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Abstract

This work corresponds to the theoretical foundations and practical proof of the
master’s degree project in frequency offset estimation for multiuser systems based
on a low dimensional approximation of the likelihood function.

The project aims at the development of a low complexity estimator which can
be relied upon. This way, higher frequency offset estimation rates can be achieved
allowing for the use of less stable oscillators. Particularly, it is intended for the
estimation of fractional (with respect to the OFDM sub-carrier spacing) frequency
offsets.

The document is structured in a way it is expected to be understood by any
reader with a background in Communications Engineering. Problem formulation
and a review of the theoretical concepts used here are given at the beginning.
Afterwards, the benchmark of the project (the ML estimator) is explained in detail
with its main advantages and drawbacks. Later, a low dimension approximation in
order to cope with ML’s weaknesses is illustrated. Finally, a simulator is developed
giving the outcomes required in order to be able to conclude about the proposed
method.

Conclusions and future work are of relevance as there is a practical motivation
for this project coming from the industry. Hence, further modifications in order to
improve the results even more are envisaged. These were not developed thoroughly
due to time constraint reasons in the development of the project but leave an open
door for future research.
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Chapter 1
Introduction

One of the most important sub-components of any wireless device is its electronic
oscillator. Due to the cascaded architecture of receivers, almost every perfor-
mance measure in the communication chain has a dependency on the frequency
synchronicity of the receiver’s oscillator with respect to the transmitter node. In
OFDM, for example, frequency synchronicity is important as it assures orthogo-
nality among sub-carriers to avoid inter-carrier interference [1].

In particular, quasi-stable oscillators can be assumed to depend on temper-
ature or other slow processes. Unfortunately, in practice oscillators, and espe-
cially cheap ones, are not steady enough to be considered robust by themselves.
Therefore, a closed-loop control system based on estimation and compensation of
frequency offset at the receiver should be relied upon.

The current project is based on the industry requirement of decreasing fabrica-
tion cost for wireless enabled devices. It aims at the study, design and simulation
of a low complexity frequency offset estimation algorithm. More specifically, we
are interested in the scenario of multiple user systems where orthogonal frequency
division multiple access (OFDMA) allows for simultaneous use of the channel. An
approach by using the structure of the signal due to the cyclic prefix on single
user systems is found in [2] mainly for AWGN channels. On the other hand, some
different techniques in order reduce the effect of inter-carrier interference due to
frequency offset in multiuser systems are discussed in [3].

As the requirement is to be able to give a fast estimate of the frequency
offset, based on existing work on a low complexity maximum likelihood (ML)
frequency offset estimator for the single user scenario [4], this project extends such
an approximation to the multiple user case. Specifically, this allows for the control
of the computational complexity of the ML estimator at the expense of reducing
estimation performance.

Some of the issues considered in the project are the complexity and the perfor-
mance of the estimator when the number of user deviates from one. Particularly,
the main reason why computational complexity plays an important role is that
the rate at which the process should be repeated is generally high. Also, as this
process is carried out at the receiver, it should be able not only to be implemented
on a resource-constrained platform, but also in as brief time as possible.

At the end, the root mean square (RMS) estimation error via Monte-Carlo
simulation was the main measure used to draw comparisons between performance
of the studied and the proposed method in this project.
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Chapter 2
Problem Formulation

The objective of this project is the assessment, design and evaluation of a multiple
user frequency offset estimator to be carried out on communication receiver ends.
Taking into account several performance and complexity considerations, and based
on earlier work in the field for estimation of a single frequency offset [4], a maximum
likelihood estimator is envisaged.

Due to the multi-user characteristic of the problem at hand, some complex
operations are not possible to be avoided compared to the single user case. Pre-
cisely, big matrix inversion and determinant computations are now required. Fur-
thermore, the increase of the number of degrees of freedom in the optimization
problem required by maximum likelihood estimation becomes a bigger challenge
as multidimensional optimization algorithms are now needed.

As it will be clear in Section 4, it is required to know the following in order to
be able to give an estimate through the presented solution:

• System parameters such as the pilot symbols and their distribution for each
user.

• Environment estimates such as the power delay profile of the channel and
background noise power.

• One received OFDM symbol.

We then aim for the development of a low dimension approximation to a
multiple user joint frequency offset maximum likelihood estimator in order to be
able to control the performance-complexity trade-off.

2.1 Communication System Model

In order to carry out simulation of the mentioned algorithm, a general enough
system model must be given. Particularly, different assumptions and choices re-
garding channel parameters and communication system considerations (as modu-
lation technique among others) should be made. In light of this, the whole system
model and channel features are, for the sake of analysis and numerical evaluation,
described below:

3



4 Problem Formulation

• Frequency offset estimation is always supported by the receiver side with
no information regarding this process being handled or added by the trans-
mitter (different reference signals already existing on most communication
standards are given use). This is particularly useful as the transmitter does
not need to be modified at all.

• For the purpose of analysis, two users (or base stations in case of down-link)
are attempted as the main case scenario in this work. A comparison to
independent estimation (by assuming an unwanted user as interference) is
presented against joint estimation for a number of up to two transmitters.

• The multiple access scheme for which the solution is presented is OFDMA
(Orthogonal Frequency Division Multiple Access). This is particularly ap-
plicable for today’s requirements and trends as shown on the specifications
of 4G and early expectations of the upcoming to be released standards.

• For the sake of simulation, only the frequency offset estimation process is
carried out at the receiver side. It is not required to perform any chan-
nel estimation nor information decoding of the received signal in order to
estimate the performance of the proposed algorithm.

• A SISO (Single Input Single Output) system model is used.

• A flat power delay profile (with long coherence time of the channel compared
to the OFDM period) along the channel length is considered.

• A Gaussian channel is assumed and characterized by the so mentioned PDP.

• Additive white Gaussian noise (AWGN) is assumed at the receiver.

• An interleaved (between both users), in frequency, pilot symbol distribu-
tion is used with independent uniformly distributed symbols as coded pilot
symbol data.

• The frequency offset is assumed to be constant over one OFDM period.

The model for the received signal can be expressed either with or without
user data contained in the OFDM symbol used to estimate the frequency offset as
shown in Section 2.2 and Section 2.3.

2.2 Complete Signal Model (CSM)

The first and more general case contains user data and pilot symbols altogether,
the model for the received signal is:

sCSM
def
=

2∑
k=1

D
(
εk
)
HkQ

[
pk + dk

]
+ n. (2.1)

Throughout the thesis, vectors are denoted by bold lowercase letters, matrices
by uppercase letters and the sub-index k goes from 1 to 2, the number of users at
the transmitter end.



Problem Formulation 5

Furthermore, sCSM in (2.1) is an NFFT sized column vector representing the
complex base-band representation of the perfectly removed CP (Cyclic Prefix) re-
ceived time signal. There, the SCM subscripts were used for the sake of uniqueness
in the definition but in general it will be referred to s and its definition should be
known by context. Besides, Hk is an NFFT × NFFT circular convolution matrix
with the impulse response from user k to the receiver on its columns; Q is the NFFT

sized inverse Fourier transform matrix and n is an NFFT sized random vector of
additive white Gaussian noise with N0INFFT covariance matrix. Also, D(εk) is an
NFFT × NFFT complex valued diagonal matrix with the sample by sample phase
shift introduced by the normalized (to the OFDM sub-carrier spacing) frequency
offset εk, specifically[

D
(
εk
)]
l,l

= e
−2πεk l−1

NFFT ∀l = 1, 2, ..., NFFT,

where pk and dk are NFFT sized column vectors with the in-phase and quadrature
representation of the pilot symbols and data from user k, respectively.

As shown in Figure 2.1, the pilot symbols and data are interleaved in frequency
for the current OFDM symbol period. Nevertheless, it should be noted that the
method developed here works for any arbitrarily defined pilot/data frequency and
time distribution.

User 1 User 2

+ + + =

N
FF

T

OFDM Symbol Period
1
p

2
p

1
d

2
d

Figure 2.1: Complete Model Representation for the Location of
Pilot Symbols and User Data

Besides, the constellation is assumed to be centered on the in-phase and
quadrature origin. In the same way, both the AWGN and the channel taps are
ZMCSCG described only by their covariance [5]. Hence, the expectation of the
received signal is the NFFT sized column vector of zeros E{s} = 0.

As its importance will be clear later, the covariance matrix for the received
signal given by Σ

def
= E{s sH} is

Σ =

2∑
k=1

D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+ Ed
{ 2∑
k=1

D
(
εk
)
QDkQ

Hdiag
(
ph
)
QDH

k Q
HD

(
εk
)H}

+ INFFTN0, (2.2)



6 Problem Formulation

where ph is an NFFT sized vector containing the power delay profile of the trans-
mission channel; Pk and Dk are diagonal matrices formed by the pilot symbols
and data from user k, respectively (not to confuse with D

(
εk
)
). The derivation of

the covariance follows.

Covariance Derivation of (2.2)

An expression for the covariance matrix can be obtained by knowing (2.1).
Particularly, the following is assumed to be known:

1. The circular matrix convolution representation from user k can be
diagonalized by Hk = Q∆kQ

H where Q is the inverse Fourier trans-
form matrix and ∆k is a matrix with the channel frequency response
of the mentioned channel on its main diagonal.

2. The channel transfer function vector representation can be written as
δk = QHhk given that Q is the (unitary) inverse Fourier Transform
matrix and hk is the channel impulse response vector.

3. Channels from different users are assumed to be uncorrelated to each
other: E

{
hi h

H
j

}
= 0n,n∀i 6= j.

4. Using 2. the channel transfer function auto-correlation matrix can
be expressed as: E

{
δk δ

H
k

}
= E

{
QHhkh

H
k Q
}

= QHdiag
(
ph
)
Q.

By expanding (2.1) and using the previous assumptions we get

s =

2∑
k=1

{
D
(
εk
)
HkQpk +D

(
εk
)
HkQdk

}
+ n,

s =

2∑
k=1

{
D
(
εk
)
QPk δk +D

(
εk
)
QDk δk

}
+ n, (Using 1.)

s =

2∑
k=1

{
D
(
εk
)
QPkQ

H hk +D
(
εk
)
QDkQ

H hk

}
+ n, (Using 2.)

Σ = Eh
{ 2∑
k=1

D
(
εk
)
QPkQ

Hhkh
H
k QP

H
k Q

HD
(
εk
)H} (Using 3.)

+ Ed
{
Eh
{ 2∑
k=1

D
(
εk
)
QDkQ

Hhkh
H
k QD

H
k Q

HD
(
εk
)H ∣∣∣d}}

+ INFFT
N0,
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∴ Σ =

2∑
k=1

D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H (Using 4.)

+ Ed
{ 2∑
k=1

D
(
εk
)
QDkQ

Hdiag
(
ph
)
QDH

k Q
HD

(
εk
)H}

+ INFFT
N0.

It can be shown by evaluating the explicit expectation over d in (2.2) that the
resulting covariance matrix is

Σ =

2∑
k=1

D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+

2∑
k=1

D
(
εk
)
Qfk

(
QHdiag

(
ph
)
Q
)
QHD

(
εk
)H

+ INFFT
N0, (2.3)

assuming independent and identically distributed user data with E
{
|dk,n|2

}
= 1,

where n stands for the indices corresponding to user data (see Figure 2.1) and k
for the indexed user. Furthermore, fk

(
M
)
with M ∈ CNFFT×NFFT is a function

which outputs a sparse matrix with the nth diagonal element taken from M with
n corresponding to all user data indices associated to user k. The following figure
shows how fk

(
M
)
would look like according to Figure 2.1 counting indices starting

from the bottom.
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2.3 Reduced Signal Model (RSM)

As for the purpose of evaluating the presented algorithm there is no need in adding
user data, a simplified version of the received signal model is considered instead.

User 1 User 2

+ =

N
F
F

T

OFDM Symbol Period
1
p

2
p

Figure 2.3: Model of Interest
Representation for the Location of

Pilot Symbols

According to this model, no uncer-
tain user data is present and all fre-
quency slots are used for the purpose of
channel estimation (and frequency off-
set estimation) as shown in Figure 2.3.
The model for the received signal is
basically the same as the one in Sec-
tion 2.2 with no user data,

sRSM
def
=

K∑
k=1

D
(
εk
)
HkQpk +n. (2.4)

The assumption of no user data en-
tails an important abbreviation on the covariance matrix compared to the expres-
sion in (2.3), particularly:

Σ =

2∑
k=1

D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+ INFFT
N0. (2.5)

This will be the model used from now on. Most importantly, the power delay
profile normalization is chosen such that varying NFFT does not affect the SNR as
it will be shown in the following derivation.

System SNR Derivation

Using the expression for the covariance matrix (2.5), via its trace in or-
der to compute the average received signal power, the noise and signal
contributing parts can be identified

tr

(
2∑
k=1

D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H)

︸ ︷︷ ︸
Users contribution

+ tr
(
INFFT

N0

)
.︸ ︷︷ ︸

Noise contribution

By definition in this project, the system SNR is going to be the ratio of the
signal power from all users to the noise power, specifically

SNR
def
=

Signal Power from All Users
Noise Power

=
tr
(

diag
(
ph
))

NFFT

1

N0
,

where |pk|2 = 1 is assumed. In order to make the SNR independent of
NFFT it should be enforced

∑
ph = NFFT, giving an SNR equal to the

reciprocal of the noise power (i.e. SNR = 1
N0

).



Chapter 3
Estimation Theory

One big problem usually faced in engineering is the requirement of estimating a
parameter given some measurements. This is the study of estimation theory and
for this project, in practical terms, it becomes quite important in order to build a
function of the measured received signal that give a good estimate of the frequency
offset.

As in most of problems faced in engineering, there is a trade-off between com-
plexity and performance. It is very important to consider how well the estimator
performs considering these two aspects based on some criteria. Particularly, com-
putational complexity for the current problem is a big issue to consider as it is
vital to give an estimate as fast as possible having in mind the coherence time of
the frequency offset.

With this in mind, some estimation methods will be mentioned briefly in
this chapter following the maximum likelihood method (which was the estimation
method given use in this project).

3.1 Least Squares Estimation

This estimation method in its linear and nonlinear versions are popular in the
literature but no statistical assumptions are made. Assuming the model

x = f
(
θ
)

+ n, (3.1)

where x is the vector of measurements, θ is the vector of parameters to estimate
and n is vector of noise in the measurements. Least squares is essentially a problem
of minimizing the square norm of the residuals (r) given by

r = x− f
(
θ
)
. (3.2)

The number of measurements vs. the number of parameters defines if the
system is under-determined or over-determined which, among others, governs the
confidence of the estimate. As this method does not minimize the residuals in
any statistical sense, it is not optimal when information about the noise process
is available (even though under some conditions it does tend to the same result as
some statistically optimal methods [6]). Henceforth, it is not considered for the
problem at hand.

9



10 Overview on Estimation Theory

3.2 Method of Moments

This estimation method is known for its simplicity. If there is a model for the
parameters to estimate in terms of some moments of the underlying statistical
process, it is a matter of approximating the kth moment using

mk =
1

T

T∑
t=1

xkt , (3.3)

where the sub-index in xt numerates each realization and k is the power to which
the measurement is raised in order to obtain an estimate for the kth moment. In
(3.3) it is assumed that the measurements are scalars but it generalizes to higher
dimensions according to the model.

The disadvantage and reason this method is not considered for this project is
that it is not always efficient [6].

3.3 Maximum Likelihood (ML) Estimation

This method has several properties that make it an appropriate choice as the
estimator for the presented problem. It is sometimes problematic to implement
due to computational complexity but it achieves a small estimation error when a
large set of independent observations is available.

The ML estimator is built by considering the likelihood function. The likeli-
hood function is the joint probability density function (denoted p) of the measure-
ments with swapped arguments (i.e. the measurements given and parameters to
evaluate), namely

λ
(
θ;x

)
= p
(
x|θ
)
, (3.4)

where the notation was the same as the one used in Section 3.1 and the dependency
of the likelihood function on the current measurement was made explicit. In some
cases and due to the exponential behavior of many distributions, the logarithm
(as it is a monotonic function of the argument) is considered instead by:

λ
(
θ;x

)
= log

(
p
(
x|θ
))
. (3.5)

From now on, we will refer to this as the likelihood function unequivocally. By
considering the likelihood function, a measure of how well some measurements (x)
fit the assumed model (embedded in p) is obtained. Thus, the ML estimator is

θ̂
ML

= arg max
θ

λ
(
θ;x

)
, (3.6)

where it can be seen that the estimate is equivalent up to an additive constant (in
terms of the parameters) and scaling (if scaled by a negative it should be stated a
minimization problem) in the likelihood function.

Also important to mention is the possibility of several local maxima (multi-
modal behavior) on the likelihood function. Because of this, it is of great impor-
tance to find the global optima in (3.6). Local optimization methods could bring
wrong estimates when applied to the likelihood function.



Chapter 4
Frequency Offset Maximum Likelihood
Estimation: The ML Estimator for the
Presented Problem and its Complexity

In order to build the estimator for the specific problem at hand, some consider-
ations about the received signal model should be made. Recalling the received
signal model of Section 2.3, the underlying random behavior in s is due to the
additive white Gaussian noise and the stochastic channel.

By using some linear algebra properties like the diagonalization of a circular
matrix by the DFT matrix (see covariance derivation of Section 2.2), the received
signal in (2.4) can be expressed as

s =

K∑
k=1

D
(
εk
)
QPkQ

H hk + n, (4.1)

where Pk is the diagonal matrix formed by the pilot symbols from user k, and
hk is the NFFT sized column vector with the channel impulse response realization
from user k to the receiver.

As any linear transformation of a multivariate Gaussian is also Gaussian, and
the addition of two multivariate Gaussian also is, the measurements for an OFDM
period (NFFT samples not including any cyclic prefix) are jointly Gaussian. This
allows us to build the likelihood function by means of

p
(
s|ε1, ε2

)
=

1

πNFFT |Σ
(
ε1, ε2

)
|

exp
(
− sHΣ(ε1, ε2)−1s

)
, (4.2)

log
(
p
(
s|ε1, ε2

))
= −NFFT log(π)− log

(
|Σ
(
ε1, ε2

)
|
)
− sHΣ(ε1, ε2)−1s,

λ
(
ε1, ε2; s

)
= −NFFT log(π)− log

(
|Σ
(
ε1, ε2

)
|
)
− sHΣ(ε1, ε2)−1s, (4.3)

where Σ(ε1, ε2) is the covariance matrix of the received signal (2.5) and the fact
that, in this case, s turns out to be zero-mean circularly symmetric complex Gaus-
sian (ZMCSCG) was used to express the probability density function p [5].

11
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Finally, the ML frequency offset estimator can be mathematically expressed
as

(
ε̂ML
1 , ε̂ML

2

)
= arg min

ε1,ε2

{
− λ
(
ε1, ε2; s

)}
,

= arg min
ε1,ε2

{
log
(
|Σ
(
ε1, ε2

)
|
)

+ sHΣ(ε1, ε2)−1s
}
, (4.4)

where the dependency of the covariance matrix on the frequency offsets was made
explicit for clarity. It can be seen that the task of proceeding further with (4.4)
analytically is rather complicated and hence a solution relies on numerical eval-
uation. Equation (4.4) along with the expression for the covariance matrix (2.5)
show that for the receiver in order to give an ML estimate it is required to know:

• The Power Delay Profile (PDP) of the channel.

• The pilot symbol time and frequency distribution for every user.

• An estimate of the environment’s noise power.

• One received OFDM symbol (namely s).

Afterwards, by applying a numerical nonlinear constrained optimization method,
the estimates of the frequency offsets can be obtained. This last step, which for
an offline computer would be pretty easy to solve, is on the other hand a heavy
task for real time architectures like the ones generally used in receiver ends. More
importantly, depending on the coherence time of the frequency offset, it might be
required to repeat this process quite often (every few OFDM symbol periods in
practice for unstable oscillators) so not only a good enough but also fast estimate
should be available for the receiver to do compensation.

4.1 Joint ML Estimation Drawbacks

The reason why the computation of the estimator is resource consuming is asso-
ciated to the nonlinear optimization problem presented in (4.4) (recall that the
optimization is carried out over ε1 and ε2) and the computations over the covari-
ance matrix (inverse and determinant).

First, and as mentioned before, the existence of several local optima (multi-
modal behavior) impose a condition of not relying in the solution to any arbitrary
starting point when using iterative optimization algorithms such as gradient de-
scent (even though this would not be gradient descent’s biggest drawback when
applied to the likelihood in equation 4.3). This suggests the use of a more complete
optimization method with, for example, an exhaustive search initialization step.
Of course, this sort of solutions would imply extra evaluations of the likelihood
function and probably the under-utilization of the information contained in these
initialization evaluations.

Lastly, the difficulty associated to the likelihood function evaluation can be
understood as follows: the computational complexity of the inverse and determi-
nant of the NFFT ×NFFT matrix covariance matrix in (4.4) is O

(
N3

FFT

)
in big O



Multiple User Frequency Offset ML Estimation 13

notation, hence the time and resources requirements grow fast with NFFT . When
considering the optimization algorithm, the number of minimum evaluations in
order to obtain a decent estimate is of great importance.

These two main issues are going to be addressed in the next chapter through a
technique called functional decomposition. The following section is a small note on
user-independent compared to user-joint maximum likelihood technique applied to
the estimation problem to solve in this project.

4.2 Notes on User-Independent Estimation

Up to this point only joint estimation has been considered. In this section, a small
overview on what a maximum likelihood independent estimation solution would
be like, the advantages and disadvantages compared to joint estimation are given.
As it would be to expect, joint estimation overcomes independent estimation both
performance-wise and complexity-wise comparatively speaking.

To begin, let’s consider the model for the received signal. The excess term
in (2.4) due to user 2 (when estimating frequency offset corresponding to user 1)
can very well be regarded as interference and posed as a problem of independent
estimation with the received signal model

s1 = D
(
ε1
)
H1Qp1 + i+ n, (4.5)

where the received signal shown in (2.4) is now explicitly expressing the term of
interest as if we were to estimate the frequency offset for user 1.

In the same way, the received signal model can be expressed in terms of ε2
regarding the contribution from user 1 as interference by:

s2 = D
(
ε2
)
H2Qp2 + i+ n. (4.6)

The unwanted terms in (4.6) are the contribution from the other user i (re-
garded as colored Gaussian noise) and the additive white Gaussian noise (AWGN)
term n. The information contained in the interference term i would of course not
be used to improve the performance of the current estimator which now would not
be joint.

In the case of user-independent estimation, the covariance matrix for the re-
duced model (see Section 2.3) can be expressed as

Σk
(
εk
)

= E
{
sk s

H
k

}
= D

(
εk
)
QP kQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+
[
QPk̄Q

Hdiag
(
ph
)
QPHk̄ Q

H
]
◦ F + INFFT

N0, (4.7)

where εk stands for the current frequency offset to estimate, Pk to a diagonal ma-
trix with the frequency representation for the pilot symbols associated to user k
and Pk̄ to the frequency representation for the pilot symbols associated to the user
considered as interference for the independent estimation problem at hand. Fur-
thermore, A ◦B stands for the Hadamard product (i.e. component-wise product)
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between matrices A and B. Lastly, F is a matrix with each component defined as
Fn,m = sinc

(
n−m
NFFT

)
∀n = 1, 2, ..., NFFT, m = 1, 2, ..., NFFT.

The derivation for the covariance matrix follows from (2.2) as shown below.

Covariance Derivation of (4.7)

Assume the following to be known:

1. diag
(
a
)
B diag

(
a
)H

= B ◦ aaH where a is any complex vector, B
any matrix congruent size and A ◦B is the Hadamard product.

2. Eεk̄
{[
D
(
εk̄
)]
n,n

[
D
(
εk̄
)]∗
m,m

}
= Eεk̄

{
e
−2πεk̄

n−m
NFFT

}
= sinc

(
n−m
NFFT

)
assuming a uniformly distributed frequency offset.

Starting from (2.2), the covariance of interest to estimate frequency offset
from user k is

Σk
(
εk
)

= Eεk̄
{

Σ
}

= D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+ Eεk̄
{
D
(
εk̄
)
QPk̄Q

Hdiag
(
ph
)
QPHk̄ Q

HD
(
εk̄
)H}

+ INFFT
N0

= D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+QPk̄Q
Hdiag

(
ph
)
QPHk̄ Q

H ◦ Eεk̄
{
d̃(εk̄)d̃(εk̄)H

}
+ INFFT

N0.

Finally, obtaining

∴ Σk
(
εk
)

= D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+QPk̄Q
Hdiag

(
ph
)
QPHk̄ Q

H ◦ F + INFFTN0,

where d̃(εk) is the column vectored diagonal of the matrix D
(
εk
)
and k̄ is

the index of the user considered as an interference.

It is important to consider that computational complexity is increased through
independent estimation compared to joint estimation. Particularly, by using inde-
pendent estimation, the joint estimation is divided into several smaller (but still
expensive) problems including a matrix inversion and a one dimension optimum
search each.

The main reason why independent estimation is not convenient for the current
problem is that the inverse and determinant covariance matrix are still, as in joint
estimation, required to be computed. Nevertheless, performance is very inferior
to the joint ML estimator as it will be shown in Section 6.

Some combination of independent and joint estimation (by using one or the
other each time) can be considered according to the allowed frequency offset and
conditions as the signal to noise ratio. Although, this is out of the scope of this
work and becomes a problem of platform specific resource optimization.



Chapter 5
How to Deal with Multi-Modality and

Complexity

There are several methods in the literature where optimization problems as the one
shown in (4.4) are addressed. Derivative-free (which are the most common when
facing unreliable, costly or hard to compute gradient [7] [8]) and common iterative
algorithms are in general not giving efficient use to the expensive evaluations in a
joint fashion but rather trying to find a path towards the optima. This basically
means every sample taken before the current iteration is not used anymore.

Furthermore, the fact that local optima are possible makes the idea of using
uniform likelihood evaluations over the parameter’s domain attractive. Hence, if
there is a method which relies on the so mentioned uniform likelihood evaluations
in an efficient way (in order to extract as much information as possible from
the available measurements) it would make these expensive calculations of the
likelihood function worth the resources (time and computation wise).

Given that the mathematical expression for the function to optimize is well
known, a good characterization of the likelihood function could be achieved. There-
fore functional decomposition (a technique which can be closely related to different
applications as image compression and feature extraction [9] [10]) can be applied.
This non-iterative technique could not only give efficient joint use to every evalua-
tion of the likelihood function but ideally get a better estimate of the global optima
compared to iterative optimization methods applied directly onto the likelihood
function.

5.1 Functional Decomposition

Functional decomposition is a broad term that has theoretical applications in
different areas. In the specific case of this project it is used not only referring
to the identification of composing elements for the likelihood function but also to
the ability of finding its representation (viewed as a random process indexed by
the frequency offsets) as a linear combination of these composing elements.

Basically the idea is to be able to approximate the likelihood function as

λ̂
(
ε1, ε2

)
=

L∑
l=1

αlΦl
(
ε1, ε2

)
. (5.1)

15
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In equation (5.1), L is the number of basis functions, Φl
(
ε1, ε2

)
the lth function

in the base and αl is the lth decomposition coefficient. Particularly, the idea is to
find a representative set of basis functions such that the number of decomposition
coefficients L is small with, what is commonly referred to, a small loss [11].

If such a basis was found, the α coefficients could be obtained and the opti-
mization algorithm in (4.4) could be carried out over the likelihood approximation
(instead of over the computationally heavy true likelihood function) given that the
basis gives a low enough approximation error.

Because the likelihood function can be regarded as a random process of the
multivariate sampled received signal s, the α coefficients can be seen as random
variables on the specific realization of the likelihood process.

5.2 The Optimum Base

The Karhunen-Loève basis [12] would be the optimal base in the sense of minimiz-
ing the mean square approximation error (MMSE). Such a basis requires to know
the covariance function of the likelihood process, namely

Kλ

(
ε1, ε2, ε̃1, ε̃2

)
= Es{λ

(
ε1, ε2

)
λ
(
ε̃1, ε̃2

)
} − λ

(
ε1, ε2

)
λ
(
ε̃1, ε̃2

)
, (5.2)

where λ(ε1, ε2) stands for the expectation of λ(ε1, ε2). Because of the difficulty on
finding an analytic expression for the likelihood covariance, its estimate (through
the covariance matrix of the discretized likelihood process) is considered instead.

Therefore, by discretizing the (ε1, ε2) space and vector mapping the likelihood
function, the discretized covariance can be represented and estimated by

Σλ = E
{
λλT

}︸ ︷︷ ︸
Rλ

−E{λ}E{λ}T, (5.3)

Σλ ≈
1

N − 1

N∑
n=1

λn λ
T
n −

1

N2

N∑
n=1

λn

N∑
m=1

λT
m, (5.4)

where (5.3) shows the definition for the covariance (Σλ) and correlation (Rλ)
matrices assuming λ as the column version of the likelihood.

Furthermore, (5.4) shows how to approximate the likelihood covariance matrix
previously defined by knowing N realizations of the likelihood process. Ideally, the
number of realizations to approximate the covariance matrix should be as big as
possible in order to achieve a good estimate.

When dealing with the discretized version of the covariance function, the prob-
lem of finding the optimum basis (in the MMSE approximation sense as already
mentioned) coincides with some well-known results of PCA (principal component
analysis).

The idea of PCA applied here would be to find the set of basis functions
Φl(ε1, ε2)∀l = 1, 2, ..., L that give statistically uncorrelated decomposition coeffi-
cients αl. Uncorrelatedness means there is no statistical linear dependence among
coefficients (i.e. E{αiαj} = E{αi}E{αj} ∀i, j = 1, 2, ..., L) as a measure of how
well the obtained basis does the job of extracting and separating information from
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the likelihood process. If it was the case that the likelihood was jointly Gaussian,
then it would also imply independence of the decomposition coefficients which is
a stronger (and more desirable) condition.

Having a small set of basis functions is desirable and achieved through PCA
which ultimately gives a discretized version of the Karhunen-Loève basis. The
intuitive reason behind this being desirable is that by identifying the most con-
tributing components of the likelihood function, more information can be extracted
from every evaluation of the likelihood.

Hence, the smaller the Karhunen-Loève basis the lesser the number of evalu-
ations required in order to achieve a small approximation (and hence estimation)
error. This means that every evaluation of the likelihood would be worth the
required resources if the Karhunen-Loève approximation was used.

In order to obtain a numerical representation for the set of basis functions,
tens of thousands of likelihood realizations are generated using the system model
presented in Section 2.1. Afterwards, the covariance matrix is estimated using
(5.4) and the Karhunen-Loève basis is approximated via PCA by obtaining the
first Eigen-vectors (corresponding to the higher Eigen-values) of the covariance
matrix.
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Figure 5.1: First 9 Components of Karhunen-Loève Basis for
Estimated Covariance.

Figure 5.1 shows the first nine components of the Karhunen-Loève basis ap-
proximation. Some analytic expressions for the first components can be derived in
order to obtain a somewhat similar basis function set, but after the fifth component
this is not an easy task.
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As the idea of using numerical instead of analytic approximations of the
Karhunen-Loève basis does not seem as attractive, a different set of basis functions
should be selected.

5.3 Selecting a Suitable Base

As already mentioned, the Karhunen-Loève basis is unfeasible to obtain since an
analytical expression for the covariance matrix is hard to find. Furthermore, a
numerical solution for the basis selection would not be as desirable.

In general, any set of functions spanning the space of functions created by the
Karhunen-Loève Basis would serve for the purpose of approximation. The issue is
how to find the smallest one among all possible sets. More importantly, a measure
Ξ of how well a set of basis function approximates the likelihood should be defined.
Hence, in order to achieve so, the ξ value derivation follows.

Derivation of Error Performance Measure ξ

As a first approach, the error performance measure is going to be the nor-
malized approximation residual power in decibels and its derivation follows
according to:

1. Define the likelihood energy: Eλ
def
=

∫∫
Ω

λ
(
ε1, ε2

)2
dε1 dε2.

2. Recall that λ̂
(
ε1, ε2

)
=

L∑
l=1

αlΦl
(
ε1, ε2

)
(5.1).

3. Assume an orthogonal set of basis functions, i.e.∫∫
Ω

Φi
(
ε1, ε2

)
Φj
(
ε1, ε2

)
dε1 dε2 = 0 ∀i 6= j.

4. Assume a normalized set of basis functions, i.e.∫∫
Ω

(
Φi
(
ε1, ε2

))2

dε1 dε2 = 1 ∀i.

5. Assuming the previous conditions 3 and 4, the decomposition coeffi-

cients are defined: αl =

∫∫
Ω

λ
(
ε1, ε2

)
Φl
(
ε1, ε2

)
dε1 dε2.

6. Define Rλ
(
ε1, ε2, ε̃1, ε̃2

) def
= E

{
λ
(
ε1, ε2

)
λ
(
ε̃1, ε̃2

)}
as the correlation

of the likelihood function and Rλ as its matrix representation.

Let’s begin by defining and expanding the intermediate error measure Ξ:

Ξ
def
=

∫∫
Ω

(
λ
(
ε1, ε2

)
− λ̂
(
ε1, ε2

))2

dε1 dε2

=

∫∫
Ω

(
λ
(
ε1, ε2

)2 − 2λ
(
ε1, ε2

)
λ̂
(
ε1, ε2

)
+ λ̂
(
ε1, ε2

)2)
dε1 dε2,
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Ξ = Eλ − 2

L∑
l=1

αl

∫∫
Ω

λ
(
ε1, ε2

)
Φl
(
ε1, ε2

)
dε1 dε2

+

∫∫
Ω

[ L∑
l=1

αlΦl
(
ε1, ε2

)]2
dε1 dε2, (Using 1. and 2.)

∴ Ξ = Eλ −
L∑
l=1

[
αl
]2
. (Using 3. 4. and 5.)

Afterwards, the error performance measure ξ is defined in terms of Ξ as

ξ
def
=

E
{

Ξ
}

E
{
Eλ
} . (5.5)

The ξ value is preferred over Ξ as it is normalized to the energy of the
likelihood process. Furthermore, it can be computed by evaluating (5.5):

ξ = 1−
E

{
L∑
l=1

[ ∫∫
Ω

λ
(
ε1, ε2

)
Φl
(
ε1, ε2

)
dε1 dε2

]2
}

E
{
Eλ
} ,

ξ = 1−

L∑
l=1

E

{∫∫∫∫
Ψ

λ
(
ε1, ε2

)
λ
(
ε̃1, ε̃2

)
Φl
(
ε1, ε2

)
Φl
(
ε̃1, ε̃2

)
dε1 dε2 dε̃1 dε̃2

}

E
{∫∫

Ω

λ
(
ε1, ε2

)2
dε1 dε2

} ,

∴ ξ = 1−

L∑
l=1

[ ∫∫∫∫
Ψ

Rλ
(
ε1, ε2, ε̃1, ε̃2

)
Φl
(
ε1, ε2

)
Φl
(
ε̃1, ε̃2

)
dε1 dε2 dε̃1 dε̃2

]
∫∫

Ω

Rλ
(
ε1, ε2, ε1, ε2

)
dε1 dε2

,

where the regions of integration are Ω = [−0.5, 0.5] × [−0.5, 0.5] and Ψ =
Ω × Ω. As it is going to be dealt with the estimated correlation matrix Rλ
in (5.3), previous equation analogous discretized version becomes:

∴ ξ ' 1−

L∑
l=1

ΦT
l RλΦl

tr
(
Rλ
) = 1−

tr
(
ΦTRλΦ

)
tr
(
Rλ
) , (5.6)

where Φl is the lth discretized basis function as a column vector, Φ is the
matrix formed by Φl on its columns ∀l and Rλ is the correlation matrix
of the likelihood process. It is important to point out that ΦΦT 6= I even
though its columns are ortho-normal vectors as in general Φ is a tall matrix.
The ξ value in decibels (i.e. ξdB = 10 log10

(
ξ
)
) is going to be considered

from now on unless otherwise stated.
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Now that we have built the error performance measure for any set of basis
functions, the Karhunen-Loève basis can work as a benchmark in order to know
what is the best it can be aimed for. Therefore, Figure 5.2 shows the cumulative
normalized approximation residual power (referred to as the ξ value from now on)
for different number of Karhunen-Loève components up to 19.
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Figure 5.2: ξ Value for the 19 Most Contributing Karhunen-Loève
Components.

Figure 5.2 can be seen as a benchmark for the approximation error when
decomposing the likelihood.

It must be kept in mind that this is considered a first approach as the ξ
value only measures performance of approximation to the likeli-
hood function. In fact, performance of estimation should be evaluated in
depth using an optimization algorithm over the approximated likelihood func-
tion. Afterwards, concluding results from this simulation will be drawn by
comparing it to the optimization over the true likelihood function.

The next step is to find a base which analytically described could achieve a
good approximation error based on this plot. Having an analytic description of
the set of basis functions is important for robustness of the final estimator when
using gradient dependent optimization methods over the likelihood approximation.
Particularly, because an expression for the gradient is also analytically available
(compared to the use of approximations of the gradient via finite differences).

There is a high amount of basis function families in the literature worthwhile
to be considered when selecting one in order to approximate the likelihood.

In order to find a good basis, some groups of functions were considered based
on some properties appealing to be exploited. Specifically, the families considered
were mainly:

• Fourier based.

• Sinc based.
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Figure 5.3: 2D Sinc
for γ = 2

To begin with, the Fourier basis was attractive consid-
ering the work in [4]. It indeed showed to be good when
selecting a big number of basis functions. This means the
number of likelihood function evaluations required in order
to find the representation in this basis would also be big
(not to have an under-determined system of equations when
solving for the decomposition coefficients, see Section 6.2).

As the idea is to reduce the number of evaluations due
to their computational complexity, the Fourier basis was
discarded.

Afterwards, and based on experiences from studying
many likelihood function realizations (quasi-convex at a large scale under general
good circumstances), the idea of using a set of functions having several minima at
uniformly distributed locations of the parameter’s domain seemed appealing.
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Figure 5.4: 2D Sinc
for γ = 7

Hence, two dimensional Sincs were given use with good
results for small sets, specifically the set of Sincs is given by

Φl
(
ε1, ε2

)
= sinc

(
γ

√(
ε1 − cl,1

)2
+
(
ε2 − cl,2

)2)
,

∀l = 1, 2, ..., L (5.7)

where γ is a value to control the width of the two di-
mensional sinc (measured to the first zero crossing, e.g. see
Figure 5.3 and 5.4) and cl refers to the center of the lth
basis function in the

(
ε1, ε2

)
space.

The γ and cl parameters are optimized via a con-
strained exhaustive search giving the lowest ξ value among

a range of γ and number of Sincs to be utilized.
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Figure 5.5: Center Distribution for 10 (9 Sincs + Constant), 17 (16
Sincs + Constant) and 26 (25 Sincs + Constant) Sized Bases.

Figure 5.5 shows the center distribution for the Sincs in the case of the 10-
sized, 17-sized and 26-sized bases. Notice that the base size is a squared number
plus a constant term to account for the mean. Also, the distance among any two
pair of centers is constant for each case (this was the optimized parameter).

Technically, the optimized parameter could give cl located even outside the
region of interest in the

(
ε1, ε2

)
space but by doing this only a small influence

on the approximation error was observed (a fraction of decibel difference in the ξ
value compared to the distributions shown in Figure 5.5).
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For the set of Sinc functions of size 10 (nine Sincs plus a constant term) the
obtained cumulative ξ value per ordered basis function was:
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Figure 5.6: Cumulative Sorted ξ Value for 10 Sized Sinc Basis.

In Figure 5.6, it is shown that a performance of half the best power approxima-
tion error (by comparing its value in decibels against Figure 5.2) was obtained by
using approximately half the number of basis functions. This is not the Karhunen-
Loève performance but could be sufficiently good for the purpose of approximation.

5.4 Selecting the Size of the Base

It is reasonable to think that according to the size of the basis functions set, the
approximation error is improved. In effect, the following plots show the ξ value is
improved for sets basis functions of size 17 (16 Sincs plus a constant term) and 26
(25 Sincs plus a constant term):
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Figure 5.7: Cumulative Sorted ξ Value for 17 (left) and 26 (right)
Sized Sinc Bases.

It is worth noting that due to the conditions on the derivation of the ξ measure
(see Section 5.3) the set of basis functions were orthogonalized and normalized for
the sake of approximation performance evaluation. This means that there is no
direct correspondence between the Sinc functions and the functions in the x label
of Figure 5.6 and Figure 5.7. Nevertheless, this is not an issue as what matters is
the space spanned and such a space is representation-invariant.



Chapter 6
Simulator

Based on the system model of Section 2.3, a simulation program was built on
Matlab R© in order to show how through functional approximation the reduced
complexity version of (4.4) can be built.

The following table shows the name assigned to every parameter in the simula-
tor, its value for every of the two designed simulation setups and a short description
of the parameter:

Simulation Parameters

Name Value
Setup 1

Value
Setup 2

Description

L 2 Number of users

NFFT 32 128
FFT size (determines also the
time and frequency resolution

for an OFDM symbol)

PDP type Constant along Channel
Power delay profile for

simulated environment with∑
ph = NFFT

dim
(
ph
)

7 samples 15 samples Channel length

Tm 4 8 Channel mean delay in
samples [13].

Sτ 2 4.32 Channel RMS Delay Spread in
samples [13].

Pilot symbol
distribution

See Figure 2.3
Pilot symbol distribution in the
frequency domain for users 1

and 2

Pilot symbol
constellation

4-QAM Constellation type and size for
pilot symbols

Continues on next page
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Continuation of Simulation Parameters

Name Value
Setup 1

Value
Setup 2 Description

Nrealizations 5000 Number of realizations used for
likelihood correlation estimation

RESε1,ε2 31× 31 51× 51
Resolution in the

(
ε1, ε2

)
space

for simulation purposes

Family of
functions

Sinc based Family of functions for the basis

Optimization
interval for γ

(
0, 6
] Optimization interval for γ

parameter in Sinc functions. See
(5.7)

Optimization
interval for
minimum

distance among
cl pairs

[
1.5√
L−1

, 2.5√
L−1

] Optimization interval for
inter-center distance parameter.
L stands for size of the base.

See (5.7)

Orthogonaliza-
tion algorithm

Gram-Schmidt

Orthogonalization algorithm
used when ξ value computation
required. Modified (stabilized)
version is generally used for

improved performance in finite
precision arithmetic.

Table 6.1: Simulation Parameters for Setup 1 and 2.

Recalling from Section 4, the estimation problem can be expressed as(
ε̂ML
1 , ε̂ML

2

)
= arg min

ε1,ε2

{
log
(
|Σ
(
ε1, ε2

)
|
)

+ sHΣ(ε1, ε2)−1s
}
, (4.4)

where the covariance matrix Σ
(
ε1, ε2

)
determinant and inverse calculations require

a high amount of resources per
(
ε1, ε2

)
evaluation. Specifically, the covariance

matrix is given by

Σ
(
ε1, ε2

)
=

2∑
k=1

D
(
εk
)
QPkQ

Hdiag
(
ph
)
QPHk Q

HD
(
εk
)H

+ INFFT
N0. (2.5)

It can be noticed in (2.5) the dependence on diag
(
ph
)
. As the delay spread

of the channel is in general much shorter than the symbol time (i.e. dim
(
ph
)
�

NFFT), there is a way to reduce the complexity of the covariance determinant and
inversion.
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Covariance Determinant/Inversion Computational Complexity Reduction

Using the Woodbury matrix identity the inverse of the NFFT×NFFT sized
covariance matrix can be replaced by the inverse of two N × N matrices
for N = dim

(
ph
)
according to:(

A+BCD
)−1

= A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1

Via an iterative algorithm over (2.5), assuming:

• A = INFFT
N0

• B = D
(
ε1
)
QP1Q

HX

• X being any matrix such that XXH = diag
(
ph
)

• C = I
dim
(
ph

)
• D = BH

Afterwards, updating according to:

• A as the result of the previous iteration.

• B, C, and D as previously but this time for ε2 and P2

The inverse of the covariance matrix corresponds to the result from the last
iteration.

In exactly the same way the determinant of the big covariance matrix can
be replaced by the determinant of two much smaller matrices given that
the inverses from the last algorithm are also available. Specifically, the
determinant can be computed iteratively through:∣∣A+BCD

∣∣ =
∣∣C−1 +DA−1B

∣∣ ∣∣C∣∣ ∣∣A∣∣
Where

∣∣A∣∣ stands for the determinant of matrix A and the two step process
is repeated with the same matrix definitions as for the Woodbury matrix
identity.

6.1 Simulation Setup

The problem of evaluating the set of basis functions estimation performance was
subdivided into three steps (according mainly to what was explained in Section 5)
with some additional implementational considerations.

It is important to differentiate what belongs to the algorithmic design stage
and what would actually be implemented at the receiver side. Most of the fol-
lowing steps correspond to the algorithm design and only parts of the third step
(Section 6.1.3) and Section 6.2 correspond to the receiver’s implementation.
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6.1.1 Database Generation

In order to obtain a good estimate of the likelihood correlation matrix, thousands
of realizations are obtained and, along with (5.4), the correlation and covariance
are estimated.

It is worth noting here that as we are always departing from the continuous fre-
quency offset likelihood function, some considerations regarding sampling interval
and its limitations should be kept in mind:

• There is a estimation performance dependency on the condition number of
the likelihood correlation matrix.

• The size of the correlation (and hence covariance) matrix is fixed by the
resolution in the

(
ε1, ε2

)
space.

• The resolution in the
(
ε1, ε2

)
space for simulation implies a trade-off in

speed and accuracy for the implemented algorithms. However, this applies
only for the algorithm design stage and does not imply a major increase in
complexity for the receiver end.

6.1.2 Parameter Optimization

Based on the selection of the basis function family, its parameters are optimized
via an exhaustive search on the ξ value (see Sections 5.3 and 5.4).

Basically, the idea is to find the set of parameters that minimize the value
Figure 6.1.
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Figure 6.1: Contour Plot of the ξ Value for Basis Parameter
Optimization

Figure 6.1 shows a contour plot of the ξ value in terms of γ and the size of the
basis (here the ck parameters were already set to their optimum value for each
case, see equation 5.7). Also, the optima are shown for 10-sized, 17-sized, 26-sized,
etc. basis in red color. As it would be expected, the optimum γ (reciprocal of the
Sinc ’bandwidth’) increases with the number of functions in the basis in order to
cover the available (limited) grid.
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6.1.3 Performance Validation via Monte-Carlo Simulation

Lastly, in order to measure the estimation performance of the final algorithm, sev-
eral thousands of channel+system simulations are generated giving a high amount
of likelihood realizations.

By knowing the frequency offset used to construct the received signal, min-
imization according to (4.4) is carried out over the true likelihood function and
different approximations of it. Afterwards, RMS estimation performance for each
method is measured by its empirical mean (this is known as the Monte-Carlo
method). Then, comparisons of the net estimation performance for the maximum
likelihood estimator versus its low dimension approach are made.

6.2 Considerations for the Receiver’s Algorithm

The ξ value over which the parameters are optimized assumes sampling at exactly
the positions determined by the grid in the (ε1, ε2) space (see parameter opti-
mization in Section 6.1.2 and derivation of ξ value in Section 5.3). The idea of
the likelihood approximation, on the other hand, is to require way less likelihood
evaluations at the receiver end.

In order to be able to make use of the optimized parameters accurately, a
transformation matrix T from the reduced space of true likelihood evaluations to
the space of likelihood decomposition coefficients (namely, α space in equation 5.1)
is defined, particularly

α̂ = Tλss, (6.1)
where λss is a subset of λ. As a result of (6.1), in order not to have an under-
determined system of linear equations, the required amount of likelihood
evaluations at the receiver side is bounded to be at least equal to the
number of base functions.

Particularly, the idea of (6.1) is to represent such a linear transformation that
minimizes the mean square approximation error (MMSE), i.e.:

Topt = arg min
T

Eλ
{
‖λ− Φα̂‖2

}
. (6.2)

The transformation represented by the matrix T aims to achieve this. It is
worth noting that we are specially interested in the case where dim(α) = dim(λss)
(i.e. T being a square matrix).

T Transformation Matrix Derivation

In order to derive an expression for the optimal T transformation in (6.2),
the following is assumed to be known:

1. Let’s define λss as the subset of λ obtained by selecting some compo-
nents from the latter according to an extraction matrix S. Specifically

λss
def
= Sλ,

where S is a sparse ’fat’ full row rank matrix with only one non-zero



28 Simulator

component per row which extracts the corresponding value from λ.

2. It can be easily verified that ‖a− b‖2 = aTa− 2tr(baT) + bTb.

3. The trace operator can be applied to any scalar not affecting the re-
sult. Furthermore, products inside the trace can be circularly shifted.

4. Recalling the likelihood correlation definition Rλ = E{λλT}, by the
previous properties of the trace we get: E{λTλ} = tr(Rλ).

5. Using ∇, the matrix gradient operator over a scalar function f(χ)

can be denoted according to ∇χ f(χ) = ∂f(χ)
∂χ where χ is a matrix of

any size.

6. Recall that for any convex smooth (continuous gradient) matrix-
valued function f(χ), its minimum can be obtained by solving
∇χ f(χ) = 0 for χ.
Proving that the error criterion function defined here is globally con-
vex is left to the reader.

First, let’s define and expand the error criterion according to (6.2) as

ε(T )
def
= Eλ

{
‖λ− Φα̂‖2

}
,

= Eλ
{
‖λ− ΦTλss‖2

}
,

= Eλ
{
‖λ− ΦTSλ‖2

}
, (Using 1.)

ε(T ) = Eλ
{
λTλ

}
− 2 tr

(
Eλ
{
λλT

}
ΦTS

)
+ tr

(
Eλ
{
λλT

}
STTTΦTΦTS

)
, (Using 2. and 3.)

ε(T ) = tr(Rλ)− 2 tr
(
SRλΦT

)
+ tr

(
SRλS

TTTΦTΦT
)
. (Using 4.)

Then, in order to find the optimum transformation, it should be found a T
such that

∇ ε(T )
∣∣
Topt

= 0dim(T ).

Hence, the minimum error according to the just defined measure is found
using 5. and 6., by

∇ ε(T ) = −2ΦTRλS
T + 2ΦTΦTSRλS

T,

∴ Topt =
(
ΦTΦ

)−1
ΦTRλS

T
(
SRλS

T
)−1

,

where
(
ΦTΦ

)−1
ΦT could also be written as Φ+, i.e. the pseudo-inverse of

the basis function matrix Φ.
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By the use of the linear transformation T, if only the components of λ extracted
by the matrix S are actually computed at the receiver side, then the expression
in (6.1) gives us the optimum α̂ estimator according to the criterion in (6.2).
Therefore, enabling us to express the likelihood function approximation in (5.1)
based on the few computed likelihood evaluations previously denoted by λss as:

λ̂
(
ε1, ε2

)
= λT

ssT
Tφ
(
ε1, ε2

)
. (6.3)

Here again, bold letters denote column vectors. Specifically, φ
(
ε1, ε2

)
refers

to the vector formed by appending the basis functions evaluated at
(
ε1, ε2

)
in a

column vector fashion. Also of great importance for the use of gradient depen-
dent optimization algorithms in ML estimation, the gradient for the likelihood
approximation is straightforward.

By (6.3) the gradient of such a function can be expressed analytically in terms
of the Jacobian matrix of φ

(
ε1, ε2

)
, denoted by Jφ

(
ε1, ε2

)
, as

∇λ̂
(
ε1, ε2

)
= Jφ

(
ε1, ε2

)
Tλss, (6.4)

where it can be seen that the complexity of evaluation, either for the likelihood
approximation or its gradient, depends mostly on the selected set of basis functions.

6.3 Results

Based on the simulation setup (Section 6.1), a Monte-Carlo simulation is built
in order to measure the actual estimation performance of the proposed method
compared to joint and independent ML estimation (see Section 4).

Particularly, performance simulations are carried over 10-sized, 17-sized, 26-
sized and 37-sized bases for setups 1 and 2 (see Table 6.1). Recall that the number
of functions in the base is a square number plus one due to the constant term
accounting for the mean of the likelihood function.
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Figure 6.2: Surface and Contour Plot for λ and its Approximation.
Basis: 10-Sized Sinc.

Figures 6.2 and 6.3 show on the left a surface plot for different realizations
of the likelihood function at 10 dB of SNR (see Section 2.3 for SNR derivation).
Furthermore, at the right of each figure, it is shown the contour plot for the
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corresponding likelihood realization and its approximation based on the algorithm
developed throughout this project.
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Figure 6.3: Surface and Contour Plot for λ and its Approximation.
Basis: 17-Sized (top), 16-Sized (middle) and 37-Sized

(bottom) Sinc.

The behavior observed in Figures 6.2 and 6.3 is just a pictorial confirmation
of the expected results from the analysis using the ξ value on Section 5.4 (see
Figures 5.6 and 5.7). It is easy to see how the bigger the basis, the better the
approximation. Nonetheless, it must be noted that along with the size of the basis,
the required number of evaluations to the likelihood function grows respectively.

However, as mentioned in Section 5, the ξ value was only a first approach when
looking for a performance measure. The latter, due to the fact that an analytic
expression can be derived for it (see ξ value derivation in Section 5.3).

On the other hand, because it would be rather complicated to find an expres-
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sion for the estimation performance of the proposed method, it must be evaluated
through Monte-Carlo simulation. In order to do so, many realizations of the likeli-
hood process are to be generated. Then, an optimization method is to be used over
the likelihood and its approximations and, finally, the root mean square estimation
error is to be approximated through its empirical mean for different SNR.
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Figure 6.4: RMS Estimation Error for Independent ML, ML and
Several Likelihood Approximations. Setup 1

Figure 6.4 shows the joint ML performance in solid blue color for setup 1.
Also, independent estimation performance is shown (in solid orange color). As it
would be expected, the methods giving use of approximations to the likelihood lie
in-between (performance wise) the joint and independent ML.
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Figure 6.5: RMS Estimation Error for Independent ML, ML and
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Meanwhile, Figure 6.5 shows the same simulation for setup 2. Both, simula-
tion for setup 1 and setup 2, exhibit a saturation on the approximation-oriented
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estimations (see dashed lines) depending on the size of the base.
Saturation in the logarithmic scale is a behavior exhibited due to the resid-

ual non-captured energy of truncated functions and explains why this methods is
powerful when aiming reduce computational complexity on constrained systems.
As an example, if there is no need in reducing frequency offset below 10−2 us-
ing setup 2 according to some criteria, it would be a waste of resources (not to
mention probably unfeasible) to implement joint ML estimation; still, independent
ML estimation would not be good enough. Hence, using the proposed method for
17-Sized basis (see Figure 6.5) would be a more appropriate solution.

In general, considering the reduced computational complexity and increased
performance of the proposed method compared to joint ML and independent ML
estimation (respectively), Figures 6.4 and 6.5 clearly exhibit the performance-
complexity trade-off among these two methods via the proposed one.

Finally, in order to have a better insight on what happens when the SNR is
modified (from a functional decomposition point of view), Figure 6.6 shows the
average power contribution per basis function for setup 1 (up to the first 5 functions
in the orthogonalized Sinc basis).
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Figure 6.6: Likelihood Process Average Power Contribution per
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Figure 6.6 can be seen as the power spectral density (PSD) when decomposing
the likelihood function using the Sinc basis for the first 5 orthonormal components.
This way, it is possible to identify some of the most contributing components.
Particularly, from the plot it can be seen an inverse relation between the constant
function contribution and the SNR.

The fact that most of the likelihood’s power is concentrated on the constant
function (which is the common component among all-sized bases) at low SNR
explains why as the SNR increases, the proposed method error deviates from the
true ML curve (which is our benchmark). Also, it explains that by increasing the
size of the basis, on the high SNR, the saturation level is controlled due to the
better ability of the approximation to capture the residual non-constant power.



Chapter 7
Conclusions and Future Work

To conclude it is important to note that the goal on the development of the algo-
rithm was accomplished. In particular, the achieved likelihood function’s low di-
mensional approximation allowed us to control the complexity-performance trade-
off between the independent and joint ML estimators.

In order to draw a comparison to the developed method throughout this thesis,
Table 7.1 summarizes the main differences among the studied methods and the
proposed one. K stands for the number of users at the transmitter side, for our
case K = 2.

ML Estimation Method Comparison

Method
Likelihood
Evaluation
Complexity

Optimization
Complexity Performance Notes

Independent
ML O

(
N3

FFT

) K searches on
one dimension

each

Worst among
studied

It is possible to
estimate only
one frequency

offset.

Proposed
Method

Determined
by basis

(Overhead
due to α

computation)

Search on K
dimensions

Determined by
basis

Analytic
gradient and

Hessian
available at no

cost.

Joint ML O
(
N3

FFT

) Search on K
dimensions

Best among
studied

Gradient hard
to pre-compute,

complex to
estimate
on-line.

Table 7.1: Estimation Methods Comparison. K stands for the
number of users at the transmitter side.
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34 Conclusions and Future Work

Even though the number of users assumed along this project was restricted to
two, the derivations upon which the proposed method relies on generalizes to the
general case of K users (having in mind the problem grows in complexity according
to what was summarized in Table 7.1).

As observed in Table 7.1, the main benefit of the proposed low dimension
approximation method lies on the possibility of controlling performance and com-
plexity of estimation through the selected decomposition basis (see Section 5.3).

It must be noted that the approximated function used by the proposed method
is not globally convex and, particularly, not convex around its optimum. The
latter, because it approximates the joint likelihood which by nature exhibits a
multi-modal behavior.

Most importantly, the non-convex region around the optima determines the
estimation error limit (and hence the performance for the proposed method in Ta-
ble 7.1) controlled via the size of the basis function on the implemented simulator.

Likewise, complexity was controlled by the size of the basis function as it
determines the minimum number of likelihood evaluations required, as seen in
Section 6.2.

Finally, two things were thought of as future work. First, keep in mind
that the constant function has such an strong influence on the approximation
(specially on the low SNR regime). Thus, ideally there should be a way to pre-
compute the constant term based on the model used. In particular, by obtaining
the mean of the optimized function in (4.4), a better fit of the proposed method’s
estimation performance in Figures 6.4 and 6.5 would be expected. Unfortunately,
this would not affect the saturation level as the constant term influence reduces
when the SNR is increased (see Figure 6.6).

Second and last, what influences the approximation the most is the richness of
the base and the density of evaluations in the (ε1, ε2) space. Hence, an extension
to the originally proposed method can be envisaged. The idea would be to increase
the density of evaluations around the optimum by conceiving a successive approx-
imation algorithm. Therefore, the modification would consist of approximating
the likelihood, optimizing, then approximating around the estimate and repeating
the process. A representation of the first successive approximation is shown in
Figure 7.1.
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