
Consistent Authentication in Distributed

Networks

Niklas Lindskog

adi09noh@student.lu.se

Department of Electrical and Information Technology

Lund University

Advisors:

Martin Hell, LTH

&

Christo�er Jerkeby, Ericsson

April 11, 2016

Printed in Sweden
E-huset, Lund, 2016

Abstract

In a time where peer-to-peer networks, often with previously unconnected devices,
are increasing in relevance, new storage solutions are needed. Storage can no longer
rely on a single central entity but rather needs to depend on the resources of the
entire network. Such a solution is the distributed hash table (DHT) which allows
distributed storage of resources, ensuring redundancy and availability of resources.
Common DHT implementations have however been found to be susceptible to
several attacks and therefore not suitable for security-critical data. To enable a
wider use of DHT, a strengthening which can be easily implemented in existing
DHT implementations have to be found.

In this thesis, the security of the Kademlia DHT, present in the Ericsson de-
veloped framework Calvin, was tested by performing a series of well-known attacks
against an existing implementation. From the vulnerabilities found in these tests,
security enhancements based on authentication were designed. All new functional-
ity was designed to interfere with the original implementation as little as possible.
The Kademlia DHT was strengthened with provable identities, cryptographically
signed messages and a certi�cate distribution scheme. All of this was built on a
public key infrastructure having an out-of-band certi�cate authority. The security
enhancements were shown to both hamper known attacks and prevent outsiders
from retrieving any information from the DHT. However, overhead and more com-
plex computation were introduced into the system with the security enhancements.
Further research is needed to determine if very computationally limited devices
can participate or if additional functionality is needed to facilitate this.

Keywords: Authentication, Distributed Hash Table, Kademlia, Distributed Net-
working, Network Security, Calvin, Cryptography

i

ii

Acknowledgements

I would like to sincerely thank Christo�er Jerkeby for his knowledge, ideas and for
his never-ending enthusiasm. I would also like to thank Martin Hell with colleagues
at Lund University for giving me the thorough understanding of computer security
and cryptography needed for this thesis. Finally, I would like to thank my beloved
wife Amanda and my kids for their support during my entire time of studies.

iii

iv

Table of Contents

1 Introduction 1

1.1 Goal . 1
1.2 Delimitations . 2
1.3 Related work . 2
1.4 Outline . 2

2 Theory 5

2.1 Distributed networks . 5
2.2 Distributed Hash Tables . 5
2.3 Authentication . 6
2.4 Kademlia . 7

3 Tools & Methodology 15

3.1 Calvin . 15
3.2 Test-driven development . 16

4 Security evaluation of the DHT 17

4.1 Identifying weaknesses . 17
4.2 Testing the security . 18
4.3 Security evaluation - Conclusion . 21

5 Designing a security-enhanced DHT 23

5.1 Enable node authentication . 23
5.2 Securing the communication . 24

6 Evaluation of the security-enhanced DHT 27

6.1 Mitigated vulnerabilities . 27
6.2 Attacking the security-enhanced DHT 28
6.3 Overhead and increased computational load 28
6.4 Evaluation . 29

7 Discussion 31

7.1 Implications for DHT usage . 31
7.2 Adaptations to enable global availability 31

v

7.3 Future work . 32

8 Conclusion 33

References 35

Appendix A Network illustrations 37

Appendix B Changes in communication �ow due to security enhancements 41

Appendix C Test case and attack methods 45

vi

List of Figures

2.1 A graphical representation of the identi�er space in Kademlia. Circles
represent nodes and triangles represent resources. 8

2.2 A graphic representation of a routing table in the Kademlia DHT. . . 9
2.3 A bucket split in Kademlia. 10
2.4 The node lookup procedure in Kademlia. 10
2.5 The value lookup procedure in Kademlia. 11
2.6 A graphical representation of the identi�er space in Kademlia after

a Sybil attack. The black node represent the node performing the
attack and the grey nodes represents the Sybils. 12

2.7 The procedure for the Node insertion attack. 13

A.1 The topology of a normally functioning DHT network consisting of six
nodes. 38

A.2 The topology of a DHT network consisting of six nodes after a suc-
cessful Eclipse attack. The attacking node operates from port 57748. 39

A.3 The topology of a DHT network consisting of �ve nodes after a suc-
cessful poisoning attack. The attacking node operates from port 55357. 40

vii

viii

List of Tables

4.1 Results of Sybil and Node insertion attacks 20
4.2 Results of Eclipse and Poisoning attacks 20

6.1 Comparing message lengths in non-secure and security enhanced Kadem-
lia . 29

6.2 Comparing average time for completing signing and signature veri�cation 30

ix

x

Abbreviations

BSI Bundesamt für Sicherheit in der Informationstechnik

CA Certi�cate Authority

CSR Certi�cate Signing Request

DDoS Distributed Denial of Service

DHT Distributed Hash Table

ECC Elliptic Curve Cryptography

IoT Internet of Things

NAT Network Address Translation

OSPF Open Shortest Path First

RIP Routing Information Protocol

RPC Remote Procedure Call

TLS Transport Layer Security

UDP User Datagram Protocol

XOR eXclusive OR

xi

xii

Chapter1
Introduction

Since the late 1900s, several network solutions not relying on a centralized hierar-
chy has seen the light of day. Examples of such networks are ad-hoc networks[1] or
the well-known Internet of Things [2]. These types of distributed networks cannot
rely on single nodes∗ storing critical information as nodes can fail and networks
partition at any given point. To counter this, distributed storage solutions has
been developed to increase redundancy and availability.

One of these solutions is the distributed hash table (DHT) where resources
are mapped to keys and stored on several nodes. In a DHT, the storing nodes are
responsible for providing the resource upon receiving a request for that particular
key. Apart from providing redundant storage, the DHT also contributes routing
mechanisms simplifying the �nding of stored resources. While several di�erent
paradigms exist for these routing protocols in divergent DHT implementations,
they all have the feature that a node only needs to know a fraction of the network
to �nd all values. The resources stored by previously unknown nodes are found
either by forwarding messages or by doing iterative lookups.

However, while the DHT solves several storage issues in distributed networks,
they also contribute with new security concerns. All nodes need to trust the
resources which are returned for a certain key, without having any way of deter-
mining whether it is counterfeit or not. This issue becomes of particular interest
in a context where security-critical data is to be shared between several nodes in
a distributed network.

1.1 Goal

The goal of this thesis work is in the �rst phase to determine how vulnerable a
regular implementation of a DHT† is. If potential security weaknesses are detected,
well-documented attacks exploiting these are to be performed and the impact on
the network documented. In the second phase, node authentication and other
security functionality strengthening the DHT are to be implemented. This is
intended to solve or mitigate the vulnerabilities found in the �rst phase. Finally,
when the security features have been implemented, the chosen solution will be
evaluated in terms of security and performance.

∗A node is, in this instance, a participant in a distributed network
†The DHT type used in this thesis is Kademlia DHT

1

2 Introduction

1.1.1 Research Questions

• Is it possible to establish authentication between nodes without abandoning
the distributed properties of the network?

• Is it possible to safely expose security-critical data in a DHT?

• How is performance a�ected by adding authentication and improving secu-
rity in the communication protocol of a DHT?

1.2 Delimitations

This thesis work will focus on protecting the communication between the members
of a DHT network and the integrity of the network. The thesis work will not
directly investigate the validity of the data stored in the DHT. It is therefore
presumed that members of the network are not able to overwrite data stored by
others in the DHT.

1.3 Related work

Extensive research has been performed in the �eld of attacking Kademlia DHT
implementations and proposing countermeasures. The �le-sharing "Kad network"
(which uses the Kademlia DHT) has been the subject of several papers where vul-
nerabilities have been identi�ed and attacks been performed exploiting these [3] [4].

Several attempts have also been made to create a concept securing the Kadem-
lia DHT. A generally applicable solution is the S/Kademlia [5] where several fea-
tures to secure the original protocol are proposed. The goal of [5] is similar to the
goal of this thesis, but focuses on high-level concepts rather than how the protocol
could be implemented. Some of the implemented features in this thesis, such as
assigning secure node identi�ers, originates from S/Kademlia.

An actual implementation of a security enhanced Kademlia, called "SKad"
has been proposed in [6]. One of the main focus points in [6] is how to e�ciently
implement secure communication in a Kademlia DHT. While having a similar
scope as this thesis, the solution provided is built for external communication
with servers outside the DHT. This makes most of the solution proposed in [6]
inapplicable for the security work in this thesis.

1.4 Outline

Chapter 2 is dedicated to the theoretical background of the thesis, giving the
reader a rudimentary understanding of the concepts involved.
Chapter 3 describes the test environment and development strategies for this
thesis work.
Chapter 4 examines the weaknesses found in the DHT implementation. The
implementation of the well-known attacks are also evaluated in this chapter.
Chapter 5 is dedicated to the strengthening of the DHT and the security-enhancing
concepts are described in detail.

Introduction 3

Chapter 6 consists of an evaluation of the security-enhanced DHT in terms of
both security and performance.
Chapter 7 handles discussion regarding usability and future work.
Chapter 8 summarizes and concludes this thesis work.
Appendix A contains illustrations of network topology before and after attacks.
Appendix B elucidates the changes in communication �ow due to security en-
hancements.
Appendix C contains code extracts of attack methods and test cases.

4 Introduction

Chapter2

Theory

2.1 Distributed networks

A distributed network is a general term for networks in which data processing,
storage and computation is spread out over several network members. These sorts
of networks are bene�cial when many members of a network are computationally
weak or only sporadically available. A distributed topology, as opposed to a de-
centralized topology, does not have any central nodes which connects the network.
Instead it relies entirely on individual peer-to-peer connection between the nodes.
This avoids single points of failure in the system and creates redundancy, as a
node can be reached through several di�erent paths.

2.2 Distributed Hash Tables

A DHT is a distributed storage system based on the concept of the well-known
data structure. As in a regular hash table, a key is mapped to a value, but instead
of storing the value on disk, it is stored in the network. Several di�erent nodes
are responsible for storing a certain value and to be able to provide it when asked
to. By storing data in several nodes, the DHT ensures availability of content in a
network, even if several members should leave or fail.

To be able to keep track of all nodes participating in the distributed hash table,
it also contains a built-in lookup protocol, which has similarities with routing
protocols such as RIP[7] and OSPF[8]. The properties of the lookup protocol is
implementation based and di�ers vastly between di�erent DHT types.

There are several existing DHT types, all with same key-value mapping con-
cept, but with very di�erent concepts in terms of storage redundancy, routing and
identi�cation. Chord [9] and Kademlia are the two most common implementa-
tions and the latter was used during this thesis work. Kademlia will be described
further in Section 2.4.

5

6 Theory

2.3 Authentication

2.3.1 Asymmetric encryption

Asymmetric encryption is, in contrast to its symmetric counterpart, not dependent
on both parties sharing the same key. Asymmetric encryption is performed with
two di�erent but corresponding keys, where one is used to encrypt the message and
the other to decrypt it. Applying the same key twice will not result in decrypting
the message. Due to this property, the big upside with asymmetric encryption is
that only one key needs to be secret while the other can be publicly distributed.
The non-secret key is usually referred to as "public key" and its secret equivalent
as "private key". This removes the problem of sharing a key between two parties,
as both can distribute their keys publicly. A message encrypted by the public key
can only be decrypted by the holder of the private key. A message encrypted by
the private key can be decrypted by anyone. By being able to decrypt the message
with the public key, the message can be proven to originate from the owner of the
private key.

Asymmetric cryptography can be and is often used to exchange symmetric
keys which are used during the rest of the communication session. E.g. the
security protocol TLS contains this functionality [10]. The reason for not using
asymmetric encryption algorithms for all communication is that they are more
computationally challenging than their symmetric equivalents. Therefore they are
best used for encrypting individual messages rather than an entire session.

2.3.2 Certi�cates and Public Key Infrastructures

To ensure the identity of someone solely asymmetric encryption is not enough. As
anyone can create a public-private key pair, this is not su�cient to establish an
identity. To do so one must also have a con�rmation of the identity for the owner
of the key pair. This can be done by consulting a trusted third party, known as a
CA.

A certi�cate consists, in its simplest form, of four parts; information regarding
the owner of the certi�cate, the owner's public key, information regarding the CA
and a signature (see Section 2.3.4) from the CA. This certi�cate can be distributed
to others to prove one's identity and to distribute the public key.

As it, in large systems, might not feasible to have a single CA issuing all
certi�cates, there can exist intermediate CAs which are given the right to issue
certi�cates on behalf of the main CA. These form a chain of trust with the issued
certi�cate at the bottom, the intermediate in between and a trusted third party
top in the chain. The top of a trust chain is referred to as a CA-root. As long
as one trusts the CA-root, it is also possible to trust all certi�cates issued by
the CA-root and subsequently any certi�cate with the CA-root at the end of its
certi�cate chain. Such a system, with a tree structure of certi�cates originating
from the CA-root, is known as a PKI.

Theory 7

2.3.3 Fingerprints

A �ngerprint is a general term for functions mapping arbitrary large data to a
�xed-width bitstring. This can e.g. be performed by a hashing algorithm. In this
thesis �ngerprints will be used solely for identifying certi�cates. If the �ngerprint
for a certi�cate is created by a cryptographically secure hash algorithm, a unique∗

identi�er for that certi�cate is obtained.

2.3.4 Signatures

To cryptographically ensure that a message has been sent by the claimed sender,
a signature can be used. A signature is essentially a part of a message which
is hashed, asymmetrically encrypted and sent together with the message. If the
receiver knows the public key of the sender, e.g. by having the sender's certi�cate,
it can decrypt the signature. When this is done the appropriate part of the message
is hashed. If it is found to be equal to the decrypted signature, the sender is
declared to be legitimate.

2.4 Kademlia

The paper describing the Kademlia DHT was published in 2002 [11] and introduced
several new concepts in the world of DHT. Most signi�cantly, the routing protocol
stood in contrast to many of its DHT predecessors, such as Chord. No messages
are relayed in the system, instead each node requesting information will try to
�nd the sought-for node/resource itself by doing iterative lookups. The measuring
of distance is another aspect in which Kademlia took a di�erent path than its
competitors. Instead of measuring distance by counting "nodes in between" it is
calculated by XOR-metric which will be explained in Section 2.4.1.

Kademlia is highly scalable, mainly due to the network-wide parameters "k"
and "α". The k-parameter determines how much redundancy the net should pro-
vide and how many other nodes a single node should be aware of in the network.
The ideal value is dependent on desired network size and the expected churn
among the nodes participating in the network. α, on the other hand, determines
how many answers one should collect when asking for a resource. Upon receiving
these answers, the node will make a majority decision, i.e. deem the most common
answer to be the correct one†. A high α results in impacted performance, as one
has to await a higher number of answers but in return gives increased con�dence
that the received answer is correct.

Kademlia can be found in several real-world applications, mainly in �le sharing
networks. E.g. well-known BitTorrent clients uses a Kademlia implementation
called Mainline DHT [13].

∗Unique in this context is de�ned as something having negligible risk of having a
duplicate
†Majority decisions are not a part of the original Kademlia protocol [11]. It is however

implemented in [12], the Kademlia implementation used in this thesis, and is therefore
here considered as a part of the Kademlia protocol.

8 Theory

Figure 2.1: A graphical representation of the identi�er space in
Kademlia. Circles represent nodes and triangles represent re-
sources.

2.4.1 Identi�ers

Each node and each resource in Kademlia has a 160-bit identi�er. A node chooses
its own identi�er when entering the network, typically a pseudo-random number.
As the resources have to be identi�able, they also possess an identi�er of the same
type as the nodes. Their identi�er is determined by e.g. the hash of the resource's
name or a keyword describing the content. Due to the size of the identi�er space‡,
the risk of identi�er collisions is negligible as long as they are somewhat randomly
generated.

To determine how "far" two nodes are from each other, XOR is applied to
the two identi�ers and the result is set as the distance. Two nodes with a long
common pre�x is considered to be "close" to each other regardless of their physical
location. Measuring distance with XOR results in each node having a constant
and absolute distance to every other node, regardless of nodes joining and leaving.
Refer to Fig. 2.1 for a graphical representation� of the identi�er space.

2.4.2 Storing / Retrieving data

As mentioned in Section 2.2, data is stored in several nodes to ensure availability
and correctness of a resource. The parameter k is used to determine the least
amount of nodes storing the same resource.

When a resource is to be stored in the network, the owner of the resource
performs a node lookup, described in Section 2.4.2.1, to �nd the k nodes with
least distance to the identi�er of the resource. These k nodes receive a request to
store the resource locally and be able to provide it upon request from the DHT.
A similar process is performed when retrieving a resource from the DHT. The
asking node performs a value lookup to �nd α of the k storing the resource. Upon
receiving enough answers the node will determine the value of the resource through
a majority decision.

‡The identi�er space consist of 2160 possible identi�ers
�Due to the properties of XOR, the identi�er space is not actually a line but rather

a system where each node has its own line. The reader should note that the illustra-
tions is to create an understanding of concept rather than giving a correct graphical
representation of the identi�er space.

Theory 9

Figure 2.2: A graphic representation of a routing table in the Kadem-
lia DHT.

2.4.2.1 Routing tables

Each node has a routing table which consists of several "buckets", as shown in Fig.
2.2. A bucket is a container in which information about nodes, having a certain
identi�er-pre�x in their identi�er, is collected. A node can only be a member of
one bucket and a bucket may consist of no more than k nodes. A bucket containing
the node's own identi�er can be split (Fig. 2.3) into two separate buckets when the
number of known nodes exceeds k. This procedure will ensure the node knowing
more nodes among those close to itself than those far away. If a bucket does not
contain the node's own identi�er, it cannot be split.

Nodes are added to buckets upon discovery, i.e. when a node with a previously
unknown identi�er is found. If a bucket is full and cannot be split, an old node
must be removed in order for a new node to be added to the bucket. This is done
by pinging (see Section 2.4.3.3) the least-recently seen node in order to refresh the
table. If the ping is not answered, the node is replaced by the new node. If the old
node is present in the network, the new node is placed in a replacement bu�er.

2.4.3 Communication protocol

2.4.3.1 Node lookup

To �nd the IP address and port for a node not present in the routing table, a
�nd-node request will be sent. The request is sent to the α �rst nodes in the
bucket with longest pre�x match with the sought-after node. These will either
return the IP address and port of the sought-after node or return the k nodes in
their routing table with the longest matching pre�x. If the correct node is not
found during the �rst attempt, the node will query the α closest nodes retrieved
from the last round of �nd-node requests. This is done until the node is found or
no closer nodes exists. (see Fig. 2.4)

10 Theory

Figure 2.3: A bucket split in Kademlia.

The red node has two buckets in the upper �gure. It splits the right
bucket to increase the knowledge of nearby nodes. The left
bucket cannot be split since it does not contain the owners
identi�er. The lower �gure shows the buckets after the split.

Figure 2.4: The node lookup procedure in Kademlia.

In the upper �gure, the alpha closest nodes known by the red node is
sent a node request. If an asked node does not know the green
node, it answers with k closest nodes it knows, as shown in the
middle �gure. Otherwise it answers with the address and port
of the green node, as shown in the lower �gure.

Theory 11

2.4.3.2 Value lookup

The procedure in which to �nd a resource is in essence equal to the node lookup.
However, instead of a �nd-node request, a �nd-value request is sent. When a
node which is storing the sought-for resource receive such a request, it returns the
actual resource rather than just pointing out where to �nd it. The node sending
the request takes a majority decision on the received values, deciding the most
common return value as the correct one. (see Fig. 2.5)

Figure 2.5: The value lookup procedure in Kademlia.

In the upper �gure, the α closest nodes known by the red node is sent
a value request. In the lower �gure, the node receives α answers
and takes a majority decision to decide the correct value.

2.4.3.3 Ping

The purpose of the ping message is to check if a known node is responsive. This is
used e.g. when nodes present in the routing table has not been seen for a period
of time.

2.4.3.4 Store

The store message is sent by the node wishing to store a resource in the network.
The message contains a key and a value which is stored by the receiver of the
message. Depending on the implementation, a store may be valid for speci�c
period of time or removed explicitly.

2.4.4 Joining / Leaving

Joining a Kademlia DHT requires the joining node to know at least one node
already participating in the network. This node is referred to as the bootstrap
node. The bootstrap node provides the joining node with information regarding
the existing nodes in the network and helps populate its routing table. However,
bootstrapping is not used in the Kademlia implementation used in this thesis.
The reader is therefore referred to [11] for more detailed information regarding

12 Theory

the bootstrapping procedure. The joining procedure used in this thesis will be
described in Section 3.1.3.

A node does not send any speci�c "leave" message but will instead be removed
gradually from other node's buckets as it stops responding.

2.4.5 Security

There is no functionality in Kademlia aimed solely at mitigating attacks or stop-
ping nodes from misbehaving. However, since old nodes are not removed from
routing tables as long as they are responding, the nodes are somewhat protected
from injection of vast amounts of new nodes in the system. Furthermore, if a few
nodes fail or stop responding, the redundant storage structure and multiple lookup
paths decrease the impact on the network robustness as several nodes can provide
the same information.

2.4.6 Known attacks

2.4.6.1 Sybil

As there is nothing binding a node to a speci�c identity, it is not possible to
determine if two di�erent identi�ers are tied to the same node. Not even the
IP-address can be used to di�erentiate two nodes as NAT [14] may cause several
nodes to share IPv4-address. This enables a node to claim multiple identities and
thereby gaining a disproportional amount of in�uence in the network. This is
referred to as a Sybil attack [15] and an additional identity of a node is called a
Sybil.

Sybils cause a situation where redundancy can be eliminated as the same node
can claim several identi�ers (see Fig. 2.6) in a particular area. By doing so it can
gain control over resources, refer to Section 2.4.6.2 for more details. It can also
enable eavesdropping, as one can create Sybils with identi�ers close to interesting
resources and record all incoming requests for these resources.

The Sybil attack is in itself passive, as the attacked network will not function
di�erently in any way as long as the Sybils behave like legitimate nodes. It can
however be a preparation for an active attack, as a large amount of in�uence in a
network is useful when starting to behave maliciously.

Figure 2.6: A graphical representation of the identi�er space in
Kademlia after a Sybil attack. The black node represent the
node performing the attack and the grey nodes represents the
Sybils.

Theory 13

2.4.6.2 Node insertion

Node insertion [3] is an attack which can be categorized as censorship. The attack
aims at denying certain resources in the network to be retrieved correctly.

The attacker inserts several Sybils with identi�ers very close to the targeted
resource. All �nd-value requests received by the Sybils will be answered with the
same counterfeit resource, trying to get the requester to accept this as the correct
answer. Due to the fact that a majority decision is made upon retrieval of stored
data, the attacker will only succeed if he receives more than half of the requests. By
introducing these Sybils to as many nodes as possible in the network, the chance
of getting value requests increases. See Fig. 2.7 for a graphical representation of
the attack.

Figure 2.7: The procedure for the Node insertion attack.

In the upper �gure, the black node has created three Sybils and placed
them close to the yellow resource. These receive a majority of
the value requests sent in the middle �gure. In the lower �gure,
the Sybils are able to forge the resource and thereby succeeding
with the attack.

2.4.6.3 Routing table poisoning

A very o�ensive attack strategy is to, instead of just creating new identi�ers,
impersonate legitimate nodes by hijacking their identi�ers. This can be done in
two ways; passively, by claiming to be the searched-for node when receiving a
node lookup or actively, by sending out messages impersonating actual nodes.
The former attack is not dependent on implementation as it is not possible to
determine the owner of a previously unknown identi�er. The latter is enabled
due to a speci�c but common feature in DHTs. Nodes are often able to change
their IP address and port dynamically and simply inform the network when they

14 Theory

are reachable in a new location. This feature increases the �exibility for nodes in
the network but also enables an attacker to poison their routing tables by simply
updating the routing information for legitimate nodes to the attacker's address [4].

The ultimate goal of the attack is to disrupt network communication entirely.
For lasting e�ect, a large portion of the network must be attacked simultaneously,
otherwise the communication of legitimate nodes counter the falsi�ed routing infor-
mation. The attacking node must also be able to handle vast amounts of network
tra�c to succeed with the attack as it otherwise very well may carry out a DDoS
attack on itself.

2.4.6.4 Eclipse

Eclipse [16] is an umbrella term for several attacks with the goal of isolating one or
a few nodes from the rest of the network. The attack referred to as Eclipse attack
in this thesis is a combination of routing table poisoning and censorship, where
the attacker aims at becoming a man-in-the-middle between one node and the rest
of the of the network. The reason for choosing this version of the Eclipse attack
is the research in [17]. In [17] the use of poisoning (in the paper labeled "Hijack")
as Eclipse attack method is proved to be more e�cient than other alternatives.

Similar to the routing table poisoning attack, the attacker will claim to possess
all identi�ers in the network but will only do so towards one or a few nodes.
If the attack is successful, the eclipsed node(s) will only be able to contact the
attacker and will therefore only receive attacker-controlled values when sending
value requests. The attacker will, to all other nodes, only claim to own the eclipsed
nodes identity and thereafter act legitimately.

This version of the Eclipse attack also relies on the ability to change IP address
and port dynamically.

Chapter3

Tools & Methodology

3.1 Calvin

3.1.1 General concept

Calvin[18] is an Ericsson-developed framework combining the functionality of IoT
and cloud computing. In short terms Calvin provides an environment in which
applications are able to run on several devices at once.

A device participating in Calvin can be anything from a smartphone to a
lamp and they all have in common that they consist of one or several "runtimes".
In each runtime, parts of applications, called "actors", may perform certain tasks.
These tasks are de�ned from a set of runtime capabilities, used to inform the types
of operation which may be performed on the runtime. By spreading out actors on
several runtimes, intra- or inter-device, cloud functionality in an IoT environment
is achieved.

Calvin uses an implementation of the Kademlia DHT to store information
regarding actors and runtime capabilities. The DHT can e.g. be used to �nd where
a certain actor is running or �nd out what capabilities a speci�c runtime possesses.
Needless to say, crucial functionality in Calvin depends on correctly retrieving
information from the DHT. The information stored in the DHT is thereby security-
critical for Calvin.

The Kademlia implementation will be introduced further in Section 3.1.3.

3.1.2 Test environment

Due to Calvin being under development during this thesis work, it was found to
be out of scope to perform any tests on actual IoT devices. Instead, the DHT
functionality were extracted and tested independently.

To simplify control of the DHT nodes and to shorten the running time of
the test cases, all tests were carried out on a single machine.∗ All nodes in the
DHT used the local loopback interface to communicate, simulating actual network
tra�c.

∗Machine speci�cations: Ubuntu 14.04, 16 GB RAM, 8 Core 3.5 GHz processor

15

16 Tools & Methodology

3.1.3 Kademlia in Calvin

Calvin uses the Kademlia implementation created in Python by Brian Muller[12].
The original version follows the Kademlia speci�cation with the exception that it
only takes one unanswered message for a node to get removed from routing ta-
bles. The communication between nodes in the DHT is built on UDP messages,
containing either a request or a response. The requests consist of a RPC indicat-
ing which action it wishes the responding node to perform. An example of the
communication �ow can be found in Appendix B.

To further �t Calvin's needs and usage of DHT, the joining procedure has been
changed and di�ers vastly from the procedure described in Section 2.4.4. Instead
of using an existing node to bootstrap from, all nodes participating in the network
are registered in a multicast group. A new node, wishing to join the network sends
a join announcement to the multicast group which will reach all participants.† All
nodes receiving this announcement responds with their IP-address and port. The
joining nodes sends out a ping message to all responders and adds them to its
routing table upon receiving an answer.

3.2 Test-driven development

As it, previous to the start of this master thesis, existed general purpose test
cases for the Calvin DHT, these became an excellent starting point for creating
the attack scenarios. This led to the decision to apply test-driven development
as technique for developing both the attack scenarios and later also the security
enhancements for the DHT implementation. This type of development favors small
iterations which are all evaluated by a test suite. All functionality not tested by
the test suite is considered unnecessary which increases the possibility of the code
becoming both simpler and cleaner than in other development techniques [19].

†The participants have to be a part of the same domain as the joining node to reach
the announcement. In thesis however, all nodes are considered to be in the same domain.

Chapter4
Security evaluation of the DHT

4.1 Identifying weaknesses

To �nd weaknesses in the applied Kademlia implementation, papers attacking
Kademlia implementations such as [3][4], were used as inspiration. By using the
concluded exploits in these papers, the source code for the implementation[12] in
this thesis was scanned for similar weaknesses. The three weaknesses found to be
most exploitable are presented below.

4.1.1 Multiple identities

As mentioned in Section 2.4.1, all nodes are identi�ed by a unique 160-bit identi�er.
The identi�er can either be randomly generated or set to a speci�c value. Other
than this, there is nothing identifying a node, as an IP address is not enough to
provide a unique identi�er. As there is no way of proving whether an identity is
valid or not, a node can easily send out messages with new identi�ers and thereby
create several identities. This enables the use of Sybils which can be used in attacks
to faster gain in�uence in the network and thus increasing attack e�ciency.

4.1.2 Non-random identi�ers

As a node can create new identi�ers at any time and also decide the value of the
identi�er, censorship can easily be accomplished. When a resource is posted, an
evil node can announce new Sybil identities very close to the resource. When a
node asks for the value, it takes a majority decision if several di�erent values are
received. Therefore, α well-established Sybils can censor a resource for the entire
network as long as they answer with a unilateral but false value.

4.1.3 Dynamically changing IP/Port

Due to the lack of provable identities, a node can impersonate other nodes by
claiming they have switched address and are now present at a destination con-
trolled by the attacker. For each message, the receiving node will update the
node's address. This feature enables anyone to be impersonated, no matter if they
are known in the network on forehand or not.

17

18 Security evaluation of the DHT

4.1.3.1 Active impersonation

An active impersonation can be performed via a spoofed message sent from the
attacker claiming to be a legitimate node. The receiver will update the claimed
senders address in its routing table to the address of the attacker.

4.1.3.2 Passive impersonation

A passive impersonation is carried out by responding to �nd-node requests with
nodes having existing identi�ers but falsi�ed addresses. The receiver will contact
the nodes on their new falsi�ed addresses and will update its routing table when
receiving a response.

4.2 Testing the security

4.2.1 Attack scenarios

4.2.1.1 General scenario

The tests begins with a network consisting of 16 legitimate nodes. The parameters
are set to k = 5 and α = 3 to prevent all nodes from knowing all other nodes in
the network. When the DHT is stable, i.e. when all nodes have started and joined
the DHT, three nodes sends out a store request. When the store requests has
been con�rmed, one of the nodes which has not sent a store request will turn evil.
Turning evil is in this instance de�ned as starting to break Kademlia protocol in
order to execute a particular attack.

The attacking node gets 15 seconds to execute the attack before the three
nodes storing values try to fetch the original value from the DHT. The attacking
node will also create a predetermined number of Sybils in order to increase the
e�ciency of the attack. When the 15 seconds have passed, the storing nodes send
out value requests according to procedure (i.e. to the α closest nodes they are
aware of). All value requests reaching the attacker will be answered with a forged
value. Lastly the storing nodes evaluates if the received value di�ers from the
stored value.

4.2.1.2 Sybil attack scenario

When executing the Sybil attack, the attacking node will start to introduce 30
di�erent Sybils in the network. The Sybils are given random identi�ers and will
therefore likely distribute somewhat evenly in the identi�er space. The attack-
ing node responds with the identi�ers of its Sybils when answering �nd-node re-
quests. By including the Sybils in �nd node-responses, the new identities will
spread throughout the network, as legitimate nodes without hesitation add these
to their routing tables.

The attack is considered successful if all storing nodes receive a forged value.

Security evaluation of the DHT 19

4.2.1.3 Node insertion attack scenario

The node insertion scenario is very similar to a Sybil attack but with the important
exception that the Sybils introduced are placed very close to the stored resources
in the network. By placing α Sybils with identi�ers having very long matching
pre�xes with the resources (152+ bits), it is very likely that the Sybils will get a
majority of the �nd-value request and therefore be able to forge the response.

The attack is considered successful if all storing nodes receive a forged value.

4.2.1.4 Eclipse attack scenario

The eclipse attack starts with the attacking node selecting one of the storing nodes
in the network which will become the victim of the attack. To the eclipsed node,
it will claim to own all identi�ers in the network. To all other nodes it will only
claim to own the identi�er of the eclipsed node. This gives a scenario where, if the
attack is successful, the evil node becomes a man-in-the-middle and isolates the
eclipsed node from the rest of the network.

The attack is considered successful if the eclipsed node receives a forged value
and it is not aware of any legitimate node at the end of the test. An example of
the topology after a successful Eclipse attack can be seen in Fig. A.2.

4.2.1.5 Poisoning attack scenario

In the poisoning scenario, the attacking node will claim to own the identi�ers for
all nodes in the network by both active and passive impersonation. If successful,
all nodes in the network will only be able to contact the attacking node, which
has the ability to cease all communications or to return forged information. The
attack is carried out simultaneously on all nodes in the network to prevent them
from countering the attack by sending legitimate messages.

The attack is considered successful if all storing nodes receive a forged value
and if none of the nodes are aware of any legitimate node at the end of the test.
An example of the topology after a successful poisoning attack can be seen in Fig.
A.3.

4.2.2 Results

4.2.2.1 Sybil

The success factor of a Sybil attack is a question of sheer numbers as the number
of Sybils determines the likeliness of the success of the attack. Only if a Sybil is
closer to a resource than one of the α closest legitimate nodes will it likely receive
a �nd-value request. As the identi�ers were randomly generated, the attack had
a very varying success rate.

However, by only claiming multiple identities, the attacker managed to forge
more than half of the value responses in the network (see Table 4.1). This gives an
indication of the multiple-identities weakness being a serious threat to the security
of the DHT.

20 Security evaluation of the DHT

Table 4.1: Results of Sybil and Node insertion attacks

Sybil Node Insertion

Attack vectors exploited Multiple identities
Multiple identities

Non-random identi�ers

Number of Sybils 30 9

Results

Forged values 97 150
Correct values 53 0

Test w. all values forged 26 50

% Successful attacks 52% 100%

4.2.2.2 Node insertion

In contrast to the Sybil attack, the node insertion attack was extremely e�ective in
ful�lling its purpose. The inserted nodes, due to their closeness to the resources,
were almost guaranteed to receive all value requests and thereby able to falsify
the resources. As all resources were forged during this attack (see Table 4.1), it is
proved that resources can easily be censored and forged by just claiming to own
several identities close to a speci�c resource.

Table 4.2: Results of Eclipse and Poisoning attacks

Eclipse Poisoning

Attack vectors exploited
Multiple identities

Active impersonation
Passive impersonation

Multiple identities
Active impersonation
Passive impersonation

Number of Sybils 10 30

Results

Forged values 50 145
Correct values 0 5

Tests w. all values forged N/A∗ 47
Tests w. complete isolation 44 35

% Successful attacks 88% 70%

4.2.2.3 Eclipse

It was shown to be relatively easy to target a speci�c node and to be able to forge
all values this node requests from the DHT (see Table 4.2). It can however be

∗The goal of the Eclipse attack is only to forge a single value

Security evaluation of the DHT 21

harder to ensure complete isolation of the node over time, as joining nodes can
gain knowledge of the nodes existence from the multicast. In the test network,
where most nodes have already joined before the attack has started, the attack
proved to be very e�cient. The eclipsed node was completely isolated from the
network in a majority of the tests and in the six remaining cases only knew a single
legitimate node. Worth noticing is the two other storing nodes always receiving
the correct value and thereby not detecting any anomalies in the network.

4.2.2.4 Poisoning

The poisoning attack were very ambitious as the attacking node needed to convince
all nodes it owns every identi�er in the network. This inevitably led to light
overload of the attacking node as almost every message in the network were sent
to it. A slight deterioration of attack e�ciency could thus be seen in some of
the tests. Certain nodes were able to keep several connections to legitimate nodes
simply due to the attacking node not being able to respond to all messages. Despite
this aggravating circumstance, the attack was generally very successful and took
down the entire network in a majority of the tests (see Table 4.2).

4.3 Security evaluation - Conclusion

All of the attacks were possible to perform and reached their goal in a majority of
the test cases. Especially the node insertion and Eclipse attacks were very success-
ful which proves the possibility for a single node to compromise the functionality
of the DHT while leaving most nodes untouched.

As the identi�ed weaknesses were successfully exploited it is clear the current
implementation is not suited for storing any sort of security-critical data. The per-
formed attacks do have the multiple identity exploit in common, it should however
be noted that the Eclipse and poisoning attack are able to function without the
use of multiple identities but they will take longer time to perform. Therefore it
is not a viable solution to only �x the identity exploit to stop all four attacks. In
other words, to secure the DHT, all of the weaknesses must be addressed properly.

22 Security evaluation of the DHT

Chapter5
Designing a security-enhanced DHT

5.1 Enable node authentication

5.1.1 Establishing authority

To be able to create a secure version of DHT, a trust concept must �rst be in-
troduced into the DHT. Despite researching alternative authentication paradigms,
e.g. using pre-shared keys or security tokens, no easily implemented solution for
authentication not relying on a CA was found for distributed networks. Therefore,
the security enhancement requires an out-of-band CA which can provide a signa-
ture trusted by all nodes in the network. All nodes will store the CA certi�cate
upon joining the network. This is necessary to not introduce a single-point-of-
failure ∗ in the DHT. If all nodes store the CA certi�cate, the CA will only have
to be present when nodes perform �rst-time joining of the network.

Before joining, each node must perform an authentication procedure. This
starts with the node wishing to join the network providing a CSR to the CA. This
request could also include device information regarding e.g. its type and serial
number. The CA will either by human interaction or by a predetermined set of
rules decide whether the node is allowed to enter the network or not. If the CA
decides to allow it, the new node is issued a certi�cate signed by the CA.

5.1.2 Connecting the node identi�ers to the certi�cate

One of the main problems in the original Kademlia implementation is the fact
that it is very di�cult to determine whether an identi�er actually exist in the
network. Nor is it possible to know if an identi�er belongs to the address its
messages are sent from. One suggestion would be to disallow all address updates
for nodes, thereby mitigating e.g. the poisoning attack. But apart from limiting
�exibility in the network, it does not protect against node insertion and Sybil-
based attacks. Therefore, if the identi�er is bound to a certi�cate, for which a
signature can be provided, changing addresses dynamically is no longer an issue.
Also, if the identi�er cannot be known beforehand by a joining node, one cannot
ensure closeness to a certain resource with intention of executing a node insertion
attack.

∗A single function which the entire system is dependent on to operate properly

23

24 Designing a security-enhanced DHT

The identi�er is, as mentioned in Section 2.4.1, a 160-bit number. If this is set
to the 160 least signi�cant bits of the certi�cate's �ngerprint, a forgeable identi�er
is created. A node claiming to own a certain identi�er needs to be able to provide
a correct signature for the certi�cate with the corresponding �ngerprint. The risk
for identi�er collisions in a small network is negligible. One can therefore safely
say that identi�ers based on the certi�cate's �ngerprint can be regarded as unique.

5.1.3 Distributing the certi�cates

Each node will, as mentioned previously, store the CA certi�cate in order to be able
to identify valid CA signatures on other nodes' certi�cates. Each will also store all
certi�cates of the nodes present in its routing table. It may also store certi�cates
for nodes currently not present in the network to facilitate their return. The CA
signature must be checked before accepting a node's certi�cate into storage.

All communication requires both nodes to have each other's certi�cate, which
will be shown in Section 5.2. Thus, there must exist a certi�cate distribution
mechanism which gives a joining node as many certi�cates as possible without
relying on a single distributor.

By taking advantage of Calvin's bootstrapping mechanism, using multicast
instead of conventional bootstrap-by-node, each node can provide their own cer-
ti�cate in the multicast response. The certi�cate is sent as a base64-encoded string
and stored by the joining node, given that it was found to be valid and signed by
an appropriate CA. The node which has sent the response is not accepted into
the routing table at this point. It will need to provide a signature on the ping
response to prove ownership of the corresponding private key. For obvious rea-
sons, the joining node will also provide its own certi�cate and a signature to prove
it. This is done by sending a ping with explicit certi�cate, explained further in
Section 5.2.3.3.

When this is done, a joining node will have received several certi�cates from
nodes present in the DHT. There is no guarantee all certi�cates will have been
received as the joining node only listens to multicast responses for a limited period
of time.

5.2 Securing the communication

5.2.1 Signatures and veri�cation

As identities for each node have been established, the next step is to bind each
message to an identity by adding a signature to the message. The receiver will
check the signature with the public key of the certi�cate having a �ngerprint
corresponding to the sender's identi�er. If the signature is valid, the packet is
determined to be legitimate. If found to be correct, the receiving node will reply
in the same manner, i.e. by signing the response message to con�rm that the origin
is indeed from the intended node. If the signature was not found to be valid, the
node will instead reply with a signed NACK. This results in a communication
protocol where a node not having a valid certi�cate is not able to communicate
with the DHT, as all messages will be met with a NACK.

Designing a security-enhanced DHT 25

NACK is explained in Section 5.2.3.1 and the necessity of sending a NACK
instead of not responding at all will be discussed in Section 5.2.4.

5.2.2 Replay protection

The signatures are in themselves not enough to determine the sender of a mes-
sage. Therefore, each message must consist of something unique for the current
conversation between two nodes. To solve this, each request is sent with a 64-bit
random challenge, which is to be signed by the responding node and included in
the response.

Due to the fact that the randomness is chosen by the sender, the request
signature cannot solely depend on the challenge value. Signing only the challenge
would allow a request to be resent by any node, enabling it to impersonate the
sender. However, by adding the identi�er of the recipient in the signature, the
messages cannot be replayed to any other node than the one intended. I.e. an evil
node will not be able to reuse the request for malicious purposes.

It should be noted that the replay protection does not protect against an
attacker which is able to intercept messages it is not the receiver of.

5.2.3 New message types

5.2.3.1 Not acknowledged

A node, henceforth called B, receives a signed message from node A, whose cer-
ti�cate it does not possess. B must now inform A that it is not able to verify
the signature. This is done by sending back a NACK message†, informing A that
B does not possess A's certi�cate and that any communication have to be pre-
ceded by A sending a ping with explicit certi�cate, which is described in Section
5.2.3.3. The same procedure is followed if B receives an unsigned message from a
previously unknown node.

5.2.3.2 Certi�cate request

If B receives a �nd node-response containing a previously unknown node, it needs
to con�rm the claimed identity and address. For this reason a �nd value-message
is sent including B's certi�cate, a challenge and a signature. The key asked for
belongs to the certi�cate of the unknown identity from the response. If the previ-
ously unknown node responds with a valid certi�cate and a correct signature on
the challenge for the sent certi�cate, B can safely store the certi�cate and add the
node to its routing table.

It is worth noticing that nodes whose certi�cates we do not posses are excluded
from the node lookup and will thus not receive a �nd-node request. If a request
would have been sent, the response from the unknown node would have to be
handled with a NACK and is therefore of no use.

†A NACK response is used to indicate that the received message was not accepted in
the way the sender intended

26 Designing a security-enhanced DHT

5.2.3.3 Ping with explicit certi�cate

If node A possesses the certi�cate of node B but has been made aware that B does
not possess A's, it needs to send over a signed message including the certi�cate.
The signi�cance of the signature is that it is a proof of A also possessing the
private key for the certi�cate. The message sent is a ping with a signature and
with the certi�cate in base64 format. Upon retrieval, B veri�es the signature and
the certi�cate and, if found correct, stores it.

Ping with explicit certi�cate is also sent as a part of the joining procedure.

5.2.4 Avoiding deadlocks

There are certain situations in which certi�cate-protected communication in a
distributed network can get caught in deadlocks if one is not careful when imple-
menting the communication protocol. The main problem is that each node only
knows which certi�cates itself possesses, having no possibility to �nd out which
nodes in the network are storing its certi�cate.

A common situation is that Node A receives a request from Node B but does
not possess B's certi�cate. B is not aware of this fact. This could clearly be
solved by including a certi�cate in every message sent. But as it is not desirable
to introduce a severe overhead in the network, a more re�ned solution is needed.

The second option would be for A to just ignore B's message, but the silence
does not give B any information other than A is not responding and should be
removed from B's routing table.

A could send a certi�cate request to B, to ask for the missing certi�cate. But as
all certi�cate requests has to include the senders certi�cate, this would open up the
DHT for an ampli�cation attack. An outside node would be able to send a small
unsigned message resulting in a large signed message containing the certi�cate
every time.

The best option found was A informing B through a signed NACK message.
By doing so, B is informed that B does not possess its certi�cate and can now send
it via a ping with explicit certi�cate. A non-certi�ed node gets no information by
sending unsigned requests and does not cause an ampli�cation attack as NACK
messages are roughly the same size as a request. The only drawback is the signing
which is necessary to avoid spoofed NACK messages.

Chapter6
Evaluation of the security-enhanced DHT

6.1 Mitigated vulnerabilities

6.1.1 Multiple identities

As each node's identity is now bound to a certi�cate, a node cannot claim to
possess several identi�ers. There will not exist any Sybils as it is not possible to
provide a valid certi�cate or a valid signature for the Sybils. Protection against
attacks aiming at providing several CSR for the same device to the CA and thereby
getting multiple identities is out of scope for this master thesis work.

6.1.2 Non-random identi�ers

Every identi�er is now de�ned as the 160 least signi�cant bits from the �ngerprint
of the node's certi�cate. As the joining node only provides a CSR which is signed
by the CA and sent back, the �ngerprint of the certi�cate cannot be predicted.

6.1.3 Dynamically changing IP/Port

6.1.3.1 Active impersonation

Attempting to impersonate another node actively, i.e. by sending messages claim-
ing to be from their identi�er, will fail as one cannot provide a signature with the
private key of that certi�cate. Nor is it possible to replay messages from other
nodes other than under very special circumstances. Questions can only be repeated
if another node is given the same identi�er as a previously existing node. Answers
can only be repeated if the challenge happens to be identical to the challenge of
a previously received request. According to the birthday paradox, one must have
observed 6.07∗107 messages∗ to have 0.1% chance of �nding a single collision [20].

6.1.3.2 Passive impersonation

If a malicious node returns a �nd node-response consisting of legitimate identi�ers
but false addresses, the receiver of the response will continue as usual, knowing
that only the rightful owner of the identi�er will be able to provide a correct

∗Expressed in power of two: 225,85 messages

27

28 Evaluation of the security-enhanced DHT

signature for the answer. The receiver will not update the address information
until it has received a signed con�rmation from the new address. If the response
contains previously unknown nodes, such as Sybils, a certi�cate request will be
sent to the given address. And as mentioned in Section 6.1.1, a node without a
valid certi�cate will not be able to verify its identity.

6.2 Attacking the security-enhanced DHT

6.2.1 Without a valid certi�cate

There are several possible scenarios in which a node should not be permitted to
communicate with the network. It could be a node not having a certi�cate at all,
a node having an invalid certi�cate or a node not possessing the private key to
a certi�cate. In all of these cases the node should not be allowed to retrieve any
values from the DHT and no member of the network should add the node to its
routing table.

A few test iterations using the test scenario described in Section 4.2 con�rmed
this behavior. The non-certi�ed node was not able to communicate with the
legitimate nodes. Nor was the attacking node able to extract resources from the
DHT, as it did not get any responses to its �nd-value requests.

6.2.2 With a valid certi�cate

A node with a valid certi�cate is allowed to communicate with all other nodes
and therefore able to carry out the attacks mentioned in Chapter 4. However, as
all of the attack vectors were mitigated, an evil node cannot severely disturb the
communication between the nodes in the network. With a certi�cate a node is
able to reply with false values and hampering the �nding of nodes and values. But
as it cannot impersonate or use multiple identities, the distributed and redundant
properties of the DHT will cancel out the malicious behavior of an evil node.

50 test iterations were carried out with the test scenario where a certi�ed
node tests all vulnerabilities using a combination of node insertion and poisoning.
All test cases were successfully performed without receiving a single false value.
As expected, the evil node did receive some �nd-value requests (since it has a
certi�cate and thereby exists in routing tables). The counterfeit values in the
responses were not able to impact the test cases due to the majority decision.

6.3 Overhead and increased computational load

6.3.1 Asymmetric encryption method

Two di�erent digital signature algorithms RSA[21] and ECC[22] were used to test
the performance of the security enhancements. The choice of method does not
have any impact on the functionality but can di�er vastly in both overhead and
computational load. In order to get a fair comparison between the two, the level

Evaluation of the security-enhanced DHT 29

of security was set to be as equal as possible. According to BSI† the minimum
secure key length for 2016 is 2048 bit for RSA and 256 bit for ECC.‡ [23] These
key lengths were used in the performance comparison.

6.3.2 Comparison

Comparing the message lengths, it is clear the overhead introduced by the security
enhancements is substantial when it comes to certi�cate exchange. It requires the
sending of approximately 2000 additional bytes for ECC and 3000 for RSA for
each node pair communicating for the �rst time. When the certi�cates have been
exchanged, only the 8-byte challenge and the signature cause additional overhead.
As seen in Table 6.1, the overhead for the standard Kademlia messages is 88-90
bytes for ECC and 274 bytes for RSA.

Looking at the additional time required for the cryptographic operations,
shown in Table 6.2, RSA can be concluded to be suitable for a protocol where
veri�cation is more common than signing.� In Kademlia's case however, the ratio
between signing and veri�cation is almost 1:1. This, and the lesser overhead makes
ECC the suitable signature type for the security-enhanced implementation.

Table 6.1: Comparing message lengths in non-secure and security
enhanced Kademlia

Message type Non-secure ECC RSA

Certi�cate send-over - 1041 1503

Multicast Response 399 1293 1559

Find node/Find value 119 208 393

Value response 78 167 352

Ping 92 181 366

Certi�cate length - 879 1155

Signature length - 70-72 256

All values are shown in bytes.

6.4 Evaluation

With the introduction of authentication and a certi�cation-before-inclusion strat-
egy for node and value lookups, all vulnerabilities identi�ed in Section 4.1 have
been removed. In the situation where an evil node is a part of the network, i.e.
has a valid certi�cate, the negative impact on network robustness has been heav-
ily reduced. The evil node can still break the protocol but with the important

†Federal O�ce for Information Security in Germany
‡The curve "NIST P-256" were used for ECC.
�This due the fact that the public exponent is often much smaller than the private,

thus being easier to calculate.

30 Evaluation of the security-enhanced DHT

Table 6.2: Comparing average time for completing signing and
signature veri�cation

ECC RSA

Verify operation 4.0 ∗ 10−4 8.5 ∗ 10−5

Signing operation 1.7 ∗ 10−4 2.1 ∗ 10−3

Total 5.7 ∗ 10−4 2.2 ∗ 10−3

All values are shown in seconds.

di�erence that it cannot increase its in�uence, reduce the redundancy or prevent
nodes from communicating in the network.

Nodes outside the network can no longer communicate with nodes in the DHT
if they have not been certi�ed to do so. A non-certi�ed node will only be able to
get a NACK message in return regardless of message sent. This will also aggravate
external DDoS attacks as ampli�cation is not possible to achieve.

As mentioned in Section 6.3.2, the increased overhead is substantial when new
nodes enter the DHT, due to the added certi�cate exchange procedure. This can
however be seen as a one-time cost in a small DHT network, as certi�cates are
stored after the �rst contact. The remaining overhead, consisting of signatures and
challenges is no more than 88-90 bytes per message, using ECC. Given a network
not receiving members frequently, the total amount of overhead per message over
time will likely not exceed 100 bytes. The increased computational load was quite
limited in the test environment, with ECC it ended in a very modest sum of
5.7 ∗ 10−4 seconds of crypto operations per node and message. Neither of these
factors had an observable negative e�ect in any of the test cases. One could
however notice that due to certi�cate exchanges, the network needed almost double
amount of time before most of the nodes had added each other to their routing
tables.

The security enhancements proposed in this thesis were found to be a good �t
for Calvin. The implementation was merged into Calvin and is now an optional
security feature which can be used to protect the distributed storage.

Chapter7
Discussion

7.1 Implications for DHT usage

While DHT is a very convenient storage solution for distributed systems, it has
been shown in Section 4.2 that a plain implementation of Kademlia easily can be
compromised or taken over by a single malicious node. Such weaknesses make DHT
unsuitable for storage of anything security-critical as one simply cannot trust that
the received value for a key is correct. Adding security enhancements to Kademlia
can increase the possible usage of the DHT. With the new functionality, attackers
cannot compromise the DHT signi�cantly and can neither increase their in�uence
nor reduce redundancy.

An even more signi�cant improvement is that non-authorized nodes no longer
can fetch any information from the DHT, as only certi�ed nodes may send DHT-
messages. But, contrary to the defense against the attacks described in Section
2.4.6, which also defends against certi�ed attackers, this feature depends solely on
the CA. Thus, the mechanism certifying nodes must either be manually controlled
or strictly regulated. If any node can get a certi�cate, the security solution is of
very little use as it presuppose only a few nodes with certi�cate will misbehave.

To summarize, a distributed network can bene�t greatly from having a security
layer and allow more sensitive data to be stored. But the security is also dependent
on taking precautions to not letting illegitimate nodes enter the network.

7.2 Adaptations to enable global availability

All systems in which a single or few CA can be used for node initialization can
make use of this security model. However, in a distributed network with several
thousands or even millions of members, this is not a scalable solution. There will
likely need to be multiple CAs, because of geographical reasons, but also due to the
need of sub-domains. A sub-domain could e.g. be a company, a geographical area
or a unit type which need a certi�cation from a speci�c CA. Having multiple CAs
will, with the current solution, force all nodes including computationally limited
ones to store vast amounts of CA certi�cates (as is done in e.g. web browsers).
This is not an optimal solution as the overhead for both verifying and storing
certi�cates with many di�erent CAs will likely decrease the performance greatly.

31

32 Discussion

For a global DHT to work, di�erent strategies regarding certi�cate storage
and veri�cation have to be applied. One idea is to use the same paradigm as in
this thesis but let computationally limited devices use more powerful devices as
proxies. I.e. by letting a more powerful device store the certi�cates and verify the
signature, the limited devices can still participate in the DHT, but route all tra�c
through a single node. One could think of this as a voluntary Eclipse attack, as the
rest of the DHT will regard the stronger node as the owner of the weaker node's
identity. However, while this solves one problem, it also creates several others, the
biggest being the DHT de facto no longer being entirely distributed. The powerful
nodes will gain more in�uence in the network and can therefore do more damage
if they turn evil or malfunction.

7.3 Future work

To improve the security enhancements implemented in this thesis, the focus should
be on the protection of the actual data in the DHT. With the current implemen-
tation it is not possible for a node to verify the correctness of received data. This
could be achieved by storing every resource together with a signature of the storing
node. With such a solution, non-repudiation would be assured and values without
valid signatures would simply be ignored.

To further bene�t from the signed resource feature and also the security en-
hancements described in Section 5.2, some sort of incident report system should
be implemented. In this kind of system, protocol breaking activity is to be re-
ported. This can give an indication of an attack taking place and possibly also
let the nodes take evasive actions. Such an action could for example be revoking
a misbehaving node's certi�cate and distributing a revocation list in the network.
However, this would also increase the complexity in the network as one or several
nodes need to log events and if certi�cate revocation is desired these events will
also need to reach the CA. Further study is needed to determine if the possibility
to identify attacks counterbalance the increased complexity.

A factor which has not been considered in this thesis is the computational
power of nodes of a DHT. As all tests were performed on a computer, the values
in Table 6.2 are not necessarily valid for IoT devices. There may be devices
which are not able to handle asymmetric cryptography at all and therefore cannot
participate in the secured DHT. The proxy solution mentioned in Section 7.2 is a
possible method of including such devices in a security-enhanced DHT, possibly
combined with symmetric encryption between the proxy and the node.

Chapter8
Conclusion

In this master thesis, the Kademlia DHT implementation used in Calvin was stud-
ied and found to contain severe security weaknesses. By exploiting these vulnera-
bilities, several well-known attacks were able to severely hamper the functionality
of the DHT. With these results it could be concluded that the current implemen-
tation is not suitable for storing security-critical information.

To strengthen the security of the DHT, a concept of trust was introduced
into the system, where each node needs a signed certi�cate by a trusted CA to
participate in the DHT. A part of the �ngerprint for the certi�cate were set as
identi�er for the node owning the certi�cate. By doing so a node is only able
to prove ownership of an identi�er by having the private key of the certi�cate.
With the introduction of this functionality, nodes are able to authenticate other
legitimate nodes in the DHT. Furthermore, the authentication procedure can be
performed without breaking the distributed properties of the network.

Several changes were also made to the communication protocol. All messages
now contain a signature from the sender and all requests must also include a
challenge which is to be signed by the responding node. Support was also added
for certi�cate exchange and a NACK message for informing a node that it will
have to provide its certi�cate in order to be able to communicate further.

The security enhancements successfully stopped all of the well-known attacks
and also prohibited uncerti�ed nodes from retrieving any data from DHT. Adding
security did however cause a relatively large overhead, especially due to the ex-
changing of certi�cates. By choosing ECC as encryption method, the overhead
will likely not exceed 100 bytes per message over time as certi�cate exchanges can
be considered a one time cost. The performance of the DHT did not observably
decrease in the performed tests.

By using the security enhancements in the DHT, it is possible to safely expose
security-critical data without risk of information leakage. The solution is however
not optimal for large-scale DHT, where having a single CA is simply not feasible.
Further study is also needed on how to include devices which are not able to
compute signatures and validations due to computational limitations.

33

34 Conclusion

References

[1] Charles E Perkins. Ad hoc networking. Addison-Wesley Professional, 2008.

[2] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things:
A survey. Computer networks, 54(15):2787�2805, 2010.

[3] Thomas Locher, David Mysicka, Stefan Schmid, and Roger Wattenhofer. Poi-
soning the kad network. In Distributed Computing and Networking, pages
195�206. Springer, 2010.

[4] Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune,
Nicholas Hopper, and Yongdae Kim. Attacking the kad network. In Proceed-
ings of the 4th international conference on Security and privacy in communi-
cation netowrks, page 23. ACM, 2008.

[5] Ingmar Baumgart and Sebastian Mies. S/kademlia: A practicable approach
towards secure key-based routing. In Parallel and Distributed Systems, 2007
International Conference on, volume 2, pages 1�8. IEEE, 2007.

[6] Philipp C Heckel. Blacklisting Malicious Web Sites using a Secure Version of
the DHT Protocol Kademlia. PhD thesis, Citeseer, 2009.

[7] Charles L Hedrick. Rfc2453: Routing information protocol. 1988.

[8] John Moy. Rfc2178: Ospf version 2. 1997.

[9] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. ACM SIGCOMM Computer Communication Review, 31(4):149�160,
2001.

[10] Tim Dierks. The transport layer security (tls) protocol version 1.2. 2008.

[11] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer informa-
tion system based on the xor metric. In Peer-to-Peer Systems, pages 53�65.
Springer, 2002.

[12] Brian Muller. Kademlia. https://github.com/bmuller/kademlia, 2015.

[13] Liang Wang and Jussi Kangasharju. Measuring large-scale distributed sys-
tems: case of bittorrent mainline dht. In Peer-to-Peer Computing (P2P),
2013 IEEE Thirteenth International Conference on, pages 1�10. IEEE, 2013.

35

36 References

[14] Kjeld Egevang and Paul Francis. Rfc1631: The ip network address translator
(nat). Technical report, 1994.

[15] John R Douceur. The sybil attack. In Peer-to-peer Systems, pages 251�260.
Springer, 2002.

[16] Atul Singh et al. Eclipse attacks on overlay networks: Threats and defenses.
In In IEEE INFOCOM. Citeseer, 2006.

[17] Daniel Germanus, Robert Langenberg, Abdelmajid Khelil, and Neeraj Suri.
Susceptibility analysis of structured p2p systems to localized eclipse attacks.
In Reliable Distributed Systems (SRDS), 2012 IEEE 31st Symposium on,
pages 11�20. IEEE, 2012.

[18] Ericsson Research. Calvin. https://github.com/EricssonResearch/

calvin-base, 2015.

[19] Kent Beck. Test-driven development: by example. Addison-Wesley Profes-
sional, 2003.

[20] http://preshing.com/20110504/hash-collision-probabilities/. Ac-
cessed: 2016-04-10.

[21] Ronald L Rivest, Adi Shamir, and Len Adleman. A method for obtaining dig-
ital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120�126, 1978.

[22] Darrel Hankerson, Alfred J Menezes, and Scott Vanstone. Guide to elliptic
curve cryptography. Springer Science & Business Media, 2006.

[23] M Margraf. Kryptographische verfahren: Empfehlungen und schlüssellangen.
Technische Richtlinie TR-02102, Bundesamt fur Sicherheit in der Informa-
tionstechnik, 2008.

AppendixA
Network illustrations

This appendix consists of illustrations of the network topologies in di�erent sce-
narios. The pictures are to be interpreted as follows:

• The circles represent nodes in the DHT and the number which port they are
operating from (as mentioned in Section 3.1.2, all nodes run on the same
computer and thereby share the same address).

• Each line represents one entry in the node's routing table and the numbers
next to it represents the last four digits for the identi�er of this routing table
entry.

37

38 Network illustrations

Figure A.1: The topology of a normally functioning DHT network
consisting of six nodes.

Network illustrations 39

Figure A.2: The topology of a DHT network consisting of six nodes
after a successful Eclipse attack. The attacking node operates
from port 57748.

40 Network illustrations

Figure A.3: The topology of a DHT network consisting of �ve nodes
after a successful poisoning attack. The attacking node oper-
ates from port 55357.

AppendixB

Changes in communication �ow due to

security enhancements

This appendix aims at giving the reader an understanding of how the security con-
cept have been implemented in Calvin's Kademlia DHT. The comparisons shown
is intended to show to additional functionality which is added in the chain Request
-> Response -> Response handling. While only the �ow for the store request is
shown, the �nd node, �nd value and ping requests have similar albeit more com-
plicated communication �ows. The entire implementation of the code was, at the
time of the publication of this thesis, found at
https://github.com/EricssonResearch/calvin-base/tree/develop/calvin/

runtime/south/plugins/storage/twistedimpl/securedht

Listing B.1: Comparison of the store request methods.
An eight byte challenge and a signature of the receiver's iden-
ti�er has been added to the request.

#NEW

def c a l l S t o r e (s e l f , nodeToAsk , key , value) :
address = (nodeToAsk . ip , nodeToAsk . port)
cha l l enge = os . urandom (8) . encode ("hex")
p r i va t e = OpenSSL . crypto . load_privatekey (OpenSSL . crypto .FILETYPE_PEM,

s e l f . priv_key , ' ')
s i gna tu r e = OpenSSL . crypto . s i gn (pr ivate , nodeToAsk . id . encode ("hex") .

upper () + cha l l enge , " sha256")
d = s e l f . s t o r e (address , s e l f . sourceNode . id , key , value , cha l l enge ,

s i gna tu r e)
return d . addCallback (s e l f . handleSignedStoreResponse , nodeToAsk ,

cha l l enge)

#OLD

def c a l l S t o r e (s e l f , nodeToAsk , key , value) :
address = (nodeToAsk . ip , nodeToAsk . port)
d = s e l f . s t o r e (address , s e l f . sourceNode . id , key , value)
return d . addCallback (s e l f . handleCallResponse , nodeToAsk)

41

42 Changes in communication �ow due to security enhancements

Listing B.2: Comparison of the store response methods.
First, the identi�er of the sender is matched against known
certi�cates. If the certi�cate is found, the signature is validated,
otherwise a signed NACK is returned. Assuming the signature
is correct, the value is put into storage with the identi�er "key"
and a signature on the challenge is returned

#NEW

def rpc_store (s e l f , sender , nodeid , key , value , cha l l enge , s i gna tu r e) :
source = Node (nodeid , sender [0] , sender [1])
c e r t i f i c a t e = s e l f . s e a r chFo rCe r t i f i c a t e (nodeid . encode (' hex ') . upper ())
i f c e r t i f i c a t e == None :

try :
p r i va t e=OpenSSL . crypto . load_privatekey (OpenSSL . crypto .

FILETYPE_PEM, s e l f . priv_key , ' ')
s i gna tu r e = OpenSSL . crypto . s i gn (pr ivate , cha l l enge , " sha256")

except :
return None

l ogge r (s e l f . sourceNode , " C e r t i f i c a t e f o r {} not found in s t o r e " .
format (source))

return { 'NACK' : None , " s i gna tu r e " : s i gna tu r e }
else :

try :
OpenSSL . crypto . v e r i f y (c e r t i f i c a t e , s ignature , s e l f . sourceNode . id

. encode (' hex ') . upper () + cha l l enge , " sha256")
except :

l o gg e r (s e l f . sourceNode , "Bad s i gna tu r e f o r sender o f s t o r e
reques t : {}" . format (source))

return None
s e l f . r oute r . addContact (source)
s e l f . s t o rage [key] = value
try :

p r i va t e=OpenSSL . crypto . load_privatekey (OpenSSL . crypto .
FILETYPE_PEM, s e l f . priv_key , ' ')

s i gna tu r e = OpenSSL . crypto . s i gn (pr ivate , cha l l enge , " sha256")
except :

l o gg e r (s e l f . sourceNode , " S ign ing o f rpc_store f a i l e d ")
return None

return s i gna tu r e

#OLD

def rpc_store (s e l f , sender , nodeid , key , value) :
source = Node (nodeid , sender [0] , sender [1])
s e l f . welcomeIfNewNode (source)
s e l f . l og . debug (" got a s t o r e reques t from %s , s t o r i n g value " % str (sender

))
s e l f . s t o rage [key] = value
return True

Changes in communication �ow due to security enhancements 43

Listing B.3: Comparison of the store response handler methods.
The response handler is now speci�c for each message type and
support for handling the NACK message have been added. The
returned signature must also prove to be correct for the function
to return true. "True" in this instance is a con�rmation that
the value has been stored in the DHT by the sending node.

#NEW

def handleSignedStoreResponse (s e l f , r e su l t , node , cha l l enge) :
i f r e s u l t [0] :

i f "NACK" in r e s u l t [1] :
return s e l f . handleSignedNACKResponse (r e su l t , node , cha l l enge)

c e r t = s e l f . s e a r chFo rCe r t i f i c a t e (node . id . encode (' hex ') . upper ())
i f c e r t == None :

l o gge r (s e l f . sourceNode , " C e r t i f i c a t e f o r sender o f s t o r e
con f i rmat ion : {} not present in s t o r e " . format (node))

return None
try :

OpenSSL . crypto . v e r i f y (cert , r e s u l t [1] , cha l l enge , " sha256")
s e l f . r oute r . addContact (node)
return (True , True)

except :
l o gg e r (s e l f . sourceNode , "Bad s i gna tu r e f o r sender o f s t o r e

con f i rmat ion : {}" . format (node))
return None

else :
l o gg e r (s e l f . sourceNode , "No s t o r e con f i rmat ion from {} , removing

from bucket " . format (node))
s e l f . r oute r . removeContact (node)

return None

#OLD

def handleCal lResponse (s e l f , r e su l t , node) :
i f r e s u l t [0] :

s e l f . l og . i n f o (" got response from %s , adding to route r " % node)
s e l f . welcomeIfNewNode (node)

else :
s e l f . l og . debug ("no response from %s , removing from route r " % node)
s e l f . r oute r . removeContact (node)

return r e s u l t

44 Changes in communication �ow due to security enhancements

AppendixC

Test case and attack methods

This appendix contains an extract of a test case and the active attack methods for
the eclipse and poisoning attack. It is not a complete description of the attacks
nor the test cases but shows key functionality giving the reader insight into how
the tests have been carried out.

Listing C.1: Extract from the test case
One node posts a resource to the DHT, checks its availabil-
ity and checks this again approximately 15 seconds later. The
topology of the network is depicted three times during the test
(see Appendix A).

key = "KANIN"
value = "morot"
set_def = s e r v e r s [0] . set (key=key , value=value)
set_value = y i e l d threads . defer_to_thread (set_def . wait , 10)
a s s e r t set_value
get_def = s e r v e r s [0] . get (key="KANIN")
get_value = y i e l d threads . defer_to_thread (get_def . wait , 10)
a s s e r t get_value == "morot"

drawNetworkState ("nice_graph . png" , s e rve r s , amount_of_servers)
y i e l d threads . defer_to_thread (time . s l eep , 7)
drawNetworkState ("middle_graph . png" , s e rve r s , amount_of_servers)
y i e l d threads . defer_to_thread (time . s l eep , 7)
drawNetworkState ("end_graph . png" , s e rve r s , amount_of_servers)

get_def = s e r v e r s [0] . get (key="KANIN")
get_value = y i e l d threads . defer_to_thread (get_def . wait , 10)
a s s e r t get_value == "morot"

Listing C.2: Active impersonation in the poisoning attack.
The node chooses a random member of its routing table and
sends ping requests to the chosen node impersonating all other
nodes present in the routing table.

def poison_rout ing_tables (s e l f) :
s e l f . ne ighbours = map(tuple , s e l f . r oute r . f indNe ighbors (Node (hash l ib . sha1 (str

(random . ge t randb i t s (255))) . d i g e s t ()) , k=20))
my_randoms = random . sample (xrange (len (s e l f . ne ighbours)) , 1)
for nodeToAttack in my_randoms :

for nodeToImpersonate in range (0 , len (s e l f . ne ighbours)) :
i f nodeToImpersonate != nodeToAttack :

s e l f . ping ((s e l f . ne ighbours [nodeToAttack] [1] , s e l f . ne ighbours [
nodeToAttack] [2]) , s e l f . ne ighbours [nodeToImpersonate] [0])

45

46 Test case and attack methods

Listing C.3: Active impersonation in the Eclipse attack.
The node applies the same procedure as in C.2 towards the
eclipsed node (here known as closest_neighbour). Towards all
other nodes however, it only sends one ping requests claiming
to be the eclipsed node.

def e c l i p s e (s e l f) :
s e l f . ne ighbours = map(tuple , s e l f . r oute r . f indNe ighbors (Node (hash l ib . sha1 (str

(random . ge t randb i t s (255))) . d i g e s t ()) , k=20))
for nodeToAttack in range (0 , len (s e l f . ne ighbours)) :

s e l f . ping ((s e l f . ne ighbours [nodeToAttack] [1] , s e l f . ne ighbours [
nodeToAttack] [2]) , s e l f . c lo ses t_ne ighbour [0] [0])

s e l f . ping ((s e l f . c lo ses t_ne ighbour [0] [1] , s e l f . c lo ses t_ne ighbour [0] [2]) ,
s e l f . ne ighbours [nodeToAttack] [0])

