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Abstract

A Turing model for pattern generation on Lady beetles is considered. This motivates the
construction of numerical algorithms for solving reaction-di�usion equations on the sphere.
By applying a Galerkin approximation in space, and the implicit Euler method for timestep-
ping, the equation is fully discretized. Convergence orders are proven for this scheme. To
obtain a more e�cient time stepping algorithm an implicit-explicit splitting is introduced.
Some numerical experiments are then performed which demonstrates the superior e�ciency
of the splitting method. The experiments also veri�es the pattern generating ability of the
Turing model.

Populärvetenskaplig sammanfattning

En Turing model är en matematisk model i form av en partiell di�erentialekvation. De in-
troducerades på 50-talet av den brittiska matematikern Alan Turing för att förklara hur
biologiska organismer som t. ex. nyckelpigor utvecklar spatiella mönster under sin utveck-
ling. Turing modeller involverar i regel system av olinjära partiella di�erentialekvationer
vars lösning ej kan utryckas med en enkel formel. Istället approximeras lösningen med hjälp
av en numerisk algoritm vars fel förhoppningsvis minskar i takt med att beräkningstiden
ökar. Det är därför intressant att teoretiskt analysera sådana algoritmer och rigoröst bevisa
att de konvergerar mot den exakta lösningen. Dessutom utförs i arbetet numeriska experi-
ment där e�ektiviteten av ett antal olika algoritmer jämförs. Det visar sej att en så kallad
splittringsmetod i detta avseende är ändamålsenlig för ekvationen i fråga.
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1 Introduction

In a classical paper [3] dating back to 1952, Alan Turing proposed a general mathematical
model for morphogenisis, the pattern formation on animals. The basic idea was that two or
more chemical components, so called morphogenes, di�using at di�erent rates and reacting
locally, will under some circumstances self organize into a spatial pattern. This idea was
mathematically formalized as a system of semilinear partial di�erential equations, a reaction
di�usion system

ut = D∆u+ F (u). (1)

Here one solves for the vector valued function u(t, x) = (u1, ..., um) which represents the
concentration of the various chemicals for a given time and place (t, x) ∈ R+ × Rd. Most
commonly u will have two components but three or more is also feasible in some models.
Further, D denotes a diagonal positive de�nite m × m matrix representing the di�usion
rates of the di�erent components. Finally, F : Rm → Rm is a given nonlinear function
which represents the chemical reaction.

Historically Turing models have attracted little interest among biologists, perhaps be-
cause it suggests an inherently non-biological solution to a biological problem. It has also
been suggested that the mathematics in Turing's original paper was inaccessible for most
non mathematicians. However, with the advent of modern molecular biological methods
many instances of Turing mechanics has been experimentally veri�ed, see Meinhardt [4].

While reaction di�usion systems were originally introduced as a theoretical model for
morphogenisis, they have also been suggested to account more generally for generation of
spatial patterns in biological systems. For example Murray [1] successfully applies reaction
di�usion models in such diverse areas as cancer tumor spreading and wolf territories.

Even though this type of PDE has been widely applied, the existence and uniqueness of
solutions is still not completely understood, see Pierre [10]. This not an uncommon situation
for nonlinear PDE's, the Navier-Stokes equation being another obvious example.

Many qualitative properties of reaction di�usion systems can be investigated analytically.
These include for example some necessary conditions for "di�usion driven instability", de-
termination of the "wave length" of the solution, stability of stationary states and existence
of traveling wave solutions. On the other hand quantitative questions like determining the
exact �nal pattern on a speci�c domain for a given initial value require numerical simula-
tions.

In Liaw et al. [2] it is proposed that the system{
ut = Du∆u+ ρ0u

2v − µu
vt = Dv∆v − ρ1u

2v + σ
. (2)

solved on a part of the sphere could be a good model for the generation of patterns on
various lady beetle species. It is also claimed that the curvature of the sphere is essential
for the resulting pattern. By employing a di�erent numerical algorithm for computing the
time evolution of the system, a so called splitting scheme, we are able to reproduce some of
the computations in [2] but with much higher accuracy.
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2 Mathematical background

2.1 Problem formulation

With Example (2) in mind we begin our analysis of how to numerically simulate such
equations. To facilitate the notation and emphasize the key ideas we will consider a general
reaction di�usion system on the 2-sphere, S2, given by

ut = D∆u+ F (u) in Ω′ × [0, T ]

n̂ · ∇u = 0 on ∂Ω′ × [0, T ]

u(0, x) = u0(x)

, (3)

where Ω′ is a subset of S2, u is a function from Ω′ × (0, T ] to Rn and n̂ is the outward
boundary normal of unit length. Moreover D is a positive de�nite diagonal matrix, ∆
denotes the Laplace-Beltrami operator and F is a given (typically nonlinear) function in
C1(Rn,Rn). All the di�erential operators are of course applied component wise.

In order to avoid excessive di�erential geometric formalism we will �x Ω′ to be a part
the half sphere and take the usual parametrization

(x, y) 7→ ( sin(x) cos(y), sin(x) sin(y), cos(x) )

to pull back (3) to the plane, where it reduces to
ut = Lu+ F (u) in Ω× (0, T ]

n̂ · ∇u = 0 on ∂Ω× (0, T ]

u(0, x) = u0(x)

, (4)

where is L the operator

L = D

(
∂2
x +

1

sin2(x)
∂2
y +

1

tan(x)
∂x

)
and Ω is now a connected open set with smooth boundary at a �xed distance from the
singularities at x = 0 and x = π. Thus the main price to pay for a �at domain is that
instead of the Laplacian we get the unsymmetric variable coe�cient operator L. Crucially
however, since we consider the problem on a domain with a �xed distance from x = 0
and x = π, L is still elliptic and shares many key properties with the Laplacian. The
disadvantages are mostly of a technical nature; we will have to resort to theoretical results
instead of explicit formulae.

In the following Hs is the Sobolev space W s,2(Ω → Rm), the usual L2(Ω → Rm) inner
product is denoted by 〈·, ·〉 i.e.

〈f, g〉 =

∫
Ω

f · g dx =

∫
Ω

n∑
i=1

figi dx,

and the corresponding L2(Ω) and Hs(Ω) norms by ‖ ·‖ and ‖ · ‖s respectively. The Bannach
space of continuous functions equipped with the supremum norm will be denoted by C(Ω).
If u is also a function of time we will use the convention that the scalar product or norm
acts on the spatial variable only. In the former case it will often be convenient to regard
u as a function of time taking values in a Banach space X, i.e. u(t, ·) ∈ X. Spaces of
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such functions that are continuous or square integrable will be denoted C ([0, T ]→ X) and
L2 ([0, T ]→ X) respectively.

To use some functional analytic tools such as the Lax-Milgram lemma and energy meth-
ods it is advantageous to work with a weak formulation of (4) instead of the classical. It
also has the advantage that we are able to deal numerically with the class of weak solutions.
Thus we multiply (4) with a test function ϕ and integrate over Ω. Now, if u ∈ C2(Ω) and
ϕ ∈ C1(Ω) then by the Green's theorem

〈Lu, ϕ〉 =

∫
∂Ω

[(
D∂xu,D

1

sin2(x)
∂yu

)
· n̂
]
· ϕ ds−B(u, ϕ), (5)

where B :
(
H1 ×H1

)
→ R is the bilinear form given by

B(u, v) = 〈D∂xu, ∂xv 〉+

〈
D

1

sin2(x)
∂yu, ∂yv

〉
−
〈
D

1

tan(x)
∂xu, v

〉
.

We note that somewhat unsatisfactory B is not symmetric, even though the original Laplace-
Beltrami operator is symmetric with respect to the scalar product of the sphere. This can
be attributed to the fact that our parametrization doesn't scale the two directions on the
sphere isometrically, and we are using the unweighted scalar product of the plane. In fact
the great Gauss himself showed, as a consequence of his 'Theorema Egregium', that it is
impossible to isometrically map an open set of the sphere to an open set of the plane. In
view of this result, non-symmetry of the bilinear form B cannot be avoided. We can now
state the weak formulation in terms of B:

De�nition 2.1. We say that u ∈ L2([0, T ]→ H1) with ut ∈ L2
(
[0, T ]→ (H1)∗

)
is a weak

solution of (2) given that

〈ut(t), ϕ〉+B(u(t), ϕ) = 〈F (u(t)), ϕ 〉 ∀ϕ ∈ H1 and a.e t ∈ [0, T ] (6)

and
u(0, x) = u0(x).

Here 〈ut(t), ϕ〉 is a slight abuse of notation since a general element in the dual of H1(Ω)
might not be locally integrable. What we mean in the latter case is the functional ut(t) ∈
(H1)∗ acting on ϕ which agrees with our notation if ut(t) is locally integrable.

The boundary conditions are only implicitly imposed in (6). One can however verify
that a weak solution with high enough regularity, say u ∈ C1

(
[0, T ]→ C2(Ω)

)
, is in fact a

classical solution which must satisfy the boundary conditions. This follows from equation (5)
by �xing a time t and �rst consider test functions of compact support. Then the boundary
integral vanishes, so that u satis�es (4) in the interior of Ω. But then everything cancels
except for the boundary integral so that∫

∂Ω

[(
D∂xu,D

1

sin2(x)
∂yu

)
· n̂
]
· ϕ ds = 0.

But if we now consider test functions which are non zero at the boundary we see that u
must indeed satisfy the Neumann boundary condition.
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2.2 On existence, uniqueness an regularity

What properties do the solutions (4) possess? Do they for example exist? Certainly one
does not have global existence in general; the nonlinearity may cause the solution to "blow
up" in �nite time. Consider for a simple example the scalar equation with

F (z) = z2,

and constant initial datum,
u(0, x) ≡ 1,

in which case (4) reduces to the ODE

u′ = u2,

with the explicit solution

u(t) =
1

1− t
which clearly blows up as t→ 1.

In correspondence with ODE theory however, there is always a unique local solution if
F is locally Lipschitz continuous. It is well known that L generates an analytic semigroup,
{etL}, which yields the solution to the homogeneous linear equation

wt + Lw = 0

n̂ · ∇w = 0 on ∂Ω

w(0, ·) = w0

by the formula w(t) = etLw0, see Pazy [9]. Furthermore etL is highly smoothing, in fact
w(t) will be in C∞(Ω) for any positive time even if w0 is only in L2(Ω). In particular
{etL} preserves the continuous functions, C(Ω) (see [9], Theorem 7.3.7). There is also an
exponential bound on the solution, ‖w(t)‖L∞ ≤ eωt‖w0‖L∞ for some ω ∈ R.

Now, by Duhamel's principle any solution of (4) must satisfy the integral equation

u(t) = eLtu0 +

∫ t

0

e(t−s)LF (u(s)) dt. (7)

Using this formula and the fact that the semigroup {etL} preserves C(Ω), it is straight
forward to apply the contraction mapping theorem on the space C ([0, T ]→ C(Ω)). Let the
mapping

Φ : C([0, T ]→ C(Ω))→ C([0, T ]→ C(Ω))

be given by

Φu(t) = etLu0 +

∫ t

0

e(t−s)LF (u(s)) dt.

If T is chosen small enough then Φ is a contraction, mapping some ball around etLu0 into
itself, and thus has a unique �xed point.

The solution thus obtained admits a maximal interval of existence T ∗, and persists as
long as ‖u(t)‖L∞ stays bounded. Due to the smoothing properties of {etL} the solution will
be at least as smooth as F for all positive times in the interval of existence. Quantitatively,
for any δ > 0 we have

u(t, x) ∈ C
(
[δ, T ]→ Ck+2(Ω)

)
∩ C1

(
[δ, T ]→ Ck(Ω)

)
5



if F ∈ Ck(Rn → Rn), for details see [9].
If F is globally Lipschitz continuous then a simple application of Gronwall's lemma (see

[6], appendix B) yields global existence. Observe that we then have |F (z)| ≤ C(1+|z|). Now,
let T be �xed but arbitrary, and let A = maxt∈[0,T ] ‖etLu0‖L∞ and B = maxt∈[0,T ] ‖etL‖L∞ .
Then Duhamel's principle (7) yields

‖u(t)‖L∞ = ‖eLtu0 +

∫ t

0

e(t−s)LF (u(s)) dt‖L∞ ≤ A+

∫ t

0

BC(1 + ‖u(s)‖L∞ ds)

:= A′ +

∫ t

0

B′‖u(s)‖∞ ds.

Thus by Gronwall's lemma
‖u(t)‖L∞ ≤ A′eB

′t

so the solution is bounded on [0, T ] and hence we have global existence. A similar argument
shows the uniqueness of the local solution.

In reality very few interesting reaction-di�usion systems satisfy the global Lipschitz con-
tinuity condition, clearly (2) does not. In the crude estimate above we did not pay any
attention to the dynamics of the problem. In many systems arising from real chemical reac-
tions however, there is a natural mass-preserving structure. This combined with positivity
of the solutions can yield global existence under fairly general assumptions, for a survey see
[10].

For the purely mathematical problem of existence and uniqueness a natural class of
initial data is L∞. Indeed, since we do not put any growth condition on the nonlinearity
F , F (u) might not even de�ne a distribution if u is essentially unbounded. Conversely,
initial data in L∞ does yield local well-posedness [10]. For numerics on the other hand, it
is necessary to require a bit more regularity, u0 ∈ Hs with s ≥ 2, to be able to approximate
the initial datum with any order of convergence.

Interestingly enough, while the crude way of handling the nonlinearity by simply esti-
mating it with the Lipschitz constant used above cannot yield global existence in general,
convergence of the numerical approximation can be proved with the very same technique,
given of course that a solution exists. This is because it su�ces to consider the numerical
solution in a neighborhood of the exact solution, thus it can be truncated outside a bounded
set.

3 Constructing a numerical solution

It is common procedure when discretizing time dependent PDE's to discretize the equation
in two steps. Firstly, the spatial variable is discretized yielding a large system of ODE's.
In our case this means approximating H1 by a �nite dimensional vector subspace which we
will denote by Sh and approximating the elliptic operator L by a suitable linear operator
Lh acting on Sh

1. Clearly also F needs to be replaced by a nonlinear operator Fh mapping
Sh into itself. Secondly, once the PDE is reduced to the ODE

ut = Lhu− Fh(u) (8)

1One might make the naive guess Lh should be the restriction of L to Sh but this turns not to be the

case. This because for many choices of Sh, L will not map Sh into itself.
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for
u : R+ → Sh,

one may apply any method of choice from the rich toolbox of numerical solutions for ODE's.
It is however important acknowledge the special structure of (8), namely the right hand side
being the sum two terms. The �rst term generates a sti� ODE, and the second term
nonlinear. The two typically requires di�erent numerical treatment.

3.1 Discretizing the elliptic operator

In accordance with the above remarks we will proceed by discretizing the operator L. We
will do this by the so called Galerkin method. This method is not only a computational tool
but can also be used as a purely theoretical tool for proving existence of solutions to PDE's,
see for example Evans [6]. The basic idea is to in a suitable sense "project the problem"
down onto a �nite dimensional subspace, replacing the PDE by a large system of ODE's.
In the theoretical analysis of the convergence of the Galerkin method, it is not necessary to
specify exactly what this subspace is, as long as it approximates the original Sobolev space
su�ciently well. Let {Sh} be a family of �nite dimensional subspaces of H1 that for some
r ≥ 2 satis�es the following approximation condition:

inf
χ∈Sh

{‖v − χ‖+ h‖(v − χ)‖1} ≤ Chs‖v‖s ∀s ≤ r. (9)

We call the greatest r for which this holds the order of approximation of the family {Sh}.
Such a family of subspaces can be obtained by considering piecewise polynomial functions of
degree r − 1 de�ned on a triangular grid with maximum perimeter of h, or tensor products
of one dimensional splines on a rectangular grid. Proving that the approximation condition
(9) indeed holds for these subspaces is a bit technical and we refer to Brenner and Scott [7]
Theorem 4.6.11 for details.

The main ingredient in proving convergence (as well as establishing existence) for an
elliptic operator is that of coercivity. By employing Poincaré's inequality it is straight
forward to show the following Gårding's (see Evans [6], chapter 6) inequality for B:

B(v, v) + κ‖v‖2 ≥ c0‖v‖21 ∀v ∈ H1

for some κ > 0. We de�ne Bκ(u, v) = B(u, v) + κ 〈u, v 〉 and Lκ similarly. It is also clear
that Bκ is bounded on H1:

|Bκ(u, v)| ≤ C‖u‖1‖v‖1.

Consider now the stationary elliptic problem

Bκ(u, φ) = 〈f, φ〉 ∀φ ∈ H1. (10)

By employing Lax-Milgram's lemma [6] one shows that this that equation has a unique
solution Tf ∈ H1 for any f ∈ L2. By standard elliptic regularity theory ( [6], chapter 6)
one can show that the solution operator T is actually smoothing by two degrees i.e

T ∈ L(Hs → Hs+2)

with the estimate
‖Tf‖s+2 ≤ C‖f‖s, (11)

7



Thus T is the inverse of Lκ with the Neumann boundary conditions on these Sobolev spaces.
Analogously we de�ne the discrete version of T , Th, by the requirement that

Bκ (Thf, χ) = 〈f, χ〉 ∀χ ∈ Sh. (12)

Recall that a �nite dimensional linear transformation is invertible if and only if its kernel is
trivial. Now if f ∈ Sh, then by the coercivity of Bκ one sees that Thf = 0⇔ f = 0. Hence
Th has an inverse which we will denote by Lh. The following section will clarify why this is
a good way of approximating Lκ on Sh.

We now observe that the de�nition of Th implies that Thf is an optimal order approxi-
mation to Tf in Sh with respect to the H1 norm since

Bκ(Thf, χ) = 〈f, χ〉 = Bκ(Tf, χ) ∀χ ∈ Sh

⇐⇒

Bκ((Th − T )f, χ) = 0 ∀χ ∈ Sh.

But then we have in particular with χ = Thf we get

Bκ((T − Th)f, Tf) = Bκ((Th − T )f, Tf − Thf) ≥ c0‖(T − Th)f‖21,

by coercivity. On the other hand the boundedness of B yields the upper bound

Bκ((T − Th)f, Tf) = Bκ((T − Th)f, Tf − χ) ≤ c1‖(T − Th)f‖1‖Tf − χ‖1. ∀χ ∈ Sh

Thus dividing by ‖(T − Th)f‖1 yields

Lemma 3.1 (Céa's lemma). The Galerkin solution of the elliptic problem (10) is of optimal
order as an Sh approximation to the real solution:

‖(T − Th)f‖1 ≤
c1
c0

inf
χ∈Sh

‖Tf − χ‖1.

Using the smoothing e�ect of the solution operator T we can obtain optimal order
convergence also in the L2 norm:

Lemma 3.2. Let Sh have an order of approximation s ≥ 2. For f in Hs−2 the operator Th
satis�es the following estimate

‖(T − Th)f‖+ h‖(T − Th)f‖1 ≤ Chs‖f‖s−2.

Proof. We �rst show that ‖(T − Th)f‖1 ≤ Chs−1‖f‖. This follows from immediately from
the fact that Th is a quasi-optimal approximation to T in H1:

‖(Th − T )f‖1 ≤ C inf
χ∈Sh

‖(χ− Tf)‖1

≤ Chs−1‖Tf‖s ≤ Chs−1‖f‖s−2,

where the second inequality is a direct consequence of the approximation condition (3) put
on Sh.

Now, let T ∗ be the solution operator of the adjoint problem so that

Bκ(ϕ, T ∗v) = 〈ϕ, v〉 ∀ϕ ∈ H1.

8



Evidently the same elliptic regularity theory applies to T ∗, i.e. ‖T ∗f‖s+2 ≤ C‖f‖s for
f ∈ Hs. In particular we have by setting ϕ = (T − Th)f in the above equation, ∀χ ∈ Sh
and ψ ∈ L2

〈(T − Th)f, ψ〉 = Bκ[(T − Th)f, T ∗ψ]

= Bκ[(T − Th)f, T ∗ψ − χ]

≤ C‖(T − Th)f‖1‖T ∗ψ − χ‖1.

Since T ∗ψ ∈ H2 we have

inf
χ∈Sh

‖T ∗ψ − χ‖1 ≤ Ch‖T ∗ψ‖2 ≤ Ch‖ψ‖.

Using this and the previous estimate of ‖(T − Th)f‖1 we obtain

〈(T − Th)f, ψ〉 ≤ Chs‖f‖‖ψ‖.

Letting ψ = (T − Th)f and dividing by ‖(T − Th)f‖

‖(T − Th)f‖ ≤ Chs‖f‖,

and the lemma is proved.

In the calculations above it is convenient to have the term (T − Th)f "left orthogonal"
to Sh with respect to the bilinear form Bκ in the sense that

Bκ((T − Th)f, χ) = 0 ∀χ ∈ Sh.

Denoting Rh := ThLκ one sees that

Bκ(f −Rhf, χ) = 0 ∀χ ∈ Sh,

and we will refer to Rh as the "elliptic projection". By the previous lemma it is clear that

Rh : Hs → Sh

regarded as an approximation operator is of optimal order, in the sense that

‖Rhf − f‖+ h‖Rhf − f‖1 ≤ Chs‖f‖s. (13)

3.2 Semi discrete estimate

We will now de�ne the �nite element solution of (6) to be the function uh ∈ C1 ([0, T ]→ Sh)
satisfying

〈 ∂tuh(t), χ〉+B(uh(t), χ) = 〈F (uh(t)), χ 〉 ∀χ ∈ Sh,∀ t ∈ [0, T ]. (14)

This is clearly the same as requiring uh to satisfy the ODE (8) with Fh = PhF , Ph being
the usual L2 orthogonal projection.

Since we want to use the elliptic estimates in the previous subsection we somehow have to
get around the fact that Bκ 6= B. This is easily done however by introducing new dependent
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variables ũ = e−tκu and F̃ (x) = e−tκF (etκx). It should then be clear that uh satis�es (14)
if and only if

〈 ũt, χ〉+Bκ(ũ, χ) =
〈
f̃(ũ), χ

〉
∀χ ∈ Sh and ∀t ∈ [0, T ]. (15)

We may thus without loss of generality assume that B is coercive, that Rh is the elliptic
projection with respect to B etc. The natural question is how accurate an approximation
uh is. The following theorem is proved in the self-adjoint case in Thomée[8]. Observe that
we have to put a mild growth condition on the derivative, dF of F .

Theorem 3.3 (Semi Discrete Estimate). Let u and uh be de�ned as in (6) and (14) respec-
tively. Also suppose ‖dF (x)‖ ≤ C(1 + ‖x‖)p for some p ∈ R. Then

‖uh(t)− u(t)‖+ h‖uh(t)− u(t)‖1 ≤ C(t)hr.

Proof. For proof consult [8], chapter 14, theorem 2.

3.3 Convergence of the implicit Euler method

We are now ready to discretize the ODE (14) yielding a fully discrete method. We will
analyze the implicit Euler scheme on an equidistant grid with step size k and tn = nk �xed
but arbitrary, so that n → ∞ as k → 0. Introducing the backward di�erence operator
∂̄U = (Un − Un−1)/k, the implicit Euler method can be "implicitly" formulated (no pun
intended) by 〈

∂̄Un, χ
〉

+B(Un, χ) = 〈F (Un), χ〉 . (16)

We will �rst consider the case when F is globally Lipschitz continuous:

|F (x)− F (y)| ≤ C|x− y| for x, y ∈ Rn.

It then follows that F as an operator on L2 is globally Lipschitz continuous:

‖F (u)− F (v)‖ ≤ C‖u− v‖ ∀u, v ∈ L2.

It is important to note that the next theorem does not follow from the well known conver-
gence of implicit Euler in the ODE case. The catch is that the temporal convergence is not
allowed to break down as the spatial resolution tends to zero. That is, the constant C is
independent of both k and the spatial parameter h.

Theorem 3.4. The implicit Euler method is �rst order convergent in time unconditional
the spatial discretization i.e. we have the inequality

‖Un − u(tn)‖ ≤ C(hs + k)

for some constant C depending on u and tn but not on k and h.

Proof. Recall the de�nition of the elliptic projection Rh in (13) and decompose error as
Un − u(tn) = (Un − Rhu(t)) + (Rhu(t) − u(tn) := θn + ρn. It then remains to bound the
�nite dimensional part θn. We will proceed with an energy argument. To facilitate notation
we will let wnh = Rhu(tn) and un = u(tn).
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For any χ in Sh we have〈
∂̄θn, χ

〉
+B(θn, χ) =

〈
∂̄Un, χ

〉
+B(Un, χ)−

〈
∂̄wnh , χ

〉
−B(wnh , χ)

= 〈F (Un), χ〉 − 〈unt , χ〉 −
〈
∂̄wnh − unt , χ

〉
−B(wnh , χ)

= 〈F (Un), χ〉 − 〈F (un), χ〉+B(un, χ)−
〈
∂̄wnh − unt , χ

〉
−B(wnh , χ).

Since B(un, χ)−B(wnh , χ) = 0 this simpli�es to〈
∂̄θn, χ

〉
+B(θn, χ) = 〈F (Un)− F (un), χ〉 −

〈
∂̄(wnh − un), χ

〉
−
〈
∂̄un − unt , χ

〉
, (17)

where we added and subtracted
〈
∂̄un, χ

〉
. Observe now that

〈
∂̄θn, θn

〉
=

1

2
∂̄‖θn‖2 +

1

2k
‖θn − θn−1‖2

=⇒
1

2
∂̄‖θn‖2 ≤

〈
∂̄θn, θn

〉
.

Thus, by setting χ = θn in (17) and using Cauchy-Schwarz inequality we get

1

2
∂̄‖θn‖2 +B(θn, θn) ≤ C‖Un − un‖‖θn‖+ ‖∂̄ρn‖‖θn‖+ ‖∂̄un − unt ‖‖θn‖,

where we also used the Lipschitz continuity of F .
Recall that Un − un = θn + ρn. Thus, using the elementary inequality

ab ≤ εa2 + 1
4εb

2 and the fact that ‖θn‖2 is bounded by B(θn, θn) we obtain the "discrete
Gronwall's inequality" for θ

∂̄‖θn‖2 ≤ C‖θn‖2 + ‖∂̄ρn‖2 + ‖∂̄un − unt ‖2,

and the rest of the proof is straight forward bookkeeping.
Now, evidently the last inequality implies that for su�ciently small k

‖θn‖2 ≤ (1 + kC)‖θn−1‖2 + Ck(‖∂̄ρn‖2 + ‖∂̄un − unt ‖2).

Inductively we then have

‖θn‖2 ≤ (1 + kC)n‖θ0‖2 + Ck

n∑
j=1

Aj

where Aj := ‖∂̄ρj‖2 + ‖∂̄uj − ujt‖2.
Recall that tn is �xed and that k = tn/n, thus we estimate the �rst term by(

1 +
Ctn
n

)n
‖Rhv − v‖ ≤ C

′
etnC‖Rhv − v‖ ≤ C1e

tnChs‖v‖ := C(tn)hs‖v‖s.

By the mean value theorem we have

‖∂̄ρj‖ ≤ ‖1

k

∫ tj

tj−1

ρt ds‖ ≤ 1

k

∫ tj

tj−1

‖Rhut − ut‖ ds ≤ C(u)hs,
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where we again use the approximation properties of Rh (13) and the regularity of the exact
solution, ut ∈ Hs. In the second term observe that

∂̄uj − ujt = −1

k

∫ tj

tj−1

(s− tj−1)utt(s) ds,

so that consequently

‖∂̄uj − ujt‖ ≤ ‖
1

k

∫ tj

tj−1

(s− tj−1)utt(s) ds‖

≤
∫ tj

tj−1

‖utt(s)‖ ds

≤ max
tj−1≤s≤tj

‖utt(s)‖k.

By collecting all the terms on the right hand side and applying obvious estimates we have

‖θn‖ ≤ C(tn)‖v‖shs + C(u)hs + max
0≤s≤tn

‖utt(s)‖k,

and the statement of the theorem follows.

The general case when F is not globally Lipschitz continuous can now be dealt with
by considering a smooth truncation F̃ of F such that F̃ (x) = constant for x ≥ R. We
may then apply the above theorem to conclude in particular that uh is bounded, let's say
‖uh‖ ≤ R/2, and hence that our truncated function F̃ equals F on the range of uh and u.

3.4 Splitting methods

We will now consider two alternatives to the implicit Euler method for the temporal dis-
cretization. For comparison all three methods are:

Implicit Euler(IE):

Un+1 = (I − k(L+ F ))−1Un

Implicit-Explixit(IMEX):

Un+1 = (I − kL)−1(I + kF )Un

Implicit-Explicit with Dimensional splitting(IMEX-ADI):

Un+1 = (I − kLy)−1(I − kLx)−1(I + kF )Un.

Here, Lx = ∂2
x + 1

tan(x)∂x and Ly = 1
sin2(x)

∂2
y where we for notational convenience have

dropped the dependence on h. We will not consider the Explicit Euler scheme since the
CFL-condition makes it useless for interesting values of ∆t

(∆x)2 (with this we mean values

where the error resulting from the spatial discretization does not completely dominate, see
Figure 4.2).

The name "splitting" refers to the fact that the time evolution of L and F are computed
separately. Physically this can be interpreted as �rst allowing the chemical components
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react, and then allowing them to di�use. In general this will not yield the same result as if
they were computed simultaneously. Compare with the situation in an autonomous linear
system of ODE's: {

x′ = (A+B)x

x(0) = x0.

Here the time evolution is given by the matrix exponential,

x(tn) = enk(A+B)x0.

But this will not be equal to the splitting

x̃(tn) = (ekAekB)nx0,

unless A and B commutes. Thus a splitting error is introduced.
From a computational point of view there are three big advantages with the IMEX

method compared to IE:

(i) There is no nonlinear equation solving required.

(ii) The linear system, (I − kL)x = b, that has to be solved at each time step is invariant
of time. Thus a single sparse LU factorization can be done before iterating in time,
so that only an upper triangular system has to be solved at each time step.

(iii) The linear system (I − kL)x = b decouples in the components of u. Thus we can
compute (I − kL)un+1

i = uni in parallel for all the components of u. Since the implicit
step in generally dominates the computational e�ort, this reduces the computation
time by a factor of 1/m, where m is the number of components of u.

The advantage of the ADI splitting is that it is possible to get the matrices Ax and Ay
approximating Lx and Ly tridiagonal with the right ordering of the basis, and thus the
linear system can be very e�ciently solved using the Thomas algorithm. However, with
the spatial discretization schemes we will use, the matrices Ax and Ay will not commute,
resulting in a splitting error. This can be seen in contrast to the dimensional splitting of the
planar Laplacian, where Ax and Ay resulting from the same discretization scheme commute,
so that the splitting is in fact exact. With our implementation we have observed that the
ADI scheme is roughly twice as fast as the IMEX scheme but much more inaccurate.

4 Simulations

In this section we carry out some numerical experiments to complement the theoretical
discussion in the previous sections. For our numerical experiments we will consider an
"activator-depleted substrate" model provided by Mienhardt [5] given by{

ut = Du∆u+ f(u, v)

vt = Dv∆v + g(u, v)
(18)

with {
f(u, v) = ρ0u

2v − µu
g(u, v) = −ρ1u

2v + σ
. (19)
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All the above constants are positive. HereDu andDv are the di�usion coe�cients. Normally
Dv needs to be 25-100 times larger than Du to generate patterns. Intuitively u is locally
(in space) consuming the substrate v, while in absence of v it decays exponentially. The
substrate v on the other hand is being produced at a linear rate in the absence of u. Since v
is assumed to di�use considerably faster than u, the substrate will be "sucked" into regions
where the concentration of u higher. If however such a region where u dominates grows
to large, v will not di�use fast enough to provide "fuel" for u and eventually the negative
feedback provided by µ will dominate. As a consequence the region where u dominates will
grow a hole or split in two. Of course as we pull the equation back to the plane with our
usual parametrization, the Laplacian has to be replaced with the operator L.

With parameters suitably chosen the above solution converges to a stationary state
exhibiting striking geometrical dot pattern as seen in Figure 1.

Figure 1: The initial distribution is show in the �rst image. The �ve spot patter obtained
by solving (18) on a 100x100 grid (with the the spatial discretization described in detail in
section 4.1) and the IMEX method in time with a stepsize of k = 10−3. The parameters
of the model are set to Du = 0.18, Dv = 70Du, ρ0 = 54, ρ1 = 108, µ = 24, σ = 30.
By lowering the di�usive rates to Du = 0.06, Dv = 70Du, the number of dots increases to
thirteen. Here we have plotted the concentration of the activator u. In general the substrate
v will exhibit the dual pattern.

By adding a saturation e�ect in the nonlinearity{
f(u, v) = ρ0

u2v
1+κu2 − µu

g(u, v) = −ρ1
u2v

1+κu2 + σ
(20)
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a stripe pattern emerges, as can be seen in Figure 2. Note how the solution evolves as a
traveling wave. The �nal distribution is similar to the striped pattern of the Asian species
macroileis hauseri.

Interestingly enough it turns out to be relatively di�cult to obtain a seven spot pattern
with this model and geometric domain, the seven spot Coccinella septempunctata being the
most common species in Europe. One possible solution could be to split the domain in two
and introduce a Neumann condition in the middle. It is outside the scope of this thesis to
perform any more systematic study of parameters. We simply give examples of how some
basic patterns can be generated. The model could of course be re�ned in many other ways,
for example by considering growing domains, time dependent di�usion rates etc. It is the
authors opinion however that such re�nements should made in close connection to empirical
studies, perhaps by dissecting the beetle in the developmental state.

Figure 2: By solving (20) w saturation e�ect of κ = 0.35 in we obtain a striped pattern
as �nal distribution. The other parameters are Du = 0.06, Dv = 70Du, ρ0 = 54, ρ1 =
108, µ = 24, σ = 30. We use a �ner spatial grid than in the previous simulation with a
200 × 200 grid and the time step size is kt = 10−3. Notice how the solution evolves like a
travelling wave.

4.1 Implementing the spatial discretization

For our numerical experiments we will for the sake of convenience take the domain Ω to be
the square [x0, π−x1]× [0, π]. This domain clearly does not have a smooth boundary so the
theory in the �rst two sections does not directly apply. In particular it is well known that
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higher elliptic regularity of the form (11) fails when the domain has corners. The best one
can say is that u ∈ H2(Ω) even if f is in C∞(Ω). However, one still has inner regularity
in the sense that ‖u‖Hs+2(Ω′) ≤ ‖f‖Hs(Ω′) for any open Ω′ strictly contained in Ω, see [6].
Analogously it is shown in Nitsche et. al. [11] that the Galerkin method still is of optimal
order on elements with support strictly contained in the interior of the domain. Since we
are actually completely uninterested in correctly simulating the potential discontinuities in
the corners, we will henceforth be content with measuring the error at interior nodes and
treat the domain as if the boundary really was smooth.

Thanks to rectangular domain we can choose a �nite dimensional space {Sh} that is
easy to work with. We take Sh = S1 ⊗ S1 , the tensor product of one dimensional linear
splines on a uniform rectangular grid of width h. We take as a basis

φi(x)⊗ φj(y)

where φi and φj are one dimensional tent functions centered at xij = (x0 + ih(π − 2x0), jhπ).
A typical basis function can be seen in Figure 3.

Figure 3: A typical basis function of S1 ⊗ S1. The function being the product of piecewise
linear functions is bilinear in each quadrant.
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We plug these basis functions into B to obtain the sti�ness matrix K:

B(φi ⊗ φj , φk ⊗ φl) = 〈 ∂xφi ⊗ φj , ∂xφk ⊗ φl 〉

+

〈
∂yφi ⊗ φj ,

1

sin2(x)
∂yφk ⊗ φl

〉
−
〈
φi ⊗ φj ,

1

tan(x)
∂xφk ⊗ φl

〉
=

∫
∂xφi∂xφkdx

∫
φjφldy

−
∫
φi

1

tan(x)
∂xφkdx

∫
φjφldy

+

∫
1

sin2(x)
φiφkdx

∫
∂yφj∂yφldy

≈
(

1

h
Tik +

1

tan(xi)
Sik

)
Mjl +

1

sin2(xi)
Mik

1

h
Tjl.

Here T denotes the Toeplitz matrix (altered at the �rst and last row to account for the
Neumann boundary condition)

T =



−1 1 0 0 · · · · · · · · ·
1 −2 1 0 0 · · · · · ·
0 1 −2 1 0 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
...

· · · 0 0 1 −2 1 0
· · · · · · 0 0 1 −2 1
· · · · · · · · · 0 0 1 −1


and S is the Toeplitz matrix

S =


0 1 0 · · · · · ·
−1 0 1 0 · · ·
. . .

. . .
. . .

. . .
. . .

· · · 0 −1 0 1
· · · · · · 0 −1 0

 .

These are the sti�ness matrices of the one dimensional operators ∂2
x and ∂x respectively.

The mass matrixM is tridiagonal with (1, 4, 1)/6 on the diagonal and I denotes the identity.
According to De�nition 3.2 the discrete solution of the elliptic problem should satisfy

Kû = Mf̂,

where û and f̂ denotes the vector of coe�cients in the basis φi(x) ⊗ φj(y). By �lumping�
(replacing it by the identity) the mass matrix and dividing both sides by h we arrive at our
discrete version of Lκ, in this basis given by the familiar looking matrix

Lh =

(
1

h2
T +

1

h tan(xi)
S

)
⊗ I +

(
1

sin2(xi)
I

)
⊗ 1

h2
T.
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Accidentally, these matrices coincides with the ones arising from a �nite di�erence scheme.
For tensor products of higher order splines there is a similar formula for the sti�ness matrix
as a Kronecker product of the one dimensional sti�ness matrices.

Another �ne property of the space S1 ⊗ S1 is that the interpolation operator Ih

Ih(u) =
∑
i,j

u(xij)φiφj

is of optimal order as an approximation operator

Ih : Hs → S1 ⊗ S1,

in the sense that
‖u− Ihu‖L2 ≤ Chs‖u‖Hs 0 ≤ s ≤ 2.

In order to verify that the spatial discretization is correctly implemented we solve the
Poisson equation on Ω with Neumann boundary conditions,{

(L+ I)u = f in ∂Ω

n̂ · ∇u = 0 on ∂Ω
, (21)

for a suitable function f for which the exact solution is known. Thus, the exact error is
plotted. As Figure 4 shows we have indeed second order convergence as expected.

4.2 Computing a reference solution

Since there are no nontrivial analytic solutions of the Meinhardt equations we will compute
a reference solution as means of measuring the error when comparing di�erent time stepping
methods. The standard Crank-Nicolson method is well known to be second order convergent
and unconditionally stable. Since the other methods are only �rst order in time and we are
mainly interested in big step sizes, we can be con�dent that di�erence in the computed error
and the real error is many orders of magnitude smaller than the real error.

When implementing Crank-Nicolson or implicit Euler it is necessary to solve a large
system of nonlinear equations at each time step. For example, with two components on a
100 × 100 grid that would be a system of 20 000 nonlinear equations. This is done by an
iterative process, Newton's algorithm. Thanks to the relative simplicity of the nonlinear term
we can calculate the Jacobian analytically, which dramatically reduces the computational
e�ort. Nonetheless, since the Jacobian involves the linearization of F at u(tn) which varies
with time, one is forced to compute a new Jacobian for each time step. Usually each time
step requires about two or three Newton iterations to get the residual below the tolerance
level which we set to 10−9.

We verify that the implementation of the Crank-Nicolson method is second order con-
vergent by �xing a spatial grid and comparing the solution of for various step sizes with the
numerical solution of a considerably smaller step size. Thus what is plotted is not the exact
error but

error∗ = Uk(tn)− Uk∗(tn∗)

where k∗ = 10−6 << k and tn = kn = k∗n∗ = tn∗. The result can be seen i Figure 5.
By comparing the numerical solution of (18) on the 50x50 grid with that of a 150x150 grid

we can estimate the semi-discrete error, that is, the error of the ODE (8) as an approximation
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Figure 4: Second order convergence of Poisson's equation (L+ I)u = f . We take u(x, y) =

cos
(
π(x−x0)
π−x0−x1

)
cos (y)) and apply L+ I (preferably in Maple or some other CAS) to obtain

f . We then interpolate f to obtain f̂ , and solve the equation (Lh + I)û = f̂ .

to the PDE (4). The result can be seen i Figure 5. Apparently the spatial error dominates
for k ≤ 0.005. Thus little is gained in decreasing k below 0.005 for a 50x50 grid. This once
again emphasizes the inadequacy of explicit methods since for those, the CFL-condition
alone requires k ≤ 10−6 and much smaller on a �ner grid.

4.3 Sti�ness of the nonlinear term

Since we in the splitting schemes will use explicit Euler to calculate the time evolution of
the nonlinear term it is interesting to investigate its sti�ness properties. For this purpose
we apply explicit Euler to the corresponding ODE for various step sizes, see Figure 6. In
general Explicit Euler is unstable for large step sizes. Of course IMEX will then have similar
stability de�ciencies when applied to the full problem, since the IMEX reduces to Explicit
Euler in the spatially homogeneous case.

In contrast to explicit schemes there will be no CFL-condition on the IMEX method.
This is since the instability is caused by the nonlinear term and not the di�usion. Thus
it is the size of the solution rather than the spatial discretization that causes numerical
instability.
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Figure 5: Convergence of the Crank-Nicolson scheme. We use the same parameters and
initial values as in �gure 3 and calculate until t = 1. Here the error is obtained by comparing
against a numerical reference solution computed by the same scheme with k = 10−6. We
set the tolerance in the Newton iteration to 10−9. Evidently the error vanishes of second
order which gives us some con�dence about the reliability of the reference solution. Next, we
estimate the spatial error by comparing the solution on a 50x50 grid with that of a 150x150
grid. The error produced by the spatial discretization clearly dominates for k < 0.005.

It is possible to take several explicit steps for every implicit, thus at least eliminating
the numerical instability. This does not rule out the possibility that the nonlinearity itself
is unstable. It could be the case that the exact �ow of the full equation

ek(L+F )

is stable, while at the same time the exact �ow of the nonlinearity

ekF

blows up in k. To rule out this possibility a more careful analysis of the nonlinearity is
required.

4.4 E�ciency experiments

In this section we compare the e�ciency of the three time stepping methods introduced
above. Of course this does not give a de�nitive answer of which algorithm is the best
one since the performance depends on the implementation, hardware etc. The algorithms
themselves could of course also be optimized in di�erent ways, for example with some
adaptive step size or by applying a method of higher order accuracy. Nonetheless, they
are in some sense all "equally bad", and the results gives at least on a naive level some
indication that the splitting schemes are very well suited for this type of problem.

The results can be seen in �gure 9. It is clear that both IMEX and ADI are much more
e�cient than IE, which is already much more e�cient than EE. Somewhat surprisingly
however, the dimensional splitting is less e�cient than IMEX, even though taking a time
step with ADI is roughly twice as fast as with IMEX. This implies that the splitting error
caused by the dimensional splitting is not negligible. This can be attributed to the fact
stated earlier, that the operators ∂2

x + 1
tan(x)∂x and 1

sin(x)2 ∂
2
y do not commute, or more

precisely the commutator is large on this domain.
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Figure 6: To the left Explicit Euler is applied to the nonlinear ODE ∂tu = F (u), u0 = (1, 1).
It is clear that the numerical solution su�ers from instability when k > 10−3. To the right
Explicit Euler is applied to the same ODE but with a larger initial datum, u0 = (100, 100).
The scheme is now unstable for k > 10−6.

5 Conclusion

We have made a rigorous de�nition of a reaction di�usion system on a sphere and de�ned
what we mean by a classical and weak solution. The existence, uniqueness and regularity
of such solutions were then brie�y discussed. While the question of global existence can be
a delicate one, at least locally solutions always exists and typically possesses a high degree
of regularity.

To start the numerical discussion we then introduced the Galerkin method for discretizing
the spatial variable and proved some convergence rates. Next, the resulting ODE was
discretized by a few di�erent schemes and convergence rates was proved for the implicit
Euler algorithm.

In the fourth section some numerical experiments were carried out with an activator-
substrate model proposed by Geirer-Meinhardt. Basic lady beetle patterns such as spots
and stripes were generated from simple initial values. We also backed up the theoretical
convergence results with some numerical studies. The e�ciency of the splitting schemes and
implicit Euler were compared. While both the ADI and the IMEX splitting outperformed
implicit Euler, it was IMEX that turned out to be the most e�cient.

The work in this thesis can be furthered in many directions. It would for example be
interesting to see how di�erent parameterizations of the sphere a�ects the e�ciency of the
ADI splitting. Is it possible to make a decomposition of L such that the resulting matrices
Ax and Ay are less "noncommutative", and there by reducing the splitting error? For the
pure IMEX splitting one could experiment with taking several shorter explicit nonlinear
steps for each linear implicit step and thus eliminating the stability de�ciencies. Since the
explicit step is much less costly than the implicit one, optimal e�ciency would require that
the splitting error and the implicit error dominates.

Another question is how other choices of Sh a�ects the e�ciency. Given the high a priori
regularity of the exact solution it is tempting to try to approximate it in some subspace with
a higher order of approximation. However, by taking basis functions with larger support it
gets more complicated to calculate the projection of the nonlinearity, PhF (u), at each time
step. This is a question of computation rather than convergence.
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Figure 7: In the �rst �gure we compare the e�ciency of IE, IMEX and ADI on a 100x100
grid and tn = 1. The same initial datum as in �gure 1 is used. Clearly, IMEX performs
best of the three methods. Next, not in completely reversed order, we have the convergence
rates. While it is clear that all three methods are �rst order convergent, it is notable that
the splitting itself introduces a considerable error. Perhaps not surprisingly ADI is also
much more inaccurate than the simple IMEX, since we here also split the di�usion.

One would of course also want to address some questions related to the biological prob-
lem, preferable in connection with some empirical studies. This could involve making a
more systematic numerical study of the parameters in the model. If for example the seven
spot pattern can only be obtained from a very small region in the parameter space then
this would indicate some unknown mechanism at work. Perhaps it is necessary splitting
the domain in two, so that each wing develops independently. The model could of course
be re�ned in many other ways such as considering growing domains or spatially dependent
production rate of substrate. Ultimately the goal would be to identify not only the chemical
components of the reaction, but also the full chain of genes involved. Quite possible the
activator itself does not provide the pigmentation, rather it may trigger the cell to produce
it. This of course constitutes an involved program, where even the slightest guidance from
the kind of simulations presented in this thesis would be welcome.
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