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Abstract

The study of electronic transport in chemically synthesized semiconductor nanowires is an
active field of research, with potential applications in areas such as quantum computing
and nanoelectronics. Motivated by recent experimental progress, we use a simple non-
atomistic tight-binding model implemented in open-source software to simulate quantum
electronic transport in such nanowires. Including various physical effects (such as those
arising from finite temperature and a uniform magnetic field) we present a ‘‘toolset’’ for
computing their scattering matrix in general and conductance in particular.
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List of abbreviations

The following abbreviations are used in the text

• 2DEG Two-dimensional electron gas

• GDM Gaussian Disorder Model

4



Table of contents

1 Introduction 6

2 Quantum transport of electrons: Theory and formalism 7
2.1 Landauer formula of conductance . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The scattering matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Experimental background 12
3.1 Observations of conductance quantization . . . . . . . . . . . . . . . . . . 12
3.2 Nanowires in semiconductor materials . . . . . . . . . . . . . . . . . . . . . 13

4 Numerical tight-binding model of transport 14
4.1 Discretized Schrödinger equation . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Gaussian disorder potential . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 The Kwant code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Results of simulations 18
5.1 Circular nanowire and its analytical solution . . . . . . . . . . . . . . . . . 18
5.2 Effects of temperature, Source-Drain bias, disorder and geometry . . . . . 18
5.3 Hexagonal nanowire in magnetic field . . . . . . . . . . . . . . . . . . . . . 20
5.4 Fabry-Pérot resonances in a circular nanowire . . . . . . . . . . . . . . . . 20

6 Discussion and outlook 23
6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Acknowledgements 25

5



Section 1
Introduction

The fabrication, characterization and applications of nanowires are integral parts of
modern nanotechnology. Having dimensions in the nanoscale regime, nanowires have been
constructed in various shapes and sizes, using both metallic and semiconductor materials.
The latter type, semiconductor nanowires, have several unique features, such as high
suitability to be incorporated in nanoelectronic devices like transistors. As presented in
Ref. [1], a great amount of experimental progress has been made since the inception of
the field. Areas in which semiconductor nanowires have potential technical applications
include photovoltaics, quantum computing and nanoelectronics. Hence, advancement
of the understanding of these devices contributes to the technological development and
have the potential of unlocking new ways for society to improve its energy efficiency. An
overview of the relevant experimental background is presented in Section 3.

For several aspects of the characterization and application of semiconductor nanowires
their electronic transport properties are important. A theoretical framework suitable for
describing these properties at the nanoscale is known as ‘‘conductance from transmission’’,
and was developed largely by R. Landauer in the 20th century [2, 3]. One of its landmark
experimental signatures, conductance quantization, was observed for the first time in the
1980s. We present the transmission approach and related experimental results in Sections
2 and 3, respectively.

In this project, we simulate electronic transport in semiconductor nanowires based
on the transmission approach, using a tight-binding model implemented in the recently
developed open-source software package Kwant [4]. The aim of the project is to provide a
numerical toolset for predicting the electronic transport behavior in a typical semiconductor
nanowire experiment, by including models of relevant physical effects in the simulations.
The qualitative results of the simulations, and the possibility of easily implementing a
specific experimental setup, may enable a better understanding of the electronic transport
and aid the experimental process in general.

More specifically, we are using a conduction-band, non-atomistic tight-binding model.
This model comes with a number of limitations. Perhaps most notably, it does not
discriminate between crystal structures, and material properties are effectively only
implemented by the effective mass appearing in an energy unit prefactor. This property
of the model could, however, also be seen as a strength in that it offers a great simplicity.
In summary, the model enables us to include phenomena which are strictly quantum
within a relatively compact framework. This can be put in contrast to other approaches
to calculating transport properties, such as using the ab initio Density Functional Theory.
Such an approach will provide a more complete picture, but could also be more complicated
to implement for different experimental setups.
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Section 2
Quantum transport of electrons: Theory and
formalism

The approach of conductance from transmission was pioneered by R. Landauer [2, 3]
and has since been used and expanded upon by many others. In particular, M. Büttiker
extended the framework to include multi-terminal systems [5], resulting in the Landauer-
Büttiker formalism. Based on the presentation of the theory in Ref. [6] (its Section 2.1,
2.2, 2.5 and 3.1) we here derive the Landauer formula of conductance, connect it to the
scattering matrix and discuss some further properties of this matrix.

2.1 Landauer formula of conductance
In order to study the properties of quantum electronic transport we derive an expression
for the electric conductance G of a scattering conductor with the average probability
T̃ (E) for an electron to transmit across it. We consider the system as illustrated in
Figure 1. In this discussion we will consider a two-dimensional system, but we will arrive
at general results which can be used in three dimensions as well. The important point
is that one dimension is the propagating one, the axis of which is connecting the leads
and the remaining dimensions are transversal. The conductor is fixed between two leads
labeled 1 and 2 at chemical potentials µ1 and µ2. We assume that electrons in Lead i are
distributed according to a Fermi function

fi(E) = 1
exp(E−µi

kBT
) + 1

(1)

where kB is the Boltzmann constant, T is temperature and E is energy. The leads are fully
ballistic and are similar to the conductor in one end and in contact with large electron
reservoirs in the other. These reservoirs are assumed to be large enough for electrons to
be able to enter them with zero probability of reflection.

For a given finite energy E, electrons occupy ±k-states in a finite number N(E) of
transverse modes (which we, for simplicity, assume to be the same in both leads), where k
is the wave vector in the propagating direction; +k-states carry positive current and vice
versa. In general the dispersion relations E(k) and hence N(E) depend on the transversal
geometry and confinement, and we make no particular choice here.

Consider the cloud of +k-electrons in Lead 1 corresponding to a single transversal
mode, the individual states of which being occupied according to the Fermi function f1(E).
The cloud is moving with a group velocity vg in the positive propagating direction. The
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Figure 1: A conductor placed between two leads at chemical potentials µ1 and µ2. The
Fermi functions f1 and f2 describe the occupancy of states in the leads.

current Ĩ1
k> 0 carried by these electrons is given by

Ĩ1
k> 0 =

∑
k> 0

envgf1(E) = en

h̄

∑
k> 0

∂E

∂k
f1(E) (2)

where e is the elementary charge, n is the electron density in the propagating dimension,
h̄ is Planck’s constant h divided by 2π and we have used the relation for propagating
waves that

vg = ∂ω

∂k
= 1
h̄

∂E

∂k
(3)

where ω is the angular frequency. Assuming periodic boundary conditions in the prop-
agating dimension, the sum can be written as an integral by considering the k-space
geometry

Ĩ1
k> 0 = en

h̄

2
2πn

+∞∫
0

∂E

∂k
f1(E) dk = 2e

h

+∞∫
E0

f1(E) dE (4)

where E0 is the band bottom (the minimum energy for k > 0) and we have assumed
that two electrons can occupy each state due to spin degeneracy. This result can then be
generalized to the current I1

k> 0 carried by +k-electrons of all occupied transversal modes

I1
k> 0 = 2e

h

+∞∫
−∞

f1(E)N(E) dE . (5)

The flux of electrons i→1 (current per energy), in Lead 1 moving into the conductor is then
given by

i→1 = 2e
h
f1(E)N(E) . (6)

Similarly, for the flux of electrons in Lead 2 moving into the conductor

i←2 = 2e
h
f2(E)N(E) . (7)
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There is no contribution from reflected electrons since we have assumed that electrons
enter the reservoirs without reflection, meaning e.g. that once +k-electrons enter Lead 2
they will ‘‘disappear’’ into the reservoir it is attached to. The flux i←1 of electrons in
Lead 1 moving away from the conductor is the sum of the reflected part of i→1 and the
transmitted part of i←2 ,

i←1 =
(
1− T̃ (E)

)
i→1 + T̃ (E)i←2 , (8)

and since the total electron flux ie is the same everywhere, we can calculate it in Lead 1,

ie = i→1 − i←1 = 2e
h
N(E)T̃ (E) (f1(E)− f2(E)) . (9)

We integrate this expression to obtain the electric current, defining the total transmission
probability T (E) = N(E)T̃ (E),

I = 2e
h

+∞∫
−∞

T (E) (f1(E)− f2(E)) dE (10)

With the current I written on this form, there are several ways to define the conductance
G. In this text we will work with two definitions, both on the basic form

G = I

VSD
(11)

where VSD is the applied bias VSD = (µ1 − µ2)/e. From this expression, we first formulate
a formula for the linear response conductance GLR, for VSD → 0. In this limit, we obtain
the expression

GLR(EF ) = 2e2

h

+∞∫
−∞

T (E)ft dE (12)

where EF is the Fermi energy and ft is the thermal broadening function, given by

ft = − ∂

∂E

 1
exp(E−EF

kBT
) + 1

 . (13)

For sufficiently large VSD the linear response result is inadequate and a potential distri-
bution arises inside of the conductor, in principle modifying the transmission probability
T (E). For simplicity, however, we assume that the voltage drop occurs entirely in the
contacts, so that T (E) is unchanged. More details on the justification of this assumption
is provided in Ref. [6]. With this assumption, we can write

µ1 = EF + eVSD
2 and µ2 = EF −

eVSD
2 (14)

for voltage drops occurring symmetrically in the contacts. From the expression in (11) we
then obtain

G(EF , VSD) = 2e2

h

1
VSD

+∞∫
−∞

T (E) (f1(E)− f2(E)) dE (15)
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which is our full expression for the bias-dependent conductance. We note that the prefactors
(as functions of energy) to the total transmission probability T (E) in equations (12) and
(15) represent very sharp peaks around EF as the temperature T , as well as the applied
bias VSD in the non-linear response case, approach zero. Hence, since N(E) increases in
discrete steps as new transverse modes become available, these equations imply that the
increase of conductance occurs in quanta of G0 = 2e2/h for transport in the near-ballistic
regime with low temperature and low applied bias. Finally, we note that in the remainder
of this text, the symbol E will denote the Fermi energy instead of the integration variable
in the above equations.

2.2 The scattering matrix
The effective mass Schrödinger equation for an electron in either of the leads in the setup
illustrated in Figure 1, with an applied magnetic field, is given by HΨ = EΨ with the
Hamiltonian

H = (p− eA)2

2m∗ + V (16)

where p is momentum, m∗ the electron effective mass, A the vector potential and V the
scalar potential. The vector potential A depends on the configuration of the magnetic
field and the electrostatic potential V depends on the geometry and confinement of the
system and other applied potentials that might be included in the model.

We will carry out no explicit analytical solution of the Schrödinger equation in this text,
but we note that it is in principle possible to solve it in many cases, at least numerically.
For simplicity, we here assume both leads to have the same number N of occupied
transversal modes at some particular energy. Then, once full solutions corresponding to
all these modes are obtained the scattering matrix, or S-matrix, can be written down, as
given by

cout = Scin (17)

where cout (cin) is the column vector of the outgoing (incoming) complex wave amplitudes
and S is the 2N×2N scattering matrix connecting them. In this formulation, the S-matrix
consists of four sub-matrices

S =
(
r t′

t r′

)
(18)

where t and r are transmission and reflection amplitude matrices for electrons originating
in the reservoir connected to Lead 1, and t′, r′ are the corresponding quantities for the
reservoir connected to Lead 2. The total transmission probability T (E), is then given by

T (E) =
∑
i,j

|tij|2 = tr(tt†) . (19)

We make some additional remarks. First, we note that S has the property of unitarity
due to current conservation. Second, we note that even though we relate it exclusively to
conductance in this project, the S-matrix of a system provides quite a general description
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of its transport properties; for example, thermoelectric coefficients and (thermal and shot)
noise can be expressed in terms of scattering matrix elements, as described e.g. in Refs. [7]
and [8], respectively.
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Section 3
Experimental background

The most significant condition for quantized conductance to occur is that the dimensions of
the system should be comparable to its Fermi wavelength λF . Here, the Fermi wavelength
of a material means the de Broglie wavelength of electrons at the Fermi energy in the
material. A short summary of relevant experiments where this condition has been fulfilled
and conductance quantization has been observed is presented below. We then describe
some details of a typical electronic transport experiment with a semiconductor nanowire.

3.1 Observations of conductance quantization
The first experimental observations of conductance quantization occurred in two-dimensional
electron gases (2DEGs) in semiconductor heterostructures [9, 10]. In such experiments, an
electron gas is confined between layers of semiconducting materials. A gate with tunable
width is placed upon this heterostructure, allowing the energy-dependent conductance to
be measured. The Fermi wavelength of 2DEGs is relatively large, typically around 40 nm,
so that a gate width comparable to it can be experimentally realized. Such a gate is then
called a quantum point contact.

Following these initial experimental results, conductance steps have been observed
in several kinds of nanoscale systems. An important class of experiment is based on
separating two electrodes, whereby a nanostructure known as a break junction is formed
between them. Such break junctions are of very small dimensions, typically on the order
of a single nanometer or smaller, and the contacts between electrodes and break junctions
are therefore called atomic point contacts. Due to their small size, conductance steps have
been possible to observe in metallic break junctions for metals with sub-nanometer Fermi
wavelengths [11,12]. In semiconductor materials, the Fermi wavelength is on the order of
tens of nanometers and conductance steps have been observed in break junctions of larger
size [13].

More recently, observations of conductance quantization have been reported for chemi-
cally synthesized nanowires in semiconductor materials [14,15]. In these experiments, the
nanowire width is on the order of tens of nanometers and length on the order of hundreds
of nanometers. It is this type of nanowire, typically of Group III-V semiconductor material,
that the present work focuses on.
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3.2 Nanowires in semiconductor materials
In a typical electronic transport nanowire experiment a nanowire is attached to two metallic
lead terminals called Source and Drain. An additional terminal is introduced, called the
Gate terminal, which is close to, but not in contact with, the nanowire. Physically, this
can be implemented in various ways. For example, the substrate on which the nanowire is
fabricated (or a layer beneath it) can be used as gate terminal; this is known as a backgate.
Increasing the gate voltage VG corresponds to lowering the Fermi energy of the nanowire,
changing the energy E of the system. The coupling between gate voltage and energy is
called the lever arm α = E/eVG of the system. The value of α, e.g. in meV per V, is
usually not well known in an experimental setup; a lever arm prediction is one of the
potential outcomes of transport simulations.

We mention a further experimental detail of the semiconductor nanowire experiments,
namely that oscillations of Fabry-Pérot type have been observed in the energy-dependence
of the nanowire conductance [16]. Such oscillations can be viewed as resulting from
effective potential barriers at the lead-nanowire junctions. In this text, we do not discuss
what exact physical mechanism the formation of such barriers may be attributed to.
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Section 4
Numerical tight-binding model of transport

We now describe a method of computing the transport properties described in Section 2.
In particular, we wish to compute the S-matrix for a nanowire with an arbitrary geometry,
taking into account various effect as outlined in this section. In summary, we model the
system with a tight-binding Hamiltonian, use the open-source Kwant code [4] to solve
the discretized Schrödinger equation and compute the S-matrix. Finally, we extract the
transport properties from this S-matrix.

We note that our model is a simple conduction-band effective mass model based on
discretizing the Schrödinger equation, enabling a numerical solution. In contrast, the
model is not atomistic, and the finite elements in the discretization do not correspond to
single atoms, ions or any other physical entity. Hence, the model is independent of the
crystal structure, atomic orbitals and similar physical properties of the nanowire material.

4.1 Discretized Schrödinger equation
We start by writing down a finite-difference discretized version of the Hamiltonian in (16),
which is known as a tight-binding Hamiltonian. For simplicity, we assume a uniform
magnetic field ~B in the xy-plane as illustrated in Figure 2, with the direction of the field
described by an angle θ. We thus have

~B = (B cos(θ), B sin(θ), 0) . (20)

This magnetic field can be represented as a vector potential ~A as given by ~B = ∇× ~A in
a number of ways. Choosing e.g. the Coulomb gauge ∇ ·A = 0 we have Ax = Ay = 0 and

Az = B (y cos(θ)− x sin(θ)) . (21)

Note that inserting this ~A into the Hamiltonian in (16) gives us

H = 1
2m∗

(
−h̄2∇2 + 2ih̄e~A · ∇+ e2~A2

)
+ V (x, y, z) (22)

where the second and third term in parentheses conventionally are called the paramagnetic
and diamagnetic term, respectively.

The del operator ∇ = (∂/∂x, ∂/∂y, ∂/∂z) is discretized using symmetric definitions of
the derivatives. The discretized differential operator in the x-dimension of first order is
given by

∂g(x, y, z)
∂x

= g(x+ a, y, z)− g(x− a, y, z)
2a (23)
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Figure 2: A three-dimensional system with a nanowire (NW) placed between two leads.
The angle θ describes the direction of a uniform magnetic field in the xy-plane.

and of second-order by
∂2g(x, y, z)

∂x2 = g(x+ a, y, z)− 2g(x, y, z) + g(x− a, y, z)
a2 . (24)

where g is a test function and a is a finite number which can be made arbitrarily small. The
expressions for the y- and z-dimensions are on the same form. Inserting these expressions
into the Hamiltonian in (22), we obtain

Hg(x, y, z) =
(

6 g(x, y, z)−
∑
NN

g(x, y, z)
)
t+

+ ih̄ωG
2

(
y

a
cos(θ)− x

a
sin(θ)

)
(g(x, y, z + a)− g(x, y, z − a)) +

+ (ωGh̄)2

4t

(
y

a
cos(θ)− x

a
sin(θ)

)2
g(x, y, z) + V (x, y, z)g(x, y, z)

(25)

where g(x, y, z) is a test function, we have defined t = h̄2/2m∗a2, introduced for convenience
the gyrofrequency ωG = eB/m∗ and the nearest neighbor sum is given by∑

NN

g(x, y, z) = g(x− a, y, z) + g(x+ a, y, z) + g(x, y − a, z) + g(x, y + a, z) +

+ g(x, y, z − a) + g(x, y, z + a) .
(26)

In (25) we have now written down a discretized version of the Hamiltonian in (16), which
is suitable for numerical solutions.

4.2 Gaussian disorder potential
Real nanostructures inevitably exhibit disorder in the form of crystal imperfections,
resulting e.g. from the fabrication process. This disorder is a fundamental source of
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non-ballistic transport. We include disorder in our model using a Gaussian Disorder Model
(GDM), where the potential V (x, y, z) in (25) is pseudorandomly drawn from a Gaussian
distribution centered at zero, with a distribution spread sG corresponding to the disorder
strength.

4.3 The Kwant code
In order to compute the transport properties we use the open-source Kwant code [4].
This software package was made available recently and is written mainly in the Python
programming language. It provides a user-friendly way to input a discretized Hamiltonian,
like the one in (25), and design a geometry, whereupon it uses numerical methods to
solve the Schrödinger equation and compute various transport quantities, including the
S-matrix. In this text, we will not discuss the mathematical methods employed by Kwant;
for a description of these see Ref. [4].

4.4 Simulation procedure
As mentioned previously, the 3D grid which the spatial discretization corresponds to can
be made arbitrarily dense, approaching the continuum limit for a→ 0. For all simulations
we make a decision of the tight-binding resolution R in units of sites per nanometer, nm−1,
indicating the precision of the simulation. A criterion for well-resolved simulations is that

RλF >> 1 , (27)

where λF is the Fermi wavelength of the system one wishes to model. As discussed in
Section 3, λF is typically on the order of 10 nm for semiconductor materials. Therefore,
we will usually pick R on the order of 1 nm−1 to fulfill the requirement in (27). After a
resolution R has been selected, a physical dimension d should be represented by a number
N = Rd of discrete ‘‘sites’’ in the tight-binding simulation.

Computationally, it is convenient to make the assignment t = 1, for example because
of machine precision limitations. This assignment results in an energy unit E0 given by

E0 = h̄2R2

2m∗ . (28)

A number of parameters with the dimension of energy, listed in Table 1, then have to
be specified in units of E0. The parameters τ and ε correspond to the temperature and
finite Source-Drain bias as discussed in Sections 2 and 3.2. The strength of the uniform
magnetic field described in Section 4.1 is controlled by η and the disorder discussed in
Section 4.2 is controlled by σ.
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Table 1: List of numerical parameters used in the simulations.
Symbol Parameter Associated physics

τ kBT/E0 Temperature
ε eVSD/E0 Source-Drain voltage
σ sG/E0 Disorder
η h̄ωG/E0 Magnetic field
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Section 5
Results of simulations

In this section we present simulation results for a selection of systems, chosen in such a
way as to demonstrate the versatility of our model.

5.1 Circular nanowire and its analytical solution
Here, we simulate fully ballistic circular nanowire in zero magnetic field and compute
its conductance. We let τ → 0 and ε → 0. We take the nanowire to have a diameter
d = 30 nm and use a resolution of R = 1.2 nm−1. Note that since the conductor is fully
ballistic its length does not, in this case, affect its transport properties and we arbitrarily
set it to 60 nm.

The results of the conductance computation is compared to an analytical solution. The
2D Schrödinger equation can be solved for a cylindrical geometry with hard-wall boundary
conditions, which is what the transversal part of the present nanowire represents. We do
not go through the details of the solution here, but simply write down the well-known
result for the energy levels

En,k = 2h̄2

m∗d2 jn,k (29)

where jn,k is the kth zero of the Bessel function Jn. From Section 2.1 we know that each
new transversal mode should represent an integer step of G0 in the conductance, under the
conditions in this simulation. These steps, as given by (29), we therefore call the analytical
solution. The simulation result, together with the analytical solution, is shown in Figure 3.
The discrepancy between the two curves that can be seen in this figure becomes smaller if
the resolution of the simulation is increased.

5.2 Effects of temperature, Source-Drain bias,
disorder and geometry

In these simulations we study how some of the physical effects we have described affects the
nanowire conductance. We begin with the effects of temperature, Source-Drain bias and
disorder; the first two have been introduced in Section 2 and the latter one in Section 4.2.
For this, we use the same nanowire and resolution as in Section 5.1. In each simulation, we
wish to isolate the effect we are concerned with, so we choose the parameters to diminish
other effects. In all of these simulations we let η = 0. The results are presented in Figure
4.
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Figure 3: (a) Simulation results and comparison to analytical solution for the conductance
of the circular nanowire described in Section 5.1. (b) A visualization of the tight-binding
model of the nanowire produced by Kwant. Red regions represent semi-infinite leads.
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Figure 4: Simulation results for the conductance of the nanowire described in Section 5.1
with different effects applied. (a) Effects of finite temperature with ε→ 0. (b) Effects of
finite Source-Drain bias; for all curves τ = 0.001. (c) Effects of disorder; here τ → 0 and
ε→ 0.
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Figure 5: (a) The conductance of fully ballistic nanowires with three different transversal
geometries, described in Section 5.2. (b) Models of the relevant nanowires visualized in
Kwant. Red regions represent semi-infinite leads.

Moreover, we study how the transversal geometry affects the conductance steps. In
particular, we investigate whether some geometries break the degeneracy of the second
and third step we observed for the circular geometry discussed in Section 5.1. In addition
to the circular geometry, we simulate nanowires with a hexagonal and trapezoidal shape.
We choose the dimensions of the nanowires such that their transversal areas are roughly
the same. Using the same circular nanowire as before, this means that the hexagonal
nanowire will have a flat-to-flat distance d = 28.6 nm. The trapezoidal geometry is
achieved by truncating the hexagonal one and will hence correspond to a d = 40.4 nm
hexagonal nanowire cut in half. We let η = 0, τ → 0 and ε → 0. A comparison of the
conductances of the different nanowires are presented in Figure 5.

5.3 Hexagonal nanowire in magnetic field
We now study the effects of the presence of a finite uniform magnetic field on the
conductance of a fully ballistic hexagonal nanowire. The configuration of the magnetic
field is precisely as described in Section 4.1. We choose to simulate a nanowire with a
flat-to-flat distance of 30 nm and a length of 60 nm, and we use a resolution R = 0.8 nm−1.
We let τ → 0 and ε→ 0. We consider three different angles in the interval 0 ≤ θ ≤ π/2
and control the B-field strength with the parameter η, choosing values so that the full
range of the effect is qualitatively visible. The results are presented in Figure 6.

5.4 Fabry-Pérot resonances in a circular nanowire
As discussed in Section 3.2, Fabry-Pérot oscillations may occur in the conductance of
nanowires, as a result of the properties of the lead-nanowire junctions. In these simulations,
we wish to simulate this effect. We do so by adding a potential barrier of height VG
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Figure 6: Simulation of the effect of a uniform magnetic field on the conductance of a
fully ballistic hexagonal nanowire. The details of the nanowire is described in Section 5.3.
The direction of the magnetic field is controlled by the angle θ as in Figure 2 and the
magnitude by the parameter η defined in Table 1. The figures (a), (b) and (c) show the
results for three different angles, where θ = 0 is parallel to the propagating direction and
θ = π/2 is perpendicular to it.

near each lead in the nanowire; such a double barrier is quantum mechanically associated
with Fabry-Pérot resonances. We simulate the conduction with Fabry-Pérot resonances
in a system with equal dimensions and resolution as the circular nanowire described in
Section 5.1. Again we let η = 0, τ → 0 and ε → 0. In addition, we perform the same
simulation with a nanowire of double length (120 nm) to illustrate the length-dependence
of the Fabry-Pérot oscillations. The results are presented in Figure 7.

21



0.00 0.02 0.04 0.06 0.08 0.10
0

1

2

3

4

5

6

Energy E / E0

C
on

du
ct

an
ce

 G
 /

 G
0

φ = 0.00

φ = 0.05

φ = 0.25

φ = 1.00

(a)

0.00 0.02 0.04 0.06 0.08 0.10

Energy E / E0

φ = 0.00

φ = 0.05

φ = 0.25

φ = 1.00

(b) (c)

Figure 7: Fabry-Pérot resonances in the conductance of two circular nanowires of different
lengths. The potential barrier height VB is controlled by the φ = VB/E0 parameter. (a)
Simulation of conductance in the nanowire described in Section 5.1. (b) Simulation with a
nanowire twice the length of the former (120 nm). (c) Visualizations of the two nanowire
models produced with Kwant. Blue regions represent potential barriers with height VB
and red regions represent semi-infinite leads.
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Section 6
Discussion and outlook

In Section 5 we have seen several results for how a number of physical conditions affect the
electronic transport properties of semiconductor nanowires. We have demonstrated the
ease of which different systems can be described using the tight-binding model outlined in
Section 4. In the simulations, we have made use of the parameters listed in Table 1; in
principle, the numerical values we have set these parameters to indicate in what energy
regimes the effects should become significant.

Discussions of the individual simulations now follows. In Section 5.1 we saw how the
simulation results could be matched with an analytical solution for the simple case of a
fully ballistic cylindrical nanowire. The correlation with the analytical solution indicates
that the numerical simulations are accurate. As energy increases, a small discrepancy can
be observed. The source of this discrepancy can be presumed to be related to the criterion
in (27), and does indeed decrease in simulations with higher resolutions.

The basic way in which temperature, finite Source-Drain bias, disorder and geometry
affects the conductance steps were presented in Section 5.2. Temperature and Source-Drain
bias ‘‘smears’’ the steps, in both cases approaching curves where plateaus in the curve
are no longer distinguishable for large values of the associated parameters. The disorder
included using the model described in Section 4.2 resulted in a suppression of conductance
and a generally more ‘‘noisy’’ conductance curve. We note two things in particular.
Firstly, disorder in combination with temperature or finite Source-Drain bias (all three of
which are always present to some degree experimentally) can from the simulation results
be understood to result in a smooth but modified conduction curve. This might offer
a simple explanation of experimental observations of non-ideal steps. Second, we note
that for low levels of disorder (see the σ = 0.20 curve in Figure 4) the deviations from
the ideal conductance step are concentrated at the end of each individual step. This
effect is indeed reproducible within the model, i.e. the result did not occur only for a
single pseudorandomly generated disorder potential. Further investigation of this effect,
including attributing it to a physical mechanism, is of interest to future research, since it
corresponds to a clear signature in the conduction curve.

Keeping the transversal area of the nanowire constant, we saw also in Section 5.2 that
we obtained the same result for the conductance of a cylindrical and hexagonal nanowire,
which is a somewhat nontrivial result. Truncating the hexagonal shape into a trapezoidal
one, we saw that the degeneracy of the second and third steps was broken.

In the simulations in Section 5.3 we studied the effect on conductance of a uniform
magnetic field for a hexagonal nanowire. We saw two distinct effects, the weighting
between them depending on the direction of the B-field. For a B-field parallel to the
propagating direction of current, an effect similar to degeneracy-breaking was observed.
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When the direction of the B-field was perpendicular to the direction of current, the corners
of the conductance steps were rounded and slightly suppressed. In the interpretation of
these effects, we remind ourselves that the model is non-atomistic, so that no quantum
mechanical treatment of spin-degeneracy breaking has been manually added. A careful
interpretation of the results in Figure 6 taking this into account is a topic for further
investigation.

When metallic Source and Drain contacts are attached to semiconductor nanowires the
nature of these junctions typically affects the electronic transport properties of the system.
In the simulations in Section 5.4, we saw how the way in which Fabry-Pérot oscillations
resulted from effective potential barriers at the lead-nanowire junctions.

In conclusion, we have demonstrated the versatility of a tight-binding approach to
modeling electronic transport in semiconductor nanowires. The model used together with
the Kwant code [4] provides a toolset for numerical computation of the S-matrix in general
and the conductance in particular, with the possibility of including a number of different
physical effects in the simulations.

6.1 Outlook
The most clear step for future research in this topic is to use the model to attempt to
reproduce experimental results. This type of research could potentially contribute to the
understanding of experimental data, and highlight the origin of certain features in the
experimentally measured nanowire conductance.

Furthermore, there are a number of ways in which the model could be expanded upon
in further research. In Section 2.1 we made the assumption that the voltage drop occurs
entirely in the lead-conductor junctions. In principle, however, the applied voltages at all
(Source, Drain and Gate) terminals give rise to an electrostatic field within the nanowire.
If we wanted to account for effects of this field in the model, the possibility of including a
numerical solver of Poisson’s equation in the simulations could be investigated.

Another possible direction for future research could be, after correlating simulation
results with experimental data, to compare the present model with an atomistic model. In
such a model, one could in principle take into account material parameters such as crystal
structure and occupied electron orbitals.
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