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Abstract

A paper by Alber shows the existence of steady, inviscid incompressible flows with non-
vanishing vorticity for general three-dimensional domains with smooth boundary. In this
thesis we show the existence of such flows in cylindrical domains under the conditions that
there is no flow through the side of the cylinder, nonzero flow into the cylinder at all points
in the bottom, and nonzero flow out of the cylinder at all points in the top. The flow is
constructed by adding a perturbation with nonvanishing vorticity to an already existing
flow with no vorticity. To show that this indeed gives us another flow we use a fixed point
argument. This can be done if we put certain restrictions on the boundary conditions that
define the vorticity of the perturbation.

Populirvetenskaplig Sammanfattning

Ekvationerna som beskriver floden i fluider kallas Navier-Stokes ekvationer och trots att de
formulerades pa 1800-talet dr kunskapen om 16sningar fortfarande langt ifran fullstdnding.
Forskningen som ror detta gar ofta framat genom att specialfall som forenklar ekvation-
erna undersoks. Sa &dr dven fallet i detta arbete. Antagenden som gors dr att fluidens
hastighet och trycket &r konstant i tiden, att fluiden saknar viskositet (ror sig utan frik-
tion) och att den dr inkompressibel. Under dessa antaganden tillsammans med antagandet
att vorticiteten (ett matt pa rotationen i vétskan) &r noll & mycket redan utrett. Om man
ddremot stiller kravet att vorticiteten inte ska vara noll finns desto mindre kunskap. Det
har dock visats att i tre dimensioner existerar saddana fléden i omraden vars rand &r glatt,
vilket i princip betyder att det inte finns nagra horn eller skarpa kanter. Det som gors
i detta arbetet ar att visa att sadana floden &ven existerar i cylindriska omraden under
antagandet att det inte sker nagot flode genom manteln och att allt fléde in i cylindern
sker genom botten och allt fléde ut ur cylindern sker genom toppen.



Contents

1

8

Introduction
1.1 Sobolev Spaces . . . . . . . .

Earlier Result by Alber
Main Result

Div-Curl Problem

4.1 The operator S . . . . . ..
4.2 The operator T' . . . . . . . . e
4.3 The BVPs . . . . . . e
4.4  Application to the div-curl problem . . . . . .. ... ... ... ... ...

The Transport Equation ;
5.1 Estimates of f, g_gi, and % ..........................
3

5.2 Sufficient conditionsonn . . . . .. ..o
Proof of the Main Result

Examples

7.1 Two-Dimensional Flow . . . . . .. ... ... ... ... . .........
7.2 Axisymmetric Flow Without Swirl . . . .. .. ... ... ... ......
7.3 Beltrami Fields . . . . . . . . . . . e

Discussion

A Irrotational Solutions

10

17

23
25
26
31
37

39
39

46

49

58
o8
29
61

63

64



1 Introduction

We study the steady flow of an inviscid, incompressible medium through a cylinder €2 =
U x (0,L) C R? x R, where U is an open, bounded, simply connected subset of R? with
C> boundary and 0 < L < oo (see Figure 1). For functions and variables in R™ we use
subscripts to denote the components, i.e. if # € R3 then x = (zy, 72, z3). The cylinder is
oriented so that its cross section with a plane given by 23 =1, 0 <[ < L,is U x {{}. To
denote a cross section of this type for a particular z3 we use Q,, = U x {x3}.

Mathematically, the problem of our interest is given by the incompressible Euler equa-
tions

(v-V)u+Vp=0 in Q, (1.1)
dive =0 in €, (1.2)

with boundary condition
n-v=q¢ on 0L, (1.3)

where v is the velocity field of the flow, p is the pressure and n is the exterior unit normal.
We will also assume that ¢ < 0 on the bottom of the cylinder €y, ¢ > 0 on the top 2,
and ¢ = 0 on OU x (0,L). This means that the flow into the cylinder is limited to the
bottom and that the flow out is limited to the top. The goal of this thesis is to construct
flows with nonzero vorticity, that is, with curlv Z 0.

We begin with a brief review of previous results in order to put the present contribution
into context. Throughout this discussion, we replace the cylinder €2 by a smooth, simply
connected, bounded domain I' C R3. Surprisingly little is known about steady three-
dimensional ideal flows with nonzero vorticity. In contrast, irrotational flows, characterized
by curlv = 0, are very well-understood. An irrotational flow in I' can be described by a
velocity potential &, with A® = 0 and v = V®. The harmonic function ® is uniquely
determined up to a constant by its normal derivative 0®/0n on OI'. Hence, v is completely
specified by its normal component ¢ = v - n on the boundary. Here, ¢ is an arbitrary,
sufficiently smooth function satisfying the compatibility condition |, or @dS = 0. By using
the relation

1
(v-V)o=V (5‘”’2) — v X curlv

we can rewrite equation (1.1) as

1
\Y% (§|v|2 —I—p) = v X curlw, (1.4)
showing that the Euler equations are automatically satisfied for an irrotational flow if v is
given by a harmonic potential and the pressure is defined by

1 2
p= —§|U|

(again, p is only unique up to an additive constant). This discussion implies that the
normal component of the velocity field is not enough to uniquely determine the flow if we

1
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Figure 1: Examples of a possible cylinder ).

allow for nonvanishing vorticity. The expression H = %]v|2 + p appearing above is called
the Bernoulli function. Equation (1.4) says that the Bernoulli function is constant along
integral curves of the flow and that it is identically constant throughout I' if the flow is
irrotational.

Steady flows with vorticity have mostly been studied in the two-dimensional setting,
say with v = (vy(x1,23),0,v3(z1,23)) (I' now being unbounded and uniform in the z5-

direction). In this case, there is a stream function 1, such that (v;,v3) = (—g—;‘;, g—;/’l) and

1 is constant on the integral curves of v. Moreover, the vorticity only has one nontrivial
component, curlv = (0, 3—2 — g—ﬁ, ), which is also constant on the integral curves of v.

In the absence of stagnation points and closed integral curves this implies that there is a
functional relationship between the vorticity and the stream function. This allows one to
replace Euler’s equations by a semilinear elliptic equation Ay = F'(¢)) for some function
F (see e.g. [5]). The function ¢ is the tangential derivative of ¢ along JI', so that ¢
determines ¥ up to a constant for a given F' (under some technical hypotheses).

However, one would also like to know if the flow can be determined uniquely only in
terms of boundary conditions. It’s not difficult to see that F' will be determined if the
nontrivial vorticity component is given on the inflow part of the boundary oI'_ = {z €
OI': ¢(x) < 0} (under some nondegeneracy conditions). Another possible choice is to
specify the Bernoulli function H on OI'_, since equation (1.4) implies that VH X n equals
¢ curlv in view of the fact that n - curlv = 0. Both of these boundary conditions therefore
give rise to well-posed boundary value problems. For a discussion of the nonuniqueness
issues which arise when stagnation points and closed integral curves are allowed we refer
to [24].



In the three-dimensional setting, the most well-studied solutions with vorticity are
axisymmetric flows and Beltrami fields (or force-free fields)'. The axisymmetric case can
however be reduced to a two-dimensional problem set in a cross-section of the fluid and
again there is a simplified formulation in terms of the Stokes stream function. The Beltrami
fields are on the other hand genuinely three-dimensional and are characterized by the
condition curlv || v, so that H is constant throughout I'. They are often associated with
chaotic behavior, a famous example being the so-called ABC flows [5, Example 11.1.9]. The
boundary value problem for axisymmetric flows and Beltrami fields has for example been
studied in [6, 7, 16]. We will return to this in Section 7.

The first general result on the well-posedness of the boundary value problem for three-
dimensional flows with vorticity is due to Alber [3]. The boundary conditions that he
imposed were the normal component n - v of the velocity field on OI' as well as the normal
component n - curlv of the vorticity and the Bernoulli function H on the inflow set 0T _.
He showed that, given a background ideal flow which satisfies certain technical conditions,
and boundary data which lie sufficiently close to those of the background flow, it is possible
to construct a new flow with the given boundary data. He also proved a local stability and
uniqueness result for the solutions. By choosing H to be nonconstant, the new solution
is guaranteed to have nonzero vorticity. Alber’s results and methods will be reviewed in
more detail in Section 2.

Using similar ideas, Tang and Xin [22] later proved a modification of Alber’s result in
which the background flow was not assumed to satisfy Euler’s equations and the boundary
conditions on OI'_ were replaced by curlv = av + b, where a is a given scalar function
and b a given vector-valued function satisfying b - n = 0 and the compatibility condition
divgr (¢b) = 0. Note that n - curlv = ¢a, so that the normal component of the vorticity
is determined also by these boundary conditions. Moreover, H and b are related by the
identity Vo H = —(¢b) X n on OI'_, where V1 denotes the tangential gradient.

In this thesis we use Alber’s methods to study flows with nonzero vorticity in the
cylinder €). However, the fact that 02 has sharp edges introduces new difficulties. To
intuitively understand these methods it is useful to reformulate the problem above in what
is known as the velocity-vorticity formulation. Taking the curl of equation (1.4) we find
that

curl (v x curlv) = 0. (1.5)

Using div v together with the identity
curl (v X z) =vdivz + (2 - V)v — zdive — (v- V)z
we get that (1.5) is equivalent to
(v - V)curlv = [(curlwv) - V). (1.6)

For simply connected domains equations (1.6), (1.2), (1.3) are equivalent to (1.1)-(1.3).
To find a solution with nonvanishing vorticity we will use an irrotational solution (v, po)
solving the boundary value problem above. Existence and properties of such a solution will

!The terminology is not completely standardized. In Section 7 we will use the term ‘nonlinear Beltrami
field’ when v and curlv are everywhere parallel and ‘linear Beltrami fields’ for flows in which curlv is a
constant multiple of v, while others use ‘force-free fields’ for the former and ‘Beltrami fields’ for the latter.

3



be outlined in Appendix A. We prove that there exists a neighborhood of (vg, pg) in which
we can find a unique flow which satisfies (1.1)-(1.3) and the two additional boundary
conditions from Alber’s paper [3] on the inflow set €. We find this solution through
introducing a operator B on the neighborhood of (v, py) following the technique used by
Alber. Then we show that this operator has a unique fixed point which corresponds to a
solution of the problem (1.1)-(1.3) and the additional boundary conditions.

In Section 3 we introduce B and state Theorem 3.1, which is our main result. In
sections 4 and 5 we show that B is well-defined and finally in Section 6 we prove that B is
a contraction which we use to show that it has a unique fixed point. In this section we also
show that the fixed point corresponds to the desired solution. We end with some examples
and some open questions in Sections 7 and 8. However, first we introduce Sobolev spaces
to those who are unfamiliar with the concept and establish some necessary notation below.

1.1 Sobolev Spaces

When first learning about differential equations it is natural to assume that the solution
of an n:th order differential equation is n times continuously differentiable. However, in
modern mathematics this is not generally the case and weaker solutions are found in a
class of function spaces called Sobolev spaces. Here is a brief introduction to these spaces
given together with some well known connected results. For a more comprehensive source
see e.g. Adams [1].

Let M be a bounded open subset of R". We begin by a definition concerning the
boundary of M.

Definition 1.1. (i) Let j € N. We say that the boundary M is CY, or that M is of class
C7, if for each point 2’ € OM there exist neighborhood V' and, if necessary, new orthogonal
coordinates {y1, - ,y,} such that

Vi={y=(y1, ,yn) ER": —a; < y; < a;,1 <i<n}
and CY function, ¢ : V' — R" where
Vi={y =W, -y, —1)eR" ' —q; <y <a,1 <i<n-—1}

with the properties
Qn
<D, vyev,
MOV ={y= " y) €V :0) > yn},
OMNV ={y=(,yn) €V :9(y) = yn},

(ii) Likewise, we say that OM is C> if p € C°(V';R), OM is C** if v € C*MV';R)
for 0 < A < 1, that is k& times A-Holder continuously differentiable, and OM is analytic if
¢ is analytic. The special case where 1) € C%1(V';R) is often called a Lipschitz boundary.

To continue we let a be a multi-index, that is o = (o, g, ..., ) € N" with |o| =
a1+ ag + ... + ay, and let D* = 0ol Also let k € Nand p € R with p > 1 or

aq @ 9..an
Oz ' 0xg*--Oxy
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p = oo. If fis a locally integrable function on M and ¢ € C°(M) we can make sense of
the expression

D% dx.
M

We say that ¢ is the weak a-th partial derivative of f if it is locally integrable and

[ sptpds= (-1 [ gpda

holds for all p € C°(M). If there exists such a function g it is uniquely defined almost
everywhere and if f € C1*I(M) it is clear that D*f = g, therefore it make sense to use
the notation D®f := g even if the derivative doesn’t exist in the classical sense. Weak
derivatives allows us to make the following definition.

Definition 1.2. The Sobolev space W*P(M) is the space of functions in LP(M), with weak
derivatives up to order k in LP(M), that is

WhP(M) = {f € L"(M) : D°f € L?(M) ¥|a| < k}.

equipped with the norm

1/p
| - R 2 [ for 1 < p < oo,
|f||Wk’P(M) = lo|<k
max 1D fll oo an) for p = co.

When p = 2 the Sobolev spaces are usually denoted by H*(M).

We note here that the norms in the definition are not the only possible norms on the
Sobolev spaces. However all commonly used norms are equivalent in the sense of norms
and we will use the ones above. It is also clear from the definition that W%P(M) = LP(M).

While all the Sobolev spaces are Banach spaces the spaces with p = 2 are Hilbert spaces
with inner product

(f 9>Hk(M) = Z (D*f, Dag>L2(M)~

lor| <k
Another way to define the space W"?(M) is through the completion of {f € C*(M) :
| fllwrear < oo} with respect to the norm ||-|[yxs(ar). If we instead look at the completion
of C(M) we get another space. To characterize this space we need the trace operator
introduced through Theorem 1.4 below (Theorem 7.53 in [1]). However, to state the
theorem we first need to define Sobolev spaces on the boundary of M.

Definition 1.3. Let the boundary of M be C7') and Vi, ..., V, be a covering of M of hyper
cubes, with corresponding C*! functions 11, ..., 1, as in Definition 1.1. Let ¢y,...,¢, €
C2°(R™) be a partition of unity subordinate to Vi, ..., V,, that is for all 1 <i <gq



and

in a neighborhood of M. Let ¢; = @;i|v.non and define ¥, : V! — V, N OM by

\Ili<y17 ---7yq—1) = (?/1; "'7yq—17¢i(y17 "'qu—l))-

If f is a distribution defined on OM and s € R, with |s| < j + 1. We say that
feWsP(OM) if (p.f) oW, € W*P(V/) (W*P(V/) with s # N is defined in Definition 1.10

(2

below.) for all 0 < i < gq. The space W*?(OM) can be equipped with the norm

q
£ llwerorny = Y I(@if) © Uillwerqvr)-
i=1

Theorem 1.4 (Trace theorem 1). Assume M is bounded with Lipschitz boundary. Then
there exists a bounded linear operator T : WYP(M) — LP(OM) such thal

Tf = flom for f € WHP(M) N C(M),
HTfHLP(aM) < C||f||W1,p(M).

Definition 1.5. The completion of C2°(M) with respect to the norm || - ||yrr(as) is the
space WiP(M). This spaces can be characterized by

Wy (M) = {f € WF(M) : TD*f =0V|o| < k—1}.
Analogously to before we denote Wi?(M) as HY(M).

The Sobolev spaces can easily be extended to vector valued functions f : M — R™
by letting the components of f be functions in W*P(M), i.e. f € (WkP(M))™. If it
is clear from context we denote this simply as f € W"?P(M), but where we want to
make it explicitly clear that f is vector valued with m components we use the notation
f € WrP(M;R™). A convention we also use for other function spaces.

We will also use the Sobolev spaces mapping an interval of the real line, [0, 7], into a
Banach space, X with norm || - || x. However we begin by introducing three other types of
spaces first (see [9]).

Definition 1.6. The space LP(]0,T]; X) consists of the functions which are strongly mea-
surable functions f : [0,7] — X such that the norm

T 1/p
( | s dt) for1 < p < oo,
0

ess sup |[f(t)|lx forp = 00
te[0,7

£l zro,11:x) =

is finite.



Definition 1.7. The space C([0,T]; X) consists of all continuous functions f : [0,7] — X
and is equipped with the norm

Il = mas 1£(2)x.

Definition 1.8. The space C,(]0,T]; X) consists of all weakly continuous functions f :
[0,7] — X, that is, functions f such that ¢ — [(f(t)) is continuous for any bounded linear
functional | € X"

For a function in f € LP([0,7]; X) we say that it has a weak derivative of the k:th
order if there exists a function g € LP([0,T]; X) such that

/0 F(E) D p(t) dt = (—1)* / g(t)p(t) dt

for all test functions ¢(t) € C°([0,7]). We denote these weak derivatives as f’, f”, f",---
for k =1,2,3,- -, respectively, or by DFf.

Definition 1.9. The space W*?([0, T]; X) is the space of functions f € LP([0,T]; X) such
that the weak derivatives of f up to order k exists as functions in LP([0,7]; X). This space
is equipped with the norm

(/ > Il dt> forl < p < o,

ess sup ZHD’fHX forp = oo.

te[0,7]

Lf lwen o) =

As before Wk2([0,T]; X) = H*([0,T7]; X).

We will also need an extension of these spaces so we can replace k with a real number.
For 1 < p < oo and M = R" an equivalent definition of the Sobolev spaces is

WRE(R") = {f € LP(R") : F (1 + [¢")"2F f] € LP(R")},
where F denotes the Fourier transform. Using this we can make the following definition

Definition 1.10. Let s€¢ Rand 1 < p < oc.
(i) For M = R™ the Bessel potential space W*P(R") is

W (R") = {f € S'(R") : F[(1 + ") Ff] € L (R")},

where S'(R™) is the tempered distributions on R™ [21]. The Bessel potential space is
equipped with norm

1 llweren) = 17 (L + [€17)*2F fll| o).



(ii) For M # R™ the Bessel potential space W*P(M) is the restriction of functions in
W#P(R™) to M, that is

WP (M) ={f € D'(R") : 3g € W*P(R"), g|m = [},

where D'(R") is the distributions on R™ [21]. The Bessel potential space is equipped with
norm

LA llwer iy = nf{[[gllwsr@n) = g € WP(R), glar = £}
Again W*2(M) = H*(M).

By || - |5y we mean || - [|ys2ar if s is a natural number and || - ||ys2(ar) otherwise.
Additionally, we let || - ||s,a7 := || - ||z=(ar) and if we have a function f : Q@ — R such that
f(,z3) € H™(U) for a given x3 we use the notation || f||gm(q,,) = [[f(+; 23)[| zm()-

Some of the results we will use are summarized below. The first of which can be found
as Theorem 5.4 in [1].

Theorem 1.11 (Sobolev’s embedding theorem). Suppose M is a Lipschitz domain.
(i) If mp > n, then ' '
WitmE (M) < CJ(M),

where ' |
C{ (M) ={f e C/(M):D*f is bounded for |a| < j},
with norm

j = Inax su Z)|.
”f”cg(M) ols) xe]\% |/ ()]

An embedding in the sense that any function in Wt™P(M) is a function in C} (M) and
that there exists a constant cV) = ¢ (M) such that

||f||cg'(M) < C(l)||f||w.f+vrw(M)-

for all f € WItme(M).
(11) If mp > n > (m — 1)p, then
Wj+m,p(M) SN CJ})\(M)

for 0 <A <n— 2 in the same sense as in (i).

We also use a similar result (see e.g. [9], Theorem 2 in Section 5.9.2).

Theorem 1.12. Let 1 < p < oo then
Wh([o, T; X) — C([0,T]; X),

which means that any function in WYP([0,T]; X) is a function in C([0,T]; X) and that
there exists a constant ¢® = ¢ (T) such that

I flleqomx) < <P fllwieomx)
for all f € W2([0,T]; X).



We will also frequently use the following result (see e.g. [13], Theorem 8.3.1).

Theorem 1.13. Let f € H*(M) and g € H"(M), and let < min{u,v} and k < p+v—75.
Then fg € H*(M) and there exists a constant ¢® = ¢®(U) such that

1 gllear < NI lluaellgllar.

We will also use a refined version of the trace theorem (see [1|, Theorem 7.53, [8] and
Remark 1.16).

Theorem 1.14 (Trace theorem 2). (i) Assume M is bounded with C* boundary and let
m € (3,k]. Then there ezists a bounded linear operator T : H™(M) — H™ 2(OM) such

that B
T = flow for f € H™(M) N C(M),

ITF 1yt opry < N Fllzman)-

(it) Assume M is bounded with Lipschitz boundary and let m € (3,3). Then there exists a
bounded linear operator T : H™(M) — H™ 2 (M) such that

Tf = flom for f € H™(M) N C(M),
T Ayt gy < I iz cany

(iii) Assume M = Q, m > 1 and let
H*(0Q) = H*(Qy) x H*(Qp) x H*(OU x (0, L)),

with compatibility conditions on 0N O(OU % (0, L)) and 02, NO(OU x (0, L)) (depending
on s). Then there exists a bounded linear operator T : H™(2) — H™ 2(8Q) such that

Tf:f|ag for f € Hm(Q)ﬂC(Q),
1T Fll gon-3 90y < €llfllzm -

Remark 1.15. The trace is generally not a mapping between Bessel potential spaces, but
another generalization of the Sobolev spaces called Besov spaces. However, for p = 2 the
Bessel potential spaces and Besov spaces are the same. Hence, the formulation of the trace
theorem above holds for Bessel potential spaces.

Remark 1.16. Part (i) is true since Q) can locally be transformed onto a polyhedron by
smooth maps. To get an idea of the proof see e.g. Theorem 1.5.2.3 in [11], where it is
shown for domains in R2. The compatibility conditions on the edges are left unspecified
since they are not needed for our purpose.



2 Earlier Result by Alber

In the introduction we noted that many ideas used in the proof comes from a paper by
Alber [3] in which he shows a similar result. The difference between our result and Alber’s
comes from Alber studying flow in general bounded, simply connected domains in R? of
class C'°, while we study the flow in a cylinder. To understand Alber’s result we have
to introduce some notation concerning the domain, which we will call I' C R3. For an
example of such a domain we can consider, as suggested by Alber, a cylinder with rounded
top and bottom, see Figure 2.
The problem Alber studies is

(v-V)u+Vp=0 in T, (2.1)
dive =0 in T, (2.2)
n-v=¢  on JI. (2.3)

Since T is of class C™ there exists open subsets Uy, ---U, of R? with oI' C U U; and
diffeomorphisms ®; : D3 — U;, where

Dy ={yeR: |y <1},

such that
Ui N 89 = CI)Z(DQ, N {{L‘g = O})

and

The following definitions are slightly different than the ones given in Section 1.1, but
they are the ones used in [3] and are therefore included here to make the results stated in
this section as clear as possible.

H*(AT) denotes the trace space. The functions 1; : Dy — O with

wi(glv 52) = @i(glv 627 0)
define coordinate systems on JI'. If we let o; : OI' = R, i = 1,--- i, be a partition of unity
on OI' with 0 < o < 1, support(c;) C 1;(D3), and o; 0 1p; € C°(Dy) we can define
HQHké)F—ZZ [(i 0 ¢:)D(q © ¥i)||o,p,
=1 |a|<k

as norm on H*(9I'). For ¢ € H?(II') let

O =0I' _(¢) ={x € dl': ¢(x) < 0}
OI'y =04 (¢) = {z € O : ¢(x) > O}.

Note that due to the assumptions we put on ¢ € H?(99) for the problem in the cylinder
2, the sets corresponding to 0I'_ and OI', are €y and Q, respectively, which are subsets

10
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Figure 2: Example of a possible domain T'.

of R?. This allows us to use the standard Sobolev space norms on these sets instead of the
following norms used by Alber.

OI'_, 0", are open subsets of the C*°-manifold JI" since ¢ is continuous and hence they
themselves are C°°-manifolds. The boundary of 0I'y relative to OI' is denoted by

9O, = Oy N (AT \ oLy ).

We say that OI'_ has Lipschitz boundary if the functions ®;,---®, can be chosen so
that the domain .
Dy =7 '(or-)
is empty or has Lipschitz boundary for every i =1,--- | p.
For k£ < 2 the norms on OI'_ are defined as

lgllxor = Z > (o0 9) D* (g 0 i) llg ps -

i=1 |a|<k
deor-=Y> Y

1
sy (21 ) iaony
i=1 |a]+|8|<k oo

- of 1 o 1
o =3 ¥ |@ovone (52) 07 (525 ) Plaew

i=1 |af+|a/|+|BI<k
if the expressions are finite. The last two norms require ¢ to vanish sufficiently fast at the
boundary 00I'_ to be finite.
This allows us to express the main result in Alber’s paper [3|, which can be compared
to our main result Theorem 3.1.

9

0,D}

0,D}
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Theorem 2.1 (Theorem 1.1 in [3]). Let I' be a bounded simply connected domain of class
C*>. Assume that ¢ € H*(OT) satisfies

¢(x)dS, =0
or
and is such that OU_(¢) is a manifold with Lipschitz boundary.
Let (vo,po) € H3(T) be a solution of (2.1)-(2.3) satisfying curlvy, € H3(T') and

vy = inf Juo(x)| > 0.

Moreover, assume that vy does not have closed integral curves and that the least upper
bound Lq of the length of all integral curves of vy is finite. Finally assume that there exist
constants ¢ > 0, t > 0 such that

dist(OT_ (@), z + tvg(x)) > ét
for all x € 0T _(¢) and for all 0 < t < t, and

dist (0T 4 (@), x — tvg(x)) > ét
for all x € 90T (¢) and for all 0 < t < t.

Then there exist constants
v = Y(vo, ') >0,
[A{i = Ki(Loij, |U0|37F, ¢,’7,F) > 0, 7 = 1, 2,3

with the following properties:
Let g € H*(OT'_), h € H*(OT'_) and vy satisfy

I(g, h,curlvy) < K, (2.4)
h 1 9
I(g, h,curlyy) = 5 + gng + | D*curlvg|o.or_
2,0T_ 2,0T_

1
+ Z ||| D™ curl vg|||o—m,or_

m=0
1
+ ‘—(n-curlvo) + |curl vy |3, €2
2,0r_
Here D™curl vy denotes the vector
D™curlvg = (Da(curlvo)j)j —1.2.3
al <m

(curlvy); are the components of curlvy, and a = (o, g, a3) is a multi-index. Then there
exists a solution (v,p) € H3(T) of (2.1)-(2.3) with

n(z) - curlv(z) = h(x) + n(z) - curl vy (x) (2.5)
12



S +p(2) = () + @) + pole) 2.0
for all x € OI'_.

v satisfies
v —wollsr <7, (2.7)

and (v, p) is the only solution of (2.1)-(2.3), (2.5), (2.6) from H3(T) satisfying this esti-
mate.

If (¢, M) and (9(2 h®) are two sets of boundary data on OU_(¢) both satisfy-
ing (2.4), and if (v p )) (v®, p@) are solutions of (2.1)-(2.3), (2.5), (2.6) to the bound-
ary data (g, k) and (g'?, h®), respectively, both satisfying (2.7), then

[0 = v@||; r < Ky (|BY = 2P oor_ + [V (g — ¢@)|oor-),

1P = pP e < Ka(|hD = 8@ g or_ + [V (g™ — ¢P)oar— + 19 — 9@ [lo.r_).

To prove this, an operator A is constructed on a subspace V of H3(T'), which has a
fixed point u such that v = vy + w is the velocity field of a solution. The subspace V is
defined by functions w € H3(T') such that

divw=0 inT,
n-w=0 ondl.

For v > 0 we let V,, be the closed ball in V' of radius v, that is, V., consists of functions
w € V such that |[|w|[3r <. Now let W € H?(T') with div ¥ = 0 and let z be the solution

of
[(vo+u)-V]z=(2-V)(vo+u)—(u-VIW+ (W -V)u inT,

2.8
z2=1 on dl'_, (2:8)
where 7 is given by
n-n=~h
and
h( + u) —i—l(n Wu 1n><Vg
nr = —(v — . - —
T = 5\ T3 TS T
with ¢, g and h from (2.3), (2.5) and (2.6). The operator A is defined as
Au) = w
where
curlw = z

To understand why the operator is defined this way compare equations (1.6) and (2.8)
with W replaced by curlvy.

The solution z depends on g, h, W, vy and W, i.e. z = z[g, h, W, vg,u]. The vector
field W is to be replaced by curlvy and the notation z[g, h, vy, u] = z[g, h, curl vy, vo, u] is
used. As a consequence A also depends on g, h, W and vy so we have A = Afg, h, W, vg].
In a similar way as for z we also use the notation A[g, h,vo] = Alg, h, curl vy, vo).

To show that this is a well-defined operator with a fixed point Alber 3] shows a sequence
of lemmas and theorems, which we state here without proof.

13



Lemma 2.2 (Lemma 2.1 in [3]). Let vo € H*(T) satisfy the hypothesis of Theorem 2.1.
Then there exist constants C' and o > 0 with the following three properties
(1) The vector field v = vy + u with v € V, satisfies

v = inf fo(2)] > 2y — Cllullar > 5y — G0 > 0.
BAS

(it) No vector field v € vo+ V., has closed integral curves. For 0 <y <~y let L, denote
the least upper bound of the length of all integral curves of all the vector fields v € vy + V.
Then L. < oo and

’lyll% L,y = LO

(tit) If an integral curve of v € vy + V,, is tangential to the boundary OI' at one point

then it is completely contained in the boundary (see Remark 3.4, but substitute Q) with T').

This lemma implies that every integral curve of a function v € vy +V,, that passes over
a point x € ' meets the boundary once in OI'_, the starting point of the integral curve,
once in OI',, the endpoint of the integral curve, and in no other point of the boundary. It
follows that I' is completely covered by integral curves that start in OI'_ and end in OT';.
Together with the fact that (2.8) is an inhomogeneous linear system of ordinary differential
equations for z along the integral curves of vy + u with initial values at OI'_ this can be
used to prove the following lemma.

Lemma 2.3 (Lemma 2.2 [3]). For every u € V., with g < 7o and every W € H3(T') with
div W = 0 the unique solution z of (2.8) exists in all of I' and satisfies div z = 0.

These two lemmas above from Alber are comparable to our Lemma 3.3, Lemma 3.5,
and Theorem 5.7. To show that A is well-defined one more result is needed.

Theorem 2.4 (Theorem 2.4 in [3]). Let z € H*(T') satisfy divz = 0 and let T be a bounded,
simply connected domain of class C°°. Then there exists a unique function w € H3(T) with

curlw = z in I,
divw =0 in I,

n-w=>0 on OI.

Moreover, there ezists a constant M, only depending on T", such that
[wlls,r < M|zl

We dedicate Section 4 to find a similar result which holds for our cylindrical domain
and it can be found in Theorem 4.19.

It follows from the lemmas and theorem above that A is well-defined if the solution
to (2.8) is a function in H?(T'). This is shown through a series of estimates, which take up
the major part of Alber’s paper [3]. To show that A is a contraction the following estimates
are proven.

14



Theorem 2.5 (Theorem 2.3 in [3]). There exists a constant M = M(T) > 0, and to any
v < 7o constants K; = K;(L, vy, |vollsr, ¢,7,I) > 0, i = 1,2,3, which remain bounded
for L, — 0, such that for all u,w €V,

Hz[ga ha W, UOau]”O,F S Ll/Zkl (’h’o@f‘_ + ]n : W|07ap_ =+ ’ng’078F_ —+ HWHS,F) ,
Y
2], h, vo, ul|2r < L},/Qf(zl(g, h, curl vy),
||Z[g7 h’ UU?“] - Z[g’ ha Vo, w]“(),F < L’lY/QK?’I(g’ h, Curlvo)Hu — w||1,F7
and
IBlg, h, W, vo)(u)|l1r < MLY? Ky (|hloor_ + In- Wloar_ + [Vrgloor. + |[Wllsr)
||B[g’ h’UOKU)”?),F < ML}Y/QKQI(Q, h,CurlvO),
1Blg, h, vo](u) — Blg, h, vo)(w)||lr.r < MLY*K31(g, h, curlvg)|Ju — w]r,

+ | D*curl o or_
2,07

1
—Vrg

h
I(g, h,curlvy) = H— p

¢

iy

2,00

1
+ Z ||| D™ curl vol||a—m.ar_

m=0

1
+ ’—(n - curl vg) + |curl v |3, 2.
2,0r
Here D™curl vy denotes the vector
D™curlvy = (Da(curlvo)j)j 12,3
ol <m

curlvg); are the components of curlvg, and o = (o, o, a3) 48 a multi-indez.
j
Theorems 2.4 and 2.5 is then used to prove corollary below.

Corollary 2.6 (Corollary 2.5 in [3]). For every v with 0 < v < 7o(vg) the operator
Alg, h,vo| maps V., into itself if

i
I(g,h,curlyy) < —————. 2.9
( 0 MLYVK, (29)
The operator Alg, h,vo] has a unique fized point in V, if (2.9) is satisfied and if
1
I(g, h,curlyy) < —————. (2.10)
( 0 ML R,

If gV, b and g, h® are two sets of boundary data on OT_(¢), both satisfying (2.10),
and if vV, u® € V. are fivred points of Blg"V,hV vy and B[g®,h® vy, respectively,
then

MLPE, (1B — h®oor_ +97(g — g®)loar_)

1— ]\7[L}/2f(31'(g(1), R, curl vy)

Hu(l) _ u(2)H1,F <

15



The final important piece in the proof of Theorem 2.1 is the following lemma.

Lemma 2.7 (Lemma 2.6 in [3]). (i) Let w € V,, with 0 < v < 7. Then u is a fized
point of Blg,h,v| : V, = V if and only if v = vy + u is the velocity field of a solution
(v,p) € H3(T) of (2.1)-(2.3), (2.5), (2.6).

(ii) If (v,p),(0,p) € H3(T) are solutions of (2.1)-(2.3), (2.5), (2.6) with v = ¥, then
also p = p.

Also to these last three results we have comparable results of ours. Theorem 2.5 can
be compared with Proposition 6.1 and Corollary 6.2, Corollary 2.6 with Proposition 6.3
and Lemma 2.7 with Lemma 6.4.
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3 Main Result

What we ultimately want to prove is the following theorem.

Theorem 3.1. Let Q2 = U x (0,L) C R* x R where U is open, bounded and simply
connected with a C™ boundary. Assume that (vo,po) € H?(Q) is a solution of (1.1)-(1.3)
with curlvy(z) = 0, where ¢ satisfies

o0

and there exists a constant b > 0 such that ¢p(x) > b for all x € Qp, ¢(x) < —b for all
x € Qo, and ¢(x) =0 for all x € OU x (0, L).
Then there exist constants
/3/ = ,?(7107 Q) > 07
Ki == Ki(L07b7 HUOH?),Qv ¢7:)/7Q) > 07 (NS {17 273}

with the following properties:
Let g € H3(Q), h € H2(Qo) satisfy

2|20 + [Vrgll2o < K. (3.1)

Then there ezists a solution (v,p) € H3(Q) of (1.1)-(1.3) with ¢ as defined above, which
also satisfies

n-curlv =h on , (3.2)
1 1
§\v\z+p:g+§|v012+p0 on . (3.3)
v also satisfies
v —=volls.0 <7, (3.4)

and (v,p) is the only solution of (1.1)-(1.3), (3.2) and (3.3) in H3(Q) salisfying this
estimate.

Additionally, if (gV, M) and (¢, (2) are two sets of boundary data on Qg both
satisfying (3.1) and if (v, pM), (U2, 2)) are solutions of (1.1)-(1.3), (3.2) and (3.3)
with boundary data (g, h(l)) nd (g, h?)), respectively, both satisfying (3.4), then

[o® = @10 < Ka(|IBY = 2200, + V(g™ = §P)l0.0) (3.5)
and
1PV = p@[l1.0 < Ks([hV = B log, + [V2(g® = g®) oo + 97 = 9P l0gy).  (3.6)

Remark 3.2. That a solution (vg,pp) exists and satisfies vg3 > b in Q is shown in Ap-
pendix A. Tt follows that vy has no closed integral curves and Lg, the least upper bound
of the length of all integral curves, is finite.
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As seen in the previous section our proof of this theorem have roughly the same outline
as the proof of Theorem 2.1 summarized there. Thus we need to construct an operator B
analogous to the operator A.

We want to construct an operator B on a subspace V of H?(Q), which has a fixed point
u such that v = vy + u is the velocity field of a solution to (1.1)-(1.3), (3.2) and (3.3).

The subspace V is defined as the space of functions w € H3({2) which satisfy

);
1

divw =0 in €,
n-w=0 on JN.

V is closed in H?(Q) and hence a Hilbert space, with the scalar product of H3(2). For
v > 0 let V,, be the closed ball in V' with radius 7, i.e. w € V such that |w|[3o < 7. The
operator B : V, — V is defined as

B(u) = w, (3.7)

where

curlw = f (3.8)

and f is the solution to

[(vo+u)-V]f=[f -V(vp+u) inQ,

3.9
f=n on o, (39)
with 7 defined by
n-n=~h on €,
h 3.10
nr = vr — n x Vrg on €. ( )
ven ven

The definition of B is very close to that of A. However, the terms with W in equation (2.8)
have no counterpart in equation (3.10). This is due to the fact that we assume that
curlvg = 0.

We note that, if well-defined, the operator B depends on g, h, and vy, i.e. B = Blg, h, vy]
and that the mapping (g, h) — Blg, h, vo] is linear.

For B to be well-defined we need to show that for every u € V,, we get a unique w € V.
This requires us to put some additional conditions on g and h. We do this in two parts.
First we assume [ is any function in H*(f2) and find which additional conditions we need
to impose on f to show that there exists a unique w € V satisfying (3.8). This is done
in Section 4. After that we investigate which conditions we have to put on 7, and hence
g and h, to get a unique solution to (3.9) which satisfies the required conditions found
in Section 4. This is done in Section 5. To show these results we need the following two
lemmas.

Lemma 3.3. Let vy € H*(Q) satisfy the hypothesis of Theorem 8.1. Then for any fived
0<y< C<L1) the following three properties are satisfied:
(1) For any vector field v = vy + u with u € V,,

V3 = Ugg — U3z > b — c(l)% > 0.

18



(it) No vector field v € vo+ V., has closed integral curves. For 0 <y <~y let L, denote
the least upper bound of the length of all integral curves of all the vector fields v € vy + V.
Then L. < oo.

(1ii) If an integral curve contains some point in OU x (0, L), then it is completely
contained in the boundary.

Remark 3.4. The function v € H*(S2) can be extended to Hj; (R*) C C'(R?). Restricting

the integral curves of this extension to € gives integral curves on Q independent of the
extension. Part (i) means that the condition holds for these integral curves on Q.

Proof. (i) If u € V,, then
uz < |lulley@) < P ullza < Py
S0
Vs = Upg — U3 Z b— 0(1)70 > 0.

(77) From the property in (i) it follows that for any integral curve w(t) to any vector

field v € vy + V,, satisfies
8w3

ot > b— Wy,

For t5 > t; this means
W3<t2) — W3(t1) Z (b — C(l)’}/o)(tg — tl)

It follows that ws(t2) > ws(ty) if to > t; and hence no integral curves are closed. Let I be
the interval on which w is defined. Since ws(t) € [0, L] for all ¢t € I we also get that

L Z w3<t2) — W3<t1),

which means that I

(b~ cD7)

for any tQ,tl € ], tz Z tl. It follows that ’[| S m

> (ty — 1)

so the length of the integral curve
can be estimated by

/I fo(w(t))] dt

< / (olley + lulley @) dt

< e ([lvolls + ulls.0)
< L
~ (b— M)
Since this is true for any integral curve to any vector field in vy + V., we find that

D (J[volls +70)

L

L'yo < mC(l)(HUOHS,Q +70)7
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and since vy + V, C vy + V,, for all 0 < < 7y we get that L, < L, < oo.

(iii) Let xg € U x (0, L). Then there exists a C* function ¥ : W,, — W, C R? with
C* inverse and W3(x) = 0 if and only if x € W,, N OU x (0, L), where W,, is an open
neighborhood of zy and W, is an open neighborhood of yy = ¥(z). Let

oW, 9V 9V,

o1 Ozo oxs

DU — oVy  0Uy 0V

- oz1 Oz oxs ?

oVyg V3 ovs3

o1 Oxo Oxs
then for any x € W,, N 9U x (0, L) we have DV¥(z) - v(z) = v(x) = (v1(x), v1(x),0) since
oVs 0¥z 0OVj
Ox1 ' Oxo’ Oxs

o(y) = v(T(y)) as a vector field with v3 = 0 on {y € W,, : y3 = 0}. This means that
solving

) is normal to 0f) at x and v is tangential to 02 at x. Now we can define

ow(t)
ot v(w(t))
w(0) = yo

gives an integral curve to v in {y € W, : y3 = 0}. This in turn gives a curve w(t) =
U~H(w(t)) contained in W,, N AU x (0, L) with the properties
Ow(t)

= DU @) DY (w(n)u(w(t)) = v(w(1))

and
w(0) = ¥ (@(0)) = T~ (yo) = o,

an integral curve to v. Due to the results from (i7) this curve will leave W,, NoU x (0, L)
at some point OU x (0, L] for some t,, > 0. If the point is on OU x (0, L) we can just repeat
the above argument to extend w in 0€). If it is a point on 0€)y, then w is not defined for
any t > t,, since if n is the normal to {2, then %—“g -n > 0, which would imply w3 > L for
such t. Similarly the curve can be extended for ¢ < 0 in 02 until it reaches 9€)y, where
it no longer can be extended with w3 > 0. It now follows from the theory from ordinary
differential equations that this is the only integral curve passing through xy, so any integral

curve passing through this point is contained in 9f). O]

In the following we will assume that 7, is a fixed constant satisfying assumption in the
previous lemma.

Lemma 3.5. Assume f € H*(Q) is a solution to (3.9), then div f = 0 holds as an equality
in H'(Q).

Proof. We differentiate (3.9) to obtain
3

_ A . S/ of
(U.V)dlvf—i—; <axi .v) fi = (f.V)dlvv—i—; (%.v) vj
and note that divv = 0 and

Ly L (= ow; Of; 2L (= Of; ov; S/ of
> (3o w) -2 (S0 -3 (3 20 ) -3 (3 )

i=1 i=1 \j=1




which means that
(v-V)div f =0. (3.11)

The ACL characterization of Sobolev spaces (see e.g. Section 1.1.3 in [15]), after a change
of coordinates to initial values of and parameter along the integral curves of v, implies that
div f is absolutely continuous along almost every integral curve of v. Hence, if we let w(t)
be such an integral curve with w(0) = x¢ € Qy and w(s) = = € 2, we get

div f(z) = div f(zo) + /08 %div flw(t))dt
d

= div f(x) + /Os Vdiv f(w(t)) - Ew(t} dt

= div f(z0) + / (v(w(t)) - V)div f(w(t)) dt.

0

Combining this with equation (3.11) we find that div f(z) is constant along almost every

integral curve of v. If div f = 0 on () it follows that div f = 0 almost everywhere in €.

Since f € H?*(2) and thus div f € H(Q) it would imply that div f = 0 holds in H'().
From vector calculus we have

curl (v x f) =vdivf+ (f-V)v— fdive — (v-V)f.
Using (3.9) and dive = 0 it follows that
curl (v x f) =wvdiv f. (3.12)
From (3.9) and (3.10) we get
(v-n)fr=(n-flor —n x Vryg,
on )y, which is equivalent to
nXx (vx f)=nxVrg

or
(U X f)T = ng.
Applying Stokes’ theorem gives

/curl(vxf)-ndxdy:/ curl ((v x f)r) - ndxdy
W

w

—§ wx preds
ow

= VTg-ds
ow

=0

for any W C € that is simply connected and has smooth boundary, hence
curl (v X f)-n=0 (3.13)
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on €y. Combining (3.4), (3.12) and (3.13) gives
odivf=n-vdivf=n-curl(vx f) =0,
on €y and and hence div f = 0 on €. O

Lemma 3.5 is true under the assumption that a solution f exists and that its derivatives
is defined almost everywhere in ). That this is true is proven in Section 5.
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4 Div-Curl Problem

As noted in the previous section, the first step we take to show that the operator B is
well-defined is to show the existence of a unique solution in H?(Q) to the problem

curlv = f in Q,
dive =0 in , (4.1)
n-v=0 on 09,

where f is a function in H?(Q) with div f = 0 and n is the unit normal to 9. Since the
domain € is a cylinder n is not defined on all of 02, so the boundary condition needs to be
interpreted with some care. Since we seek a solution in H?(2) C C*(Q) the the meaning
of the condition is clear on Qg, Q7 and U x (0, L). For the edges we need the boundary
conditions to be compatible so we interpret v - n as

n-v =0

U3:0

on 09y and 02y, where v = (v, v2) and n’ is the normal to OU.

There exist previous results showing the existence of a unique weak solution in Lipschitz
domains (e.g. see [25]), however the solution does not have the desired regularity. To show
such regularity for the solution we impose additional conditions on f. In this section we
find suitable conditions to impose on f and show the result under the assumption of these
conditions through a method based on separation of variables taking the spacial geometry
of 2 into account. After this section was completed we found an earlier regularity result by
Zajaczkowski [26] for general domains with edges based on standard techniques for elliptic
problems in polyhedral domains. The discussion in [26] about the compatibility conditions
is however somewhat vague and we believe the approach here is of independent interest.

We begin by introducing a vector potential u satisfying curlu = —v and divu = 0 (see
[4]). This turns equation (4.2) into

Au=f in Q,

divu=0 1in €, (4.2)

nxu=0 on .
The boundary condition, n x u = 0, is interpreted similarly to the one above for v giving
u = 0 on 09 and 0);. Where the normal is defined it implies that the solution w is
parallel to the normal on the boundary. On €y and €2, this means that u; = us = 0. On
08, for all x5 € (0, L), this means that us = 0 and that u;ny = njus. If we combine

these conditions with the fact that u is divergence free we can find additional boundary
conditions. On )y and Qg this means that gq—;g = 0. On 09,,, for all 23 € (0, L), this

means that g% + 217‘2 = 0. To solve problem (4.2) we separate it into two parts, with the
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first part only involving wus:

AUg = f3 in Q,
ou
8_332 =0 onQpand Q;, (4.3)

uz =0 on 99Q,, Vrs € (0, L),
and the second part only involving u; and wus:

Aluy,uz) = (f1, f2) in Q,

(ug,uz) =0 on Qg and €y,
Nty — Nty = 0 on 09, Vz3 € (0, L). (4.4)
0 0

YT g on 90, Yy € (0, L).

vy Ozy

These equations are equivalent to (4.2). Indeed, It is clear through the reasoning after (4.2)
that (4.2) implies (4.3) and (4.4). Following the same reasoning backwards we get that (4.3)
and (4.4) implies (4.2). Using div f = 0 and the fact that the divergence commutes with
the laplacian we get

Adivu =div f =0 in §,

divu =0 on 0,

which implies divu = 0 in €.
The equations (4.3) and (4.4) can be rewritten in a more general form as

52
2L —Aw+tg, 0<ux<L,
0x3
0
8x3
ow
0,1:3 9 $3 9
and o
—Ig:AuH—g, 0<x3 <L,
0; 4.6
U}:O, .1'3:0, ( ) )
w =0, x3 =1L,

respectively, given that in the first case we let w = uz and g = f3 and in the second case
we let w = (u1,us) and g = (f1, f2). We treat these as boundary value problems for an
abstract ODE in a Hilbert space X, where A is an unbounded, densely defined, closed
operator on X. In the first case X = L?(U) and A is the Dirichlet realization of —A on U
with domain H*(U) N Hg(U). In the second case X = L*(U;R?) and

a= (5 )
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with domain

{(ul,m) € (H(U))? : (n1us — nou)|ow = 0, (6‘u1 8u2>

Ory  Oxy

~o}.
U

In the first case we call the operator S and in the second case we call the operator T

4.1 The operator S

It is well-known that S is a positive, self-adjoint operator with discrete spectrum [17]. It
has a complete ON-basis {e,(x,y)}22, with corresponding eigenvalues {\,, }2° ; that satisfy
0< A <X < -+ and A\, = oo as n — oo. From elliptic regularity it follows that the
eigenfunctions are smooth up to the boundary. Using this we can define S* for any «a by

using the spectral theorem. If we write u € L*(U) as u =Y -~ | lUye, then

o
S = E Al €,
n=1

with domain

D(5*) = {u:ue L’(U), Y Ai|” < oo}
n=1

for 0 < a < 1. For the future we require a more useful characterization of D(S%). To

express the characterization succinctly we introduce the space H(%Q(U ). If v is a function

defined on U let
v(z) if zeU,

extolv)(z) = {0 it ¢ U.
This allows us to define the space

HYP(U) = {v e H2(U) : extolv] € HY/*(R?)}.
For the future note that for any v € H}(U) we have that

lexto[v]|l1/2,r2 S llexto[v]|lire S IV]Iv,

which means that H}(U) C HééQ(U). In fact, H&éQ(U) arises as an interpolation space
between L?(U) and H}(U). Domains like D(S*) have been characterized by Grisvard [10]
in the scalar case and Seeley [19, 18, 20| more generally. Using their results we get

{we H*(U) : wloy—o}, 1/4<a<1,
D(S%) = 4 Hyy*(U), a=1/4,
H*(U), 0<a<1/4,

with equivalence between the graph norm

[wllpse) = llwlloy + 15%wlo.w
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and
|w]| 20,0,
that is, there exists constants ¢® and ¢® such that
Dwlpise) < wllaav < ¢ wlpse)

for all w € D(S*) and a # 1/4. For a = 1/4 we instead have equivalence between the
graph norm and

HwHH%Q(Q) = [|exto[w][]1 /2,73,

that is
e psi < el oy < €@l

for all w € D(SY/4).

4.2 The operator T
Recall that T was defined as

with domain

{(UI’UQ) € H*(U;R?) : (nqug — nouy)|ou = 0, (8% + 8W>

Ory  Ozy

~o}.
U

The operator T' has principal symbol

= (15 )

This is a positive definite matrix for £ # 0 and hence T is a strongly elliptic operator [12].

For later use we must show that 7" and its boundary conditions is parameter-elliptic on
every ray except the positive real axis. We define this property below. However we start
with defining the somewhat weaker property of complementing condition.

Definition 4.1. For D = (8%1, cee %) let L(x, D) be a strongly elliptic partial differential
operator of order 2m acting on g-tuples of functions on an open set W C R"™ with smooth
boundary OW and let Bj(x, D) be mq boundary operators of order less than 2m. For a
point zy € OW, with outer normal n, define the halfspace H = {x : (x — ) - n < 0} with

boundary 0H = {x : (x — z¢) - n = 0}. Now consider the problem
L (29, D)u =0, in H,
B]P(xo,D)u =0, ondH, for j=1,---,mq
where L”(x, D) and Bj (z, D) denotes the principal part of L(z, D) and Bj(x, D) respec-

tively. We say that the complementing condition holds at xo for {L, By, -+, By,,} if there
are no nontrivial solutions to (4.7) of the form

u() = exp(i€ - (& — o))v(n), (4.8)

where £ is a real nonzero vector perpendicular to n, n = n - (z — x9) and v(n) — 0
exponentially as n — —oo.

(4.7)
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In light of this we can define parameter-ellipticity along a ray.

Definition 4.2. For a given —7 < 6 < 7 define a ray in the complex plane as Ry = {z €
C :argz = 0}. Under the same assumptions as in Definition 4.1 consider the problem

L” (29, D)u = \u, in H,

r : (4.9)
Bj (g, D)u=0, ondH, for j=1,--- mgq.

We say that {L, By, -, By} is parameter-elliptic on the ray Ry if:
(i) There are no nontrivial solutions to (4.9) of the form

u(zx) = exp(i§ - (x — xg))v(n), (4.10)

for all zg € OW and (A, §) # 0, where A € Ry, £ is a real vector with &-n =0, n = n-(x—x0)
and v(n) — 0 exponentially as n — —o0.
(77) The matrix
LP(zg,i€") — X\
is invertible for all xy € W and (A, £') # 0 with A € Ry, & € R™.

Remark 4.3. Note that if {L, By, - -, By} is parameter-elliptic on some ray in the complex
plane then the complementing condition holds for all z.

Lemma 4.4. T and its boundary conditions is parameter-elliptic on Ry for every 6 # 0.

Proof. For any point xg € OU we can define 2’ by

'y =ny(x1 — x01) + na(xe — 202)

13/2 = TlQ(ZL’l — 1’071) — nl(xg — 130’2).

In these coordinates equation (4.10) becomes

u(a') = exp(Eilé|z)o()). (4.11)
By noting that
0 oz 0 N oxl, 0 0 n 0
= =n n
dx1 Oz, 0z | Om oxh,  ox| ol
0 ory 0  Oxf) 0 0 0
== + = N2 — )
Oxy  Oxy0x)  Oxy 07 ox} oxl,
we can calculate
0? 0?
A=—+—
03 * 03
, 0 , O 92 , O , O 92
=n +n +2nn +n +ni—-=s — 2nin
Yor? T Poxy? T P0mme | Cony? | oy T 0w,
02 02
S —
ox'? Oz’
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This allows us to express the problem corresponding to (4.9) for 7' with its boundary

conditions as
0? 0?
( 4+ — |u=—)\u, ry <0,

2 12
ox\~ 07,

a—l—n(9 uy + ni—niu—o =0
Mo T )1 *ox,  lomy) P T AT

notty — Nty = 0, ry =0,

where we let A be any complex number in any Ry with € # 0 such that (A, §) # 0. Assuming
u a solution of the form given in equation (4.10) turns the equations above into

V(@) = (1€ = Mu(zy) =0, xy <0,
n1v7(0) % || nov1 (0) + ngvy(0) F i|€|n1v9(0) = 0,
ng’Ul(O) - n1U2( ) = 0

Under these conditions (|£]2 — \) ¢ (—oo, 0] since it would imply A € (0,00) C Rq or
(A, ) = 0. Also note that this gives —m < arg(|¢{|* — A) < 7, which means that —% <
arg(|€]?> — A\)Y2 < T and hence Re ((|¢|> — A\)¥/2) > 0. The ODE above has the general

2
solution
(01(21), 0a()) = (@ VEPNY201 @GP G2 g e

Using Re ((|€]2—A)Y/2) > 0 together with the condition that v(z}) — 0 as 2}, — —oc leaves

us with with
(01(2)), 0a(2)) = (as lEP—N20L p clIEP-" 22t

Substituting this into the boundary conditions gives

((|§|2 — N2y £il€lng)  (JE]7 = ANV Png T i|§|”1) (a+) _ (0)
o Ty b+ 0/’

since the matrix has determinant —(|£|?> — A\)/2 # 0 the solution a, = b, = 0 to this
system of equations is unique and it follows that « = 0. This means that part (i) of the
definition of parameter-ellipticity is satisfied for 7" and its boundary conditions for all Ry
with 6 # 0.

Now part (ii) is satisfied if the matrix

(IS’\2 A0 >
S

is invertible for all (A, &) # 0 with A € Ry, ¢ € R". The matrix is singular only if
|€'|2 — A = 0, which either implies A € (0,00) C Ry or (\,&') = 0. It follows that part (i7)
of the definition of parameter-ellipticity is satisfied for T" and its boundary conditions for
all Ry with 6 #£ 0. m
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According to Agmon, Douglis, Nirenberg [2|, we find that any solution of the homoge-
neous problem in H?(U;R?) is actually smooth. Moreover, we have the estimates

| (w1, u2)|lsr2,0 < CUIC 1, f2)llsv + [ (w1, u2)low)

for any s > 0. This implies in particular that T is a closed operator. Here we also note
that if T is bijective, as an operator on L?(U;R?) with domain D(T), the inequality above
holds without the term ||(uy, uz2)|jo,y. Additionally we get that T'— I : D(T) — L*(U;RR?)

is invertible for all negative A with large enough absolute value.
Lemma 4.5. T is a symmetric operator.
Proof. First assume that

Qur | Ouy

u,v € D¥(T) = {(ul,ug) € C°°(U;R?) : nyug — nauq |gy = 0, prs + 0t

~of.
U

Then

/ (Aulvl + AUQUQ — ulAvl — UQAUQ) dl’l dl’g
U

oy ouy Ous
= /6U (a_xl vny + a—mvlm + 8_:161U2n1
Ous vy vy Ovs Ovsy
+ 8—@02712 3 1u1n1 a—@ulng 8_:1:1u2n1 — 8—@u2n2> ds
B Ouy ouy Ous
_/BU (_8_@ V1N B 21)2711 + 8—17)1712
ouy Ovy ov; Ovy 0vy
— a—xlvgnz + 8_952u1n1 — 8—3621@711 - 8—361u1n2 + 8—w1u2n2> ds
:/6U((n2, —ny) - V) (ugvy — uqv2) ds

=0,

where the last integral vanishes since (ng, —n1) is a tangent to dU and OU is a closed curve.
Next, consider u,v € D(T'). Due to elliptic regularity D*>(T") is dense in D(7") so we can
find sequences {u"}, {v"} in D*>(T) such that v — u, v" — v in H*(U). Repeating the
above computations with «" and v™ instead of v and v, we find that the relation above
holds for all ™, v™ and hence also for u,v € D(T). O

Proposition 4.6. The operator T is self-adjoint.

Proof. This follows from the fact that the operator is closed, densely defined, symmetric
and 7" — A is invertible for all A in the complex plane not on the positive real axis with
large enough absolute value. This means that no value in the complex plane outside of the
real axis is in the spectrum of T and it is well-known that this implies for a closed, densely
defined, symmetric operator that it is self-adjoint (see e.g. Theorem 8.68 in [17]). O
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Proposition 4.7. The operator T has compact resolvent.

Proof. This follows immediately from the fact that H%(U) is compactly embedded in L*(U).
[

From this it follows that 1" has a discrete spectrum, that is, the spectrum consists of
isolated eigenvalues and they can only accumulate at 4oo.

Proposition 4.8. The spectrum of T is contained in (0,00)

Proo;i We assume that we have a eigenvalue A < 0 with corresponding eigenvector (u, ug) €
C>(U;R?). Set w = g—;ﬁ - g—gz. Then

Aw = \w.

Since w = 0 on OU we get w = 0 in U (see Section 4.1). From this it follows that there

exists a function v such that (g—:i, —g—;ﬂl) = (u1,u2). Now we can calculate

V(A — M) = (= Aug + Aug, Auy — Aug) = (0,0).

Hence Ay — Ay = C for some constant C'. Using the other boundary condition we get
g—f =n-ViY = nsu; —nyus = 0 on QU. For A < 0 and a given C this problem has the

unique solution ¢ = —C/A [17], yielding (u1,us) = 0. If A = 0 on the other hand we get

/Cdmld:@:/Awdxldxg:/ 8—wds:O,
U U ou On

implying that C' = 0. However this means that Aty = 0, which again implies that v is a
constant and (uy,us) =0 O

The previous results shows that 7" has a ON-basis of smooth eigenfunctions {e,(z,y)}5°,
with corresponding eigenvalues {\,}°;, such that 0 < A\; < Ay < -+ and A\, — o0 as
n — oo. Once again we can use the spectral theorem to define T for 0 < a < 1 and the
results of Seeley |19, 18, 20| to characterize the domains for this family of operators.

(

8u1 8u2
w e H**(U:R?): nyuy — nqu :0,(—+—> :O}, 3/4 < a<,
{we ey mn —nl =0, (GE+52) =0t}

{u € H3*(U;R?): nyuy — nyus|ay = 0, o + Ouy € H&f(U)} , a=3/4,
D(T*) = Or;  0xy
{u € H*(U;R?): nyuy — nyus|ay = 0}, 1/4 < a < 3/4,
{u e HY*(U;R?): nyuy — nyuy € HééQ(U)}, a=1/4,
{u € H**(U;R?)}, 0<a<1/4.

Also here we have equivalence between the graph norm
lwllpere) = lwllow + T w|low
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and
|wll2a,v,

that is, there exists constants ¢(® and ¢(¥ such that
Nwlperey < [wllaaw < P Jw]lpere)
for all w € D(T®) and « # 1/4,3/4. For a = 1/4 we instead get

ANwll peray < Jwllyep + Ingws — naws| 1z < A flwll peraay
00

for all w € D(TY*), and for a = 3/4

811)1 8w2

0wy | Owp ™
Ory  Oxy < @ lwllpersr

1/2
Hyg

Ol pezorsy < lollsynw + H
for all w € D(T?/4).

4.3 The BVPs

Now we can return to the boundary value problems we introduced in the beginning of this
section. We begin by considering

w'=Aw+g, 0<uz3<L,
w' =0, x3 =0, (4.12)

w’:O, (L’gZL,

where A is assumed to be an unbounded, densely defined operator on a Hilbert space X. A
is also self-adjoint with discrete, positive spectrum. We denote the eigenvalues by {\,}22;
with 0 < Ay < Ay < -+ and the corresponding ON basis of eigenfunctions by {e, }°° ;. we
also assume that g € L?([0, L]; X). By the assumptions on A the graph norm of D(A®) is
equivalent to the norm ||A%w||x, that is there exists a constant ¢® such that

1A%w]|x < [[wllpeas) < | A%w]|x
for all w € D(A?).

Proposition 4.9. Under the assumptions given above, there exists a unique solution

of (4.12) in L2([0, L]; D(A)) N H'([0, L]; D(AY2)) 0 H2([0, L]; X).

Remark 4.10. A solution is assumed to mean a function satisfying w” = Aw + g as an
equality in L*([0, L]; X) and the boundary conditions as equalities in X.

Proof. We express w(x3) and g(x3) as generalized Fourier series

w(zs) = Z Wy (x3)en,
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and

g($3) = Z gn(x3)6nv

yielding the equations
W, = AWy, + Gn, 0<23<0L,

:0, 1}3:0,
w, =0, r3 =1L,

for every n. According to the theory of ODEs these equation have unique solutions. From
the ODEs we get the identity

L L
/ (| (23)|* — 2\t (3) 00 (23) 4+ A2 |t (w3)]?) dag = / |G (3)[? ds
0 0

for 0 < 3 < L. Integration by parts

L L
—/ UA}Z(ZE;g)UA}n(ZL‘?,) d[L‘g = / |1Z);Z(l'3)|2dl'3,
0 0

gives
L L
/ [0 (23)[* + 2700, (z3) [ + N3]y (z3)|* dag = / |G (3) | dazs.
0 0

By summing over n it follows that

0" || L2(0,23:x) < 91| 2(10,23:3)

1wl 220, 1y.p(a172)) < N gll 20,01
and
w2030y < g/l z20.20:x)
hence w € L([0, L]: D(A)) N HY([0, L]: D(AY2)) 1 H2([0, L]: X) 0

Proposition 4.11. Assume that g € H%([0, L]; X) with ¢'|ss=0, §'|es=r € D(AY4), then w
satisfies

9) (

||w/m||L2([0,L];X) S C ||g”||L2([0,L];X) + ||g'|m3:o||D(A1/4) + ||g,|:c3:L||D(A1/4))7 (413)

”wmHL?([O,L];D(AW)) < 0(10)(“9HHL2([0,L];X) + Hgl‘ws=0HD(A1/4) + Hg/|x3=LHD(A1/4))7 (4.14)

and
w0 || 20,3004y < V19" r2qo,m1x) + 19 les=ollpearay + 19 les=rll pearry), — (4.15)

where 9 = cO(L), 19 = 1O(L) and MV = ID(L).
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Proof. To prove this we use that w” satisfies

(w")”:Aw”+g”7 0<axs<L,

(wl/)/ — g/, x3 — 07

(w//)/ — gI’ x3 — L

This problem can be solved by splitting it into three different parts by keeping either the
source term in the equation or in either of the boundary values. The first part is the same
problem as in Proposition 4.9. The second part and third part are very similar and we
illustrate by solving the second part, which is a problem of the form

V' =Av, 0<x3 <L,
v'="h, x3=0,
V=0, a3=01,

which has the solution

o (15) = _cosh(\/)\_n(xg - L))iz
A VA sinh(vA,L) "

This allows us to compute

L 72 L
/0 A2 0y (5)|? das = %/{J coshQ(\/)\_n(:Eg —L))dz;
An|Fin |2 L1 + cosh(2v/An (25 — L))
sinh?(v/\, L) /0 2
A2 L sinh(2v/A,L)
" snl?(VA,L) (5 T )

< 12 12

dl’g

Similarly we get
L
/ Al (s) P ds < DN ?
0

and .
/ 157 ()P ds < DN,
0

for some constants c('?) = ¢('?)(L) and c¢(*¥) = ¢3)(L). Using the estimates for the other
parts of w” and summing over n gives us the desired inequalities. O]
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We have taken a different approach in the proofs of Propositions 4.9 and 4.11. How-
ever, we can note that Proposition 4.9 could have been proven in a similar way to Proposi-
tion 4.11 by writing the solution to the boundary value problem with the help of a Green’s
function.

To prove further regularity we have to make some additional assumptions about X =
Xp. We assume that for s > 0 there is a scale of Hilbert spaces X, such that X, C X
if s <r, with || -||x. <| |lx,, and that A~ is a bounded operator from X, into X,,s.
Additionally we assume that D(A%) C Xy, with || || x,, < ™| || p(as). In our particular
application we will have X, = H*(U;R?) for d = 1, 2.

Proposition 4.12. Assume in addition that g € L*([0, L]; Xo) N H([0, L]; X1), then
w € Mo ([0, L]; Xa)

and w satisfies
wlloz_y mv o210y < €2 Mlgll20,21:) (4.16)

and

||w|\m§:OHk([o,L};X4,k) < c(16)(||9| ﬂ?zOHi([O,L};X2_¢)+||g,|a:3:0||D(A1/4)+||g/|I3:L||D(A1/4))7 (4-17)

where ¢ = ) (L) and 19 = 19)(L).

Remark 4.13. If Y and Z are two normed spaces then we let the norm of Y N Z be

I llyoz = [+ ly + - [l

Proof. The inequalities shown in Proposition 4.11 together with the result of Proposi-
tion 4.9 immediately gives us (4.16) and

”w||ﬂi=3Hk([0,L];X4—k) < C(m (HQHHQ([QL];X()) + ||g/|w3=0”D(A1/4) + Hg/‘m:LHD(Al/‘l)) ) (4-18)
for some constant ¢! = 17 (L). By using w = A~ (w" — g) we get

lwll z2qo,px0 = 1AW = g)llz2qi0,01:x0)
< ||A_1||L:(X2,X4)(|’9||L2([0,L};X2) + 1wl z2(0,015x))
< ||A_1||£(X2,X4)(HQHL?([O,L};XQ) + 0(14)||w"||L2([0,L};D(A)))
< 0(18)HgHL2([07L};X2) + 19l 20, 23:x0) + 19" [es=o0ll p(arsay + 19 [es=rl D12y,
for some constant c(!8) = ¢1®)(L), where we have used the continuity of A™' : Xy, — X,
and equation (4.15). Similarly using equation (4.14) together with w' = A~ (w"” — ¢') we
get
1wl 20,30 = AT (W"” = gl z2qi0,01:x)
<A™ 2,50 (19 z2000,23:50) + 1™ | 220,21:51))
< A e, xa) (19 2o, 0) + €
< Ngllaro,1x) + Il

) Hw”/HLQ([07L];D(A1/2)))

| 12(0,3:%0) T 19" lzs=0ll pearray + 19" les=L I parsay,
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for some constant ¢! = c(19)(L), and from (4.15) we get

10" || 20,23, x2) <M (gl 20,23, x0) + 119 1es=oll paray + 19 les=r | pearsy)-

Combining these three inequalities gives

\|me§:0Hk([o,L];X4,k) < 0(20)(”9 N2_Hi([0,L];X; o) T Hg/’x3=0HD(A1/4) + HgI’x:s:LHD(Al/‘l))a

for some constant ¢?”) = ¢20)( L), which together with equation (4.18) gives equation (4.17).
From this it follows that
w € Mo ([0, L]; Xa-)

since all the terms of the right hand side of equation (4.17) are finite. O
Next we consider the other BVP
w'=Aw+g, 0<x3<L,
w =0, xg =0, (4.19)
w =0, r3 =1L,

where A satisfies the same assumptions as in the previous BVP. The proof of the following
proposition is almost identical to the proof of Proposition 4.9 and is therefore omitted.

Proposition 4.14. Under the given assumptions with the additional assumption that g €
L*([0, L]; X), there is a unique solution to (4.19) in H?([0, L]; X) N H'([0, L]; D(AY?)) N
L*([0, L]); D(A)).

Proposition 4.15. Assume that g € H*([0, L]; X) with gle,—0, Gles—r, € D(AY*), then w
satisfies

me/HL2([O,L};X) < C(Ql)Hg”HLQ([O,L];X) + Hg|13=0HD(A3/4) + Hg’x3=LHD(A3/4)7

”wm||L2([O,L];D(A1/2)) < 0(22)||9”||L2([0,L};X) + ||g’w3=0||D(A3/4) + ||g|z3:LHD(A3/4)>

and
|w” || L2 (j0,2):0(4)) < 0(23)||9//||L2([0,L};X) + [1glzs=0ll passay + |gles=r |l pas/ay,

where ¢V = cPV(L), ) = (L) and *? = 22 (L).

Proof. To prove this we proceed in an almost identical fashion as in the proof of Proposi-
tion 4.11. We use that w” satisfies

(’UJ”)H = A’LUH + g,/, 0 < T3 < L,
w =g, T3 = 07

w' =g, r3 = L.

Again, we split the problem into three different parts by keeping either the source term in
the equation or in either of the boundary values. The first part is the same problem as
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in Proposition 4.14. The second part and third part are very similar and we illustrate by
solving the second part, which is a problem of the form
V' =Av, 0<x3<L,
v =h, r3 =0,
v =0, xg =L,
In Fourier variables this becomes
0= N, 0<a3<L,
Uy = fzn, x3 =0,
Up =0, r3 =L,

which has the solution

_sinh(\/x(xg - L))il
sinh(v/A, L) "

Op(3) =

This allows us to compute

/Lm@ (25) |2 dz —M/LsinhQ(\/A (25— L)) da
o nlUn\+3 S—Sinh2(\//\_nL> o n\+3 3

N2 R, /L cosh(2v/ A, (25 — L)) — 1
~ sinh®*(vA,L) Jo 2
A2|h, |2 (sinh(%/)\nL) L>

~ sinh?(VA,L) a2
< 6(24))\2/2%”’2‘

de3

Similarly we get
L
/ Al (s ds < N2, ?
0

and .
/ (0 ()2 das < N2 2
0

for some constants c®* = ¢ (L) and ¢ = ¢®)(L). Using the estimates for the other
parts of w” and summing over n gives us the desired inequalities. ]

The proof of the following proposition is very similar to the proof of Proposition 4.12
and it is therefore omitted.
Proposition 4.16. Assume in addition that g € L*([0, L]; Xo) N H'([0, L]; X1), then
w € Ni_oH*([0, L]; X4
and w satisfies
Hmeionk([o,L};Xz,k) < C(Qﬁ)HgHLQ([O,L};X)
and

Hw||m§:0Hk([o,L];X4,k) < 0(27)(”9 n2_ Hi([0,L];X; o) T ||g’:t3:0HD(A3/4) + Hg|r3=L||D(A3/4)>7

where ¢ = ¢ (L) and c®V = c?7(L).
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4.4 Application to the div-curl problem

As stated in the beginning of this section we want a solution, v, to (4.2) in H3(Q2). To
accomplish this we introduced a vector potential, u = (uy,us,us), which should be a
function in H*(Q2) for v to be a function in H?(Q). The last component, usz, solves (4.3)
which can be written

62U3

W:Su3+f3, for 0 < x3 < L,

a“% (4.20)
ﬂ:o, for xr3 =0 and z3 = L,

81’3

where S is the operator introduced above.

Proposition 4.17. Assume that f3 € H*(Q) and 8f3]x3 —0, 8f3\x3 _I € Héf. Then there
exists a unique solution, uz, to (4.20) in H*(Q) which satisfies

uglj2,n > € 3110, .
lusllo.0 < ¢V fs] (4.21)
and
0 0
usllaa < ) | fsll20 + aﬁ H 3 , (4.22)
L3 lz3=0 D(S1/4) L3 las=L D(S1/4)

where ¢?®) = ¢ (L) and *) = ) (L).

Proof. The problem (4.20) is of the form of (4.12), where S satisfies the assumptions
on A given in the paragraph following (4.12) if we let X = L?*(U). Now according to
Proposition 4.9 we have a unique solution f3 € H?([0, L]; L>(U)) n H'([0, L]; D(S'?)) N
L3([0, L]; D(S)). Additionally it satisfies the assumptions made in the paragraph follow-
ing Proposition 4.11 given that we let X, = H*(U). The assumption that f3 € H?()
means that f3 € H?([0,L]; L*(U)) n H'([0, L]; H*(U)) N L*([0, L]; H*(U)) and thus sat-
isfies the conditions assumed for ¢ in propositions 4.11 and 4.12 except for the assump-
tion ¢'|,,— O,g '|lesmr, € D(AY*). However in this particular case it means that we want

gﬁ, |z5=0 = a% f3| . € D(SY%) = Hy/?, which is exactly the other assumption on f5. Hence
the assumptions for both propositions are satisfied and it follows from their conclusions
that

us € Uy (0, L; HH(UY) € HY(Q)
and that us satisfies (4.21) and (4.22). O

The other components (uy,us) solve (5.9) which can be written

92
a 2(U1,U2) T(ul, Ug) + (fl» fg), for 0 < xr3 < L, (423)
(U17U2) =0, for z3 =0 and z3 = L,

where T' is the operator defined above.
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Proposition 4.18. Assume that (f1, f2) € H*(;R?), nofi — nyfo = 0 on 9 and 99,
and % + g—g\zgzo, % + g—£|x3:0 € Holéz(U). Then there exists a unique solution, (uy,us),

to (4.20) in H*(Q) which satisfies
(a1, u) 20 < €O (fr, f2)llo0 (4.24)

and

(w1, u)llae < ¢V ([1(f1, f2)lle + 1 (F1, f2)les=oll perssay + 1(f1s f2)lzs=oll prsray) 5 (4.25)
where ¢ = cBO(L) and BV = cBV(L).

Proof. The problem (4.23) is of the form of (4.19). It follows from propositions 4.6, 4.7
and 4.8 that T satisfies the assumptions on A given in the paragraph following (4.19)
if we let X = L*(U). Now according to Proposition 4.14 we have a unique solution
(f1, f2) € H2([0, L]; L2(U; R?)) 0 HY([0, L); D(TY2)) 0 L2([0, L); D(T)) Additionally it sat-
isfies the assumptions made in the paragraph following Proposition 4.11 given that we
let X, = H*(U;R?). The assumption that (f, fo) € H*(Q;R?) means that (f, fo) €
H*([0, L]; L*(U;R?*) n HY([0, L]; HY(U;R?)) N L*([0, L]; H?*(U;R?)) and thus satisfies the
conditions assumed for g in propositions 4.15 and 4.16 except that we assume ¢|,,—0, g|zs=1 €
D(A%*%). However in this particular case it means that we want (f1, f2)|es—0 = (f1, f2)|zset
to be in

Ou , Ouz

D<A3/4> _ {u c H3/2(U;R2); Noll] — n1u2’aU =0, 8_1’1 + O%s S H&({2(U)} :

That (f1, f2)|zsmo = (f1, f2)|es=r € H??(U;R?) follows from (f1, fo) € H?(€;R?), and the
conditions ny fi —n4 fo = 0 on 0€2 and 02, and %+g—£|x3:0, %+g—£§|x3:0 € H&éQ(U) are
exactly the other assumption on (fi, f2). Hence the assumptions for both propositions are
satisfied and it follows from their conclusions that (uy,us) € Ni_oH*([0, L]; (H**(U))?) C

H*(Q) and that (u;,us) satisfies (4.24) and (4.25). O
Theorem 4.19. Assume that f € H?*(Q), %]IS:U, ngj:\m:L € H(%Q, Nofi — nifa =
0 on 08 and 09, and 3—2 + g—£|w3:o, g—ﬁ + g—£|x3=0 € Hy2(U), then there exists a unique

solution, v, to (4.1) in H*(Q). The solution satisfies
[oll10 < M| fllog

and
0 o) ) )
lollsa < M uf|\2,Q+Ha_f3 ‘8_f ‘a_uai
T3 1l 42 (92) T3 30201 T OT20l g2 (o)
) )
81’1 81’2 HééQ(ﬂL)

where M = M ().

Proof. This follows from Propositions 4.17 and 4.18, the characterizations of D(S%/*) and
D(T3/*), Theorem 1.14 and the fact that ||v;q = |lcurlull;q < ¢®2||ul/i11.0, where ¢32) =
cB32(Q). O
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5 The Transport Equation

The next part in showing that B is a well-defined operator is making sure that f satisfies
the conditions assumed in Theorem 4.19. Recall that f was defined as the solution to

[(vo+u)-V]f=[f -V(np+u) inQ,

f=n on €. (5.1)

Now we want to put sufficient conditions on 7 to get a solution f € H?(Q) that satisfies
the following conditions

9fs 9fs 1/2
- - H 2
drs |, 013, _, € Hyy " (U) (5.2)
n2f1 - n1f2 =0 on 890 and 8QL (53)

and af,  of of,  of
1 2 1 2 1/2

—— + — — 4+ H . 4
(83&1 + 89&2) x3:07 (81’1 * 8352) z3=L < 00 (U) (5 )

This is done through first finding approximating n € C°(€y) and v = vo+u € C*°(2). Un-
der these assumptions we can solve (5.1) along the integral curves of v. Due to Lemma 3.3
we know that the integral curves cover €2 so we get a solution f defined in all of 2. It also
gives a solution f € C*(Q) and, if v is a good enough approximation, with the property
flas=a, € C2(U) for all 23 € [0, L]. For this solution we make a series of estimates. These
estimates are then used to construct a solution satisfying the desired conditions as the
limit of a sequence of solutions with the smooth data.

5.1 Estimates of f, 9 and 24

We let 2/ = (21, 22) and V, = (8%1’ 8%2). Equation (5.1) can be written in the form of a
transport equation

of

=+

o1 (v-Vu)f+Af =0 in Q,

f:77 OHQ().

This is done by dividing equation (5.1) by vz and moving all terms to the left hand side.
We can divide by vz since Lemma 3.3 shows that v3 > b — c(l)”yo > (0. We get

0 1 1
S (o) V) - (V=0

f:77 OHQ().

(5.5)

(5.6)

This is of the form of equation (5.5) if we take

v — (Uh UQ) :
U3
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and
dui dui dur
oz oz oz
Ao Lo o o
- Ory Ozros Oxs
U3 \ Qvg vz vy
oz 0z Oxs

()

for |a| < 3 can be bounded by a constant depending on b, vy and ||v||3q if we estimate

factors of the form vik with m and use Theorem 1.13 to estimate the remaining
1

factors. Hence we can also estimate H—

We note that

0,2

by a constant depending on b, 7o and [|v||3,0.
3,0

Using Theorem 1.13 again gives us that v is a function in H3(Q) and the components of A
are functions in H?(Q) both bounded in norm by constants depending on b, yo and ||v]|3.¢.

This reformulation allows us to estimate the solution of equation (5.1) by estimating
the solution of equation (5.5), which is done below.

U3

Theorem 5.1. Assuming v € C*(Q) and f € C®(Q) with fle,—ey, € CZ(U) for all
zhy € [0, L] the solution f of (5.5) satisfies

sup || fll2.0., < B |n|a,0 (5.7)
z3€[0,L]
and
1 fl e2qo,cpmzwy) < <Y nllaw, (5.8)

where ¢ = ¢33 (Q b, g, |v]l3.0) and ¥ = cBD(Q b, 0, [[v]l3.0)-
To prove Theorem 5.1 we first need to prove a number of lemmas.

Lemma 5.2. Under the assumptions given in Theorem 5.1 the solution to (5.5) satisfies
the inequalities

d ‘
— I 18.0., < IVIs0.y + 1Al F 150, (5.9)
dl’g 3 3
sup || fllo.c., < *lnllow (5.10)
x3€[0,L)]
and
£ lloe < P nllow, (5.11)

where ¢ = 0(35)(U), c(36) = 0(36)(9, b, Y0, ||v|3.0) and B = 0(37)(9, b, Y0, ||v]|3.0)-

Proof. Using the notation [, hdx' = [ h(-,z3)dx’ for a function h : @ — R we begin
3
with the expression

d

d.Tg QZS

|f|2d:p’:/ 2f-difd:p'
Q Zr3

r3

=2 fo(v:-Vo)fdd—2 [ f-Afde.

QIES Qz3
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Integration by parts gives us
—2/ f(VV:p’)fd«T/:/ f2v$"udxl7
Qg Quy

where the boundary term disappears since f|,,—.;, € C2°(U). We also note that
f - Af| < 1Al fI?
where |A] is the induced 2-matrix norm of A. The matrix norm can be estimated by
1/2
4 < (Z a@-) = |l
2y}

where | - | is the Frobenius norm. Hence we get the estimate

d . /
T3 Qg Qu,y
5.12
S/ 2V -V[dI'—O—Q/ |Al 2 da’ (5.12)
Q‘T3 T

Q 3
< (Vo Vley@uy) + 2l Al ey f 5 e, -
By Sobolev’s embedding theorem we get (5.9). The inequality in (5.10) follows from
applying Gronwall’s inequality to (5.9) which gives

L
sup || fl6.0,, < 050 exp (/ P (||v]ls ., + ||A||2,Qw3)d$3) )
0

z3€[0,L]

L
were [ ¢ (|Iv]sa,, + [Allzg,,) dos < BVLE(|[v]s0 + [|All20)-
Finally we note that from this it follows that

L L
1£16.0 = /O 1/ 156, dos < 0(3@/0 9115 7 dzs < PO L|inll5 o

which is the inequality in (5.11). ]

Lemma 5.3. Under the assumptions given in Theorem 5.1 the solution to (5.5) satisfies
the inequality

d || of |’
po el ISR A : 5.13
dzs || 92y " <c (||V||3,Qx3 + |l ||2,Qx3>||f||179$3, ( )
and
d || of|”
das < A 2 5.14
s || 52, o P ([[vlls 0., + 1Az ) 1110, (5.14)

where cB%) = 3 (U) and B = BN (U).
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Proof. Since the inequalities can be proven almost identically we only show the proof of
the first one. Differentiating equation (5.5) with respect to z; gives us

0 of of ov of _
8.133 8.771 +( vx/)&cl * (8;1:1 ) f+A8 1 + f 0

allowing us to get the estimate

d af \* 0
— (—f) da’ g/ f |V - v]da! —i—2/ — dx’
d;?fg Qug 81’1 Qug 8331 Qug 81’1
2
+2/ o | f dm/ o, 01 0f
0, &Ul 89@1 O, Oz | |0xy (9332
2 dx’
This yields
d || of H of |I”
— || = < (Ve - v L) +2]|A )=
2z 1|91 . (I loy@.y) + 211 Alley0.y)) 52 |y
+9 ‘ AL af 49 ‘ AL 9f af
81'1 Cp(Qug) 81’1 0,0, 61‘1 C(Qay) 61‘1 0,00y 81’2 0,00,
0A af
(
+ B == o 5
021, 110y || 57 "
(5.15)
By Sobolev’s embedding theorem and straightforward estimates of the norms we get the
desired inequality from (5.15) O

Lemma 5.4. Under the assumptions given in Theorem 5.1 the solution to (5.5) satisfies
the inequality

d ||oxf]?
| O(IVlls.005 + I All20:) 1 f130,, (5.16)
L1110,044
d ||oxf ]
| W (vlls.005 + 1 All20.)1 130, (5.17)
L2 110,044
and
d || o*f |
— < A 2 5.18
s || 8,0 07%_0 (Ivlls.0., + I1All20.,)fl120,, (5.18)

where %) = (AO(U), ) = (V) and ) = (V).

Proof. Since the proof of the three inequalities are almost identical we only show the proof
of the first one. By a taking a second derivative of equation (5.5) with respect to z; we
get

o Pf O’ f of
Gy TV Velge 2+2(ax1'v )axﬁ(axl'vl")f
Pf  9A D
AL 0408 AL

dx? Oy Oy + 3



From this we can, as before, get the estimate

2 £ (|2 2112
Bz |, < ¥Vl 21l 55|
+4‘ v, > o 8v2 9% f *f
0xy Ch(©y) Oz 0.2, Ory Co(©ay) 0x102 0.0, Oz
) Al of o°f
0a3 1,00, Oy 1,00, o2 0,04
L@ || 2V of o°f
oz? Lo, 1072 ]1g x? 0,00,
L e® |94 of o°f
Oy 1,00, Oy 1,00, O} 0,0
A 9f
|5, |8, 1910

which, again by Sobolev’s embedding theorem and straightforward estimates of the norms,
gives the desired inequality. O

Proof of Theorem 5.1. Summing the inequalities proven in Lemmas 5.2-5.4 gives

d 2
Zzs M0, < (Vs + [Allz0. )1 130,

where c*®) = c"3)(U). By applying Grénwall’s inequality we get

L
sup ||f||§QT3 < ||77H§U eXp (/ 0(43)(||V||3,Q,c3 + ||A||2,Qw3)d$3) .
z3€[0,L] 0

By estimating

L
exp (/ 43)(HV“39 + HA”ZQIS) dm5) < exp (C(4i’>)Ll/2(HVH37Q + HAHZQ))
0

we get the inequality in (5.7). This also implies that

L
1 Wl 2o, Lz = (/0 17115 0., dx?’)
L
< sup || f dx
/0 s [/, dus 5.19)

L 1/2
< ( | ey \|77H2Udf63>

DLV |00

1/2

which gives the inequality (5.8) O
43

0,04



Theorem 5.5. Assuming v € C*(Q) and f € C®(Q) with fle,=ey, € CZ(U) for all

L €0, L] the solution f of (5.5) satisfies

< *nllop

sup
z3€[0,L]

81:3 1Q

and
Wl e o, o)y < Dnla.v,

were ¢ = cM(Q, 5,790, |v]ls0) and O = *(Q,b,70, [[v]l50).

Proof. By using equation (5.5) we get the estimate

of
2] 0w ) g, + 14S
311,09,
0 0
< Vla—f +‘V2—f +||Af||1,(2m3
L1110, Oy 1,00,
of of
<C() A% Qz - —|—C(3) \% Q. -
[v1ll2.0., 011 | [vall2.0., 03|, g,
+ A, 1 fll20.,
< 3¢ (IVlla.0,y + A1) 11200,
This implies
0
sup af <3 (|[v]z0 + Al nllev < Y lnllow,
z3€[0,L] I3 1,Qq,

(5.20)

(5.21)

(5.22)

by using H"(Q) C H' ([0, L]; H* '(U)) and Theorem 1.12. This is the inequality (5.20).

It also allows us to estimate

N
0

s

2 L
dzy < / (D|l2 s dos < (OPLInIE,
1,Q4 0

1/2
dCC3
1,044
1/2
Cl.%’g
1,04

which gives

\|f|\H1<[o,m;H1w»=(/ (Hfung )
0
(/ (Hme )

81'3
< (%) 4 ) LYl

by using equation (5.8), which proves the inequality (5.21).
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Theorem 5.6. Assuming v € C*(Q) and f € C®(Q) with fle,—ey, € CZ(U) for all

L €0, L] the solution f of (5.5) satisfies

of

46)
6953 ||77H2,U-

sup
z3€[0,L]

0,024

and
£ 1o, csz2 @y < <40nll2w

were ¢9) = 49 (Q b, 40, ||vl3.0) and 4D = cAT(Q, b, v, ||lv]|3.0)-
Proof. Differentiating equation (5.5) with respect to z3 gives

Qf  ov of 9A . of
A
0a2 agvf+vvag+ax3f+ Dy

With this we get the estimate

02 0 0
2, =,
aZL’3 0,00 al’g 0,04 81’3 0,Q04
0A H of
o + A=
O3 0,00 O3 0,4
< @ on [V 9 ova o
< max{c"”, ¥} e 3 3 P
31l1,0., 19711110, 3 1l1,0,, 11972111,0,,
s 0% f
—|-HV1H2,QI3 ax O3 zg‘i‘HV2“2,st 012013
af
A
+5ml ey + W, 5| )
< 2max 0(3),0(3) ‘ H /
N e = R L
of
Alya,,) 52 ,
+ <||V||2,S213+|| Hng O 1,913>
This implies
2 0A
sup |22 < 2max{c®, (@} ’a_v ‘_
x3€[0,L] 81‘3 0,204 0xs 2.0 0xs 1.0

+ (Wl + 1410) ) I7].0

< " nlls.v,
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which is the inequality (5.24), by the same argument that gives (5.20). From this we get

the estimate
L
|

which allows us to estimate

2

2 f

L
TH" ary < / (2|3 des < (L]l
65E3 0 ’ ’

0,0,

1/2
L of 2 82f ’
I Fllm=qo o) = (/ (”f ”3@13*)'673 oo '% )
3 ] 12
0 BTy 0$3 1,004 8$3 0,04

e N CONPCUNY SVl P

by using (5.8) and (5.21), this proves the inequality (5.25). O

5.2 Sufficient conditions on 7

We want to show the following result.

Theorem 5.7. For v € H3(Q) and n € HZ(U) there emists a unique function [ €
Whee([0, L]; HY(U)) N Le([0, L]; H2(U)), which is a solution to equation (5.5) in the sense
that for almost every x3 € [0, L] the first equation in (5.5) holds as an equality in H'(U)
and flis—0 = n in H'(U). Furthermore the conditions (5.2), (5.3) and (5.4) are satisfied
for this solution.

Remark 5.8. Note that f € C([0, L]; H*?(U)) and % e C([0, L); H/*(U)) (cf. [14, Chap-
ter 1, Theorem 3.1]) so that the conditions (5.2)—(5.4) make sense. In fact, we show below
that f € Cy([0,L]; H}(U)) and ££ € C,([0, L}; H}(U)). With a little more work it is
also possible to show that f € C([0, L]; H3(U)) with aa—mfg € C([0, L]; HY(U)) (see e.g. |23,
Chapter 16]), but since this result is not needed for the purpose of this thesis the proof is
not included.

Proof. The condition n € HZ(U) means that  can be approximated by a sequence of
functions, {n;}°, in C°(U). If we also approximate v by a sequence of functions, {v;}72,
in C>®(Q) we get, as noted in the beginning of this section, corresponding solutions to
equation (5.1), fix, in C°(€2). For any i there is a large enough k; such that f;,|s,—0; €
C°(U) for all a4 € [0, L], which can be chosen in such a way that k; — oo as i — co. The
sequence { f; 1, }2, is bounded in H%([0, L]; L>(U)) N H*([0, L]; H*(U)) N L3([0, L]; H*(U))
so we can extract a subsequence which is weakly convergent to some function f. We note
that
[ € H2([0, L}; L(U)) N H([0, LJ; B (1)) 0 L2(0, L; HA(U)) € HA(Q).

Due to equation (5.7) we can bound the sequence { fi,|eos—a; }52, in H*(U) for a given
zhy € [0, L]. This means that we can extract a weakly convergent subsequence with limit
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fxé € H?(U). For any linear functional I on H'(U) we can define Iy, (g) = (g|cs=z;,) as a
linear functional on H'([0, L]; H*(U)) since C([0, L]; H*(U)) c H'([0, L]; H'(U)). Now

A~

for all linear functionals on H'(U) and hence fl,,—o = fxg in H'(U). However, since
fu, € HX(U) the equality also holds in H*(U) and thus f|,,—,, € H*(U). Using that the
trace operator 7' is bounded and linear we get that

of za=z! of z3=x
Similarly we get that T’ gy T legmefy 0. Tt follows that f|,,—,, € H2(U) and hence
Ox1 Oxo 3=%3 0
€ HL(U), which together

f e L>=([0,L]; H3(U)). By the same reasoning we get %
With flu,y € H2(U) gives f € W'([0, L]; HL(U)).

Moreover, from [14, Chapter 1, Theorem 3.1]) it follows that f € C([0, L]; H*?(U))
and 88_;”3 € C([0, L]; H/2(U)) and hence

z3=x}

9,
£ € Cull0. LEHV)), 5 € Cull0, LI H(U)
by [14, Chapter 3, Lemma 8.1]). It is therefore clear that f satisfies the conditions (5.2)—
(5.4).
To show that f is a solution to (5.1) we use
fi,ki T3=h - f‘xg:a:g in HQ(U>7
ki 9 H\U
8;(;3 . 8:53 x3:x,3 mn ( )7

as ¢ — 00, which was shown above and
- 2
VMIS:%/3 = Vl|pz=ay, in H*(U)

Aki T3=a} — A’x:sidfé n Hl(U)

as i — 0o, which follows from H'([0, L]; H"(U)) € C([0, L]; H*(U)). Together these limits
imply

in H'(U)
x3=x}

@1’3 XT3

Ofik,
( f,k'l + (-sz . V)fz’kz + Alﬁf%’ﬂ)

— <§—f+(V-V)f+Af>

as 1 — oo. But since

=0V

Ofir
Hiﬁ+wmvm&+M%h

(9.1'3

1,9
7¢{3
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we get that

of

—+(v-V)f+ A
) ax3 ( )f f 1,Q ,

*3
Ofik.
< liminf ‘& + (Vi, - V) fies + Ay, fik,
i—00 61’3 1,9,

=0.

Hence the first equation in (5.5) holds for f as an equality in H'(U) for almost every
xg € [0, L]. That f|.,—0 = n follows immediately from

fi,ki x3=0 - f|5!?3=0 ln HQ(U)

and

fiyki x3=0 = )i —n n HQ(U>

It remains to prove uniqueness. For any solution to equation (5.5), f € L*([0, L]; H*(U))N
Whee([0, L]; HY(U)), we can repeat the steps in Lemma 5.2 (the integration by parts gives
no boundary term here since v - n = 0) and get an inequality like (5.12), that is

d
d—xgllfll?),gzs < (IVar - vlley@ry) + 2l All ey 1116 0., -

We estimate

(Ve - Viey@uy) + 21 Allcy @) < (Ve - Viie,@ + 2l Allc,@)
< V(|Vy - V]a2g + 2| All2.0)

by using Sobolev’s embedding theorem and apply Gronwall’s lemma to get

11160,y < ll7llG exp (/O (Ve V]l + 2HA|\z,n)dx3> :

This inequality shows that n = 0 implies f = 0 and hence the solution is unique. O]
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6 Proof of the Main Result

It remains to prove that B is a contraction. To do this we will need some additional
estimates of the solutions to (5.1). However we begin by introducing some notation for
the difference of two solutions to (5.1) for two different v, which we will denote v*) and

Similarly we let all related functions use the same superscript, i.e. f() solves (5.1) for
v = v and f@ the same equation for v = v(?). Additionally we introduce [-] to denote the
difference of two such functions, i.e. [v] = v —v®@ and [f] = f¥ — f@. The estimates
we want to show are summarized in the following proposition.

Proposition 6.1. f satisfies the inequalities

Iflloe < O (Ihllow + Vrgllow)
and

9fs

1/2 QO Hax3

< d(|h)low + IVrgll20),

of  Ofs
oz, | 0my

oh | 0%
PERCOI L

b

i

1 fllz.0 +

Hyl*(Qr) Hyy* (1)

and [f], as defined above, satisfies the inequality

A loe < (IR l20 + [Vzgllzo)l[V]le,

where ™ = *3)(Q, b, v0, [v]l3.0), = *N(Q, 0,70, [[v]30) and
0(50) = 0(50)(Qa b7 7o, ||U(1) ||3,Q7 ||U(2) ||37Q)'

Proof. To prove the first inequality we note that due to the way the solution was con-
structed the inequality in (5.11) holds and hence

1£llog < <P lnllo-

Now recall that 7 is defined by

n-n=nh on {2,
h 1
nr = vp — n x Vrg on ).
v-n v-n
This gives
h
ov < [[hlloy + vy + n x Vrg
v O’QO v-n 0790
1
< [[Alloy + ¢ H H—nxVTg
2,Q v-n 0.0

1
< [[~llo + 0(3)||V||2,Qo [Rllo, + 3 In < Vrglloy

1
< Rllow + D@ [Vllsa bl + 5 Vgl
< D (|hfloy + IVzgllow).
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where c®) = OV (Q, b, 7y, [|v||3.0). From this it follows that

1£llog < c*Pe®V([[Allog, + IV rglloss).

To prove the second inequality we note that

s ’ ofs
03 Y2 (0) ~ | Oxs 1.9
and of,  of of,  of
‘a—fl+8—2 ‘51%2 < 2/|f[l2.,-
I i) Héo/z( I i) 1,00
Since the same inequalities hold on € it is sufficient to prove
Il + e + Wl + |52 |+ 52 < it + 1910
T3 111,00 T3 1QL

As a consequence to the way the solution was constructed it satisfies equations (5.7), (5.8),
(5.21), (5.20) and (5.25), hence

9
ai[}g

1 e, + \
3

1,90 ' 1,2

= (||f||H2([o,L],L2(U)) + ||f||H1 [0 L] my) T ||f||?{1([O,L],H2(U)))1/2

+ Hf”2790

3 111,00 H@xg

< (233 4 cBY 4 W) 26(44) + N nllap

1,9,

Now " .
|mmvswmy+H ol +[nx Vg
v 2.0 v-n 2.0
U 1
<l + ¢ [ g+ e | x Dl
U lg.q,
< Wl + O ] Iy + @@ || 2| 1¥2glls
U3 l3,0

< 2 ([hllaw + [Vrgll20),
where 2 = c52)(Q, b, ||v]|30). From these estimates it follows that

9 d
Wma+HNME+wwﬂh+H5£ /

311,00 Ox; 1,95
< (2659 + BV 4 ) 1264 - YD (||B]|y 1 + [ Vrglaw)-

For the third inequality we begin by writing equation (5.1) in the form of equation (5.5)
and taking the difference of the equation with v = v and the one with v = v(® gives us
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an equation for [f]

L L (0 ) 0 (v 9, £ 4 AD F) _ 4@ @ _ i

833'3
[f] = [77]7 on Qo.
Through some algebra it is not hard to see that this is equivalent to
WL 4 (- T+ AV) = ~(] - V)@ — (41, in @
3
Lf] = [nl, on (.

That is, [f] satisfies a very similar equation to (5.5). If we let p = —([v]- V) f® — [A] f?
we can redo the steps in Lemma 5.2 and get a similar inequality to (5.12). but with an
additional term involving p

d

Lo, < (192 ¥y + 24V ey M, +2 [ 151 ol

Qg
By estimating
2 / 1] - plda’ < / ]2 da’ + / P de’ = [f1I2q., + Iol2a,,
Qg Qg Qg
we get

d
d—xg\l[f]ll?),gzs < (IVar - vP ey + 21AW ey + DI o, + 1216 0.,

By applying Gronwall’s inequality and Sobolev’s embedding theorem, as before, we get

L
swp AR, < exp (L + O LYWW 0 + AV 5.0)) (HmuaU + [ ol dxg)

11336[07[/]

= (IR + el

where ¢®3) = c®3)(Q, b, v, |[vV]|3.0) hence

IMEe < L sup 1la., < ™ LAMIGY + lol0)-

$3€[0,L
Through the definition of 1 we find that

[7]] = [UT] = %[UT]’

since v-n=vy-n+u-n=1vy-n. Hence

h

1
prl]l <Dl 1],

lillos = [

0,Q0

o1



Also by definition
lplloe < (V] - Var) P llog + I[ALFP 0.0,

hence
lolloe < 2¢2 Vel £ 2 lzq + Aol f2l20-

Both ||[v]||l1.q and |[[A][lo.n can be estimated by 5% [[v]ll, o. where

e = (b, 50, [

Hf(2)H27Q can be estimated by C<49)(HhHZ,U + ||IVrgll2,v), which completes the proof of the
third inequality. O

0(2)“39). Through the second inequality of this proposition

Corollary 6.2. The operator B satisfies

1By, h, vol(w)[[10 < M ([|hllo.u + [[Vrgllow) (6.1)
1By, h, vol(w)[ls.0 < M (||hll2, + [[Vrgllov) (6.2)
1Bg, hy vo](u) = Blg, h, vo)(w)ll .o < M ([|Allop + [IVrgllov) v — wlho,  (6.3)

Proof. This follows immediately from the previous proposition and the inequalities in The-
orem 4.19. 0

Now we are ready to prove that B is a contraction and that it has a unique fixed point
u.

Proposition 6.3. For every v with 0 < v < vy the operator B maps V, into itself if

7
2llo + IV7gllow < VR (6.4)

The operator B has a unique fized point in V., if (6.4) is satisfied and if

1
[hllo + IVrgllow < SVECOR (6.5)
Additionally, if gV, BV and g®, h®) are two sets of boundary data both satisfying (6.5)
and if uM, u® are the fized points of Blg™"), h™") wy] and B[g®, h® vg] respectively, then

M ([ — b oy + V(9" = ¢*) o)
1 — MG (|AD o0 + [[VrgD]lor)

Ju® — u@||, o < (6.6)

Proof. Combining inequalities (6.2) and (6.4) gives
I1B(u)lls.0 <7,

that is B maps V, into itself. To show that B has a unique fixed point we will apply
Banach’s fixed point theorem. The inequalities (6.3) and (6.5) gives

[B(u) = B(w)1a < [lu —wl1q,

which means that B: V, C H*(Q) — H'(Q) is a contraction. To apply Banach’s fixed
point theorem it remains to show that V, is a closed subset of H'(Q2). Now assume that
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we have a sequence {u;}2; C V,, which converges to u in the norm of H'(Q2). Since the
sequence is bounded in H3(€2) norm it has a subsequence which converges weakly in H3(2)
to w. Since V, is closed and convex it is weakly closed so w € V. Due to H3(Q2) C H*(Q)
we have that the space of continuous linear functionals on H'(Q) is a subspace to the space
of continuous linear functionals on H?(2). This implies that {u;}:°; also converges weakly
to w in H'(2). Since weak limits are equal to limits in norm v = w € V,, hence V, is a
closed subset of H'(f2) and we can apply Banach’s fixed point theorem to B.
To prove (6.6) we use (6.1) and (6.3) to get

[ = u® [0 = [|Blg™, A wo] (ulV) = Blg®, h®, v () 1.0
< 1Blg™, A wo](utV) = Blg™, hD vg] () 11,0
+ 1 Blg™, h, vo] (u®) = Blg®, h vo] (u?) |10
< M (W Vo0 + (Vg™ o) [t = u? 10
+ ||B[g(1) _ 9(2)’ h) h(2), UO](U(2))||1,Q
< MO (R o0 + (VgD o) [t = w10
+ M (B — h® oy + Vg™ = g2 ov),

where we have used the linearity of (g,h) — Blg, h,vo](u). Rearranging the terms gives
the desired inequality. O

Lemma 6.4. Let uw € V, with 0 < v <. Thenu is a fized point of the operator Blg, h, vo]
if and only if v = u+vy is the velocity field of a solution (v, p) € H*(Q) of (1.1)-(1.3), (3.2)
and (3.3).

Additionally, if both (v,p) € H*(Q) and (v,p) € H3(Q) are solutions of (1.1)-(1.3), (3.2)
and (3.3) with v = v, then p = p.

Proof. First we assume that u is a fixed point of B and let v = vy + u, then
divev =divyg + divu =0

and
n-vlag =n-vlaq +n - ulag = ¢

so equations (1.2) and (1.3) are satisfied. We also get
curlv = curlvy + curlu = curl B(u) = f.

Since f satisfies (5.1) we get
curlv|g, =7, (6.7)

which means that (3.2) is satisfied and
(v-V)curlv = (curlv - V)v,

which is equivalent to
curl (v x curlv) = 0.
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Now we just need to construct p in such a way that (1.1) and (3.3) are satisfied. This is
done by letting p be defined on Qy by (3.3) and setting %]v|2 + p equal to a constant along
the integral curves of v. Through this definition p will be defined in all of €2 since the
integral curves of v cover €. If we let z(y) € )y be the starting point of an integral curve
of v passing through y we get

p(y) = Slo(ew)P + pw) - S

This means that p(y) is continuously differentiable since z and v are continuously differ-
entiable and p is continuously differentiable on €. From (3.10) and (6.7) we get

(n - curlv)vy — v - n(curlv)r = n x Vrg,
on 9. Through some algebra it is easy to show that this is equivalent to
n X (v x curlv) =n x Vpg

which is the same as
(v x curlv)y = Vrg.

Since %|vo|2 + pp is equal to a constant we can use our definition of p to get

1
(v x curlv)p = Vr (5\0\2 —i—p) :

This means that .
7 (v xcurlv)=7-V (5\1}]2 +p>

for any unit vector 7 tangential to €, hence we have

1 2
S@P +pl) = [

w

)7 (S0 4 p(0)) ds, + 3lolen) + pla)

— [ 70} (vly) % curl o)) ds, + g lo(eo) + plan),

for any z € )y connected to some fixed zy € )y by some arc w C €y with tangent vector
7. If we instead let 7 be a unit vector tangential to the integral curves of v then

7(z) - (v(z) X curlv(z)) =0

for all z € €. This implies that

@ +p(@) = [ 7(0) - () x curlv(y) ds, + Flo(a)? + pla),

w

for all x € () given that w is an arc consisting of segments in )y and integral curves of v.
Since curl (v x curlv) = 0 we can apply Stokes’ theorem to get

1 2
SP@P 4 ple) = [

w

(y) - (o(y) % curlo(y)) ds, + 3lo(ao)” + p(ro).

/
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for any arc w’ in £ connecting xq with x. This means that

v(x) x curlv(x) =V (%]v(x)]z +p(:1:)) : (6.8)

for all z € 2, which is equivalent to (1.1). From Theorem 1.13 it follows that Vp € H?(2)
since v € H?(Q2), hence p € H?(Q). Altogether this means that (v,p) € H3() is a solution
to (1.1)-(1.3), (3.2) and (3.3).

On the other hand if we assume u € V,, and that v = vy + u is the velocity field for a
solution (v, p) € H3(Q) to (1.1)-(1.3), (3.2) and (3.3), then

((vo +u) - V)eurlu = (curlu - V) (vg + v). (6.9)
Combining (3.3) with (6.8) we get
(v x curlv)y = Vrg,

on ). Following the argument above backwards we see that this implies

- curl 1
(curlu)p = o UC.H;L Cor — X Vryg, (6.10)

on . (3.2), (6.9) and (6.10) together show that curl u satisfies (5.1), which means curlu =
f. By definition B(u) € V and using that together with (3.7) and (3.8) we get

curl (B(u) —u) = curl B(u) —curlu =0 in Q
div(B(u) —u) =divB(u) —divu=0 in
n-(B(u) —u)=n-B(u)—n-u=0 on 02

for (B(u) —u) € H3*(Q). Due to Theorem 4.19 we know that a function satisfying these
equations is unique and hence B(u) —u = 0, which means u is a fixed point of B.

As for the second part of the lemma we note that (1.1) implies that p — p is constant
and (3.3) shows that p — p = 0 on Qg and hence in all of 2. O

Finally we are ready to prove our main result.

Proof of Theorem 3.1. By choosing g € H3(Q), h € HZ(Qp) we know there exists se-
quences of functions g € C=(€y), h¥ € C>°(€y) which converge to g and h in respective
norm. Using ¢ and h() gives us a sequence of functions 7 in HZ(U), which converges to
nin H*(U). Since HZ(U) is closed this means that n € H2(U). Hence B is a well-defined
operator.

Now pick 4 as any constant such that 0 < ¥ < 7. For K; choose any constant that
satisfies

and




From (3.1) it then follows that the assumptions of Proposition 6.3 are satisfied. This
means that the operator Blg, h,vo] has a unique fixed point u € V;. Now from Lemma 6.4
it follows that there exists a solution (v,p) € H3(Q) of (1.1)-(1.3), (3.2) and (3.3) with
v = vy + u, hence
[v = volls.0 = llullso <7

Now if (0,p) € H3(Q) is any solution of (1.1)-(1.3), (3.2) and (3.3) satisfying (3.4), then
from Lemma 6.4 it follows that o — vy € V5 is the unique fixed point of B[g, h,v]. This
means that 0 = v and from the second part of Lemma (6.4) we get that p = p, which
shows that (v, p) is the unique solution of (1.1)-(1.3), (3.2) and (3.3) satisfying (3.4).

To prove (3.5) we note that since both v, v satisfy (3.4), uV) = v®) — vy, u® =
v®) — vy are the fixed points of B[g™M, hM) v], Blg®, h®, vy] respectively. Since both
(g, W), (¢, h?) satisfy (3.1) the assumptions of Proposition 6.3 are satisfied and
equation (6.6) gives

[0 — 0@l 0 = Ju — u®|; o < Ko ([|BY = B g1 + [V (g™ — gP)]low),

where
Mc4®)
11— McOOK,

To prove (3.6) we use (1.1) to obtain

K

195~ Tpllq = 0 - 9)e — (60 - )V o
<[ = oW) - V]oW]oq + (|0 - V) (0 —0vD)]loq
< Vo [ley@l[0® = v loq + [P loy@)[v® = oW ]lo  (6.11)
< Dl + [0 l0) o — o1
< 2¢9(Jloolls o + NNv® —vW]l10
and (3.3) to obtain
-9

1 1
1 _ 5|U(1)|2 @) 4 Q‘U@)’Z

I = pP o0, = Hg
0,920
1
< Hg(l) - g(Q)HO,Qo + §(||v(1)||cb(90) + HU(Q)HCb(Qo))HU(Q) - U(I)HO,QO

e

<9 = g% llogo + = (0P ls0 + [P [l30)[0® = vV o,
< g™ = 9P Nog + PO (Jloollzn +A) 0 — oD 10.
(6.12)
Next we note that for any function ¢ € H*(Q).
lallo.e < L'*[llloc, + LIIVallo- (6.13)

This follows from the fact that we can write

3
q(x1, x2,x3) = q(z1, 22,0) +/ (w1, 29, %) dak,
0

q
oxl
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which implies

oo = ([ @ as)
< ([ e morar)” + ( /
<0 ([ o tasan) s ([ [0
gL1/2\|qu,go+< / rades [ /

< LY?(|gllo.0, + LIIVallo.0-

5 1/2
dx)

) 1/2
da, dx)

1/2
dxy dxy d:@)

s 8 / d /
—q\T1,T2,T Xz
A al'éQ( 1 2 3) 3

xlv T, 273)

ax/ q xl) x27 ‘TS)

Combining (6.11)-(6.13) gives

1P = e < [P = pPlloq + 1V = VpP o
< LY2[IpY = pPllo.q, + (1 + L) VDY = VpPlog
< L'g" — ¢ 0.0,
+ (L2 + (14 L)2e¢W) ([[eollse + )l = vVl 0,

and using (3.5) to estimate |[v®) — oW, o gives (3.6) with

Ky = max{LY? Ky(LY?c¢®Pc® + (14 L)2¢Y)(luollsn + 4)}-
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7 Examples

In this section we look at examples relating to our main result. The first example is a flow
in with no xo-component. It is not so closely related to the main result as we consider this
in a slab that extends infinitely in the x5 direction. However, it is related to the second
example, where we consider axisymmetric flow in a cylinder. The third example solutions
that are Beltrami fields, which means that the flow is parallel to the vorticity.

7.1 Two-Dimensional Flow

We consider a domain I', which is defined by
'={2:0<2 <R, 0<z23<L}

and consider a flow with no x5 component and ¢ independent of x,. This means it has the
form v = (vy(xy, z3),0,vs3(x1, 23)). We note that the since the flow is divergence free it can

be written in terms of a stream function v, which is defined by v = (—377’&37 0, %). Under

the condition vg > b > 0 it solves Ay = F(v)) for some function F' [5]. with v-n = ¢ on
the boundary we assume that

o <0, r3 =0,

¢ =0, 0<zy<L,

¢ >0, r3 =1L,
Using this we find that n- (—g—;ﬁ, 0, g—fl) =0 for 0 < x3 < L, but in this case n = (1,0, 0)
giving

8_w =0, 0< a3 < L.

0xs
Hence v is constant along both zy = 0 and z; = R, which we will call ¥y and g
respectively. For x3 = 0 we have n = —(0,0, 1) which gives

g—;ﬁ = —0, x3 = 0.

Through this we can get the values of ¥ at x3 =0 as
1
(1) == o —/ ¢(y1,0)dyr,
0

where we require ¥p = 9y — fOP &(y1,0)dy;. Similarly we get that ¢ at z3 = L is

D) = o + /0 3y, L)dys.

This gives that 1 solves
Ay = F(¢)
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with boundary conditions

Y =1, 0<xz < R,z3=0,
U = 1y, r1=0,0<23 <L,
Vv =1p, rn=R0<z3<L,
v =1, 0<z <R,z3=L.

If curl v is known at 3 = 0 we can also determine F'. Since

c%l 81)3
lv = _—— = (0,—-A
curlv (O, s 8:61’0) (0, —A,0)

we get
— Ay = (curlv),, (z1 (1))

at x3 = 0, where we have used that ¢ is strictly increasing as a function of z; to express
as a function of ¢). That this holds in the whole domain follows from the fact that ¢ and
— A1) are constant along the integral curves of v. To see this we note that from definition

we have
oY oY n oY o

— = 0.
81'3 (9:61 8w1 8%3

(v V) =

and from

(v-V)curlv = (curlv - V)v = (Cuﬂ?})ma@—v =0
x
it follows that
(v- V)(=Ay) =0.

An equivalent condition is to specify the Bernoulli function, H, at x5 = 0. since
VH xn=(vxcurlv) xn=(n-v)curlv — (n - curlv)v = ¢ curlv

because n-curlv = 0. This means we can determine curlwv if H is known. We can compare
this to our main result where we required the boundary conditions (3.2) and (3.3). We
see that the condition that v is independent of x5 gives us a condition similar to (3.2) and
that the other condition we have to impose is comparable to (3.3).

7.2 Axisymmetric Flow Without Swirl

The domain in the two dimensional example can be seen as a section of a circular cylinder
of radius R and height L instead of a section in a straight infinite Slab. Where instead of
the condition that there is no flow in the x5 direction we require the flow to be axisymmetric
and without swirl, by which we mean that the flow is invariant under rotations in the axis
of the cylinder and nonzero only in the radial and vertical directions. In this case the
equations to solve become a somewhat different than in the previous example. To show
these differences we define the unit vectors for cylindrical coordinates (7,0, x3) as

e, = (cosf,sind,0)
ep = (—siné,cosb,0)
e, = (0,0,1).
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That the flow is without swirl means vy = 0, hence
V= Up€p + Ups€psy,

where v, and v,, are independent of # since the flow is axisymmetric. Again we also assume
Uy > b > 0. Since our field is divergence free we can write it in terms of a stream function

Y = (r, x3), where

1 9 1o

v Vpa = ———.
" rOxs’ B or

The velocity field also satisfies
(curlv - V)v = (v - V)curlw.

Using
curlv = Ouvr_ Ovuy e
oz ar )
gives
(v-V)curlv = (v 9 +v 0 ((curlv)geq)
- T’ar 3 8.73'5 0co
[ O(curlv)y d(curlwv)g
= (UT 8r + Vg4 81‘3 €o
and (curl o)y O
curlv)g
(CUI‘IU . V) = , %(Uvqer + Uz3€m3>
_ (curlv)guv, ¢
r
SO
Ura(curlv)g o, (curlv)y t o, J(curlv)gy o,
or r 03
which is equivalent to
(curlwv)g 0 (curlv)y 0 (curlwv)y
: = Ur5~ T =0
(v-V) r T — v *0rs v
Hence M is constant along the integral curves of v, but
v 0v,.
1 _ ro T3
(curlv)y dxz  Or
_ 1% 9 (10y
 rox: or\ror

_ (0% 0 (10
- r \ 0x3 or \r or ’

so, instead of —Awy = F (1) as we got in the previous example, we get

1 (% 0 (1))
(5 e (05)) = ro
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The boundary conditions can be treated in a similarly to the previous example. There are
two differences though. The first difference is that we have no boundary condition that
gives us 1 constant at r = 0, however, this follows from that the flow is axisymmetric.
The second difference is that we get a factor r in the integrals when defining ¢ and v as
the stream function is defined slightly different in this example. Hence in this case too, we
need ¢ = v -n on the boundary and H at x3 = 0 to determine the flow.

7.3 Beltrami Fields

The Beltrami fields defined by curl v = aw are separated into the linear case (treated in [7]),
where « is a constant, and the nonlinear case (treated in [6]), where « is a scalar function
a = a(x). This gives v X curlv = 0. By equation (1.4) we get that v satisfies (1.1) if
VH = 0, that is H constant. So a divergence free Beltrami field gives a flow satisfying
(1.1)-(1.2) if we let
— 1 2
p= —5\71\ :
On the other hand
v-VH =v- (v x curlv) =0,

that is, H is constant along the integral curves so if H is constant on )y and the integral
curves of v cover {2 we get that H is constant in all of (2. This in turn implies that

vXcurlv=VH =0,

hence v is a Beltrami field.

So requiring a solution to be a Beltrami field essentially determines the boundary
condition in equation (3.3) as opposed to requiring the solution to be axisymmetric which
determines the boundary condition in (3.2). However, if we require the solution to be a
linear Beltrami field we find that

n - curlv = agn - v = ayo.

for some constant ag, so in this case we only need to know this constant for both boundary
conditions to be determined.

The nonlinear case is different in this regard as such a boundary condition is not
restricted. In [6] an existence result is proven for the problem

curlv = av in T,
divw in I,
n-v=ao on JI',

n-curlv =agp on Jl'_,

for smooth domains I' where OI'_, as in section 2, is the subset of OI" with ¢ < 0, and «
and «q are functions in I' and on OI'_, respectively. Hence, for nonlinear Beltrami fields a
condition similar to (3.2) (or maybe rather (2.5) since the domain is smooth) is required.
The reason that the last condition is only needed on 0I'_ comes from the fact that

0 = divcurlv = div (aw) = adive + (v - V)a
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combined with dive = 0 implies that « is constant along the integral curves of v and if
they cover I' this is sufficient.
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& Discussion

The main result in this thesis is proven under numerous restrictions on the boundary data.
Some of these restrictions are possibly artificially put in place and can hopefully be reduced
or removed. For example the requirement that we have no vorticity on the vertical sides
seems like a good candidate to be removed as it is easy to construct a flow satisfying
(1.1)-(1.3) which has constant vorticity in the xs-direction in all of Q.

Another possible thing to look into is the bound on g and h given by equation (3.1).
A possibility for this was proposed by Alber as he found that the corresponding constant
bounding g and h behaves like ~ Llo, where L is the least upper bound of all the integral
curves of vg. This would mean that for ‘short’ domains the bound practically disappears
and the condition could be removed if ‘longer’ domains could be treated as several ‘short’
domains the condition could be removed. This approach seems more feasible for cylindrical
domains than for the general domains Alber worked with. The reason is that the constant
also depends on the length of the domain and to estimate this dependence seems more
straightforward in the cylindrical case.

The most obvious way, though, to continue the work done in this thesis would be to
consider more general domains with edges and corners. Maybe the most natural would be
to allow the the boundary of U to have corners.
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A TIrrotational Solutions

For our main result to be meaningful we also need to know that there exists an irrotational
solution to (1.1)-(1.3) with enough regularity, that is, a function v € H*(Q) with dive = 0,
curlv = 0 and

n-v=ao

on 0f2. Sufficient conditions for this are that

6=0 ondU x (0,L),

¢0 = ¢|Qo7¢L = ¢|QL € H5/2(U)7 (Al)
odS = — ¢ dS, (A.2)
Qo Qr,
and
n-Voo=n-Vo,=0 on OU. (A.3)

This can be seen by introducing a potential ®, which satisfies ® = Vv and A® = 0 in (2
and n - V® = ¢ on 0f) and treating this problem in a similar way to the one in Section 4.
The difference is that here the operator S has Neumann boundary conditions. Due to
this 0 is an eigenvalue, which gives us the condition (A.2). In Fourier variables (as in
Propositions 4.9 and 4.11) the problem reads

" = A\®,, 0<z3<L
O = —@o,, 3=0,
O =6, a3=1L,
with solution ) R R
Py = —o,0r3 + a = ¢ror3 + a,

for n = 0, where a is an arbitrary constant and

b, = & cosh(v/A (w3 — L)) +é cosh(v/A,3)
m O A sinh(VALL) " /A, sinh(vVAL L)

for n # 0 given that ¢20,0 = —¢EL70. Squaring and integrating gives

L
/ (AR @) + A3 |D1 2 + A2 | D02 + A D12 + D1 %) dzg S A2 (|0.0l” + [Dr.0]?),
0

which gives ® € H*(Q) given that ¢, ¢, € D(S°*). Through the characterization of
D(S%*) this means that (A.1) and (A.3) has to be satisfied.

Additionally it follows that v3 = B%SCD > b > 0 in  given that the inequality holds at
Qo and Q. Through elliptic regularity and Sobolev’s embedding theorem we get 8%3@ €

C>®(Q)NCYHQ). The function is also harmonic and it follows that it takes its least value at
the boundary. To eliminate the possibility that this happens at the boundary 0U x (0, L)
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we use Hopf’s lemma (see e.g. maximum principles in [9]). It states that if 8%3@ has a

minimum at some x € OU x (0, L) then either n- Va%g@(x) < 0or %@ is a constant in €,
which would immediately imply that 8i<1> > b > 0 since this is true at Qy and Q. As for

3

the case if 2@ is not constant we already know n - V%@(az) =0 for all x € U x (0, L)

T3 —
SO 8%3@ takes its minimum at {2y or €27, which also means that 8%3(1) >b>01in Q.
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