the complex energy (Eq. 2.36) should
also be validated further. If using a slightly smaller value of ImE (e.g. ImE = 0.4~λ), the
results agreed better with WKB and GAMOW, but since the physical implication of this
modi�cation is uncertain, one should be careful with drawing any conclusions from it. Since
the iterative approach was both time consuming and had a very small e�ect on the computed
half life of 53Co, this method and its shortcomings of were not investigated further.

Although the methods studied in this part all work well in a spherical model, where
structural changes are not considered, at least WKB has major drawbacks. When studying
deformed nuclei, the barrier thickness would be di�erent in di�erent directions, which would
make it di�cult to derive a useful equation for the barrier penetrability. Moreover, when
including structural changes, the properties of the potential barrier (such as deformation)
would change during decay, making this approach invalid.

When using TPA, again the solution is built on properties of the nuclear potential, which
would cause similar problems as when using WKB. In particular, one needs to evaluate the
wave functions at the top of the barrier of a spherically symmetric potential (cf. Eq. 2.14).
Moreover, the half-lives obtained using TPA are consistently too high (cf. Table 2.1 and
Figure 2.3).

On the other hand, PFA has none of the drawbacks present for WKB and TPA. Therefore,
this method will be used further on in this thesis, whereas WKB and TPA are rejected.

The half-life obtained for 53Co using a state with ` = 3 and Q = 1.53 MeV was in this
part about 1.5 · 10−16 s when including the spin-orbit term (cf. Section 2.2.4). This is ∼ 17
orders of magnitude lower than the experimental estimate. Here, several simpli�cations have
been made. In particular, in order to get the observed Q-value, it is required that ` = 9,
and that there are large structural changes in the nucleus. Both of these requirements have
here been lifted, in order to create a state which �ts into this model. With ` = 9, it was
not possible to form a bound state in the spherical model, and structural changes have been
left until later. If having a state where the change in angular momentum ∆` = 3 between
the mother and daughter nuclei, the Q-value would be negative, which can be easily seen if
studying level schemes of 53Co and 52Fe [3]. Therefore, the situation studied in this section
does not correspond to a physical situation, and a re�ned model is required.

To get a measure of how much an increase in angular momentum to ` = 9 would a�ect the
results, one may study Table 2.4. This indicates that � mostly due to the increased thickness
of Veff � the half-life increases by a factor of ∼ 12 for each increment in `. Extrapolating this
to ` = 9, thus gives an increase in half-life to ∼ 4.5 · 10−10 s.

The number of protons in the nucleus is a much more signi�cant factor for the decay time
of proton emission, than the number of neutrons. The reason for this is that the thickness of
the Coulomb barrier increases with increased nuclear charge. Therefore, lighter nuclei, such as
53Co, are expected to decay much faster in the proton branch than heavier nuclei, if excluding
e�ects from structural changes.



Chapter 3

Inclusion of Structural Changes: the

Nuclear Pairing Interaction

In order to take into account changes in nuclear structure, a treatment of the nuclear pairing
interaction is included in this part. This is an interaction which favours pairs of protons and
neutrons, and as a consequence, nuclear states are not pure single particle states at a certain
energy, but are rather superpositions of single particle states with di�erent energies. Such a
superposition is called a quasiparticle. In this description, the mother nucleus being subject
to proton emission may be described as a quasiparticle excitation of the daughter nucleus, and
excited states may be formed by adding additional quasiparticles. By using this treatment,
the overlap between the mother and the daughter nucleus may be calculated, which adds
additional factors to the PFA method described in Section 2.1.3.

3.1 Methods

3.1.1 Basic Theory

Due to the pairing interaction, which is described in detail in [6, pp. 290-321], the distribution
of nucleons in a nucleus follow a Fermi distribution. This means that the unpaired energy
states for a given type of particles (i.e., protons or neutrons) mix. Consequently, each state
in a nucleus with n energy levels is a superposition of up to n unpaired eigenstates. These
eigenstates are called particle states. Moreover, since the number of nucleons is smaller than
the number of energy levels, one may also de�ne hole states, which are complementary to
the particle states. A superposed state of n particle states and n hole states, is called a
quasiparticle state.

Now denote the probability amplitude for a particle at energy level i to be in the en-
ergy eigenstate j by Vij and the corresponding hole amplitude by Uij . By extending these
amplitudes to all indices i and j, one may construct the matrices

U = (Uij), V = (Vij). (3.1)

The particle and hole probabilities for each quasiparticle are then given by the diagonal values
of V HV and UHU , respectively. Since the total probability must be equal to one, it is required
that [9, p. 246]

UHU + V HV = 1. (3.2)

In practice, the pairing interaction arises by adding an interaction term ∆, which mixes
particle and hole states, to the Hamilton operator. By adding this interaction, it is however

17
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no longer guaranteed that the particle number is conserved. This is resolved by adding a
Lagrange multiplier, λ, to the Hamiltonian. Physically, λ de�nes the Fermi level of the nucleus
[6, p. 304]. Since both particle and hole states need to be included in the full Hamiltonian,
this consists of 2n states. The resulting eigenvalue problem may be written as [9, p. 254](

h ∆
∆H −h

)(
Ui
Vi

)
= Ei

(
Ui
Vi

)
, (3.3)

where

Ui =


U1i
...
Uji
...
Uni

 , Vi =


V1i
...
Vji
...
Vni

 , (3.4)

and only positive (or negative) eigenvalues Ei are taken into account. These equations Eq.
3.3 are called the Hartree-Fock-Bogoliubov (HFB) equations. By solving these, the matrices
U and V are constructed. Following the convention of [10, pp. 223-225],

hij = (E0
i − λ)δij , (3.5)

where δ is a Kronecker delta, and E0
i are energy eigenvalues of the original Hamiltonian.

Similarly [10, p. 237],
∆ij = ∆ · (−1)α+Ωδij̄ , (3.6)

where α is either 1
2 or −1

2 (in the end, it turns out that the choice of sign does not matter),
Ω is the projection of the angular momentum vector j along the z axis, and ∆ is a constant.
Moreover, j is the index of the state conjugate to state j. In order to satisfy the unitarity
requirements [9, p. 246]

UHU + V HV = 1,

UTV + V TU = 0, (3.7)

∆ must be skew-symmetric. This may be resolved by letting j states have opposite spin
projections to states j.

The pairing gap ∆ may e.g. be obtained by solving the gap equation described in [6, p.
305], when applicable. For many nuclei, one may make the approximation (in particular for
nuclei with even Z)

∆ =
12√
A
. (3.8)

For spherically symmetric nuclei, Ω = m, where m is the angular momentum projection.
Since m has integer spacing, the phase can be chosen such that ∆ij̄ is real with alternating
sign.

The particle number is given by (Eq. (6.53) in [9, p. 231] applied to Eq. (7.7-7.9) in [9,
pp. 246-247])

〈N〉 = tr(V HV ). (3.9)

This needs to be kept at the correct number of particles, i.e., 〈N〉 = Z (number of protons
in the daughter nucleus), which is done by solving Eq. 3.3 iteratively, and minimising the
corresponding value of | 〈N 〉 − Z| with respect to λ.
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3.1.2 Practical Computations

In order to solve the HFB equations, one needs to �nd all energy levels of the desired nucleus,
along with their degeneracy, which is

g = 2j + 1. (3.10)

The energy levels were found by starting from the potential Veff given by Eq. 2.6 using the
value of V0 obtained in Section 2.1.6, and adding a spin-orbit term de�ned by Eq. 2.49. This
was repeated � using the same value of V0 � for j = `±1/2, for all ` ∈ Z for which a potential
barrier appears. This was done to include all bound states in the HFB Hamiltonian. The
Schrödinger equation was then solved for the modi�ed potential V̄ = Veff (`, j) − Vmin(`, j),
where the function over ` and j denotes that Eq. 2.6 and Eq. 2.49 are computed for di�erent
(`, j). Moreover

Vmin(`, j) ≡ min {Veff (`, j); r < rmax} , (3.11)

where rmax is de�ned in Section 2.1.1. This subtraction was done to put the potential mini-
mum at E = 0, which was necessary to �nd bound states with negative energy in the nuclear
potential. Otherwise the Matlab routine used for solving the Schrödinger equation only
�nds states with E > 0.

When solving the Schrödinger equation, the approach used in Section 2.1.3 was used,
and only wave functions with maxima within the barrier were accepted. In order to obtain
the correct energy levels, Vmin(`, j) was added to each of the resulting energy eigenvalues.
Moreover, κ was adjusted to match the current energy level, following Table 6.2 in [6, p. 71],
and using Eq. 2.50. The quantum number n was found by counting bound states of the same
` and j. Then, the state with m:th lowest energy (starting at m = 0) has quantum number
n = m. Resulting energies, along with their degeneracies, were compared with states from an
estiblished nuclear model, the modi�ed harmonic oscillator model [6, pp. 59-61].

To construct the HFB Hamiltonian, the energy levels Ei were duplicated with the cor-
responding degeneracy, and sorted. In this way, an initial guess for λ was obtained as
λ ∈ (EZ + EZ+1)/2 ± 2 MeV, which was re�ned by minimising | 〈N 〉 − Z| using 19 itera-
tions of Golden Section search by solving Eq. 3.3 repeatedly. Only positive eigenvalues were
used to construct U and V . The �nal values of U and V were used to evaluate the signi�cance
of pairing to the decay time.

3.1.3 E�ect on Half-Life Due to Pairing

Theory

To determine how the pairing interaction a�ects the decay time for a nucleus undergoing
proton emission, one may derive an expression for the probability �ow when pairing is in-
cluded, and use this to calculate the half-life (cf. Section 2.1.3). For α decay, the probability
amplitude at a distance r from the nucleus may be obtained by computing the projection
between the mother nucleus, and the combined wavefunction of the daughter nucleus and
the α particle, computed at distance r. For a mother nucleus with angular momentum J , a
daughter nucleus with angular momentum j, and an α particle with angular momentum `
this projection integral may be written as [8]

gJj`(r, t) = Aα

∫ ∑
m

CJM`m,j(M−m)Y`m(Ω)Ψj(M−m)(η)Υα(ξ)Φ∗JM (x1, . . . ,xA, t)dξdηdΩ. (3.12)

Here,

Aα =

((
Z
2

)(
N
2

))1/2

(3.13)
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is a factor required to make the wave function antisymmetric, CJM`m,j(M−m) are Clebsch-Gordan
coe�cients, Y`m(Ω) are spherical harmonics for the α particle wave function, Υα(ξ) is the
intrinsic wave function of the α particle, Ψj(M−m)(η) is the wave function of the daughter
nucleus, and ΦJM (x1, . . . ,xA, t) is the wave function of the mother nucleus. The coordinates
(x1, . . . ,xA) are functions of (r, ξ, η,Ω) and include summations of all spin components. The
quantum number M is chosen such that CJM`m,j(M−m) is non-zero for some values of m. For a
resonant state, as is the case here,

ΦJM (x1, . . . ,xA, t) = ΦJM (x1, . . . ,xA) exp

(
− i
~

(E − i2Γ)t

)
, (3.14)

so gJj`(r, t) may be separated into

gJj`(r, t) = gJj`(r) exp

(
− i
~

(E − i2Γ)t

)
. (3.15)

Since proton emission is very similar to α decay, the same method may be applied here. In
this case, the situation is even somewhat simpler. In particular, the proton may be regarded
as a point particle with spin s = 1/2. However, since the proton spin is non-zero, this couples
to the orbital angular momentum, giving a total angular momentum of j′ = ` ± 1/2. This
also has consequences for the wave function, since the spin function couples to the spherical
harmonics. Therefore, the intrinsic proton wave function (for a given m-state) may be written
as

Υp(ξ,Ω) = δ(ξ)[Y`(Ω), χ]j′m, (3.16)

where the subscript p is used to emphasise that this is a proton wave function, χms is the
spin wave function of the proton (ms = ±1/2), and

[Y`(Ω), χ]j′m ≡
∑
m`,ms

Cj
′m

`m`,
1
2
ms
Y`m`

(Ω)χms . (3.17)

Moreover, the resulting wave function is already antisymmetric; thus Ap = 1. By evaluat-
ing the projection integral Eq. 3.12 over the same set of coordinates for all particles, the
probability amplitude for the proton turns into

gJjj′`(r) =

∫ ∑
m

CJMj′m,j(M−m)[Y`(ΩA), χ]j′m
δ(rA − r)

r2
A

Ψj(M−m)(x1, . . . ,xA−1)

Φ∗JM (x1, . . . ,xA)dx1 . . . dxA. (3.18)

Here, rA is the radial coordinate of xA, ΩA is the angular coordinate of xA, and the division
by r2

A is required since the probability density decreases by r2 in spherical coordinates. This
is compensated for by the Jacobian.

Expanding Υp in basis functions RN`(rA)[Y`(Ω), χ]jm, where the radial part is obtained
by solving the radial Schrödinger equation for di�erent `, yields

Υp(r, rA,ΩA) =
∑
N`jm

RN`(rA)[Y`(ΩA), χ]jm 〈RN`(rA)[Y`(ΩA), χ]jm|Υp(r, rA,ΩA)〉 , (3.19)

where

〈RN`(r)[Y`(Ω), χ]jm|Υp(r
′, r,Ω)〉 =

∫
R3

R∗N`(r)[Y`(Ω), χ]∗jm
δ(r − r′)

r2
[Y`′(Ω), χ]j′m′r

2drdΩ

= R∗N`(r
′)δjj′δmm′δ``′ . (3.20)
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Here, di�erent N correspond to eigenstates of di�erent energy; if using a harmonic oscillator
basis, N is the principal quantum number. Moreover, δ denotes a Kronecker delta, and a
di�erent convention for the quantum numbers has been used than above. Furthermore, it has
been used that [Y`(Ω), χ]jm form an orthonormal basis. Thus,

Υp(r, rA,ΩA) =
∑
N

R∗N`(r)RN`(rA)[Y`(ΩA), χ]j′m, (3.21)

where again the same convention as in Eq. 3.18 has been used.
Inserting Eq. 3.21 into Eq. 3.18, then yields

gJjj′`(r) =
∑
m,N

CJMj′m,j(M−m)R
∗
N`(r)

∫
Φ∗JM (x1, . . . ,xA)

Ψj(M−m)(x1, . . . ,xA−1)RN`(rA)[Y`(ΩA), χ]j′mdx1 . . . dxA. (3.22)

Here, the wave function RN`(rA)[Y`(ΩA), χ]jm is identi�ed as the wave function of the emitted
proton, with respect to the nucleus. Using the short hand notations |MJM 〉 for the wave
function of the mother nucleus, |Dj(M−m)〉 for the wave function of the daughter nucleus, and
|pNj′`m〉 for the proton wave function, Eq. 3.22 simpli�es into

gJjj′`(r) =
∑
m,N

CJMj′m,j(M−m)R
∗
N`(r) 〈MJM |Dj(M−m) ⊗ pNj′`m〉 . (3.23)

The emitted proton can be regarded as a particle created in the |N`j′m〉 subshell of the
daughter nucleus. Thus,

|Dj(M−m) ⊗ pNj′`m〉 = a†N`j′m |Dj(M−m)〉 , (3.24)

where a† is a particle creation operator. This gives the general result

gJjj′`(r) =
∑
m,N

CJMj′m,j(M−m)R
∗
N`(r) 〈MJM |a†N`j′m|Dj(M−m)〉 . (3.25)

To compute the overlap integral, one may make a few di�erent approximations. By assum-
ing spherical symmetry in both mother and daughter nuclei (I will later leave this assumption),
that the pairing interaction strength ∆mother = ∆daughter, and that j = 0 for the daughter
nucleus, which is the case for 52Fe, the mother nucleus may be regarded as a quasiparticle
excitation of the daughter nucleus. Then

|MJM 〉 = β†k |D00〉 , (3.26)

with the quasiparticle creation operator β†k de�ned as [9, p. 246]

βk =
∑
l

U∗lkal + V ∗lka
†
l , (3.27)

where U and V are de�ned in Eq. 3.4. This creates a quasiparticle at a desired orbital k in
the nucleus, i.e., at correct energy and angular momentum. In this case,

CJMj′m,0(M−m) = δMmδJj′ ,

where δ denotes a Kronecker delta, so

|gJ0j′`(r)|2 =

∣∣∣∣∣∑
N

R∗N`(r) 〈D00|βka†N`j′m|D00〉

∣∣∣∣∣
2

δMmδJj′ (3.28)
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for a given orbital k. Moreover, there is an inverse relation to 3.27, which reads as [9, p. 246]

a†l =
∑
k

U∗lkβ
†
k + Vlkβk. (3.29)

Since the daughter nucleus is a BCS (Bardeen-Cooper-Schrie�er) vacuum state, i.e, a
quasiparticle vacuum state, the following relations hold [6, pp. 294 & 320]:

〈D00|βµβ†ν |D00〉 = δµν , (3.30)

and
βν |D00〉 = |null〉 . (3.31)

Using these relations and Eq. 3.29, one obtains

〈D00|βka†N`j′m|D00〉 = U∗N`j′m,k, (3.32)

which is known as the spectroscopic factor, and Eq. 3.28 reduces to

|gJ0j′`(r)|2 =

∣∣∣∣∣∑
N

R∗N`(r)U
∗
N`j′m,k

∣∣∣∣∣
2

δJj′ . (3.33)

More generally, one may de�ne a mother nucleus |M̃JM 〉, which is de�ned by basis states
in the mother nucleus, and satis�es

|M̃JM 〉 = β̃†k |D̃00〉 , (3.34)

where β̃†k is a quasiparticle creation operator in the common basis of |M̃JM 〉 and |D̃00〉. Then
the overlap is

〈M̃JM |a†N`j′m|D00〉 = 〈D̃00|β̃ka†N`j′m|D00〉

=
∑
i

〈D̃00|
(
Ũ∗ikai + Ṽ ∗ika

†
i

)
a†N`j′m|D00〉 . (3.35)

In order to compute this overlap, one may use the relations [9, p. 619]

〈D̃|a†l ak|D〉 = 〈D̃|D〉
(
V ∗
(
UHŨ + V H Ṽ

)T−1

Ṽ T

)
kl

,

〈D̃|alak|D〉 = 〈D̃|D〉
(
V ∗
(
UHŨ + V H Ṽ

)T−1

ŨT
)
kl

,

〈D̃|a†l a
†
k|D〉 = −〈D̃|D〉

(
U∗
(
UHŨ + V H Ṽ

)T−1

Ṽ T

)
kl

, (3.36)

along with the anticommutator relation for fermions, [6, p. 294]{
aµ, a

†
ν

}
= δµν . (3.37)

Applying these relations to Eq. 3.35 then yields

〈M̃JM |a†N`j′m|D00〉

= 〈D̃00|D00〉

(
Ũ∗N`j′m,k −

(
Ṽ
(
UHŨ + V H Ṽ

)−1 (
V HŨ∗ + UH Ṽ ∗

))
N`j′m,k

)
(3.38)
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In this way, the overlap integral 〈M̃JM |a†N`j′m|D00〉 reduces to compute the overlap be-
tween two states of equally many particles. This may be done by using the Onishi formula
[9, p. 618], which in this case is formulated as

〈D̃00|D00〉 =

√
det(UHŨ + V H Ṽ ). (3.39)

Therefore, a generalisation of Eq. 3.33 is

|gJ0j′`(r)|2 =
∣∣∣det(UHŨ + V H Ṽ )

∣∣∣
·

∣∣∣∣∣∑
N

R∗N`(r)

(
Ũ∗N`j′m,k −

(
Ṽ
(
UHŨ + V H Ṽ

)−1 (
V HŨ∗ + UH Ṽ ∗

))
N`j′m,k

)∣∣∣∣∣
2

δJj′ . (3.40)

The function gJjj′`(r) is interpreted as a probability amplitude, and may therefore be used
to calculate the probability �ow. Therefore, |ψ(r)|2 may be replaced by |gJjj′`(r)|2 in Section
2.1.3 to compute the half-life when taking pairing into account.

In practice, each of the energy levels is degenerate due to di�erent angular momentum
projections. Therefore, it is impossible to deduce the m quantum number of the daughter
nucleus, and di�erent Ũ∗N`j′m,k mix in an unpredictable way. This was resolved by slightly
modifying the elements in the pairing Hamiltonian in Eq. 3.3 to

hij = h0
ij + εmiδij , (3.41)

where h0 is the original Hamilton operator, ε is an in�nitesimal constant, and mi is the
m quantum number corresponding to state i (degenerate states have di�erent m). This
splits states with di�erent m, and therefore only one component in U and V , respectively,
contributes to the sum in Eq. 3.40.

Applications to 53Co

For 53Co, the valence proton is in the 1f7/2 subshell, i.e., the proton wave function has
j = 7/2 and ` = 3. The daughter nucleus, 52Fe, is on the other hand in its 0+ ground state
[3], meaning that j = ` = 0 for this nucleus. So far, I have neglected the in�uence of neutrons,
which is an over-simpli�cation, since the neutrons have j = 6 in the mother nucleus, and this
angular momentum is transferred to the proton during the decay process. This requires some
special treatment for the neutrons, and will therefore be postponed until later. Neglecting
the in�uence of neutrons, it is therefore assumed that the emitted proton has total angular
momentum j = 7/2. With this assumption, Eq. 3.33 transforms into∣∣∣∣g 7

2

0 7
2

3
(r)

∣∣∣∣2 =

∣∣∣∣∣∑
N

ψ∗(r)U∗
N3 7

2
M,k

∣∣∣∣∣
2

(3.42)

in this treatment, where k denotes a state at the 1.53 MeV level. Here, I have used that the
radial wave function is simply ψ(r), as de�ned in Section 2.1.1, for all states at E = 1.53 MeV.
Moreover, only one value of N contributes to this level, which is a consequence of �nding
(within numerical precision) exact solutions to the Hamilton operator using a Woods-Saxon
potential, instead of expanding the solution in some basis. In this particular case,

|gJjj′`(r)|2 = C · |ψ(r)|2.

Here, C > 0 is the constant of proportionality, which means that the half-life increases by a
factor of 1/C when taking pairing into account.
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Three di�erent models for pairing were tested. In the �rst model, the pairing interaction
is neglected, i.e., ∆ = 0, to check that this method reproduces the results in Section 2.1.3. In
the second model, ∆ = 12/

√
A as motivated in Section 3.1.1. In the third one,

∆odd = x ·∆even, 0 ≤ x ≤ 1, (3.43)

where ∆odd is used for odd-even nuclei (here 53Co), and ∆even for even-even nuclei (here 52Fe),
to illustrate that the pairing interaction is weaker in odd-even nuclei than in even-even nuclei.
According to Gillis Carlsson, a realistic value is x ≈ 0.8.

In the �rst case, the HFB equations Eq. 3.3 are diagonal, and thus the energy eigenvalues
are given by hii = E0

i − λ, with the basis vectors as eigenvectors. Only selecting Ei = hii > 0
implies that

Uij =

{
δij , E0

i > λ

0, E0
i < λ.

(3.44)

Here, one cannot really use the same approach as above, since the Fermi level is located at
λ = 1.53 MeV, i.e, directly at the 1f7/2 energy level. In order to conserve particle number, six
states need to be occupied, and the remaining two are not. Thus, the emitted proton must
be created at one of these levels, and∣∣∣∣g 7

2

0 7
2

3
(r)

∣∣∣∣2 = |ψ(r)|2, (3.45)

which is the same result as in Section 2.1.3. This validates the derivation in Section 3.1.3.
In the second case, Golden Section search was used to �nd a Fermi level which preserves

the particle number Eq. 3.9, and then using Eq. 3.42 to compute the corresponding increase
in half-life relative to the value obtained in Section 2.1.3.

In the third case, Ũ and Ṽ were computed for di�erent values of x ∈ [0, 1], and the
resulting projection integrals and corresponding increases in half-life were computed using
Eq. 3.40. Due to numerical problems when setting x = 0, x = 5 · 10−4 was used as the lowest
value. Particular attention was taken to the realistic value of x ≈ 0.8.

3.2 Results

The energies of all bound states in 53Co, which were later used for solving the HFB equations
Eq. 3.3, along with their degeneracies, are given in Table 3.1. Here, two observations are made.
First, if neglecting pairing, the highest �lled level corresponds to the ` = 3 state, where the
proton subject to proton emission is supposed to be. Second, the positions of states with
negative energy agree well with existing nuclear models, reproducing the magic numbers (see
e.g. Figure 6.3 in [6, p. 60]). On the contrary, for positive energies, which correspond to
quasi-bound states, the spectrum is more dense, and these levels do not correspond to the
magic numbers.

When using the pairing gap ∆ = 12/
√
A in the HFB equations 3.3, the particle number

3.9 was preserved for λ = 0.71 MeV. Using this value of λ, the obtained probability density
Eq. 3.42 is ∣∣∣∣g 7

2

0 7
2

3
(r)

∣∣∣∣2 = 0.723 · |ψ(r)|2,

which gives an increase in half-life by a factor of 1.38 relative to the PFA result given in
Section 2.2.4, yielding the result t1/2 = 2.1 · 10−16 s.
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Table 3.1 � Computed energy levels in 53Co, along with corresponding angular momentum
quantum numbers `, j, and degeneracies.

E (MeV) ` j Degeneracy
-25.5 0 1/2 2
-17.2 1 3/2 4
-13.7 1 1/2 2
-8.1 2 5/2 6
-4.5 0 1/2 2
-2.4 2 3/2 4
+1.5 3 7/2 8
+2.4 1 3/2 4
+2.5 3 7/2 8
+2.8 3 7/2 8
+3.3 1 3/2 4
+3.3 0 1/2 2

E (MeV) ` j Degeneracy
+3.4 1 1/2 2
+3.7 1 3/2 4
+4.3 1 1/2 2
+4.8 1 3/2 4
+5.0 1 1/2 2
+6.3 2 5/2 6
+6.8 3 5/2 6
+7.1 3 5/2 6
+8.7 3 5/2 6
+10.8 4 9/2 10
+12.1 4 9/2 10

Resulting overlaps 〈D̃00|D00〉 and spectroscopic factors when using di�erent values of ∆
in the mother nucleus than in the daughter nucleus are shown in Figure 3.1. For the realistic
value ∆mother = 0.8∆daughter, 〈D̃00|D00〉 = 0.984. At this level, the spectroscopic factor∣∣∣∣∣Ũ∗N3 7

2
M,k
−
(
Ṽ
(
UHŨ + V H Ṽ

)−1 (
V HŨ∗ + UH Ṽ ∗

))
N3 7

2
M,k

∣∣∣∣∣
2

= 0.725, (3.46)

i.e., almost identical to using ∆mother = ∆daughter, resulting in an increase in t1/2 by a factor
of 1.42 from the original value, again resulting in t1/2 = 2.1·10−16 s. This results in a negligible
di�erence from using the same pairing gap.

In the extreme case x = 5 · 10−4, i.e., essentially no pairing gap in the mother nucleus,
〈D̃00|D00〉 = 0.17 and the spectroscopic factor 0.97, resulting in an increase in half-life by a
factor of ∼ 35, to t1/2 = 5.4 ·10−15 s. In this case, pairing would have quite a signi�cant e�ect
on the half-life.
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Figure 3.1 � (a) Overlap 〈D̃00|D00〉 between the daughter nucleus 52Fe, denoted by |D00〉, with
∆ = 12/

√
A, and the mother nucleus 53Co with one quasiparticle removed, denoted by |D̃00〉,

with ∆ = x · 12/
√
A, as a function of x. (b) Spectroscopic factors de�ned analogously as in Eq.

3.46 for the 27th proton state in the mother nucleus, for the same situation as in (a).
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3.3 Discussion

When looking at the energy spectrum used for calculating the pairing overlap (Table 3.1), the
magical numbers are preserved for bound states, but not for quasibound states. The reason
for the latter is that unbound states form a continuous spectrum, whereas bound states appear
at discrete levels. Therefore, quasibound states appear somewhere in between, with a much
denser spectrum than for bound states, which is exactly what is observed.

In this part, the computed half-life did not change much from the original estimate in
part 2. Nevertheless, this is an important step for taking into account structural changes in
deformed nuclei, as will be seen in Section 4.1.

Using di�erent pairing gaps in the mother and daughter nuclei, appeared for realistic
di�erences to only have a marginal e�ect on the results, and it was therefore decided to
neglect this e�ect further on. On the other hand, if there is a large di�erence in pairing gap
between the mother and daughter nuclei, as indicated by some theoretical models (according
to Gillis Carlsson), this would be a signi�cant hindrance factor for the decay. Therefore,
if doing more re�ned calculations, this is an e�ect which should be considered. Another
improvement would be to compute the pairing gap using a more advanced model, such as in
[9, p. 254]. For the purpose of this thesis, however, this was concluded not to be worth the
e�ort.

Here, I should also mention the increase in spectroscopic factor observed when using a
smaller pairing gap. This is most likely a consequence of the Fermi function being less smooth
when decreasing the pairing gap, resulting in more well-de�ned particle and hole states.



Chapter 4

Deformation

So far, it has been assumed in all computations that both the mother and the daughter nucleus
are spherically symmetric. This is, however, not true for nuclei which do not have closed shells.
Therefore, neither 53Co, nor the daughter nucleus, 52Fe, are spherically symmetric. Therefore,
in order to get a more accurate picture, the overlaps are in this part computed in a deformed
potential. In particular, it is required to compare overlaps between nuclei for a large range
of deformations, which is important since the deformation of the Iπ = 19/2− state of 53Co is
unknown. With these improvements, a similar treatment as was used in Section 3.1.3, along
with PFA are tested here to get an estimate for how much di�erent e�ects a�ect the half-life
of 53Co.

4.1 Methods

4.1.1 Deformed Potential

Although not being spherically symmetric, the nuclei 53Co and 53Fe are expected to be axially
symmetric. To describe axially symmetric deformed nuclei, one may use the parametrisation
[11, p. 56]

R = R(θ) = R0

(
1 +

∞∑
l=2

(
βlYl0(θ)−

β2
l

4π

))
, (4.1)

for the liquid drop radius R, where Y`m are spherical harmonics. The quadratic term is
introduced to take into account volume conservation. For many nuclei, the β2 component
is strongly dominant, and therefore this is the only one considered here. According to [12],
β2 ≈ 0.25 for 52Fe. The mother nucleus, on the other hand, is in an excited state, and therefore
the deformation has not been calculated for this one. According to [13], β2 ∼ 0.10−0.15 for the
desired excited state of 53Co. As a �rst approach, however, β2 was used as a free parameter,
and the methods were tested for several values of β2 ∈ [−0.5, 0.5].

In the axially symmetric case, the Schrödinger equation may be written as(
− ~2

2M
∇2 + V (r)

)
ψ(r) = Eψ((r)), (4.2)

where r = r(r, θ) in spherical coordinates is the coordinate vector (there is no φ dependence
in the axially symmetric case), and M is the nucleon mass. For simplicity, an estimate of the
average nucleon mass was used in this section, M = 938.9072 MeV. Compared to the reduced
mass, which was used in Section 2.1, this gives a di�erence in energy of ∼ 0.5 MeV, which
was expected not to have a major impact on the result, since this is a small value compared

27
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to the nuclear potential depth. The nuclear potential V is the same as in Eq. 2.6 without
the angular momentum part Vl (this term arises from the angular part of the wave function
when working in spherical symmetry, cf. e.g. [6, p. 54]), except that the nuclear radius R is
now a function of θ, and is de�ned by Eq. 4.1. If only including the β2 term,

R(θ) = R0

(
1 + β2Y20(θ)− β2

2

4π

)
= R0

(
1 + β2

√
5

16π

(
3 cos2 θ − 1

)
− β2

2

4π

)
. (4.3)

Moreover, a spin-orbit coupling term was included. In the deformed case, however, there
does not exist such a simple expression for the spin-orbit coupling as the one given by Eq.
2.41. Instead, a simpler model was considered. If using a modi�ed harmonic potential, VLS
is simply a constant splitting, given by Eq. 2.46. Therefore, Eq. 2.49 was replaced by this
expression when working with deformed nuclei. Moreover, the same coupling constant κ was
used for all levels. To summarise, the following nuclear potential was used in the deformed
case:

V (r) = − V0

1 + exp((r −R(θ))/a)
+ VC(r)− 2κ~ω0l · s, (4.4)

where VC is given by Eq. 2.7 (except that R = R(θ)) and l · s is given by Eq. 2.42.
In the axially symmetric case, it is quite di�cult to use the same approach for solving

the Schrödinger equation as was used in Section 2.1.1, since this is built upon radial symme-
try. Instead, the Hamilton operator (for the daughter nucleus) was expanded in a spherical
harmonic oscillator basis. To split energy levels of di�erent angular momentum projection Ω,
which was required to avoid problems with degenerate levels, an in�nitesimal term εΩδjj′δΩΩ′ ,
where δ denotes a Kronecker delta, was added to the Hamiltonian, as done in Eq. 3.41.

With this modi�cation, the resulting matrix was diagonalised to obtain the eigenstates
and energy eigenvalues. The code for computing this was written by Gillis Carlsson. The
number of oscillator shells used was a parameter for the code. Here, one needs to make a
trade-o�. Using more shells improves accuracy on the cost of speed.

4.1.2 Calculation of Half-Life in the Deformed Case

In order to compute the half-life in the deformed case, one may use the same overlap integral
as in the spherical case Eq. 3.18, with the di�erences that the angular momenta of the mother
and the daughter nuclei J and j, respectively, are no longer good quantum numbers, and that
the angular momentum projection m is replaced by the projection onto the symmetry axis of
the nucleus, Ω. Since the angular distribution depends on Ω, it is also a good idea to divide
g(r) into di�erent components corresponding to di�erent Ω. Following the same procedure as
in Section 3.1.3, one then arrives at

gΩ
j`(r) =

∑
N

R∗N`(r)

∫
Φ∗(x1, . . . ,xA)Ψ(x1, . . . ,xA−1)RN`(rA)[Y`(ΩA), χ]jΩdx1 . . . dxA,

(4.5)
where Φ is the wave function of the mother nucleus, Ψ is the wave function of the daughter
nucleus, RN`[Y`, χ]jΩ are harmonic oscillator wave functions, and j and ` are total and orbital
angular momenta, respectively, for the proton.

When evaluating this, the neutron part separates from the proton part of the integral.
Moreover, the proton wave function is still separate from the daughter nucleus, and is evalu-
ated as a superposition of pure harmonic oscillator particle excitations to the daughter nucleus.
Thus,

gΩ
j`(r) = 〈Mn|Dn〉

∑
N

R∗N`(r) 〈Mp|aosc†N`jΩ|Dp〉 , (4.6)
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where the short-hand notations |M〉 and |D〉 are used for the mother and daughter nuclei,
respectively, the subscripts n and p indicate whether the neutron states or the proton states
are considered, and aosc†N`jΩ is a particle creation operator in the harmonic oscillator orbital
|N`jΩ〉.

In order to evaluate Eq. 4.6, three di�erent components need to be evaluated: the neutron
overlap 〈Mn|Dn〉, the proton overlap 〈Mp|aosc†N`jΩ|Dp〉, and the radial harmonic oscillator basis
functions R∗N`(r). These three parts are studied in detail in the following sections.

4.1.3 Nuclear Overlaps

General Treatment

The goal in this section is to compute the overlaps 〈Mp|aosc†N`jΩ|Dp〉 and 〈Mn|Dn〉, where mother
and daughter nuclei might have di�erent deformations.

First, the potential depth was calculated by using an optimisation algorithm to obtain an
energy of 1.53 MeV for the 27th proton. It turned out that V0 ∼ 50 MeV for a large range
of deformations, and since the exact value of this was not expected to be signi�cant for the
results, V0 = 50 MeV was used in further calculations to save time.

The HFB equations Eq. 3.3, were solved in the diagonalised (Hartree-Fock, henceforth
HF) basis, in the same way as in Section 3.1.1. Here, one should recall that Ω is a preserved
quantum number in this basis (which is assured by the splitting term in the original Hamil-
tonian), and therefore Eq. 3.6 may be used straightaway for the o�-diagonal elements. The
Fermi level, λ, was obtained by solving Eq. 3.3 iteratively, and minimising the square of the
residual

r(λ) = (〈N (λ)〉 − Z)2 (4.7)

using Newton's method,

λi+1 = λi −
r′(λi)

r′′(λi)
≈ λi −∆λ

r(λ+ ∆λ)− r(λ−∆λ)

2(r(λ+ ∆λ)− 2r(λ) + r(λ−∆λ))
, (4.8)

where λi is the value of λ obtained after each iteration and ∆λ is a small number. The latter
expression may be used when no explicit expression for the derivative can be obtained. This
method was selected since it has quadratic convergence, while for example Golden Section
search only has linear convergence. However, Newton's method is notably unstable, and
therefore one should either be careful when picking a starting point λ0, or modify the method
to make it stable. I chose the former option, since it turned out that Newton's method ran
smoothly using λ0 = 1.5 MeV for the proton states and λ0 = −7.5 MeV for the neutron states
of 52Fe. When iterating over a large range of deformations, the previous value of λ (i.e., an
optimised value at a slightly di�erent deformation) was used as an initial guess. For each
deformation, the iteration was terminated when | 〈N (λ)〉 − Z| < 0.01.

The HF basis is, however, not conserved for di�erent deformations. In order to compute
overlaps between states with di�erent deformations, one needs to �rst transform to a common
basis. Since the Schrödinger equation is solved in a spherical harmonic oscillator basis, the
natural choice is to transform HF states to corresponding harmonic oscillator states.

In the process of diagonalisation, the diagonalised Hamiltonian HHF is obtained as

HHF = DHHoscD, (4.9)

where Hosc is the oscillator Hamiltonian and D is a matrix consisting of eigenstates. This
mapping may be used to transform a vector of annihilation operators aHF to an analogous
vector in a harmonic oscillator basis, which is done through

aosc = DaHF . (4.10)
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Using the matrix representation of Eq. 3.27, U is then transformed from HF to oscillator
basis through

Uosc = DUHF , (4.11)

where the superscripts denote which bases are used, and analogous for V . In order to satisfy
the symmetry requirements for U and V (given in [9, p. 615]) in a harmonic oscillator basis,
it is important that the relative phase between two eigenvectors corresponding to states of
the same energy but opposite spins is zero. This was ensured by adjusting the phase factors
(which are arbitrary) of the column vectors in D.

One should note that the basis states become permuted when solving the HFB equations,
i.e., U and V are not diagonal. This may be resolved by permuting U and V to a diagonal
matrix (in the non-degenerate case, these consist of pure HF states), which was necessary to
keep track of the quantum numbers belonging to each vector Uk.

Proton Overlap

The proton overlap 〈Mp|aosc†N`jΩ|Dp〉 was computed as in the work preceding Eq. 3.38, except

that U, V, Ũ , and Ṽ are now computed in a harmonic oscillator basis (this is required both
for obtaining a common basis, and to create the emitted proton in a pure harmonic oscillator
orbital), yielding the result

〈Mp|aosc†N`jΩ|Dp〉 = 〈D̃p|Dp〉

(
Ũ∗N`jΩ,k −

(
Ṽ
(
UHŨ + V H Ṽ

)−1 (
V HŨ∗ + UH Ṽ ∗

))
N`jΩ,k

)
.

(4.12)

In this model, the projection onto the interesting `, j state is obtained by �nding the
(perhaps small) components of the original emitted proton state, which have these quantum
numbers.

The overlap 〈D̃p|Dp〉 was computed by using the Onishi formula Eq. 3.39, again using an
harmonic oscillator basis. For this evaluation, 13 harmonic oscillator shells were used.

In order to get the correct quasiparticle excitation for the mother nucleus, one should be
careful to pick a pure Ω state, since this quantum number is the only one � except for parity
� which is preserved in the deformed case. It is required that Ω = 7/2 for the single proton in
53Co, in order to couple to a total angular momentum I = 19/2 when including neutrons. This
puts the state at maximum projection onto the symmetry axis, which is required to obtain
approximately correct angular momentum, since j is no longer a good quantum number. In
this way, one only needs to evaluate Eq. 4.12 for Ω = 7/2. This was solved by comparing Ω
values of the dominant component of each eigenstate to the Hamilton operator, and picking
the lowest energy level with Ω = 7/2 as state k, since no state with lower energy has this
value of Ω.

Neutron Overlap

In order to obtain a nuclear angular momentum of I = 19/2, it is required that the neutrons
couple to J = 6. This requires that a neutron pair breaks up and the two neutrons are put
in di�erent orbitals, with Ω = 7/2 and Ω = 5/2, respectively. Practically, this is achieved by
moving one of the neutrons in an Ω = ±5/2 subshell, which is fully occupied in the ground
state, to one of the empty Ω = ±7/2 subshells. Due to pairing, all of these shells are mixtures
between particle and hole states. Consequently, the breaking of pairs is achieved by adding
two quasiparticles to the ground state, one at Ω = 7/2 and one at Ω = 5/2. Denoting the
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corresponding quasiparticle creation operators by β̃†1 and β̃†2, I therefore want to compute the
overlap

〈Dn|β̃†1β̃
†
2|D̃n〉 ,

where it should be emphasised that the quasiparticles are created on the D̃ state. Using the
de�nition Eq. 3.27 for the quasiparticle creation operator and the relations Eq. 3.36�3.37,
one arrives after some simpli�cation at

〈Dn|β̃†1β̃
†
2|D̃n〉 = 〈Dn|D̃n〉

(
−ŨT2 (V (ŨHU + Ṽ HV )−1ŨH)Ũ1 + ŨT1 (V (ŨHU + Ṽ HV )−1Ṽ H)Ṽ2

+ŨT2 (1− V (ŨHU + Ṽ HV )−1Ṽ H)Ṽ1 + Ṽ T
1 (U(ŨHU + Ṽ HV )−1Ṽ H)Ṽ2

)
,

(4.13)

where Ũ1 is the hole occupancy vector corresponding to β̃1 and analogous for Ũ2, Ṽ1 and Ṽ2.
When solving the Schrödinger and HFB equations for neutrons, the same procedure as for

protons was applied, except that the Coulomb potential was removed and the search for the
correct quasiparticle states also put a requirement on j in order to excite an f7/2 state with
Ω = 5/2, and not a d5/2 state, which would had otherwise been the case. Otherwise, putting
a requirement on parity would have had the same e�ect.

Nilsson Diagrams

As a �rst validation of the diagonalisation procedure, energy levels were plotted against de-
formation for both proton and neutron levels � i.e., Nilsson diagrams were constructed � for
52Fe. This was done by connecting states with the same Ω quantum numbers and parity, in
a way that levels with these quantum numbers did not cross.

4.1.4 Connecting Overlaps to Radial Basis Functions

In order to evaluate the half-life, all the pieces in Eq. 4.6 were put together, i.e., the non-
zero overlap coe�cients computed in Section 4.1.3 were multiplied with appropriate radial
harmonic oscillator basis functions.

The latter are obtained as [6, p. 79]

RN`(ρ) = Cρ`F

(
−n, `+

3

2
, ρ2

)
exp(−ρ2/2), (4.14)

where

ρ =

√
Mω0

~
· r, (4.15)

with de�nitions as in Section 2.1.6. Here, F is Kummer's function Eq. 2.17, n is the radial
quantum number, de�ned in Eq. 2.50, and C is a normalisation constant. When using a
negative integer number −n as the �rst argument of Kummer's function, the sum in Eq. 2.17
terminates at k = n steps. Thus, only a few terms of Kummer's function need to be evaluated.
The oscillator frequency ω0 was evaluated using Eq. 2.48.

Here, the idea is to use the approach in Section 2.1.3 to calculate the half-life. This is
done by matching the internal wave function to an external one, by using Eq. 2.27. The
external wave function is approximated as a Coulomb wave function Eq. 2.25 with ` = 9.
This is actually only valid in spherical symmetry, but since the deformations of the nuclei
involved here are not very large, this was expected to be a reasonable approximation. Since
both the internal wave function and the external one have angular distributions ∝ Y`Ω(θ, φ),
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one should be able to match these. Then one can use Eq. 2.27 directly to �nd the decay
constant, and consequently the half-life.

For 53Co, where ` = 9 and j = 19/2, 13 oscillator shells were used to evaluate Eq. 4.6.
This was done to get non-zero coe�cients for as many radial basis functions as possible (three)
within a reasonable computation time. Then, the possible basis functions are R9,9, R11,9, and
R13,9.

The resulting projections were matched to an appropriate Coulomb wave function Eq. 2.25
with parameters corresponding to l = 9 and Q = 1.53 MeV. Since the position of the potential
barrier was unknown, matching points were selected on quite a wide interval, r ∈ [5, 20] fm.

4.2 Results

A Nilsson diagram for the proton states in 52Fe is shown in Figure 4.1. A Nilsson diagram for
neutrons was also constructed, but since this is very similar and there are not any unexpected
features, this is not included in this report. The levels are colour-coded to distinguish between
energy levels corresponding to di�erent Ω and parity. Comparing this �gure to Figure 2.21a
in [9, p. 73], shows a strong agreement for bound states (negative energy).
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Figure 4.1 � Nilsson diagram for the proton states of 52Fe. Solid lines correspond to even parity
and dashed lines correspond to odd parity. Colour coding: blue � Ω = ±1/2, red � Ω = ±3/2,
green � Ω = ±5/2, black � Ω = ±7/2, magenta � Ω = ±9/2.
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Figure 4.2 � (a) Coe�cients in front of the three radial basis functions RN9, N = 9, 11, 13,
as de�ned by Eq. 4.16, as a function of β2 (denoted β) of the mother nucleus, for decay of
53Co. For the daughter nucleus, β2 = 0.25. Note the logarithmic scale. (b) Overlaps between
proton orbitals 〈D̃p|Dp〉 for ground states with di�erent deformations, computed for 52Fe using
13 oscillator shells. Here, β2 = 0.25 for |Dp〉 and the overlaps are computed as a function of β2
for |D̃p〉.

Coe�cients

Ũ∗N`jΩ,k −
(
Ṽ
(
UHŨ + V H Ṽ

)−1 (
V HŨ∗ + UH Ṽ ∗

))
N`jΩ,k

(4.16)

corresponding to oscillator basis functions with l = 9, are plotted for 53Co for di�erent
deformations in Figure 4.2a. It appears that the N = 9 component is typically about one
order of magnitude greater than the N = 13 component, and another order of magnitude
greater than the N = 11 component. Moreover, the coe�cients are all very small at near-
spherical shapes, and their magnitudes increase with deformation.

Proton overlaps 〈D̃p|Dp〉, where β2 = 0.25 for the daughter nucleus, are shown for di�erent
deformations of the mother nucleus in Figure 4.2b. This dependence appears to be near-
Gaussian, except when β2 = 0, where the overlap is more suppressed.

The e�ects described above are summarised in Table 4.1, computed for β2 = 0.10 and
β2 = 0.15, respectively, for the mother nucleus.

The neutron overlap between a mother nucleus with quasiparticle excitations in the Ω =
7/2 and Ω = 5/2 orbitals, and the daughter nucleus, becomes zero when using the treatment
in Section 4.1.3, regardless of deformation of the mother nucleus and the number of oscillator
shells used. This indicates that another method or model is required to explain and compute
this overlap.

Table 4.1 � Change in decay probability due to di�erent e�ects, computed for β2 = 0.10 and
β2 = 0.15, respectively, for the mother nucleus 53Co, whereas β2 = 0.25 is used for the daughter
nucleus. In all of these computations, 13 oscillator shells are used. The R9,9 component is
displayed here, since this is the largest one.

Quantity β2 = 0.10 β2 = 0.15

Square of coe�cient in front of R9,9 2.7 · 10−10 4.0 · 10−9

| 〈D̃p|Dp〉 |2 0.51 0.67

Projected probability amplitudes |g(r)·r|, as de�ned in Eq. 4.6, constructed using the three
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calculated components in Figure 4.2a are shown for deformations β2 = 0.1 and β2 = 0.15 in
Figure 4.3a. Here, the neutron overlap has been set to one, due to the problems with obtaining
this. There are not any large di�erences in shape of |g(r)| between the two deformations,
although the amplitude varies by about a factor of three. In both cases, there is a sharp node
in the wave function at r ≈ 10 fm.
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Figure 4.3 � (a) Projected probability amplitudes |gj`(r)·r| � de�ned in Eq. 4.6 � as a function of
distance from the core in 53Co, computed using 13 oscillator shells for deformations β = 0.10, 0.15,
for ` = 9 and j = 19/2 for an emitted f7/2 proton. Here, the e�ect of the neutron overlap has
been excluded. (b) Corresponding half-lives computed at matching points marked by '+' using
the method described in Section 4.1.2. Note that the scale is logarithmic. The plot has been cut
in order to avoid including extremely long decay times.

Resulting half-lives obtained using the method described in Section 4.1.2, computed at
di�erent matching points, cf. Eq. 2.26, on the interval r ∈ [5, 20] fm, are given in Figure
4.3b. The results vary very much over the interval, contrary to the analogous calculations in
spherical symmetry (cf. Figure 2.2). Therefore, the minimum values for each deformation are
given in Table 4.2, to put a lower bound on the half-life obtained from this method. Here,
the trend is opposite from the probability amplitude, which can be seen directly from Eq.
2.27 and Eq. 2.31. These values of t1/2 are about 1-2 orders of magnitude lower than the
experimental estimate.

Table 4.2 � Minimum values of the 53Co half-lives given in Figure 4.3b, computed for each
deformation β2.

β2 Minimum t1/2 (s)
0.10 1.5
0.15 0.11

4.3 Discussion

When constructing Nilsson diagrams (Figure 4.1) for illustrating migration of energy levels
under deformation, the development for bound states is very similar to when using a modi�ed
harmonic oscillator potential [9, p. 73]. For quasibound states, the spectrum is again denser
than in the harmonic oscillator case, which is consistent with the discussion for the level
spectrum in the spherical case. This validates the computations used in Section 4.1.
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The dependence on deformation for the overlap between proton states (cf. Figure 4.2b)
appeared to follow a near-Gaussian distribution, which is consistent with the Gaussian Overlap
Approximation [9, pp. 424-428]. However, the signi�cantly smaller overlap between a nucleus
with β2 = 0.25 and one with β2 = 0, deviates from this. A possible explanation is that
numerical errors arise due to the large degeneracies present for spherical nuclei, and that
these are not completely resolved by the in�nitesimal splitting term. This was, however, not
investigated further.

The magnitudes of the harmonic oscillator components with ` = 9 increase with defor-
mation. This is quite an expected e�ect, since the mixing between components of di�erent `
increases with deformation. For spherical nuclei, ` is expected to be a pure quantum num-
ber, and therefore components of ` = 9 should not be present in the proton wave function.
However, since components of the daughter wave function enter the projection formula (cf.
Eq. 4.12), there are components with larger values of ` in the emitted proton wave function
as well.

Since the deformation di�erence between the mother and daughter nuclei is not very large
(∆β2 ∼ 0.10−0.15), the overlap between proton states is quite large. Therefore, the structural
changes of the proton orbitals are not a signi�cant hindrance factor for the decay time.

When obtaining a zero overlap between the neutron states, one might think that there is
an error somewhere, since the proton decay of 53Co obviously has been observed. However, in
order for this overlap to be non-zero, there need to be mixings between the Ω = 5/2 and the
Ω = 7/2 states in the mother nucleus. For axially symmetric nuclei, though, Ω is preserved,
and therefore these states cannot mix, meaning that a di�erent model is required to explain
this overlap.

Here, two di�erent explanations are possible. Either the mother nucleus is triaxial, since
Ω is not a good quantum number in triaxial nuclei, or there exist signi�cant interactions
between the protons and neutrons in the daughter nucleus. As suggested by [14], particularly
strong mixings between protons and neutrons might exist in N = Z nuclei, making this a
possible explanation. In this case, there might exist a component in the wave function of
the daughter nucleus, where the neutrons couple to I = 6, which is counteracted by protons
coupled to I = 6, anti-parallel to the neutrons. In this model, the proton would leave from
the Ω = 5/2 orbital and no structural change of the neutrons is required. However, since the
proton and neutron angular momenta have parallel coupling, this would require �ipping of
the proton angular momentum, disfavouring this hypothesis.

In the �nal calculation, the obtained half-life was ∼ 0.1 − 1 s, or about 1-2 orders of
magnitude smaller than the experimental estimate. If all other calculations are correct, this
should therefore be the magnitude of suppression caused by the neutron overlap. Before
drawing any conclusions, however, the approach used in Section 4.1.2 should be validated,
and in particular the matching procedure, especially since Coulomb wave functions assume
spherical symmetry. There was unfortunately not time to do this during the work of this
thesis, but a few things may be discussed. In particular, it is expected that the computed
half-life should be constant in the potential barrier and further out, which is certainly not the
case here (cf. Figure 4.3b). This should be resolved by including more oscillator shells, since
only using three components does not give an accurate behaviour far from the core. However,
this would signi�cantly increase the computation time, and it was beyond the scope of this
thesis to optimise the code enough to be able to carry out these computations using enough
oscillator shells. Therefore, the minimum value was printed, since the position of this was
expected to be somewhere in the potential barrier.

As a validation of the method, one may look at the coe�cients in front of RN` directly
and apply these to the extrapolated value of t1/2 ∼ 5 ·10−10 s in the spherical case (cf. Section



36 CHAPTER 4. DEFORMATION

2.2.3). Since these factors (including the proton overlap) give a suppression of ∼ 4·108−7·109

(cf. Table 4.1), the resulting value of t1/2 ∼ 0.2 − 4 s, or about a factor of two greater than
the results in Table 4.2. This implies that the results � within this model � are within the
correct order of magnitude.

In order to accurately determine the half-life, one should in addition to the work done in
this thesis, include overlap e�ects between the emitted proton and the daughter nucleus, i.e.,
leave the assumption that the daughter nucleus and the proton may be treated as separate
particles. Such e�ects are expected to be quite small, but since the magnitudes of the compo-
nents with ` = 9 also are quite small, these e�ects may have signi�cant e�ects on the results.
Moreover, a more accurate model should be used for the matching procedure.

With the then obtained half-life, the new measurement of the partial half-life of 53Co in
the proton channel may be used to determine the magnitude of the neutron overlap. This
may be �t to the common parametrisation γ for the triaxial shape of the mother nucleus, cf.
[6, pp. 126-131]. Possible values of γ may then be tested by checking if it is reasonable that
some of these minimise the energy of 53Co. If not, more exotic explanations of the neutron
overlap should be considered, such as p-n interactions.

These �nal suggestions are a natural extension of this thesis. If being successful in ex-
plaining the decay of 53Co, the new measurement may furthermore be used to re�ne model
parameters. This would also open up possibilities to study other complex, neutron de�cient
nuclei.



Chapter 5

Conclusions

The methods WKB, TPA and PFA all produce accurate results for spherical nuclei without
structural changes, which validates that PFA is a useful method for studying proton emission.
Moreover, PFA may be extended beyond the spherically symmetric situation, and be used for
studying deformed nuclei where structural changes occur.

If not taking into account any structural changes and falsely assuming that ` = 3 for the
emitted proton in 53Co, the computed half-life is about 17 orders of magnitude lower than an
experimental estimate. The relevant factors for describing this suppression are the increase in
angular momentum to ` = 9 (adds an estimated factor of ∼ 3 ·106), and the magnitude of the
components of the proton wave function with ` = 9 (adds a factor of ∼ 4·108−7·109), and the
transformation of neutron orbitals. On the other hand, the overlap between proton orbitals,
and di�erences in pairing gap between mother and daughter nuclei, are not signi�cant e�ects
for explaining the suppression in decay probability.

With the assumptions used in this thesis, it was not possible to compute the overlap
between neutron orbitals. This should be resolved by extending this work to triaxial shapes,
and using the new measurement to estimate model parameters. If this is not successful, more
exotic explanations might be considered.
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