
H
ard

w
are A

rch
itectu

res fo
r th

e In
verse Sq

u
are R

o
o

t an
d

 th
e In

verse Fu
n

ctio
n

s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Hardware Architectures for the
Inverse Square Root and the
Inverse Functions

Niclas Thuning
Leo Bärring

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-491

http://www.eit.lth.se

N
icla

s T
h

u
n

in
g

 &
 Le

o
 B

ärrin
g

Master’s Thesis

Department of Electrical and Information Technology,

Faculty of Engineering, LTH

Master of Science Thesis

Hardware Architectures for the
Inverse Square Root and the

Inverse Functions
using Harmonized Parabolic Synthesis

Authors:
Niclas Thuning
Leo Bärring

Supervisors:
Peter Nilsson

Erik Hertz
Rakesh Gangarajaiah

Examiner:
Fredrik Rusek

Lund, 17 Mar, 2016

The Department of Electrical and Information Technology
Lund University
Box 118, S-221 00 LUND
SWEDEN
This thesis is set in Computer Modern 11pt, with the LATEX Documen-
tation System

c© Niclas Thuning and Leo Bärring, 2016

Abstract

This thesis presents a comparison between implementations of the
inverse square root function, using two approximation algorithms; Har-
monized Parabolic Synthesis (HPS) and the Newton-Raphson Method
(NR). The input is a 15 bit fixed-point number, the range of which is
selected so that the implementation is suitable for use as a block im-
plementing the inverse square root for floating-point numbers, and the
designs are constrained by the error, which must be < 2−15. Multiple im-
plementations of both algorithms have been investigated and simulated
as Application-Specific Integrated Circuits (ASIC) using ST Microelec-
tronics 65.0nm Complementary Metal-Oxide Seminconductor (CMOS)
technology libraries for Low Power (LP) and General Purpose (GP),
VDD levels of 1.00V and 1.10V, and for various clock speeds. Error dis-
tribution, area, speed, power, and energy consumption are analyzed for
variants of the implementations of the two algorithms. Depending on
how the properties rank in desirability, when choosing an implementa-
tion, the recommended choice will vary. The thesis finds that if mean
error, and error distribution are important, the implementations of Har-
monized Parabolic Synthesis show superiority regarding implementable
clock speed, area requirements, power and energy consumption. If power
and energy consumption is the most prioritised property, an implemen-
tation of the Newton-Raphson algorithm is promising, although at the
cost of a worse error distribution.

Acknowledgements

This thesis was possible thanks to our supervisors, Professor Peter Nils-
son and Lic. Eng. Erik Hertz. We would like to express our deepest
gratitude and respect to Peter and Erik for the guidance and help they
have given us throughout the completion of this master thesis. We are
glad to have had them as our supervisors and could not have asked for
any better. Furthermore, we like to thank Rakesh Gangarajaiah for his
help in getting us started with the synthesis tools, whose interfaces are
anything but intuitive. The authors would also like to thank the De-
partement of Electrical and Information Technology, Lund University,
for providing access to the software tools necessary for conducting the
research presented in this thesis.

We like to thank Lars Bärring and Alana York for their contribution
of proof reading the thesis and giving valuable inputs and corrections.

Niclas Thuning wants as well to thank his family and friends for
their love and support while working on this thesis. He wants to express
a very special appreciation to his beloved girlfriend Alana York, who
loved and supported him throughout this work.

Leo Bärring thanks his family for all the love and support, both
during times of doubt, as well as when everything mysteriously worked.
C. Arabica deserves mention for being a good friend and a constant
source of much needed energy.

Peter Nilsson
in memoriam
For being our supervisor through the ups and downs during this project,
and teaching in courses we attended before that, we feel deep sorrow that
he is not here to share our joy and pride of seeing this thesis finally being
brought to completion.

v

vi

Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvi

1 Introduction 1

2 Scope 3

3 Harmonized Parabolic Synthesis 5
3.1 General Description . 5

3.1.1 The First Sub-Function 5
3.1.2 The Second Sub-Function 6
3.1.3 Pre-Processing and Post-Processing Functions . . 7

4 The Newton-Raphson Method 9
4.1 General Description . 9
4.2 Calculation of Look-Up Table 10

5 Error Analysis Theory 13
5.1 Error Behavior Metrics 13

5.1.1 Maximum Error 13
5.1.2 Mean Error . 13
5.1.3 Median Error . 13
5.1.4 Standard Deviation 14
5.1.5 Root Mean Square Error 14
5.1.6 Skewness . 15

5.2 Error Probability Distribution 15

vii

5.3 Bit Precision . 16

6 Number Representation 19
6.1 Fixed-Point Numbers . 19
6.2 Floating-Point Numbers 19

6.2.1 Representation and the Inverse Square Root . . . 20

7 Calculating the Inverse Square Root 23
7.1 Harmonized Parabolic Synthesis 23
7.2 The Newton-Raphson Method 24

8 Hardware Architecture 27
8.1 Harmonized Parabolic Synthesis 27

8.1.1 Pre-Processing 27
8.1.2 Processing (HPS) 28
8.1.3 Post-Processing 29

8.2 The Newton-Raphson Method 29

9 Implementation: Data Flow Design and Simulation 31
9.1 Harmonized Parabolic Synthesis 32

9.1.1 Choosing c1 and Interval Count I 32
9.2 The Newton-Raphson Method 35

9.2.1 Design Constraints 35
9.2.2 Data-Path Width 36
9.2.3 Optimization . 41

10 Implementation: Hardware Design and Simulation 43
10.1 VHDL . 43

10.1.1 Semi-Generic Multiplier 46
10.1.2 Algorithm for Squaring Component - Jingou Lai 48
10.1.3 Pre-Processing 49
10.1.4 Post-Processing 50
10.1.5 Subtraction and Shift in the Newton-Raphson Method

Implementation 52
10.2 Synthesis . 55
10.3 Placement and Routing 57
10.4 Power Analysis . 60
10.5 Main Process Control Script 61

11 Results 63
11.1 Data Flow Behavior . 63

11.1.1 Harmonized Parabolic Synthesis 63
11.1.2 The Newton Raphson Method 67

viii

11.1.3 Comparision of Statistics 68
11.2 Hardware Behavior . 70

11.2.1 Clock Speed and Area 71
11.2.2 Power and Energy 75

12 Conclusions 83
12.1 Future Work . 84

A Appendix 91
A.1 Look-up Tables for the NR Method 91
A.2 HPS Dataflow Simulation 96

A.2.1 Elaboration of Software Development 96
A.2.2 Error Behaviour of Additional HPS Implementa-

tions . 98
A.3 Extra Hardware Behaviour Plots 100
A.4 Extra Hardware Behaviour Tables 107

A.4.1 Clock and Area 107
A.4.2 Power and Energy 110

A.5 Static and Dynamic Power Plots 112
A.6 Tool Control Scripts . 114

A.6.1 Synthesis Script 114
A.6.2 Static Timing Analysis Script 115
A.6.3 Placement and Routing Script 115
A.6.4 Power Analysis Script 118

ix

x

Preface

This thesis is written by Niclas Thuning and Leo Bärring for the Depart-
ment of Electrical and Information Technology, Faculty of Engineering,
Lund University. Niclas and Leo are both students in the Master of Sci-
ence in Electrical Engineering Program with the specialization Design
of Processors and Embedded Systems. This thesis is an admission for
the degree of Master of Science.

For this thesis paper, most of the work has been divided between the
two authors. The individual contributions and collaborations between
the authors are as follows.

Niclas Thuning has written the chapter on the Newton-Raphson
Method and all sections concerning the Newton-Raphson Method. Fur-
thermore, Niclas Thuning has written the Introduction, Error Analysis
Theory (apart from Skewness and Bit Precision) and Implementation:
Hardware Design and Simulation (apart from Semi-Generic Multiplier
and Main Process Control Script).

Leo Bärring has written the chapters on Harmonized Parabolic Syn-
thesis and all sections concerning Harmonized Parabolic Synthesis. Leo
has also written the Skewness part of Error Analysis Theory, Number
Representation, Calculating the Inverse Square Root, and Main Pro-
cess Control Script. Furthermore, Leo has done the final versions of the
graphics and the generated plots for this thesis.

The two authors have through collaboration written the chapter-
s/sections, Abstract, Preface, Acknowledgments, Scope, Bit Precision,
Results, Semi-Generic Multiplier, Conclusions and Appendix, as well
as discussed and collaborated on improving sentence structure, phras-
ing, and word choice, as needed throughout the thesis, regardless of the
original author of the part.

xi

xii

List of Figures

2.1 Overview of the architectures. 4

4.1 Example of a 9 entry LUT 11
4.2 Example of an improved 9 entry LUT 12

5.1 Example histogram . 15

8.1 A bird’s eye of HPS . 27
8.2 The pre-processing Function 28
8.3 The processing/HPS function 28
8.4 The post-processing Function 29
8.5 Unrolled Newton-Raphson architecture 30

9.1 Plot of c1 and interval count effect on maximum error . 33
9.2 The implementation architecture of HPS 34
9.3 The architecture for 1 iteration NR 39
9.4 The architecture for 2 iterations NR 40
9.5 Bit precision for 1 iteration with horizontal line. 41

10.1 Hardware design workflow 44
10.2 VHDL development workflow 45
10.3 The real RTL design with flip-flop. 45
10.4 3x3 multiplier for one negative and one positive number 48
10.5 Final design of the pre-processing subtraction 49
10.6 Post-processing addition of one. 51
10.7 Final design of post-processing. 52
10.8 Basic design of subtraction and shift 52
10.9 Subtraction and shift with HA where possible 53
10.10Subtraction and shift further simplified 53
10.11Synthesis flow. 55

xiii

10.12STA flow. 57
10.13Placement and routing flow. 58
10.14Power analysis flow. 60

11.1 Error behaviour for 32 interval unconstrained HPS . . . 64
11.2 Error behaviour for 32 interval truncated HPS 65
11.3 Error behaviour for 32 interval modified HPS 65
11.4 Error behaviour for 32 interval further modified HPS . . 66
11.5 Error behaviour for 512 interval further modified HPS . 66
11.6 Error behaviour for 1 iteration, 94 interval NR 67
11.7 Error behaviour for 2 iteration, 14 interval NR 68
11.8 Synthesized clock and area results for LPHVT implemen-

tations . 72
11.9 Synthesized clock and area results for GPSVT implemen-

tations . 72
11.10PNR clock and area results for LPHVT implementations 73
11.11PNR clock and area results for GPSVT implementations 73
11.12Power consumption results for LPHVT implementations 78
11.13Power consumption results for GPSVT implementations 78
11.14Energy consumption results for LPHVT implementations 80
11.15Energy consumption results for GPSVT implementations 80

A.1 Plot of 1 iteration, 94 interval NR look-up table 94
A.2 Plot of 2 iteration, 14 interval NR look-up table 95
A.3 Error behaviour for 64 interval further modified HPS . . 98
A.4 Error behaviour for 128 interval further modified HPS . 99
A.5 Error behaviour for 256 interval further modified HPS . 99
A.6 Hardware results for all 32 interval HPS implementations 100
A.7 Hardware results for all 64 interval HPS implementations 101
A.8 Hardware results for all 128 interval HPS implementations 102
A.9 Hardware results for all 256 interval HPS implementations 103
A.10 Hardware results for all 512 interval HPS implementations 104
A.11 Hardware results for all 1 iteration NR implementations 105
A.12 Hardware results for all 2 iteration NR implementations 106
A.13 Static power consumption for implementations using the

LPHVT technology library. 112
A.14 Static power consumption for implementations using the

GPSVT technology library. 112
A.15 Dynamic power consumption for implementations using

the LPHVT technology library. 113
A.16 Dynamic power consumption for implementations using

the GPSVT technology library. 113

xiv

List of Tables

9.1 HPS data-path widths 35
9.2 Comparision of bit precision of floating-point NR variants 36
9.3 Comparision of bit precision of fixed-point NR variants . 37
9.4 Bit precision of selected NR variants 39
9.5 NR data-path widths . 40

10.1 Simple binary multiplication 46
10.2 Binary multiplication modified for one negative input . . 47
10.3 Truth table for pre-processing subtraction 49
10.4 Truth table for post-processing 50

11.1 Error metrics from simulations. 69
11.2 Error metrics from simulations in bits. 69
11.3 Fastest synthesized clock for various implementations. . 74
11.4 Fastest PNR clock for various implementations. 75
11.5 Lowest PNR area for various implementations. 75
11.6 Lowest power consumption for various implementations 81
11.7 Lowest energy consumption for various implementations 81

A.1 LUT values for 1-iteration NR 94
A.2 LUT values for 2-iteration NR 95
A.3 Fastest synthesized clocks of all implementations. 107
A.4 Fastest PNR clocks of all implementations. 108
A.5 Lowest PNR areas of all implementations. 109
A.6 Lowest power consumption of all implementations. . . . 110
A.7 Lowest energy consumption of all implementations. . . . 111

xv

xvi

List of Acronyms

ASIC Application-Specific Integrated Circuit

CMOS Complementary Metal-Oxide Seminconductor

dB Decibel

DRC Design Rule Check

DSP Digital Signal Processing

FA Full Adder

GPHVT General Purpose High Threshold Voltage

GPLVT General Purpose Low Threshold Voltage

GPSVT General Purpose Standard Threshold Voltage

GPU Graphic Processing Unit

HA Half Adder

HPS Harmonized Parabolic Synthesis

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

LPHVT Low Power High Threshold Voltage

LPLVT Low Power Low Threshold Voltage

LPSVT Low Power Standard Threshold Voltage

LSB Least Significant Bit

xvii

LUT Look-up Table

MSB Most Significant Bit

NR the Newton-Raphson Method

PNR Placement and Routing

RMS Root Mean Square

RTL Resistor Transistor Logic

SD Standard Deviation

SDC Synopsys Design Constraints

SDF Standard Delay Format

SNR Signal-to-Noise Ratio

SPEF Standard Parasitic Exchange Format

STA Static Timing Analysis

VCD Value Change Dump

VHDL Very High Speed Integrated Circuit Hardware Description
Language

xviii

Chapter 1
Introduction

Unary functions, like logarithm, exponential, trigonometric functions,
and the square root, are examples of widely used building blocks in
more complex algorithms. These unary functions can, for example, be
found in applications in the fields of wireless communication, Digital
Signal Processing (DSP), Graphic Processing Units (GPU), etc [1].

Performance improvement for algorithms using software solutions
is not always sufficient. Although software can compute with extreme
accuracy, implementing algorithms in terms of sequences of simpler pro-
cessor instructions is sometimes not fast enough for high speed and/or
numerically intensive applications. In order to improve the performance,
the algorithms can be implemented directly into hardware [1].

This thesis will investigate an algorithm called Harmonized Parabolic
Synthesis to compute the inverse square root, proposed by Erik Hertz
and Peter Nilsson [2]. As comparison, the Newton-Raphson Method
algorithm is used.

Inverse square root is essential for normalizing a vector in linear
algebra. A normalized vector, or unit vector v̂, is calculated as shown
in (1.1) [3, pp. 131–192].

v̂ =
1

|v|v (1.1)

where |v| is the norm calculated as
√
v21 + v22 + . . .+ v2n (with vi being

vector component in each dimension).
Unit vectors are crucial e.g. when calculating reflections, used e.g.

in 3D graphics rendering code used by the gaming industry and when
constructing graphic design tools. An increased speed of computation
can mean either faster rendering, or rendering with higher precision [4].

1

2

Chapter 2
Scope

The objective of this project is to design and implement an inverse
square root function and an inverse function using Harmonized Parabolic
Synthesis and compare it with the Newton-Raphson Method with iter-
ations unrolled in hardware. The implementations are required to be
able to process input inputs v ∈ [1, 4) represented with 15 bits preci-
sion in fixed-point format. The output z = 1/

√
v is required to have

15 bits precision or better, as well as the output being exactly 1 when
the input equals 1. The second output, the inverse function z2 = 1/v
is not subject to any precision constraints. There is also a goal to have
a balanced error probability distribution. Figure 2.1 shows the basic
implementation architecture for the two designs.

The designs are simulated and compared for accuracy, error behav-
ior, power consumption, and performance. For power consumption, both
static and dynamic power consumption are estimated. The core area of
the implementations are estimated as well. Physical layouts of the de-
signs are synthesized.

The hardware implementation is written in Very High Speed Inte-
grated Circuit Hardware Description Language (VHDL) and synthesized
with different clock frequencies, library technologies, supply voltage and
threshold voltage. The library technologies used are ST Microelectronics
65.0nm CMOS and the following variants are examined.

• Low Power Low Vt (LPLVT)

• Low Power Standard Vt (LPSVT)

• Low Power High Vt (LPHVT)

• General Purpose Low Vt (GPLVT)

3

• General Purpose Standard Vt (GPSVT)

• General Purpose High Vt (GPHVT)

The results of this report will focus on General Purpose Standard Vt

and General Purpose High Vt, with additional results in the appendix
section. For each library, two different supply voltages are used: 1.00V
and 1.10V.

(a) Harmonized Parabolic Synthesis (b) The Newton-Raphson Method

Figure 2.1: Overview of the architecture implementing the inverse square root
and inverse function with Harmonized Parabolic Synthesis (a) and
the Newton-Raphson Method (b).

4

Chapter 3
Harmonized Parabolic Synthesis

3.1 General Description

The Harmonized Parabolic Synthesis (HPS)[5] algorithm approximates
a function y = forg(x). To facilitate development, the range of x, as
well as the allowed range of y is constrained to [0, 1]. If there is a need
to approximate a different range, the input and/or output will need
conditioning, with corresponding changes to the forg(x) function.

The approximation of forg(x) is calculated as the product of two
sub-functions s1(x) and s2(x), (see (3.1)) where the first sub-function,
s1(x), is a second order polynomial and the second sub-function, s2(x),
is a second order interpolation.

forg(x) ≈ s1(x)s2(x) (3.1)

3.1.1 The First Sub-Function

The first sub-function s1(x), shown in (3.2) and coefficients are chosen
to roughly approximate forg(x).

s1(x) = l1 + k1x+ c1(x− x2) (3.2)

If possible, s1(x) is constructed so that it intersects (0; 0) and (1; 1), or
(0; 1) and (1; 0), which allows the expression to be simplified to one out
of the ones shown in (3.3), by way of setting l1 = 0 and k1 = 1, or l1 = 1
and k1 = −1.

s1(x) =x+ c1(x− x2) (3.3a)

s1(x) =1− x+ c1(x− x2) (3.3b)

5

Which particular variant of s1 to use depends on the shape of the func-
tion to be approximated. The constant c1 remains unassigned so far
and a suitable value has to be determined experimentally.

3.1.2 The Second Sub-Function

The second sub-function, s2(x) which improves on the approximation
in s1(x), is a second order interpolation of fhelp(x), which is defined
in (3.4).

fhelp(x) =
forg(x)

s1(x)
(3.4)

Splitting fhelp(x) into I intervals yields a set of equations shown
in (3.5), where i is the interval index 0 ≤ i < I, and xw linearly increases
from 0 to 1 over each interval.

s2,i(x) = l2,i + k2,ixw + c2,i(xw − x2w) (3.5)

Assuming that the intervals are chosen to be of equal size, the interval
index i can be calculated by extracting the integral part of Ix, i.e. by
truncating Ix towards zero. Conversely xw can be calculated by taking
the fractional part of Ix.

Calculation of the coefficients of the s2(x) polynomials in each in-
terval is shown in (3.6), and is based on the fact that the polynomial is
chosen to intersect fhelp(x) in the beginning, middle, and end of each
interval, where xw takes on the values 0, 0.5, and 1 respectively.

xstart,i = i/I

xmid,i = (i+ 0.5)/I

xend,i = (i+ 1)/I

l2,i = fhelp(xstart,i)

k2,i = fhelp(xend,i)− l2,i

c2,i = −4fhelp(xmid,i)− 4l2,i − 2k2,i

(3.6)

Due to its role as a divisor in fhelp(x), it is necessary to make sure that
for any x in the interval where s1(x) = 0 there exists a limit value in
fhelp(x). If choosing (3.3a), the zero occurrs at x = 0, and directly
affects how the constant l2,0 is calculated. In case of (3.3b) being the
chosen form of s1(x), the zero occurrs at x = 1, and special care has

6

to be taken when calculating the value of the constant k2,I−1. The
limits that have to be calculated in either case, and their associated
constants, are shown in (3.7). It is imperative that the limit exists for
the implementation to be feasible.

l2,0 = lim
x→0

fhelp(x) (3.7a)

k2,I−1 = lim
x→1

fhelp(x)− l2,I−1 (3.7b)

Furthermore, there will be a second zero in either x = 1 + 1/c1 (using
s1 from 3.3a), or x = −1/c1 (using 3.3b), for which fhelp(x) may have
no limit, in which case care has to be taken when choosing a value for
c1, so that the zero does not appear in the range x ∈ [0, 1].

At this point, the method to calculate all constants in the second
sub-function has been shown. The number of intervals I remains as an
implementation detail.

3.1.3 Pre-Processing and Post-Processing Functions

As mentioned in the introduction to this chapter, when implementing an
approxmation of a function with an arbitrary input and output range,
such as the one shown in (3.8), additional functions may be needed in
order to bring input to the working domain of the algorithm, as well as
bringing the algorithm output from the algorithm domain, to the output
range of the approximated function [6].

z = f(v) (3.8)

The pre-processing and post-processing, as declared in (3.9), are used
to translate between whatever ranges are desired, and the [0, 1] range
required by the implementation of forg(x) that is to be approximated.

x = fpre(v)

z = fpost(y)

(3.9)

The overall expression then becomes as in (3.10), with the second
variant written with ◦ denoting function composition (meaning that
(g ◦ f)(x) = g(f(x))).

z = fpost(forg(fpre(v)))

z = (fpost ◦ forg ◦ fpre)(x)
(3.10)

7

This arrangement makes it necessary to choose forg(x) so that it
compensates the effect that the pre- and post-processing functions have
on the overall expression, i.e. so that the (ideal) approximation matches
the function in (3.8). This can be done by including the inverses of the
pre- and post-processing functions in the definition of forg(x), as shown
in (3.11), where z = f(v) is the unconstrained function in (3.8).

forg(x) = (f−1
post ◦ f ◦ f−1

pre)(x) (3.11)

Doing this, the overall expression will compose the pre- and post-
processing functions with their corresponding inverses, which makes
them equal to the identity function (fid(x) = x), and makes it possible
to eliminate them from the expression. This is shown in (3.12).

f(v) = (fpost ◦ forg ◦ fpre)(v)

= (fpost ◦ f−1
post ◦ f ◦ f−1

pre ◦ fpre)(v)

= (fid ◦ f ◦ fid)(v)

= f(v)

(3.12)

At this stage, the definition of forg(x) in terms of the function to
be approximated (f(v)), and the pre- and post-processing functions, is
clear and the search for suitable sub-functions can begin.

Two unknowns remain: the constant c1 from the first sub-function,
and the number of intervals, I, to use in the second sub-function. Both
affect the complexity of a hardware implementation directly, as well
as indirectly, by influencing error behaviour, and thus influencing what
further constraints can be placed on the data paths. Suitable values
have to be determined by e.g. simulation on a case-by-case basis.

8

Chapter 4
The Newton-Raphson Method

4.1 General Description

One method to find a root of an arbitrary function f(x) = 0 numerically
is the Newton-Raphson method (NR) [7], named after Isaac Newton and
Joseph Raphson. The objective of this method is to successively find a
more accurate approximation by iteration. It starts from a presupplied
approximate answer (initial guess) and then iterates until a sufficiently
close approximation is reached. The general form of an iteration of NR
is given in the formula shown in (4.1) [8, pp. 393].

xi = xi−1 − f(xi−1)
f ′(xi−1)

for i = 1, 2 . . .

where x0 is the initial guess.
(4.1)

For each iteration, xi closes in on the sought value x. For the derivative
in (4.1) the condition of f ′(x) �= 0 must be met.

In order to use NR to calculate an arbitrary function y = g(v),
the expression for which a root has to be calculated can be written as
f(y) = g−1(y) − v. A concrete example for the function g(v) = 1

v is
given in (4.2) and (4.3).

y = g(v) =
1

v
⇒ v = g−1(y) =

1

y

f(y) =
1

y
− v

f ′(y) = − 1

y2

(4.2)

9

yi = yi−1 −
1

yi−1
− v

− 1
y2i−1

yi = 2yi−1 − vz2i−1

(4.3)

The final expression in (4.3) uses no division and can be implemented
effectively in hardware to use as an approximation for the division func-
tion together with a suitable initial guess z0. The number of iterations
required would depend on the error of the initial guess and the required
precision of the answer. There are functions and cases where NR may
not converge as well, although they are outside the scope of this report.

4.2 Calculation of Look-Up Table

In order to increase the speed of the NR convergence, the initial guess
should be as close as possible to the actual result. If the guess is too
far away from the result, either more iterations or more initial guesses
will be needed. For many initial guesses, a Look-Up Table (LUT) is
preferable.

To keep the area of the LUT at a minimum, the number of stored
values and the width of the data paths of said values should be kept as
low as possible. A good trade-off between the number of iterations and
the number of stored values is important.

Fewer iterations will require a bigger LUT with more initial guesses,
in order to keep the error small and the answer within a given bit pre-
cision, Inversely, a smaller LUT will require more iterations in order to
keep the precision.

More iterations in an unrolled architecture require more hardware
and will increase area and latency, however, the size of the LUT will
also increase area and latency. It is not known beforehand if a smaller
LUT will compensate for higher amount of iterations and vice versa.

For the inverse square root function, an algorithm for finding an
adequate initial guess has been made. More initial guesses will be needed
closer to the y-axis due to the greater down slope. By using an algorithm
which calculates the same maximal distance from the actual result for
each initial guess throughout the function, a more even approximation
will be computed for NR. Figure 4.1 is an example of how the LUT will
be represented over the input v. The LUT is the plot which resembles
a staircase. Each step is an initial guess over a certain range in v.

The algorithm works by setting the number of values wanted in the
LUT, afterwards the algorithm will calculate the placement for each

10

1.0 1.5 2.0 2.5 3.0 3.5 4.0
v

0.5

0.6

0.7

0.8

0.9

1.0
y

Plot of LUT values

approximated function
initial guess

Figure 4.1: Example of a look-up table with 9 entries for the Newton-Raphson
Method.

initial value so the maximum distance to the function is the same for all
values. By doing this, the height between each initial value will be the
same. The beginning of the input value range (x-axis) for the LUT is
at the intersection of the guess and the approximated function, and the
range ends at the beginning of the next LUT entry range, see (4.4).

LUT lengthΔx = x1 − x2 =
1

y21
− 1

y22
(4.4)

Where y1 is the start of the LUT in y-axes and y2 is the start of the
next LUT in y-axes minus one bit resolution.

Another method to decrease the errors originating from the initial
values is to halve the maximum distance between the values in the LUT
and the function. If the values of the LUT is lowering half its height in
the y-axis, the interception of the inverse square function will be in the
middle of the LUT and not in the beginning as in in Fig. 4.1. By doing
this, the initial guess will be closer to the actual result as represented
in Fig. 4.2.

By comparing Fig. 4.1 and Fig. 4.2, it can be seen that the gap
between the initial guess and the actual value is smaller in Fig. 4.2. The
longest distance between the initial guess and the actual value is cut in
half in Fig. 4.2. Therefore, the method for choosing the initial values
will be the one shown in Fig. 4.2.

There is another method when choosing the initial values in the LUT.
Instead of first choosing initial values and then truncating the data-

11

1.0 1.5 2.0 2.5 3.0 3.5 4.0
v

0.5

0.6

0.7

0.8

0.9

1.0

y

Plot of improved LUT values

approximated function
initial guess

Figure 4.2: Representation of an improved 9 entry Look-Up Table for the
Newton-Raphson Method

path widths, a reverse method should be possible, where the truncations
are done first, and then the initial values are calculated. The idea is
to choose a starting point below the function that is just inside the
acceptable error range. As the function decreases, the absolute error
goes toward zero, and then increases again. When the error goes outside
the acceptable limit, a new interval with a new constant is created.

This method was found to be difficult to use. Input signals next
(or near) to each other can give different bit precision, were the one
closer to the real value can show a bit precision outside the maximum
bit precision and the other one inside.

12

Chapter 5
Error Analysis Theory

To evaluate the error behavior, a number of five methods is used to an-
alyze the two approximation models (the Newton-Raphson Method and
Harmonized Parabolic Synthesis), maximum error, mean error, median
error, Standard Deviation (SD) and Root Mean Square (RMS) [9].

5.1 Error Behavior Metrics

5.1.1 Maximum Error

The maximum error emax is the absolute value of the biggest error be-
tween the approximation result x̂i and the ideal result xi.

emax = max |ei| = max |x̂i − xi| (5.1)

5.1.2 Mean Error

The mean error ē is the average error between the approximation value
x̂i and the real value xi.

ē =
1

n

n∑
i=1

ei =
1

n

n∑
i=1

(x̂i − xi)

where n is the number of samples.

(5.2)

5.1.3 Median Error

When calculating the median error, a sorted list of all errors have to be
created, which can be costly. The median error is the sample found in

13

the center of the sorted list. To calculate the median error there are two
cases depending on if the numbers of samples is odd or even, see (5.3).
If there is a large difference between the median and the mean error,
then it is likely that there is a large number of errors placed closely to
the mean on one side, and a large outlier on the other side of the mean,
skewing the distribution.

emedian =

⎧⎪⎨
⎪⎩

e(n+1)/2 if n is odd

1
2(e(n+1)/2 + en/2) if n is even

where e is a sorted list of errors,
and assuming 1-based indexing.

(5.3)

5.1.4 Standard Deviation

Standard Deviation σ is used to see the dispersion around the mean.
A small standard deviation indicates that the samples tend to lie close
to the mean. If the standard deviation is high, this indicates that the
samples are spread over a wide range. Equation (5.4) shows how to
calculate the standard deviation.

σ =

√√√√ 1

n

n∑
i=1

(ei − ē)2 (5.4)

5.1.5 Root Mean Square Error

The root mean square error, shown in (5.5), gives a measure on how
far the error is from 0 on average. The root mean square error differs
from the mean error in that two values, of equal magnitude but different
sign would have a zero mean, but nonzero root mean square. The main
difference between the standard deviation of the error, and the root
mean square error is that the size of the mean error has no effect on the
standard deviation, but may show up on the root mean square error. If
the mean error is small, the difference between the standard deviation
and the root mean square error will be small as well.

erms =

√√√√ 1

n

n∑
i=1

e2 =

√√√√ 1

n

n∑
i=1

(x̂i − xi)2 (5.5)

14

5.1.6 Skewness

Another way to asess whether or not a distribution is symmetrical, and
to compare different distributions, is skewness. The definition of the
term is somewhat vague and more than one way to measure it has been
defined, the one used in this report is shown in (5.6) [10, pp. 183–184].

γ1 =
μ3

σ3
=

1
n

∑n
i=1(ei − ē)3(√

1
n

∑n
i=1 |ei − ē|2

)3 (5.6)

5.2 Error Probability Distribution

To visualize the error probability distribution, a graph in form of a
histogram is a good tool to use. A histogram can show a hint of both
the mean error, as well as the standard deviation as described in the
previous sections.

An error distribution histogram splits the error range into a number
of smaller ranges, and plots a bar for each range, corresponding to how
many errors occur in that range. Figure 5.1 shows an example of a
histogram. The goal for the error distribution is to be centered around
zero. The reason to have the error distribution around zero is that for a
large number of calculations, the average error should converge towards
zero. For this to happen, the error distributions needs to be centered
around zero.

−4 −2 0 2 4
Data values from a normal distribution

0

200

400

600

800

1000

1200

F
re

qu
en

cy

Example Histogram

Figure 5.1: Example of a histogram.

15

5.3 Bit Precision

When looking at the error, it is common to do so on the logarithmic
scale, a common approach is to use the decibel unit(dB), shown in (5.7),
where x is the error [11].

xdB = 20 log10(x) (5.7)

When using decibel as a measurement, the correlation between bits,
and the decibel unit has to be established. This is done by using Signal-
to-Noise Ratio(SNR), where noise will represent the error. First the bit
resolution must be determent for one bit in fixed-point representation.
Shifting the error by one bit to the left or right corresponds to a factor
2 multiplication or division.

1 bit error for fixed-point representation in the fractional part is
equivalent to 0.5 (0.12). Equation (5.8) shows the corresponding decibel
for one bit resolution.

xdB = 20 log10(0.5) ≈ −6dB (5.8)

From (5.8) it is given that one bit resolution in the fractional part is
approximately -6 dB. This measurement is not precise but gives a rela-
tively accurate approximation for one bit. For a more accurate equation
for bit precision the formula for calculating one bit should be included
instead of using the approximation 6 dB. The equation for bit precision
using decibel will be as shown in (5.9).

bit precision =
20 log10(x)

20 log10(2
−1)

(5.9)

Instead of using division, logarithm law of change of the base can be
use to simplify the expression. The logarithm law of change of the base
is as followed [12, pp. 78-79].

logk(x)

logk(b)
= logb(x), logk(x

t) = t logk(x) (5.10)

From (5.10) a direct equation for bit errors in fractional part will be
given without division of the resolution, see (5.11) [13, pp. 40].

bit error = − log2(x) (5.11)

The assignment is to calculate the bit precision for the fractional
part, were 1 bit is equivalent to 0.5. Using (5.11) this will give -1 bit
(log2 (2−1) = −1).

16

Note that an error of 0.5 (0.12) will actually be 0 bit precision in
the fractional part due for bit precision in fractional part to be one or
higher the error have to be less then 0.12.

For the bit precision to be 1, the binary representation of the error
has to be 0.1 > x ≥ 0.01, which is 0.5 > x ≥ 0.25 in decimal and
1 > x ≥ 2 from (5.11). This example gives the general condition for bit
precision shown in (5.12), where x is the error and bit precision is e.

− log2(x) = e =⇒ bit precision =

{
(e− 1) if e = integer
�e� if e �= integer

(5.12)

For this project, one of the goals is that the output values should have
15 bits of precision to the right of the radix point. Having m significant
bits to right of the radix point translates to that the largest absolute
error emax can have no bit set signifying a larger value than 2−m−1. For
infinite precision, this means that the largest absolute error allowable
can be constructed by the infinite series

∑∞
i=m+1 2

−i, which converges
towards the value 2−m. Given that the representation in simulations
and hardware will have limited precision, infinite series and convergence
does not have to be considered, and the inequality to consider becomes
emax < 2−m. As this project requires 15 bits of precision to the right of
the radix point, every implementation will have to pass a trial to make
sure that emax < 2−15 for all valid inputs.

Alternatively, one could express the goal as that the project re-
quires a signal to noise ratio (SNR) of slightly above 90.3dB, given that
the peak output value of the function is 1 and the error limit is 2−15,
see (5.13). This can be related to the fact that each extra significant bit
represents a power of two increase in dynamic range, corresponding to
about 6.02dB, as shown in (5.14)

SNRdB = 20 log10

(
signal

noise

)
= 20 log10

(
1

2−15

)
≈ 90.3 (5.13)

xdB = 20 log10(2) ≈ 6.02dB (5.14)

17

18

Chapter 6
Number Representation

6.1 Fixed-Point Numbers

Fixed-point notation is a simple way to extend regular integral repre-
sentation of a number into that of the rationals. For integers, a num-
ber expressed in base b with n digits, dn−1 down to d0, has the value∑i−1

i=0 dib
i. In the case of fixed-point numbers, the difference can be vi-

sualized by introducing an additional constant, the number of fractional
digits k, and the value of the number becomes

∑i−1
i=0 dib

i−k.
When writing out the digits, a radix point1 is usually used to help

differentiate fixed-point numbers from integers, as well as showing which
digits are integral, and which are fractional. With integers, the smallest
representable number is b0 = 1, whereas for fixed-point numbers it is
b−k. Arithmetic operations on fixed-point numbers are similar to in-
teger arithmetic. Negative numbers can be represented through two’s
complement notation in the same manner as for integers.

6.2 Floating-Point Numbers

A common method to represent (or at least approximate) real numbers
in computers and digital electronics, is binary floating-point representa-
tion, (e.g. as standardized by the Institute of Electrical and Electronics
Engineers (IEEE) 754[14]), where a real number x is stored as a signif-
icand a paired with an exponent b so that x = a2b.

1The radix point is more commonly known the decimal point when the base is
ten, and in a more general sense demarcates the integral and fractional parts of the
number

19

The representation is also normalized, meaning that the significand
is made to be greater than one and smaller than the base, and the
exponent scaled accordingly.2 In the case of base two representation,
this means that a significand of length n will have the Most Significant
Bit (MSB) and Least Significant Bit (LSB) representing 20 and 2n−1

respectively.

6.2.1 Representation and the Inverse Square Root

The inverse square root operation on a floating-point number v = a2b

can be simplified as shown in (6.1).

1√
a2b

= (a2b)−0.5 = a−0.52−0.5b =
1√
a
2−0.5b (6.1)

If b is odd, the exponent in the final expression −0.5b will not be an
integer (which is required due to the datatype representation), which
has to be dealt with, e.g. by subtracting 0.5 from the exponent and
multiplying the whole expression with the square root of the base, en-
cumbering the equation with an extra multiplication that can not be
converted to shifts or other simple operations. If instead base four is
used for the representation of the input data, further simplifications can
be made, shown in (6.2).

1√
c4d

= (c4d)−0.5 = c−0.54−0.5d =
1√
c
2−d (6.2)

Fortunately, converting integers from base two to base four is simple,
since sequential pairings of base two digits (so that the most significant
digit in the pair corresponds to an odd power of two) can be trans-
parently interpreted as base four digits. In the case of floating-point
represented numbers however, some additional work is necessary, given
that the base of the exponential is changed. This conversion (6.3) is
however lighter on computing resources than the extra multiplication
needed if two was kept as the base.

a2b = a4
b
2 =

{
a4

b
2 if b is even (d = b

2 , c = a)
2a4

b−1
2 if b is odd (d = b−1

2 , c = 2a)

}
= c4d

(6.3)
The normalization of the significand is kept through the conversion to
base four, in the case of b being even, the significand c will be in the range

2This is not always possible in a finite precision implementation, but subnormal
numbers are considered outside the scope of this project

20

[1, 2), and if b is odd, the range will be [2, 4). From this, together with
the final expression in (6.2), it can be concluded that by implementing
the inverse square root function 1√

v
for fixed-point numbers in the range

v ∈ [1, 4), the function can be implemented for the whole range of the
floating-point data type with little extra cost.

21

22

Chapter 7
Calculating the Inverse Square

Root

7.1 Harmonized Parabolic Synthesis

Section 6.2.1 showed the relative ease with which it is possible to ex-
tend a fixed-point implementation of the inverse square root, to a fully
working floating-point implementation. The requirement is that the
fixed-point implementation can operate on an input range v ∈ [1, 4).
However, the input working range for the HPS algorithm is x ∈ [0, 1],
as discussed in Chapter 3, and for this reason a pre-processing function
is necessary. Such an equation and its inverse is shown in (7.1).

fpre(v) =
v − 1

3

f−1
pre(x) = 3x+ 1

(7.1)

A post-processing function is required as well, since the inverse square
root function output varies between 1 and 0.5 for the desired input
range, and the output working range of the HPS algorithm is y ∈ [0, 1].
The post-processing function and its inverse is shown in (7.2).

fpost(y) =
y + 1

2

f−1
post(z) = 2z − 1

(7.2)

Other pre-processing and post-processing functions exist, e.g. fpre2(v) =
(4 − v)/3, however the subtraction of a variable is a more expensive

23

operation than the subtraction of a constant, and even more so if the
addition of the constant only affects the integral part of a number in
which most bits signify fractional values.

With both pre-processing and post-processing functions defined, the
forg(x) function can be defined, as shown in (7.3).

forg = f−1
post ◦ f ◦ f−1

pre

forg(x) =
2√

3x+ 1
− 1

(7.3)

From the shape of forg(x), i.e. it intersects (0; 1) and (1; 0), the imple-
mentation of s1(x) is chosen to be that of (3.3b): s1(x) = 1−x+ c1(x−
x2).

In order to check if forg(x) is viable for approximation with HPS, the
limit of fhelp(x) as x approaches 1 needs to be checked for existence and
calculated. The definition of fhelp(x) is shown in (7.4) and the limit value
is shown in (7.5). It can be concluded that approximating the inverse
square root with HPS should be possible as long as c1 ≥ −1, and as
long as −1/c1 /∈ [0, 1] (From the second zero discussed in Section 3.1.2,
for which forg(x) has no defined limit.).

fhelp(x) =
forg(x)

s1(x)
=

2√
3x+ 1

− 1

1− x+ c1(x− x2)
(7.4)

k2,I−1 = lim
x→1

fhelp(x) =
3

8c1 + 8
(7.5)

7.2 The Newton-Raphson Method

In Chapter 4 it was shown with an example of how to use NR for cal-
culating g(v) = 1/v. With the same principle, g(v) = 1/

√
v will be

calculated, shown in (7.6) and (7.7).

y = g(v) =
1√
v

⇒ v = g−1(y) =
1√
y

f(y) =
1

y2
− v

f ′(y) = − 2

y3

(7.6)

24

yi = yi−1 −
1

y2i−1
− v

− 2
y3i−1

yi = yi−1 × 1
2(3− v × y2i−1)

(7.7)

As in (4.3) the algorithm for calculating the inverse square root can
be done without any division (division by 2 can be done by shift). A
good approximate algorithm is given for the inverse square root for a
given amount of iteration. The bit precision will depend on the number
of iterations and the proximity of the initial guess to the actual result.

25

26

Chapter 8
Hardware Architecture

8.1 Harmonized Parabolic Synthesis

The hardware architecture of the HPS algorithm follows the equations
described earlier, as shown in Fig. 8.1 pre-processing and post-processing
blocks that transform the input and output of the HPS algorithm block
to and from the necessary range, and the HPS block itself, where the
two subfunctions s1(x) and s2(x) reside.

s

s
y

HPS

pre post
zv x

Figure 8.1: A bird’s eye view of the HPS hardware architecture

8.1.1 Pre-Processing

The pre-processing block, shown in Fig. 8.2 is quite simple, one subtrac-
tion, and multiplication by a constant. The subtraction can be made
very simple due to the fact that the input v is defined to be in the range
[1, 4), and the subtrahend is integral, consequently, the subtraction will

27

have no effect on the fractional bits of v, and only two integral bits will
ever need to be modified.

v x_proto x

onethird

x

1/3

x-1
v

Figure 8.2: The pre-processing Function

8.1.2 Processing (HPS)

xw

xi

c

l

j

x²

x

y

s

s

LUT

x²

c

1-x

Figure 8.3: The processing/HPS function

The processing block contains the two subfunctions, s1(x) and s2(x).
Choosing to restrict the potential interval counts I to integral powers of
two simplifies the generation of xi and xw. The value xi, used to index
the look-up table, is calculated as xi = �I x�, and xw, is calculated as

28

xw = I x − �I x�. In both cases the multiplication I x becomes a shift,
and the equations can be simplified as extracting the correct bits from x
and reinterpreting their value. The expression of s2(x) in Fig. 8.3 is also
a bit different than in (3.5), introducing the constant j2,i = k2,i + c2,i,
which allows expressing s2(x) with fewer operations, shown in (8.1). It
should also be noted that in the actual hardware implementation, the
subtraction of c2,ix2w is made into an addition, by changing the sign of
the c2,i values stored in the look-up table. The motivation is that the
hardware becomes simpler.

s2 = l2,i + k2,i xw + c2,i (xw − x2w)
= l2,i + (k2,i + c2,i)xw − c2,i x

2
w

= l2,i + j2,i xw − c2,i x
2
w

(8.1)

8.1.3 Post-Processing

y z_proto z

x/22-x
y z

Figure 8.4: The post-processing Function

The post-processing block in Fig. 8.4 can be optimized as well, y is
defined to be on the range (0, 1] and, like in the pre-processing case, it
interacts with an integer, so the actual change of the data when added
together with a constant 1 does only affect the integral bits. The last
block, dividing the result of the addition by 2 can be implemented as
a simple bit shift, or in the case of a hardware implementation, as a
reinterpretation of the significance of the bits in the data path.

8.2 The Newton-Raphson Method

From (7.7) the hardware architecture for the inverse square root can be
designed. The simplified algorithm will be as follows:

yi = yi−1 × 1

2
(3− v × y2i−1) (8.2)

The components needed for this algorithm are a subtractor, two
multipliers and a shift. The initial value (y0) based on the input v,
will be placed in a look-up-table (LUT). Figure 8.5 shows an unrolled

29

NR architecture. The iteration count is preferable to keep low, in order
to keep a narrow data path (enabling shorter clock periods) and area
requirements.

The actual number of iterations and the values placed in the LUT
will be determined by the results from the simulations in Matlab. These
simulations do also decide the necessary data-path widths of the data
paths, so a schematic can be made.

A number of different combination of iterations, LUT and data-path
widths will be tested during the simulation process.

LUT

3

x² x/2

3

x² x/2

3

x/2

iteration 1

iteration 2

iteration N

v

z
x²

Figure 8.5: Unrolled Newton-Raphson architecture

30

Chapter 9
Implementation: Data Flow

Design and Simulation

From the theory in Chapter 3 and Chapter 4, the algorithms for Har-
monic Parabolic Synthesis and the Newton-Raphson Method are given.
To be able to implement these algorithms in hardware, each algorithm
needs to have their corresponding constants calculated and the data
paths constrained. The effects of combining different constant values
and constraints are tested and verified in software based simulations,
written in Matlab and C.

For Harmonic Parabolic Synthesis, the value of the constant c1 needs
to be chosen, as well as the number of intervals to use in the subfunc-
tion s2(x). The values for the constants (c2, l2, j2) in each interval is
calculated as well.

In the Newton-Raphson Method, the LUT for the initial guesses
needs to be calculated and the number of iterations chosen.

For both algorithms, the dataflow of a complete circuit with con-
strained widths for each data path will be simulated. The final result,
z, is going to have at bit precision of at least 15 bits in fractional part,
except for v = 1 for which the requirement is that z = 1 exactly, as
described in Chapter 2 Scope. These are the primary design objectives.

This chapter will show how these constants are calculated or cho-
sen with the help of the error metrics, probability distribution, and bit
precision found in the error analysis theory of Chapter 5.

31

9.1 Harmonized Parabolic Synthesis

In the theory in Chapter 3, methods for calculating values for all the
values are presented, except for the value of c1, the remaining yet to
be defined constant in the first sub-function s1(x), and the number of
intervals I in which to split the second sub-function, s2(x). Additionally,
the required precision of the various data paths in the implementation
need to be determined.

There exists no known simple mathematical rule of thumb for choos-
ing c1 and I and they, as well as suitable constraints on the data path
have to be determined by simulation.

9.1.1 Choosing c1 and Interval Count I

In order to choose suitable values for the constant c1 and the number
of intervals in which to split s2(x), the maximum error for the approx-
imation, over the entire input interval [1, 4) was gathered and plotted
for a number of intervals (integral powers of two), and values of c1 (a
high number of points selected from a continuous range). The results
are shown in Fig. 9.1

Given the fact that c1 is going to be fed into a multiplier, choosing
a value that is an integral power of two is desirable. This since fixed-
point multiplications and divisions by powers of two can be realized as
shifts, which when it comes to hardware, is just a reinterpretation of
what the bits present in the data path signify. From an implementa-
tion standpoint setting c1 to zero should be even more beneficial, since
multiplication by zero always equals zero, enabling removal of hardware
that does not contribute to the final result.

From Fig. 9.1 it can be concluded that at least 32 intervals are
required in order to get a small enough error, and that increasing the
interval count decreases the error. For all interval counts for which there
exists a point below the maximum error limit, choosing the constant c1 =
0 is viable, and is selected as the value to be used in all implementations.
Now the design can be simplified to the flow shown in Fig. 9.2.

Comparing the processing part in Fig. 8.3 with the corresponding
part of Fig. 9.2 the immediate benefit of selecting c1 = 0 becomes ap-
parent, one multiplier and two adders can be removed.

Following the selection of zero as the value for c1, software tools
to simulate the data flow behaviour and to report and/or visualize it in
various ways were developed. This in order to try multiple combinations
of interval counts together with testing how much the data paths can
be constrained without the maximum error becoming too big. Both of

32

−2 −1 0 1 2 3 4
c1

−40

−30

−20

−10

0

10

lo
g 2
(m

a
x
(|e

|))
1 interval

2 intervals

4 intervals

8 intervals

16 intervals

32 intervals

64 intervals 128 intervals 256 intervals

512 intervals

greatest error for various c1
and interval counts

greatest allowable
error limit

Figure 9.1: Plot of the largest approximation errors for the whole input range
(v ∈ [1, 4)), when choosing various numbers of intervals and values
for the constant c1

these parameters give hard constraints for how the hardware can be im-
plemented. The properties of the simulation software and development
work is expanded on in Appendix A.2.1 HPS Data Flow Simulation.

33

x

xw
xxw

xi
c2 l2

jxw

j2

s2_proto

cxxw
s2

s1

y

xw

xi

c

l

j

x²

x

y

s

s

LUT

1-x

x²

c

1-x

s previously

v x_proto x

onethird
x

1/3

x-1
v

y z_proto z
x/2x+1

y zprocessing

preprocessing

postprocessing

Figure 9.2: The architecture of the implementation of the HPS algorithm; the
data paths are annotated with the names they have been given in the
simulation output. The implementation of s1 has been simplified
following the selection of c1 = 0

Apart from removing leading and trailing zeroes from the data paths,
some of the paths are only ever representing negative values, making the
most significant bit set at all times, making it possible to hard-wire it
as a constant. In Table. 9.1 these paths are marked.

34

data path data-path width

32 intervals 512 intervals

v 15 15
x_proto 15 15
onethird 14 14

x 16 16
xw 11 7
s1 17 17

xxw 12 5
l2 18 17
j2 13 (14)* 10
c2 9 9

jxw 14 9
cxxw 11 6

s2_proto 18 17
s2 18 18
y 16 16
z 17 17

zz 18 18

Notes:
* Always negative, meaning that the MSB

is always 1 and does not have to be stored

Table 9.1: Width of each data path in two different HPS implementations.

9.2 The Newton-Raphson Method

9.2.1 Design Constraints

For the Newton-Raphson Method there are not many design constraints
that will affect the approximation of the results. The two main con-
straints are the number of iterations and the count and values of the
initial guesses, and the third is the width of the data paths in the de-
sign. By evaluating combinations of these three constraints, a design
can be decided on.

The first of these constraints to be determined is the number of
iterations versus the number of initial guesses in the Look-Up Table
(LUT). In this early step of the design analysis from one iteration to
four iterations is done in Matlab by using floating-point representation of
the numbers. The method for calculating the initial guesses is explained
in Chapter 4.2. When using Matlab to calculate it’s crucial to use the

35

same value representation in float number as it would be in fixed-point
representation. The solution is to divide v into 24576 values in the range
of 1 ≤ v < 4 to simulate the real input from v with 15 bits in fixed-point
representation. By starting at 1 and ending at value 3.998779296875
(11.1111111111111 in fixed-point representation). A representation of
iteration vs. LUT is shown in Table 9.2.

1 iteration 2 iterations 3 iterations 4 iterations

LUT Max error LUT Max error LUT Max error LUT Max error

81 15.0915 9 16.0772 4 20.9267 2 19.6506
79 15.0403 8 15,3849 3 17,0273 1 17,2487
78 14.9747 7 14.5989 2 10,4489

Table 9.2: Bit precision for iteration count vs LUT size for floating-point num-
bers

From Table 9.2 the number of LUT entries each iteration needs in
order to have a bit precision of 15 bits or more. Table 9.2 gives that one
and two iterations are enough for a precision of 15 bits. A good trade-off
is done here, and three and four iteration are no longer candidates for
further analysis. The decision is based on that more iterations results
in a slower implementable minimum clock period and will also increase
the area of the design.

9.2.2 Data-Path Width

The first analysis with floating-point representation is not optimized
according to data-path width and an analysis with fixed-point repre-
sentation for one and two iterations will be done. In fixed-point rep-
resentation the design should have as small path width as possible to
minimize the clock period and also decrease the area, since wider data
requires bigger, slower components to implement operations on them.
For this purpose Matlab will be used by using "Fixed-point numeric
object" toolbox. The rounding method will be set to floor and overflow
action to wrap to simulate truncation and overflow in a real Resistor
Transistor Logic (RTL) design.

There are no good analytical methods to find the optimal data-path
widths since a wider path can give a worse precision than a more narrow
one. The method for this approach is simply trial and error, this project
does it by decreasing paths in the beginning of the design.

36

Besides a precision of 15 bits, a good error distribution is to be achieved
and needs to be accounted for.

Because of truncation, the LUT found in Table 9.2 will not be
enough. The algorithm used in Table 9.2 uses the default rounding
method in Matlab and no truncation for each operation will be done. In
reality a truncation will be done after each operation of the algorithm.
The main problem is not how many LUT entries the design will require
but to find a good relation between bit precision and the error distribu-
tion which is to be centred around zero. Seen in Table 9.3 for one and
two iterations, a number of LUT entries have been added to maintain a
bit precision of at least 15 bits. For 1 iteration all paths have a width
of 18 bits and for 2 iterations the width is 17 bits for all paths.

1 iteration 2 iterations

LUT Max error LUT Max error

94 15.4241 13 15.7297
92 15.2967 12 15.7708
88 15.2235 11 15.7897

Table 9.3: Bit precision for iteration count vs LUT size for fixed-point numbers

For these designs there is still room for improvement for the data
paths, but the next step will be to improve the error distribution. It
is beneficial to have some leeway, when modifying the design so that
the error distribution comes closer to what is described in Chapter 5.2.
The goal is to have SD and RMS as identical as possible. Changes in
data-path widths can now make the bit precision go under the required
15 bits and/or make the error distribution worse.

After many simulations, LUT sizes were chosen to be 13 entries
for 2 iterations and 94 entries for 1 iteration, due to the good error
distribution with the given widths of the paths. The final schematics
for 1 iteration and 2 iterations and can be seen in Fig. 9.3 and Fig. 9.4.
The bit precision for the final schematic can be seen in Table 9.4.

When all the values in the LUT for 1 iteration and 2 iterations are
chosen there is one more constraint that needs to be taken into account.
When v = 1 the result needs to be 1/

√
1 = 1. If the first initial guess

for when v = 1 is chosen to be 1, simulation of the final schematics of
Fig. 9.3 and Fig. 9.4 gives the result 1, the constraint is satisfied.

37

This means that one more initial value will be put into the LUT;
for the input value v = 1 the initial guess will be 1, ensuring a correct
answer. This extra value will increase the amount of LUT entries to 95
for 1 iteration and 14 for 2 iterations.

38

1 iteration 2 iterations

LUT Max error LUT Max error

95 15.0376 14 15.7297

Table 9.4: Final bit precision for fixed-point numbers, iteration vs. LUT.

It is time consuming work to find the best error distribution by
changing path widths for different LUT sizes. To not get stuck trying
to find the best solution, the design is considered to have met its goal
when a good enough error distribution is found with a bit precision of
at least 15 bits.

Fig. 9.3 and Fig. 9.4 show the final schematics which are to be im-
plemented in VHDL code and analyzed. The data-path widths for the
architectures are shown in Table (9.5).

The 14 and 95 LUTs’ values and the ranges of v the entries are
responsible for can be seen in Appendix A.1.

y

z

yy

yyv

s

shift

v

zz

LUT

3

x² x/2
z

x²
z²

Figure 9.3: The architecture for 1 iteration of the Newton Raphson method

39

z

yy2

yy2v

s2

shift2

zz

y1

y2
yy1

yy1v

s1

shift1

v

L

UT U3x
z

UT
z²

² / 2

L

UT U3x

Figure 9.4: The architecture for 2 iterations of the Newton Raphson method

1 iteration 2 iterations
First Second

v 15 v 15 v 15
y 15 y1 16 y2 16

yy 16 yy1 16 yy2 17
yyv 19 yy1v 16 yy2v 17

s 19 s1 16 s2 18
shift 19 shift1 16 shift2 18

z 18 z 17
zz 19 zz 19

Table 9.5: Width of each data-path in two different NR implementations.

40

9.2.3 Optimization

1.0 1.5 2.0 2.5 3.0 3.5 4.0
v

−35

−30

−25

−20

−15

lo
g 2
(|o

u
tp
u
te
rr
or
|)

plot of log2|error| for NR1

log2(|error|)
log2(acceptable error limit)

possible room for improvement

Figure 9.5: Bit precision for 1 iteration with horizontal line.

When analyzing the bit precision of z over the range of v for 1
iteration the bit precision slowly gets worse for an increasing v. Demon-
strated by placing a straight line roughly atop the peak values of the
calculated precision, as seen in Fig. 9.5. If more time could be spent
on the algorithm for optimizing the LUT values, the extra leeway in
precision for low v could possibly be used to increase the shape of the
error distribution.

To find the best relation between error distribution and bit precision,
a script to test different path widths would be the best solution. Because
the simulation of the Newton Raphson method was done in Matlab every
simulation took at least 30 min. to run, adding together all different
combinations of wordlentgh, the time spent on data path simulations
would be too long. To narrow it down, simulations were carried out for
a set of numbers of LUT values meeting the bit precision and different
combinations of path widths. For all these simulations, the bit precision
and the error distribution was analyzed. A single change in one bit
could be enough for making a good error distribution to change into a
bad one, especially when the width of the paths already have been cut
down.

41

42

Chapter 10
Implementation: Hardware

Design and Simulation

To generate the circuit layout of the physical design, the algorithm to
be implemented will go through three steps: expression as VHDL code,
Synthesis, and Placement and Routing (PNR). Each of these steps in-
clude a number of verifications and tests before it can proceed to the
next step. Figure 10.1 shows the workflow for the hardware part of this
project.

After placement and routing, Simulation and Power Analysis are
done to generate statistics concerning power consumption. These are
the last steps for this project. Multiple runs of the steps from synthesis
to power analysis, will be made for the physical design, using different
libraries, voltages, and clock periods. The goal is to analyze the different
characteristics for these three constraints. Workflow in Fig. 10.1 is a
basic representation and is only showing the flow from a birds-eye view.
In reality, each step is more complex and the chart would be too big
if all were put into one flowchart. Section 10.1 - Section 10.4 will go
through each step in more detail.

10.1 VHDL

The final simulations of the VHDL code have been done in QuestaSim -
64 10.0d from Mentor Graphics R©. Initial behavioural simulations have
been done to some extent in GHDL as well, accompanied by GTKWave.

Figure 10.2 shows the workflow for the creation of the VHDL code.
The working process before writing VHDL is to split the algorithms

43

VHDL
RTL Models

Synthesis
Gate-level

Netlist

Placement & Routing
Transistor-level

Netlist

Simulation
Switching Activity

Information

Power Analysis
Power Estimation

Report

veri cation of
behaviour
with data

veri cation of
behaviour with

timing constraints

veri cation of
behaviour with

timing constraints

veri cation of function
with timing information

and data

Figure 10.1: Hardware design workflow

into small individual components resulting in a top-down analysis of
the design. Each component needed will be created and tested in a
testbench. Components needed in more than one place are made so that
width of the input and output signals can be set with VHDL generics.

When all components needed have been created and tested, they are
put together in bigger blocks representing subfunctions in the algorithm.
These blocks are tested and verified with test vectors generated from the
earlier data-path simulations.

The final step is to connect all the blocks to create the fully func-
tional algorithm. The fully functional algorithm is tested to verify the
function with test vectors data-path simulations. The testing of all
components and finally the whole algorithm is thus carried out in a
bottom-up manner, where the bigger blocks are implemented once their
internal components have been tested and their function verified.

To make the RTL design synchronized with a clock, flip-flops are
added for the output signals. Figure 10.3 shows what the real RTL
design look like, the first flip-flops will be only simulated by the test

44

Component
VHDL

Block
VHDL

Algorithm
VHDL

Component
Test Bench

VHDL

Algorithm
Test Bench

VHDL

Final Test
Bench
Mixed

Synthesis, Place & Route

Block
Test Bench

VHDL

Figure 10.2: VHDL development workflow

bench. The content of the combinatorial logic in the figure depends on
which algorithm to implement, other than that, the design will look the
same for both algorithms.

D Q

clk

D Q

clk

D Q

clk

x²Combinational
Logic

Algorithm
Implementation

v z

z²

Figure 10.3: The real RTL design with flip-flop.

45

Before the creation of the components, analysis shows that numerous
components can be specialized for their purpose. When examining the
architecture, some standard components could be merged together in
order to save latency and area. Some of these components can be used
in both the architecture for HPS and the architecture for NR. Most
of the specialized components are made specifically for only one of the
two architectures. Chapter 10.1.1 - Chapter 10.1.5 describes how these
components are optimized.

10.1.1 Semi-Generic Multiplier

When implementing a multiplier, it is useful if the properties of the
numbers it is going to process can be known at implementation time.
Some of the multipliers used in this project need to be able to multiply
combinations of positive and negative numbers, but it so happens that
for the cases in this project, only multiplications between two unsigned,
or one unsigned and one signed, number is required. This is easier to
implement than a multiplier that needs to be able to multiply two signed
numbers.

Table 10.1 shows the operation of a simple multiplier, and also
demonstrates that it is not sufficient for handling negative numbers.

010 (210)
× 110 (610 or in two’s complement: −210)

000 0102 × 02
010 0102 × 102

+ 010 0102 × 1002
001100 (1210)

Table 10.1: Simple binary multiplication

The binary representation 1102 will be −210 in two’s complement but
610 otherwise, and since the multiplier is not built to handle negative
numbers the result becomes 1210. When exactly one of the numbers is
signed some modifications can be done in the last step.

46

Given a binary two digit number with the digits a and b, the two’s
complement interpretation of the number would be −2 × a + 1 × b,
multiplying it with a known to be unsigned number (xy), is relatively
easy. The principle is shown in (10.1).

ab× xy =

−210 × a× xy + 110 × b× xy =

210 × a×−xy + 110 × b× xy =

210 × a× (xy + 1) + 110 × b× xy

(10.1)

By inverting the positive number xy and adding one (which corre-
sponds to negation in two’s) in the last step, the correct result will be
given. Table 10.2 shows an example with the modified procedure. In
this case 010 inverted becomes 101 and then by adding one on 101 the
result will be 110.

010 (210)
× 110 (−210)

000 0102 × 02
010 0102 × 102

+ 110 (1012 + 1)× 1002
11100 (−410)

Table 10.2: Binary multiplication modified for one negative input

For hardware design this means that only slight modifications to
the last step (the step where the unsigned input is multiplied by the
most significant bit of the signed input) are needed. The 1 that has
to be added in the negation can be implemented as routing the most
significant bit of the signed input to the carry in of the last adder chain in
the multiplier. Figure 10.4 is an example of a 3x3 multiplier of this kind,
where x is the unsigned number, and y is signed. Note the inverter in the
last step for x and the carry in set to y2. This architecture only works
in the cases where it is known that y is signed and x is always unsigned.
This component will be used in the architecture HPS implementation,
whereas in NR there will at no time be a multiplication with negative
numbers.

The difference between this and a multiplier only handling unsigned
numbers is the inverters for x on the lowermost row, and feeding the
negative value bit (y2 in the figure) as the carry-in signal to the adder
producing z2. Feeding y2 and not a static one is done since the number
should only be added when the most significant bit of y is set. This

47

multiplier would also work for two unsigned inputs, as long as y is ex-
tended with a zero on the most significant side, ensuring that input
is always interpreted as a positive number, if it is knowable that both
inputs are always positive (representable as unsigned numbers) it is a
waste to build a more complex multiplier than necessary.

A B
Co Ci

S

A B
Co Ci

S

A B
Co Ci

S

A B
Co Ci

S

A B
Co Ci

S

A B
Co Ci

S

x2 x1 x0

x2 x1 x0

y1

y2

z0z1z2z3z4z5

x2 x1 x0 y0

Figure 10.4: 3x3 multiplier for one negative and one positive number

10.1.2 Algorithm for Squaring Component - Jingou Lai

The algorithm for the squaring component y = x2 has been developed
by Jingou Lai for his master thesis “Hardware Implementation of the
Logarithm Function using Improved Parabolic Synthesis”, 2013 [5].

48

10.1.3 Pre-Processing

The subtraction of 1 in the pre-processing component in Fig. 8.2 will, as
previously stated, only affect the two integral bits in v, and an implemen-
tation can be designed from a truth table, containing only the integral
bits, which are the two most significant bits, shown in Table 10.3.

inMSB inMSB−1 outMSB outMSB−1

21 20 21 20

0 0 – –
0 1 0 0
1 0 0 1
1 1 1 0

Table 10.3: Truth table for pre-processing subtraction

From the truth table in Table 10.3 the boolean expression can be
written for outMSB and outMSB−1 as:

outMSB = inMSB ∧ inMSB−1

outMSB−1 = inMSB−1

With the boolean expression, the final architecture of the subtraction
in the integral part will be as Fig. 10.5

From this design the subtraction can be done by the use of one
inverter and one AND gate, instead of the traditional subtraction which
would use as many Full Adders (FA) and inverters as the input length.

Figure 10.5: Final design of the pre-processing subtraction only affecting the

integral part of v

49

For multiplying with one third a general multiplier will be used (de-
scribed in Chapter 10.1.1) with one input as a fixed constant of one
third. The representation will be a sequence of alternating ‘1’s and ‘0’s
with two ‘0’s in the beginning as 0.010101. . . , where the length will
determined by the required precision.

10.1.4 Post-Processing

To bring the result of the HPS algorithm back to the range of the ap-
proximated function, the pre-processing function is implemented. The
formula for this function is z = (y + 1)/2 as described in Section 8.1.1.
The basic architecture is shown in Fig. 8.4.

This whole architecture can be merged together into one optimized
component. This optimization can be done in one simple step.

We know from calculation the upper and lower boundary of y, (0,1].
Adding one will only effect the integral part and the truth table will be
as in Table 10.4 (with y as the input and z as the output).

inMSB outMSB outMSB−1

20 21 20

0 0 1
1 1 0

Table 10.4: Truth table for post-processing

The corresponding boolean expression given from Table 10.4 will be:

outMSB = inMSB

outMSB−1 = inMSB

The design of the addition of one in the post-processing function is
shown in Fig. 10.6. Note that MSB for the output (z) is now interpreted
as having the value 21. The division by two (shift) operation will be done
in the next step.

The last step is to implement the shift operation. In the final design
the most significant bit of the result will represent the value 20. There
is an easy way to do a shift operation in fixed-point number represen-
tation, simply by changing the binary representation one step. When
calculating with fixed-point represented numbers, the designer decides
where the fractional part starts. Reinterpreting the value of the bits
previously representing 2n (where the value of n depends on the bit) to

50

Figure 10.6: Post-processing addition of one.

instead represent 2n−1 a division by two is made, shown in (10.2). Of
course, any multiplication by an integral power of two can be made this
way.

x =
b∑

i=a

2i

x

2
=

1

2

b∑
i=a

2i =
b∑

i=a

2−12i =
b∑

i=a

2i−1

(10.2)

Since the change is only in the interpretation of the data, no active
component is required, the action is essentially free, and no information
is added or lost, as shown in the example below, only the radix point is
moved.

3 : 011.02 = 3.010 MSB = 22 LSB = 2−1

3/2 : 01.102 = 1.510 MSB = 21 LSB = 2−2

3/4 : 0.1102 = 0.7510 MSB = 20 LSB = 2−3

The position of the radix point does not matter to the hardware
representation, although the designer has to keep track of it, and make
sure to align the numbers for certain operations, such as addition.

The last step for the design of the post-processing component will be
to change the representation of MSB to 20. Physically nothing is done
but the fractional length will be increased by one (and one less bit will
be needed on the integral side) and the representation of the number
will therefore be divided by two, shown in Fig. 10.7

51

Figure 10.7: Final design of post-processing.

10.1.5 Subtraction and Shift in the Newton-Raphson Method

Implementation

From (8.2) there is the subfunction 1

2
(3 − v × y2

i−1
). Given that the

division is just a reinterpretation of the significance of the bits, the whole
expression can be simply built as a single component. Figure 10.8 shows
the basic design of the function using two’s complement. For this reason,
an extra adder is created on the left, to cater to the extension required
for the bit with a negative sign.

Figure 10.8: Basic design of subtraction and shift for Newton Raphson without

optimizations

52

The first step for optimizing the hardware will be to replace the FA
which have one input set to constant zero, with Half Adders (HA).

Figure 10.9: Subtraction and shift for Newton Raphson with full adders re-

placed with half adders where possible

The result from this component will always be less than 1 when
using the range v ∈ [1, 4). This means that the result will only depend
on one of the integral bits in the input, and the left HA and FA can
be removed together with supporting components and data paths. The
shift operation is done in the same way as described in Section 10.1.4
for post-processing. The final design for the combined subtraction and
shift component can be seen in Fig. 10.10.

Figure 10.10: Subtraction and shift for Newton Raphson with unnecessary

components removed

53

The final design to be implemented is not optimized to its full po-
tential. There are still changes that can be made for the last adder to
the left, given that one of the inputs are constant. However, the Design
Compiler tool is optimizing the VHDL code as well as the selection of
logic gates (standard cells) in order to meet timing and area constraints.
Design Compiler will use algebraic and boolean techniques to optimize,
the tool will also do local gate-level optimization [15, Chapters 1.4–1.9].

54

10.2 Synthesis

Function Veri cation

Read Design

Clock Speci cation

Constraint
Speci cation

Design Compiler

Synthesis

Check Synthesis

Netlist and Report
Generation

Static Timing
Analysis and

Timing Veri cation

PrimeTime

QuestaSim

Figure 10.11: Synthesis flow.

All synthesis have been done in Design Compiler from Synopsys R© inc.
Verification of functionality has been done in QuestaSim, see Chap-
ter 10.1, VHDL, as well as some initial simulation and verification on a
behavioral level with GHDL and GTKWave during development. Ver-
ification of timing has been done in PrimeTime using Static Timing
Analysis (STA). The synthesis instructions are written as a Tcl script
and is executed automatically from a process control script written in
Perl. The synthesis flow can be seen in Fig. 10.11.

In the beginning of synthesis, the library of the standard cell tech-
nology to be used is selected. Later on in the process, the VHDL files
are read in the order of bottom-up for Design Compiler to analyze and
elaborate. When this is done, Design Compiler has read the design.

The specification of the clock is done by setting clock period, clock
uncertainty and clock transition. For this project a clock uncertainty of
2% has been chosen. The transition time was chosen after the result of

55

placement and routing depending of the constraint report. Transition
time varies depending of library.

The last constraints to be set are input delay and output delay.
These constraints are mainly used when the design is a part of a bigger
design with delay from the clock for input and output signals. These
constraints are set to a low value for this project.

When all the constraints are set, the synthesis can begin. The com-
mand compile in Design Compiler performs a gate-level synthesis and
optimization of the design. The optimization depends on the map_effort
and area_effort settings. The effort settings will be set depending of
what is to be achieved. One goal is to find the fastest circuit and another
is to see the area change over clock period, voltage and library. Given
that the number of designs that are needed to be synthesized with dif-
ferent clocking, library, etc. combinations is big, only the combination
of setting both map and area effort to high is used.

Another optimization method is to use the option -ungroup all, which
allows the synthesis tool to break the interfaces between internal com-
ponents, if it leads to a simplification. This could possibly both reduce
the required area and increase the maximum implementable speed of
the device.

From the synthesis step, a gate-level netlist file is generated as a
Verilog file. A Synopsys Design Constraints file (SDC) and DDC file
is also generated and will be used in other steps. For a more detailed
view, the script for synthesis can be found in Appendix A.6.1.

PrimeTime is used to verify timing and to generate a Standard Delay
Format file (SDF) from the netlist created in synthesis. Figure 10.12
show the flow of STA in PrimeTime.

To simplify the workflow of STA, specification of timing constraint
and timing expectation can be neglected if the DDC file from synthesis
is used. DDC is an internal database format by Synopsys and contains
both gate-level netlist and design constraints. A timing report is created
from reading the DDC. The timing report from PrimeTime will give a
more accurate report than the timing report from Design Compiler. If
the timing report from PrimeTime shows a violation in slack time the
synthesis needs to be redone with a clock period high enough to pass
time exception. To save time, the increase of clock period will be done
before the next step of placement and routing instead of re-synthesis of
the VHDL code. This was deemed a reasonable tradeoff, considering
that re-synthesis for a slower clock did not guarantee passing the tests
performed by PrimeTime.

56

Set Up Design

Specify Timing
Constraints

Specify Timing
Exceptions

Analysis and Report
Generation

PrimeTime

Figure 10.12: STAs flow.

The method of how to increase the clock period while retaining clock
uncertainty of 2% will be explained in Chapter 10.3, Placement and
Routing.

From the DDC file, an SDF file of the netlist can be generated for
simulation and time verification in Questasim. If PrimeTime’s timing
report gives a slack time violation, it is important to add this to the
clock period when simulating the netlist generated from synthesis with
the SDF file. Simulation in QuestaSim with SDF will verify function
and timing verification through this simulation. This kind of simulation
was done in the beginning of the project, to verify that the synthesis was
working. Later on in the project, this step is done only after placement
and routing to verify function and timing.

The script for STA can be found in Appendix A.6.2.

10.3 Placement and Routing

Placement and routing is the final step towards a physical layout of the
Integrated Circuit (IC) construction.

All placement and routing has been done in Encounter R© Digital
Implementation System v10-10 from Cadence R©. Verification of func-
tionality have been done i QuestaSim, see Section 10.1, VHDL. The
workflow is described in a Tcl script and is executed automatically from

57

Read Design

Floorplan Creation

Cell Placement

Clock Tree
Synthesis

Encounter

Routing Design Rule Check

Netlist Creation

Function Veri cation
and Switching

Activity Information
Generation

QuestaSim

Figure 10.13: Placement and routing flow.

a process control script written in Perl. The placement and routing flow
can be seen in Fig. 10.13.

At setup, Encounter needs to read the design netlist and the corre-
sponding technology library. Encounter will read the Verilog gate-level
netlist and the SDC file generated during the synthesis step. The SDC
file contains information about clock and other constraints needed for
placement and routing. The settings corresponding the actions during
a manual project import of the design is loaded from a separated file.

After the design is read the floor-planning will be set. During floor-
planning the area and cell density of the chip is set. Since the number of
and type of gates are given by the netlist, and their area are described by
the technology library, the overall area requirements can be calculated
from this. Power rings are added as well as the power grid. In this
project there is no need for I/O pads, since the circuit is realized and
tested as an internal IP core to be included in a bigger chip, rather than
as a standalone circuit.

58

Next step is to place the standard cells described by the netlist, which
are placed on the chip automatically. So far no internal connection or
clock network have been added.

To create the clock network a clock-tree synthesis is done. The clock
tree is generated by using information from the SDC file from synthesis,
and saves some of the information (timing information, what buffers
are available, etc.) to a clock-tree synthesis technology file (CTSTCH).
Clock-tree synthesis will place clock buffers and place the clock network
in a way to meet timing constraints from STA.

The STA gives a more accurate timing report than Design Compiler
and this mean that the clock period may need to be increased equal
to the setup violations reported from PrimeTime. Before the SDF file
is used it needs to be modified to increase the clock period but still
allow for a clock uncertainty of 2%. The following equation is used for
calculating the new clock period with a clock uncertainty of 2%, shown
in (10.3).

tnew = told +
tslack
0.98

(10.3)

tnew is the new clock period with 2% clock uncertainty added, told is the
old clock period with 2% clock uncertainty added, tslack is a positive
number of how much slack needed to be added. This is done in the
main process control script between the STA step and the PNR step.

During the routing process, the cells get connected to the power grid.
This process also makes sure the cells get their internal connections, as
well as tries to find the optimal routing paths. This process is done
more than one time with incremental improvements, in order to be able
to meet the time constraint. When routing is finished, all locations on
the die will be filled with filler cells.

When all standard cells are placed and routed a Design Rule Check
(DRC) is done. The DRC will for instance check the specific rules for
the semiconductors used in the chosen library [16, pp. 27, 208]. All
reports generated by Encounter are read programmatically and parsed
to check for pass or fail conditions.

A netlist in Verilog is created of the final design as well as an SDF file
and SPEF file. SPEF stands for Standard Parasitic Exchange Format
and contains all parasitic data of the IC construction [17, Chapter 9].

To verify the function and timing, the netlist from Encounter is
simulated in QuestaSim. The script for placement and routing can be
found in Appendix A.6.3.

59

10.4 Power Analysis

Set Up PA Mode

Link Design

Annotation and
Reading Activity

Analysis and Report
Generation

PrimeTime

Figure 10.14: Power analysis flow.

All power analysis has been done in PrimeTime R© PX from Synopsys R©.
The workflow is done in a Tcl script and is executed automatically from
a process control script written in Perl. The power analysis workflow
can be seen in Fig. 10.14.

In order to analyze power consumption of the design generated in
the placement and routing step, a file containing signal switching activ-
ity (Value Change Dump (VCD)) is required. The VCD is generated
in QuestaSim by simulating the verilog file created in Encounter in a
testbench using the SDF back-annotated file. A simulation is done for
all valid input values v and a switching activity is saved in the VCD file.
During this simulation the function and time verification is simultane-
ously done, due to the use of the SDF.

Besides the VCD there are three other files needed for a power analy-
sis of the IC construction. The files needed are generated in the previous
step of placement and routing, except for the VCD file which is gener-
ated in QuestaSim. The files are as follows:

• Netlist: Verilog file, gate-level netlist

• Timing Constraint: SDC file

60

• Parasitics: SPEF file

• Switching activity: VCD file

To get a more accurate power consumption a time-based power analysis
is performed. The time-based power analysis will report both peak
power and average power compared to average-power analysis which
only covers the average power consumption.

The full script describing the power analysis can be seen in Ap-
pendix A.6.4.

10.5 Main Process Control Script

The hardware workflow tool control scripts evolved from a desire to
automate interaction with the hardware workflow tools, since producing
results required days of computation, with input needed every few hours
or so. The scripts are written in Perl, with a common set of functions
that revolve around

• Analyzing already existing data and report files, to see if the last
step for a particular constraint combination has failed or suc-
ceeded, and if any additional steps are needed.

• Setting up and cleaning up the work environment for the tools,
creating and removing directories, instantiating templates.

• Starting the tools from shell script stubs (tcsh) and point them to
what Tcl scripts to use, what files to read and write, etc.

During the work, three specialized scripts have emerged with differ-
ent duties.

The first one has the task of trying to find the fastest clock speed
that yields a successful synthesization. Initially this was done by hand,
and iteratively, but has evolved to something more like a binary tree
search, beginning with a large clock period, and for each synthesization
either adding or removing an amount from the clock period, halving the
amount to add or remove in each iteration.

The second script scans selected directories for signs of partially
complete work, and continues e.g. with place and route operations if
synthesis and STA were successful.

61

The third script makes sorted lists of which implementations have
been successful, so that the only differentiating property in each list is
the clock period. Then it calculates the average clock period of each pair
of adjacent implementations and try to pull that configuration through
the workflow as well. This in order to create more datapoints so that
trends can be better observed.

62

Chapter 11
Results

11.1 Data Flow Behavior

11.1.1 Harmonized Parabolic Synthesis

Results from the data flow simulations of some of the HPS implemen-
tations are shown here.

The plot in Fig. 11.1 shows the distribution of errors and values
for a 32 interval HPS implementation, where the data paths are not
truncated. (Actually, due to the simulation software implementation,
this means that every value is forced to fit into a 32 bit signed integer
where the three most significant bits are treated as integral, and the
other 29 as fractional.)

The ringing like phenomenon shown in the left subplot is due to
the polynomials in the second sub-function being calculated to equal
the fhelp(x) function at the beginning, middle, and end of the interval,
which in the case of the inverse square root function leads to an overshoot
and undershoot between these points.

Figure 11.2 displays the change introduced by truncating the data
paths. The error distribution is visibly more bell shaped, but there is
a significant mean error which is not desirable. To remedy this, the
constants in the look-up table are modified, and chosen in order to
minimize the absolute mean error per interval, and with the hard limit
that the worst error must remain within the specified constraints. The
result of this can be seen in Fig. 11.3. Even with the mean error brought
down, there is a bit of skewness. It is possible to select constants not only
based on mean error, but also based on skewness: Figure 11.4 shows the
result of primarily selecting constants based on minimizing the absolute

63

mean error per interval, but in case of multiple sets of constants reaching
an absolute mean error 5 × 10−8 (somewhat arbitrarily chosen) for a
certain interval, the set that yields the least skew is selected.

The corresponding plot with constants selected for absolute mean
error and skew, for the 512 interval implementation of the HPS algo-
rithm, is shown in Fig. 11.5, the error distribution is flatter and more
widespread. Plots for implementations with between 32 and 512 inter-
vals show a gradual increase in flatness as the number of intervals grow.
These can be viewed in Appendix A.2.2.

It is important to present the comparisions of the different imple-
mentations in a way that gives a fair view of the properties even at a
cursory glance, for this reason, the error distribution graphs are all done
to the same scale. This does however have the effect that the highest
bar in the error histogram for the 32 interval implementation with no
truncation. The tallest bar in Fig. 11.1, does not fit in the plot when
scaled in a way that is suitable for comparing with other implementa-
tions, and a text label has been supplied to indicate the value. This was
chosen as preferable to either not plot everything to the same scale, or
changing the scale of every plot with resulting loss of detail in all other
plots.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

highest bar value = 15969

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS32 invsqrt with no truncation of datapaths

Figure 11.1: Input to output error plot and error distribution histogram for the
inverse square root implemented with HPS with 32 intervals and
without truncation of data paths

64

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS32 invsqrt with truncated datapaths

Figure 11.2: Input to output error plot and error distribution histogram for the
inverse square root implemented with HPS with 32 intervals and
with truncated data paths.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS32 invsqrt with truncation, modified constants (mean)

Figure 11.3: Input to output error plot and error distribution histogram for
the inverse square root implemented with HPS with 32 intervals,
with truncated data paths, and constants modified to minimize the
absolute mean error per interval.

65

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS32 invsqrt with truncation, modified constants (mean, skew)

Figure 11.4: Input to output error plot and error distribution histogram for
the inverse square root implemented with HPS with 32 intervals,
with truncated data paths, and constants modified to minimize per
interval absolute mean error as well as per interval absolute skew.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS512 invsqrt with truncation, modified constants (mean, skew)

Figure 11.5: Input to output error plot and error distribution histogram for
the inverse square root implemented with HPS with 512 intervals,
with truncated data paths, and constants modified to minimize per
interval absolute mean error as well as per interval absolute skew.

66

11.1.2 The Newton Raphson Method

The results from the simulation for NR 1 iteration can be seen in
Fig. 11.6. Truncation used for the simulation can be seen in Table 9.5.
The look-up table used for the simulation is visible in Appendix A.1.

In the leftmost plot in Fig. 11.6 the error for each value in v is shown,
and in the plot to the right, the error distribution is represented in the
form of a histogram, which gives a more condensed summary of the
error behaviour. There is no apparent skewing, although there is a bit
of a mean error, and especially looking at the per-interval mean error.
Whether this is a problem or not would depend on the requirements of
the application, they are however all within the constraints specified for
the work presented in this report.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

NR1, 94 LUT entries, invsqrt

Figure 11.6: Input to output error plot and error distribution histogram for
the inverse square root implemented with NR using 1 iteration
and with 94 intervals.

The results from the simulation for NR 2 iterations can be seen in
Fig. 11.7. Truncation used for the simulation can be seen in Chapter 9.2
in Table 9.5. The look-up table used for the simulation is visible in
Appendix A.1.

In the leftmost plot in Fig. 11.7 the error for each value in v is shown,
and in the plot to the right, the error distribution is represented in the
form of a histogram, which gives a more condensed summary of the error
behaviour.

67

Compared with the implementation of Newton-Raphson using only
one iteration, the error distribution is improved in just about every way
including the standard deviation and error range.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

NR2, 13 LUT entries, invsqrt

Figure 11.7: Input to output error plot and error distribution histogram for the
inverse square root implemented with NR using 2 iterations and
with 14 intervals.

11.1.3 Comparision of Statistics

The result from the error behavior analysis explained in Chapter 5 is
shown in Table 11.1 and Table 11.2.

For the Newton-Raphson Method, the results are shown for Newton-
Raphson with one iteration(NR1) and for Newton-Raphson with two
iterations(NR2).

For Harmonized Parabolic Synthesis, the results are shown for Har-
monized Parabolic Synthesis with 32 intervals(HPS32) and for Harmo-
nized Parabolic Synthesis with 512 intervals(HPS512). The numbers
presented for HPS here are all for the implementation with truncation
and constants that have been modified to keep both mean error and
skewness low.

68

Im
pl

em
en

ta
ti

on
M

ax
er

ro
r

M
ea

n
er

ro
r

M
ed

ia
n

er
ro

r
SD

R
M

S
Sk

ew

H
P

S3
2

2
.9
0
3
2
e-
0
5

1
.2
8
5
7
e-
0
8

2
.9
3
5
4
e-
0
8

6
.9
8
4
1
e-
0
6

6
.9
8
4
1
e-
0
6

−1
.9
0
6
9
e-
0
2

H
P

S5
12

3
.0
5
0
8
e-
0
5

1
.5
9
6
2
e-
0
8

9
.2
3
0
8
e-
0
8

1
.2
8
6
3
e-
0
5

1
.2
8
6
3
e-
0
5

−1
.6
1
8
6
e-
0
2

N
R

1
2
.9
7
3
3
e-
0
5

1
.9
0
2
8
e-
0
6

1
.6
6
6
5
e-
0
6

8
.9
8
0
0
e-
0
6

9
.1
7
9
4
e-
0
6

1
.1
8
7
4
e-
0
1

N
R

2
1
.8
4
0
3
e-
0
5

3
.8
4
1
4
e-
0
7

3
.6
8
5
0
e-
0
7

5
.8
9
0
1
e-
0
6

5
.9
0
2
6
e-
0
6

1
.8
6
2
7
e-
0
2

T
ab

le
11

.1
:

E
rr

or
m

et
ri

cs
fr
om

si
m

ul
at

io
ns

.

Im
pl

em
en

ta
ti

on
M

ax
er

ro
r

M
ea

n
er

ro
r

M
ed

ia
n

er
ro

r

H
P

S3
2

1
5
.0
7

2
6
.2
1

2
5
.0
2

H
P

S5
12

1
5
.0
0

2
5
.9
0

2
3
.3
7

N
R

1
1
5
.0
4

1
9
.0
0

1
9
.1
9

N
R

2
1
5
.7
3

2
1
.3
1

2
1
.3
7

T
ab

le
11

.2
:

E
rr

or
m

et
ri

cs
fr
om

si
m

ul
at

io
ns

in
bi

ts
.

69

11.2 Hardware Behavior

The hardware design and simulation from which the results for hardware
behavior come, is described in Chapter 10. The main CMOS technol-
ogy libraries for which data is presented in this work are ST Microelec-
tronics 65nm General Purpose Standard VT (GPSVT) and Low Power
High VT (LPHVT). Additional libraries for which hardware simulation
work has been done are General Purpose Low VT (GPLVT), General
Purpose High VT (GPHVT), Low Power Low VT (LPLVT) and Low
Power Standard VT (LPSVT). Presenting all variants of the algorithms,
implemented using all the technology libraries, would take up too much
space, or make the plots too cluttered, for little or no added benefit.
The sections in this chapter will will discuss the main implementations,
while additional plots and tabular data can be found in Appendix A.3
and A.4.

For each technology library, two supply voltage variants have been
investigated, and hardware layout and simulation have been done for
numerous clock periods. However it is not possible to realize hardware
designs for all combinations of implementations, technology libraries,
clock periods etc. as each process step introduces more and more real-
world imperfections and parasitics (as compared to dealing with ideal
components), which may or may not make a particular combination pass
or fail that particular step.

The chosen implementations to be presented for Harmonized Parabo-
lic Synthesis are 32 and 512 intervals, see Fig. 9.2 and Table 9.1. The
LUT constants for the implementations are the ones that give the error
behaviours described in Fig. 11.4 and Fig. 11.5 respectively. For the
Newton-Raphson Method, the implementations with 1 and 2 iterations
are chosen for presentation, see Fig. 9.3, Fig. 9.4 and Table 9.5. These
implementations are the same for which the data flow behavior have
been described in Section 11.1. Additionally, data for the best results
for each implementation, regardless of library, is presented.

The goal is to examine clock speed, area and power consumption.
Section 11.2.1 will discuss the results for clock speed and area. Sec-
tion 11.2.2 will present results for power consumption and energy con-
sumption, simulated from the physical layout.

70

11.2.1 Clock Speed and Area

For all successfully synthesized implementations of HPS32, HPS512,
NR1, and NR2, Fig. 11.8 (synthesis with the LPHVT technology li-
brary) and Fig. 11.9 (synthesis using the GPSVT technology library)
show how the clock period affect the cell area required for a successful
synthesis.

Furthermore, Fig. 11.10 (LPHVT) and Fig. 11.11 (GPSVT) plot the
same properties, but only for implementations that have successfully
completed all steps in the process, from synthesis, through PNR and
finally simulation and power estimation. The clock period and area
represented in these figures are the values reported at the end of the
workflow, meaning that the clock period for a given implementation
attempt will likely be slightly higher in the plots and tables presenting
post-PNR data, compared to synthesis data.

In the figures it can be seen that all implementations have a point
where decreasing clock period greatly increases the area requirement.
The location of this “knee” seems to depend partially upon the imple-
mentation, as well as the VDD of the library, but overwhelmingly on the
selected technology library.

There is also a lower bound to the required area that is about the
same for both technology libraries used. In this respect the HPS32
perform a little bit better than the NR1 implementation for lowest area
requirements, NR2 requires the most area, and the area requirement
for HPS512 is slightly higher than NR1, although the knee seems to
possibly appear a little earlier, or introduce a little steeper change for
NR1.

Comparing the clock speeds after synthesis, it seems that HPS512
has a slight upper hand compared to the other implementations, al-
though when doing the same comparision for implementations that have
passed all steps in the workflow, it is instead HPS32 that has the most
favourable clock speed.

71

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

70000
ar

ea
(μ
m

2
)

HPS32, HPS512, NR1, NR2: synthesized cell area vs clock

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.8: Clock period vs area for implementations that have been success-
fully synthesised using the LPHVT technology library.

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

70000

ar
ea

(μ
m

2
)

HPS32, HPS512, NR1, NR2: synthesized cell area vs clock

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.9: Clock period vs area for implementations that have been success-
fully synthesised using the GPSVT technology library.

72

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

70000

ar
ea

(μ
m

2
)

HPS32, HPS512, NR1, NR2: area after place and route vs clock

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.10: Clock period vs area for implementations using the LPHVT tech-
nology library and where the implementation have successfully
completed all simulation steps.

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

70000

ar
ea

(μ
m

2
)

HPS32, HPS512, NR1, NR2: area after place and route vs clock

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.11: Clock period vs area for implementations using the GPSVT tech-
nology library and where the implementation have successfully
completed all simulation steps.

73

Table 11.3 and Table 11.4 list data for the fastest clock speeds (syn-
thesized only, and successfully simulated after PNR respectively), and
Table 11.5 lists the implementations with the smallest area requirements.
In the tables, the implementation that has the fastest clock or smallest
area (depending on table) among the listed, is distinguished with bold
text.

More implementations of HPS have been examined than is being
plotted here. Implementations with 64, 128 and 256 intervals have also
been taken through the full set of steps in the workflow, from synthesis
to power estimation. Additional technology libraries have been used as
well for both HPS and NR, and for all implementation variants. Thus,
in order to try to find the fastest, the smallest, the most energy con-
servative instance of each algorithm, and to investigate if and how the
algorithms would differ in what benefits and drawbacks the properties
of the libraries would offer.

For a more exhaustive listing of timing and area requirements, with
all implementations and libraries compared, see Appendix A.4.1. Ta-
ble A.3 lists the best synthesised clocks for each implementation and
library and Table A.4 lists the properties of the fastest implementations
that have successfully completed all simulation steps. For the corre-
sponding listing of smallest area requirement after PNR, see Table A.5.

Impl. Library VDD Synth Clock
(ns)

HPS32 GPSVT 1.10V 4.3
HPS512 GPSVT 1.10V 3.9
NR1 GPSVT 1.10V 4.6
NR2 GPSVT 1.10V 6.7

HPS32 LPHVT 1.10V 16.9
HPS512 LPHVT 1.10V 15.1
NR1 LPHVT 1.10V 16.6
NR2 LPHVT 1.10V 25.8

Table 11.3: Listing of the lowest synthesised clock period for the implementa-
tions plotted in Chapter 11 Results.

74

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPSVT 1.10V 5.024 34779 21.9 110.026
HPS512 GPSVT 1.10V 6.584 23624 8.97 59.058
NR1 GPSVT 1.10V 6.686 28288 7.21 48.206
NR2 GPSVT 1.10V 10.049 41696 19.2 192.941

HPS32 LPHVT 1.10V 20.363 31965 3.26 66.383
HPS512 LPHVT 1.10V 26.559 21164 1.16 30.808
NR1 LPHVT 1.10V 26.651 27551 0.827 22.040
NR2 LPHVT 1.10V 40.584 41001 2.56 103.895

Table 11.4: Listing of the lowest clock period after PNR for the implementa-
tions plotted in Chapter 11 Results.

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPSVT 1.10V 9.6 16333 3.81 36.576
HPS512 GPSVT 1.10V 9.6 19512 3.73 35.808
NR1 GPSVT 1.10V 12.8 18306 1.6 20.48
NR2 GPSVT 1.10V 19.2 25281 4.34 83.328

HPS32 LPHVT 1.10V 38.4 16358 0.942 36.173
HPS512 LPHVT 1.10V 38.4 19540 0.784 30.106
NR1 LPHVT 1.10V 51.2 18246 0.303 15.514
NR2 LPHVT 1.10V 76.8 25281 0.741 56.909

Table 11.5: Listing of the lowest area requirement after PNR for the imple-
mentations plotted in Chapter 11 Results.

11.2.2 Power and Energy

The power consumption in a CMOS component consists of two parts,
static power (Pstatic) and dynamic power (Pdynamic). The static power
depends of the leakage current and supply voltage, while dynamic power
depends on the switching power (Pswitch) and short-circuit power (Pshort).
This section will detail the relations. Total CMOS power consumption
is as shown in (11.1) [18, pp. 4]:

PCMOS = Pstatic + Pdynamic (11.1)

75

The static power is the leakage power when the circuit is powered
on but inactive. Ideally the leakage current should be zero, however as
PMOS and NMOS devices in a complementary MOS transistor pair are
never on simultaneously in the steady-state operation there is always a
small leakage current between source or drain and the substrate. The
equation for static power is shown in (11.2) [19, pp. 223].

Pstatic = VDD Ileak
where VDD is the supply voltage and Ileak is leakage current.

(11.2)

As mentioned in the beginning of this section, the dynamic power
consists of switching power and short-circuit power shown in (11.3)[20].

Pdynamic = Pswitch + Pshort (11.3)

Every time a switch cycle occurs (0-1-0) in the circuit the CMOS will
charge and discharge its load capacitances. The amount of energy that
will be lost depends on frequency, supply voltage and load capacitance.
Switching power is shown in (11.4) [19, pp. 214–216].

Pswitch = αCL V 2
DD f

where α is the switching activity, CL is
load capacitance and f is the frequency

(11.4)

During switching there is a short period of time when both the
PMOS side and the NMOS side are open. The reason for that is due
to the transition between on and off or vice versa is not instantaneous,
the rise- and fall times are not zero. This condition will create a di-
rect path between VDD and ground, causing current to leak as shown
in (11.5). [20][19, pp. 220].

Pshort = VDD ISC
where ISC is the short-circuit current.

(11.5)

For electrical portable units it is more relevant to calculate the energy
consumption instead of power consumption. Electrical mobile units use
battery which means that it runs on limited available energy stored in
the battery. Low energy consumption will give a longer operating time
on a given limited battery charge [21, pp. 271].

Energy consumption is measured as the amount of energy (E) con-
sumed by the circuit compared to power consumption that is measured
as the amount of energy consumed during a certain amount of time.

76

Energy consumption per clock period can be calculated if the power
consumption and clock period are already known, the calculation will
be as shown in (11.6) [21].

E = P t
were P is average power consumption during
a clock cycle, and t is the clock period.

(11.6)

The total power consumption is shown in Fig. 11.13 for the GPSVT
technology library, and Fig. 11.12 for the LPHVT technology library.
Looking at the power consumption of the algorithm implementations,
the ranking, compared to area requirements, have changed somewhat.
NR2 has a higher power consumption, likely from having a bigger cir-
cuit with more active components, while NR1 consumes the least power.
The two implementations of HPS have similar power consumption, al-
most overlapping when implemented with the GPSVT technology li-
brary, and with the 512 interval implementation slightly lower when
using the LPHVT technology library. In general, a lower VDD can be
seen to result in a lower power consumption, which is to be expected,
as shown in (11.2), (11.4) and (11.5). The validity of this comparison
does however diminish at higher clock speeds after the “knee”.

LPHVT, being a technology library targeted towards low power ap-
plications generally outperforms the GPSVT library regarding power
consumption, when comparing implementations with otherwise equal
features.

77

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)
HPS32, HPS512, NR1, NR2: clock vs total power

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.12: Power consumption for implementations using the LPHVT tech-
nology library.

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

HPS32, HPS512, NR1, NR2: clock vs total power

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.13: Power consumption for implementations using the GPSVT tech-
nology library.

78

It is also interesting to calculate the energy consumed during a sin-
gle calculation, since high power consumption during a short time may
use the same amount of energy as low power consumption during a
longer duration. Referencing (11.4), the amount of energy consumed as
switching losses should be independent from the clock frequency, since
E = Pt and f = 1/t. On the other hand, static power consumption
is independent from timing, which means that the energy consumed as
static losses in the device should increase as the clock period increases.
At least if the assumption can be made that the device is completely
powered off when not actively calculating anything, and that the change
between active and powered off is reasonably instantaneous.

The total energy consumption calculated this way is shown by
Fig. 11.15 (GPSVT) and Fig. 11.14 (LPHVT) which show the energy
required for the calculation of one single value. In the plot for the
GPSVT technology library, there exist approximate local minimums for
all combinations of algorithm, VDD, etc. regarding energy consumption.
The LPHVT library plot does not have as pronounced minimums, the
effect could possibly be shown better if additional implementations are
tried with even slower clocks. To the left of these minimums, the energy
consumption starts to increase at the same points where area starts to
increase in the previous figures, and the tool chain struggles to meet the
timing requirements. To the right of the minimum, the increased energy
usage is a direct result of a fairly constant static power consumption
integrated over longer and longer time intervals as clock period increases.

Comparing the libraries, it seems that for a lot of LPHVT technol-
ogy implementations, there exists a GPSVT technology implementation
with the same energy requirement, but a faster clock speed. The reason
for this can be found when examining static and dynamic power con-
sumption separately. Graphs for these properties are presented in Ap-
pendix A.5 and show that the main difference between the implementa-
tions using the two libraries, lie in their static power consumption, while
the dynamic power consumption were similar for similar clock speeds.
This has the effect that the energy consumption caused by dynamic en-
ergy losses is relatively equal between the libraries and independent of
implementation clock speed (except for when the tool chain has trou-
ble getting implementations to pass the constraint checks), whereas the
energy consumption from static losses decrease as clock speed increases.

79

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)
HPS32, HPS512, NR1, NR2: clock vs total energy

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.14: Total energy used for one calculation for implementations using
the LPHVT technology library.

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

HPS32, HPS512, NR1, NR2: clock vs total energy

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure 11.15: Total energy used for one calculation for implementations using
the GPSVT technology library.

80

From Fig. 11.12 and Fig. 11.13 a table with the lowest total power
consumption for each implementation is shown in Table 11.6, for the
lowest energy consumption per clock period, see Table 11.7. The im-
plementation that has lowest power consumption or lowest energy con-
sumption depending on table, is distinguished with bold text. As with
the clock and area results, more comprehensive results are presented in
Appendix A.4.2, where Table A.6 lists the lowest total power consump-
tion, and Table A.7 lists the lowest total energy consumption for one
calculation.

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPSVT 1.00V 204.8 16333 0.317 64.922
HPS512 GPSVT 1.00V 204.8 19512 0.335 68.608
NR1 GPSVT 1.00V 204.8 18333 0.246 50.381
NR2 GPSVT 1.00V 204.8 25281 0.531 108.749

HPS32 LPHVT 1.00V 204.8 16384 0.144 29.491
HPS512 LPHVT 1.00V 204.8 19568 0.113 23.142
NR1 LPHVT 1.00V 204.8 18272 0.063 12.984
NR2 LPHVT 1.00V 204.8 25281 0.245 50.176

Table 11.6: Listing of lowest total power consumption for the implementations
plotted in Chapter 11 Results.

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPSVT 1.00V 19.2 16333 1.53 29.376
HPS512 GPSVT 1.00V 12.8 19512 2.12 27.136
NR1 GPSVT 1.00V 12.841 18333 1.26 16.180
NR2 GPSVT 1.00V 25.6 25281 2.52 64.512

HPS32 LPHVT 1.00V 51.2 16384 0.571 29.235
HPS512 LPHVT 1.00V 51.2 19568 0.436 22.323
NR1 LPHVT 1.00V 153.6 18272 0.075 11.566
NR2 LPHVT 1.00V 79.586 27027 0.572 45.523

Table 11.7: Listing of the lowest total energy consumption per calculation for
the implementations plotted in Chapter 11 Results.

81

82

Chapter 12
Conclusions

Choosing an implementation to use depends on how the various prop-
erties rank in desirability, there is no clear candidate that is superior in
all respects. We have shown in Section 11.1, that the constants for HPS
can be selected to target specific desired properties of the error distri-
bution. For this reason HPS shows very good results in this regard. It
does seem that a lower interval count for HPS keeps the error standard
deviation down. The standard deviation was not an optimization goal
when selecting constants however, the results say very little about how
interval count would effect it, were standard deviation to be specifically
targeted in the selection of constants.

NR2 has a smaller range over which the error is spread. There is,
in other words, room for modifications that would worsen the standard
deviation and maximum error, but provide improvements in other re-
spects. On the other hand, NR1 has the largest mean error and skew of
the algorithm implementations and is from an error behaviour point of
view probably the least desirable implementation.

Both implementations of HPS outperform NR2 in all properties of
speed, area, power and energy consumption. The "knee" for NR2 begins
at higher clock periods compared to the implementation of HPS, both
when looking at synthesis only, and for variants that have passed PNR. If
a good error behavior is critical, the implementations of the Harmonized
Parabolic Synthesis is a good choice compared to the Newton-Raphson
with two unrolled iterations, due to the properties of the hardware.

If the mean error shown by NR1 is considered good enough, the ta-
bles are somewhat turned. NR1 has a lot to offer regarding power and
energy consumption. The area requirements of NR1 is comparable to
the HPS implementations, although HPS32 holds a constant slight edge.

83

The difference in total power consumption, and total energy consump-
tion is more significant, especially when using the LPHVT technology
library. Considering these factors, a recommendation would depend on
how much weight is put on each of energy consumption, area require-
ments, and error behaviour.

When it comes to which implementation is fastest, it is difficult to
make an absolute statement, different runs of the synthesis and place
and route workflows have yielded slightly different results at different
times. It is however clear and consistent that NR2 is the slower out of
the implementations. It is more difficult comparing NR1 to the HPS
implementations.

The difference between using technology libraries with a VDD of
1.00V or 1.10V is increasingly pronounced as clock periods decrease.
The increase in area requirements as clock periods decrease always oc-
curs earlier for 1.00V than for 1.10V. This means that a voltage of 1.10V
is to prefer to receive lower area requirements for low clock periods. For
higher clock periods there is no notable differences in area requirements.
The downside of choosing 1.10V as supply voltage is the increased power
consumption and required energy per clock cycle, which shows in the
power and energy plots in Section 11.2.2. However, same plots show
that for lower clock periods the 1.00V technology libraries will surpass
their 1.10V equivalents in power and energy consumption for low clock
periods. The clock periods when this effect starts to show correlate to
the clock period for when the ’knee’ in the area requirement plots start.
For higher clock periods the supply voltage of 1.00V will be preferred
because of its lower power and energy consumption, but for lower clock
periods 1.10V may perform better.

12.1 Future Work

There are a number of things that can be improved upon. Neither the
search space for truncation options nor the space for nudging the con-
stants were exhausted. It is possible that there exist even better values
than those presented in this report, although increasing the examined
search spaces and thus doubling or more the necessary run time, seems
to run into diminishing returns.

When deciding on a value for c1 and the interval count I for the im-
plementation of HPS, only the maximum error and simplicity of the
hardware was considered, a more exhaustive examination could e.g.
compare mean error, standard deviation, etc. With access to sufficient
computational power c1 could be made a design parameter to iterate

84

over, on par with the number of intervals, selection of technology li-
braries, clock speeds, etc. This would however make it more difficult to
write specialized VHDL components, since they would possibly need to
handle the general case.

A large difference between the implementations of HPS and NR,
is that a lot of the calculations in the former are happening in parallel,
while NR is largely operating serially, especially if implementing multiple
iterations. This could mean that implementing both algorithms with a
faster (but perhaps larger and/or more power hungry) multiplier type
would benefit NR more in speed performance. On the other hand, HPS
would then have more room for selecting a possibly slower multiplier
implementation in pursuit of lower power consumption and/or lower
area requirements.

For this report, a cell density of 80% was chosen during the placement
and routing step. Different densities may have an effect on whether a
given implementation at a given clock speed passes DRC checks, as
well as power and energy consumption. Area is directly coupled to the
density of the chip. Some experiments using different densities were
done, but ultimately canceled. The time consumption was too big as
well as not giving enough conclusive results at the time. With more
computing power it may however be a worthwhile endeavor.

In all the implementations tested in this thesis work, the inverse
function is generated as well by squaring the result of the inverse square
root function, this extra block at the end will increase area and latency.
It could be interesting to see the increase in performance when only the
implementation of inverse square root function without inverse func-
tion is implemented. Although it is unlikely to shift the ranking of the
implementations by their absolute performance numbers.

85

86

Bibliography

[1] P. Pouyan, E. Hertz and P. Nilsson, “A VLSI Implementation of
Logarithmic and Exponential Functions Using a Novel Parabolic
Synthesis Methodology Compared to the CORDIC Algorithm,”
in the proc. of 20th European Conference on Circuit Theory and
Design (ECCTD), pp. 709–712, Linköping, Sweden, August, 2011.

[2] E. Hertz, “Harmonized Parabolic Synthesis,” Private communica-
tion, Lund, October, 2014.

[3] H. Anton and C. Rorres, “Elementary Linear Algebra, Applications
version,” Hoboken, USA, John Wilay & Sons Inc, tenth edition,
ISBN 9780470458211, 2010.

[4] E. Lengyel, “Mathematics for 3D Game Programming and Com-
puter Graphics,” Boston, USA, Cengage Learning PTR, third edi-
tion, ISBN 9781435458864, 2012.

[5] J. Lai, “Hardware Implementation of the Logarithm Function using
Improved Parabolic Synthesis,” Masters of Science Thesis, Depart-
ment of Electrical and Information Technology, Lund University,
Lund, Sweden, September 2, 2013.

[6] P.T.P. Tang, “Table-Lookup Algorithms for Elementary Functions
and Their Error Analysis,” in the proc. of 10th IEEE Symposium
on Computer Arithmetic, pp. 232–236, Grenoble, France, June,
1991.

[7] T.J. Ypma, “Historical Development of the Newton–Raphson
Method,” SIAM Review, vol. 37, no. 4, pp. 531–551, December,
1995.

87

[8] L. Råde and B. Westergren, “Mathematics Handbook for Science
and Engineering,” Lund, Sweden, Studentlitteratur, fifth edition,
ISBN 9144031092, 2004.

[9] A.A. Giunta and L.T. Watson, “A Comparison of Approximation
Modeling Techniques: Polynomial Versus Interpolating Models,”
American Institute of Aeronautics and Astronautics, September,
1998.

[10] H. Cramér, “Mathematical Methods of Statistics,” Princeton, USA,
Princeton University Press, vol. 9, ISBN 9780691005478, 1945.

[11] B.L. Danielson, “Optical Time-Domain Reflectometer Specifica-
tions and Performance Testing,” Appl. Opt., vol. 24, no. 15, pp.
2313–2322, August, 1985.

[12] A. Persson and L.-C. Böiers, “Analys i en Variabel,” Lund, Swe-
den, Studentlitteratur, second edition, ISBN 9144020562, 2005.

[13] J.-M. Muller, “Elementary Functions: Algorithm Implementa-
tion,” Birkhäuser, Boston, USA, Springer Science & Business Me-
dia Inc., second edition, ISBN 0817643729, 2006.

[14] D. Zuras, M. Cowlishaw, et al., “IEEE Standard for Floating-Point
Arithmetic,” IEEE Std 754-2008, pp. 1–70, August, 2008.

[15] “Design Compiler R© Optimization Reference Manual,” Version I-
2013,12, December, 2013.

[16] M.D. Birnbaum, “Essential Electronic Design Automation
(EDA),” Upper Saddle River, USA, Pearson Education, Inc.,
ISBN 0131828290, 2004.

[17] H.J. Beatty III, T.J. Ehrler, et al., “IEEE Standard for Integrated
Circuit (IC) Open Library Architecture (OLA),” IEEE STD 1481-
2009, March, 2010.

[18] G.K. Yeap, “Practical Low Power Digital VLSI Design,” New
York, USA, Springer Science & Business Media inc, ISBN
9781461560654, 2012.

[19] J. Rabeay, A. Chandrakansan and B. Nikolić, “Digital Integrated
Circuits A Design Perspective,” Beijing, China, Qinghua Univer-
sity Press, second edition, ISBN 7302079684, 2004.

88

[20] H.J.M. Veendrick, “Short-circuit dissipation of static CMOS cir-
cuitry and its impact on the design of buffer circuits,” IEEE Jour-
nal of Solid-State Circuits, vol. 19, no. 4, pp. 468–473, August,
1984.

[21] W.-K. Chen, “The Electrical Engineering Handbook,” San Diego,
USA, Academic Press, ISBN 0121709604, 2004.

89

90

Appendix A
Appendix

A.1 Look-up Tables for the NR Method

The following look-up tables in this section Table A.1 and Table. A.2
show the values and range of which the iteration 1 and iterations 2 are
using in this thesis. X Represent the range in v of its corresponding
value.

A graphical representation of the look-up table is presented after its
corresponding table and is a representation of the LUTs over 1/

√
v. The

graphical representation is shown in Fig. A.1 and Fig. A.2.

No. Value Range

0 1 X = 1
1 0.997314453125000 1 < X < 1.0108642578125
2 0.991912841796875 1.0108642578125 ≤ X < 1.0218505859375
3 0.986572265625000 1.0218505859375 ≤ X < 1.0330810546875
4 0.981170654296875 1.0330810546875 ≤ X < 1.0444335937500
5 0.975799560546875 1.0444335937500 ≤ X < 1.0560302734375
6 0.970428466796875 1.0560302734375 ≤ X < 1.0677490234375
7 0.965057373046875 1.0677490234375 ≤ X < 1.0797119140625
8 0.959686279296875 1.0797119140625 ≤ X < 1.0919189453125
9 0.954284667968750 1.0919189453125 ≤ X < 1.1042480468750
10 0.948944091796875 1.1042480468750 ≤ X < 1.1168212890625
11 0.943572998046875 1.1168212890625 ≤ X < 1.1296386718750
12 0.938171386718750 1.1296386718750 ≤ X < 1.1427001953125
13 0.932800292968750 1.1427001953125 ≤ X < 1.1558837890625

91

No. Value Range

14 0.927429199218750 1.1558837890625 ≤ X < 1.1693115234375
15 0.922088623046875 1.1693115234375 ≤ X < 1.1829833984375
16 0.916717529296875 1.1829833984375 ≤ X < 1.1968994140625
17 0.911376953125000 1.1968994140625 ≤ X < 1.2110595703125
18 0.906005859375000 1.2110595703125 ≤ X < 1.2254638671875
19 0.900634765625000 1.2254638671875 ≤ X < 1.2401123046875
20 0.895294189453125 1.2401123046875 ≤ X < 1.2551269531250
21 0.889923095703125 1.2551269531250 ≤ X < 1.2703857421875
22 0.884521484375000 1.2703857421875 ≤ X < 1.2858886718750
23 0.879180908203125 1.2858886718750 ≤ X < 1.3016357421875
24 0.873809814453125 1.3016357421875 ≤ X < 1.3177490234375
25 0.868438720703125 1.3177490234375 ≤ X < 1.3341064453125
26 0.863098144531250 1.3341064453125 ≤ X < 1.3508300781250
27 0.857696533203125 1.3508300781250 ≤ X < 1.3677978515625
28 0.852355957031250 1.3677978515625 ≤ X < 1.3851318359375
29 0.846984863281250 1.3851318359375 ≤ X < 1.4028320312500
30 0.841613769531250 1.4028320312500 ≤ X < 1.4207763671875
31 0.836273193359375 1.4207763671875 ≤ X < 1.4390869140625
32 0.830902099609375 1.4390869140625 ≤ X < 1.4577636718750
33 0.825561523437500 1.4577636718750 ≤ X < 1.4768066406250
34 0.820190429687500 1.4768066406250 ≤ X < 1.4962158203125
35 0.814849853515625 1.4962158203125 ≤ X < 1.5159912109375
36 0.809478759765625 1.5159912109375 ≤ X < 1.5362548828125
37 0.804107666015625 1.5362548828125 ≤ X < 1.5568847656250
38 0.798767089843750 1.5568847656250 ≤ X < 1.5778808593750
39 0.793395996093750 1.5778808593750 ≤ X < 1.5993652343750
40 0.788024902343750 1.5993652343750 ≤ X < 1.6212158203125
41 0.782684326171875 1.6212158203125 ≤ X < 1.6435546875000
42 0.777343750000000 1.6435546875000 ≤ X < 1.6663818359375
43 0.771972656250000 1.6663818359375 ≤ X < 1.6896972656250
44 0.766601562500000 1.6896972656250 ≤ X < 1.7135009765625
45 0.761260986328125 1.7135009765625 ≤ X < 1.7377929687500
46 0.755889892578125 1.7377929687500 ≤ X < 1.7625732421875
47 0.750549316406250 1.7625732421875 ≤ X < 1.7879638671875
48 0.745178222656250 1.7879638671875 ≤ X < 1.8138427734375
49 0.739807128906250 1.8138427734375 ≤ X < 1.8403320312500
50 0.734466552734375 1.8403320312500 ≤ X < 1.8674316406250
51 0.729095458984375 1.8674316406250 ≤ X < 1.8951416015625
52 0.723724365234375 1.8951416015625 ≤ X < 1.9234619140625

92

No. Value Range

53 0.718353271484375 1.9234619140625 ≤ X < 1.9523925781250
54 0.712982177734375 1.9523925781250 ≤ X < 1.9819335937500
55 0.707641601562500 1.9819335937500 ≤ X < 2.0122070312500
56 0.702270507812500 2.0122070312500 ≤ X < 2.0430908203125
57 0.696929931640625 2.0430908203125 ≤ X < 2.0747070312500
58 0.691558837890625 2.0747070312500 ≤ X < 2.1070556640625
59 0.686218261718750 2.1070556640625 ≤ X < 2.1402587890625
60 0.680847167968750 2.1402587890625 ≤ X < 2.1741943359375
61 0.675506591796875 2.1741943359375 ≤ X < 2.2089843750000
62 0.670135498046875 2.2089843750000 ≤ X < 2.2446289062500
63 0.664764404296875 2.2446289062500 ≤ X < 2.2811279296875
64 0.659423828125000 2.2811279296875 ≤ X < 2.3184814453125
65 0.654052734375000 2.3184814453125 ≤ X < 2.3568115234375
66 0.648681640625000 2.3568115234375 ≤ X < 2.3959960937500
67 0.643341064453125 2.3959960937500 ≤ X < 2.4361572265625
68 0.638000488281250 2.4361572265625 ≤ X < 2.4774169921875
69 0.632629394531250 2.4774169921875 ≤ X < 2.5196533203125
70 0.627288818359375 2.5196533203125 ≤ X < 2.5629882812500
71 0.621948242187500 2.5629882812500 ≤ X < 2.6075439453125
72 0.616577148437500 2.6075439453125 ≤ X < 2.6531982421875
73 0.611236572265625 2.6531982421875 ≤ X < 2.7000732421875
74 0.605895996093750 2.7000732421875 ≤ X < 2.7481689453125
75 0.600524902343750 2.7481689453125 ≤ X < 2.7976074218750
76 0.595184326171875 2.7976074218750 ≤ X < 2.8483886718750
77 0.589813232421875 2.8483886718750 ≤ X < 2.9005126953125
78 0.584472656250000 2.9005126953125 ≤ X < 2.9541015625000
79 0.579132080078125 2.9541015625000 ≤ X < 3.0091552734375
80 0.573791503906250 3.0091552734375 ≤ X < 3.0657958984375
81 0.568420410156250 3.0657958984375 ≤ X < 3.1240234375000
82 0.563079833984375 3.1240234375000 ≤ X < 3.1839599609375
83 0.557739257812500 3.1839599609375 ≤ X < 3.2456054687500
84 0.552398681640625 3.2456054687500 ≤ X < 3.3090820312500
85 0.547027587890625 3.3090820312500 ≤ X < 3.3745117187500
86 0.541687011718750 3.3745117187500 ≤ X < 3.4418945312500
87 0.536315917968750 3.4418945312500 ≤ X < 3.5112304687500
88 0.530975341796875 3.5112304687500 ≤ X < 3.5827636718750
89 0.525634765625000 3.5827636718750 ≤ X < 3.6564941406250
90 0.520263671875000 3.6564941406250 ≤ X < 3.7325439453125
91 0.514923095703125 3.7325439453125 ≤ X < 3.8109130859375

93

No. Value Range

92 0.509552001953125 3.8109130859375 ≤ X < 3.8918457031250
93 0.504211425781250 3.8918457031250 ≤ X < 3.9753417968750
94 0.498870849609375 3.9753417968750 ≤ X ≤ 3.9998779296875

Table A.1: Look-up table for the Newton-Raphson method using 1 iteration

1.0 1.5 2.0 2.5 3.0 3.5 4.0
v

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

z
an

d
L

U
T

va
lu

e

Plot of 94 cell NR initial guess look-up table

1/
√
v

LUT values

Figure A.1: Representation of the look-up table for 1 iteration over the function
1/
√
v

No. Value Range

0 1 X = 1
1 0.980468750000000 1 < X < 1.0830078125000
2 0.941375732421875 1.0830078125000 ≤ X < 1.1767578125000
3 0.902313232421875 1.1767578125000 ≤ X < 1.2832031250000
4 0.863250732421875 1.2832031250000 ≤ X < 1.4047851562500
5 0.824188232421875 1.4047851562500 ≤ X < 1.5444335937500
6 0.785125732421875 1.5444335937500 ≤ X < 1.7060546875000
7 0.746063232421875 1.7060546875000 ≤ X < 1.8944091796875
8 0.707000732421875 1.8944091796875 ≤ X < 2.1157226562500

94

No. Value Range

9 0.667968750000000 2.1157226562500 ≤ X < 2.3781738281250
10 0.628906250000000 2.3781738281250 ≤ X < 2.6926269531250
11 0.589874267578125 2.6926269531250 ≤ X < 3.0738525390625
12 0.550842285156250 3.0738525390625 ≤ X < 3.5422363281250
13 0.511779785156250 3.5422363281250 ≤ X ≤ 3.9998779296875

Table A.2: Look-up table for the Newton-Raphson method using 2 iterations

1.0 1.5 2.0 2.5 3.0 3.5 4.0
v

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

z
an

d
L

U
T

va
lu

e

Plot of 13 cell NR initial guess look-up table

1/
√
v

LUT values

Figure A.2: Representation of the look-up table for 2 iterations over the func-
tion 1/

√
v

95

A.2 HPS Dataflow Simulation

A.2.1 Elaboration of Software Development

Following the selection of a c1 value, software to simulate the dataflow
behaviour and to visualize the results was written. Matlab and its fixed-
point math toolbox was chosen at first, but was dropped in favour of
writing the simulations in C due to performance issues. The C simula-
tion code was initially written making as few assumptions as possible,
which quickly lead to complex code that proved difficult to debug and
maintain. Among the features/problems were:

• Data paths implemented with fixed-point math supporting arbi-
trarily wide data paths.

• Trying to predict and rank relative area requirements by keeping
track of required sizes of the multipliers in the design.

• Experimenting with replacing interval pairs with a single interval,
reducing the number of constants, at the cost of slightly more
complex addressing.

• Trying all truncation combinations, given an unwillingness to risk
passing over a “silver bullet” combination, should one exist.

The last two points increased the processing time a lot, since the
number of simulations needed would be the product of the number of
possible choices for each constraint. After a while, lower limits for the
various data paths, for which below, the simulation would always fail,
started to emerge. Still, the number of simulations was huge, and would
need rerunning at each and every change of this or that parameter, in
the end necessitating adapting the code to run on multiple threads.

During this work the existence of a few misconceptions came to light,
slightly changing the requirements of the implementation, but in a way
that invalidated data produced so far. Given that the simulation code
had been continuously developed and grown organically, to take advan-
tage of what could be gleaned from the results as they were generated,
at this point it was decided that a complete rewrite was preferable to
trying to adapt it to the new requirements.

Lessons learned from the first iteration of simulations, that were
included in the second version include:

• Data paths are implemented with 32 bit signed integers, inter-
preted as Q3.29 signed fixed-point numbers, enabling the simula-
tions to run on both 32 and 64 bit hardware without resorting to
possibly nonstandard, or compound datatypes.

96

• Keeping to a single interval size over the whole input range.

• Greedy truncation, going from output to input, truncating as
much as possible at each step.

With the new software the simulation workflow is as follows:

1. For each tested interval count, a set of constants (c2,l2,j2) with
which to populate the lookup table is generated.

2. The dataflow behaviour is simulated with the generated lookup
table for all the possible input values.

3. Going from z towards v, each data path is increasingly truncated
until the error of z becomes greater than acceptable.

4. When no more truncation is possible without crossing the error
limit, save the details of how much each data path could be trun-
cated.

5. For each set of constants in each interval, iteratively try to make
small changes to the constants and see if the average error can be
made smaller, while at the same time staying below the error limit
for all points in the interval. Save the new set of constants.

6. (optionally) Check if the truncation of any data path can be in-
creased after the modification of constants.

Additionally there are tools written to convert the look-up table values
to VHDL code, identify if any of the data paths have any redundant bits
that can be hardwired to ’1’ or ‘0’, generate files suitable to use with
VHDL testbenches and simulation, and to help visualize the results.

97

A.2.2 Error Behaviour of Additional HPS Implementa-
tions

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS64 invsqrt with truncation, modified constants (mean, skew)

Figure A.3: Input to output error plot and error distribution histogram for
the inverse square root implemented with HPS with 64 intervals,
with truncated data paths, and constants modified to minimize per
interval absolute mean error as well as per interval absolute skew.

98

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS128 invsqrt with truncation, modified constants (mean, skew)

Figure A.4: Input to output error plot and error distribution histogram for
the inverse square root implemented with HPS with 128 intervals,
with truncated data paths, and constants modified to minimize per
interval absolute mean error as well as per interval absolute skew.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
input value

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

ou
tp

ut
er

ro
r
(×

10
−5
)

Error distribution by input

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
output error (×10−5)

0

500

1000

1500

2000

2500

3000

fr
eq

ue
nc

y

Error distribution histogram

Error (even LUT entries)
Error (odd LUT entries)
Mean error (whole range)

Mean error (per interval)
Error distribution
Acceptable error range limit

HPS256 invsqrt with truncation, modified constants (mean, skew)

Figure A.5: Input to output error plot and error distribution histogram for
the inverse square root implemented with HPS with 256 intervals,
with truncated data paths, and constants modified to minimize per
interval absolute mean error as well as per interval absolute skew.

99

A.3 Extra Hardware Behaviour Plots

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Synthesized cell area vs clock

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Area after place and route vs clock

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

Clock vs total power

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

Clock vs total energy

VDD = 1.00V
VDD = 1.10V
lib = GPLVT

lib = GPSVT
lib = GPHVT
lib = LPLVT

lib = LPSVT
lib = LPHVT

HPS32

Figure A.6: Hardware behaviour data for HPS with 32 intervals, implemented
with all technology libraries.

100

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Synthesized cell area vs clock

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Area after place and route vs clock

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

Clock vs total power

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

Clock vs total energy

VDD = 1.00V
VDD = 1.10V
lib = GPLVT

lib = GPSVT
lib = GPHVT
lib = LPLVT

lib = LPSVT
lib = LPHVT

HPS64

Figure A.7: Hardware behaviour data for HPS with 64 intervals, implemented
with all technology libraries.

101

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Synthesized cell area vs clock

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Area after place and route vs clock

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

Clock vs total power

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

Clock vs total energy

VDD = 1.00V
VDD = 1.10V
lib = GPLVT

lib = GPSVT
lib = GPHVT
lib = LPLVT

lib = LPSVT
lib = LPHVT

HPS128

Figure A.8: Hardware behaviour data for HPS with 128 intervals, implemented
with all technology libraries.

102

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Synthesized cell area vs clock

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Area after place and route vs clock

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

Clock vs total power

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

Clock vs total energy

VDD = 1.00V
VDD = 1.10V
lib = GPLVT

lib = GPSVT
lib = GPHVT
lib = LPLVT

lib = LPSVT
lib = LPHVT

HPS256

Figure A.9: Hardware behaviour data for HPS with 256 intervals, implemented
with all technology libraries.

103

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Synthesized cell area vs clock

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Area after place and route vs clock

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

Clock vs total power

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

Clock vs total energy

VDD = 1.00V
VDD = 1.10V
lib = GPLVT

lib = GPSVT
lib = GPHVT
lib = LPLVT

lib = LPSVT
lib = LPHVT

HPS512

Figure A.10: Hardware behaviour data for HPS with 512 intervals, imple-
mented with all technology libraries.

104

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Synthesized cell area vs clock

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Area after place and route vs clock

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

Clock vs total power

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

Clock vs total energy

VDD = 1.00V
VDD = 1.10V
lib = GPLVT

lib = GPSVT
lib = GPHVT
lib = LPLVT

lib = LPSVT
lib = LPHVT

NR1

Figure A.11: Hardware behaviour data for NR with 1 iteration, implemented
with all technology libraries.

105

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Synthesized cell area vs clock

101 102

clock period (ns)

0

10000

20000

30000

40000

50000

60000

ar
ea

(μ
m

2
)

Area after place and route vs clock

101 102

clock period (ns)

10−4

10−3

10−2

10−1

to
ta

lp
ow

er
(W

)

Clock vs total power

101 102

clock period (ns)

10−2

10−1

100

to
ta

le
ne

rg
y

(n
J

)

Clock vs total energy

VDD = 1.00V
VDD = 1.10V
lib = GPLVT

lib = GPSVT
lib = GPHVT
lib = LPLVT

lib = LPSVT
lib = LPHVT

NR2

Figure A.12: Hardware behaviour data for NR with 2 iteration, implemented
with all technology libraries.

106

A.4 Extra Hardware Behaviour Tables

A.4.1 Clock and Area

Impl. Library VDD Synth Clock
(ns)

HPS32 GPLVT 1.10V 3.5
HPS64 GPLVT 1.10V 3.4
HPS128 GPLVT 1.10V 3.3
HPS256 GPLVT 1.10V 3.3
HPS512 GPLVT 1.10V 3.2
NR1 GPLVT 1.10V 3.8
NR2 GPLVT 1.10V 5.5

HPS32 GPSVT 1.10V 4.3
HPS64 GPSVT 1.10V 4.2
HPS128 GPSVT 1.10V 4.3
HPS256 GPSVT 1.10V 4.1
HPS512 GPSVT 1.10V 3.9
NR1 GPSVT 1.10V 4.6
NR2 GPSVT 1.10V 6.7

HPS32 GPHVT 1.10V 5.7
HPS64 GPHVT 1.10V 5.5
HPS128 GPHVT 1.10V 5.6
HPS256 GPHVT 1.10V 5.3
HPS512 GPHVT 1.10V 5.2
NR1 GPHVT 1.10V 5.8
NR2 GPHVT 1.10V 8.9

HPS32 LPLVT 1.10V 7.2
HPS64 LPLVT 1.10V 7
HPS128 LPLVT 1.10V 6.7
HPS256 LPLVT 1.10V 6.5
HPS512 LPLVT 1.10V 6.2
NR1 LPLVT 1.10V 7.1
NR2 LPLVT 1.10V 10.7

HPS32 LPSVT 1.10V 9.7
HPS64 LPSVT 1.10V 9.1
HPS128 LPSVT 1.10V 8.8
HPS256 LPSVT 1.10V 8.7
HPS512 LPSVT 1.10V 8.4
NR1 LPSVT 1.10V 9.5
NR2 LPSVT 1.10V 14.4

HPS32 LPHVT 1.10V 16.9
HPS64 LPHVT 1.10V 15.9
HPS128 LPHVT 1.10V 15.2
HPS256 LPHVT 1.10V 15.4
HPS512 LPHVT 1.10V 15.1
NR1 LPHVT 1.10V 16.6
NR2 LPHVT 1.10V 25.8

Table A.3: Listing of the lowest synthesized clock periods for all implementa-
tions (selected from all technology libraries etc.)

107

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPLVT 1.10V 4.163 33779 37.4 155.696
HPS64 GPLVT 1.10V 4.173 29136 34.5 143.968
HPS128 GPLVT 1.10V 4.173 28629 37.3 155.653
HPS256 GPLVT 1.00V 4.943 27584 16.4 81.065
HPS512 GPLVT 1.00V 6.645 20478 6.69 44.455
NR1 GPLVT 1.10V 5.014 28355 12.2 61.171
NR2 GPLVT 1.10V 13.239 26050 8.62 114.120

HPS32 GPSVT 1.10V 5.024 34779 21.9 110.026
HPS64 GPSVT 1.10V 5.024 32036 24.3 122.083
HPS128 GPSVT 1.10V 5.035 30030 22.2 111.777
HPS256 GPSVT 1.10V 5.035 31400 21.1 106.239
HPS512 GPSVT 1.10V 6.584 23624 8.97 59.058
NR1 GPSVT 1.10V 6.686 28288 7.21 48.206
NR2 GPSVT 1.10V 10.049 41696 19.2 192.941

HPS32 GPHVT 1.00V 7.608 41452 12.8 97.382
HPS64 GPHVT 1.10V 6.747 32142 15.1 101.880
HPS128 GPHVT 1.10V 6.716 29237 16.9 113.500
HPS256 GPHVT 1.10V 5.927 41939 23.9 141.655
HPS512 GPHVT 1.10V 12.8 19540 2.34 29.952
NR1 GPHVT 1.10V 13.188 19016 1.29 17.013
NR2 GPHVT 1.10V 13.463 43216 13.5 181.750

HPS32 LPLVT 1.10V 8.378 35268 13 108.914
HPS64 LPLVT 1.10V 8.398 30973 11.2 94.058
HPS128 LPLVT 1.10V 7.608 35718 13.2 100.426
HPS256 LPLVT 1.10V 7.567 37826 13.9 105.181
HPS512 LPLVT 1.00V 13.259 22704 2.95 39.114
NR1 LPLVT 1.10V 10.069 31647 3.48 35.040
NR2 LPLVT 1.00V 26.345 30346 2.42 63.755

HPS32 LPSVT 1.10V 13.361 26308 3.89 51.974
HPS64 LPSVT 1.10V 13.351 24554 4.07 54.339
HPS128 LPSVT 1.10V 10.202 35905 10.6 108.141
HPS256 LPSVT 1.10V 13.28 25249 3.96 52.589
HPS512 LPSVT 1.10V 13.259 26662 3.74 49.589
NR1 LPSVT 1.10V 13.565 32830 2.57 34.862
NR2 LPSVT 1.10V 26.478 35156 2.97 78.640

HPS32 LPHVT 1.10V 20.363 31965 3.26 66.383
HPS64 LPHVT 1.10V 20.333 29271 3.2 65.066
HPS128 LPHVT 1.10V 20.557 28188 2.85 58.587
HPS256 LPHVT 1.10V 26.569 20735 1.47 39.056
HPS512 LPHVT 1.10V 26.559 21164 1.16 30.808
NR1 LPHVT 1.10V 26.651 27551 0.827 22.040
NR2 LPHVT 1.10V 40.584 41001 2.56 103.895

Table A.4: Listing of the lowest clock periods after PNR for all implementa-
tions (selected from all technology libraries etc.)

108

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPLVT 1.00V 9.6 16333 4.08 39.168
HPS64 GPLVT 1.10V 9.6 15675 4.99 47.904
HPS128 GPLVT 1.00V 153.6 15875 1.27 195.072
HPS256 GPLVT 1.00V 102.4 17609 1.53 156.672
HPS512 GPLVT 1.00V 9.6 19485 4.17 40.032
NR1 GPLVT 1.10V 9.6 18306 3.66 35.136
NR2 GPLVT 1.00V 19.2 25281 5.12 98.304

HPS32 GPSVT 1.10V 9.6 16333 3.81 36.576
HPS64 GPSVT 1.10V 9.651 15675 3.8 36.674
HPS128 GPSVT 1.10V 9.6 15900 3.37 32.352
HPS256 GPSVT 1.10V 9.6 17636 3.84 36.864
HPS512 GPSVT 1.10V 9.6 19512 3.73 35.808
NR1 GPSVT 1.10V 12.8 18306 1.6 20.48
NR2 GPSVT 1.10V 19.2 25281 4.34 83.328

HPS32 GPHVT 1.10V 12.8 16333 2.77 35.456
HPS64 GPHVT 1.10V 12.8 15675 2.55 32.64
HPS128 GPHVT 1.10V 12.8 15900 2.51 32.128
HPS256 GPHVT 1.10V 12.8 17636 2.46 31.488
HPS512 GPHVT 1.00V 19.2 19512 1.24 23.808
NR1 GPHVT 1.10V 19.2 18306 0.906 17.395
NR2 GPHVT 1.10V 25.6 25281 2.57 65.792

HPS32 LPLVT 1.10V 19.2 16333 1.51 28.992
HPS64 LPLVT 1.10V 19.2 15675 1.64 31.488
HPS128 LPLVT 1.00V 19.2 15900 1.25 24
HPS256 LPLVT 1.00V 19.2 17636 1.34 25.728
HPS512 LPLVT 1.00V 19.2 19512 1.24 23.808
NR1 LPLVT 1.00V 76.8 18246 0.144 11.059
NR2 LPLVT 1.00V 38.4 25154 1.18 45.312

HPS32 LPSVT 1.10V 25.6 16333 1.27 32.512
HPS64 LPSVT 1.10V 25.6 15675 1.29 33.024
HPS128 LPSVT 1.00V 25.906 15900 0.924 23.937
HPS256 LPSVT 1.10V 20.016 17636 1.53 30.624
HPS512 LPSVT 1.00V 25.6 19512 0.95 24.32
NR1 LPSVT 1.00V 38.4 18279 0.281 10.790
NR2 LPSVT 1.00V 51.292 25249 0.846 43.393

HPS32 LPHVT 1.10V 38.4 16358 0.942 36.173
HPS64 LPHVT 1.10V 38.4 15675 0.867 33.293
HPS128 LPHVT 1.10V 38.4 15800 0.839 32.218
HPS256 LPHVT 1.10V 38.4 17636 0.712 27.341
HPS512 LPHVT 1.10V 38.4 19540 0.784 30.106
NR1 LPHVT 1.10V 51.2 18246 0.303 15.514
NR2 LPHVT 1.10V 76.8 25281 0.741 56.909

Table A.5: Listing of the lowest area requirements after PNR for all imple-
mentations (selected from all technology libraries etc.)

109

A.4.2 Power and Energy

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPLVT 1.00V 204.8 16333 1.26 258.048
HPS64 GPLVT 1.00V 204.8 15700 1.21 247.808
HPS128 GPLVT 1.00V 204.8 15875 1.22 249.856
HPS256 GPLVT 1.00V 204.8 17636 1.37 280.576
HPS512 GPLVT 1.00V 204.8 19485 1.5 307.2
NR1 GPLVT 1.00V 204.8 18306 1.25 256
NR2 GPLVT 1.00V 204.8 25281 2.02 413.696

HPS32 GPSVT 1.00V 204.8 16333 0.317 64.922
HPS64 GPSVT 1.00V 204.8 15675 0.29 59.392
HPS128 GPSVT 1.00V 204.8 15900 0.277 56.730
HPS256 GPSVT 1.00V 204.8 17636 0.321 65.741
HPS512 GPSVT 1.00V 204.8 19512 0.335 68.608
NR1 GPSVT 1.00V 204.8 18333 0.246 50.381
NR2 GPSVT 1.00V 204.8 25281 0.531 108.749

HPS32 GPHVT 1.00V 204.8 16333 0.18 36.864
HPS64 GPHVT 1.00V 204.8 15675 0.17 34.816
HPS128 GPHVT 1.00V 204.8 15900 0.154 31.539
HPS256 GPHVT 1.00V 204.8 17636 0.161 32.973
HPS512 GPHVT 1.00V 204.8 19512 0.163 33.382
NR1 GPHVT 1.00V 204.8 18306 0.099 20.193
NR2 GPHVT 1.00V 204.8 25281 0.313 64.102

HPS32 LPLVT 1.00V 204.8 16333 0.133 27.238
HPS64 LPLVT 1.00V 204.8 15675 0.123 25.190
HPS128 LPLVT 1.00V 204.8 15900 0.123 25.190
HPS256 LPLVT 1.00V 204.8 17636 0.123 25.190
HPS512 LPLVT 1.00V 204.8 19512 0.121 24.781
NR1 LPLVT 1.00V 204.8 18246 0.063 12.861
NR2 LPLVT 1.00V 204.8 25154 0.23 47.104

HPS32 LPSVT 1.00V 204.8 16333 0.123 25.190
HPS64 LPSVT 1.00V 204.8 15675 0.124 25.395
HPS128 LPSVT 1.00V 204.8 15900 0.111 22.733
HPS256 LPSVT 1.00V 204.8 17636 0.126 25.805
HPS512 LPSVT 1.00V 204.8 19512 0.117 23.962
NR1 LPSVT 1.00V 204.8 18279 0.053 10.854
NR2 LPSVT 1.00V 204.8 25249 0.221 45.261

HPS32 LPHVT 1.00V 204.8 16384 0.144 29.491
HPS64 LPHVT 1.00V 204.8 15700 0.149 30.515
HPS128 LPHVT 1.00V 204.8 15800 0.133 27.238
HPS256 LPHVT 1.00V 204.8 17662 0.112 22.938
HPS512 LPHVT 1.00V 204.8 19568 0.113 23.142
NR1 LPHVT 1.00V 204.8 18272 0.063 12.984
NR2 LPHVT 1.00V 204.8 25281 0.245 50.176

Table A.6: Listing of the total power consumption for all implementations (se-
lected from all technology libraries etc.)

110

Impl. Library VDD PNR Clock PNR Area Power Energy
(ns) (μm2) (mW) (pJ)

HPS32 GPLVT 1.00V 9.6 16333 4.08 39.168
HPS64 GPLVT 1.00V 9.6 15700 3.71 35.616
HPS128 GPLVT 1.00V 9.6 15900 3.67 35.232
HPS256 GPLVT 1.00V 6.635 18955 6.29 41.734
HPS512 GPLVT 1.00V 9.6 19485 4.17 40.032
NR1 GPLVT 1.00V 9.804 18306 2.65 25.981
NR2 GPLVT 1.00V 13.239 27289 7.01 92.805

HPS32 GPSVT 1.00V 19.2 16333 1.53 29.376
HPS64 GPSVT 1.00V 12.8 15675 2.04 26.112
HPS128 GPSVT 1.00V 12.8 15900 1.95 24.96
HPS256 GPSVT 1.00V 9.998 17689 3 29.994
HPS512 GPSVT 1.00V 12.8 19512 2.12 27.136
NR1 GPSVT 1.00V 12.841 18333 1.26 16.180
NR2 GPSVT 1.00V 25.6 25281 2.52 64.512

HPS32 GPHVT 1.00V 13.3 16740 2.1 27.93
HPS64 GPHVT 1.00V 38.4 15675 0.69 26.496
HPS128 GPHVT 1.00V 13.3 16099 1.87 24.871
HPS256 GPHVT 1.00V 25.6 17636 0.989 25.318
HPS512 GPHVT 1.00V 19.2 19512 1.24 23.808
NR1 GPHVT 1.00V 38.4 18306 0.356 13.670
NR2 GPHVT 1.00V 26.478 25566 1.92 50.838

HPS32 LPLVT 1.00V 51.2 16333 0.486 24.883
HPS64 LPLVT 1.00V 102.4 15675 0.233 23.859
HPS128 LPLVT 1.00V 38.4 15900 0.583 22.387
HPS256 LPLVT 1.00V 51.2 17636 0.468 23.962
HPS512 LPLVT 1.00V 25.6 19512 0.88 22.528
NR1 LPLVT 1.00V 38.4 18279 0.279 10.714
NR2 LPLVT 1.00V 38.4 25154 1.18 45.312

HPS32 LPSVT 1.00V 204.8 16333 0.123 25.190
HPS64 LPSVT 1.00V 76.8 15675 0.312 23.962
HPS128 LPSVT 1.00V 204.8 15900 0.111 22.733
HPS256 LPSVT 1.00V 102.4 17636 0.238 24.371
HPS512 LPSVT 1.00V 38.4 19512 0.59 22.656
NR1 LPSVT 1.00V 38.4 18279 0.281 10.790
NR2 LPSVT 1.00V 51.292 25249 0.846 43.393

HPS32 LPHVT 1.00V 51.2 16384 0.571 29.235
HPS64 LPHVT 1.00V 102.4 15700 0.267 27.341
HPS128 LPHVT 1.00V 38.527 17498 0.667 25.698
HPS256 LPHVT 1.00V 51.2 17662 0.42 21.504
HPS512 LPHVT 1.00V 51.2 19568 0.436 22.323
NR1 LPHVT 1.00V 153.6 18272 0.075 11.566
NR2 LPHVT 1.00V 79.586 27027 0.572 45.523

Table A.7: Listing of the total energy consumption for one calculation for all
implementations (selected from all technology libraries etc.)

111

A.5 Static and Dynamic Power Plots

101 102

clock period (ns)

10−7

10−6

10−5

10−4

10−3

10−2

st
at

ic
po

w
er

(W
)

HPS32, HPS512, NR1, NR2: clock vs static power

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure A.13: Static power consumption for implementations using the LPHVT
technology library.

101 102

clock period (ns)

10−7

10−6

10−5

10−4

10−3

10−2

st
at

ic
po

w
er

(W
)

HPS32, HPS512, NR1, NR2: clock vs static power

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure A.14: Static power consumption for implementations using the GPSVT
technology library.

112

101 102

clock period (ns)

10−5

10−4

10−3

10−2

10−1
dy

na
m

ic
po

w
er

(W
)

HPS32, HPS512, NR1, NR2: clock vs dynamic power

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure A.15: Dynamic power consumption for implementations using the
LPHVT technology library.

101 102

clock period (ns)

10−5

10−4

10−3

10−2

10−1

dy
na

m
ic

po
w

er
(W

)

HPS32, HPS512, NR1, NR2: clock vs dynamic power

impl. = HPS32
impl. = HPS512

impl. = NR1
impl. = NR2

VDD = 1.00V
VDD = 1.10V

Figure A.16: Dynamic power consumption for implementations using the
GPSVT technology library.

113

A
.6

T
oo

l
C

on
tr

ol
Sc

ri
pt

s

A
.6

.1
S
yn

th
es

is
S
cr

ip
t

01
_

sy
nt

he
si

s_
dv

.t
cl

1
re

m
o
v
e
_

d
e
si

g
n

−
a
l
l

2
s
e
t

co
m

p
a
n
y

"
E

le
c
t
r
ic

a
l␣

a
n
d
␣
In

fo
rm

a
ti

o
n

␣
T

e
c
h
n
o
lo

g
y
"

3
s
e
t

c
a
c
h
e
_

re
a
d

.
/
;

4
s
e
t

c
a
c
h
e
_

w
ri

te
.
/
;

5 6
d
e
fi

n
e
_

d
e
s
ig

n
_

li
b

D
E
F
A
U
L
T

−
p
a
th

"
$
::

e
n

v
(
w

o
rk

_
d
ir

)
/W

O
R
K
"

7
d
e
fi

n
e
_

d
e
s
ig

n
_

li
b

W
O
R
K

−
p
a
th

"
$
::

e
n

v
(
w

o
rk

_
d
ir

)
/W

O
R
K
"

8
d
e
fi

n
e
_

d
e
s
ig

n
_

li
b

IO
65

L
P
H

V
T

_
S
F
1V

8_
50

A
_

7M
4X

0Y
2Z

\
9

−
p
a
th

"
n
o
_

su
c
h
_

li
b

"
10

s
e
t

se
a
rc

h
_

p
a
th

"
\

11
␣
␣
␣
␣

$
::

e
n

v
(S

T
M

06
5_

D
IR

)
/
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

5
.1

/
li

b
s
␣
\

12
␣
␣
␣
␣

$
::

e
n

v
(S

T
M

06
5_

D
IR

)
/
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

3
.1

/
li

b
s
␣
\

13
␣
␣
␣
␣
/
u
sr

/
lo

c
a
l−

e
it

/
c
a
d
2
/
sy

n
o
p
sy

s
/
sy

n
2
0
1
1
/

li
b

r
a

r
ie

s
/
sy

n
/
␣
\

14
␣
␣
␣
␣

."
15

s
e
t

s
y
n

t
h

e
t
ic

_
li

b
r
a
r
y

"
s
t
a
n

d
a
r
d

.s
ld

b
␣
d
w

_
fo

u
n
d
a
ti

o
n
.s

ld
b

"
16

s
e
t

t
a
r
g
e
t
_

li
b

r
a
r
y

"
\

17
␣
␣
␣
␣
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
␣
\

18
␣
␣
␣
␣
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
␣
\

19
␣
␣
␣
␣
"

20 21
s
e
t

li
n

k
_

li
b

r
a
r
y

[c
o
n
c
a
t

$
t
a
r
g
e
t
_

li
b

r
a
r
y

$
s
y
n

t
h

e
t
ic

_
li

b
r
a
r
y

]
22 23

s
e
t

sy
m

b
o
l_

li
b
ra

ry
"
\

24
␣
␣
␣
␣
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
.s

d
b

␣
\

25
␣
␣
␣
␣
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
.s

d
b

␣
\

26
␣
␣
␣
␣
"

27 28
p
u
t
s

$
se

a
rc

h
_

p
a
th

29
p
u
t
s

$
t
a
r
g
e
t
_

li
b

r
a
r
y

30
p
u
t
s

$
li

n
k
_

li
b

r
a
r
y

31
p
u
t
s

$
sy

m
b
o
l_

li
b
ra

ry
32 33

s
e
t

v
h
d
lo

u
t_

u
se

_
p
a
c
k
a
g
e
s

"
\

34
␣
␣
␣
␣
IE

E
E

.s
td

_
lo

g
ic

_
1
1
6
4
␣
\

35
␣
␣
␣
␣
IE

E
E

.s
td

_
lo

g
ic

_
a
ri

th
␣
\

36
␣
␣
␣
␣
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
.a

ll
␣
\

37
␣
␣
␣
␣
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
.a

ll
38

␣
␣
␣
␣
"

39 40
s
e
t

v
h
d
lo

u
t_

d
o
n
t_

cr
ea

te
_

d
u
m

m
y
_

n
et

s
"

fa
ls

e
"

41
s
e
t

v
h
d
lo

u
t_

b
it

_
ty

p
e

"
s
t
d
_

lo
g
ic

"
42

s
e
t

v
h
d
lo

u
t_

b
it

_
v
e
c
to

r_
ty

p
e

"
st

d
_

lo
g
ic

_
v
e
c
to

r
"

43
s
e
t

v
h
d
lo

u
t_

si
n
g
le

_
b
it

"V
E
C
T
O
R
"

44
s
e
t

v
h
d
lo

u
t_

p
re

s
e
rv

e
_

h
ie

ra
rc

h
ic

a
l_

ty
p
e
s

"V
E
C
T
O
R
"

45
s
e
t

v
h
d
lo

u
t_

d
o
n
t_

w
ri

te
_

ty
p
e
s

"
tr

u
e
"

46
s
e
t

v
h
d
lo

u
t_

w
ri

te
_

c
o
m

p
o
n
e
n
ts

"
tr

u
e
"

47
s
e
t

v
e
ri

lo
g
_

n
o
_

tr
i

"
tr

u
e
"

48
s
e
t

c
o
m

p
il

e
_

fi
x
_

m
u
lt

ip
le

_
p
o
rt

_
n
e
ts

"
tr

u
e
"

49 50
#

th
is

is
w
h
e
re

th
e

v
h
d
l

f
i
le

s
a
r
e

r
e
a
d

in
a
n
d

a
n
a
ly

z
e
d

51
s
o
u
r
c
e

$
::

e
n

v
(
a
lg

o
r
it

h
m

_
s
p

e
c
if

ic
s
_

s
c
r
ip

t
)

52 53
c
h
e
c
k
_

d
e
si

g
n

>
\

54
$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.c

h
e
c
k
_

d
e
si

g
n

55
li

n
k

>
\

56
$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.l

in
k

57 58
s
e
t

c
l
o
c
k

[
g
e
t_

p
o
rt

s
c
lk

]
59

s
e
t

u
n

c
e
r
t
a
in

t
y

[
e
x
p
r

$
::

e
n

v
(
p
e
ri

o
d

)
∗

0
.0

2
]

60 61
c
re

a
te

_
c
lo

c
k

$
c
lo

c
k

−
p
e
ri

o
d

$
::

e
n

v
(
p
e
ri

o
d

)
62

se
t_

c
lo

c
k
_

u
n
c
e
rt

a
in

ty
$
u
n
c
e
r
t
a
in

t
y

$
c
lo

c
k

63
se

t_
fi

x
_

h
o
ld

$
c
lo

c
k

64 65
i
f

{
$
::

e
n

v
(
u

s
e
_

t
r
a
n

s
it

io
n

)
=
=

"
1
"
}

{
66

s
e
t
_

c
lo

c
k
_

t
r
a
n

s
it

io
n

$
::

e
n

v
(
t
r
a
n

s
it

io
n

)
$
c
lo

c
k

67
se

t_
d
o
n
t_

to
u
c
h
_

n
e
tw

o
rk

$
c
lo

c
k

68
}

69 70
i
f

{
$
::

e
n

v
(
u
se

_
io

_
d
e
la

y
)

=
=

"
1
"
}

{
71

se
t_

in
p
u
t_

d
e
la

y
\

72
−

m
ax

$
::

e
n

v
(
in

p
u
t_

d
e
la

y
)

\
73

−
c
lo

c
k

c
lk

[
g
e
t_

p
o
rt

s
d
a
ta

_
in

∗
]

74
se

t_
o
u
tp

u
t_

d
e
la

y
\

75
−

m
ax

$
::

e
n

v
(
in

p
u
t_

d
e
la

y
)

\
76

−
c
lo

c
k

c
lk

[
g
e
t_

p
o
rt

s
d
a
ta

_
o
u
t∗

]
77

}
78 79

s
e
t_

d
ri

v
e

0
$
c
lo

c
k

80 81
u

n
iq

u
if

y
82 83

c
o
m

p
il

e
\

84
−

b
o
u
n
d
a
ry

_
o
p
ti

m
iz

a
ti

o
n

−
u
n
g
ro

u
p
_

a
ll

\
85

−
m

a
p
_

ef
fo

rt
h
ig

h
−

a
re

a
_

e
ff

o
rt

h
ig

h

114

86
re

m
o
v
e
_

u
n
c
o
n
n
e
c
te

d
_

p
o
rt

s
−

b
la

st
_

b
u
se

s
[
g
e
t
_

c
e
ll

s
"
∗"

−
h
ie

r
]

87
re

m
o
v
e
_

u
n
c
o
n
n
e
c
te

d
_

p
o
rt

s
[
g
e
t
_

c
e
ll

s
"
∗"

−
h
ie

r
]

88 89
ch

a
n
g
e_

n
a
m

es
−

ru
le

s
v

e
r
il

o
g

−
h
ie

ra
rc

h
y

90 91
r
e
p

o
r
t
_

c
o
n

s
t
r
a
in

t
−

a
ll

_
v
io

la
t
o
r
s

>
\

92
$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.r

e
p

o
r
t
_

c
o
n

s
t
r
a
in

t
93

re
p
o
rt

_
a
re

a
−

h
ie

ra
rc

h
y

>
\

94
$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.r

e
p
o
r
t
_

a
r
e
a

95
re

p
o
rt

_
c
lo

c
k

−
a
t
t
r
ib

u
t
e
s

>
\

96
$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.r

e
p

o
r
t
_

c
lo

c
k

97
re

p
o
rt

_
ti

m
in

g
>

\
98

$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.r

e
p
o
rt

_
ti

m
in

g
99 10
0

w
r
it

e
−

h
ie

ra
rc

h
y

−
fo

rm
a
t

d
d
c

\
10

1
−

o
u
tp

u
t

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.d

d
c

10
2

w
r
it

e
−

h
ie

ra
rc

h
y

−
fo

rm
a
t

v
e
r
il

o
g

\
10

3
−

o
u
tp

u
t

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.v

10
4

10
5

w
ri

te
_

sd
f

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.s

d
f

10
6

w
ri

te
_

sd
c

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.s

d
c

10
7

10
8

q
u

it

A
.6

.2
S
ta

ti
c

T
im

in
g

A
n
al

ys
is

S
cr

ip
t

02
_

po
st

sy
nt

h_
pt

.t
cl

1
re

m
o
v
e
_

d
e
si

g
n

−
a
l
l

2
s
e
t

p
o
w

e
r_

e
n
a
b
le

_
a
n
a
ly

si
s

tr
u
e

3 4
s
e
t

st
m

p
a
th

"
/
u
sr

/
lo

c
a
l−

e
it

/
c
a
d
2
/
cm

p
st

m
/
st

m
0
6
5
v
5
3
6
"

5
s
e
t

se
a
rc

h
_

p
a
th

"
\

6
␣
␣
␣
␣

$
::

e
n

v
(S

T
M

06
5_

D
IR

)
/
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

5
.1

/
li

b
s
␣
\

7
␣
␣
␣
␣

$
::

e
n

v
(S

T
M

06
5_

D
IR

)
/
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

3
.1

/
li

b
s
␣
\

8
␣
␣
␣
␣

."
9 10

s
e
t

t
a
r
g
e
t
_

li
b

r
a
r
y

"
\

11
␣
␣
␣
␣
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
␣
\

12
␣
␣
␣
␣
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
␣
\

13
␣
␣
␣
␣
"

14 15
s
e
t

li
n

k
_

li
b

r
a
r
y

$
t
a
r
g
e
t
_

li
b

r
a
r
y

16

17 18
s
e
t

sy
m

b
o
l_

li
b
ra

ry
"
\

19
␣
␣
␣
␣
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
.s

d
b

␣
\

20
␣
␣
␣
␣
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
.s

d
b

␣
\

21
␣
␣
␣
␣
"

22 23
re

a
d
_

d
d
c

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
sy

n
th

_
fi

le
_

b
a
se

)
.d

d
c

24 25
w

ri
te

_
sd

f
−

m
ap

"
\

26
␣
␣
␣
␣
$
st

m
p
a
th

/
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

5
.1

/
b
e
h
a
v
io

u
r
/

v
e
r
il

o
g

/
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
.v

e
r
il

o
g
.m

a
p

␣
\

27
␣
␣
␣
␣
$
st

m
p
a
th

/
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

3
.1

/
b
e
h
a
v
io

u
r
/

v
e
r
il

o
g

/
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
.v

e
r
il

o
g
.m

a
p

␣
\

28
␣
␣
␣
␣
"

\
29

−
c
o
n
te

x
t

V
e
r
il

o
g

−
s
ig

n
if

ic
a
n

t
_

d
ig

it
s

1
0

\
30

−
o
u
tp

u
t

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
o
st

s
y
n
th

_
fi

le
_

b
a
s
e
)
.s

d
f

31 32
re

p
o
rt

_
ti

m
in

g
>

$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
p
o
s
ts

y
n
th

_
fi

le
_

b
a
s
e
)

.r
e
p
o
rt

_
ti

m
in

g
33 34

q
u

it

A
.6

.3
P

la
ce

m
en

t
an

d
R

ou
ti

n
g

S
cr

ip
t

03
_

pn
r_

en
.t
cl

1
se

tD
e
si

g
n
M

o
d
e

−
p
ro

c
e
ss

6
5

2 3
#

lo
a
d

c
o
n
fi

g
4

lo
a
d
C

o
n
fi

g
$
::

e
n

v
(
p
n
r
_

c
o
n
fi

g
_

fi
le

)
1

5 6
#

s
e
t

so
m

e
v
a
r
ia

b
le

s
7

s
e
t

h
o
ri

z
o
n
ta

l_
s
tr

ip
e
_

g
ro

u
p
s

5
8

s
e
t

v
e
r
t
ic

a
l_

s
t
r
ip

e
_

g
r
o
u

p
s

5
9

s
e
t

p
o
w

e
r_

st
ri

p
e
_

w
id

th
1

10
s
e
t

p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
1

11
s
e
t

p
o
w

e
r_

ri
n
g
_

o
ff

se
t

1
12

s
e
t

st
ri

p
e
_

g
ro

u
p
_

w
id

th
\

13
[

e
x
p
r

(2
∗

$
p
o
w

e
r_

st
ri

p
e
_

w
id

th
)

+
$
p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
]

14
s
e
t

m
a
rg

in
s

\
15

[
e
x
p
r

2
∗$

p
o
w

e
r_

ri
n
g
_

o
ff

se
t

+
$
st

ri
p
e
_

g
ro

u
p
_

w
id

th
]

16 17
#

fl
o
o
r
p
la

n
18

fl
o
o
r
P

la
n

−
si

te
C
O
R
E

\
19

−
s

$
::

e
n

v
(
p
n
r_

w
id

th
)

$
::

e
n

v
(
p
n
r_

h
e
ig

h
t
)

\

115

20
$
m

a
rg

in
s

$
m

a
rg

in
s

$
m

a
rg

in
s

$
m

a
rg

in
s

21 22
#

p
o
w
e
r

r
in

g
s

a
n
d

s
tr

ip
e
s

23
s
e
t

v
s
t
r
ip

e
_

d
is

t
a
n

c
e

\
24

[
e
x
p
r

(
$
::

e
n

v
(
p
n
r_

w
id

th
)+

2
∗$

st
ri

p
e
_

g
ro

u
p
_

w
id

th
)
/
(1

+
$
v
e
r
t
ic

a
l_

s
t
r
ip

e
_

g
r
o
u

p
s
)

]
25

s
e
t

h
s
t
r
ip

e
_

d
is

t
a
n

c
e

\
26

[
e
x
p
r

(
$
::

e
n

v
(
p
n
r_

h
e
ig

h
t
)+

2
∗$

st
ri

p
e
_

g
ro

u
p
_

w
id

th
)
/
(1

+
$
h
o
ri

z
o
n
ta

l_
s
tr

ip
e
_

g
ro

u
p
s
)

]
27

s
e
t

v
s
t
r
ip

e
_

o
ff

s
e
t

\
28

[
e
x
p
r

$
v
s
t
r
ip

e
_

d
is

t
a
n

c
e

−
$
st

ri
p
e
_

g
ro

u
p
_

w
id

th
]

29
s
e
t

h
s
t
r
ip

e
_

o
ff

s
e
t

\
30

[
e
x
p
r

$
h

s
t
r
ip

e
_

d
is

t
a
n

c
e

−
$
st

ri
p
e
_

g
ro

u
p
_

w
id

th
]

31
s
e
t

v
s
t
r
ip

e
_

la
y
e
r

M
6

32
s
e
t

h
s
t
r
ip

e
_

la
y
e
r

M
5

33 34
s
e
t

c
o
m

m
o
n
_

st
ri

p
e
_

se
tt

in
g
s

{
35

−
n
e
ts

{
co

m
m

on
gn

d
v
d

d
fi

lc
}

\
36

−
w

id
th

$
p
o
w

e
r_

st
ri

p
e
_

w
id

th
\

37
−

m
a
x
_

sa
m

e_
la

y
er

_
jo

g
_

le
n
g
th

6
\

38
−

p
a
d
c
o
re

_
ri

n
g
_

b
o
tt

o
m

_
la

y
e
r_

li
m

it
M

2
\

39
−

p
a
d
c
o
re

_
ri

n
g
_

to
p
_

la
y
e
r_

li
m

it
M

4
\

40
−

m
e
rg

e
_

st
ri

p
e
s_

v
a
lu

e
2

.5
\

41
−

b
lo

c
k
_

ri
n
g
_

b
o
tt

o
m

_
la

y
e
r_

li
m

it
M

2
\

42
−

b
lo

c
k
_

ri
n
g
_

to
p
_

la
y
e
r_

li
m

it
M

4
\

43
−

st
a
c
k
e
d
_

v
ia

_
b
o
tt

o
m

_
la

y
e
r

M
1

\
44

−
st

a
c
k
e
d
_

v
ia

_
to

p
_

la
y
e
r

A
P

\
45

}
46 47

#
P
O
W

E
R

R
IN

G
48

a
d
d
R

in
g

\
49

−
n
et

s
{

v
d

d
fi

lc
co

m
m

on
gn

d
}

\
50

−
a
ro

u
n
d

c
o
re

\
51

−
w

id
th

_
to

p
$
p
o
w

e
r_

st
ri

p
e
_

w
id

th
\

52
−

w
id

th
_

le
ft

$
p
o
w

e
r_

st
ri

p
e
_

w
id

th
\

53
−

w
id

th
_

ri
g
h
t

$
p
o
w

e
r_

st
ri

p
e
_

w
id

th
\

54
−

w
id

th
_

b
o
tt

o
m

$
p
o
w

e
r_

st
ri

p
e
_

w
id

th
\

55
−

sp
a
c
in

g
_

to
p

$
p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
\

56
−

sp
a
c
in

g
_

le
ft

$
p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
\

57
−

sp
a
c
in

g
_

ri
g
h
t

$
p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
\

58
−

sp
a
ci

n
g
_

b
o
tt

o
m

$
p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
\

59
−

la
y
e
r_

to
p

$
h

s
t
r
ip

e
_

la
y
e
r

\
60

−
la

y
e
r_

le
ft

$
v
s
t
r
ip

e
_

la
y
e
r

\
61

−
la

y
e
r_

ri
g
h
t

$
v
s
t
r
ip

e
_

la
y
e
r

\
62

−
la

y
er

_
b
o
tt

o
m

$
h

s
t
r
ip

e
_

la
y
e
r

\
63

−
o
ff

s
e
t
_

le
ft

$
p
o
w

e
r_

ri
n
g
_

o
ff

se
t

\
64

−
o
ff

s
e
t
_

r
ig

h
t

$
p
o
w

e
r_

ri
n
g
_

o
ff

se
t

\

65
−

o
ff

se
t_

to
p

$
p
o
w

e
r_

ri
n
g
_

o
ff

se
t

\
66

−
jo

g
_

d
is

ta
n
c
e

$
p
o
w

e
r_

ri
n
g
_

o
ff

se
t

\
67

−
o
ff

se
t_

b
o
tt

o
m

$
p
o
w

e
r_

ri
n
g
_

o
ff

se
t

\
68

−
st

a
c
k
e
d
_

v
ia

_
b
o
tt

o
m

_
la

y
e
r

M
1

\
69

−
st

a
c
k
e
d
_

v
ia

_
to

p
_

la
y
e
r

A
P

70 71
#

P
O
W

E
R

S
T
R
IP

E
S

72
i
f

{
$
h
o
ri

z
o
n
ta

l_
s
tr

ip
e
_

g
ro

u
p
s

>
0

}
{

73
e
v
a
l

a
d
d
S
tr

ip
e

\
74

$
c
o
m

m
o
n
_

st
ri

p
e
_

se
tt

in
g
s

\
75

−
d
ir

e
c
ti

o
n

h
o
r
iz

o
n

t
a
l

\
76

−
sp

a
c
in

g
\
$
p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
\

77
−

y
to

p
_

o
ff

se
t

\
$
h

s
t
r
ip

e
_

o
ff

s
e
t

\
78

−
se

t_
to

_
se

t_
d
is

ta
n
c
e

\
$
h

s
t
r
ip

e
_

d
is

t
a
n

c
e

\
79

−
st

a
rt

_
fr

o
m

to
p

\
80

−
la

y
e
r

\
$
h

s
t
r
ip

e
_

la
y
e
r

81
}

82
i
f

{
$
v
e
r
t
ic

a
l_

s
t
r
ip

e
_

g
r
o
u

p
s

>
0

}
{

83
e
v
a
l

a
d
d
S
tr

ip
e

\
84

$
c
o
m

m
o
n
_

st
ri

p
e
_

se
tt

in
g
s

\
85

−
d
ir

e
c
ti

o
n

v
e
r
t
ic

a
l

\
86

−
sp

a
c
in

g
\
$
p
o
w

e
r_

st
ri

p
e
_

sp
a
c
in

g
\

87
−

x
le

ft
_

o
ff

s
e
t

\
$
v
s
t
r
ip

e
_

o
ff

s
e
t

\
88

−
st

a
rt

_
fr

o
m

le
ft

\
89

−
se

t_
to

_
se

t_
d
is

ta
n
c
e

\
$
v
s
t
r
ip

e
_

d
is

t
a
n

c
e

\
90

−
la

y
e
r

\
$
v
s
t
r
ip

e
_

la
y
e
r

91
}

92 93
#

c
e
ll

p
la

c
e
m

e
n
t

94
se

tM
u
lt

iC
p
u
U

sa
g
e

−
lo

c
a
lC

p
u

4
−

cp
u
P

er
R

em
o
te

H
o
st

1
\

95
−

re
m

o
te

H
o
st

0
−

k
e
e
p
L

ic
e
n
se

tr
u
e

96
se

tP
la

c
e
M

o
d
e

−
fp

fa
ls

e
97 98

#
p
r
e
P

la
c
e
O

p
t

n
o
t

m
e
n
ti

o
n
e
d

in
m

an
p
a
g
e
s
,

b
u
t

n
o

w
a
r
n
in

g
s

g
iv

e
n

e
it

h
e
r

99
p
la

c
e
D

e
s
ig

n
−

p
re

P
la

c
e
O

p
t

10
0

re
d
ra

w
10

1
fi

t
10

2
10

3
#

c
lo

c
k

tr
e
e

s
y
n
th

e
s
is

10
4

c
lo

c
k
D

e
s
ig

n
10

5
−

g
en

S
p
ec

O
n
ly

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.c

t
s
t
c
h

10
6

10
7

se
tC

T
S
M

o
d
e

−
tr

a
c
e
D

P
in

A
sL

e
a
f

fa
ls

e
−

tr
a
c
e
Io

P
in

A
sL

e
a
f

fa
ls

e
\

10
8

−
ro

u
te

C
lk

N
e
t

fa
ls

e
−

ro
u
te

G
u
id

e
tr

u
e
\

10
9

−
ro

u
te

T
o
p
P

re
fe

rr
e
d
L

a
y
e
r

M
4

\
11

0
−

ro
u
te

B
o
tt

o
m

P
re

fe
rr

e
d
L

a
y
e
r

M
3

\

116

11
1

−
ro

u
te

N
o
n
D

e
fa

u
lt

R
u
le

{
}

−
ro

u
te

L
e
a
fT

o
p
P

re
fe

rr
e
d
L

a
y
e
r

M
4

\
11

2
−

ro
u
te

L
e
a
fB

o
tt

o
m

P
re

fe
rr

e
d
L

a
y
e
r

M
3

\
11

3
−

ro
u
te

L
e
a
fN

o
n
D

e
fa

u
lt

R
u
le

{
}

\
11

4
−

u
se

L
ef

A
C

L
im

it
fa

ls
e

\
11

5
−

ro
u
te

P
re

fe
rr

e
d
E

x
tr

a
S
p
a
c
e

1
\

11
6

−
ro

u
te

L
e
a
fP

re
fe

rr
e
d
E

x
tr

a
S
p
a
c
e

1
\

11
7

−
o
p
t

tr
u
e

−
o
p
tA

d
d
B

u
ff

e
r

tr
u
e

−
m

o
v
eG

a
te

tr
u
e

\
11

8
−

u
se

H
V

R
C

tr
u
e

−
fi

x
L

e
a
fI

n
s
t

tr
u
e

\
11

9
−

fi
x
N

o
n
L

e
a
fI

n
st

tr
u
e

−
v
e
rb

o
se

fa
ls

e
−

re
p
or

tH
T

M
L

fa
ls

e
\

12
0

−
a
d
d
C

lo
ck

R
o
o
tP

ro
p

fa
ls

e
−

n
a
m

e
S
in

g
le

D
e
li

m
fa

ls
e

\
12

1
−

h
o
n
o
rF

en
ce

fa
ls

e
−

u
se

L
ib

M
a
x
F

a
n
o
u
t

tr
u
e

\
12

2
−

u
se

L
ib

M
a
x
C

a
p

fa
ls

e
12

3
12

4
c
lo

c
k
D

e
s
ig

n
\

12
5

−
sp

e
c
F

il
e

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.c

t
s
t
c
h

\
12

6
−

o
u
tD

ir
c
lo

c
k
_

re
p
o
rt

−
u
n
fi

x
e
d
In

st
B

e
fo

re
C

T
S

\
12

7
−

p
o
st

C
T

S
sd

c
F

il
e

\
12

8
$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
o
s
ts

y
n
th

_
fi

le
_

b
a
s
e
)
.s

d
c

12
9

13
0

d
e
le

t
e
T

r
ia

lR
o
u

t
e

13
1

se
tO

p
tM

o
d
e

−
fi

x
C

a
p

tr
u
e

−
fi

x
T

ra
n

tr
u
e

−
fi

x
F

a
n
o
u
tL

o
a
d

tr
u
e

13
2

o
p
tD

e
si

g
n

−
p
o
st

C
T

S
13

3
o
p
tD

e
si

g
n

−
p
o
st

C
T

S
−

h
o
ld

13
4

13
5

#
0
4
0

r
o
u
te

13
6

#
r
o
u
te

c
lo

c
k

n
e
ts

w
it

h
h
ig

h
p
r
io

r
it

y
13

7
#

a
n
d

so
m

e
e
x
tr

a
s
p
a
c
e

to
r
e
d
u
c
e

c
o
u
p
li

n
g

13
8

s
e
t
A

t
t
r
ib

u
t
e

−
n
et

@
c
lo

c
k

−
w

ei
g
h
t

5
−

p
re

fe
rr

e
d
_

e
x
tr

a
_

sp
a
c
e

1
13

9
14

0
s
e
le

c
t
N

e
t

−
c
lo

c
k

14
1

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

W
it

h
T

im
in

g
D

ri
v
e
n

fa
ls

e
14

2
se

tN
a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

e
n
v
N

u
m

b
e
rP

ro
c
e
ss

o
r

1
14

3
se

tN
a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

S
e
le

c
te

d
N

e
tO

n
ly

tr
u
e

14
4

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

W
it

h
V

ia
In

P
in

tr
u
e

14
5

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
\

14
6

−
ro

u
te

W
it

h
V

ia
O

n
ly

F
o
rS

ta
n
d
a
rd

C
e
ll

P
in

fa
ls

e
14

7
se

tN
a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

d
ro

u
te

U
se

M
u
lt

iC
u
tV

ia
E

ff
o
rt

h
ig

h
14

8
14

9
ro

u
te

D
e
si

g
n

−
g
lo

b
a
lD

e
ta

il
15

0
15

1
#

0
5
0

r
o
u
te

15
2

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

S
e
le

c
te

d
N

e
tO

n
ly

fa
ls

e
15

3
se

tN
a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

W
it

h
T

im
in

g
D

ri
v
e
n

tr
u
e

15
4

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

T
d
rE

ff
o
rt

1
0

15
5

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

d
ro

u
te

F
ix

A
n
te

n
n
a

tr
u
e

15
6

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

W
it

h
S
iD

ri
v
e
n

tr
u
e

15
7

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

S
iL

e
n
g
th

L
im

it
2
0
0

15
8

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

r
o
u
t
e
S
iE

ff
o
r
t

n
o
rm

a
l

15
9

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

ro
u
te

W
it

h
V

ia
In

P
in

tr
u
e

16
0

se
tN

a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
\

16
1

−
ro

u
te

W
it

h
V

ia
O

n
ly

F
o
rS

ta
n
d
a
rd

C
e
ll

P
in

fa
ls

e
16

2
se

tN
a
n
o
R

o
u
te

M
o
d
e

−
q
u
ie

t
−

d
ro

u
te

U
se

M
u
lt

iC
u
tV

ia
E

ff
o
rt

h
ig

h
16

3
16

4
ro

u
te

D
e
si

g
n

16
5

#
o
p
ti

m
iz

a
ti

o
n

16
6

p
u
t
s

"
o
p

t
im

iz
a
t
io

n
"

16
7

f
o
r
e
a
c
h

x
y
z
z
y

{
0

1
2
}

{
16

8
se

tO
p
tM

o
d
e

−
fi

x
F

a
n
o
u
tL

o
a
d

tr
u
e

\
16

9
−

h
o
ld

F
ix

in
g
E

ff
o
rt

h
ig

h
\

17
0

−
a
d
d
In

st
tr

u
e

\
17

1
−

a
d
d
In

st
a
n
c
e
P

re
fi

x
p

o
s
t
r
o
u

t
e
o
p

t
In

s
t

\
17

2
−

e
ff

o
r
t

h
ig

h
−

fi
x
D

rc
tr

u
e
\

17
3

−
co

n
g
O

p
t

tr
u
e

17
4

17
5

se
tA

n
a
ly

si
sM

o
d
e

−
c
lo

c
k
P

ro
p
a
g
a
ti

o
n

sd
c
C

o
n
tr

o
l

17
6

o
p
tD

e
si

g
n

−
p
o
st

R
o
u
te

−
d
rv

17
7

17
8

se
tA

n
a
ly

si
sM

o
d
e

−
ch

ec
k
T

y
p
e

h
o
ld

\
17

9
−

p
ro

p
S
le

w
tr

u
e

−
ti

m
in

g
E

n
g
in

e
s
t
a
t
ic

18
0

o
p
tD

e
si

g
n

−
p
o
st

R
o
u
te

−
h
o
ld

18
1

18
2

se
tA

n
a
ly

si
sM

o
d
e

−
ch

ec
k
T

y
p
e

se
tu

p
\

18
3

−
ti

m
in

g
E

n
g
in

e
s
t
a
t
ic

18
4

o
p
tD

e
si

g
n

−
p
o
st

R
o
u
te

−
si

18
5

}
18

6
#

in
c
r
e
m

e
n
ta

l
o
p
ti

m
iz

a
ti

o
n

18
7

f
o
r
e
a
c
h

y
z
x
x
z

{
0

1
2
}

{
18

8
o
p
tD

e
si

g
n

−
p
o
st

R
o
u
te

−
in

c
r

18
9

}
19

0
#

w
r
it

e
r
e
p
o
r
ts

19
1

se
tA

n
a
ly

si
sM

o
d
e

−
ch

ec
k
T

y
p
e

h
o
ld

19
2

re
p
o
rt

_
ti

m
in

g
−

ch
ec

k
_

ty
p
e

h
o
ld

−
m

a
x
_

p
a
th

s
1

19
3

re
p
o
rt

_
ti

m
in

g
−

ch
ec

k
_

ty
p
e

h
o
ld

−
m

a
x
_

p
a
th

s
1
0

>
\

19
4

$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.h

o
ld

.r
e
p

o
r
t
_

t
im

in
g

19
5

19
6

se
tA

n
a
ly

si
sM

o
d
e

−
ch

ec
k
T

y
p
e

se
tu

p
19

7
re

p
o
rt

_
ti

m
in

g
−

ch
ec

k
_

ty
p
e

se
tu

p
−

m
a
x
_

p
a
th

s
1

19
8

re
p
o
rt

_
ti

m
in

g
−

ch
ec

k
_

ty
p
e

se
tu

p
−

m
a
x
_

p
a
th

s
1
0

>
\

19
9

$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.s

e
t
u

p
.r

e
p

o
r
t
_

t
im

in
g

20
0

20
1

r
e
p

o
r
t
_

c
o
n

s
t
r
a
in

t
−

a
ll

_
v
io

la
t
o
r
s

20
2

r
e
p

o
r
t
_

c
o
n

s
t
r
a
in

t
−

a
ll

_
v
io

la
t
o
r
s

>
\

20
3

$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.r

e
p

o
r
t
_

c
o
n

s
t
r
a
in

t

117

20
4

20
5

#
a
d
d

f
i
ll

e
r

c
e
ll

s
20

6
a
d

d
F

il
le

r
−

c
e
ll

\
20

7
H

S
65

_
L
H

_
F
IL

L
E
R

C
E
L
L
4

H
S
65

_
L
H

_
F
IL

L
E
R

C
E
L
L
3

\
20

8
H

S
65

_
L
H

_
F
IL

L
E
R

C
E
L
L
2

H
S
65

_
L
H

_
F
IL

L
E
R

C
E
L
L
1

\
20

9
−

p
re

fi
x

fi
c
o

21
0

21
1

#
v
e
r
if

y
a
n
d

o
u
tp

u
t

21
2

p
u
t
s

"
v

e
r
if

ic
a
t
io

n
␣
a
n
d
␣

r
e
p

o
r
t
␣
g
e
n

e
r
a
t
io

n
"

21
3

c
le

a
r
D

r
c

21
4

c
h
e
c
k
D

rc
21

5
c
h
e
c
k
R

o
u
te

21
6

v
e
ri

fy
G

e
o
m

e
tr

y
−

a
ll

o
w

D
if

fC
e
ll

V
io

l
21

7
v
e
r
if

y
C

o
n

n
e
c
t
iv

it
y

−
t
y
p
e

a
ll

−
e
rr

o
r

1
0
0
0

−
w

a
rn

in
g

5
0

21
8

v
e
ri

fy
P

ro
c
e
s
s
A

n
te

n
n
a

21
9

re
p
o
rt

_
p
o
w

e
r

−
le

a
k
a
g
e

−
o
u

t
fi

le
$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(

p
n
r_

fi
le

_
b
a
se

)
.r

e
p
o
rt

_
p
o
w

e
r

22
0

22
1

s
a
v
e
N

e
t
li

s
t

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.v

22
2

se
tE

x
tr

a
c
tR

C
M

o
d
e

−
e
n
g
in

e
p
o
st

R
o
u
te

−
e
ff

o
r
t
L

e
v
e
l

lo
w

22
3

e
x
tr

a
c
tR

C
22

4
w

ri
te

_
sd

f
−

p
re

c
is

io
n

5
$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.s

d
f

22
5

rc
O

u
t

−
sp

e
f

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.s

p
e
f

22
6

22
7

#
s
a
v
e

e
n
c
o
u
n
te

r
p
r
o
je

c
t

22
8

sa
v
e
D

e
si

g
n

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.e

n
c

22
9

23
0

e
x
i
t

A
.6

.4
P
ow

er
A

n
al

ys
is

S
cr

ip
t

05
_

po
w
er

_
pt

.t
cl

1
#
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

2
#
−−

−−
−−

−−
−−

−
p
o
w
e
r

a
n
a
ly

s
is

−−
−−

−−
−

3
#
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

−−
−−

4 5
#

S
e
t

th
e

P
o
w
er

A
n
a
ly

s
is

M
o
d
e

6 7
s
e
t

p
o
w

e
r_

e
n
a
b
le

_
a
n
a
ly

si
s

T
R
U
E

8
#

s
e
t

p
o
w
e
r_

a
n
a
ly

si
s_

m
o
d
e

a
v
e
r
a
g
e
d

9
s
e
t

p
o
w

e
r_

a
n
a
ly

si
s_

m
o
d
e

ti
m

e
_

b
a
se

d
10

s
e
t

ti
m

in
g
_

u
se

_
z
e
ro

_
sl

e
w

_
fo

r_
a
n
n
o
ta

te
d
_

a
rc

s
n
e
v
e
r

11
#

ti
m

e
_

b
a
se

d
/
a
v
e
r
a
g
e
d

12 13
#

S
e
t

th
e

s
e
a
r
c
h

p
a
th

a
n
d

li
n
k

p
a
th

14 15
s
e
t

se
a
rc

h
_

p
a
th

"
\

16
␣
␣

$
::

e
n

v
(S

T
M

06
5_

D
IR

)
/
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

5
.1

/
li

b
s
␣
\

17
␣
␣

$
::

e
n

v
(S

T
M

06
5_

D
IR

)
/
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

3
.1

/
li

b
s
␣
\

18
␣
␣
$
se

a
rc

h
_

p
a
th

"
19 20

s
e
t

li
n

k
_

li
b

r
a
r
y

"
\

21
␣
␣
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
␣
\

22
␣
␣
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
␣
\

23
␣
␣

$
li

n
k
_

li
b

r
a
r
y

"
24 25

s
e
t

t
a
r
g
e
t
_

li
b

r
a
r
y

"
\

26
␣
␣
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
␣
\

27
␣
␣
C

L
O

C
K

6
5
$
::
en

v
(
li

b
r
a
r
y

)
_

n
o
m

_
$
::
en

v
(
v
d
d

)
_

2
5
C

.d
b
"

28 29
s
e
t

sy
m

b
o
l_

li
b
ra

ry
"
C

O
R

E
6
5
$
::

en
v

(
li

b
r
a
r
y

)
.s

d
b

"
30 31 32

re
a
d
_

d
b

$
t
a
r
g
e
t
_

li
b

r
a
r
y

33 34
#
R
ea

d
th

e
d
e
s
ig

n
a
n
d

th
e

li
b
r
a
r
ie

s
35 36

re
a
d
_

v
e
ri

lo
g

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.v

37
c
u
rr

e
n
t_

d
e
si

g
n

$
::

e
n

v
(
to

p
)

38 39
#

L
in

k
th

e
to

p
d
e
s
ig

n
40 41

li
n
k
_

d
e
s
ig

n
42 43

re
a
d
_

sd
c

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
o
s
ts

y
n
th

_
fi

le
_

b
a
s
e
)
.s

d
c

44 45
#

A
n
n
o
ta

te
p
a
r
a
s
it

ic
t

46 47
r
e
a
d

_
p

a
r
a
s
it

ic
s

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(
p
n
r_

fi
le

_
b
a
se

)
.s

p
e
f

48 49
#
R
ea

d
s
w

it
c
h
in

g
a
c
t
iv

it
ie

s
(
o
n
ly

fo
r

ti
m

e
_

b
a
se

d
)

50 51
#
re

a
d
_

v
c
d

−
s
tr

ip
_

p
a
th

tb
_

it
e
r
a
ti

o
n
_

2
/
it

e
r
a
ti

o
n
_

2
_

te
s
t

/
tm

p
/

N
R

_
p
n
r6

5
1
.v

c
d

52
re

a
d
_

v
cd

−
st

ri
p
_

p
a
th

\
53

$
::

e
n

v
(
te

st
_

b
e
n
c
h

)
/
d
u
t

$
::

e
n

v
(
d
a
ta

_
d
ir

)
/

$
::

e
n

v
(

si
m

_
fi

le
_

b
a
se

)
.v

c
d

54 55
#
P
o
w
er

a
n
a
ly

s
is

56

118

57
ch

ec
k
_

p
o
w

er
58

u
p
d
a
te

_
p
o
w

er
59 60

#
R

e
p
o
r
t

p
o
w
e
r

61

62
re

p
o
rt

_
p
o
w

e
r

−
v
e
rb

o
se

−
h
ie

ra
rc

h
y

>
\

63
$
::

e
n

v
(
re

p
o
rt

_
d
ir

)
/

$
::

e
n

v
(
p
o
w

e
r_

fi
le

_
b
a
se

)
.r

e
p
o
rt

_
p
o
w

e
r

64
q
u

it

119

H
ard

w
are A

rch
itectu

res fo
r th

e In
verse Sq

u
are R

o
o

t an
d

 th
e In

verse Fu
n

ctio
n

s

Department of Electrical and Information Technology,
Faculty of Engineering, LTH, Lund University, 2016.

Hardware Architectures for the
Inverse Square Root and the
Inverse Functions

Niclas Thuning
Leo Bärring

Series of Master’s theses
Department of Electrical and Information Technology

LU/LTH-EIT 2016-491

http://www.eit.lth.se

N
icla

s T
h

u
n

in
g

 &
 Le

o
 B

ärrin
g

Masters’s Thesis

