
�report� � 2016/5/19 � 17:46 � page 1 � #1

Scalable Methods for Spam Protection in

Decentralized Peer-to-Peer Networks

Jonathan Wernberg

ada09jwe@student.lu.se

Department of Electrical and Information Technology

Lund University

Advisor: Paul Stankovski

May 19, 2016

�report� � 2016/5/19 � 17:46 � page 2 � #2

Printed in Sweden
E-huset, Lund, 2016

�report� � 2016/5/19 � 17:46 � page i � #3

Abstract

Decentralized peer-to-peer networks offer several benefits over the today more
commonly employed centralized client-server networks. Peer-to-peer networks al-
low for seamless distribution of web content over all participating nodes. This
makes the hosting and access of web content much more fault tolerant, secure,
faster and cheaper. However, today’s peer-to-peer networks suffer from the in-
ability to effectively protect against spam. This has led to the web becoming
increasingly centralized instead.

Methods to protect against spam on small peer-to-peer networks already ex-
ist. However, they all fail to scale up to large networks with a large number of
participating peers. In this master thesis work, a new spam protection method
based on design structures known to scale efficiently has been created. In order to
evaluate how well it protects against spam, it is through simulations compared to
what currently is the state of the art in that regard.

The proposed method is found to provide noticable spam protection and scale
up with ease. Although the method still lags behind the less scalable methods in
terms of effectiveness in keeping spam out, in certain cases it is the only realistic
option to implement. This master thesis work takes one additional step towards
enabling the web to become more decentralized - meeting the requirements of the
future.

i

�report� � 2016/5/19 � 17:46 � page ii � #4

ii

�report� � 2016/5/19 � 17:46 � page iii � #5

Foreword

This thesis was carried out as part of fulfilling a Degree of Master of Science
in Engineering, Computer Science and Engineering. It was carried out at the
faculty of engineering, LTH, at Lund University. I want to thank my supervisor
Paul Stankovski, who has assisted me with valuable input throughout the thesis
process.

I also want to thank my parents for giving me all the moral and financial
support I needed to complete this education.

iii

�report� � 2016/5/19 � 17:46 � page iv � #6

iv

�report� � 2016/5/19 � 17:46 � page v � #7

Table of Contents

1 Introduction 1

1.1 Previous Work . 2
1.2 Methodology and Goal . 4
1.3 Delimitations . 6
1.4 Thesis Outline . 6

2 Theoretical Background 7

2.1 The Importance of Captchas . 7
2.2 Distributed Hash Tables and Kademlia 8
2.3 Diversity of Interests . 9
2.4 Spam Protection Using Trustlists 10
2.5 The PKI and CA Model . 11
2.6 Directed Graph of Trust Relations 12
2.7 Shallow Graph and Web-of-Trust 14
2.8 Searching the Trust Graph . 15
2.9 Revocation of a Trust Relation . 16
2.10 Identifying a Spammer Collective 17

3 The Simulator 19

3.1 Peer Behavior and File Model . 19
3.2 Simulating Spam Protection Methods 21
3.3 Simulating Spammers . 22
3.4 Metrics . 23

4 Spam Protection Methods 25

4.1 New PKI-Based Method . 25
4.2 Shallow Version of the PKI-Based Method 27
4.3 Web-of-Trust Trustlist-Based Method 27
4.4 Time Complexity . 29

5 Results 31

5.1 Primary Results . 31
5.2 Larger Network Sizes . 33
5.3 Larger Fraction of Spammers . 35

v

�report� � 2016/5/19 � 17:46 � page vi � #8

5.4 Shorter Validity Times . 36
5.5 Effect of Approximations . 37

6 Conclusions and Discussion 39

6.1 Why the PKI-Based Method Works 39
6.2 Comparison of the Simulated Methods 40
6.3 Discovered Issues . 41
6.4 Future Work . 42

References 45

vi

�report� � 2016/5/19 � 17:46 � page vii � #9

List of Figures

1.1 Illustrative figure of a client-server and a decentralized network . . . 1
1.2 Triangle showing content visibility, effectiveness and scalability 5

2.1 A directed graph of trust relations 13
2.2 A shallow trust graph . 14
2.3 A web-of-trust trust graph . 14
2.4 Trust graph illustrating the problem of isolating spammers 18

4.1 Example of how to calculate effective scores for web-of-trust 29

5.1 Results: Effectiveness of simulated spam protection methods 32
5.2 Results: Effectiveness when network size increases 34
5.3 Results: Effectiveness when the fraction of spammers increases . . . 35
5.4 Results: Effectiveness for lower certificate chain validity times 36

vii

�report� � 2016/5/19 � 17:46 � page viii � #10

viii

�report� � 2016/5/19 � 17:46 � page ix � #11

List of Tables

3.1 Overview of the simulated peer behavior 21

5.1 Parameters used in the simulator, and their default values 33
5.2 Results: How many captchas users must solve on average 33

6.1 Summary and comparison of the spam protection methods 41

ix

�report� � 2016/5/19 � 17:46 � page x � #12

x

�report� � 2016/5/19 � 17:46 � page xi � #13

Terminology

Here some terminology used throughout the thesis is described, especially focusing
on the words there the precise meaning or distinction need to be clear to fully
understand the thesis.

User The real user of a network, typically a real person.

Network Any cluster of computers connected to each other on the application
level. Figure 1.1 shows an example of a client-server network and a peer-to-
peer network. A computer can participate in multiple networks at the same
time.

Server A computer that forms a permanent key part of a network, without which
some or all functionality of the network would stop working.

Client A computer temporarily participating in a network, typically to access or
post resources on the network. A client joins the network by connecting to
a server or another client, and can leave the network at any time.

Peer A client on a peer-to-peer network.

Account A virtual user on a client-server network, typically identified by a nick-
name or e-mail address, and authenticated using a password. A real user
can have zero or more accounts on the same server. Accounts do not have
to be tied to a user’s real identity, they can be pseudonymous.

Identity A virtual user on a peer-to-peer network, typically identified by a public
key and an associated nickname, and authenticated using the private key
belonging to the public one. A real user or client can have zero of more
identities on the same peer-to-peer network. Identities do not have to be
tied to a user’s real identity, they can be pseudonymous.

Web Content Any content served on a network, such as webpages, messages and
files.

Spam Any unsolicited web content, such as mislabeled files, misleading informa-
tion, advertisement, virus and malware, automatically generated messages,
messages without actual content, defamatory messages, and so on.

Spammer A user posting spam.

Honest User A user who is not a spammer, and never posts spam.

xi

�report� � 2016/5/19 � 17:46 � page xii � #14

xii

�report� � 2016/5/19 � 17:46 � page 1 � #15

Chapter1
Introduction

Peer-to-peer networking has seen some widespread use throughout the years, from
messaging platforms to file sharing. But peer-to-peer networking was always meant
to be so much more.

Figure 1.1: Illustrative figure of a client-server network to the left,
and a decentralized peer-to-peer network to the right. An edge
represents a connection.

A peer-to-peer network is any network where the clients are communicating
with each other, instead of all communication going through a central server. This
has many benefits. First off, the server does not need to store or transfer large
files to a large number of clients. By allowing clients to store and transfer the files
among each other, server costs are heavily reduced. Not only that, but transfer
speed and response times are also improved since a large file can be downloaded
or streamed from many clients at once, including clients that are much closer to
you than a central server would be [11].

But it does not stop here. Since the transfers take place between clients, the
transfer speed and response times are not affected much if some clients disappear
or become unresponsive. In fact, even the server may become inaccessible without
any active transfers being interrupted or even affected. This makes peer-to-peer
networks very fault tolerant and robust against attacks.

One further improvement on peer-to-peer networks are so-called fully decen-
tralized peer-to-peer networks, which is what is being considered in this thesis. On

1

�report� � 2016/5/19 � 17:46 � page 2 � #16

2 Introduction

those networks there is simply no server or central point at all, not even an ad-
ministrator or moderator. Instead all communication take place between clients,
and the users own and maintain the network. Since there is no longer any server,
hosting is the cheapest possible, and since there is no single point of failure, it is
the most secure against targeted attacks.

Unfortunately, the web today is for the most part built on traditional client-
server networks instead of peer-to-peer networks. This results in very visible prob-
lems. Both large and small websites are often forced to feature advertisements or
beg for donations to cover their running costs, a problem that is only worsened
since they often need to have many regional servers thoughout the world to keep
access times and speed sufficiently fast. It is also not unusual that large websites
and infamous websites have to endure various kind of attacks, or risking both the
availability of the service as well as users’ private data. Many websites fail to cover
the high costs, and are forced to shut down.

Peer-to-peer networks have successfully proved to make distribution of web
content much cheaper. BitTorrent is probably the most well-known example, be-
ing employed by both open source projects and commercial ones to distribute
software and software updates, and employed by websites to distribute large files
in general [3][12]. Attempts are also made about every second year to design a
new protocol proclaimed to replace or work alongside HTTP as the core protocol
for the web, protocols designed entirely with peer-to-peer technology [2].

However, all these peer-to-peer networks have one thing in common. They
still depend on a server. The user who wants to access some content must know a
trusted handle to this content beforehand, such as a cryptographic hash or public
key that signs the content. This trusted handle the user usually finds on a server
outside of the network, and thus these peer-to-peer networks have avoided the need
to implement any spam protection at all. For BitTorrent, that trusted handle is
the torrent file or magnet link.

The problem with making a fully decentralized peer-to-peer network is to find
a way to distribute such handles in a searchable way without having to rely on a
central server. To make this practical, there absolutely must be a way to filter and
block spam. Spam may distract, provoke or even mislead the user. In sufficient
large quantities, the user may not even see the legitimate content among all the
spam. The inability to block spam on a decentralized network is one of the major
things that is preventing peer-to-peer networking from replacing the legacy client-
server model, making the web ready for scaling up to future needs.

1.1 Previous Work

The problem with implementing spam protection on peer-to-peer networks is a
hard problem and ongoing research. The spam protection methods must both
be effective in blocking spam, and scale to a very large number of users, this all
while not risk punishing good users. The current state of the art that is actually
implemented in real fully decentralized peer-to-peer networks is summarized below.

One file sharing software developed in 2007 uses a gossip protocol where it
tries to find peers which are downloading or sharing as many files in common to

�report� � 2016/5/19 � 17:46 � page 3 � #17

Introduction 3

you as possible, and use what other files they also are sharing as an indication of
what you are likely to like. A spammer will have a hard time predicting what files
it should claim to have in common with you, and by guessing, different spammers
guesses are claimed to zero one another out in the long run. This system is very
fast and scales to very many users, but does only give a partial view of the network
as it is necessary to keep a size limited list of common files discovered, files which
are centered around your current interests. Without this size limit, all spam would
be in that list too.

Another file sharing software developed in 2006 also acknowledges the spam
problem, but takes the controversial step to solve this problem by releasing its
client as closed source, with various obfuscation techniques applied to the binary.
By putting various locally enforced limitations and implementing a distributed
upvoting/downvoting system, the client software as such is useless to a spammer,
any spam will be downvoted quickly. Keeping the system closed source did prove
to raise the cost for spammers very much, enough to discourage all spamming. To
become useful to a spammer, someone must first reverse engineer the obfuscated
protocols or the obfuscated client, or the spammer will be left unable to upload
many files or give more than one score per file. But once reverse engineered all
spam resistance will be broken.

A more recent file sharing software developed in 2012 is instead using a tech-
nique based on so-called trustlists. There are a few so-called pretrusted identities
which publish trustlists that are replicated on every node in the network. These
trustlists are cryptographically signed, and contains a list of all other identities
that are allowed to publish files on the network. Each published file entry is signed
by the uploader, and only trusted by others if that uploader’s public key is in one
of the pretrusted identities’ trustlist. You can be added by contacting one of the
pretrusted identities through some out-of-band means and ask them to add your
key, and they will remove you again if you start spamming. Although very effective
in keeping out spam, this method requires every node to know about every pub-
lishing identity. It also puts an unreasonable moderation burden on the pretrusted
identities if the network grows. The method is decentralized in the sense that any
user can substitute the default pretrusted identities in their client to anyone else,
if they know the public key of someone they trust does the job well.

A forum system developed before 2008 has implemented a more complicated
trustlist scheme often referred to as a “web-of-trust”. You assign positive or neg-
ative scores to identities, and publish these scores in your own trustlist. In order
to find out which identities are trusted, you recursively download signed trustlists
from those who you trust, and calculate weighted trust scores for all identities
based on transitive trust. Solve a captcha for any already trusted identity to be-
come added in their trustlist with a low score. If anyone trusted gives you negative
score for spamming, it outweights your captcha score and you become distrusted.
This system does provide very good spam protection without any node having to
perform any significant moderation burden. This system has also proved to give
an almost uniform view of what constitutes spam even as there are no common
pretrusted identities, and it has also proved to be very resistant against any identity
getting too much influence on what constitutes spam. But it requires every node
not only to know about each publishing identity on the network, but also to keep

�report� � 2016/5/19 � 17:46 � page 4 � #18

4 Introduction

up-to-date copies of their trustlists and frequently recalculate trust scores, which
generates unreasonable amounts of traffic, storage and computational overhead as
the network grows.

To clarify, having to know about every publishing identity is a problem, as
the list must be kept synchronized at all times, and the number of publishing
identities is almost the same as the number of peers on the network. On file-
sharing networks for example, measurements show that about 75% of all peers are
publishing files [9], and this number should be comparable for other kinds of peer-
to-peer networks. This results in way too much storage and bandwidth overhead
when the number of total active peers are reaching the millions.

Papers have also been published proposing possible spam protection methods.
Some notable examples are mentioned below. Note that some of these papers
talk about reputation systems rather than spam protection, but are using the
reputation systems to combat spam.

EigenTrust (2003)[5], which is inspired by the famous PageRank algorithm
used by search engines to avoid spam, seems to be what spurred most of the re-
search that does exist for spam protection in peer-to-peer networks. It is based on
score calculations and transitive trust much like the web-of-trust scheme described
above, but the score recalculations are done in a distributed way so that not ev-
eryone needs to have synchronized copies of all trustlists. EigenTrust, as described
in the paper, does however depend on a central component for Sybil protection.

HonestPeer (2014)[6] is a recent improvement of the original EigenTrust al-
gorithm. This paper also references several other papers analysing the original
EigenTrust algorithm, and proposing improvements thereon. However, neither
EigenTrust, HonestPeer or any other improvement seems to have solved the scal-
ability problem. They still require that every node knows all identities that are
allowed to publish content.

The closest to anything scalable seems to be the system described in another
paper (2009)[4]. Instead of keeping a list of all trusted identities locally, a query is
made to the network when the trustworthyness of a certain peer must be assessed.
Even if this would still be costly if this was applied to the returned search results, as
there are many peers that must be assessed, the cost would not increase drastically
with the size of the network. The system, as described in the paper, also relies on
a central component for Sybil protection.

To summarize all of this, all spam protection methods proposed to this date
have serious problems one way or another. It seems the best one can do is to trade
one out of content visibility, effectiveness and scalability to get the other two, see
Figure 1.2.

1.2 Methodology and Goal

When reading through papers on the subject and looking at the actual imple-
mented spam protection methods, one thing was missing. No one seems to have
performed any research on how good spam protection methods based on archi-
tectures known to scale seamlessly to a large number of users achieve. One such
architecture is the PKI/CA architecture used on the web today to prove associa-

�report� � 2016/5/19 � 17:46 � page 5 � #19

Introduction 5

Content
Visibility

Effectiveness Scalability

Figure 1.2: The best today’s spam protection methods for peer-to-
peer networks have achieved is two out of the three properties in
the triangle. Content visibility means that peers should be able
to see most non-spam content. Effectiveness means most spam
content is blocked. Scalability means algorithms must stay fast
and moderation burden must stay low for all participating peers
even if the network consist of millions of peers.

tion between public keys and domain names. In this architecture the remote party
(server) can prove a statement to the first party (client), without the first party
having to contact anyone else to verify it. This is done in a way that does not
hinder visibility, and it does undoubtedly scale to a very large number of servers.
If it turns out that a spam protection method based on it is effective in blocking
spam, all properties of the triangle in Figure 1.2 are gained, and the spam problem
in peer-to-peer networks would be finally solved.

With this in mind, the goal of this master thesis work was defined. The goal
is to design a new spam protection method inspired by the scalability properties
of the PKI/CA architecture, and through simulations answer the question of how
good spam protection this new method gives compared to a web-of-trust-based
trustlist scheme and no protection at all. This should give a hint about whether
such new methods can provide good spam protection, and establish a reference
that can be improved upon in the future. For the comparison a web-of-trust-
based trustlist scheme was selected, as that one seems to currently be the method
that provides the best spam protection for decentralized peer-to-peer networks,
albeit not algorithmically scalable.

The new spam protection method was carefully designed based on knowledge
gained from courses taught at LTH in web security and algorithm complexity, as
well as knowledge gained from looking at the current state of the art of spam
protection in decentralized peer-to-peer networks.

A simulator was written mimicking a typical modern file-sharing peer-to-peer
network, and this spam protection method as well as the two references to compare
against were implemented and simulated.

�report� � 2016/5/19 � 17:46 � page 6 � #20

6 Introduction

1.3 Delimitations

To limit the scope of this master thesis work, making it more manageable, some
delimitations were put in place. First, only a file-sharing network is considered
and simulated in this thesis. This choice was made because there exists more
information and data about file-sharing networks than other kinds of peer-to-peer
networks. This limitation should not pose a problem with regard to generality.
Regardless of the kind of peer-to-peer network, the problem with designing spam
protection methods is the same, and hence methods designed for one kind of
network should be adaptable to other kinds of networks with minimal changes.

Second, only a network based on distributed hash tables (DHTs) is simulated.
This since basically all peer-to-peer networks of modern age build on some kind of
DHT in order to make the network itself efficient and scalable to a large number
of participating peers without sacrifying content visibility. To make an efficient
and scalable spam protection method, the spam protection method must be im-
plemented on top of an efficient and scalable network, like this one.

Third, only a peer-to-peer network where anyone can connect to anyone else,
and everyone is assumed to be strangers to one another, is considered. There are
other kinds of networks such as so-called friend-to-friend networks, where one only
connects to those that are already trusted to a certain degree. Those networks
typically do not work well unless several of your friends use them too, and stay
online all the time, but they do offer many opportunities for spam protection based
on this trust, which usually is transitive by nature.

1.4 Thesis Outline

The rest of this thesis is laid out as follows. Chapter 2 presents the theoretical
background needed to understand how the spam protection methods work and
why they must be designed as they are. In Chapter 3, the simulator is presented.
Chapter 4 presents the design of the simulated spam protection methods, and
Chapter 5 presents the simulation results. The conclusions and ideas for further
improvements are given in Chapter 6.

The reader is assumed to have basic knowledge about networking, public key
cryptography, hash tables and time complexity to fully understand the theory
presented in this thesis.

�report� � 2016/5/19 � 17:46 � page 7 � #21

Chapter2

Theoretical Background

Spam protection is a very complex problem, especially for peer-to-peer networks.
People capable of spamming usually have strong economical or political reasons to
do so, and are willing to break laws. In a sense, spamming is an attack against the
network where any weak spot will be exploited by the attacker to get the spam
through.

In this chapter, each aspect that has to be considered in order to create a
secure and effective spam protection method is explained, to the degree necessary
to understand why the spam protection methods in this thesis are designed the
way they are.

2.1 The Importance of Captchas

If you ever signed up for an account on a website or another web service, you were
probably faced with a so-called captcha, often an image of distorted letters that
you were asked to read out. This image is constructed in such a way that humans
can read it, but even the most advanced character recognition algorithm available
today will fail [8].

In order to gain maximum profit from spamming, a spammer typically writes
a computer program that automatically signs up for multiple accounts on various
web services and starts spamming. Once banned, the program will just sign up for
new accounts again, using some other plausible but fradulent account information.
But since the computer program cannot read the captchas, it cannot sign up for
accounts automatically. Instead the spammer is forced to manually solve captchas,
or hire someone that does [8]. Since only spammers face this issue, while legitimate
users do not, spamming starts becoming expensive, and the more expensive it gets,
the fewer spammers will still stay profitable.

One may think that restricting the number of sign ups per IPv4 address
would be a good alternative. IPv4 addresses are becoming increasingly sparse,
and therefore increasingly expensive to obtain. But IP addresses will always be
much cheaper for a spammer than for legitimate users, as spammers can reuse
the same IP address to automatically sign up once to and spam on every single
website on the Internet. Futhermore, spammers are ready to deploy malware and
infect other computers on the web to get hold of more IP addresses. Captchas do
not have these problems, so they are preferable in this context.

7

�report� � 2016/5/19 � 17:46 � page 8 � #22

8 Theoretical Background

Another alternative would be requiring a valid Hashcash [1], in other words
requiring a computer to perform a heavy calculation to sign up instead of forc-
ing the user to solve a captcha. However, custom-built compute devices that can
calculate Hashcashes more than 10,000 times faster than a powerful desktop com-
puter are selling cheap, yet again putting the spammer in a advantageous position.
Requiring human work through a captcha today remains the best countermeasure
against spammers.

It is also worth noting that requiring users to sign up for accounts are abso-
lutely necessary for captchas to work effectively. Legitimate users must be able to
keep a persistent identity without being forced to solve any more captchas, other-
wise legitimate users would not have an advantage over spammers. The account
is this persistent identity on client-server networks.

On peer-to-peer networks peers are solving captchas generated by other peers.
Therefore the captchas must be of a kind that works even if the spammer has
perfect knowledge about the captcha system and can generate captchas of its own,
since the whole captcha system is distributed as part of the peer-to-peer software.
Captchas with distorted letters are of this kind, but as the day is approaching when
character recognising algorithms will become better at recognising characters than
humans, new captcha systems must be devised. As for keeping a persistent identity,
this must be solved by the actual design of the spam protection method.

Finally, requiring captchas or other proof-of-work is also important to protect
against so-called Sybil attacks [13]. Sybil attacks are attacks where a malicious user
creates extremely many identities in order to get a large influence on the network.
Sybil attacks can also possibly be used to cause a denial-of-service attack. If peers
need to store data associated with those identities, they may become overloaded.

2.2 Distributed Hash Tables and Kademlia

Distributed hash tables (DHTs) are the fundamental building block for locating
information in a completely decentralized peer-to-peer network. On a decentral-
ized peer-to-peer network there is no server or other central point on which all
information is gathered. Because of this, locating information becomes a problem.
Distributed hash tables are a way to solve this, while only requiring each peer to
know about a tiny fraction of all available information and a tiny fraction of all
participating peers.

In a distributed hash table, all information is separated into pairs of a key
and a value. The key is something the peer looking for some information already
knows, and the value is what is not known. For example, the key may be a keyword
to search for, and the value may be a file or some other resource that contains that
keyword. Another example is that a key is the ID of a certain file, and the value
is the address to a peer that has this file. The key is typically hashed to get a
number. This number points out a particular location in the peer-to-peer network.
There are typically one or more peers that are responsible for information in that
location. The peer that wants to locate some information goes to that location
and will find all values that belong to the key. The act of locating such values
for a key is called a lookup. A lookup usually returns several values. The act of

�report� � 2016/5/19 � 17:46 � page 9 � #23

Theoretical Background 9

storing a new value for a key so other clients can find it is called publishing.

The actual process of going to a certain location in the DHT requires contacting
multiple peers in several steps. This is required since no peer knows more than
a tiny fraction of all participating peers. In each step, the peer performing the
lookup discovers the addresses to other participating peers that are more likely to
know who is responsible for the final requested location.

The purpose of distributed hash tables is to distribute all information as evenly
as possible throughout all participating peers, and to replicate information just
enough so that it will not disappear because of leaving peers. By doing this,
each peer should only experience a very small fraction of the load a small server
otherwise would have seen. Yet, the network can hold an enormous amount of
information, and any peer can locate any of this information by performing a
lookup for it.

One particular DHT that is commonly employed on real peer-to-peer networks
is Kademlia [7]. Kademlia has a proof that a lookup requires contacting at most
𝑂(log 𝑛) peers on a network with 𝑛 participating peers. Kademlia is also robust
in situations where many peers continuously join and leave the network, and some
peers act maliciously. DHTs are what allowed peer-to-peer networks to scale be-
yond a few thousand peers to many millions of peers. If any peer would have been
required to know about most participating peers or most available information,
this would not have been possible. This issue is similar to the issue of spam pro-
tection, and that is the reason why spam protection must be implemented on top
of a DHT network, or similar, to scale as well.

Finally it can be noted that DHTs are only suited for publishing short messages
as information. They are not suited for publishing actual file data, for example.
Instead handles to the data are published. They contain the file name, a cryp-
tographic hash over the data, and information about which peers are holding the
file. Actual file data can then be transferred using any standard file transfer mech-
anism. The DHT networks do not provide any spam protection of themselves.
The handles published can point to files being spam, or the handles can be spam
themselves.

2.3 Diversity of Interests

On a small network, there are probably only a few interests being represented. As
long as the network is small, almost only people who have these particular interests
are going to use the network. In fact, interests exhibit a clustering effect, where
two persons that have a certain interest in common are likely to have more similar
or related interests in common. So even if there are several interests represented
on the network, the users of the network will access web content related to most
of them.

Take for example a smaller Internet forum. There are typically multiple
boards, each of which is related to a particular narrow interest. Each board then
has threads in which users discuss things related to that interest. The various
boards on such a forum are typically covering interests that are similar or at least
related to a certain extent. This makes all the boards together cover a wider array

�report� � 2016/5/19 � 17:46 � page 10 � #24

10 Theoretical Background

of interests, but still clustered. A person frequenting a certain board on that forum
likely frequents some of the other boards too, due to sharing those interests too.
This makes the work easy for a moderator, the person tasked with detecting and
banning spammers and other misbehaving users. The moderator is likely sharing
most of those interests, and will thus naturally read most of the boards. Two
moderators together will likely cover all boards. A spammer that only targets one
particular board will therefore still be detected and banned.

However, when the network increases in size it gets problematic. Now, there
are very many interests being represented on the network. So many that most
interest are in fact not related at all anymore. Persons with very diverse interests
are now using the network. This is the case for large social media sites, and the
web in general. But it is also the case for existing large file-sharing networks, to
take a peer-to-peer example. Several moderators, let alone a single one, can no
longer cover all represented interests. Not only would that require too much work,
but it would require the moderators to go through or download content that is not
one bit interesting to them. They would not do that naturally, or even voluntarily.
In fact, they may not even be able to judge what is spam in the context of interests
far from their own.

This problem is important for a spam protection method to solve. A spam
protection method where only the judgement of pretrusted identities are used
will never work. One example was mentioned in the previous work section. The
pretrusted identities would then in a sense be moderators. When only a tiny
fraction of all interests are covered by moderators, the field is free for spammers to
spam without risk of being banned. A spam protection method must be designed
in a way where the judgement of users can be trusted, as opposed to only the
highly trusted moderators. There are multiple users for each represented interest
after all, so they would know if a spammer starts to spam there. But this issue is
tricky, as interests do not appear to form any hierarchy or other easily exploited
pattern.

Finally, it can be noted that one pattern has been observed related to interests
beside the clustering. Some interests are globally more popular than others [10].

2.4 Spam Protection Using Trustlists

Ignoring the scalability concerns, and just focusing on protecting a small decentral-
ized peer-to-peer network of a few hundred peers, a few spam protection methods
have successfully been devised and employed in real networks over the last 10
years. One concept that has proved to give methods blocking spam very well are
so-called trustlists. Methods based on trustlists may block spam as well as any
central web service with appointed moderators, while being entirely decentralized.

A trustlist is basically a signed list produced by a certain identity on the
network. The list contains the public keys of other identities that this identity
believes should be trusted to not spam. Sometimes the list also contains scores
asserting how trusted each of those identities should be. The trustlist is openly
published to the network, and peers can download and use it when judging other
identities. As trustlists are either propagated to most peers on the network or

�report� � 2016/5/19 � 17:46 � page 11 � #25

Theoretical Background 11

published on the DHT, they can be downloaded and used even when the identities
they are from are offline.

In the simpliest case, the pretrusted identities are the only ones publishing
trustlists. Let us say that a peer 𝑃 wants to perform a search for some web
content, but only wants to get web content published by trusted identities. Peer
𝑃 then downloads, beforehand, the latest version of each pretrusted identity’s
trustlist. Now, the peer 𝑃 performs the search. A list of results is returned
from the network. Each result entry is a tuple (data, 𝑄pubkey ,SIG(𝑄pubkey , data)),
where data is the actual web content or a handle to the web content, 𝑄pubkey is
the public key of the publisher, and SIG(𝑄pubkey , data)) is the signature on the
entry made by the publisher. The peer 𝑃 now checks the results and discards all
entries by public keys not mentioned in any of the previously downloaded trustlists.
The peer 𝑃 now verifies all signatures and also discards any entries with invalid
signatures. All that is left are the web content published by trusted identities.
As seen by this example, trustlists block spam by whitelisting identities that are
allowed to publish.

Of course, for good decentralization it is not enough that the pretrusted iden-
tities are the only ones publishing trustlists. Every identity, trusted or not, can
publish its own trustlist. How it works is described more precisely in a later sec-
tion, explained using graph theory. But essentially it works by using transitive
trust. Let us say that an identity 𝐴 trusts another identity 𝐵 to not spam. 𝐵 in
turn trusts another identity 𝐶 to not spam. If peer 𝑃 trusts 𝐴, that is because
𝐴 most likely is honest. So 𝑃 downloads 𝐴’s trustlist and uses it. But since 𝐴
in turn trusts 𝐵, 𝐵 is also likely honest. So peer 𝑃 also downloads 𝐵’s trustlist
and uses it too. Therefore 𝑃 will also trust content published by 𝐶. This is the
transitive trust.

Since an identity may go offline for a longer period, each published trustlist
also contains a date. If the most recent version of the trustlist from a certain
identity is too old, it may be ignored. Using outdated information may cause
identities that have begun spamming to still be mentioned as trusted to not spam.

2.5 The PKI and CA Model

On the web today, a public key infrastructure (PKI) is employed to allow servers to
authenticate themselves to clients. When a client connects to a domain name it has
never connected to before, it cannot at first know whether the server that responds
is actually authorized to perform communication on behalf of the domain. This
since the client does not have any prior information about what servers belong to
the domain. The server that responds may be an attacker.

In the PKI model the problem has been solved as follows, omitting the exact
implementation details. The client connects to the domain name, and an unknown
server answers. The client asks the server what its public key is, and then per-
forms a challenge-response protocol in which the server proves that it possess the
matching private key. Now the client knows a public key, and that the public key
and server belong to each other, but it still does not know if the public key, and
hence the server, belongs to the domain name.

�report� � 2016/5/19 � 17:46 � page 12 � #26

12 Theoretical Background

This is the key part of the PKI model. If the server is authentic, it can prove
that its public key actually belongs to the domain name. However, if the server
never was part of the domain, it will either fail at the challenge-response because
it does not know the well-guarded private key, or it will have to present a public
key for which such a proof cannot be made.

The proof basically works by having the server provide a valid certificate chain
back to a party who the client already trusts. In the PKI model those pretrusted
parties are called root certificate authorities. Any other intermediate party is just
called a certificate authority (CA). Let us say that 𝐶 is the server and 𝐷 is the
client. If 𝐶 wants to prove to 𝐷 that (𝐶pubkey , 𝐶domain) belong to each other,
it may provide that information signed by 𝐵, and provide (𝐵pubkey , 𝐵is_authority)
signed by 𝐴, where 𝐴 is pretrusted and hard-coded in the client’s software. 𝐷 does
not need to fetch any additional data, 𝐶 can provide it with the minimal amount
of data needed to prove a claim. Of course, if 𝐵 did sign the (𝐶pubkey , 𝐶domain)
information in error, or if the statement is no longer correct, 𝐵 can not retract
that statement unless 𝐷 queries 𝐵 too for verification. Same goes for 𝐴. In the
PKI model this is called certificate revocation, and is needed as the statements
may become invalid for example due to 𝐶’s private key leaking and thus no longer
being tied to the domain.

Without certificate revocation, the PKI process of proving statements is opti-
mal. A client does not have to contact one single party, even if it needs to verify
many statements with completely different certificate chains. Getting a statement
signed is also optimal, requiring contacting one single trusted party that performs
some checks of whether the statement is true and then signs the statement. How-
ever, with certificate revocations, the client must contact multiple parties for each
statement it verifies. The client must contact each party in the certificate chain up
to the root CA in order to check whether they have revoked their signature or not.
This makes it hard to verify more than a few statements in a timely manner. But
on the web for usual client-server communication where the number of statements
the client must verify is small, the PKI process has proved to scale to a very large
number of servers. Yet, the verification times are almost instanteous.

The PKI way of proving statements can be used for other things too, and
in other settings. For spam protection in peer-to-peer networks, one can prove
statements like (𝐶pubkey , 𝐶is_trusted) or (𝐶pubkey , 𝐶trustscore) instead. A peer that
has a valid such statement can then act as a CA itself, signing statements for
others. In peer-to-peer networks certificate revocation can not be implemented in
a good way, partly because peers are joining and leaving all the time, and partly
because each information lookup in the network usually returns many items, each
bundled with a statement that must be verified. So the options here are reduced to
limiting the validity of each certificate chain to a short amount of time, or making
sure the statements are of the kinds that stay valid forever.

2.6 Directed Graph of Trust Relations

One way to visualize what it means to be trusted to not spam in a peer-to-peer
network employing a spam protection method is illustrated in Figure 2.1. This

�report� � 2016/5/19 � 17:46 � page 13 � #27

Theoretical Background 13

𝑃

𝑃

𝑆 𝑆

𝑆

Figure 2.1: A directed graph of trust relations. A node with a 𝑃
indicates a pretrusted identity. A node with an 𝑆 indicates a
spammer. An edge indicates a trust relation, that an identity
trusts another one to not spam. The set of all trusted iden-
tities can then be found through a search from the pretrusted
identities. One such search result is highlighted above in solid.

is an example where an edge means totally trusted to not spam. There are no
edge weights. A new identity that wants to get trusted must contact any already
trusted identity, and may for example solve a captcha for that one. The contacted
identity will then add an edge, causing the new identity to become trusted by
everyone that performs a new search in the graph. Of course, a spammer may also
solve a captcha and become trusted. Therefore it is important that an identity can
remove an edge it has created, if the one the edge is pointing on starts spamming.

There is a strong similarity between a directed graph of trust relations and
how the PKI model handles trust. Pretrusted identities corresponds to root CAs
in the PKI model. Spammers correspond to attackers. The main difference is that
in the PKI model each edge also contains a statement as described in the PKI
section. In the PKI model, an edge is only added after a rigid check of the validity
of the statement has been performed by the party adding the edge.

The directed graph of trust relations and the PKI model are actually solving a
common problem, how to bootstrap trust. There absolutely must be a pretrusted
party. One cannot expect a new user to choose who to initially trust. First off,
many users are not knowledgable enough to judge that correctly. Secondly, as
a spammer may introduce any number of fake identities, selecting randomly or
by vague metrics will risk starting the search from a spammer. By bundling the
public keys of the pretrusted parties in the software, searches can always start from
known trusted identities. That spammers can introduce a large number of fake
identities should then no longer be any problem. Identities that are spamming or
that judge spammers as to be trusted will be isolated from the trust graph. Edges
to them are removed in response to spam.

Which identities that are pretrusted is usually selected by the one developing
the peer-to-peer software. The pretrusted identities must absolutely be highly
trusted. They also must be actively using the network, so that they can react if

�report� � 2016/5/19 � 17:46 � page 14 � #28

14 Theoretical Background

their trustees start spamming. If the pretrusted identities start misbehaving, the
software developer must change them in a software update. If there are several
softwares for the same network, most pretrusted identities are pretrusted in all of
them, to maintain compatibility.

2.7 Shallow Graph and Web-of-Trust

𝑃

𝑃

𝑆

Figure 2.2: A shallow trust graph. Only pretrusted identities may
create trust relations, limiting the depth of the graph to 2. An
example search is shown in solid.

𝑇

𝑆 𝑆

20

70

10 100

50

-30

100

Figure 2.3: A web-of-trust trust graph. Here an identity starts the
search in itself 𝑇 , rather than from any pretrusted identities.
Each edge also has a score. An identity may be reachable but
considered banned due to the weighted total score on it being
negative. An example is shown. The −30 score is weighted by
70, whereas the 50 score is only weighted by 20.

In the previous work section two trustlist-based systems were described, both
employed on real peer-to-peer networks today. The first one is a directed graph of
trust relations where only the pretrusted identities can add edges. This means the

�report� � 2016/5/19 � 17:46 � page 15 � #29

Theoretical Background 15

trust graph is shallow, see Figure 2.2. The problem with this is that the pretrusted
identities must moderate a very large number of edges each, including generating
all captchas. Increasing the allowed depth is crucial for distributing the load, and
making the system more decentralized.

The second trustlist-based system allows for a larger depth, but is more com-
plicated. This kind of trustlist-based system is sometimes referred to as a web-of-
trust. An example is shown in Figure 2.3. An identity can add edges with positive
or negative scores to other identities. Usually these scores are added manually
by the user. A positive score means the identity trusts that other identity to not
spam and to not add edges to spammers for free. A negative score means the
identity thinks that other identity is a spammer or is helping spammers. When
an identity is adding an edge to a new identity in response to a solved captcha,
that is usually added with a zero score. This is enough to make the new identity
discoverable with a non-negative score.

The exact way the web-of-trust system is designed may vary. Some imple-
mentations have two separate scores for each edge. One score means trust not to
spam. The other score means trust to not add edges to spammers for free. The
reason for this separation is that an identity may publish good web content while
being terrible at judging others. Another difference between implementations is
how deep into the graph scores are used. The whole graph is always followed
to discover all identities. However, score calculations are very heavy, especially
when the graph contains very many trust relations. If there are spammers on the
network that are likely to bother you, those you trust have likely been bothered
by them too, and scored them negative. Therefore, the score calculations may be
limited to stop already after depth 2.

An identity usually adds edges to the pretrusted identities with a positive
score by default. This is needed to bootstrap trust. This way the graph search
can be performed even before the identity has added any edges of its own. But
the fact that an identity does not have to trust the pretrusted identities is also
an important feature with regard to decentralization. An identity may choose
to distrust any or all of the pretrusted identities. By doing so, the identity may
start to see those that the pretrusted have scored negative, or hide those that the
pretrusted have scored positive. Choosing who one trust changes who is visible to
be closer to what oneself believe it should be.

2.8 Searching the Trust Graph

The web-of-trust system actually performs a search using knowledge about all
identities that are reachable in the search, as well as all edges. This information is
what is published in the trustlists described earlier. The trustlists are fetched from
the network as the search is performed. In a real network there may be millions
of identities, and hundred of millions of trust relations. This is the problem that
causes spam protection methods such as web-of-trust to not scale. Even retrieving
information about all trust relations becomes a big burden for each peer.

However, as proved by the PKI model, one does not need to perform this search
if there are common pretrusted identities. Let us say that the identity furthest

�report� � 2016/5/19 � 17:46 � page 16 � #30

16 Theoretical Background

to the right in Figure 2.1 wants to prove to someone that it is trusted. Then it
just provides a statement that it is trusted, signed by the previous identities hop-
by-hop, following the solid edges backwards all the way to the pretrusted identity.
As mentioned in the PKI section, for performance reasons this is optimal. But
in the case of web-of-trust, this cannot be done. The one that wants the proof
may not trust any of the identities in the provided chain directly. And to further
complicate things, negative scores must be taken into account. This means either
the prover or the one wanting the proof must resort to performing the slow search
using full knowledge about all identities.

There is one other thing to note about the performance aspect of searching
the trust graph. Any identity can create edges to any other identity as it wants,
without requiring captcha solutions. A spammer that has managed to become
trusted may create a very large number of fake identities. It can arrange these fake
identities in various ways in order to make peers waste a lot of time performing the
search. If each fake identity is pointing to the next one in a long chain, a signature
chain could easily be made to contain many thousands of signatures, making the
verification of the signature chain very heavy. The number of signatures in a
signature chain is the depth of the network, so it can easily be limited. A signature
chain with more than 10 signatures could be rejected as invalid. In the case of
web-of-trust where a full search must be performed, also the number of outgoing
edges from each identity must be limited. But doing that in a good way is not
trivial.

2.9 Revocation of a Trust Relation

One problem with all methods expressed as a trust graph is that only the identity
that has added an edge to another identity may remove that edge again. The
identity that has added an edge may fail to realize that the identity it points to
has started spamming. Even worse, the identity may even be offline and thus not
able to act. And the problem is not made better by the fact that edges usually
are added automatically in response to a solved captcha.

For web-of-trust this problem was solved by the scores. Any identity can give
a negative score to another one. The sum of weighted positive and negative scores
may become negative, thus any trust relation is effectively overridden. In the ex-
ample shown in Figure 2.3, the identity 𝑇 trusts the one who gave negative score
more than the one who gave positive, such that the weighted sum becomes nega-
tive. In most cases a spammer would not have been given any positive scores at all.
Even a single lowly trusted negative score would be enough to make the spammer
considered banned. This method works because a full search is performed.

However, if fetching trustlists and performing searches are to be avoided by
doing it the PKI way, scores cannot be used. Instead, the revocation problem
of PKI applies. As mentioned in the PKI section, the only reasonable way to
implement revocation is by putting a restrictive time limit during which a signature
stays valid. This forces each identity to renew its proof of being trusted often,
something that it will fail to do if the truster has removed its trust relation due
to spam.

�report� � 2016/5/19 � 17:46 � page 17 � #31

Theoretical Background 17

This is enough to ensure that the information of a removed trust relation is
taken into account within a reasonable time frame. This is also enough to handle
the case where the truster has gone offline, as the identity must renew its proof
from someone else instead. This means each identity may have solved captchas for
several other identities, renewing its proof from whoever is online at the moment.
However, it is not enough to handle the case where the truster fails to realize that
the identity has begun spamming. One reason the truster fails to do this is due to
the diversity of interests. The spamming identity may spam in interest categories
the truster does not know about. In fact, not even the truster’s truster, and so on
up to the pretrusted identity, may know about these interest categories.

For web-of-trust, the ones a peer starts the graph search from are usually
identities that have similar interests as the peer itself. Thus, negative scores can
be used and trusted. The diversity of interest is taken into account. But when
doing it the PKI way, there absolutely must be a way in which other peers can
inform a truster to remove its trust relation to a certain identity. This can be
solved either by introducing a shared notion of who are more trusted such that
more trusted identities can ban less trusted ones, or by allowing anyone to inform
a truster of an identity about mischief. Either way, this must be done in a secure
way such that no peer or identity ends up in a situation where it can affect what
is to be considered spam, such that non-spam is blocked or some spam is allowed.

Thus far this section has handled the case where the act of distrusting spam-
mers is problematic because of the diversity of interests. But something can also
be said about who should be the one deciding what constitutes spam. In the ideal
case each user can decide what is to be considered spam itself, and web-of-trust
allows for this. But when this is not possible, it can be worth thinking about
whether pretrusted identities can be trusted instead to decide what is to be con-
sidered spam. Another option would be to design the spam protection system in
such a way that what is considered spam is roughly decided by the majority of
trusted identities on the network.

2.10 Identifying a Spammer Collective

A spammer may create any number of fake identities. The spammer can create
edges between these fake identities in any way it wants, without having to solve
any captchas. These fake identities form a collective. In order for the collective to
become trusted, it is enough that any of the fake identities are solving a captcha
from a trusted identity. After that, they are all reachable in a search. In an
attempt to avoid becoming distrusted and having to solve a new captcha, the
spammer may behave perfectly honestly with some identities. See Figure 2.4 for
an example.

The problem is that a peer that sees spam published by an 𝑆 identity in
Figure 2.4 cannot know who to give a negative score to. Giving a negative score
to any of the 𝑆 identities or to 𝐼2 is pointless. The spammer can just throw them
away and create new identities, adding new trust relations from 𝐼1. Likewise,
giving a negative score to the identity before 𝐼1 will cause many identities belonging
to honest users to become distrusted. Regardless of whether negative scores are

�report� � 2016/5/19 � 17:46 � page 18 � #32

18 Theoretical Background

𝑃

𝐼1

𝐼2

𝑆

𝑆

𝑆

Figure 2.4: A graph of trust relations illustrating the problem of
removing the trust to a spammer collective. All 𝐼 and 𝑆 iden-
tities are owned by the spammer. Only 𝐼1 has actually solved a
captcha, the spammer can create edges to others for free. The
spammer is acting honestly with the 𝐼 identities, not publishing
any spam. If a peer sees that an 𝑆 identity is spamming, how
will it know who to give a negative score too?

added manually by a user or automatically, correctly identifying 𝐼1 to be the
offender is a tricky task.

One way to lessen the problem is to decrease the maximum allowed depth of
the graph. In that case, guessing who is the offender becomes easier. The graph
in Figure 2.4 has depth 5. With a maximum allowed depth of 10, there could be
many more 𝐼 identities. That would make it much harder to identify who to give
a negative score to.

This problem only exists if marginally trusted identities are allowed to add
new trust relations. In a shallow graph where only the highly trusted pretrusted
identities can add trust relations, this problem would not exist. However, as
mentioned earlier, shallow trust graphs are not a scalable solution. Also, on small
networks with only about 100 honest identities, the task of manually identifying
𝐼1 is much easier. This since the user may have knowledge about each identity’s
prior behavior and trustworthyness. This is no longer the case when the network
grows in size.

�report� � 2016/5/19 � 17:46 � page 19 � #33

Chapter3

The Simulator

In order to evaluate the effectiveness of the proposed new spam protection method,
it has to be simulated and the results compared to those of an existing spam
protection method. In the initial phase of this master thesis work, some research
was conducted to see what simulator frameworks already exist and how spam
protection has been simulated in the past. The purpose was to see how much can
be reused.

Unfortunately, no existing simulation framework suited for simulating spam
resistance was found. The simulation frameworks that do exist for peer-to-peer
networks are for simulating on a lower level, and it is not apparent whether they can
be repurposed for simulation on the level where spam protection is implemented.
The best lead on how spam protection can be simulated is what was given in
the EigenTrust paper [5]. However, EigenTrust did not consider the existence of
captchas and the fact the peers can recreate their identities, so some parts must
be done differently. For these reasons it was decided to write the simulator from
scratch, mostly based on what was given in the EigenTrust paper, but adapted to
consider captchas, DHT networks and other theory outlined in Chapter 2.

In this chapter the design choices for the simulator are presented. This chapter
also described what the simulator measures, how and why. The actual spam
protection methods are described in the next chapter.

3.1 Peer Behavior and File Model

The simulator is a discrete event simulator. Several peers are simulated, partic-
ipating in the same simulated network. Upon creation each peer schedules the
first action it will perform, such as go online, at a certain point in time. Once all
peers are set up, the simulator picks the scheduled event that will occur at the
earliest point in time, and the peer who scheduled that event performs its action
and then schedules the next action it will perform. This is done until a certain
number of virtual days have passed. Spam protection methods are simulated one
at a time. Results are gathered throughout the simulation runs or at the end of
each simulation run as needed.

The design of a peer’s behavior is complicated and is mostly based on the same
data and models [9][10] that EigenTrust used. The purpose is to have a model that
at least to a certain degree approximates the behavior of real peers, since that can

19

�report� � 2016/5/19 � 17:46 � page 20 � #34

20 The Simulator

affect how well different spam protection methods work. The exact model used is
explained below.

In order to properly model the diversity of interests described earlier, which
is important when simulating spam protection, the network is modeled to have
several content categories. A content category roughly corresponds to an interest
a person can have, such as “cute kitten pictures” or “science documentaries”. How-
ever, in the simulator it is just a number. When the simulation is first started,
each peer selects a few content categories they are interested in. Peers only ever
search for or publish files within their selected content categories.

Each file on the network is modeled to be uniquely identified by the content
category it belongs to and a rank within that content category. There can thus
be many files which belong to the same content category, but each file may only
belong to a single content category. No filenames are used. In order to capture the
fact that some files may be more popular than other files within the same content
category, the rank is used. A file’s popularity is modeled using a Zipf-law from
the file’s rank. This means the file with rank 2 is half as popular as the file with
rank 1, the file with rank 3 is one-third as popular as the file with rank 1, and
so on. This is argued in one of the aforementioned papers to capture the reality
well [10]. When a peer wants to search for a file within one of its selected content
categories, it randomly selects which file to search for based on their popularities.

A peer is not equally interested in all content categories it has selected. How
interested a peer is in each of its selected content categories is selected from a
uniform distribution. This means a peer may perform more searches within one
of its selected content categories than within another. However, when a peer is
selecting which content categories it is interested in, that is just like files modeled
using a Zipf-law from a rank. Each content category has a rank, and that decides
how many peers are interested in that content category on average. A peer also
decides upon simulation start a set of files it shares, based on its interests and
file popularities just like for file searches. A peer never shares duplicates. While
online, the peer periodically publishes file handles to its shared files to the network.

The total number of content categories and the total number of files are pro-
portional to the number of peers being simulated. The total number of files within
each content category is proportional to the popularity of the content category.
How often peers go online, how long they stay online, how many files they share
and how many searches they do are based on measurement data from one of the
papers [9]. These are measurements from real peer-to-peer file-sharing networks,
and should be accurate within that domain. Each peer is selecting unique values
here though, using the appropriate random distributions.

All spam on the network is assumed to be of the kind incorrectly labeled
files. This means that a peer who has performed a search for a file cannot know
whether the returned file handle is authentic or spam. In a real network the peer
would have to download the file to know. To model this, each file handle also
has a flag indicating whether it is authentic or not. A search for a certain file
can then return up to two search results, one handle for an authentic version and
one for the spam version. The peer does not look at that flag, because it is not
supposed to know, and is thus forced to randomly select one of them. However,
when a spam protection method is employed, the spam version may be filtered

�report� � 2016/5/19 � 17:46 � page 21 � #35

The Simulator 21

Property Pretrusted Peer Honest Peer Spammer

Searches for �les yes yes no

Downloads �les yes yes no

Marks �les
good/bad

yes some do no

Publishes �les yes yes yes

Publishes
authentic �les

yes yes no

Publishes
malicious �les

no no yes

Always online yes no yes

Has a few
selected interests

yes yes yes

Only searches
within interests

yes yes -

Only publishes
within interests

yes yes yes

Table 3.1: Overview of some aspects of the simulated peer behavior.

and not returned. File handles published by honest peers are always authentic.
File handles published by spammers are always spam.

When an honest peer has randomly picked one of the up to two returned
search results for a certain file, the peer may mark whether that file handle was
authentic or not. In a real network the peer would indeed know this after having
downloaded the file. Spam protection methods can then use this information. This
is modeled such that only a certain fraction of all peers actually mark whether a
file is authentic or not once it knows, but those that do always mark all files and
always mark them correctly. Spammers never search for or mark files.

Searches, publications and markings are done the same way regardless of spam
protection method being simulated. This is important in order to facilitate com-
parison. Peers must not behave differently just because another spam protection
method is being simulated. Thus, all of this results in an abstraction between the
simulated spam protection methods and the simulated peers.

Table 3.1 gives an overview of the peer behavior described here and in the
following sections.

3.2 Simulating Spam Protection Methods

A total of three spam protection methods are simulated as part of this master
thesis work. Each of the spam protection methods is implemented to run on top
of a DHT network. Almost all modern fully decentralized peer-to-peer networks
use DHT networks of some kind in order to be able to scale efficiently to a very

�report� � 2016/5/19 � 17:46 � page 22 � #36

22 The Simulator

large number of peers. Implementing spam protection methods on top of a DHT
is necessary to allow for the spam protection method to also scale to a very large
number of peers. The DHT network is also simulated without any spam protection,
as a baseline in the comparison. That way one can compare the effectiveness of a
spam protection method, not only to other spam protection methods, but also to
when using no spam protection at all.

The DHT network is implemented in the simulator simply using a hash table.
The searching for and publishing of file handles is realised by lookups and insertions
into that hash table. The content category the file belongs to, the rank the file
has within that content category and whether the file is authentic or not is hashed
together as a key. Any information that a spam protection method needs to store
together with a file handle to facilitate verification for those that get the file handle
in search results are stored as a value. An expiration date of about half a day into
the future from when the file handle was published is also stored as the value. File
handles need to be republished frequently, possibly with new verification data, in
order to stay accessible.

The lower level details of a DHT network about how each peer is responsible
for certain parts of the DHT keyspace is not simulated, as that is not relevant for
the higher level spam protection is simulated at. Spammers are also assumed to
not be able to subvert the DHT network on a lower level in any way, such as to
cause misrouting of information or denial of access to certain parts of the keyspace.
Although this also is an interesting topic, it falls outside the scope of this master
thesis work.

3.3 Simulating Spammers

Deciding how spammer behavior should be modeled is important when construct-
ing a simulator for spam protection methods. There are many ways in which
spammers can attempt to subvert the system, in order to gain an advantage. For
example, if a spam protection method has a crucial weakness that allows spammers
to circumvent the spam protection altogether, the spam protection method would
be worthless. Simulating a behavior of spammers that does not take advantage of
that weakness would therefore not give a correct value for how effective the spam
protection method is in practice. When evaluating how effective a spam protection
method is, it is important that spammers always behave in the way that makes
them as powerful as possible, without being unrealistic.

The ways in which spammers can act to undermine the effectiveness of a spam
protection method are called threat models. Different threat models may be dif-
ferently effective against different spam protection methods. In the simulator, the
spammers always act according to the same threat model. This threat model is
believed to be the most effective against all spam protection methods simulated as
part of this master thesis work, while being realistic. The threat model was found
by reasoning about which behavior would be the most beneficial for spammers,
based on the design of the spam protection methods.

Spammers always stay online at all time. This is reasonable, as it is usually
cheap for a spammer to leave a computer running all the time. Spammers always

�report� � 2016/5/19 � 17:46 � page 23 � #37

The Simulator 23

only publish spam, but otherwise they are behaving just like honest users when
publishing. Different spammers do not cooperate. They are unlikely to cooperate
in practice. When at all possible, a spammer forms a spammer collective using
fake identities. The spammer then behaves entirely honestly with the identity
who solved a captcha, except that it does not publish any files with it. Any spam
files are published by fake identities that are as deep as possible with regard to
the maximum allowed depth of the trust graph. This is the most advantageous
configuration for the spammers. The deeper the spammer collective is, the harder
it will be for honest users to guess which identity solved a captcha, and thus can
be banned.

At one point towards the end of the simulation implementation phase, it was
tested what effect it would have if spammers let some of their published files
be authentic. This would possibly give spammers a slight advantage against the
web-of-trust trustlist-based method being simulated, as spammers have a chance to
obtain good scores too, not just bad scores. However, this was found to not aid the
spammers. Thus, this threat model was not considered further, and not simulated.
Against the new proposed PKI-based spam protection method, spammers cannot
gain anything from behaving partially honest. There are no scores they can hope
to increase.

3.4 Metrics

In the EigenTrust paper [5], it was measured how many authentic files that were
downloaded by honest users compared to how many bad files that were down-
loaded. This worked well for measuring the effectiveness of their reputation system
used for spam protection. However, the spam protection methods being simulated
in this master thesis work also considers captchas among other things.

It quickly turned out that it is hard to design a “hardness” for the captchas
in the simulator. To further complicate things, that “hardness” would have to be
different for the various spam protection methods being simulated. Due to this,
it was decided to measure the effectiveness of the spam protection methods in
another way.

In the simulator, both honest peers and spammers are assumed to be able to
solve an unlimited number of captchas. They also make sure to stay unbanned
at all time. If a peer believes it is not trusted, it will immediately try to become
trusted. First it will try doing that without solving any captchas, otherwise it
will find someone to solve a captcha for and do that. The fact that both honest
users and spammers solve just enough captchas to stay unbanned at all time
is important. This will allow to measure the effectiveness of a spam protection
method by measuring how many captchas each spammer would have to solve on
average compared to the number of captchas each honest user have to solve on
average. There is no longer any need to define a “hardness” of captchas.

This spammer:honest captcha ratio gives a good indication of how aggressively
spammers are banned. For a good spam protection method, each spammer should
have to solve many more captchas than each honest user to stay unbanned. The
extra work spammers must perform to stay unbanned is hopefully enough to make

�report� � 2016/5/19 � 17:46 � page 24 � #38

24 The Simulator

spamming too expensive in practice. So the more captchas spammers must solve
than honest users, the better the spam protection method must be. In contrast, if
honest users are found to solve the same number of captchas that spammers have
to, spammers do not get punished at all for the spam they post. In that case, the
spam protection method would be worthless.

The spammer:honest captcha ratio does only give meaningful values if all users,
honest users and spammers alike, really do stay unbanned at all time. To ensure
this really is the case, the number of good and bad file downloads are still measured
as well. They are ensured to be the same regardless of spam protection method
being simulated. Anything else would indicate a bug or design flaw. If some good
or bad files disappeared, that would mean some users failed to stay unbanned.

The simulator has various parameters that can be adjusted. Besides simu-
lating different spam protection methods, different number of participating peers,
different fraction of spammers and so on are simulated. This is presented in more
details in Chapter 5. To reduce the variance of the measured results, the average
of 100 simulation runs for the same parameters is used.

�report� � 2016/5/19 � 17:46 � page 25 � #39

Chapter4

Spam Protection Methods

In this chapter the three simulated spam protection methods are presented. Those
are the new scalable PKI-based method proposed in this thesis, a shallow but not
scalable version of that one, and an existing web-of-trust trustlist-based method
to compare against.

4.1 New PKI-Based Method

The new spam protection method created as part of this master thesis work is the
most important one. It is the only one out of the three spam protection methods
that is scalable. It is based on the PKI/CA architecture to prove statements like
(𝐶pubkey , 𝐶is_trusted).

At first there are only the pretrusted identities. The pretrusted identities may
sign file handles for files they publish themselves, and may also sign the public
keys of other identities. The latter means the pretrusted identity believes that the
other identities should be trusted to not spam. When a pretrusted identity makes
the signature it also sets the time when it should expire. In the simulator that is
the same time as the validity time of a published file handle, for example half a
day. The signature from a pretrusted identity is a start of a certificate chain. An
identity that has a valid certificate chain for its own public key may now extend
this certificate chain by signing file handles and public keys on its own. This
creates the trust graph, the directed graph of trust relations. The depth is limited
to 5, to keep the problem of spammer collectives manageable. If each identity signs
100 other identities, that depth is enough to support a network with 100,000,000
identities.

Since extending the certificate chain requires trusting the new identity to not
spam to a certain extent, a solution to a captcha should be required first. This
spam protection method works as long as the pretrusted identities and most other
honest identities require that. To find a random already trusted identity to solve a
captcha for, a peer may just do a lookup in the DHT network. All identities that
are online and can extend their certificate chain may publish this fact to a known
place in the DHT network. How this is best done in practice to avoid heavy load
on a single point of the DHT keyspace is outside the scope of this thesis work. In
the simulator everyone publishes to the same place, but only the most recent 100
entries are kept.

25

�report� � 2016/5/19 � 17:46 � page 26 � #40

26 Spam Protection Methods

A file handle or any other entry published to the DHT network will be rejected
and dropped by all peers if it lacks a valid signature from a valid certificate chain. It
will also be dropped when the certificate chain expires. The publisher is expected
to republish the entry before that with a newer certificate chain. The reason
why entries can be dropped altogether is because all peers have the same view of
who should be trusted, assuming they trust the same pretrusted identities. An
identity that must have its certificate chain renewed should if possible contact
any of the identities it has solved a captcha for before. Those identities will if
possible just renew the certificate chain, without requiring yet another captcha.
This is the persistent identity mentioned earlier in chapter 2. In a sense, the trust
relation remains. If all those identities are offline or otherwise unable to renew the
certificate chain, one may need to solve a captcha for another trusted identity.

This far everything has been uncontroversial. However, a solution for the
revocation of trust relations problem explained in Chapter 2 must also be made.
For this it was decided to use captchas as well, as the security properties and
consequences of that is easy to analyze. When a peer has downloaded a file and
marks it bad, it will look at the certificate chain for the file handle to decide who
should be banned. The certificate chain also tells who is trusting the one who
should be banned. The peer can then contact that truster and solve a captcha
for it. If the peer succeeds, the truster assumes that the ban request is valid and
removes its trust relation to the one who should be banned. This means, the next
time the now banned identity wants to renew its certificate chain, it cannot do
that from this truster without solving a new captcha. The truster will now treat
the banned identity as if it was a new unknown identity. Banning is possibly a
bad word, as the identity may have several trust relations pointing to it. But if it
keeps getting banned, it will eventually not, and must solve new captchas.

The security of this banning system builds on manual proof-of-work. As long
as the majority of users solving captchas are honest, spammers will be banned.
This is analyzed in more details in the conclusions. An alternative system where
the truster must verify the ban request is unreasonable. That would require ad-
ditional work for the truster, and possibly the downloading of a large and totally
uninteresting file. So an automated system like the one used is a must.

This spam protection method does put some additional requirements on the
pretrusted identities besides them behaving entirely honestly. At least one of all
pretrusted identities must be online at all time. If all pretrusted identities went
offline or otherwise became unavailable, all certificate chains would eventually
expire without possibility of renewal. For this reason, the pretrusted identities are
always online in the simulator. This requirement is not a problem in practice, many
users leave their computers running at all time. Would the disaster happen where
all pretrusted identities becomes unavailable, peers can sense this. If no one is able
to offer extension or renewal of certificate chains, the spam protection method can
be switched off. Otherwise all content on the network would be dropped. The DHT
network can be used to guard the pretrusted identities from being overloaded, for
example guard them from distributed denial-of-service (DDoS) attacks, at the cost
of lowered speed.

A final note, although not covered in the simulator, is that a spammer may
also supply unsolvable captchas or captcha images containing spam, and similar.

�report� � 2016/5/19 � 17:46 � page 27 � #41

Spam Protection Methods 27

Even identities spamming or behaving in a disruptive manner in this way can be
banned in this spam protection method.

4.2 Shallow Version of the PKI-Based Method

A shallow version of the new PKI-based method is also simulated. In it, the
depth is limited to 2, but otherwise it is the same as the real one just described.
This depth limit means only pretrusted identities can add trust relations to other
identities. This shallow version is not scalable. It is simulated only to aid the
analysis of the results for the real PKI-based method.

Reducing the depth limit to 2 has the effect that spammer collectives cannot
form, as explained in Chapter 2. However, shallow graphs are not scalable. If there
are 10 pretrusted identities that should support a network of 100,000,000 trusted
identities, each pretrusted identity would need to manage 10,000,000 of those.
Since all identities would need to refresh their certificate chains periodically, this
means many incoming connections and many asymmetric crypto operations per
second. Depending on the public key algorithm used and thus the key sizes, even
storage may become problematic. All trusted public keys may not be able to be
kept in the RAM, requiring many disk accesses per second to. Storing 10,000,000
public keys of 4096-bit each would require 5 GB of storage. With modern elliptic
curve cryptography and 256-bit public keys this is less of a problem though. Lastly,
the pretrusted identities must generate and verify all captchas both for adding
trust relations and removing them, and handle all communication traffic for those
requests.

The pretrusted identities effectively end up having to carry the load that a
typical server carries. However, although this violates the definition of truly de-
centralized, it is not neccessarily that bad. In the web-of-trust trustlist-based
method every peer would have to carry a server load, due to not being scalable
at all. Here only the pretrusted identities need to. Still, it offers some advantages
over a peer-to-peer network with a completely centralized spam protection sys-
tem. The pretrusted identities do not need to find the spammers themselves, nor
do they need to verify ban requests manually. Also, there are multiple pretrusted
identities, so the load is distributed to a certain extent, and the network is more
resilient against some failure scenarios.

4.3 Web-of-Trust Trustlist-Based Method

To compare the effectiveness of the new PKI-based method against something,
an existing trustlist-based method of the web-of-trust kind was chosen. They are
known to provide very good spam protection, while being entirely decentralized.
The effectiveness is state-of-the-art for decentralized peer-to-peer networks. In-
cluding a method of this kind in the comparison is very meaningful to evaluate
the effectiveness of the new PKI-based method and its shallow counterpart.

To the best of this thesis author’s knowledge, the web-of-trust kind of spam
protection methods have never been described in any published paper before.

�report� � 2016/5/19 � 17:46 � page 28 � #42

28 Spam Protection Methods

Therefore, the complete method is described here. There exist several imple-
mentations of web-of-trust-based spam protection methods, all slightly different
in their design. The one described and simulated here is the one from the decen-
tralized forum system mentioned in the previous work section. The design of the
method was reverse engineered by reading the source code for the forum client.

Each identity publishes a trustlist containing scores for zero or more other
identities. There are two kinds of scores, called message trust (MT) and trustlist
trust (TLT). Each score can be in the interval 0 to 100, where 50 is considered
neutral. A score below 50 is still going to be referred to as a negative score, and
positive means above 50, because that is the meaning the scores have. At first,
each identity only trusts itself and the pretrusted identities. Each identity has
set 100 MT and 100 TLT on itself, and 50 TLT on each pretrusted identity. No
message trust is set on the pretrusted identities.

The core of this web-of-trust trustlist-based method is the score update func-
tion. Each identity locally keeps track of four scores for each other identity. Let
us call them local message trust, local trustlist trust, effective message trust and
effective trustlist trust. The local scores are those the identity have set itself. The
effective scores are the weighted average of what those identities that have positive
local trustlist trust have scored.

The effective scores are calculated as follows. First a set 𝐴 is formed containing
all identities with a local TLT of 50 or above. However, those identities that
currently have an effective TLT of below 30 are excluded from 𝐴. The new effective
MT and TLT for each identity is calculated as the weighted average of how each
identity 𝑡 from 𝐴 has scored it, weighted with the local TLT for 𝑡. As can be seen
from this description, the scores from identities further away than depth 2 are not
used at all. This is probably this way to keep the score calculations somewhat
efficient. An example with calculations is shown in Figure 4.1.

File handles and other content from identities with a local MT below 50, or
an effective MT below 30 are ignored. Trustlists are not downloaded or traversed
in the graph search for identities with a local TLT below 50, or an effective TLT
below 30. Identities that should be trusted are discovered through a graph search
from oneself. Identities that can be found through the graph search are trusted
by default. It is not until they get a low enough local or effective score that they
are distrusted. In the simulator all peers are assumed to always have the latest
edition of all trustlists. The delay for how updated score information propagates
in the network is thus not simulated.

In the forum system where this web-of-trust spam protection method is found,
users are expected to assign scores manually. Users are expected to have good
judgement of who to assign good scores to, and who to assign bad scores to.
However, in the simulator, scores have to be assign automatically. It was decided
to raise the MT and TLT by 5 units for the publisher of each good file downloaded
and marked as good. The exception is if a negative local TLT has already been
assigned, in which case only the MT is raised. If a score is missing, it is assumed
to be 50 currently. If a bad file was downloaded and marked as spam, the scores
are lowered instead. Both the MT and TLT is lowered by 30 units in this case.
The identity the scores are lowered for is not necessaily the publisher. Spammer
collectives are assumed to exist. When guessing who is the spammer, identities

�report� � 2016/5/19 � 17:46 � page 29 � #43

Spam Protection Methods 29

𝑇

𝐴

𝐵

𝐶

TLT=65

TLT=70

MT=55
TLT=50

MT=100
TLT=60

MT=45

Figure 4.1: An example of how identity 𝑇 calculates the effective
message trust and effective trustlist trust on identity 𝐶 from
the shown local scores. The effective MT is (55 · 100 + 100 ·
65 + 100 · 50 + 45 · 70)/(100 + 65 + 50 + 70) ≈ 71. First is
our MT on 𝐶, our TLT on ourself is 100. Next is 𝐴’s MT on
𝐶, our TLT on 𝐴 is 65. Next is 𝐶’s MT on itself, our TLT on
𝐶 is 50. And so on. Effective TLT is calculated the same way,
but this time 𝐵 is not used as it does not have a TLT on C.

that have an effective MT of 51 or higher currently are assumed to not be part of
the spammer collective. This reduces the options somewhat compared to for the
PKI-based method. In the real world where spammer behavior is more complex,
the threshold of 51 may need to be replaced with a higher value.

As mentioned before, some users in the simulator do not mark whether a file
they downloaded is authentic or not. Due to this, they will never set any local
scores on any identities besides the pretrusted identities. Therefore, effective scores
are only calculated for those identities that the pretrusted identities have scored.
If the pretrusted identities would not set any scores, this would make the afore-
mentioned users much more vulnerable to spam. In the simulator, the pretrusted
identities are therefore always marking files they downloaded as authentic or not.
This is reasonable, as pretrusted identities tend to care about the network enough
to do this in practice. But still, those users may be left vulnerable to spam in
interest categories outside what the pretrusted identities have. This is a weakness
with the web-of-trust trustlist-based spam protection method. It only works well
as long as users are scoring other identities diligently, or as long as the network
stays reasonably small.

As mentioned in the web-of-trust section in Chapter 2, the web-of-trust concept
is not scalable. For this reason, the web-of-trust concept has only successfully been
implemented on small peer-to-peer networks to date.

4.4 Time Complexity

The time complexity of the methods is not simulated. It can be calculated from
their design. Let 𝑛 be the number of peers on the network, and let us further

�report� � 2016/5/19 � 17:46 � page 30 � #44

30 Spam Protection Methods

assume that each peer has a single trusted identity. Therefore, 𝑛 is also the number
of trusted identities on the network. Let us also assume the network is a DHT
network. In the new PKI-based method, to get a new identity trusted one must
perform a lookup on the DHT network to find some identities that may become the
new trusters. One must then contact one of them and solve a captcha, after which
one receives a valid signature. The most expensive operation here is the DHT
lookup of time complexity 𝑂(log 𝑛). Offering captchas to others require a DHT
publish operation, yet again with 𝑂(log 𝑛) time complexity. To verify whether an
identity is trusted one must simply verify each signature in a received certificate
chain. Since the chain has a limited length, this operation has time complexity
𝑂(1). Since the number of identities that must be verified between each renewal
of one’s own certificate chain can be considered asymptotically constant, the total
time complexity for each peer is 𝑂(log 𝑛). Each peer is assumed to only keep track
of a constant maximum number of identities it trusts, thus the storage complexity
per peer is 𝑂(1).

For the web-of-trust trustlist-based method it is worse. Here one can see why
it is not scalable. To verify whether an identity is trusted one must beforehand
have processed trustlists for each trusted identity on the network. On a DHT
network, that gives a time complexity of 𝑂(𝑛 log 𝑛), assuming score calculations are
restricted to direct trustees, as done in the simulator. The actual verification can
after that be done with a time complexity of 𝑂(1), if one uses a hash table. Finding
someone who can become a truster for one’s new identity can also be done in 𝑂(1)
when all trustlists have been processed. Offering to become a truster oneself, or
publishing one’s own trustlist, requires a DHT publish operation, which has time
complexity 𝑂(log 𝑛). The actual processing of trustlists, or traversal of the trust
graph, is therefore the most expensive operation. This spam protection method
therefore requires 𝑂(𝑛 log 𝑛) time complexity per peer. The storage complexity is
𝑂(𝑛), as each trustlist or trusted identity must be stored in some manner. The
calculated time complexity and storage complexity assumes each identity has a
limited and thus constant maximum number of trustees.

Here it is clear that the new PKI-based method is at least as scalable as
the underlying DHT network, whereas in the web-of-trust trustlist-based method
each peer would see at least quasilinearly increased load as the number of trusted
identities increase. Sometimes one may want to look at the network-wide time
and storage complexity instead, reflecting the load the network as a whole is
facing. Since all 𝑛 peers are equal, the network-wide time complexity for the
PKI-based method becomes 𝑂(𝑛 log 𝑛). The network-wide storage complexity is
𝑂(𝑛). For the web-of-trust trustlist-based method however, the network-wide time
complexity is 𝑂(𝑛2 log 𝑛) and the network-wide storage complexity is 𝑂(𝑛2).

Table 6.1 summarizes the time and storage complexities for the various spam
protection methods simulated. That table also mentions the shallow version of the
PKI-based method, which sees 𝑂(𝑛) time complexity as each pretrusted identity
gets contacted by 𝑂(𝑛) identities.

�report� � 2016/5/19 � 17:46 � page 31 � #45

Chapter5

Results

In this chapter, simulation results from the simulator outlined in Chapter 3 are
presented. All three spam protection methods from Chapter 4 are simulated for
various choices of simulation parameters. The three methods are the PKI-based
method, a shallow version of that one, and the web-of-trust trustlist-based method.
The PKI-based method is the new method proposed in this thesis. It is the only
one out of the three that does scale to a large number of participating peers. The
other two do not scale at all.

5.1 Primary Results

First, the measured effectiveness in blocking spammers is presented for the three
spam protection methods. Figure 5.1 shows the results for the fairly small default
network simulated. The parameters used are shown in Table 5.1. The network
contains 𝑛𝑡 = 𝑛𝑝 + 𝑛ℎ + 𝛾𝑛ℎ real users. Each real user has exactly one identity,
except for each spammer who may form a spammer collective using many identities
of its own. Any user may recreate their identities if they get a permanent bad score,
which may happen for the web-of-trust trustlist-based method. As mentioned in
the metrics section in Chapter 3, a user that loses all trust edges pointing to its
identity will immediately try to get new trust edges by solving more captchas.

As can be seen in Figure 5.1, the PKI-based method proposed in this thesis
does only fare slightly better than no spam protection at all. The shallow but
not scalable version of the PKI-based method fares better, but the web-of-trust
trustlist-based method is still by far the most effective in blocking spammers. The
reason why the shallow version of the PKI-based method fares better is solely
because it is impossible for spammer collectives to form. The identity which posts
spam is also always the identity that should be and can be isolated from the
network by having the trust edges to it removed. No possibly incorrect guessing
or estimation needs to be done. A more detailed analysis that justifies the actual
numbers is presented in the conclusions.

To see why the effectiveness is not better for the new method and its shallow
counterpart, more detailed numbers were gathered. These are reproduced in Ta-
ble 5.2. Here one can see that the primary reason why the proposed PKI-based
method is weak is because honest users must solve many captchas. As mentioned
earlier, in the PKI-based method it is not enough that users solve a captcha to

31

�report� � 2016/5/19 � 17:46 � page 32 � #46

32 Results

1:1

2:1

4:1

8:1

16:1

32:1

64:1
Captcha spammer:honest ratio

1.0
1.4

54

8.9

No protection PKI WOTPKI (shallow)

Figure 5.1: The effectiveness of the simulated spam protection
methods in a small network. The effectiveness is measured
in how many more captchas spammers must solve than honest
users to stay unbanned at all time. A higher value means better
at blocking spammers. A value of 1.0 means totally ineffective.
The scale is logarithmic.

become initially visible, or become visible again after having been banned. Users
must also solve a captcha for each identity to ban. Even with the absense of spam-
mer collectives, as in the shallow version, the fact that honest users must solve
captchas to ban other identities, spammers, keeps the effectiveness of the spam
protection method down.

The web-of-trust trustlist-based method is also susceptible to spammer collec-
tives, yet honest users do not even have to solve two captchas on average there.
In the web-of-trust trustlist-based method anyone can give a negative score to
another identity, without solving any captcha. The web-of-trust trustlist-based
method also has another advantage that may be contributing to why it works
so well. Positive scores give useful hints about who is not part of a spammer
collective, making banning of spammer collectives more accurate.

Finally it can be noted that the fact that honest users must solve many more
captchas in one spam protection method than in another does not mean that the
user must do more work. Captchas can be made easier or harder to compensate
for that. For example there can be fewer distorted character per captcha to make
them easier. The only thing that really matters is how many more times of work
spammers must do, and that is the spammer:honest captcha ratio shown in the
figures.

�report� � 2016/5/19 � 17:46 � page 33 � #47

Results 33

Symbol Parameter Default Value

𝑛𝑝 Number of pretrusted identities 3

𝑛ℎ Number of other honest users 100

𝛾, 𝑛𝑠 There are 𝑛𝑠 = 𝛾𝑛ℎ spammers 𝛾 = 10%

𝛼 Percentage of honest users using
mark features, marking �les good
or bad

50%

𝑣 How many hours a certi�cate chain
stays valid

12 hours

𝑢 Average number of times each
month an honest user goes online
and performs searches

15 times/month

𝐷 Number of days simulated 90 days

Table 5.1: Adjustable parameters used in the simulator, and their
default values. Each honest user has exactly one identity at any
given time. Each spammer may have several identities forming
a spammer collective.

No prot. PKI PKI (shallow) WOT

Solved per honest 0.0 20.1 6.7 1.6
Solved per spammer 0.0 28.6 59.6 84.7

Spammer:honest ratio 1.0 1.4 8.9 54.2

Table 5.2: How many captchas each honest user (including
pretrusted ones) must solve on average, how many captchas
each spammer must solve on average, and the ratio between
those two.

5.2 Larger Network Sizes

The simulation runs are computationally heavy and thus slow. Especially, the
web-of-trust trustlist-based method has as implemented in the simulator a total
time complexity of 𝑂(𝑛3), where 𝑛 is the number of simulated peers. Due to this,
simulating a network with a large number of identities is impossible. Instead, to
examine whether the presented method continues to provide spam protection for
larger network sizes, simulations are run for different small choices of 𝑛ℎ. From
this it is possible to see how the effectiveness changes with increased network size.

To get the results the simulator had to be modified slightly. Since 𝑛ℎ is small,
the average certificate chain length varies quite much as 𝑛ℎ is increased. Even-
tually, the average certificate chain length would settle on a value, but not for
the modest number of peers simulated here. The average certificate chain length
affects the results due to how it interacts with spammer collectives. To avoid mea-
suring this, spammers were made to aim for a predefined certificate chain length

�report� � 2016/5/19 � 17:46 � page 34 � #48

34 Results

1:1

4:1

8:1

16:1

32:1

64:1

128:1

C
a
p
tc

h
a
 s

p
a
m

m
e
r:

h
o
n

e
st

 r
a
ti

o

2:1

50 100 200 250

Number of normal users

PKI

PKI (shallow)

WOT

150

Figure 5.2: How the effectiveness changes when the network size
increases. The network is the same as in Table 5.1, except
the number of honest users 𝑛ℎ is increased. The number of
spammers is also increased proportionally by keeping 𝛾 = 10%
constant. As can be seen, the effectiveness of the new PKI-
based spam protection method does not decrease as the network
increases in size. The scale is logarithmic.

when solving captchas to get trusted. The results are shown in Figure 5.2.

A spam protection method must not only run efficiently on large network sizes
to be called scalable, it must also maintain its effectiveness of blocking spammers.
Due to the design of the PKI-based spam protection method, it should maintain
its effectiveness even for very large networks. Figure 5.2 confirms that it does. As
is clear from the figure, there is not even a hint of a drop in effectiveness for the
PKI-based method and its shallow counterpart. This despite more than doubling
the network size. Note that the slightly higher values for the data point 𝑛ℎ = 50
do not mean there is a difference in effectiveness. That network size is so small
it is approaching the limit of what can give meaningful results from a simulation.
There are only 5 spammers in that case, for example. That data point can not be
relied on.

One interesting thing to note is that the effectiveness of the web-of-trust
trustlist-based method appears to drop quite radically as the network grows. At
least according the figure. One possible cause may be the complex interaction
between spammer collectives and the successively increased diversity of interests.
The increased diversity of interests may benefit the spammers. Another possi-
bility is that there are no problems with the web-of-trust trustlist-based method
at all. It may only be the simulator that is overestimating the effectiveness for
small network sizes, and that the curve does flatten out eventually. One cannot
tell from the figure whether it will flatten out, or just decreases at a successively

�report� � 2016/5/19 � 17:46 � page 35 � #49

Results 35

0.25:1

2:1

4:1

8:1

16:1

32:1

64:1

C
a
p
tc

h
a
 s

p
a
m

m
e
r:

h
o
n

e
st

 r
a
ti

o

0.5:1

1:1

10 40 70 100

Number of spammers

PKI

PKI (shallow)

WOT

Figure 5.3: How the effectiveness changes when the fraction of
spammers increases. The network is the same as in Table 5.1,
except the 𝛾 is changed as in the x-axis. Since the network has
100 honest users, the x-axis also shows the actual number of
spammers. The highlighted 1.0 ratio reflects the effectiveness
without spam protection. Anything below that is worse than no
spam protection at all. The scale is logarithmic.

lower rate. Either way, this is not investigated further. It was the effectiveness
the web-of-trust method has for small networks like the ones simulated that made
the method interesting to use as a comparison. The method has never been used
on large networks after all, since it does not scale.

5.3 Larger Fraction of Spammers

Another interesting thing is how well the spam protection methods keep protecting
against spam as the number of spammers relative to the number of honest identities
increases. If a spam protection method can be shown to remain effective when
facing a large fraction of spammers, it will handle the fraction of spammers that
occur in practice. The result is shown in Figure 5.3.

All three simulated spam protection methods decrease in effectiveness with
about the same factor as the number of spammers is increased. The new PKI-
based method does not have any disadvantage in that regard when compared to
the web-of-trust trustlist-based method. However, due to the modest effectiveness
it stops providing spam protection at about 𝛾 = 20%.

The reason why all spam protection methods decrease in effectiveness is due to
there being more spammers to ban. The number of honest users have not increased,
therefore roughly the same number of bans are done. Thus, each spammer will

�report� � 2016/5/19 � 17:46 � page 36 � #50

36 Results

1:1

2:1

4:1

8:1

16:1

32:1

64:1

C
a
p
tc

h
a
 s

p
a
m

m
e
r:

h
o
n

e
st

 r
a
ti

o

12 9 6 3

Number of hours a certificate chain stays valid

PKI

PKI (shallow)

WOT

Figure 5.4: How the effectiveness improves when the certificate
chains are made to expire faster, having a shorter initial validity
time. The network is the same as in Table 5.1, except 𝑣 is
successively lowered as in the x-axis. The web-of-trust trustlist-
based method is unaffected by this change, the variations there
are noise. The scale is logarithmic.

be banned fewer times. The decrease for the PKI-based method in particular is
discussed in more detail in Chapter 6, where the actual numbers are validated.

The figure suggests that the PKI-based method would start having the oppo-
site effect of blocking spammers after about 𝛾 = 20%. However, this would likely
never occur in practice, as users would stop using the spam protection functionality
at that point.

5.4 Shorter Validity Times

One problem with the PKI-based method is that certificate chains stay valid until
they expire. This because no revocation checks can be done. If the validity time of
a certificate chain is as long as 12 hours, a spammer needs to solve a new captcha
at most every 12th hour. This even if the spammer gets banned within the first
hour. The PKI-based method should perform better when the validity times are
shorter. Figure 5.4 shows that it does, and by how much.

One thing that is holding back the improvement despite reduced validity times
are the fact that honest users must solve captchas to ban spammers. Spammers do
indeed have to solve more captchas to stay unbanned at all time when the validity
time is reduced. But each time a spammer solves a captcha to get unbanned,
an honest user may counter it to get the spammer banned again. This means
spammers do not necessarily get punished more just due to a shorter validity time.

�report� � 2016/5/19 � 17:46 � page 37 � #51

Results 37

The advantage honest users have may stay about the same. Reduced validity times
can however help in the presence of spammer collectives, as shown in the figure.
The real PKI-based method does see a more significant improvement than its
shallow counterpart.

Note that, although shorter validity times improve the effectiveness of the
PKI-based method, it is not a drastic improvement. Shorter validity times also
means that all peers must renew their certificate chains and republish their file
handles much more often than they otherwise would need to. Depending on the
application, it may not be worth the trade off.

5.5 Effect of Approximations

The results produced by the simulator of course suffer from some errors. First
off, the variance in the results are quite large from one simulation run to another,
using the same parameters. This is due to values for peer behavior and similar
being drawn from various random distributions. To reduce this variance and get
a better estimation of the real result, 100 simulation runs are performed for the
same parameters. The average of the results from those 100 simulation runs are
used in what is presented in the figures and tables in this chapter. 100 simulation
runs are enough to reduce this error to be much less than the other errors.

Another error is of course that the actual simulator itself just approximates a
real DHT network, real peer behavior, real spammer behavior and so on. To get
a rough understanding of how big this error is, test simulations were performed
with internal model parameters changed slightly. Any such change of unknown
direction and amplitude should make the simulator reflect reality more accurately.
If the results are affected much by such a change, this also means that those errors
that exist as part of the approximation may influence the results a lot.

By this, the errors were found to possibly be up to about a factor 2. This
is quite much, but still small enough to be able to reason about the relative ef-
fectiveness of the various simulated spam protection methods. However, it may
prompt doubt about whether the PKI-based method actually is above the 1:1
line in Figure 5.1 or not. If it were not, the PKI-based spam protection method
would not be effective. In the conclusions chapter it is shown that the PKI-based
method is effective and the results presented are more accurate than what the
errors calculated here suggests, at least for the PKI-based method and its shallow
counterpart.

For the web-of-trust trustlist-based method there turned out to be another
large error though. That error is due to the fact that so-called network churn is
not simulated. Network churn is when new peers are joining and old peers leaving
the network over time. This is different from peers merely going offline for a while,
just to go online later again. New peers joining the network do not have any
identities, and must therefore always solve at least one captcha to get an identity
trusted.

In the simulator as designed, initial captchas for all simulated identities are
solved during the first few virtual days. After that, captchas are only solved to ban
or to get trusted again after being banned. When the number of simulated days

�report� � 2016/5/19 � 17:46 � page 38 � #52

38 Results

𝐷 approaches infinity, those initial captchas get less relevant. As can be seen in
Table 5.2, the initial captchas are very relevant for the web-of-trust trustlist-based
method, but not for the other two. The value of the parameter 𝐷 does affect the
influence of the initial captchas in the results, much like what would had happened
if churn was simulated. But one cannot reason about what value of 𝐷 would be
right. Based on experimentation with various choices of 𝐷, it is estimated that
there may be up to an additional factor 2 error for the web-of-trust trustlist-based
method due to this. This means the total error for the web-of-trust trustlist-based
method may be up to a factor 4, in worst-case.

�report� � 2016/5/19 � 17:46 � page 39 � #53

Chapter6

Conclusions and Discussion

In this master thesis work a new spam protection method based on the scalabil-
ity of the PKI architecture has been designed. It has through simulations been
confirmed to provide spam protection. Although the spam protection it provides
is modest compared to the state-of-the-art among non-scalable methods, this new
spam protection method is entirely scalable and has a flexible design that allows
for many future improvements. For very large fully decentralized peer-to-peer
networks seeking a scalable solution to spam, this new spam protection method
may be an attractive choice both as it is, and to improve upon. The scalability
properties are guaranteed, and it is a complete spam protection method, not just
a reputation system.

More importantly, the work in this master thesis contributes to the under-
standing of how to design scalable spam protection methods for decentralized
peer-to-peer networks, and opens up for further research and improvements in
this area.

6.1 Why the PKI-Based Method Works

To understand why the proposed PKI-based method works, one can consider the
simplified case. The simplified case is that spammers and honest users are assumed
to be equal with regard to uptime pattern and activity, and that diversity of
interests is not considered. Furthermore, only the steady state is considered. The
steady state is when infinitely many days have been simulated, and the initial
captchas thus no longer have any relevance.

Let us consider the shallow version of the PKI-based method first. Here spam-
mer collectives cannot form. If an honest user is banning a spammer in response
to spam, it must solve a captcha. In response to this, the spammer must also solve
a captcha to become trusted again, possibly with a new fresh identity. If there
would have been equally many honest users and spammers, this means that they
would both solve the same amount of captchas and the spam protection method
would thus be ineffective. But this is typically not the case. In the default network
simulated, referring back to Table 5.1, there are 10 times as many honest users as
spammers. This means that a spammer will get banned 10 times on average for
each time an honest user bans someone. Therefore, the spammer would need to
solve 10 times as many captchas as each honest user on average. In the simulation

39

�report� � 2016/5/19 � 17:46 � page 40 � #54

40 Conclusions and Discussion

results in Figure 5.1 the captcha ratio is 8.9, which is close to the 10.0 from this
simplified case.

For the real and scalable version of the PKI-based method however, things
are more complicated. Now spammer collectives can form. Since the depth of the
trust graph is limited to 5 for this method, there are exactly 4 possible options
for who to ban, see Figure 2.4. Only one out of those are correct to ban, namely
𝐼1 in that figure. It is assumed there are always 4 options, meaning the identity
found spamming always is as far out in the trust graph as possible. If an honest
user that is going to ban a spammer guesses right, both the honest user and the
spammer solves one captcha each. If however the honest user guesses wrong, there
are two cases. In case one the honest user guesses that another honest user is the
spammer. Then both the user who is banning and the banned user must solve
one captcha each. In case two the honest user guesses on a spammer-controlled
identity in the middle of the spammer collective. In this case the user banning
must solve a captcha, and no one else.

In the simulator, honest users trying to ban spammers are doing uniformly
distributed guesses. Therefore, things are as follows. If everyone from the identity
who was found spamming to the identity trusted by a pretrusted identity are part
of a spammer collective, honest users are solving 4 captchas on average for each
captcha a spammer solves. This since they are doing three guesses in the middle
of a spammer collective for every correct guess on average. If, on the contrary,
the identity found spamming is not part of a spammer collective and therefore the
real spammer, honest users must solve 7 captchas on average for each captcha a
spammer solves. This time the 3 incorrect guesses are on honest users. All this is
because the honest users cannot know whether the spamming identities are part of
a spammer collective or not, nor how long the spammer collective is. This means
that for a network with 10 times as many honest users than spammers, the captcha
ratio should end up being between 1.43 and 2.5 in this simplified case. This also
matches well the the results from Figure 5.1, where the captcha ratio is 1.4.

From this reasoning, one more thing can be seen. In the extreme case where
there are no spammers, honest users do not need to solve any captchas, except for
the initial one. The fewer spammers there are, the harder spammers are blocked.
Likewise, the PKI-based method also reaches a point where there are so many
spammers that the method is no longer effective, or may even be worse than no
spam protection at all. From the reasoning above that would for the real PKI-
based method occur between 𝛾 = 14.3% and 𝛾 = 25% in the simplified case. For
the shallow version it would occur at 𝛾 = 100%. Both these match well with the
simulation results in Figure 5.3.

6.2 Comparison of the Simulated Methods

The new PKI-based spam protection method proposed in this thesis has been
shown to scale just as well as the underlying DHT network with regard to the
time complexity. This is a huge improvement over any web-of-trust trustlist-based
method. But it is also scalable in all other regards. Both the moderation burden
for peers and the effectiveness in blocking spammers remain the same regardless of

�report� � 2016/5/19 � 17:46 � page 41 � #55

Conclusions and Discussion 41

No prot. PKI PKI (shallow) WOT

Time Complexity 𝑂(log 𝑛) 𝑂(log 𝑛) 𝑂(𝑛) 𝑂(𝑛 log 𝑛)
Storage Complexity 𝑂(1) 𝑂(1) 𝑂(𝑛) 𝑂(𝑛)
Moderation Burden None 𝑂(1) 𝑂(1) 𝑂(1)

E�ectiveness 1.0 1.4 8.9 54 *

Table 6.1: Summary and comparison of all simulated spam protec-
tion methods. The time complexities and moderation burden
assumes each identity only naturally trusts or scores a small and
fixed number of other identities. The effectiveness is taken from
Figure 5.1, higher means better at blocking spammers.
*) As shown in Figure 5.2, the effectiveness for the web-of-trust
trustlist-based method may be decreasing when the network
grows.

the number of participating peers in the network. The design of the method should
also inspire confidence that the method is secure, and cannot be compromized by
clever spammers. It is based on the PKI architecture, and uses a manual proof-of-
work scheme to guard against attacks. A summary of all spam protection methods
simulated as part of this thesis work is presented in Table 6.1.

Only two downsides with the new PKI-based method compared to a web-of-
trust trustlist-based method can be identified, besides the modest effectiveness.
The first is that all published handles, such as file handles or forum posts, must
be republished frequently. The second is that the pretrusted identities may not
all go offline at the same time. Both of these are due to the short validity time
of certificate chains. The second downside is rarely a problem in practice, as
the users who dedicate themselves to be pretrusted often can spare leaving a
computer running all the time. The first downside may be a problem, however,
for less popular web content published by users who are offline most of the time.
However, it is not a large problem. A published handle must just be signed with
any valid certificate chain, it must not necessarily be a signature from the initial
publisher. A forum post can, for example, both be signed by the author of the post
to prove authorship, and have a certificate chain signing it from anyone trusted
to make the post visible. Anyone may republish any forum posts they see and
trusts not to be spam, knowing that they will be punished instead if those posts
contains spam. This means most web content will remain available even if the
initial publisher or author goes offline permanently.

6.3 Discovered Issues

Since the scalability is good now, it is no longer an area where improvements
are needed. The next logical step would be to make such scalable methods more
effective, step by step, without losing the scalability properties. The three biggest
contributions to the modest effectiveness of the proposed PKI-based method are
summarized below.

�report� � 2016/5/19 � 17:46 � page 42 � #56

42 Conclusions and Discussion

The biggest issue is that honest users must solve a captcha to ban a spammer.
This remains the biggest issue regardless of the presence of spammer collectives or
how the actual revocations are made. Let us take a look at Table 5.2. If honest
users could ban spammers without solving captchas, the PKI-based method would
require honest users to solve about the same number of captchas on average as
the web-of-trust trustlist-based method does. That means about 1.6 captchas on
average instead of 20.1 on average, which would be a factor 12.5 improvement in
effectiveness. What all this means is that, the manual proof-of-work system chosen
as part of the design of the PKI-based method is no good. It was chosen because it
solves the trust revocation problem mentioned in Chapter 2 in a secure way, which
is easy to analyze. A more sophisticated system may work significantly better, up
to a factor 12.5 better. See the future work section for a few examples.

The second issue is that guesses must be made when trying to ban a spammer
collective. Comparing the PKI-based method with its shallow counterpart, the
difference in effectiveness is almost entirely due to spammer collectives. The only
other contributing factor is that the pretrusted identities are the trusters in the
shallow version, and always online. This means that if it was as easy to ban a
spammer collective as a single spammer, the spam protection method may be up
to a factor 6 better.

The third issue is that the certificate chains remain valid for a certain time,
without possibility of being revoked. According to Figure 5.4, even if the validity
time is lowered a lot the effectiveness is improved by less than a factor 2. All this
while suffering from the increased load, as discussed in the shorter validity times
section in Chapter 5. But as also mentioned in that section, if honest users do not
have to solve captchas to ban spammers, things may look different here.

6.4 Future Work

The web-of-trust trustlist-based method simulated in this thesis work only uses
scores from the immediate trustees to score other identities, essentially limiting
score calculations to depth 2. Yet, it outperformed the new PKI-based method
and its shallow counterpart in effectiveness in blocking spammers. It may be an
interesting research question to see whether trustlists can be used for score cal-
culations like this, but using the new PKI-based method for discovering identities
further away than depth 2. The methods can maybe be combined in this way,
eliminating the need to solve captchas for banning. That could result in an effec-
tive and scalable solution. The number of trustlists that would need to be fetched
would in that case be very low and 𝑂(1). However, as Figure 5.2 shows a worry-
ing decrease in effectiveness for the web-of-trust trustlist-based method, it must
be researched whether this decrease is real and what the effectiveness would end
up being for a large network. That problem, if real, will likely affect a method
combined like this too.

Otherwise, a solution for increasing the effectiveness by reducing the number
of captchas needed to ban others may be a good direction for future research.
Introducing a notion of being more trusted, such that more trusted identities can
ban less trusted ones may be one possibility. However, care must be taken so that

�report� � 2016/5/19 � 17:46 � page 43 � #57

Conclusions and Discussion 43

a more trusted identity that starts banning good identities stops being trusted.
Another possibility would be to attempt to identify more exact probabilities of
what identities are part of a spammer collective, such that the number of incorrect
bans can be lowered.

Finally, it would of course be interesting to see the concept of the new PKI-
based method be extended to more interesting and diverse use-cases than file-
sharing networks. Decentralizing the web and the social platforms people use
today are probably the most constructive, to meet the demands of the future.

�report� � 2016/5/19 � 17:46 � page 44 � #58

44 Conclusions and Discussion

�report� � 2016/5/19 � 17:46 � page 45 � #59

References

[1] A. Back, Hashcash - A Denial of Service Counter-Measure, 2002, http://
hashcash.org/papers/hashcash.pdf, last fetched 2016-05-19

[2] J. Benet, IPFS - Content Addressed, Versioned, P2P File System (DRAFT
3), 2015, https://github.com/ipfs/papers/raw/master/ipfs-cap2pfs/

ipfs-p2p-file-system.pdf, last fetched 2016-05-19

[3] B. Cohen, The BitTorrent Protocol Specification, 2008, http://www.

bittorrent.org/beps/bep_0003.html, last fetched 2016-05-19

[4] P. Dewan, P. Dasgupta, P2P Reputation Management Using Distributed Iden-
tities and Decentralized Recommendation Chains, 2009, IEEE Transactions on
Knowledge and Data Engineering, Volume 22 Issue 7, July 2010, pp. 1000-
1013, doi:10.1109/TKDE.2009.45

[5] S. D. Kamvar, M. T. Schlosser, H. Garcia-Molina, The EigenTrust Algo-
rithm for Reputation Management in P2P Networks, 2003, http://ilpubs.
stanford.edu:8090/562/1/2002-56.pdf, last fetched 2016-05-19

[6] H. A. Kurdi, HonestPeer: An enhanced EigenTrust algorithm for reputation
management in P2P systems, 2014, Journal of King Saud University - Com-
puter and Information Sciences, Volume 27 Issue 3, July 2015, pp. 315-322,
doi:10.1016/j.jksuci.2014.10.002

[7] P. Maymounkov, D. Mazières, Kademlia: A Peer-to-peer Information Sys-
tem Based on the XOR Metric, 2002, http://pdos.csail.mit.edu/~petar/
papers/maymounkov-kademlia-lncs.pdf, last fetched 2016-05-19

[8] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, S.
Savage, Re: CAPTCHAs - Understanding CAPTCHA-Solving Services in
an Economic Context, 2010, http://cseweb.ucsd.edu/~savage/papers/

UsenixSec10.pdf, last fetched 2016-05-19

[9] S. Saroiu, P. K. Gummadi, S. D. Gribble, A Measurement Study of Peer-
to-Peer File Sharing Systems, 2002, https://homes.cs.washington.edu/
~gribble/papers/mmcn.pdf, last fetched 2016-05-19

[10] M. T. Schlosser, T. E. Condie, S. D. Kamvar, Simulating a File-Sharing P2P
Network, 2003, http://www-nlp.stanford.edu/pubs/simulator.pdf, last
fetched 2016-05-19

45

�report� � 2016/5/19 � 17:46 � page 46 � #60

46 References

[11] D. Stutzbach, D. Zappala, R. Rejaie, The Scalability of Swarming Peer-
to-Peer Content Delivery, 2005, http://ix.cs.uoregon.edu/~reza/PUB/

networking05.pdf, last fetched 2016-05-19

[12] Wikipedia, the free encyclopedia, BitTorrent, https://en.wikipedia.org/
wiki/BitTorrent, last fetched 2016-05-19

[13] Wikipedia, the free encyclopedia, Sybil attack, https://en.wikipedia.org/
wiki/Sybil_attack, last fetched 2016-05-19

