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Abstract

A paper by Alber shows the existence of steady, inviscid incompressible �ows with non-
vanishing vorticity for general three-dimensional domains with smooth boundary. In this
thesis we show the existence of such �ows in cylindrical domains under the conditions that
there is no �ow through the side of the cylinder, nonzero �ow into the cylinder at all points
in the bottom, and nonzero �ow out of the cylinder at all points in the top. The �ow is
constructed by adding a perturbation with nonvanishing vorticity to an already existing
�ow with no vorticity. To show that this indeed gives us another �ow we use a �xed point
argument. This can be done if we put certain restrictions on the boundary conditions that
de�ne the vorticity of the perturbation.

Populärvetenskaplig Sammanfattning

Ekvationerna som beskriver �öden i �uider kallas Navier-Stokes ekvationer och trots att de
formulerades på 1800-talet är kunskapen om lösningar fortfarande långt ifrån fullständing.
Forskningen som rör detta går ofta framåt genom att specialfall som förenklar ekvation-
erna undersöks. Så är även fallet i detta arbete. Antagenden som görs är att �uidens
hastighet och trycket är konstant i tiden, att �uiden saknar viskositet (rör sig utan frik-
tion) och att den är inkompressibel. Under dessa antaganden tillsammans med antagandet
att vorticiteten (ett mått på rotationen i vätskan) är noll är mycket redan utrett. Om man
däremot ställer kravet att vorticiteten inte ska vara noll �nns desto mindre kunskap. Det
har dock visats att i tre dimensioner existerar sådana �öden i områden vars rand är glatt,
vilket i princip betyder att det inte �nns några hörn eller skarpa kanter. Det som görs
i detta arbetet är att visa att sådana �öden även existerar i cylindriska områden under
antagandet att det inte sker något �öde genom manteln och att allt �öde in i cylindern
sker genom botten och allt �öde ut ur cylindern sker genom toppen.
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1 Introduction

We study the steady �ow of an inviscid, incompressible medium through a cylinder Ω =
U × (0, L) ⊂ R2 × R, where U is an open, bounded, simply connected subset of R2 with
C∞ boundary and 0 < L < ∞ (see Figure 1). For functions and variables in Rn we use
subscripts to denote the components, i.e. if x ∈ R3 then x = (x1, x2, x3). The cylinder is
oriented so that its cross section with a plane given by x3 = l, 0 ≤ l ≤ L, is U × {l}. To
denote a cross section of this type for a particular x3 we use Ωx3 = U × {x3}.

Mathematically, the problem of our interest is given by the incompressible Euler equa-
tions

(v · ∇)v +∇p = 0 in Ω, (1.1)

div v = 0 in Ω, (1.2)

with boundary condition

n · v = φ on ∂Ω, (1.3)

where v is the velocity �eld of the �ow, p is the pressure and n is the exterior unit normal.
We will also assume that φ < 0 on the bottom of the cylinder Ω0, φ > 0 on the top ΩL

and φ = 0 on ∂U × (0, L). This means that the �ow into the cylinder is limited to the
bottom and that the �ow out is limited to the top. The goal of this thesis is to construct
�ows with nonzero vorticity, that is, with curl v 6≡ 0.

We begin with a brief review of previous results in order to put the present contribution
into context. Throughout this discussion, we replace the cylinder Ω by a smooth, simply
connected, bounded domain Γ ⊂ R3. Surprisingly little is known about steady three-
dimensional ideal �ows with nonzero vorticity. In contrast, irrotational �ows, characterized
by curl v = 0, are very well-understood. An irrotational �ow in Γ can be described by a
velocity potential Φ, with ∆Φ = 0 and v = ∇Φ. The harmonic function Φ is uniquely
determined up to a constant by its normal derivative ∂Φ/∂n on ∂Γ. Hence, v is completely
speci�ed by its normal component φ = v · n on the boundary. Here, φ is an arbitrary,
su�ciently smooth function satisfying the compatibility condition

∫
∂Γ
φ dS = 0. By using

the relation

(v · ∇)v = ∇
(

1

2
|v|2
)
− v × curl v

we can rewrite equation (1.1) as

∇
(

1

2
|v|2 + p

)
= v × curl v, (1.4)

showing that the Euler equations are automatically satis�ed for an irrotational �ow if v is
given by a harmonic potential and the pressure is de�ned by

p = −1

2
|v|2

(again, p is only unique up to an additive constant). This discussion implies that the
normal component of the velocity �eld is not enough to uniquely determine the �ow if we
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(a) Standard circular cylinder. (b) Cylinder with an non-circular base.

Figure 1: Examples of a possible cylinder Ω.

allow for nonvanishing vorticity. The expression H = 1
2
|v|2 + p appearing above is called

the Bernoulli function. Equation (1.4) says that the Bernoulli function is constant along
integral curves of the �ow and that it is identically constant throughout Γ if the �ow is
irrotational.

Steady �ows with vorticity have mostly been studied in the two-dimensional setting,
say with v = (v1(x1, x3), 0, v3(x1, x3)) (Γ now being unbounded and uniform in the x2-
direction). In this case, there is a stream function ψ, such that (v1, v3) = (− ∂ψ

∂x3
, ∂ψ
∂x1

) and
ψ is constant on the integral curves of v. Moreover, the vorticity only has one nontrivial
component, curl v = (0, ∂v1

∂x3
− ∂v3

∂x1
, 0), which is also constant on the integral curves of v.

In the absence of stagnation points and closed integral curves this implies that there is a
functional relationship between the vorticity and the stream function. This allows one to
replace Euler's equations by a semilinear elliptic equation ∆ψ = F (ψ) for some function
F (see e.g. [5]). The function φ is the tangential derivative of ψ along ∂Γ, so that φ
determines ψ up to a constant for a given F (under some technical hypotheses).

However, one would also like to know if the �ow can be determined uniquely only in
terms of boundary conditions. It's not di�cult to see that F will be determined if the
nontrivial vorticity component is given on the in�ow part of the boundary ∂Γ− = {x ∈
∂Γ: φ(x) < 0} (under some nondegeneracy conditions). Another possible choice is to
specify the Bernoulli function H on ∂Γ−, since equation (1.4) implies that ∇H × n equals
φ curl v in view of the fact that n · curl v = 0. Both of these boundary conditions therefore
give rise to well-posed boundary value problems. For a discussion of the nonuniqueness
issues which arise when stagnation points and closed integral curves are allowed we refer
to [24].
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In the three-dimensional setting, the most well-studied solutions with vorticity are
axisymmetric �ows and Beltrami �elds (or force-free �elds)1. The axisymmetric case can
however be reduced to a two-dimensional problem set in a cross-section of the �uid and
again there is a simpli�ed formulation in terms of the Stokes stream function. The Beltrami
�elds are on the other hand genuinely three-dimensional and are characterized by the
condition curl v ‖ v, so that H is constant throughout Γ. They are often associated with
chaotic behavior, a famous example being the so-called ABC �ows [5, Example II.1.9]. The
boundary value problem for axisymmetric �ows and Beltrami �elds has for example been
studied in [6, 7, 16]. We will return to this in Section 7.

The �rst general result on the well-posedness of the boundary value problem for three-
dimensional �ows with vorticity is due to Alber [3]. The boundary conditions that he
imposed were the normal component n · v of the velocity �eld on ∂Γ as well as the normal
component n · curl v of the vorticity and the Bernoulli function H on the in�ow set ∂Γ−.
He showed that, given a background ideal �ow which satis�es certain technical conditions,
and boundary data which lie su�ciently close to those of the background �ow, it is possible
to construct a new �ow with the given boundary data. He also proved a local stability and
uniqueness result for the solutions. By choosing H to be nonconstant, the new solution
is guaranteed to have nonzero vorticity. Alber's results and methods will be reviewed in
more detail in Section 2.

Using similar ideas, Tang and Xin [22] later proved a modi�cation of Alber's result in
which the background �ow was not assumed to satisfy Euler's equations and the boundary
conditions on ∂Γ− were replaced by curl v = av + b, where a is a given scalar function
and b a given vector-valued function satisfying b · n = 0 and the compatibility condition
div∂Γ (φb) = 0. Note that n · curl v = φa, so that the normal component of the vorticity
is determined also by these boundary conditions. Moreover, H and b are related by the
identity ∇TH = −(φb)× n on ∂Γ−, where ∇T denotes the tangential gradient.

In this thesis we use Alber's methods to study �ows with nonzero vorticity in the
cylinder Ω. However, the fact that ∂Ω has sharp edges introduces new di�culties. To
intuitively understand these methods it is useful to reformulate the problem above in what
is known as the velocity-vorticity formulation. Taking the curl of equation (1.4) we �nd
that

curl (v × curl v) = 0. (1.5)

Using div v together with the identity

curl (v × z) = v div z + (z · ∇)v − z div v − (v · ∇)z

we get that (1.5) is equivalent to

(v · ∇)curl v = [(curl v) · ∇)]v. (1.6)

For simply connected domains equations (1.6), (1.2), (1.3) are equivalent to (1.1)-(1.3).
To �nd a solution with nonvanishing vorticity we will use an irrotational solution (v0, p0)

solving the boundary value problem above. Existence and properties of such a solution will

1The terminology is not completely standardized. In Section 7 we will use the term `nonlinear Beltrami

�eld' when v and curl v are everywhere parallel and `linear Beltrami �elds' for �ows in which curl v is a

constant multiple of v, while others use `force-free �elds' for the former and `Beltrami �elds' for the latter.

3



be outlined in Appendix A. We prove that there exists a neighborhood of (v0, p0) in which
we can �nd a unique �ow which satis�es (1.1)-(1.3) and the two additional boundary
conditions from Alber's paper [3] on the in�ow set Ω0. We �nd this solution through
introducing a operator B on the neighborhood of (v0, p0) following the technique used by
Alber. Then we show that this operator has a unique �xed point which corresponds to a
solution of the problem (1.1)-(1.3) and the additional boundary conditions.

In Section 3 we introduce B and state Theorem 3.1, which is our main result. In
sections 4 and 5 we show that B is well-de�ned and �nally in Section 6 we prove that B is
a contraction which we use to show that it has a unique �xed point. In this section we also
show that the �xed point corresponds to the desired solution. We end with some examples
and some open questions in Sections 7 and 8. However, �rst we introduce Sobolev spaces
to those who are unfamiliar with the concept and establish some necessary notation below.

1.1 Sobolev Spaces

When �rst learning about di�erential equations it is natural to assume that the solution
of an n:th order di�erential equation is n times continuously di�erentiable. However, in
modern mathematics this is not generally the case and weaker solutions are found in a
class of function spaces called Sobolev spaces. Here is a brief introduction to these spaces
given together with some well known connected results. For a more comprehensive source
see e.g. Adams [1].

Let M be a bounded open subset of Rn. We begin by a de�nition concerning the
boundary of M .

De�nition 1.1. (i) Let j ∈ N. We say that the boundary ∂M is Cj, or that M is of class
Cj, if for each point x′ ∈ ∂M there exist neighborhood V and, if necessary, new orthogonal
coordinates {y1, · · · , yn} such that

V := {y = (y1, · · · , yn) ∈ Rn : −ai < yi < ai, 1 ≤ i ≤ n}

and Cj function, ψ : V ′ → Rn where

V ′ := {y′ = (y′1, · · · , y′n − 1) ∈ Rn−1 : −ai < y′i < ai, 1 ≤ i ≤ n− 1}

with the properties

|ψ(y′)| ≤ an
2
, ∀ y′ ∈ V ′,

M ∩ V = {y = (y′, yn) ∈ V : ψ(y′) > yn},

∂M ∩ V = {y = (y′, yn) ∈ V : ψ(y′) = yn},

(ii) Likewise, we say that ∂M is C∞ if ψ ∈ C∞(V ′;R), ∂M is Ck,λ if ψ ∈ Ck,λ(V ′;R)
for 0 < λ ≤ 1, that is k times λ-Hölder continuously di�erentiable, and ∂M is analytic if
ψ is analytic. The special case where ψ ∈ C0,1(V ′;R) is often called a Lipschitz boundary.

To continue we let α be a multi-index, that is α = (α1, α2, ..., αn) ∈ Nn with |α| =

α1 + α2 + ... + αn, and let Dα = ∂|α|

∂x
α1
1 ∂x

α2
2 ···∂x

αn
n
. Also let k ∈ N and p ∈ R with p ≥ 1 or

4



p = ∞. If f is a locally integrable function on M and ϕ ∈ C∞c (M) we can make sense of
the expression ∫

M

fDαϕdx.

We say that g is the weak α-th partial derivative of f if it is locally integrable and∫
M

fDαϕdx = (−1)|α|
∫
M

gϕ dx

holds for all ϕ ∈ C∞c (M). If there exists such a function g it is uniquely de�ned almost
everywhere and if f ∈ C |α|(M) it is clear that Dαf = g, therefore it make sense to use
the notation Dαf := g even if the derivative doesn't exist in the classical sense. Weak
derivatives allows us to make the following de�nition.

De�nition 1.2. The Sobolev space W k,p(M) is the space of functions in Lp(M), with weak
derivatives up to order k in Lp(M), that is

W k,p(M) := {f ∈ Lp(M) : Dαf ∈ Lp(M) ∀|α| ≤ k} ,

equipped with the norm

‖f‖Wk,p(M) =



∑
|α|≤k

‖Dαf‖pLp(M)

1/p

for 1 ≤ p <∞,

max
|α|≤k
‖Dαf‖L∞(M) for p =∞.

When p = 2 the Sobolev spaces are usually denoted by Hk(M).

We note here that the norms in the de�nition are not the only possible norms on the
Sobolev spaces. However all commonly used norms are equivalent in the sense of norms
and we will use the ones above. It is also clear from the de�nition that W 0,p(M) = Lp(M).

While all the Sobolev spaces are Banach spaces the spaces with p = 2 are Hilbert spaces
with inner product

〈f, g〉Hk(M) =
∑
|α|≤k

〈Dαf,Dαg〉L2(M).

Another way to de�ne the space W k,p(M) is through the completion of {f ∈ C∞(M) :
‖f‖Wk,p(M) <∞} with respect to the norm ‖·‖Wk,p(M). If we instead look at the completion
of C∞c (M) we get another space. To characterize this space we need the trace operator
introduced through Theorem 1.4 below (Theorem 7.53 in [1]). However, to state the
theorem we �rst need to de�ne Sobolev spaces on the boundary of M .

De�nition 1.3. Let the boundary ofM be Cj,1, and V1, ..., Vq be a covering of ∂M of hyper
cubes, with corresponding Ck,1 functions ψ1, ..., ψq as in De�nition 1.1. Let ϕ1, ..., ϕq ∈
C∞c (Rn) be a partition of unity subordinate to V1, ..., Vq, that is for all 1 ≤ i ≤ q

0 ≤ ϕi ≤ 1,
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supp (ϕi) ⊂ Vi,

and
q∑
i=1

ϕi = 1

in a neighborhood of ∂M . Let ϕ′i = ϕi|Vi∩∂M and de�ne Ψi : V ′i → Vi ∩ ∂M by

Ψi(y1, ..., yq−1) = (y1, ..., yq−1, ψi(y1, ..., yq−1)).

If f is a distribution de�ned on ∂M and s ∈ R, with |s| ≤ j + 1. We say that
f ∈ W s,p(∂M) if (ϕ′if) ◦Ψi ∈ W s,p(V ′i ) (W

s,p(V ′i ) with s 6= N is de�ned in De�nition 1.10
below.) for all 0 ≤ i ≤ q. The space W s,p(∂M) can be equipped with the norm

‖f‖W s,p(∂M) =

q∑
i=1

‖(ϕ′if) ◦Ψi‖W s,p(V ′i ).

Theorem 1.4 (Trace theorem 1). Assume M is bounded with Lipschitz boundary. Then
there exists a bounded linear operator T : W 1,p(M)→ Lp(∂M) such that

Tf = f |∂M for f ∈ W 1,p(M) ∩ C(M̄),

‖Tf‖Lp(∂M) ≤ c‖f‖W 1,p(M).

De�nition 1.5. The completion of C∞c (M) with respect to the norm ‖ · ‖Wk,p(M) is the

space W k,p
0 (M). This spaces can be characterized by

W k,p
0 (M) = {f ∈ W k,p(M) : TDαf = 0 ∀|α| ≤ k − 1}.

Analogously to before we denote W k,2
0 (M) as Hk

0 (M).

The Sobolev spaces can easily be extended to vector valued functions f : M → Rm

by letting the components of f be functions in W k,p(M), i.e. f ∈ (W k,p(M))m. If it
is clear from context we denote this simply as f ∈ W k,p(M), but where we want to
make it explicitly clear that f is vector valued with m components we use the notation
f ∈ W k,p(M ;Rm). A convention we also use for other function spaces.

We will also use the Sobolev spaces mapping an interval of the real line, [0, T ], into a
Banach space, X with norm ‖ · ‖X . However we begin by introducing three other types of
spaces �rst (see [9]).

De�nition 1.6. The space Lp([0, T ];X) consists of the functions which are strongly mea-
surable functions f : [0, T ]→ X such that the norm

‖f‖Lp([0,T ];X) =


(∫ T

0

‖f(t)‖pX dt
)1/p

for 1 ≤ p <∞,

ess sup
t∈[0,T ]

‖f(t)‖X for p =∞

is �nite.
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De�nition 1.7. The space C([0, T ];X) consists of all continuous functions f : [0, T ]→ X
and is equipped with the norm

‖f‖C([0,T ];X) = max
t∈[0,T ]

‖f(t)‖X .

De�nition 1.8. The space Cw([0, T ];X) consists of all weakly continuous functions f :
[0, T ]→ X, that is, functions f such that t 7→ l(f(t)) is continuous for any bounded linear
functional l ∈ X ′.

For a function in f ∈ Lp([0, T ];X) we say that it has a weak derivative of the k:th
order if there exists a function g ∈ Lp([0, T ];X) such that∫ T

0

f(t)Dkϕ(t) dt = (−1)k
∫ T

0

g(t)ϕ(t) dt

for all test functions ϕ(t) ∈ C∞c ([0, T ]). We denote these weak derivatives as f ′, f ′′, f ′′′, · · ·
for k = 1, 2, 3, · · · , respectively, or by Dkf .

De�nition 1.9. The space W k,p([0, T ];X) is the space of functions f ∈ Lp([0, T ];X) such
that the weak derivatives of f up to order k exists as functions in Lp([0, T ];X). This space
is equipped with the norm

‖f‖Wk,p([0,T ];X) =



(∫ T

0

k∑
i=0

‖Dif‖pX dt

)p

for 1 ≤ p <∞,

ess sup
t∈[0,T ]

k∑
i=0

‖Dif‖X for p =∞.

As before W k,2([0, T ];X) = Hk([0, T ];X).

We will also need an extension of these spaces so we can replace k with a real number.
For 1 < p <∞ and M = Rn an equivalent de�nition of the Sobolev spaces is

W k,p(Rn) := {f ∈ Lp(Rn) : F−1[(1 + |ξ|2)k/2Ff ] ∈ Lp(Rn)},

where F denotes the Fourier transform. Using this we can make the following de�nition

De�nition 1.10. Let s ∈ R and 1 < p <∞.
(i) For M = Rn the Bessel potential space W s,p(Rn) is

W s,p(Rn) = {f ∈ S ′(Rn) : F−1[(1 + |ξ|2)s/2Ff ] ∈ Lp(Rn)},

where S ′(Rn) is the tempered distributions on Rn [21]. The Bessel potential space is
equipped with norm

‖f‖W s,p(Rn) = ‖F−1[(1 + |ξ|2)s/2Ff ]‖Lp(Rn).
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(ii) For M 6= Rn the Bessel potential space W s,p(M) is the restriction of functions in
W s,p(Rn) to M , that is

W s,p(M) = {f ∈ D′(Rn) : ∃ g ∈ W s,p(Rn), g|M = f},

where D′(Rn) is the distributions on Rn [21]. The Bessel potential space is equipped with
norm

‖f‖W s,p(M) = inf{‖g‖W s,p(Rn) : g ∈ W s,p(Rn), g|M = f}.
Again W s,2(M) = Hs(M).

By ‖ · ‖Hs(M) we mean ‖ · ‖W s,2(M) if s is a natural number and ‖ · ‖W s,2(M) otherwise.
Additionally, we let ‖ · ‖s,M := ‖ · ‖Hs(M) and if we have a function f : Ω → R such that
f(·, x3) ∈ Hm(U) for a given x3 we use the notation ‖f‖Hm(Ωx3 ) = ‖f(·, x3)‖Hm(U).

Some of the results we will use are summarized below. The �rst of which can be found
as Theorem 5.4 in [1].

Theorem 1.11 (Sobolev's embedding theorem). Suppose M is a Lipschitz domain.
(i) If mp > n, then

W j+m,p(M) ↪→ Cj
b (M),

where
Cj
b (M) = {f ∈ Cj(M) : Dαf is bounded for |α| ≤ j},

with norm
‖f‖Cjb (M) = max

|α|≤j
sup
x∈M
|f(x)|.

An embedding in the sense that any function in W j+m,p(M) is a function in Cj
b (M) and

that there exists a constant c(1) = c(1)(M) such that

‖f‖Cjb (M) ≤ c(1)‖f‖W j+m,p(M).

for all f ∈ W j+m,p(M).
(ii) If mp > n > (m− 1)p, then

W j+m,p(M) ↪→ Cj,λ(M̄)

for 0 < λ ≤ n− m
p
in the same sense as in (i).

We also use a similar result (see e.g. [9], Theorem 2 in Section 5.9.2).

Theorem 1.12. Let 1 ≤ p ≤ ∞ then

W 1,p([0, T ];X) ↪→ C([0, T ];X),

which means that any function in W 1,p([0, T ];X) is a function in C([0, T ];X) and that
there exists a constant c(2) = c(2)(T ) such that

‖f‖C([0,T ];X) ≤ c(2)‖f‖W 1,p([0,T ];X)

for all f ∈ W 1,p([0, T ];X).
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We will also frequently use the following result (see e.g. [13], Theorem 8.3.1).

Theorem 1.13. Let f ∈ Hµ(M) and g ∈ Hν(M), and let κ ≤ min{µ, ν} and κ < µ+ν− n
2
.

Then fg ∈ Hκ(M) and there exists a constant c(3) = c(3)(U) such that

‖fg‖κ,M ≤ c(3)‖f‖µ,M‖g‖ν,M .

We will also use a re�ned version of the trace theorem (see [1], Theorem 7.53, [8] and
Remark 1.16).

Theorem 1.14 (Trace theorem 2). (i) Assume M is bounded with Ck boundary and let

m ∈ (1
2
, k]. Then there exists a bounded linear operator T : Hm(M) → Hm− 1

2 (∂M) such
that

Tf = f |∂M for f ∈ Hm(M) ∩ C(M̄),

‖Tf‖
Hm− 1

2 (∂M)
≤ c‖f‖Hm(M).

(ii) Assume M is bounded with Lipschitz boundary and let m ∈ (1
2
, 3

2
). Then there exists a

bounded linear operator T : Hm(M)→ Hm− 1
2 (∂M) such that

Tf = f |∂M for f ∈ Hm(M) ∩ C(M̄),

‖Tf‖
Hm− 1

2 (∂M)
≤ c‖f‖Hm(M).

(iii) Assume M = Ω, m ≥ 1 and let

Ĥs(∂Ω) = Hs(Ω0)×Hs(ΩL)×Hs(∂U × (0, L)),

with compatibility conditions on ∂Ω0∩∂(∂U × (0, L)) and ∂ΩL∩∂(∂U × (0, L)) (depending

on s). Then there exists a bounded linear operator T : Hm(Ω)→ Hm− 1
2 (∂Ω) such that

Tf = f |∂Ω for f ∈ Hm(Ω) ∩ C(Ω̄),

‖Tf‖
Ĥm− 1

2 (∂Ω)
≤ c‖f‖Hm(Ω).

Remark 1.15. The trace is generally not a mapping between Bessel potential spaces, but
another generalization of the Sobolev spaces called Besov spaces. However, for p = 2 the
Bessel potential spaces and Besov spaces are the same. Hence, the formulation of the trace
theorem above holds for Bessel potential spaces.

Remark 1.16. Part (iii) is true since Ω can locally be transformed onto a polyhedron by
smooth maps. To get an idea of the proof see e.g. Theorem 1.5.2.3 in [11], where it is
shown for domains in R2. The compatibility conditions on the edges are left unspeci�ed
since they are not needed for our purpose.
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2 Earlier Result by Alber

In the introduction we noted that many ideas used in the proof comes from a paper by
Alber [3] in which he shows a similar result. The di�erence between our result and Alber's
comes from Alber studying �ow in general bounded, simply connected domains in R3 of
class C∞, while we study the �ow in a cylinder. To understand Alber's result we have
to introduce some notation concerning the domain, which we will call Γ ⊂ R3. For an
example of such a domain we can consider, as suggested by Alber, a cylinder with rounded
top and bottom, see Figure 2.

The problem Alber studies is

(v · ∇)v +∇p = 0 in Γ, (2.1)

div v = 0 in Γ, (2.2)

n · v = φ on ∂Γ. (2.3)

Since Γ is of class C∞ there exists open subsets U1, · · ·Uµ of R3 with ∂Γ ⊂ ∪µi=1Ui and
di�eomorphisms Φi : D3 → Ui, where

Dl = {y ∈ Rl : |y| < 1},

such that
Ui ∩ ∂Ω = Φi(D3 ∩ {x3 = 0})

and
Ui ∩ Ω = Φi(D3 ∩ {x3 > 0}).

The following de�nitions are slightly di�erent than the ones given in Section 1.1, but
they are the ones used in [3] and are therefore included here to make the results stated in
this section as clear as possible.

Hk(∂Γ) denotes the trace space. The functions ψi : D2 → ∂Γ with

ψi(ξ1, ξ2) = Φi(ξ1, ξ2, 0)

de�ne coordinate systems on ∂Γ. If we let σi : ∂Γ→ R, i = 1, · · ·µ, be a partition of unity
on ∂Γ with 0 ≤ σ ≤ 1, support(σi) ⊂ ψi(D2), and σi ◦ ψi ∈ C∞c (D2) we can de�ne

‖q‖k,∂Γ =

µ∑
i=1

∑
|α|≤k

‖(σi ◦ ψi)Dα(q ◦ ψi)‖0,D2

as norm on Hk(∂Γ). For φ ∈ H2(∂Γ) let

∂Γ− = ∂Γ−(φ) = {x ∈ ∂Γ : φ(x) < 0}
∂Γ+ = ∂Γ+(φ) = {x ∈ ∂Γ : φ(x) > 0}.

Note that due to the assumptions we put on φ ∈ H2(∂Ω) for the problem in the cylinder
Ω, the sets corresponding to ∂Γ− and ∂Γ+ are Ω0 and ΩL respectively, which are subsets
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Figure 2: Example of a possible domain Γ.

of R2. This allows us to use the standard Sobolev space norms on these sets instead of the
following norms used by Alber.

∂Γ−, ∂Γ+ are open subsets of the C∞-manifold ∂Γ since φ is continuous and hence they
themselves are C∞-manifolds. The boundary of ∂Γ± relative to ∂Γ is denoted by

∂∂Γ± = ∂Γ± ∩ (∂Γ \ ∂Γ±).

We say that ∂Γ− has Lipschitz boundary if the functions Φi, · · ·Φµ can be chosen so
that the domain

Di
2 = ψ−1

i (∂Γ−)

is empty or has Lipschitz boundary for every i = 1, · · · , µ.
For k ≤ 2 the norms on ∂Γ− are de�ned as

‖q‖k,∂Γ− =

µ∑
i=1

∑
|α|≤k

‖(σi ◦ ψi)Dα(q ◦ ψi)‖0,Di2
,

|q|k,∂Γ− =

µ∑
i=1

∑
|α|+|β|≤k

∥∥∥∥(σi ◦ ψi)Dα

(
1

φ ◦ ψi

)
Dβ(q ◦ ψi)

∥∥∥∥
0,Di2

,

|||q|||k,∂Γ− =

µ∑
i=1

∑
|α|+|α′|+|β|≤k

∥∥∥∥(σi ◦ ψi)Dα

(
1

φ ◦ ψi

)
Dα′

(
1

φ ◦ ψi

)
Dβ(q ◦ ψi)

∥∥∥∥
0,Di2

if the expressions are �nite. The last two norms require q to vanish su�ciently fast at the
boundary ∂∂Γ− to be �nite.

This allows us to express the main result in Alber's paper [3], which can be compared
to our main result Theorem 3.1.
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Theorem 2.1 (Theorem 1.1 in [3]). Let Γ be a bounded simply connected domain of class
C∞. Assume that φ ∈ H2(∂Γ) satis�es∫

∂Γ

φ(x) dSx = 0

and is such that ∂Γ−(φ) is a manifold with Lipschitz boundary.
Let (v0, p0) ∈ H3(Γ) be a solution of (2.1)-(2.3) satisfying curl v0 ∈ H3(Γ) and

v0 = inf
x∈Γ
|v0(x)| > 0.

Moreover, assume that v0 does not have closed integral curves and that the least upper
bound L0 of the length of all integral curves of v0 is �nite. Finally assume that there exist
constants ĉ > 0, t̂ > 0 such that

dist(∂Γ−(φ), x+ tv0(x)) ≥ ĉt

for all x ∈ ∂∂Γ−(φ) and for all 0 ≤ t ≤ t̂, and

dist(∂Γ+(φ), x− tv0(x)) ≥ ĉt

for all x ∈ ∂∂Γ+(φ) and for all 0 ≤ t ≤ t̂.
Then there exist constants

γ̄ = γ̄(v0,Γ) > 0,

K̂i = K̂i(L0, v0, |v0|3,Γ, φ, γ̄,Γ) > 0, i = 1, 2, 3

with the following properties:
Let g ∈ H3(∂Γ−), h ∈ H2(∂Γ−) and v0 satisfy

I(g, h, curl v0) ≤ K̂1 (2.4)

with

I(g, h, curl v0) =

∥∥∥∥hφ
∥∥∥∥

2,∂Γ−

+

∣∣∣∣∣∣∣∣∣∣∣∣1φ∇Tg

∣∣∣∣∣∣∣∣∣∣∣∣
2,∂Γ−

+ |D2curl v0|0,∂Γ−

+
1∑

m=0

|||Dmcurl v0|||2−m,∂Γ−

+

∣∣∣∣∣∣∣∣∣∣∣∣1φ(n · curl v0)

∣∣∣∣∣∣∣∣∣∣∣∣
2,∂Γ−

+ |curl v0‖3,Ω.

Here Dmcurl v0 denotes the vector

Dmcurl v0 = (Dα(curl v0)j)j = 1, 2, 3

|α| ≤ m

.

(curl v0)j are the components of curl v0, and α = (α1, α2, α3) is a multi-index. Then there
exists a solution (v, p) ∈ H3(Γ) of (2.1)-(2.3) with

n(x) · curl v(x) = h(x) + n(x) · curl v0(x) (2.5)
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1

2
|v(x)|2 + p(x) = g(x) +

1

2
|v0(x)|2 + p0(x) (2.6)

for all x ∈ ∂Γ−.
v satis�es

‖v − v0‖3,Γ ≤ γ̄, (2.7)

and (v, p) is the only solution of (2.1)-(2.3), (2.5), (2.6) from H3(Γ) satisfying this esti-
mate.

If (g(1), h(1)) and (g(2), h(2)) are two sets of boundary data on ∂Γ−(φ) both satisfy-
ing (2.4), and if (v(1), p(1)), (v(2), p(2)) are solutions of (2.1)-(2.3), (2.5), (2.6) to the bound-
ary data (g(1), h(1)) and (g(2), h(2)), respectively, both satisfying (2.7), then

‖v(1) − v(2)‖1,Γ ≤ K̂2(|h(1) − h(2)|0,∂Γ− + |∇T (g(1) − g(2))|0,∂Γ−),

‖p(1) − p(2)‖1,Γ ≤ K̂3(|h(1) − h(2)|0,∂Γ− + |∇T (g(1) − g(2))|0,∂Γ− + ‖g(1) − g(2)‖0,∂Γ−).

To prove this, an operator Λ is constructed on a subspace V of H3(Γ), which has a
�xed point u such that v = v0 + u is the velocity �eld of a solution. The subspace V is
de�ned by functions w ∈ H3(Γ) such that

divw = 0 in Γ,

n · w = 0 on ∂Γ.

For γ > 0 we let Vγ be the closed ball in V of radius γ, that is, Vγ consists of functions
w ∈ V such that ‖w‖3,Γ ≤ γ. Now letW ∈ H3(Γ) with divW = 0 and let z be the solution
of

[(v0 + u) · ∇] z = (z · ∇)(v0 + u)− (u · ∇)W + (W · ∇)u in Γ,

z = η on ∂Γ−,
(2.8)

where η is given by
n · η = h

and

ηT =
h

φ
(v0 + u)T +

1

φ
(n ·W )uT −

1

φ
n×∇Tg

with φ, g and h from (2.3), (2.5) and (2.6). The operator Λ is de�ned as

Λ(u) = w

where
curlw = z

To understand why the operator is de�ned this way compare equations (1.6) and (2.8)
with W replaced by curl v0.

The solution z depends on g, h, W , v0 and W , i.e. z = z[g, h,W, v0, u]. The vector
�eld W is to be replaced by curl v0 and the notation z[g, h, v0, u] = z[g, h, curl v0, v0, u] is
used. As a consequence Λ also depends on g, h, W and v0 so we have Λ = Λ[g, h,W, v0].
In a similar way as for z we also use the notation Λ[g, h, v0] = Λ[g, h, curl v0, v0].

To show that this is a well-de�ned operator with a �xed point Alber [3] shows a sequence
of lemmas and theorems, which we state here without proof.
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Lemma 2.2 (Lemma 2.1 in [3]). Let v0 ∈ H3(Γ) satisfy the hypothesis of Theorem 2.1.
Then there exist constants Ĉ and γ0 > 0 with the following three properties

(i) The vector �eld v = v0 + u with u ∈ Vγ0 satis�es

v = inf
x∈Γ
|v(x)| ≥ v0 − Ĉ‖u‖3,Γ ≥ v0 − Ĉγ0 > 0.

(ii) No vector �eld v ∈ v0 +Vγ0 has closed integral curves. For 0 < γ ≤ γ0 let Lγ denote
the least upper bound of the length of all integral curves of all the vector �elds v ∈ v0 + Vγ.
Then Lγ <∞ and

lim
γ→0

Lγ = L0

(iii) If an integral curve of v ∈ v0 + Vγ0 is tangential to the boundary ∂Γ at one point
then it is completely contained in the boundary (see Remark 3.4, but substitute Ω with Γ).

This lemma implies that every integral curve of a function v ∈ v0 +Vγ0 that passes over
a point x ∈ Γ meets the boundary once in ∂Γ−, the starting point of the integral curve,
once in ∂Γ+, the endpoint of the integral curve, and in no other point of the boundary. It
follows that Γ is completely covered by integral curves that start in ∂Γ− and end in ∂Γ+.
Together with the fact that (2.8) is an inhomogeneous linear system of ordinary di�erential
equations for z along the integral curves of v0 + u with initial values at ∂Γ− this can be
used to prove the following lemma.

Lemma 2.3 (Lemma 2.2 [3]). For every u ∈ Vγ with g ≤ γ0 and every W ∈ H3(Γ) with
divW = 0 the unique solution z of (2.8) exists in all of Γ and satis�es div z = 0.

These two lemmas above from Alber are comparable to our Lemma 3.3, Lemma 3.5,
and Theorem 5.7. To show that Λ is well-de�ned one more result is needed.

Theorem 2.4 (Theorem 2.4 in [3]). Let z ∈ H2(Γ) satisfy div z = 0 and let Γ be a bounded,
simply connected domain of class C∞. Then there exists a unique function w ∈ H3(Γ) with

curlw = z in Γ,

divw = 0 in Γ,

n · w = 0 on ∂Γ.

Moreover, there exists a constant M̃ , only depending on Γ, such that

‖w‖3,Γ ≤ M̃‖z‖2,Ω

We dedicate Section 4 to �nd a similar result which holds for our cylindrical domain
and it can be found in Theorem 4.19.

It follows from the lemmas and theorem above that Λ is well-de�ned if the solution
to (2.8) is a function in H2(Γ). This is shown through a series of estimates, which take up
the major part of Alber's paper [3]. To show that Λ is a contraction the following estimates
are proven.
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Theorem 2.5 (Theorem 2.3 in [3]). There exists a constant M̃ = M̃(Γ) > 0, and to any
γ ≤ γ0 constants K̃i = K̃i(Lγ, v0, ‖v0‖3,Γ, φ, γ,Γ) > 0, i = 1, 2, 3, which remain bounded
for Lγ → 0, such that for all u,w ∈ Vγ

‖z[g, h,W, v0, u]‖0,Γ ≤ L1/2
γ K̃1

(
|h|0,∂Γ− + |n ·W |0,∂Γ− + |∇Tg|0,∂Γ− + ‖W‖3,Γ

)
,

‖z[g, h, v0, u]‖2,Γ ≤ L1/2
γ K̃2I(g, h, curl v0),

‖z[g, h, v0, u]− z[g, h, v0, w]‖0,Γ ≤ L1/2
γ K̃3I(g, h, curl v0)‖u− w‖1,Γ,

and

‖B[g, h,W, v0](u)‖1,Γ ≤ M̃L1/2
γ K̃1

(
|h|0,∂Γ− + |n ·W |0,∂Γ− + |∇Tg|0,∂Γ− + ‖W‖3,Γ

)
,

‖B[g, h, v0](u)‖3,Γ ≤ M̃L1/2
γ K̃2I(g, h, curl v0),

‖B[g, h, v0](u)−B[g, h, v0](w)‖1,Γ ≤ M̃L1/2
γ K̃3I(g, h, curl v0)‖u− w‖1,Γ,

with

I(g, h, curl v0) =

∥∥∥∥hφ
∥∥∥∥

2,∂Γ−

+

∣∣∣∣∣∣∣∣∣∣∣∣1φ∇Tg

∣∣∣∣∣∣∣∣∣∣∣∣
2,∂Γ−

+ |D2curl v0|0,∂Γ−

+
1∑

m=0

|||Dmcurl v0|||2−m,∂Γ−

+

∣∣∣∣∣∣∣∣∣∣∣∣1φ(n · curl v0)

∣∣∣∣∣∣∣∣∣∣∣∣
2,∂Γ−

+ |curl v0‖3,Ω.

Here Dmcurl v0 denotes the vector

Dmcurl v0 = (Dα(curl v0)j)j = 1, 2, 3

|α| ≤ m

.

(curl v0)j are the components of curl v0, and α = (α1, α2, α3) is a multi-index.

Theorems 2.4 and 2.5 is then used to prove corollary below.

Corollary 2.6 (Corollary 2.5 in [3]). For every γ with 0 < γ ≤ γ0(v0) the operator
Λ[g, h, v0] maps Vγ into itself if

I(g, h, curl v0) ≤ γ

M̃L
1/2
γ K̃2

. (2.9)

The operator Λ[g, h, v0] has a unique �xed point in Vγ if (2.9) is satis�ed and if

I(g, h, curl v0) ≤ 1

M̃L
1/2
γ K̃3

. (2.10)

If g(1), h(1) and g(2), h(2) are two sets of boundary data on ∂Γ−(φ), both satisfying (2.10),
and if u(1), u(2) ∈ Vγ are �xed points of B[g(1), h(1), v0] and B[g(2), h(2), v0], respectively,
then

‖u(1) − u(2)‖1,Γ ≤
M̃L

1/2
γ K̃1

(
|h(1) − h(2)|0,∂Γ− + |∇T (g(1) − g(2))|0,∂Γ−

)
1− M̃L

1/2
γ K̃3I(g(1), h(1), curl v0)

.
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The �nal important piece in the proof of Theorem 2.1 is the following lemma.

Lemma 2.7 (Lemma 2.6 in [3]). (i) Let u ∈ Vγ with 0 < γ ≤ γ0. Then u is a �xed
point of B[g, h, v0] : Vγ → V if and only if v = v0 + u is the velocity �eld of a solution
(v, p) ∈ H3(Γ) of (2.1)-(2.3), (2.5), (2.6).

(ii) If (v, p),(ṽ, p̃) ∈ H3(Γ) are solutions of (2.1)-(2.3), (2.5), (2.6) with v = ṽ, then
also p = p̃.

Also to these last three results we have comparable results of ours. Theorem 2.5 can
be compared with Proposition 6.1 and Corollary 6.2, Corollary 2.6 with Proposition 6.3
and Lemma 2.7 with Lemma 6.4.
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3 Main Result

What we ultimately want to prove is the following theorem.

Theorem 3.1. Let Ω = U × (0, L) ⊂ R2 × R where U is open, bounded and simply
connected with a C∞ boundary. Assume that (v0, p0) ∈ H3(Ω) is a solution of (1.1)-(1.3)
with curl v0(x) = 0, where φ satis�es∫

∂Ω

φ(x) dSx = 0,

and there exists a constant b > 0 such that φ(x) ≥ b for all x ∈ ΩL, φ(x) ≤ −b for all
x ∈ Ω0, and φ(x) = 0 for all x ∈ ∂U × (0, L).

Then there exist constants
γ̂ = γ̂(v0,Ω) > 0,

Ki = Ki(L0, b, ‖v0‖3,Ω, φ, γ̂,Ω) > 0, i ∈ {1, 2, 3}

with the following properties:
Let g ∈ H3

0 (Ω0), h ∈ H2
0 (Ω0) satisfy

‖h‖2,U + ‖∇Tg‖2,U ≤ K1. (3.1)

Then there exists a solution (v, p) ∈ H3(Ω) of (1.1)-(1.3) with φ as de�ned above, which
also satis�es

n · curl v = h on Ω0, (3.2)

1

2
|v|2 + p = g +

1

2
|v0|2 + p0 on Ω0. (3.3)

v also satis�es
‖v − v0‖3,Ω ≤ γ̂, (3.4)

and (v, p) is the only solution of (1.1)-(1.3), (3.2) and (3.3) in H3(Ω) satisfying this
estimate.

Additionally, if (g(1), h(1)) and (g(2), h(2)) are two sets of boundary data on Ω0 both
satisfying (3.1) and if (v(1), p(1)), (v(2), p(2)) are solutions of (1.1)-(1.3), (3.2) and (3.3)
with boundary data (g(1), h(1)) and (g(2), h(2)), respectively, both satisfying (3.4), then

‖v(1) − v(2)‖1,Ω ≤ K2(‖h(1) − h(2)‖0,Ω0 + ‖∇T (g(1) − g(2))‖0,Ω0) (3.5)

and

‖p(1) − p(2)‖1,Ω ≤ K3(‖h(1) − h(2)‖0,Ω0 + ‖∇T (g(1) − g(2))‖0,Ω0 + ‖g(1) − g(2)‖0,Ω0). (3.6)

Remark 3.2. That a solution (v0, p0) exists and satis�es v03 ≥ b in Ω is shown in Ap-
pendix A. It follows that v0 has no closed integral curves and L0, the least upper bound
of the length of all integral curves, is �nite.
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As seen in the previous section our proof of this theorem have roughly the same outline
as the proof of Theorem 2.1 summarized there. Thus we need to construct an operator B
analogous to the operator Λ.

We want to construct an operator B on a subspace V of H3(Ω), which has a �xed point
u such that v = v0 + u is the velocity �eld of a solution to (1.1)-(1.3), (3.2) and (3.3).

The subspace V is de�ned as the space of functions w ∈ H3(Ω) which satisfy

divw = 0 in Ω,

n · w = 0 on ∂Ω.

V is closed in H3(Ω) and hence a Hilbert space, with the scalar product of H3(Ω). For
γ > 0 let Vγ be the closed ball in V with radius γ, i.e. w ∈ V such that ‖w‖3,Ω ≤ γ. The
operator B : Vγ → V is de�ned as

B(u) = w, (3.7)

where
curlw = f (3.8)

and f is the solution to

[(v0 + u) · ∇]f = f · ∇(v0 + u) in Ω,

f = η on Ω0,
(3.9)

with η de�ned by
n · η = h on Ω0,

ηT =
h

v · n
vT −

1

v · n
n×∇Tg on Ω0.

(3.10)

The de�nition of B is very close to that of Λ. However, the terms withW in equation (2.8)
have no counterpart in equation (3.10). This is due to the fact that we assume that
curl v0 ≡ 0.

We note that, if well-de�ned, the operatorB depends on g, h, and v0, i.e. B = B[g, h, v0]
and that the mapping (g, h)→ B[g, h, v0] is linear.

For B to be well-de�ned we need to show that for every u ∈ Vγ we get a unique w ∈ V .
This requires us to put some additional conditions on g and h. We do this in two parts.
First we assume f is any function in H2(Ω) and �nd which additional conditions we need
to impose on f to show that there exists a unique ω ∈ V satisfying (3.8). This is done
in Section 4. After that we investigate which conditions we have to put on η, and hence
g and h, to get a unique solution to (3.9) which satis�es the required conditions found
in Section 4. This is done in Section 5. To show these results we need the following two
lemmas.

Lemma 3.3. Let v0 ∈ H3(Ω) satisfy the hypothesis of Theorem 3.1. Then for any �xed
0 < γ0 <

b
c(1)

the following three properties are satis�ed:
(i) For any vector �eld v = v0 + u with u ∈ Vγ0

v3 = v03 − u3 ≥ b− c(1)γ0 > 0.
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(ii) No vector �eld v ∈ v0 +Vγ0 has closed integral curves. For 0 < γ ≤ γ0 let Lγ denote
the least upper bound of the length of all integral curves of all the vector �elds v ∈ v0 + Vγ.
Then Lγ <∞.

(iii) If an integral curve contains some point in ∂U × (0, L), then it is completely
contained in the boundary.

Remark 3.4. The function v ∈ H3(Ω) can be extended to H3
loc(R3) ⊂ C1(R3). Restricting

the integral curves of this extension to Ω̄ gives integral curves on Ω̄ independent of the
extension. Part (iii) means that the condition holds for these integral curves on Ω̄.

Proof. (i) If u ∈ Vγ0 then

u3 ≤ ‖u‖Cb(Ω) ≤ c(1)‖u‖3,Ω ≤ c(1)γ0

so
v3 = v03 − u3 ≥ b− c(1)γ0 > 0.

(ii) From the property in (i) it follows that for any integral curve ω(t) to any vector
�eld v ∈ v0 + Vγ0 satis�es

∂ω3

∂t
= v3 ≥ b− c(1)γ0.

For t2 ≥ t1 this means

ω3(t2)− ω3(t1) ≥ (b− c(1)γ0)(t2 − t1).

It follows that ω3(t2) > ω3(t1) if t2 > t1 and hence no integral curves are closed. Let I be
the interval on which ω is de�ned. Since ω3(t) ∈ [0, L] for all t ∈ I we also get that

L ≥ ω3(t2)− ω3(t1),

which means that
L

(b− c(1)γ0)
≥ (t2 − t1)

for any t2, t1 ∈ I, t2 ≥ t1. It follows that |I| ≤ L
(b−c(1)γ0)

so the length of the integral curve

can be estimated by ∫
I

|v(ω(t))| dt

≤
∫
I

(‖v0‖Cb(Ω) + ‖u‖Cb(Ω)) dt

≤ |I|c(1)(‖v0‖3,Ω + ‖u‖3,Ω)

≤ L

(b− c(1)γ0)
c(1)(‖v0‖3,Ω + γ0)

Since this is true for any integral curve to any vector �eld in v0 + Vγ0 , we �nd that

Lγ0 ≤
L

(b− c(1)γ0)
c(1)(‖v0‖3,Ω + γ0),
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and since v0 + Vγ ⊂ v0 + Vγ0 for all 0 < γ ≤ γ0 we get that Lγ ≤ Lγ0 <∞.
(iii) Let x0 ∈ ∂U × (0, L). Then there exists a C∞ function Ψ : Wx0 → Wy0 ⊂ R3 with

C∞ inverse and Ψ3(x) = 0 if and only if x ∈ Wx0 ∩ ∂U × (0, L), where Wx0 is an open
neighborhood of x0 and Wy0 is an open neighborhood of y0 = Ψ(x0). Let

DΨ =

∂Ψ1

∂x1

∂Ψ1

∂x2

∂Ψ1

∂x3
∂Ψ2

∂x1

∂Ψ2

∂x2

∂Ψ2

∂x3
∂Ψ3

∂x1

∂Ψ3

∂x2

∂Ψ3

∂x3

 ,

then for any x ∈ Wx0 ∩ ∂U × (0, L) we have DΨ(x) · v(x) = v̄(x) = (v̄1(x), v̄1(x), 0) since(
∂Ψ3

∂x1
, ∂Ψ3

∂x2
, ∂Ψ3

∂x3

)
is normal to ∂Ω at x and v is tangential to ∂Ω at x. Now we can de�ne

v̄(y) = v̄(Ψ−1(y)) as a vector �eld with v̄3 = 0 on {y ∈ Wy0 : y3 = 0}. This means that
solving

∂ω̄(t)

∂t
= v̄(ω̄(t))

ω̄(0) = y0

gives an integral curve to v̄ in {y ∈ Wy0 : y3 = 0}. This in turn gives a curve ω(t) =
Ψ−1(ω̄(t)) contained in Wx0 ∩ ∂U × (0, L) with the properties

∂ω(t)

∂t
= DΨ−1(ω̄(t))DΨ(ω(t))v(ω(t)) = v(ω(t))

and
ω(0) = Ψ−1(ω̄(0)) = Ψ−1(y0) = x0,

an integral curve to v. Due to the results from (ii) this curve will leave Wx0 ∩ ∂U × (0, L)
at some point ∂U×(0, L] for some tx0 > 0. If the point is on ∂U×(0, L) we can just repeat
the above argument to extend ω in ∂Ω. If it is a point on ∂ΩL, then ω is not de�ned for
any t > tx0 since if n is the normal to ΩL, then

∂ω
∂t
· n > 0, which would imply ω3 > L for

such t. Similarly the curve can be extended for t < 0 in ∂Ω until it reaches ∂Ω0, where
it no longer can be extended with ω3 > 0. It now follows from the theory from ordinary
di�erential equations that this is the only integral curve passing through x0, so any integral
curve passing through this point is contained in ∂Ω.

In the following we will assume that γ0 is a �xed constant satisfying assumption in the
previous lemma.

Lemma 3.5. Assume f ∈ H2(Ω) is a solution to (3.9), then div f = 0 holds as an equality
in H1(Ω).

Proof. We di�erentiate (3.9) to obtain

(v · ∇) div f +
3∑
i=1

(
∂v

∂xi
· ∇
)
fi = (f · ∇) div v +

3∑
j=1

(
∂f

∂xj
· ∇
)
vj

and note that div v = 0 and

3∑
i=1

(
∂v

∂xi
· ∇
)
fi =

3∑
i=1

(
3∑
j=1

∂vj
∂xi

∂fi
∂xj

)
=

3∑
j=1

(
3∑
i=1

∂fi
∂xj

∂vj
∂xi

)
=

3∑
j=1

(
∂f

∂xj
· ∇
)
vj,
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which means that
(v · ∇) div f = 0. (3.11)

The ACL characterization of Sobolev spaces (see e.g. Section 1.1.3 in [15]), after a change
of coordinates to initial values of and parameter along the integral curves of v, implies that
div f is absolutely continuous along almost every integral curve of v. Hence, if we let ω(t)
be such an integral curve with ω(0) = x0 ∈ Ω0 and ω(s) = x ∈ Ω, we get

div f(x) = div f(x0) +

∫ s

0

d

dt
div f(ω(t)) dt

= div f(x0) +

∫ s

0

∇div f(ω(t)) · d
dt
ω(t) dt

= div f(x0) +

∫ s

0

(v(ω(t)) · ∇)div f(ω(t)) dt.

Combining this with equation (3.11) we �nd that div f(x) is constant along almost every
integral curve of v. If div f = 0 on Ω0 it follows that div f = 0 almost everywhere in Ω.
Since f ∈ H2(Ω) and thus div f ∈ H1(Ω) it would imply that div f = 0 holds in H1(Ω).

From vector calculus we have

curl (v × f) = v div f + (f · ∇)v − f div v − (v · ∇)f.

Using (3.9) and div v = 0 it follows that

curl (v × f) = v div f. (3.12)

From (3.9) and (3.10) we get

(v · n)fT = (n · f)vT − n×∇Tg,

on Ω0, which is equivalent to

n× (v × f) = n×∇Tg

or
(v × f)T = ∇Tg.

Applying Stokes' theorem gives∫
W

curl (v × f) · n dx dy =

∫
W

curl ((v × f)T ) · n dx dy

=

∮
∂W

(v × f)T · ds

=

∮
∂W

∇Tg · ds

= 0

for any W ⊂ Ω0 that is simply connected and has smooth boundary, hence

curl (v × f) · n = 0 (3.13)
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on Ω0. Combining (3.4), (3.12) and (3.13) gives

φ div f = n · v div f = n · curl (v × f) = 0,

on Ω0 and and hence div f = 0 on Ω0.

Lemma 3.5 is true under the assumption that a solution f exists and that its derivatives
is de�ned almost everywhere in Ω. That this is true is proven in Section 5.
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4 Div-Curl Problem

As noted in the previous section, the �rst step we take to show that the operator B is
well-de�ned is to show the existence of a unique solution in H3(Ω) to the problem

curl v = f in Ω,

div v = 0 in Ω,

n · v = 0 on ∂Ω,

(4.1)

where f is a function in H2(Ω) with div f = 0 and n is the unit normal to ∂Ω. Since the
domain Ω is a cylinder n is not de�ned on all of ∂Ω, so the boundary condition needs to be
interpreted with some care. Since we seek a solution in H3(Ω) ⊂ C1(Ω̄) the the meaning
of the condition is clear on Ω0, ΩL and ∂U × (0, L). For the edges we need the boundary
conditions to be compatible so we interpret v · n as

n′ · v′ = 0

v3 = 0

on ∂Ω0 and ∂ΩL, where v
′ = (v1, v2) and n′ is the normal to ∂U .

There exist previous results showing the existence of a unique weak solution in Lipschitz
domains (e.g. see [25]), however the solution does not have the desired regularity. To show
such regularity for the solution we impose additional conditions on f . In this section we
�nd suitable conditions to impose on f and show the result under the assumption of these
conditions through a method based on separation of variables taking the spacial geometry
of Ω into account. After this section was completed we found an earlier regularity result by
Zaj¡czkowski [26] for general domains with edges based on standard techniques for elliptic
problems in polyhedral domains. The discussion in [26] about the compatibility conditions
is however somewhat vague and we believe the approach here is of independent interest.

We begin by introducing a vector potential u satisfying curlu = −v and div u = 0 (see
[4]). This turns equation (4.2) into

∆u = f in Ω,

div u = 0 in Ω,

n× u = 0 on ∂Ω.

(4.2)

The boundary condition, n× u = 0, is interpreted similarly to the one above for v giving
u = 0 on ∂Ω0 and ∂ΩL. Where the normal is de�ned it implies that the solution u is
parallel to the normal on the boundary. On Ω0 and ΩL this means that u1 = u2 = 0. On
∂Ωx3 , for all x3 ∈ (0, L), this means that u3 = 0 and that u1n2 = n1u2. If we combine
these conditions with the fact that u is divergence free we can �nd additional boundary
conditions. On Ω0 and ΩL this means that ∂u3

∂x3
= 0. On ∂Ωx3 , for all x3 ∈ (0, L), this

means that ∂u1
∂x1

+ ∂u2
∂x2

= 0. To solve problem (4.2) we separate it into two parts, with the
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�rst part only involving u3:

∆u3 = f3 in Ω,

∂u3

∂x3

= 0 on Ω0 and ΩL,

u3 = 0 on ∂Ωx3 ∀x3 ∈ (0, L),

(4.3)

and the second part only involving u1 and u2:

∆(u1, u2) = (f1, f2) in Ω,

(u1, u2) = 0 on Ω0 and ΩL,

n1u2 − n2u1 = 0 on ∂Ωx3 ∀x3 ∈ (0, L).

∂u1

∂x1

+
∂u2

∂x2

= 0 on ∂Ωx3 ∀x3 ∈ (0, L).

(4.4)

These equations are equivalent to (4.2). Indeed, It is clear through the reasoning after (4.2)
that (4.2) implies (4.3) and (4.4). Following the same reasoning backwards we get that (4.3)
and (4.4) implies (4.2). Using div f = 0 and the fact that the divergence commutes with
the laplacian we get

∆div u = div f = 0 in Ω,

div u = 0 on ∂Ω,

which implies div u = 0 in Ω.
The equations (4.3) and (4.4) can be rewritten in a more general form as

∂2w

∂x2
3

= Aw + g, 0 < x3 < L,

∂w

∂x3

= 0, x3 = 0,

∂w

∂x3

= 0, x3 = L,

(4.5)

and
∂2w

∂x2
3

= Aw + g, 0 < x3 < L,

w = 0, x3 = 0,

w = 0, x3 = L,

(4.6)

respectively, given that in the �rst case we let w = u3 and g = f3 and in the second case
we let w = (u1, u2) and g = (f1, f2). We treat these as boundary value problems for an
abstract ODE in a Hilbert space X, where A is an unbounded, densely de�ned, closed
operator on X. In the �rst case X = L2(U) and A is the Dirichlet realization of −∆ on U
with domain H2(U) ∩H1

0 (U). In the second case X = L2(U ;R2) and

A =

(
−∆ 0

0 −∆

)
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with domain{
(u1, u2) ∈ (H2(U))2 : (n1u2 − n2u1)|∂U = 0,

(
∂u1

∂x1

+
∂u2

∂x2

)∣∣∣∣
∂U

= 0

}
.

In the �rst case we call the operator S and in the second case we call the operator T .

4.1 The operator S

It is well-known that S is a positive, self-adjoint operator with discrete spectrum [17]. It
has a complete ON-basis {en(x, y)}∞n=1 with corresponding eigenvalues {λn}∞n=1 that satisfy
0 < λ1 ≤ λ2 ≤ · · · and λn → ∞ as n → ∞. From elliptic regularity it follows that the
eigenfunctions are smooth up to the boundary. Using this we can de�ne Sα for any α by
using the spectral theorem. If we write u ∈ L2(U) as u =

∑∞
n=1 ûnen then

Sαu =
∞∑
n=1

λαnûnen,

with domain

D(Sα) := {u : u ∈ L2(U),
∞∑
n=1

λ2α
n |ûn|2 <∞}

for 0 < α < 1. For the future we require a more useful characterization of D(Sα). To

express the characterization succinctly we introduce the space H
1/2
00 (U). If ν is a function

de�ned on U let

ext0[ν](x) =

{
ν(x) if x ∈ U,
0 if x /∈ U.

This allows us to de�ne the space

H
1/2
00 (U) = {ν ∈ H1/2(U) : ext0[ν] ∈ H1/2(R2)}.

For the future note that for any ν ∈ H1
0 (U) we have that

‖ext0[ν]‖1/2,R2 . ‖ext0[ν]‖1,R2 . ‖ν‖1,U ,

which means that H1
0 (U) ⊂ H

1/2
00 (U). In fact, H

1/2
00 (U) arises as an interpolation space

between L2(U) and H1
0 (U). Domains like D(Sα) have been characterized by Grisvard [10]

in the scalar case and Seeley [19, 18, 20] more generally. Using their results we get

D(Sα) =


{w ∈ H2α(U) : w|∂U=0}, 1/4 < α < 1,

H
1/2
00 (U), α = 1/4,

H2α(U), 0 < α < 1/4,

with equivalence between the graph norm

‖w‖D(Sα) = ‖w‖0,U + ‖Sαw‖0,U
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and
‖w‖2α,U ,

that is, there exists constants c(4) and c(5) such that

c(4)‖w‖D(Sα) ≤ ‖w‖2α,U ≤ c(5)‖w‖D(Sα)

for all w ∈ D(Sα) and α 6= 1/4. For α = 1/4 we instead have equivalence between the
graph norm and

‖w‖
H

1/2
00 (Ω)

= ‖ext0[w]‖1/2,R3 ,

that is
c(4)‖w‖D(S1/4) ≤ ‖w‖H1/2

00 (Ω)
≤ c(5)‖w‖D(S1/4),

for all w ∈ D(S1/4).

4.2 The operator T

Recall that T was de�ned as

T =

(
−∆ 0

0 −∆

)
with domain{

(u1, u2) ∈ H2(U ;R2) : (n1u2 − n2u1)|∂U = 0,

(
∂u1

∂x1

+
∂u2

∂x2

)∣∣∣∣
∂U

= 0

}
.

The operator T has principal symbol

σξ(T ) =

(
|ξ|2 0
0 |ξ|2

)
.

This is a positive de�nite matrix for ξ 6= 0 and hence T is a strongly elliptic operator [12].
For later use we must show that T and its boundary conditions is parameter-elliptic on

every ray except the positive real axis. We de�ne this property below. However we start
with de�ning the somewhat weaker property of complementing condition.

De�nition 4.1. ForD = ( ∂
∂x1
, · · · , ∂

∂xn
) let L(x,D) be a strongly elliptic partial di�erential

operator of order 2m acting on q-tuples of functions on an open set W ⊂ Rn with smooth
boundary ∂W and let Bj(x,D) be mq boundary operators of order less than 2m. For a
point x0 ∈ ∂W , with outer normal n, de�ne the halfspace H = {x : (x− x0) · n < 0} with
boundary ∂H = {x : (x− x0) · n = 0}. Now consider the problem

LP (x0, D)u = 0, in H,

BP
j (x0, D)u = 0, on ∂H, for j = 1, · · · ,mq

(4.7)

where LP (x,D) and BP
j (x,D) denotes the principal part of L(x,D) and Bj(x,D) respec-

tively. We say that the complementing condition holds at x0 for {L,B1, · · · , Bmq} if there
are no nontrivial solutions to (4.7) of the form

u(x) = exp(iξ · (x− x0))v(η), (4.8)

where ξ is a real nonzero vector perpendicular to n, η = n · (x − x0) and v(η) → 0
exponentially as η → −∞.
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In light of this we can de�ne parameter-ellipticity along a ray.

De�nition 4.2. For a given −π < θ ≤ π de�ne a ray in the complex plane as Rθ = {z ∈
C : arg z = θ}. Under the same assumptions as in De�nition 4.1 consider the problem

LP (x0, D)u = λu, in H,

BP
j (x0, D)u = 0, on ∂H, for j = 1, · · · ,mq.

(4.9)

We say that {L,B1, · · · , Bmq} is parameter-elliptic on the ray Rθ if:
(i) There are no nontrivial solutions to (4.9) of the form

u(x) = exp(iξ · (x− x0))v(η), (4.10)

for all x0 ∈ ∂W and (λ, ξ) 6= 0, where λ ∈ Rθ, ξ is a real vector with ξ ·n = 0, η = n·(x−x0)
and v(η)→ 0 exponentially as η → −∞.

(ii) The matrix
LP (x0, iξ

′)− λI

is invertible for all x0 ∈ W and (λ, ξ′) 6= 0 with λ ∈ Rθ, ξ
′ ∈ Rn.

Remark 4.3. Note that if {L,B1, · · · , Bmq} is parameter-elliptic on some ray in the complex
plane then the complementing condition holds for all x0.

Lemma 4.4. T and its boundary conditions is parameter-elliptic on Rθ for every θ 6= 0.

Proof. For any point x0 ∈ ∂U we can de�ne x′ by

x′1 = n1(x1 − x0,1) + n2(x2 − x0,2)

x′2 = n2(x1 − x0,1)− n1(x2 − x0,2).

In these coordinates equation (4.10) becomes

u(x′) = exp(±i|ξ|x′2)v(x′1). (4.11)

By noting that
∂

∂x1

=
∂x′1
∂x1

∂

∂x′1
+
∂x′2
∂x1

∂

∂x′2
= n1

∂

∂x′1
+ n2

∂

∂x′2
∂

∂x2

=
∂x′1
∂x2

∂

∂x′1
+
∂x′2
∂x2

∂

∂x′2
= n2

∂

∂x′1
− n1

∂

∂x′2
,

we can calculate

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

= n2
1

∂2

∂x′1
2 + n2

2

∂2

∂x′2
2 + 2n1n2

∂2

∂x1x2

+ n2
2

∂2

∂x′1
2 + n2

1

∂2

∂x′2
2 − 2n1n2

∂2

∂x1x2

=
∂2

∂x′1
2 +

∂2

∂x′2
2 .
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This allows us to express the problem corresponding to (4.9) for T with its boundary
conditions as (

∂2

∂x′1
2 +

∂2

∂x′2
2

)
u = −λu, x′1 < 0,(

n1
∂

∂x′1
+ n2

∂

∂x′2

)
u1 +

(
n2

∂

∂x′1
− n1

∂

∂x′2

)
u2 = 0, x′1 = 0,

n2u1 − n1u2 = 0, x′1 = 0,

where we let λ be any complex number in any Rθ with θ 6= 0 such that (λ, ξ) 6= 0. Assuming
u a solution of the form given in equation (4.10) turns the equations above into

v′′(x′1)− (|ξ|2 − λ)v(x′1) = 0, x′1 < 0,

n1v
′
1(0)± i|ξ|n2v1(0) + n2v

′
2(0)∓ i|ξ|n1v2(0) = 0,

n2v1(0)− n1v2(0) = 0.

Under these conditions (|ξ|2 − λ) /∈ (−∞, 0] since it would imply λ ∈ (0,∞) ⊂ R0 or
(λ, ξ) = 0. Also note that this gives −π < arg(|ξ|2 − λ) < π, which means that −π

2
<

arg(|ξ|2 − λ)1/2 < π
2
and hence Re ((|ξ|2 − λ)1/2) > 0. The ODE above has the general

solution

(v1(x′1), v2(x′1)) = (a+e
(|ξ|2−λ)1/2x′1 + a−e

−(|ξ|2−λ)1/2x′1 , b+e
(|ξ|2−λ)1/2x′1 + b−e

−(|ξ|2−λ)1/2x′1).

Using Re ((|ξ|2−λ)1/2) > 0 together with the condition that v(x′1)→ 0 as x′1 → −∞ leaves
us with with

(v1(x′1), v2(x′1)) = (a+e
(|ξ|2−λ)1/2x′1 , b+e

(|ξ|2−λ)1/2x′1).

Substituting this into the boundary conditions gives(
(|ξ|2 − λ)1/2n1 ± i|ξ|n2) (|ξ|2 − λ)1/2n2 ∓ i|ξ|n1

n2 n1

)(
a+

b+

)
=

(
0
0

)
,

since the matrix has determinant −(|ξ|2 − λ)1/2 6= 0 the solution a+ = b+ = 0 to this
system of equations is unique and it follows that u ≡ 0. This means that part (i) of the
de�nition of parameter-ellipticity is satis�ed for T and its boundary conditions for all Rθ

with θ 6= 0.
Now part (ii) is satis�ed if the matrix(

|ξ′|2 − λ 0
0 |ξ′|2 − λ

)
is invertible for all (λ, ξ′) 6= 0 with λ ∈ Rθ, ξ

′ ∈ Rn. The matrix is singular only if
|ξ′|2 − λ = 0, which either implies λ ∈ (0,∞) ⊂ R0 or (λ, ξ′) = 0. It follows that part (ii)
of the de�nition of parameter-ellipticity is satis�ed for T and its boundary conditions for
all Rθ with θ 6= 0.
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According to Agmon, Douglis, Nirenberg [2], we �nd that any solution of the homoge-
neous problem in H2(U ;R2) is actually smooth. Moreover, we have the estimates

‖(u1, u2)‖s+2,U ≤ C(‖(f1, f2)‖s,U + ‖(u1, u2)‖0,U)

for any s ≥ 0. This implies in particular that T is a closed operator. Here we also note
that if T is bijective, as an operator on L2(U ;R2) with domain D(T ), the inequality above
holds without the term ‖(u1, u2)‖0,U . Additionally we get that T −λI : D(T )→ L2(U ;R2)
is invertible for all negative λ with large enough absolute value.

Lemma 4.5. T is a symmetric operator.

Proof. First assume that

u, v ∈ D∞(T ) =

{
(u1, u2) ∈ C∞(Ū ;R2) : n1u2 − n2u1|∂U = 0,

∂u1

∂x1

+
∂u2

∂x2

∣∣∣∣
∂U

= 0

}
.

Then ∫
U

(∆u1v1 + ∆u2v2 − u1∆v1 − u2∆v2) dx1 dx2

=

∫
∂U

(
∂u1

∂x1

v1n1 +
∂u1

∂x2

v1n2 +
∂u2

∂x1

v2n1

+
∂u2

∂x2

v2n2 −
∂v1

∂x1

u1n1 −
∂v1

∂x2

u1n2 −
∂v2

∂x1

u2n1 −
∂v2

∂x2

u2n2

)
ds

=

∫
∂U

(
−∂u2

∂x2

v1n1 +
∂u1

∂x2

v2n1 +
∂u2

∂x1

v1n2

− ∂u1

∂x1

v2n2 +
∂v2

∂x2

u1n1 −
∂v1

∂x2

u2n1 −
∂v2

∂x1

u1n2 +
∂v1

∂x1

u2n2

)
ds

=

∫
∂U

((n2,−n1) · ∇)(u2v1 − u1v2) ds

= 0,

where the last integral vanishes since (n2,−n1) is a tangent to ∂U and ∂U is a closed curve.
Next, consider u, v ∈ D(T ). Due to elliptic regularity D∞(T ) is dense in D(T ) so we can
�nd sequences {un}, {vn} in D∞(T ) such that un → u, vn → v in H2(U). Repeating the
above computations with un and vn instead of u and v, we �nd that the relation above
holds for all un, vn and hence also for u, v ∈ D(T ).

Proposition 4.6. The operator T is self-adjoint.

Proof. This follows from the fact that the operator is closed, densely de�ned, symmetric
and T − λI is invertible for all λ in the complex plane not on the positive real axis with
large enough absolute value. This means that no value in the complex plane outside of the
real axis is in the spectrum of T and it is well-known that this implies for a closed, densely
de�ned, symmetric operator that it is self-adjoint (see e.g. Theorem 8.68 in [17]).
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Proposition 4.7. The operator T has compact resolvent.

Proof. This follows immediately from the fact thatH2(U) is compactly embedded in L2(U).

From this it follows that T has a discrete spectrum, that is, the spectrum consists of
isolated eigenvalues and they can only accumulate at ±∞.

Proposition 4.8. The spectrum of T is contained in (0,∞)

Proof. We assume that we have a eigenvalue λ ≤ 0 with corresponding eigenvector (u1, u2) ∈
C∞(Ū ;R2). Set w = ∂u1

∂x1
+ ∂u2

∂x2
. Then

∆w = λw.

Since w = 0 on ∂U we get w = 0 in U (see Section 4.1). From this it follows that there

exists a function ψ such that
(
∂ψ
∂x2
,− ∂ψ

∂x1

)
= (u1, u2). Now we can calculate

∇(∆ψ − λψ) = (−∆u2 + λu2,∆u1 − λu1) = (0, 0).

Hence ∆ψ − λψ = C for some constant C. Using the other boundary condition we get
∂ψ
∂n

= n · ∇ψ = n2u1 − n1u2 = 0 on ∂U . For λ < 0 and a given C this problem has the
unique solution ψ = −C/λ [17], yielding (u1, u2) = 0. If λ = 0 on the other hand we get∫

U

C dx1dx2 =

∫
U

∆ψ dx1dx2 =

∫
∂U

∂ψ

∂n
ds = 0,

implying that C = 0. However this means that ∆ψ = 0, which again implies that ψ is a
constant and (u1, u2) = 0

The previous results shows that T has a ON-basis of smooth eigenfunctions {en(x, y)}∞n=1

with corresponding eigenvalues {λn}∞n=1, such that 0 < λ1 ≤ λ2 ≤ · · · and λn → ∞ as
n → ∞. Once again we can use the spectral theorem to de�ne Tα for 0 < α < 1 and the
results of Seeley [19, 18, 20] to characterize the domains for this family of operators.

D(Tα) =



{
u ∈ H2α(U ;R2) : n2u1 − n1u2|∂U = 0,

(
∂u1

∂x1

+
∂u2

∂x2

)
∂U

= 0}
}
, 3/4 < α < 1,{

u ∈ H3/2(U ;R2) : n2u1 − n1u2|∂U = 0,
∂u1

∂x1

+
∂u2

∂x2

∈ H1/2
00 (U)

}
, α = 3/4,

{u ∈ H2α(U ;R2) : n2u1 − n1u2|∂U = 0}, 1/4 < α < 3/4,

{u ∈ H1/2(U ;R2) : n2u1 − n1u2 ∈ H1/2
00 (U)}, α = 1/4,

{u ∈ H2α(U ;R2)}, 0 < α < 1/4.

Also here we have equivalence between the graph norm

‖w‖D(Tα) = ‖w‖0,U + ‖Tαw‖0,U
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and
‖w‖2α,U ,

that is, there exists constants c(6) and c(7) such that

c(6)‖w‖D(Tα) ≤ ‖w‖2α,U ≤ c(7)‖w‖D(Tα)

for all w ∈ D(Tα) and α 6= 1/4, 3/4. For α = 1/4 we instead get

c(6)‖w‖D(T 1/4) ≤ ‖w‖1/2,U + ‖n2w1 − n1w2‖H1/2
00
≤ c(7)‖w‖D(T 1/4)

for all w ∈ D(T 1/4), and for α = 3/4

c(6)‖w‖D(T 3/4) ≤ ‖w‖3/2,U +

∥∥∥∥∂w1

∂x1

+
∂w2

∂x2

∥∥∥∥
H

1/2
00

≤ c(7)‖w‖D(T 3/4)

for all w ∈ D(T 3/4).

4.3 The BVPs

Now we can return to the boundary value problems we introduced in the beginning of this
section. We begin by considering

w′′ = Aw + g, 0 < x3 < L,

w′ = 0, x3 = 0,

w′ = 0, x3 = L,

(4.12)

where A is assumed to be an unbounded, densely de�ned operator on a Hilbert space X. A
is also self-adjoint with discrete, positive spectrum. We denote the eigenvalues by {λn}∞n=1

with 0 < λ1 ≤ λ2 ≤ · · · and the corresponding ON basis of eigenfunctions by {en}∞n=1. we
also assume that g ∈ L2([0, L];X). By the assumptions on A the graph norm of D(Aα) is
equivalent to the norm ‖Aαw‖X , that is there exists a constant c(8) such that

‖Aαw‖X ≤ ‖w‖D(Aα) ≤ c(8)‖Aαw‖X

for all w ∈ D(Aα).

Proposition 4.9. Under the assumptions given above, there exists a unique solution
of (4.12) in L2([0, L];D(A)) ∩H1([0, L];D(A1/2)) ∩H2([0, L];X).

Remark 4.10. A solution is assumed to mean a function satisfying w′′ = Aw + g as an
equality in L2([0, L];X) and the boundary conditions as equalities in X.

Proof. We express w(x3) and g(x3) as generalized Fourier series

w(x3) =
∞∑
n=1

ŵn(x3)en,
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and

g(x3) =
∞∑
n=1

ĝn(x3)en,

yielding the equations
ŵ′′n = λnŵn + ĝn, 0 < x3 < L,

ŵ′n = 0, x3 = 0,

ŵ′n = 0, x3 = L,

for every n. According to the theory of ODEs these equation have unique solutions. From
the ODEs we get the identity∫ L

0

(
|ŵ′′n(x3)|2 − 2λnŵ

′′
n(x3)ŵn(x3) + λ2

n|ŵn(x3)|2
)
dx3 =

∫ L

0

|ĝn(x3)|2 dx3

for 0 < x3 < L. Integration by parts

−
∫ L

0

ŵ′′n(x3)ŵn(x3) dx3 =

∫ L

0

|ŵ′n(x3)|2 dx3,

gives ∫ L

0

|ŵ′′n(x3)|2 + 2λn|ŵ′n(x3)|2 + λ2
n|ŵn(x3)|2 dx3 =

∫ L

0

|ĝn(x3)|2 dx3.

By summing over n it follows that

‖w′′‖L2([0,L];X) ≤ ‖g‖L2([0,L];X),

‖w′‖L2([0,L];D(A1/2)) ≤ c(8)‖g‖L2([0,L];X),

and
‖w‖L2([0,L];D(A)) ≤ c(8)‖g‖L2([0,L];X),

hence w ∈ L2([0, L];D(A)) ∩H1([0, L];D(A1/2)) ∩H2([0, L];X)

Proposition 4.11. Assume that g ∈ H2([0, L];X) with g′|x3=0, g
′|x3=L ∈ D(A1/4), then w

satis�es

‖w′′′′‖L2([0,L];X) ≤ c(9)(‖g′′‖L2([0,L];X) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4)), (4.13)

‖w′′′‖L2([0,L];D(A1/2)) ≤ c(10)(‖g′′‖L2([0,L];X) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4)), (4.14)

and

‖w′′‖L2([0,L];D(A)) ≤ c(11)(‖g′′‖L2([0,L];X) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4)), (4.15)

where c(9) = c(9)(L), c(10) = c(10)(L) and c(11) = c(11)(L).
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Proof. To prove this we use that w′′ satis�es

(w′′)′′ = Aw′′ + g′′, 0 < x3 < L,

(w′′)′ = g′, x3 = 0,

(w′′)′ = g′, x3 = L.

This problem can be solved by splitting it into three di�erent parts by keeping either the
source term in the equation or in either of the boundary values. The �rst part is the same
problem as in Proposition 4.9. The second part and third part are very similar and we
illustrate by solving the second part, which is a problem of the form

v′′ = Av, 0 < x3 < L,

v′ = h, x3 = 0,

v′ = 0, x3 = L,

In Fourier variables this becomes

v̂′′n = λnv̂n, 0 < x3 < L,

v̂′n = ĥn, x3 = 0,

v̂′n = 0, x3 = L,

which has the solution

v̂n(x3) = −cosh(
√
λn(x3 − L))√

λn sinh(
√
λnL)

ĥn.

This allows us to compute∫ L

0

λ2
n|v̂n(x3)|2 dx3 =

λn|ĥn|2

sinh2(
√
λnL)

∫ L

0

cosh2(
√
λn(x3 − L)) dx3

=
λn|ĥn|2

sinh2(
√
λnL)

∫ L

0

1 + cosh(2
√
λn(x3 − L))

2
dx3

=
λn|ĥn|2

sinh2(
√
λnL)

(
L

2
+

sinh(2
√
λnL)

4
√
λn

)
≤ c(12)λ1/2

n |ĥn|2.

Similarly we get ∫ L

0

λn|v̂′n(x3)|2 dx3 ≤ c(13)λ1/2
n |ĥn|2

and ∫ L

0

|v̂′′n(x3)|2 dx3 ≤ c(12)λ1/2
n |ĥn|2,

for some constants c(12) = c(12)(L) and c(13) = c(13)(L). Using the estimates for the other
parts of w′′ and summing over n gives us the desired inequalities.
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We have taken a di�erent approach in the proofs of Propositions 4.9 and 4.11. How-
ever, we can note that Proposition 4.9 could have been proven in a similar way to Proposi-
tion 4.11 by writing the solution to the boundary value problem with the help of a Green's
function.

To prove further regularity we have to make some additional assumptions about X =
X0. We assume that for s ≥ 0 there is a scale of Hilbert spaces Xs such that Xr ⊆ Xs

if s ≤ r, with ‖ · ‖Xs ≤ ‖ · ‖Xr , and that A−1 is a bounded operator from Xs into Xs+2.
Additionally we assume that D(As) ⊆ X2s, with ‖ · ‖X2s ≤ c(14)‖ · ‖D(As). In our particular
application we will have Xs = Hs(U ;Rd) for d = 1, 2.

Proposition 4.12. Assume in addition that g ∈ L2([0, L];X2) ∩H1([0, L];X1), then

w ∈ ∩4
k=0H

k([0, L];X4−k)

and w satis�es
‖w‖∩2k=0H

k([0,L];X2−k) ≤ c(15)‖g‖L2([0,L];X) (4.16)

and

‖w‖∩4k=0H
k([0,L];X4−k) ≤ c(16)(‖g‖∩2i=0H

i([0,L];X2−i)+‖g
′|x3=0‖D(A1/4)+‖g′|x3=L‖D(A1/4)), (4.17)

where c(15) = c(15)(L) and c(16) = c(16)(L).

Remark 4.13. If Y and Z are two normed spaces then we let the norm of Y ∩ Z be

‖ · ‖Y ∩Z = ‖ · ‖Y + ‖ · ‖Z .

Proof. The inequalities shown in Proposition 4.11 together with the result of Proposi-
tion 4.9 immediately gives us (4.16) and

‖w‖∩4k=3H
k([0,L];X4−k) ≤ c(17)

(
‖g‖H2([0,L];X0) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4)

)
, (4.18)

for some constant c(17) = c(17)(L). By using w = A−1(w′′ − g) we get

‖w‖L2([0,L];X4) = ‖A−1(w′′ − g)‖L2([0,L];X4)

≤ ‖A−1‖L(X2,X4)(‖g‖L2([0,L];X2) + ‖w′′‖L2([0,L];X2))

≤ ‖A−1‖L(X2,X4)(‖g‖L2([0,L];X2) + c(14)‖w′′‖L2([0,L];D(A)))

≤ c(18)‖g‖L2([0,L];X2) + ‖g‖H2([0,L];X0) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4),

for some constant c(18) = c(18)(L), where we have used the continuity of A−1 : X2 → X4

and equation (4.15). Similarly using equation (4.14) together with w′ = A−1(w′′′ − g′) we
get

‖w′‖L2([0,L];X3) = ‖A−1(w′′′ − g′)‖L2([0,L];X3)

≤ ‖A−1‖L(X1,X3)(‖g′‖L2([0,L];X1) + ‖w′′′‖L2([0,L];X1))

≤ ‖A−1‖L(X1,X3)(‖g′‖L2([0,L];X1) + c(14)‖w′′′‖L2([0,L];D(A1/2)))

≤ c(19)‖g‖H1([0,L];X1) + ‖g‖H2([0,L];X0) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4),
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for some constant c(19) = c(19)(L), and from (4.15) we get

‖w′′‖L2([0,L];X2) ≤c(11)c(14)(‖g‖H2([0,L];X0) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4)).

Combining these three inequalities gives

‖w‖∩2k=0H
k([0,L];X4−k) ≤ c(20)(‖g‖∩2i=0H

i([0,L];Xi−2) + ‖g′|x3=0‖D(A1/4) + ‖g′|x3=L‖D(A1/4)),

for some constant c(20) = c(20)(L), which together with equation (4.18) gives equation (4.17).
From this it follows that

w ∈ ∩4
k=0H

k([0, L];X4−k)

since all the terms of the right hand side of equation (4.17) are �nite.

Next we consider the other BVP

w′′ = Aw + g, 0 < x3 < L,

w = 0, x3 = 0,

w = 0, x3 = L,

(4.19)

where A satis�es the same assumptions as in the previous BVP. The proof of the following
proposition is almost identical to the proof of Proposition 4.9 and is therefore omitted.

Proposition 4.14. Under the given assumptions with the additional assumption that g ∈
L2([0, L];X), there is a unique solution to (4.19) in H2([0, L];X) ∩ H1([0, L];D(A1/2)) ∩
L2([0, L];D(A)).

Proposition 4.15. Assume that g ∈ H2([0, L];X) with g|x3=0, g|x3=L ∈ D(A3/4), then w
satis�es

‖w′′′′‖L2([0,L];X) ≤ c(21)‖g′′‖L2([0,L];X) + ‖g|x3=0‖D(A3/4) + ‖g|x3=L‖D(A3/4),

‖w′′′‖L2([0,L];D(A1/2)) ≤ c(22)‖g′′‖L2([0,L];X) + ‖g|x3=0‖D(A3/4) + ‖g|x3=L‖D(A3/4),

and
‖w′′‖L2([0,L];D(A)) ≤ c(23)‖g′′‖L2([0,L];X) + ‖g|x3=0‖D(A3/4) + ‖g|x3=L‖D(A3/4),

where c(21) = c(21)(L), c(22) = c(22)(L) and c(22) = c(22)(L).

Proof. To prove this we proceed in an almost identical fashion as in the proof of Proposi-
tion 4.11. We use that w′′ satis�es

(w′′)′′ = Aw′′ + g′′, 0 < x3 < L,

w′′ = g, x3 = 0,

w′′ = g, x3 = L.

Again, we split the problem into three di�erent parts by keeping either the source term in
the equation or in either of the boundary values. The �rst part is the same problem as
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in Proposition 4.14. The second part and third part are very similar and we illustrate by
solving the second part, which is a problem of the form

v′′ = Av, 0 < x3 < L,

v = h, x3 = 0,

v = 0, x3 = L,

In Fourier variables this becomes

v̂′′n = λnv̂n, 0 < x3 < L,

v̂n = ĥn, x3 = 0,

v̂n = 0, x3 = L,

which has the solution

v̂n(x3) = −sinh(
√
λn(x3 − L))

sinh(
√
λnL)

ĥn.

This allows us to compute∫ L

0

λ2
n|v̂n(x3)|2 dx3 =

λ2
n|ĥn|2

sinh2(
√
λnL)

∫ L

0

sinh2(
√
λn(x3 − L)) dx3

=
λ2
n|ĥn|2

sinh2(
√
λnL)

∫ L

0

cosh(2
√
λn(x3 − L))− 1

2
dx3

=
λ2
n|ĥn|2

sinh2(
√
λnL)

(
sinh(2

√
λnL)

4
√
λn

− L

2

)
≤ c(24)λ3/2

n |ĥn|2.
Similarly we get ∫ L

0

λn|v̂′n(x3)|2 dx3 ≤ c(25)λ3/2
n |ĥn|2

and ∫ L

0

|v̂′′n(x3)|2 dx3 ≤ c(24)λ3/2
n |ĥn|2,

for some constants c(24) = c(24)(L) and c(25) = c(25)(L). Using the estimates for the other
parts of w′′ and summing over n gives us the desired inequalities.

The proof of the following proposition is very similar to the proof of Proposition 4.12
and it is therefore omitted.

Proposition 4.16. Assume in addition that g ∈ L2([0, L];X2) ∩H1([0, L];X1), then

w ∈ ∩4
k=0H

k([0, L];X4−k)

and w satis�es
‖w‖∩2k=0H

k([0,L];X2−k) ≤ c(26)‖g‖L2([0,L];X)

and

‖w‖∩4k=0H
k([0,L];X4−k) ≤ c(27)(‖g‖∩2i=0H

i([0,L];Xi−2) + ‖g|x3=0‖D(A3/4) + ‖g|x3=L‖D(A3/4)),

where c(26) = c(26)(L) and c(27) = c(27)(L).
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4.4 Application to the div-curl problem

As stated in the beginning of this section we want a solution, v, to (4.2) in H3(Ω). To
accomplish this we introduced a vector potential, u = (u1, u2, u3), which should be a
function in H4(Ω) for v to be a function in H3(Ω). The last component, u3, solves (4.3)
which can be written

∂2u3

∂x2
3

= Su3 + f3, for 0 < x3 < L,

∂u3

∂x3

= 0, for x3 = 0 and x3 = L,

(4.20)

where S is the operator introduced above.

Proposition 4.17. Assume that f3 ∈ H2(Ω) and ∂f3
∂x3
|x3=0,

∂f3
∂x3
|x3=L ∈ H

1/2
00 . Then there

exists a unique solution, u3, to (4.20) in H4(Ω) which satis�es

‖u3‖2,Ω ≤ c(28)‖f3‖0,Ω (4.21)

and

‖u3‖4,Ω ≤ c(29)

‖f3‖2,Ω +

∥∥∥∥∥ ∂f3

∂x3

∣∣∣∣
x3=0

∥∥∥∥∥
D(S1/4)

+

∥∥∥∥∥ ∂f3

∂x3

∣∣∣∣
x3=L

∥∥∥∥∥
D(S1/4)

 , (4.22)

where c(28) = c(28)(L) and c(29) = c(29)(L).

Proof. The problem (4.20) is of the form of (4.12), where S satis�es the assumptions
on A given in the paragraph following (4.12) if we let X = L2(U). Now according to
Proposition 4.9 we have a unique solution f3 ∈ H2([0, L];L2(U)) ∩ H1([0, L];D(S1/2)) ∩
L2([0, L];D(S)). Additionally it satis�es the assumptions made in the paragraph follow-
ing Proposition 4.11 given that we let Xs = Hs(U). The assumption that f3 ∈ H2(Ω)
means that f3 ∈ H2([0, L];L2(U)) ∩ H1([0, L];H1(U)) ∩ L2([0, L];H2(U)) and thus sat-
is�es the conditions assumed for g in propositions 4.11 and 4.12 except for the assump-
tion g′|x3=0, g

′|x3=L ∈ D(A1/4). However in this particular case it means that we want
∂f3
∂x3
|x3=0 = ∂f3

∂x3
|x3=L ∈ D(S1/4) = H

1/2
00 , which is exactly the other assumption on f3. Hence

the assumptions for both propositions are satis�ed and it follows from their conclusions
that

u3 ∈ ∩4
k=0H

k([0, L];H4−k(U)) ⊆ H4(Ω)

and that u3 satis�es (4.21) and (4.22).

The other components (u1, u2) solve (5.9) which can be written

∂2

∂x2
3

(u1, u2) = T (u1, u2) + (f1, f2), for 0 < x3 < L,

(u1, u2) = 0, for x3 = 0 and x3 = L,

(4.23)

where T is the operator de�ned above.
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Proposition 4.18. Assume that (f1, f2) ∈ H2(Ω;R2), n2f1 − n1f2 = 0 on ∂Ω0 and ∂ΩL

and ∂f1
∂x

+ ∂f2
∂x2
|x3=0,

∂f1
∂x

+ ∂f2
∂x2
|x3=0 ∈ H1/2

00 (U). Then there exists a unique solution, (u1, u2),

to (4.20) in H4(Ω) which satis�es

‖(u1, u2)‖2,Ω ≤ c(30)‖(f1, f2)‖0,Ω (4.24)

and

‖(u1, u2)‖4,Ω ≤ c(31)
(
‖(f1, f2)‖2,Ω + ‖(f1, f2)|x3=0‖D(T 3/4) + ‖(f1, f2)|x3=0‖D(T 3/4)

)
, (4.25)

where c(30) = c(30)(L) and c(31) = c(31)(L).

Proof. The problem (4.23) is of the form of (4.19). It follows from propositions 4.6, 4.7
and 4.8 that T satis�es the assumptions on A given in the paragraph following (4.19)
if we let X = L2(U). Now according to Proposition 4.14 we have a unique solution
(f1, f2) ∈ H2([0, L];L2(U ;R2)) ∩H1([0, L];D(T 1/2)) ∩ L2([0, L];D(T )) Additionally it sat-
is�es the assumptions made in the paragraph following Proposition 4.11 given that we
let Xs = Hs(U ;R2). The assumption that (f1, f2) ∈ H2(Ω;R2) means that (f1, f2) ∈
H2([0, L];L2(U ;R2)) ∩ H1([0, L];H1(U ;R2)) ∩ L2([0, L];H2(U ;R2)) and thus satis�es the
conditions assumed for g in propositions 4.15 and 4.16 except that we assume g|x3=0, g|x3=L ∈
D(A3/4). However in this particular case it means that we want (f1, f2)|x3=0 = (f1, f2)|x3=L

to be in

D(A3/4) =

{
u ∈ H3/2(U ;R2) : n2u1 − n1u2|∂U = 0,

∂u1

∂x1

+
∂u2

∂x2

∈ H1/2
00 (U)

}
.

That (f1, f2)|x3=0 = (f1, f2)|x3=L ∈ H3/2(U ;R2) follows from (f1, f2) ∈ H2(Ω;R2), and the

conditions n2f1−n1f2 = 0 on ∂Ω0 and ∂ΩL and
∂f1
∂x

+ ∂f2
∂x2
|x3=0,

∂f1
∂x

+ ∂f2
∂x2
|x3=0 ∈ H1/2

00 (U) are
exactly the other assumption on (f1, f2). Hence the assumptions for both propositions are
satis�ed and it follows from their conclusions that (u1, u2) ∈ ∩4

k=0H
k([0, L]; (H4−k(U))2) ⊆

H4(Ω) and that (u1, u2) satis�es (4.24) and (4.25).

Theorem 4.19. Assume that f ∈ H2(Ω), ∂f3
∂x3
|x3=0,

∂f3
∂x3
|x3=L ∈ H

1/2
00 , n2f1 − n1f2 =

0 on ∂Ω0 and ∂ΩL and ∂f1
∂x1

+ ∂f2
∂x2
|x3=0,

∂f1
∂x1

+ ∂f2
∂x2
|x3=0 ∈ H1/2

00 (U), then there exists a unique

solution, v, to (4.1) in H3(Ω). The solution satis�es

‖v‖1,Ω ≤M‖f‖0,Ω

and

‖v‖3,Ω ≤M

(
‖f‖2,Ω +

∥∥∥∥∂f3

∂x3

∥∥∥∥
H

1/2
00 (Ω0)

+

∥∥∥∥∂f3

∂x3

∥∥∥∥
H

1/2
00 (ΩL)

+

∥∥∥∥∂f1

∂x1

+
∂f2

∂x2

∥∥∥∥
H

1/2
00 (Ω0)

+

∥∥∥∥∂f1

∂x1

+
∂f2

∂x2

∥∥∥∥
H

1/2
00 (ΩL)

)
,

where M = M(Ω).

Proof. This follows from Propositions 4.17 and 4.18, the characterizations of D(S1/4) and
D(T 3/4), Theorem 1.14 and the fact that ‖v‖i,Ω = ‖curlu‖i,Ω ≤ c(32)‖u‖i+1,Ω, where c

(32) =
c(32)(Ω).
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5 The Transport Equation

The next part in showing that B is a well-de�ned operator is making sure that f satis�es
the conditions assumed in Theorem 4.19. Recall that f was de�ned as the solution to

[(v0 + u) · ∇]f = f · ∇(v0 + u) in Ω,

f = η on Ω0.
(5.1)

Now we want to put su�cient conditions on η to get a solution f ∈ H2(Ω) that satis�es
the following conditions

∂f3

∂x3

∣∣∣∣
x3=0

,
∂f3

∂x3

∣∣∣∣
x3=L

∈ H1/2
00 (U) (5.2)

n2f1 − n1f2 = 0 on ∂Ω0 and ∂ΩL (5.3)

and (
∂f1

∂x1

+
∂f2

∂x2

)∣∣∣∣
x3=0

,

(
∂f1

∂x1

+
∂f2

∂x2

)∣∣∣∣
x3=L

∈ H1/2
00 (U). (5.4)

This is done through �rst �nding approximating η ∈ C∞c (Ω0) and v = v0+u ∈ C∞(Ω). Un-
der these assumptions we can solve (5.1) along the integral curves of v. Due to Lemma 3.3
we know that the integral curves cover Ω so we get a solution f de�ned in all of Ω. It also
gives a solution f ∈ C∞(Ω) and, if v is a good enough approximation, with the property
f |x3=x′3

∈ C∞c (U) for all x′3 ∈ [0, L]. For this solution we make a series of estimates. These
estimates are then used to construct a solution satisfying the desired conditions as the
limit of a sequence of solutions with the smooth data.

5.1 Estimates of f , ∂f
∂x3

and ∂2f
∂x2

3

We let x′ = (x1, x2) and ∇x′ = ( ∂
∂x1
, ∂
∂x2

). Equation (5.1) can be written in the form of a
transport equation

∂f

∂x3

+ (v · ∇x′)f + Af = 0 in Ω,

f = η on Ω0.

(5.5)

This is done by dividing equation (5.1) by v3 and moving all terms to the left hand side.
We can divide by v3 since Lemma 3.3 shows that v3 ≥ b− c(1)γ0 > 0. We get

∂f

∂x3

+
1

v3

((v1, v2) · ∇x′) f −
1

v3

(f · ∇)v = 0 in Ω,

f = η on Ω0.

(5.6)

This is of the form of equation (5.5) if we take

v =
(v1, v2)

v3

,
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and

A = − 1

v3

 ∂v1
∂x1

∂v1
∂x2

∂v1
∂x3

∂v2
∂x1

∂v2
∂x2

∂v2
∂x3

∂v3
∂x1

∂v3
∂x2

∂v3
∂x3

 .

We note that ∥∥∥∥Dα

(
1

v3

)∥∥∥∥
0,Ω

for |α| ≤ 3 can be bounded by a constant depending on b, γ0 and ‖v‖3,Ω if we estimate
factors of the form 1

vk3
with 1

(b−c(1)γ0)k
and use Theorem 1.13 to estimate the remaining

factors. Hence we can also estimate
∥∥∥ 1
v3

∥∥∥
3,Ω

by a constant depending on b, γ0 and ‖v‖3,Ω.

Using Theorem 1.13 again gives us that v is a function in H3(Ω) and the components of A
are functions in H2(Ω) both bounded in norm by constants depending on b, γ0 and ‖v‖3,Ω.

This reformulation allows us to estimate the solution of equation (5.1) by estimating
the solution of equation (5.5), which is done below.

Theorem 5.1. Assuming v ∈ C∞(Ω) and f ∈ C∞(Ω) with f |x3=x′3
∈ C∞c (U) for all

x′3 ∈ [0, L] the solution f of (5.5) satis�es

sup
x3∈[0,L]

‖f‖2,Ωx3
≤ c(33)‖η‖2,U (5.7)

and
‖f‖L2([0,L];H2(U)) ≤ c(34)‖η‖2,U , (5.8)

where c(33) = c(33)(Ω, b, γ0, ‖v‖3,Ω) and c(34) = c(34)(Ω, b, γ0, ‖v‖3,Ω).

To prove Theorem 5.1 we �rst need to prove a number of lemmas.

Lemma 5.2. Under the assumptions given in Theorem 5.1 the solution to (5.5) satis�es
the inequalities

d

dx3

‖f‖2
0,Ωx3

≤ c(35)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

)‖f‖2
0,Ωx3

, (5.9)

sup
x3∈[0,L]

‖f‖0,Ωx3
≤ c(36)‖η‖0,U (5.10)

and
‖f‖0,Ω ≤ c(37)‖η‖0,U , (5.11)

where c(35) = c(35)(U), c(36) = c(36)(Ω, b, γ0, ‖v‖3,Ω) and c(37) = c(37)(Ω, b, γ0, ‖v‖3,Ω).

Proof. Using the notation
∫

Ωx3
h dx′ =

∫
U
h(·, x3) dx′ for a function h : Ω → R we begin

with the expression

d

dx3

∫
Ωx3

|f |2 dx′ =
∫

Ωx3

2f · d

dx3

f dx′

= −2

∫
Ωx3

f · (v · ∇x′)f dx
′ − 2

∫
Ωx3

f · Af dx′.
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Integration by parts gives us

−2

∫
Ωx3

f · (v · ∇x′)f dx
′ =

∫
Ωx3

f 2∇x′ · u dx′,

where the boundary term disappears since f |x3=x′3
∈ C∞c (U). We also note that

|f · Af | ≤ |A||f |2

where |A| is the induced 2-matrix norm of A. The matrix norm can be estimated by

|A| ≤

(∑
i,j

a2
ij

)1/2

= |A|f ,

where | · |f is the Frobenius norm. Hence we get the estimate

d

dx3

‖f‖2
0,Ωx3

≤

∣∣∣∣∣
∫

Ωx3

f 2∇x′ · v dx′ − 2

∫
Ωx3

f · Af dx′
∣∣∣∣∣

≤
∫

Ωx3

f 2|∇x′ · v| dx′ + 2

∫
Ωx3

|A|ff 2 dx′

≤ (‖∇x′ · v‖Cb(Ωx3 ) + 2‖A‖Cb(Ωx3 ))‖f‖2
0,Ωx3

.

(5.12)

By Sobolev's embedding theorem we get (5.9). The inequality in (5.10) follows from
applying Grönwall's inequality to (5.9) which gives

sup
x3∈[0,L]

‖f‖2
0,Ωx3

≤ ‖η‖2
0,U exp

(∫ L

0

c(35)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

) dx3

)
,

were
∫ L

0
c(35)(‖v‖3,Ωx3

+ ‖A‖2,Ωx3
) dx3 ≤ c(35)L1/2(‖v‖3,Ω + ‖A‖2,Ω).

Finally we note that from this it follows that

‖f‖2
0,Ω =

∫ L

0

‖f‖2
0,Ωx3

dx3 ≤ c(36)

∫ L

0

‖η‖2
0,U dx3 ≤ c(36)L‖η‖2

0,U ,

which is the inequality in (5.11).

Lemma 5.3. Under the assumptions given in Theorem 5.1 the solution to (5.5) satis�es
the inequality

d

dx3

∥∥∥∥ ∂f∂x1

∥∥∥∥2

0,Ωx3

≤ c(38)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

)‖f‖2
1,Ωx3

, (5.13)

and
d

dx3

∥∥∥∥ ∂f∂x2

∥∥∥∥2

0,Ωx3

≤ c(39)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

)‖f‖2
1,Ωx3

, (5.14)

where c(38) = c(38)(U) and c(39) = c(39)(U).
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Proof. Since the inequalities can be proven almost identically we only show the proof of
the �rst one. Di�erentiating equation (5.5) with respect to x1 gives us

∂

∂x3

∂f

∂x1

+ (v · ∇x′)
∂f

∂x1

+

(
∂v

∂x1

· ∇x′

)
f + A

∂f

∂x1

+
∂A

∂x1

f = 0,

allowing us to get the estimate

d

dx3

∫
Ωx3

(
∂f

∂x1

)2

dx′ ≤
∫

Ωx3

∣∣∣∣ ∂f∂x1

∣∣∣∣2 |∇x′ · v| dx′ + 2

∫
Ωx3

∣∣∣∣ ∂f∂x1

∣∣∣∣2 |A|f dx′
+ 2

∫
Ωx3

∣∣∣∣∂v1

∂x1

∣∣∣∣ ∣∣∣∣ ∂f∂x1

∣∣∣∣2 dx′ + 2

∫
Ωx3

∣∣∣∣∂v2

∂x1

∣∣∣∣ ∣∣∣∣ ∂f∂x1

· ∂f
∂x2

∣∣∣∣ dx′
+ 2

∫
Ωx3

∣∣∣∣ ∂A∂x1

∣∣∣∣
f

∣∣∣∣ ∂f∂x1

∣∣∣∣ |f |dx′.
This yields

d

dx3

∥∥∥∥ ∂f∂x1

∥∥∥∥2

0,Ωx3

≤ (‖∇x′ · v‖Cb(Ωx3 ) + 2‖A‖Cb(Ωx3 ))

∥∥∥∥ ∂f∂x1

∥∥∥∥2

0,Ωx3

+ 2

∥∥∥∥∂v1

∂x1

∥∥∥∥
Cb(Ωx3 )

∥∥∥∥ ∂f∂x1

∥∥∥∥2

0,Ωx3

+ 2

∥∥∥∥∂v2

∂x1

∥∥∥∥
Cb(Ωx3 )

∥∥∥∥ ∂f∂x1

∥∥∥∥
0,Ωx3

∥∥∥∥ ∂f∂x2

∥∥∥∥
0,Ωx3

+ c(3)

∥∥∥∥ ∂A∂x1

∥∥∥∥
1,Ωx3

‖f‖1,Ωx3

∥∥∥∥ ∂f∂x1

∥∥∥∥
0,Ωx3

.

(5.15)
By Sobolev's embedding theorem and straightforward estimates of the norms we get the
desired inequality from (5.15)

Lemma 5.4. Under the assumptions given in Theorem 5.1 the solution to (5.5) satis�es
the inequality

d

dx3

∥∥∥∥∂2f

∂x2
1

∥∥∥∥2

0,Ωx3

≤ c(40)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

)‖f‖2
2,Ωx3

, (5.16)

d

dx3

∥∥∥∥∂2f

∂x2
2

∥∥∥∥2

0,Ωx3

≤ c(41)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

)‖f‖2
2,Ωx3

, (5.17)

and
d

dx3

∥∥∥∥ ∂2f

∂x1∂x2

∥∥∥∥2

0,Ωx3

≤ c(42)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

)‖f‖2
2,Ωx3

, (5.18)

where c(40) = c(40)(U), c(41) = c(41)(U) and c(42) = c(42)(U).

Proof. Since the proof of the three inequalities are almost identical we only show the proof
of the �rst one. By a taking a second derivative of equation (5.5) with respect to x1 we
get

∂

∂x3

∂2f

∂x2
1

+ (v · ∇x′)
∂2f

∂x2
1

+ 2

(
∂v

∂x1

· ∇x′

)
∂f

∂x1

+

(
∂2v

∂x2
1

· ∇x′

)
f

+ A
∂2f

∂x2
1

+ 2
∂A

∂x1

∂f

∂x1

+
∂2A

∂x2
1

f = 0.
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From this we can, as before, get the estimate

d

dx3

∥∥∥∥∂2f

∂x2
1

∥∥∥∥2

0,Ωx3

≤ (‖∇x′ · v‖Cb(Ωx3 ) + 2‖A‖Cb(Ωx3 ))

∥∥∥∥∂2f

∂x2
1

∥∥∥∥2

0,Ωx3

+ 4

∥∥∥∥∂v1

∂x1

∥∥∥∥
Cb(Ωx3 )

∥∥∥∥∂2f

∂x2
1

∥∥∥∥2

0,Ωx3

+ 4

∥∥∥∥∂v2

∂x1

∥∥∥∥
Cb(Ωx3 )

∥∥∥∥ ∂2f

∂x1∂x2

∥∥∥∥
0,Ωx3

∥∥∥∥∂2f

∂x2
1

∥∥∥∥
0,Ωx3

+ c(3)

∥∥∥∥∂2v1

∂x2
1

∥∥∥∥
1,Ωx3

∥∥∥∥ ∂f∂x1

∥∥∥∥
1,Ωx3

∥∥∥∥∂2f

∂x2
1

∥∥∥∥
0,Ωx3

+ c(3)

∥∥∥∥∂2v2

∂x2
1

∥∥∥∥
1,Ωx3

∥∥∥∥ ∂f∂x2

∥∥∥∥
1,Ωx3

∥∥∥∥∂2f

∂x2
1

∥∥∥∥
0,Ωx3

+ c(3)

∥∥∥∥ ∂A∂x1

∥∥∥∥
1,Ωx3

∥∥∥∥ ∂f∂x1

∥∥∥∥
1,Ωx3

∥∥∥∥∂2f

∂x2
1

∥∥∥∥
0,Ωx3

+

∥∥∥∥∂2A

∂x2
1

∥∥∥∥
0,Ωx3

∥∥∥∥∂2f

∂x2
1

∥∥∥∥
0,Ωx3

‖f‖Cb(Ωx3 )

which, again by Sobolev's embedding theorem and straightforward estimates of the norms,
gives the desired inequality.

Proof of Theorem 5.1. Summing the inequalities proven in Lemmas 5.2-5.4 gives

d

dx3

‖f‖2
2,Ωx3

≤ c(43)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

)‖f‖2
2,Ωx3

,

where c(43) = c(43)(U). By applying Grönwall's inequality we get

sup
x3∈[0,L]

‖f‖2
2,Ωx3

≤ ‖η‖2
2,U exp

(∫ L

0

c(43)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

) dx3

)
.

By estimating

exp

(∫ L

0

c(43)(‖v‖3,Ωx3
+ ‖A‖2,Ωx3

) dx3

)
≤ exp

(
c(43)L1/2(‖v‖3,Ω + ‖A‖2,Ω)

)
we get the inequality in (5.7). This also implies that

‖f‖L2([0,L];H2(U)) =

(∫ L

0

‖f‖2
2,Ωx3

dx3

)1/2

≤

(∫ L

0

sup
x3∈[0,L]

‖f‖2
2,Ωx3

dx3

)

≤
(∫ L

0

(c(33))2‖η‖2
2,U dx3

)1/2

≤ c(33)L1/2‖η‖2,U

(5.19)

which gives the inequality (5.8)
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Theorem 5.5. Assuming v ∈ C∞(Ω) and f ∈ C∞(Ω) with f |x3=x′3
∈ C∞c (U) for all

x′3 ∈ [0, L] the solution f of (5.5) satis�es

sup
x3∈[0,L]

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ωx3

≤ c(44)‖η‖2,U . (5.20)

and
‖f‖H1([0,L];H1(U)) ≤ c(45)‖η‖2,U , (5.21)

were c(44) = c(44)(Ω, b, γ0, ‖v‖3,Ω) and c(45) = c(45)(Ω, b, γ0, ‖v‖3,Ω).

Proof. By using equation (5.5) we get the estimate∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ωx3

≤ ‖((v1,v2) · ∇x′) f‖1,Ωx3
+ ‖Af‖1,Ωx3

≤
∥∥∥∥v1

∂f

∂x1

∥∥∥∥
1,Ωx3

+

∥∥∥∥v2
∂f

∂x2

∥∥∥∥
1,Ωx3

+ ‖Af‖1,Ωx3

≤ c(3)‖v1‖2,Ωx3

∥∥∥∥ ∂f∂x1

∥∥∥∥
1,Ωx3

+ c(3)‖v2‖2,Ωx3

∥∥∥∥ ∂f∂x2

∥∥∥∥
1,Ωx3

+ c(3)‖A‖1,Ωx3
‖f‖2,Ωx3

≤ 3c(3)
(
‖v‖2,Ωx3

+ ‖A‖1,Ωx3

)
‖f‖2,Ωx3

,

(5.22)

This implies

sup
x3∈[0,L]

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ωx3

≤ 3c(3)c(2)(‖v‖3,Ω + ‖A‖2,Ω)‖η‖2,U ≤ c(44)‖η‖2,U ,

by using Hn(Ω) ⊂ H1([0, L];Hn−1(U)) and Theorem 1.12. This is the inequality (5.20).
It also allows us to estimate∫ L

0

∥∥∥∥ ∂f∂x3

∥∥∥∥2

1,Ωx3

dx3 ≤
∫ L

0

(c(44))2‖η‖2
2,U dx3 ≤ (c(44))2L‖η‖2

2,U

which gives

‖f‖H1([0,L];H1(U)) =

(∫ L

0

(
‖f‖2

1,Ωx3
+

∥∥∥∥ ∂f∂x3

∥∥∥∥2

1,Ωx3

)
dx3

)1/2

≤

(∫ L

0

(
‖f‖2

2,Ωx3
+

∥∥∥∥ ∂f∂x3

∥∥∥∥2

1,Ωx3

)
dx3

)1/2

≤ (c(33) + c(44))L1/2‖η‖2,U

(5.23)

by using equation (5.8), which proves the inequality (5.21).
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Theorem 5.6. Assuming v ∈ C∞(Ω) and f ∈ C∞(Ω) with f |x3=x′3
∈ C∞c (U) for all

x′3 ∈ [0, L] the solution f of (5.5) satis�es

sup
x3∈[0,L]

∥∥∥∥∂2f

∂x2
3

∥∥∥∥
0,Ωx3

≤ c(46)‖η‖2,U . (5.24)

and
‖f‖H2([0,L];L2(U)) ≤ c(47)‖η‖2,U (5.25)

were c(46) = c(46)(Ω, b, γ0, ‖v‖3,Ω) and c(47) = c(47)(Ω, b, γ0, ‖v‖3,Ω).

Proof. Di�erentiating equation (5.5) with respect to x3 gives

∂2f

∂x2
3

=
∂v

∂x3

· ∇x′f + v · ∇x′
∂f

∂x3

+
∂A

∂x3

f + A
∂f

∂x3

With this we get the estimate∥∥∥∥∂2f

∂x2
3

∥∥∥∥
0,Ωx3

≤
∥∥∥∥ ∂v∂x3

· ∇x′f

∥∥∥∥
0,Ωx3

+

∥∥∥∥v · ∇x′
∂f

∂x3

∥∥∥∥
0,Ωx3

+

∥∥∥∥ ∂A∂x3

f

∥∥∥∥
0,Ωx3

+

∥∥∥∥A ∂f

∂x3

∥∥∥∥
0,Ωx3

≤ max{c(3), c(3)}

(∥∥∥∥∂v1

∂x3

∥∥∥∥
1,Ωx3

∥∥∥∥ ∂f∂x1

∥∥∥∥
1,Ωx3

+

∥∥∥∥∂v2

∂x3

∥∥∥∥
1,Ωx3

∥∥∥∥ ∂f∂x2

∥∥∥∥
1,Ωx3

+ ‖v1‖2,Ωx3

∥∥∥∥ ∂2f

∂x1∂x3

∥∥∥∥
0,Ωx3

+ ‖v2‖2,Ωx3

∥∥∥∥ ∂2f

∂x2∂x3

∥∥∥∥
0,Ωx3

+

∥∥∥∥ ∂A∂x3

∥∥∥∥
0,Ωx3

‖f‖2,Ωx3
+ ‖A‖1,Ωx3

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ωx3

)

≤ 2 max{c(3), c(3)}

((∥∥∥∥ ∂v∂x3

∥∥∥∥
1,Ωx3

+

∥∥∥∥ ∂A∂x3

∥∥∥∥
0,Ωx3

)
‖f‖2,Ωx3

+
(
‖v‖2,Ωx3

+ ‖A‖1,Ωx3

)∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ωx3

)
,

This implies

sup
x3∈[0,L]

∥∥∥∥∂2f

∂x2
3

∥∥∥∥
0,Ωx3

≤ 2 max{c(3), c(3)}c(2)

((∥∥∥∥ ∂v∂x3

∥∥∥∥
2,Ω

+

∥∥∥∥ ∂A∂x3

∥∥∥∥
1,Ω

)

+
(
‖v‖3,Ω + ‖A‖2,Ω

))
‖η‖2,U

≤ c(46)‖η‖2,U ,
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which is the inequality (5.24), by the same argument that gives (5.20). From this we get
the estimate ∫ L

0

∥∥∥∥∂2f

∂x2
3

∥∥∥∥2

0,Ωx3

dx3 ≤
∫ L

0

(c(46))2‖η‖2
2,U dx3 ≤ (c(46))2L‖η‖2

2,U

which allows us to estimate

‖f‖H2([0,L];L2(U)) =

(∫ L

0

(
‖f‖2

0,Ωx3
+

∥∥∥∥ ∂f∂x3

∥∥∥∥2

0,Ωx3

+

∥∥∥∥∂2f

∂x2
3

∥∥∥∥2

0,Ωx3

)
dx3

)1/2

≤

(∫ L

0

(
‖f‖2

2,Ωx3
+

∥∥∥∥ ∂f∂x3

∥∥∥∥2

1,Ωx3

+

∥∥∥∥∂2f

∂x2
3

∥∥∥∥2

0,Ωx3

)
dx3

)1/2

≤ (c(33) + c(44) + c(46))L1/2‖η‖2,U

(5.26)

by using (5.8) and (5.21), this proves the inequality (5.25).

5.2 Su�cient conditions on η

We want to show the following result.

Theorem 5.7. For v ∈ H3(Ω) and η ∈ H2
0 (U) there exists a unique function f ∈

W 1,∞([0, L];H1
0 (U))∩L∞([0, L];H2

0 (U)), which is a solution to equation (5.5) in the sense
that for almost every x3 ∈ [0, L] the �rst equation in (5.5) holds as an equality in H1(U)
and f |x3=0 = η in H1(U). Furthermore the conditions (5.2), (5.3) and (5.4) are satis�ed
for this solution.

Remark 5.8. Note that f ∈ C([0, L];H3/2(U)) and ∂f
∂x3
∈ C([0, L];H1/2(U)) (cf. [14, Chap-

ter 1, Theorem 3.1]) so that the conditions (5.2)�(5.4) make sense. In fact, we show below
that f ∈ Cw([0, L];H2

0 (U)) and ∂f
∂x3
∈ Cw([0, L];H1

0 (U)). With a little more work it is

also possible to show that f ∈ C([0, L];H2
0 (U)) with ∂f

∂x3
∈ C([0, L];H1

0 (U)) (see e.g. [23,
Chapter 16]), but since this result is not needed for the purpose of this thesis the proof is
not included.

Proof. The condition η ∈ H2
0 (U) means that η can be approximated by a sequence of

functions, {ηi}∞i=1 in C
∞
c (U). If we also approximate v by a sequence of functions, {vk}∞k=1

in C∞(Ω) we get, as noted in the beginning of this section, corresponding solutions to
equation (5.1), fi,k, in C

∞(Ω). For any i there is a large enough ki such that fi,ki |x3=x′3
∈

C∞c (U) for all x′3 ∈ [0, L], which can be chosen in such a way that ki →∞ as i→∞. The
sequence {fi,ki}∞i=1 is bounded in H2([0, L];L2(U)) ∩H1([0, L];H1(U)) ∩ L2([0, L];H2(U))
so we can extract a subsequence which is weakly convergent to some function f . We note
that

f ∈ H2([0, L];L2(U)) ∩H1([0, L];H1(U)) ∩ L2([0, L];H2(U)) ⊂ H2(Ω).

Due to equation (5.7) we can bound the sequence {fi,ki|x3=x′3
}∞i=1 in H2(U) for a given

x′3 ∈ [0, L]. This means that we can extract a weakly convergent subsequence with limit
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f̂x′3 ∈ H
2(U). For any linear functional l on H1(U) we can de�ne lx′3(g) = l(g|x3=x′3

) as a
linear functional on H1([0, L];H1(U)) since C([0, L];H1(U)) ⊂ H1([0, L];H1(U)). Now

l(f |x3=x′3
) = lx′3(f) = lim

i→∞
lx′3(fi,ki) = lim

i→∞
l(fi,ki |x3=x′3

) = l(f̂x′3)

for all linear functionals on H1(U) and hence f |x3=x′3
= f̂x′3 in H1(U). However, since

f̂x′3 ∈ H
2(U) the equality also holds in H2(U) and thus f |x3=x′3

∈ H2(U). Using that the
trace operator T is bounded and linear we get that

Tf |x3=x′3
= T f̂x′3 = w − lim

i→∞
Tfi,ki |x3=x′3

= 0.

Similarly we get that T
∂f |x3=x′3
∂x1

= T
∂f |x3=x′3
∂x2

= 0. It follows that f |x3=x′3
∈ H2

0 (U) and hence

f ∈ L∞([0, L];H2
0 (U)). By the same reasoning we get ∂f

∂x3

∣∣∣
x3=x′3

∈ H1
0 (U), which together

with f |x3=x′3
∈ H2

0 (U) gives f ∈ W 1,∞([0, L];H1
0 (U)).

Moreover, from [14, Chapter 1, Theorem 3.1]) it follows that f ∈ C([0, L];H3/2(U))
and ∂f

∂x3
∈ C([0, L];H1/2(U)) and hence

f ∈ Cw([0, L];H2
0 (U)),

∂f

∂x3

∈ Cw([0, L];H1
0 (U))

by [14, Chapter 3, Lemma 8.1]). It is therefore clear that f satis�es the conditions (5.2)�
(5.4).

To show that f is a solution to (5.1) we use

fi,ki |x3=x′3
⇀ f |x3=x′3

in H2(U),

∂fi,ki
∂x3

∣∣∣∣
x3=x′3

⇀
∂f

∂x3

∣∣∣∣
x3=x′3

in H1(U),

as i→∞, which was shown above and

vki |x3=x′3
→ v|x3=x′3

in H2(U)

Aki|x3=x′3
→ A|x3=x′3

in H1(U)

as i→∞, which follows from H1([0, L];Hn(U)) ⊂ C([0, L];Hn(U)). Together these limits
imply(

∂fi,ki
∂x3

+ (vki · ∇)fi,ki + Akifi,ki

) ∣∣∣∣
x3=x′3

⇀

(
∂f

∂x3

+ (v · ∇)f + Af

) ∣∣∣∣
x3=x′3

in H1(U)

as i→∞. But since ∥∥∥∥∂fi,ki∂x3

+ (vki · ∇)fi,ki + Akifi,ki

∥∥∥∥
1,Ωx′3

= 0 ∀i
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we get that ∥∥∥∥ ∂f∂x3

+ (v · ∇)f + Af

∥∥∥∥
1,Ωx′3

≤ lim inf
i→∞

∥∥∥∥∂fi,ki∂x3

+ (vki · ∇)fi,ki + Akifi,ki

∥∥∥∥
1,Ωx′3

= 0.

Hence the �rst equation in (5.5) holds for f as an equality in H1(U) for almost every
x3 ∈ [0, L]. That f |x3=0 = η follows immediately from

fi,ki|x3=0 ⇀ f |x3=0 in H2(U)

and
fi,ki |x3=0 = ηi → η in H2(U).

It remains to prove uniqueness. For any solution to equation (5.5), f ∈ L∞([0, L];H2(U))∩
W 1,∞([0, L];H1(U)), we can repeat the steps in Lemma 5.2 (the integration by parts gives
no boundary term here since v · n = 0) and get an inequality like (5.12), that is

d

dx3

‖f‖2
0,Ωx3

≤ (‖∇x′ · v‖Cb(Ωx3 ) + 2‖A‖Cb(Ωx3 ))‖f‖2
0,Ωx3

.

We estimate

(‖∇x′ · v‖Cb(Ωx3 ) + 2‖A‖Cb(Ωx3 )) ≤ (‖∇x′ · v‖Cb(Ω) + 2‖A‖Cb(Ω))

≤ c(1)(‖∇x′ · v‖2,Ω + 2‖A‖2,Ω)

by using Sobolev's embedding theorem and apply Grönwall's lemma to get

‖f‖2
0,Ωx3

≤ ‖η‖2
0,U exp

(∫ z

0

c(1)(‖∇x′ · v‖2,Ω + 2‖A‖2,Ω) dx3

)
.

This inequality shows that η = 0 implies f = 0 and hence the solution is unique.
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6 Proof of the Main Result

It remains to prove that B is a contraction. To do this we will need some additional
estimates of the solutions to (5.1). However we begin by introducing some notation for
the di�erence of two solutions to (5.1) for two di�erent v, which we will denote v(1) and
v(2). Similarly we let all related functions use the same superscript, i.e. f (1) solves (5.1) for
v = v(1) and f (2) the same equation for v = v(2). Additionally we introduce [·] to denote the
di�erence of two such functions, i.e. [v] = v(1) − v(2) and [f ] = f (1) − f (2). The estimates
we want to show are summarized in the following proposition.

Proposition 6.1. f satis�es the inequalities

‖f‖0,Ω ≤ c(48)(‖h‖0,U + ‖∇Tg‖0,U)

and

‖f‖2,Ω +

∥∥∥∥∂f3

∂x3

∥∥∥∥
H

1/2
00 (Ω0)

+

∥∥∥∥∂f3

∂x3

∥∥∥∥
H

1/2
00 (ΩL)

+

∥∥∥∥∂f1

∂x1

+
∂f2

∂x2

∥∥∥∥
H

1/2
00 (Ω0)

+

∥∥∥∥∂f1

∂x1

+
∂f2

∂x2

∥∥∥∥
H

1/2
00 (ΩL)

≤ c(49)(‖h‖2,U + ‖∇Tg‖2,U),

and [f ], as de�ned above, satis�es the inequality

‖[f ]‖0,Ω ≤ c(50)(‖h‖2,U + ‖∇Tg‖2,U)‖[v]‖1,Ω,

where c(48) = c(48)(Ω, b, γ0, ‖v‖3,Ω), c(49) = c(49)(Ω, b, γ0, ‖v‖3,Ω) and
c(50) = c(50)(Ω, b, γ0, ‖v(1)‖3,Ω, ‖v(2)‖3,Ω).

Proof. To prove the �rst inequality we note that due to the way the solution was con-
structed the inequality in (5.11) holds and hence

‖f‖0,Ω ≤ c(37)‖η‖0,U .

Now recall that η is de�ned by

n · η = h on Ω0,

ηT =
h

v · n
vT −

1

v · n
n×∇Tg on Ω0.

This gives

‖η‖0,U ≤ ‖h‖0,U +

∥∥∥∥ h

v · n
vT

∥∥∥∥
0,Ω0

+

∥∥∥∥ 1

v · n
n×∇Tg

∥∥∥∥
0,Ω0

≤ ‖h‖0,U + c(3)
∥∥∥ vT
v · n

∥∥∥
2,Ω0

‖h‖0,U +

∥∥∥∥ 1

v · n
n×∇Tg

∥∥∥∥
0,Ω0

≤ ‖h‖0,U + c(3)‖v‖2,Ω0 ‖h‖0,U +
1

b
‖n×∇Tg‖0,U

≤ ‖h‖0,U + c(3)c(2)‖v‖3,Ω ‖h‖0,U +
1

b
‖∇Tg‖0,U

≤ c(51)(‖h‖0,U + ‖∇Tg‖0,U),
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where c(51) = c(51)(Ω, b, γ0, ‖v‖3,Ω). From this it follows that

‖f‖0,Ω ≤ c(37)c(51)(‖h‖0,Ω0 + ‖∇Tg‖0,Ω0).

To prove the second inequality we note that∥∥∥∥∂f3

∂x3

∥∥∥∥
H

1/2
00 (Ω0)

.

∥∥∥∥∂f3

∂x3

∥∥∥∥
1,Ω0

and ∥∥∥∥∂f1

∂x1

+
∂f2

∂x2

∥∥∥∥
H

1/2
00 (Ω0)

.

∥∥∥∥∂f1

∂x1

+
∂f2

∂x2

∥∥∥∥
1,Ω0

≤ 2‖f‖2,Ω0 .

Since the same inequalities hold on ΩL it is su�cient to prove

‖f‖2,Ω + ‖f‖2,Ω0 + ‖f‖2,ΩL +

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ω0

+

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,ΩL

≤ c(49)(‖h‖2,U + ‖∇Tg‖2,U).

As a consequence to the way the solution was constructed it satis�es equations (5.7), (5.8),
(5.21), (5.20) and (5.25), hence

‖f‖2,Ω + ‖f‖2,Ω0 + ‖f‖2,ΩL +

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ω0

+

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,ΩL

= (‖f‖2
H2([0,L],L2(U)) + ‖f‖2

H1([0,L],H1(U)) + ‖f‖2
H1([0,L],H2(U)))

1/2

+ ‖f‖2,Ω0 + ‖f‖2,ΩL +

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ω0

+

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,ΩL

≤ (2c(33) + c(34) + c(45) + 2c(44) + c(47))‖η‖2,U .

Now

‖η‖2,U ≤ ‖h‖2,U +

∥∥∥∥ h

v · n
vT

∥∥∥∥
2,Ω0

+

∥∥∥∥ 1

v · n
n×∇Tg

∥∥∥∥
2,Ω0

≤ ‖h‖2,U + c(3)
∥∥∥ vT
v · n

∥∥∥
2,Ω0

‖h‖2,U + c(3)

∥∥∥∥ 1

v · n

∥∥∥∥
2,Ω0

‖n×∇Tg‖2,U

≤ ‖h‖2,U + c(3)c(2) ‖v‖3,Ω ‖h‖2,U + c(3)c(2)

∥∥∥∥ 1

v3

∥∥∥∥
3,Ω

‖∇Tg‖2,U

≤ c(52)(‖h‖2,U + ‖∇Tg‖2,U),

where c(52) = c(52)(Ω, b, ‖v‖3,Ω). From these estimates it follows that

‖f‖2,Ω + ‖f‖2,Ω0 + ‖f‖2,ΩL +

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,Ω0

+

∥∥∥∥ ∂f∂x3

∥∥∥∥
1,ΩL

≤ (2c(33) + c(34) + c(45) + 2c(44) + c(47))c(52)(‖h‖2,U + ‖∇Tg‖2,U).

For the third inequality we begin by writing equation (5.1) in the form of equation (5.5)
and taking the di�erence of the equation with v = v(1) and the one with v = v(2) gives us
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an equation for [f ]

∂[f ]

∂x3

+ (v(1) · ∇x′)f
(1) − (v(2) · ∇x′)f

(2) + A(1)f (1) − A(2)f (2) = 0, in Ω

[f ] = [η], on Ω0.

Through some algebra it is not hard to see that this is equivalent to

∂[f ]

∂x3

+ (v(1) · ∇x′)[f ] + A(1)[f ] = −([v] · ∇x′)f
(2) − [A]f (2), in Ω

[f ] = [η], on Ω0.

That is, [f ] satis�es a very similar equation to (5.5). If we let ρ = −([v] ·∇x′)f
(2)− [A]f (2)

we can redo the steps in Lemma 5.2 and get a similar inequality to (5.12). but with an
additional term involving ρ

d

dx3

‖[f ]‖2
0,Ωx3

≤ (‖∇x′ · v(1)‖Cb(Ωx3 ) + 2‖A(1)‖Cb(Ωx3 ))‖[f ]‖2
0,Ωx3

+ 2

∫
Ωx3

|[f ] · ρ| dx′.

By estimating

2

∫
Ωx3

|[f ] · ρ| dx′ ≤
∫

Ωx3

|[f ]|2 dx′ +
∫

Ωx3

|ρ|2 dx′ = ‖[f ]‖2
0,Ωx3

+ ‖ρ‖2
0,Ωx3

we get

d

dx3

‖[f ]‖2
0,Ωx3

≤ (‖∇x′ · v(1)‖Cb(Ωx3 ) + 2‖A(1)‖Cb(Ωx3 ) + 1)‖[f ]‖2
0,Ωx3

+ ‖ρ‖2
0,Ωx3

By applying Grönwall's inequality and Sobolev's embedding theorem, as before, we get

sup
x3∈[0,L]

‖[f ]‖2
0,Ωx3

≤ exp
(
L+ c(35)L1/2(‖v(1)‖3,Ω + ‖A(1)‖2,Ω)

)(
‖[η]‖2

0,U +

∫ L

0

‖ρ‖2
0,Ωx3

dx3

)
= c(53)(‖[η]‖2

0,U + ‖ρ‖2
0,Ω),

where c(53) = c(53)(Ω, b, γ0, ‖v(1)‖3,Ω) hence

‖[f ]‖2
0,Ω ≤ L sup

x3∈[0,L]

‖[f ]‖2
0,Ωx3

≤ c(53)L(‖[η]‖2
0,U + ‖ρ‖2

0,Ω).

Through the de�nition of η we �nd that

[η] = [ηT ] =
h

v · n
[vT ],

since v · n = v0 · n+ u · n = v0 · n. Hence

‖[η]‖0,U =

∥∥∥∥ h

v · n
[vT ]

∥∥∥∥
0,Ω0

≤ c(3) 1

b
‖h‖2,U ‖[v]‖0,Ω0

.
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Also by de�nition
‖ρ‖0,Ω ≤ ‖([v] · ∇x′)f

(2)‖0,Ω + ‖[A]f (2)‖0,Ω,

hence
‖ρ‖0,Ω ≤ 2c(3)‖[v]‖1,Ω‖f (2)‖2,Ω + c(3)‖[A]‖0,Ω‖f (2)‖2,Ω.

Both ‖[v]‖1,Ω and ‖[A]‖0,Ω can be estimated by c(54) ‖[v]‖1,Ω, where

c(54) = c(54)(b, γ0,
∥∥v(1)

∥∥
3,Ω
,
∥∥v(2)

∥∥
3,Ω

). Through the second inequality of this proposition

‖f (2)‖2,Ω can be estimated by c(49)(‖h‖2,U + ‖∇Tg‖2,U), which completes the proof of the
third inequality.

Corollary 6.2. The operator B satis�es

‖B[g, h, v0](u)‖1,Ω ≤Mc(48)(‖h‖0,U + ‖∇Tg‖0,U) (6.1)

‖B[g, h, v0](u)‖3,Ω ≤Mc(49)(‖h‖2,U + ‖∇Tg‖2,U) (6.2)

‖B[g, h, v0](u)−B[g, h, v0](w)‖1,Ω ≤Mc(50)(‖h‖2,U + ‖∇Tg‖2,U)‖u− w‖1,Ω, (6.3)

Proof. This follows immediately from the previous proposition and the inequalities in The-
orem 4.19.

Now we are ready to prove that B is a contraction and that it has a unique �xed point
u.

Proposition 6.3. For every γ with 0 < γ ≤ γ0 the operator B maps Vγ into itself if

‖h‖0,U + ‖∇Tg‖0,U ≤
γ

Mc(49)
. (6.4)

The operator B has a unique �xed point in Vγ if (6.4) is satis�ed and if

‖h‖0,U + ‖∇Tg‖0,U <
1

Mc(50)
. (6.5)

Additionally, if g(1), h(1) and g(2), h(2) are two sets of boundary data both satisfying (6.5)
and if u(1), u(2) are the �xed points of B[g(1), h(1), v0] and B[g(2), h(2), v0] respectively, then

‖u(1) − u(2)‖1,Ω ≤
Mc(48)(‖h(1) − h(2)‖0,U + ‖∇T (g(1) − g(2))‖0,U)

1−Mc(50)(‖h(1)‖0,U + ‖∇Tg(1)‖0,U)
. (6.6)

Proof. Combining inequalities (6.2) and (6.4) gives

‖B(u)‖3,Ω ≤ γ,

that is B maps Vγ into itself. To show that B has a unique �xed point we will apply
Banach's �xed point theorem. The inequalities (6.3) and (6.5) gives

‖B(u)−B(w)‖1,Ω < ‖u− w‖1,Ω,

which means that B : Vγ ⊂ H1(Ω) → H1(Ω) is a contraction. To apply Banach's �xed
point theorem it remains to show that Vγ is a closed subset of H1(Ω). Now assume that

52



we have a sequence {ui}∞i=1 ⊂ Vγ, which converges to u in the norm of H1(Ω). Since the
sequence is bounded in H3(Ω) norm it has a subsequence which converges weakly in H3(Ω)
to w. Since Vγ is closed and convex it is weakly closed so w ∈ Vγ. Due to H3(Ω) ⊂ H1(Ω)
we have that the space of continuous linear functionals on H1(Ω) is a subspace to the space
of continuous linear functionals on H3(Ω). This implies that {ui}∞i=1 also converges weakly
to w in H1(Ω). Since weak limits are equal to limits in norm u = w ∈ Vγ, hence Vγ is a
closed subset of H1(Ω) and we can apply Banach's �xed point theorem to B.

To prove (6.6) we use (6.1) and (6.3) to get

‖u(1) − u(2)‖1,Ω = ‖B[g(1), h(1), v0](u(1))−B[g(2), h(2), v0](u(2))‖1,Ω

≤ ‖B[g(1), h(1), v0](u(1))−B[g(1), h(1), v0](u(2))‖1,Ω

+ ‖B[g(1), h(1), v0](u(2))−B[g(2), h(2), v0](u(2))‖1,Ω

≤Mc(50)(‖h(1)‖2,U + ‖∇Tg
(1)‖2,U)‖u(1) − u(2)‖1,Ω

+ ‖B[g(1) − g(2), h(1) − h(2), v0](u(2))‖1,Ω

≤Mc(50)(‖h(1)‖2,U + ‖∇Tg
(1)‖2,U)‖u(1) − u(2)‖1,Ω

+Mc(48)(‖h(1) − h(2)‖0,U + ‖∇Tg
(1) − g(2)‖0,U),

where we have used the linearity of (g, h) → B[g, h, v0](u). Rearranging the terms gives
the desired inequality.

Lemma 6.4. Let u ∈ Vγ with 0 < γ ≤ γ0. Then u is a �xed point of the operator B[g, h, v0]
if and only if v = u+v0 is the velocity �eld of a solution (v, p) ∈ H3(Ω) of (1.1)-(1.3), (3.2)
and (3.3).

Additionally, if both (v, p) ∈ H3(Ω) and (ṽ, p̃) ∈ H3(Ω) are solutions of (1.1)-(1.3), (3.2)
and (3.3) with v = ṽ, then p = p̃.

Proof. First we assume that u is a �xed point of B and let v = v0 + u, then

div v = div v0 + div u = 0

and
n · v|∂Ω = n · v0|∂Ω + n · u|∂Ω = φ

so equations (1.2) and (1.3) are satis�ed. We also get

curl v = curl v0 + curlu = curlB(u) = f.

Since f satis�es (5.1) we get
curl v|Ω0 = η, (6.7)

which means that (3.2) is satis�ed and

(v · ∇)curl v = (curl v · ∇)v,

which is equivalent to
curl (v × curl v) = 0.
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Now we just need to construct p in such a way that (1.1) and (3.3) are satis�ed. This is
done by letting p be de�ned on Ω0 by (3.3) and setting 1

2
|v|2 + p equal to a constant along

the integral curves of v. Through this de�nition p will be de�ned in all of Ω since the
integral curves of v cover Ω. If we let x(y) ∈ Ω0 be the starting point of an integral curve
of v passing through y we get

p(y) =
1

2
|v(x(y))|2 + p(x(y))− 1

2
|v(y)|2.

This means that p(y) is continuously di�erentiable since x and v are continuously di�er-
entiable and p is continuously di�erentiable on Ω0. From (3.10) and (6.7) we get

(n · curl v)vT − v · n(curl v)T = n×∇Tg,

on Ω0. Through some algebra it is easy to show that this is equivalent to

n× (v × curl v) = n×∇Tg

which is the same as
(v × curl v)T = ∇Tg.

Since 1
2
|v0|2 + p0 is equal to a constant we can use our de�nition of p to get

(v × curl v)T = ∇T

(
1

2
|v|2 + p

)
.

This means that

τ · (v × curl v) = τ · ∇
(

1

2
|v|2 + p

)
for any unit vector τ tangential to Ω0, hence we have

1

2
|v(x)|2 + p(x) =

∫
ω

τ(y) · ∇
(

1

2
|v(y)|2 + p(y)

)
dsy +

1

2
|v(x0)|2 + p(x0)

=

∫
ω

τ(y) · (v(y)× curl v(y)) dsy +
1

2
|v(x0)|2 + p(x0),

for any x ∈ Ω0 connected to some �xed x0 ∈ Ω0 by some arc ω ⊂ Ω0 with tangent vector
τ . If we instead let τ be a unit vector tangential to the integral curves of v then

τ(x) · (v(x)× curl v(x)) = 0

for all x ∈ Ω. This implies that

1

2
|v(x)|2 + p(x) =

∫
ω

τ(y) · (v(y)× curl v(y)) dsy +
1

2
|v(x0)|2 + p(x0),

for all x ∈ Ω given that ω is an arc consisting of segments in Ω0 and integral curves of v.
Since curl (v × curl v) = 0 we can apply Stokes' theorem to get

1

2
|v(x)|2 + p(x) =

∫
ω′
τ(y) · (v(y)× curl v(y)) dsy +

1

2
|v(x0)|2 + p(x0),
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for any arc ω′ in Ω connecting x0 with x. This means that

v(x)× curl v(x) = ∇
(

1

2
|v(x)|2 + p(x)

)
, (6.8)

for all x ∈ Ω, which is equivalent to (1.1). From Theorem 1.13 it follows that ∇p ∈ H2(Ω)
since v ∈ H3(Ω), hence p ∈ H3(Ω). Altogether this means that (v, p) ∈ H3(Ω) is a solution
to (1.1)-(1.3), (3.2) and (3.3).

On the other hand if we assume u ∈ Vγ and that v = v0 + u is the velocity �eld for a
solution (v, p) ∈ H3(Ω) to (1.1)-(1.3), (3.2) and (3.3), then

((v0 + u) · ∇)curlu = (curlu · ∇)(v0 + v). (6.9)

Combining (3.3) with (6.8) we get

(v × curl v)T = ∇Tg,

on Ω0. Following the argument above backwards we see that this implies

(curlu)T =
n · curlu

v · n
vT −

1

v · n
n×∇Tg, (6.10)

on Ω0. (3.2), (6.9) and (6.10) together show that curlu satis�es (5.1), which means curlu =
f . By de�nition B(u) ∈ V and using that together with (3.7) and (3.8) we get

curl (B(u)− u) = curlB(u)− curlu = 0 in Ω

div (B(u)− u) = divB(u)− div u = 0 in Ω

n · (B(u)− u) = n ·B(u)− n · u = 0 on ∂Ω

for (B(u) − u) ∈ H3(Ω). Due to Theorem 4.19 we know that a function satisfying these
equations is unique and hence B(u)− u = 0, which means u is a �xed point of B.

As for the second part of the lemma we note that (1.1) implies that p − p̃ is constant
and (3.3) shows that p− p̃ = 0 on Ω0 and hence in all of Ω.

Finally we are ready to prove our main result.

Proof of Theorem 3.1. By choosing g ∈ H3
0 (Ω0), h ∈ H2

0 (Ω0) we know there exists se-
quences of functions g(i) ∈ C∞c (Ω0), h(i) ∈ C∞c (Ω0) which converge to g and h in respective
norm. Using g(i) and h(i) gives us a sequence of functions η(i) in H2

0 (U), which converges to
η in H2(U). Since H2

0 (U) is closed this means that η ∈ H2
0 (U). Hence B is a well-de�ned

operator.
Now pick γ̂ as any constant such that 0 < γ̂ ≤ γ0. For K1 choose any constant that

satis�es

K1 ≤
γ̂

Mc(49)

and

K1 ≤
1

Mc(50)
.
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From (3.1) it then follows that the assumptions of Proposition 6.3 are satis�ed. This
means that the operator B[g, h, v0] has a unique �xed point u ∈ Vγ̂. Now from Lemma 6.4
it follows that there exists a solution (v, p) ∈ H3(Ω) of (1.1)-(1.3), (3.2) and (3.3) with
v = v0 + u, hence

‖v − v0‖3,Ω = ‖u‖3,Ω ≤ γ̂.

Now if (ṽ, p̃) ∈ H3(Ω) is any solution of (1.1)-(1.3), (3.2) and (3.3) satisfying (3.4), then
from Lemma 6.4 it follows that ṽ − v0 ∈ Vγ̂ is the unique �xed point of B[g, h, v0]. This
means that ṽ = v and from the second part of Lemma (6.4) we get that p̃ = p, which
shows that (v, p) is the unique solution of (1.1)-(1.3), (3.2) and (3.3) satisfying (3.4).

To prove (3.5) we note that since both v(1), v(2) satisfy (3.4), u(1) = v(1) − v0, u
(2) =

v(2) − v0 are the �xed points of B[g(1), h(1), v0], B[g(2), h(2), v0] respectively. Since both
(g(1), h(1)), (g(2), h(2)) satisfy (3.1) the assumptions of Proposition 6.3 are satis�ed and
equation (6.6) gives

‖v(1) − v(2)‖1,Ω = ‖u(1) − u(2)‖1,Ω ≤ K2(‖h(1) − h(2)‖0,U + ‖∇T (g(1) − g(2))‖0,U),

where

K2 =
Mc(48)

1−Mc(50)K1

.

To prove (3.6) we use (1.1) to obtain

‖∇p(1) −∇p(2)‖0,Ω = ‖(v(2) · ∇)v(2) − (v(1) · ∇)v(1)‖0,Ω

≤ ‖[(v(2) − v(1)) · ∇]v(1)‖0,Ω + ‖(v(2) · ∇)(v(2) − v(1))‖0,Ω

≤ ‖∇v(1)‖Cb(Ω)‖v(2) − v(1)‖0,Ω + ‖v(2)‖Cb(Ω)‖v(2) − v(1)‖1,Ω

≤ c(1)(‖v(1)‖3,Ω + ‖v(2)‖3,Ω)‖v(2) − v(1)‖1,Ω

≤ 2c(1)(‖v0‖3,Ω + γ̂)‖v(2) − v(1)‖1,Ω

(6.11)

and (3.3) to obtain

‖p(1) − p(2)‖0,Ω0 =

∥∥∥∥g(1) − 1

2
|v(1)|2 − g(2) +

1

2
|v(2)|2

∥∥∥∥
0,Ω0

≤ ‖g(1) − g(2)‖0,Ω0 +
1

2
(‖v(1)‖Cb(Ω0) + ‖v(2)‖Cb(Ω0))‖v(2) − v(1)‖0,Ω0

≤ ‖g(1) − g(2)‖0,Ω0 +
c(1)

2
(‖v(1)‖3,Ω + ‖v(2)‖3,Ω)‖v(2) − v(1)‖0,Ω0

≤ ‖g(1) − g(2)‖0,Ω0 + c(2)c(1)(‖v0‖3,Ω + γ̂)‖v(2) − v(1)‖1,Ω.
(6.12)

Next we note that for any function q ∈ H1(Ω).

‖q‖0,Ω ≤ L1/2‖q‖0,Ω0 + L‖∇q‖0,Ω. (6.13)

This follows from the fact that we can write

q(x1, x2, x3) = q(x1, x2, 0) +

∫ x3

0

∂

∂x′3
q(x1, x2, x

′
3) dx′3,
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which implies

‖q‖0,Ω =

(∫
Ω

|q(x)|2 dx
)1/2

≤
(∫

Ω

|q(x1, x2, 0)|2 dx
)1/2

+

(∫
Ω

∣∣∣∣∫ x3

0

∂

∂x′3
q(x1, x2, x

′
3) dx′3

∣∣∣∣2 dx
)1/2

≤ L1/2

(∫
U

|q(x1, x2, 0)|2 dx1 dx2

)1/2

+

(∫
Ω

x3

∫ x3

0

∣∣∣∣ ∂∂x′3 q(x1, x2, x
′
3)

∣∣∣∣2 dx′3 dx
)1/2

≤ L1/2‖q‖0,Ω0 +

(∫ L

0

x3 dx3

∫
U

∫ L

0

∣∣∣∣ ∂∂x′3 q(x1, x2, x
′
3)

∣∣∣∣2 dx′3 dx1 dx2

)1/2

≤ L1/2‖q‖0,Ω0 + L‖∇q‖0,Ω.

Combining (6.11)-(6.13) gives

‖p(1) − p(2)‖1,Ω ≤ ‖p(1) − p(2)‖0,Ω + ‖∇p(1) −∇p(2)‖0,Ω

≤ L1/2‖p(1) − p(2)‖0,Ω0 + (1 + L)‖∇p(1) −∇p(2)‖0,Ω

≤ L1/2‖g(1) − g(2)‖0,Ω0

+ (L1/2c(2)c(1) + (1 + L)2c(1))(‖v0‖3,Ω + γ̂)‖v(2) − v(1)‖1,Ω,

and using (3.5) to estimate ‖v(2) − v(1)‖1,Ω gives (3.6) with

K3 = max{L1/2, K2(L1/2c(2)c(1) + (1 + L)2c(1))(‖v0‖3,Ω + γ̂)}.
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7 Examples

In this section we look at examples relating to our main result. The �rst example is a �ow
in with no x2-component. It is not so closely related to the main result as we consider this
in a slab that extends in�nitely in the x2 direction. However, it is related to the second
example, where we consider axisymmetric �ow in a cylinder. The third example solutions
that are Beltrami �elds, which means that the �ow is parallel to the vorticity.

7.1 Two-Dimensional Flow

We consider a domain Γ, which is de�ned by

Γ := {x : 0 ≤ x1 ≤ R, 0 ≤ x3 ≤ L}

and consider a �ow with no x2 component and φ independent of x2. This means it has the
form v = (v1(x1, x3), 0, v3(x1, x3)). We note that the since the �ow is divergence free it can

be written in terms of a stream function ψ, which is de�ned by v =
(
− ∂ψ
∂x3
, 0, ∂ψ

∂x1

)
. Under

the condition v3 ≥ b > 0 it solves ∆ψ = F (ψ) for some function F [5]. with v · n = φ on
the boundary we assume that

φ < 0, x3 = 0,

φ = 0, 0 < x3 < L,

φ > 0, x3 = L,

Using this we �nd that n ·
(
− ∂ψ
∂x3
, 0, ∂ψ

∂x1

)
= 0 for 0 < x3 < L, but in this case n = ±(1, 0, 0)

giving
∂ψ

∂x3

= 0, 0 < x3 < L.

Hence ψ is constant along both x1 = 0 and x1 = R, which we will call ψ0 and ψR
respectively. For x3 = 0 we have n = −(0, 0, 1) which gives

∂ψ

∂x1

= −φ, x3 = 0.

Through this we can get the values of ψ at x3 = 0 as

ψ(x1) := ψ0 −
∫ x1

0

φ(y1, 0)dy1,

where we require ψP = ψ0 −
∫ P

0
φ(y1, 0)dy1. Similarly we get that ψ at x3 = L is

ψ(x1) := ψ0 +

∫ x1

0

φ(y1, L)dy1.

This gives that ψ solves
∆ψ = F (ψ)
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with boundary conditions

ψ = ψ, 0 < x1 < R, x3 = 0,

ψ = ψ0, x1 = 0, 0 < x3 < L,

ψ = ψP , x1 = R, 0 < x3 < L,

ψ = ψ, 0 < x1 < R, x3 = L.

If curl v is known at x3 = 0 we can also determine F . Since

curl v =

(
0,
∂v1

∂x3

− ∂v3

∂x1

, 0

)
= (0,−∆ψ, 0)

we get
−∆ψ = (curl v)x2(x1(ψ))

at x3 = 0, where we have used that ψ is strictly increasing as a function of x1 to express x1

as a function of ψ. That this holds in the whole domain follows from the fact that ψ and
−∆ψ are constant along the integral curves of v. To see this we note that from de�nition
we have

(v · ∇)ψ = − ∂ψ
∂x3

∂ψ

∂x1

+
∂ψ

∂x1

∂ψ

∂x3

= 0.

and from

(v · ∇)curl v = (curl v · ∇)v = (curl v)x2
∂v

∂x2

= 0

it follows that
(v · ∇)(−∆ψ) = 0.

An equivalent condition is to specify the Bernoulli function, H, at x3 = 0. since

∇H × n = (v × curl v)× n = (n · v)curl v − (n · curl v)v = φ curl v

because n · curl v = 0. This means we can determine curl v if H is known. We can compare
this to our main result where we required the boundary conditions (3.2) and (3.3). We
see that the condition that v is independent of x2 gives us a condition similar to (3.2) and
that the other condition we have to impose is comparable to (3.3).

7.2 Axisymmetric Flow Without Swirl

The domain in the two dimensional example can be seen as a section of a circular cylinder
of radius R and height L instead of a section in a straight in�nite Slab. Where instead of
the condition that there is no �ow in the x2 direction we require the �ow to be axisymmetric
and without swirl, by which we mean that the �ow is invariant under rotations in the axis
of the cylinder and nonzero only in the radial and vertical directions. In this case the
equations to solve become a somewhat di�erent than in the previous example. To show
these di�erences we de�ne the unit vectors for cylindrical coordinates (r, θ, x3) as

er = (cos θ, sin θ, 0)

eθ = (− sin θ, cos θ, 0)

ex3 = (0, 0, 1).
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That the �ow is without swirl means vθ = 0, hence

v = vrer + vx3ex3 ,

where vr and vx3 are independent of θ since the �ow is axisymmetric. Again we also assume
vx3 ≥ b > 0. Since our �eld is divergence free we can write it in terms of a stream function
ψ = ψ(r, x3), where

vr = −1

r

∂ψ

∂x3

, vx3 =
1

r

∂ψ

∂r
.

The velocity �eld also satis�es

(curl v · ∇)v = (v · ∇)curl v.

Using

curl v =

(
∂vr
∂x3

− ∂vx3
∂r

)
eθ

gives

(v · ∇)curl v =

(
vr
∂

∂r
+ vx3

∂

∂x3

)
((curl v)θeθ)

=

(
vr
∂(curl v)θ

∂r
+ vx3

∂(curl v)θ
∂x3

)
eθ

and

(curl v · ∇) =
(curl v)θ

r

∂

∂θ
(vrer + vx3ex3)

=
(curl v)θvr

r
eθ,

so

vr
∂(curl v)θ

∂r
− vr

(curl v)θ
r

+ vx3
∂(curl v)θ
∂x3

= 0,

which is equivalent to

(v · ∇)
(curl v)θ

r
= vr

∂

∂r

(curl v)θ
r

+ vx3
∂

∂x3

(curl v)θ
r

= 0.

Hence (curl v)θ
r

is constant along the integral curves of v, but

(curl v)θ =
∂vr
∂x3

− ∂vx3
∂r

= −1

r

∂2ψ

∂x2
3

− ∂

∂r

(
1

r

∂ψ

∂r

)
= −1

r

(
∂2ψ

∂x2
3

− r ∂
∂r

(
1

r

∂ψ

∂r

))
,

so, instead of −∆ψ = F (ψ) as we got in the previous example, we get

− 1

r2

(
∂2ψ

∂x2
3

− r ∂
∂r

(
1

r

∂ψ

∂r

))
= F (ψ).
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The boundary conditions can be treated in a similarly to the previous example. There are
two di�erences though. The �rst di�erence is that we have no boundary condition that
gives us ψ constant at r = 0, however, this follows from that the �ow is axisymmetric.
The second di�erence is that we get a factor r in the integrals when de�ning ψ and ψ as
the stream function is de�ned slightly di�erent in this example. Hence in this case too, we
need φ = v · n on the boundary and H at x3 = 0 to determine the �ow.

7.3 Beltrami Fields

The Beltrami �elds de�ned by curl v = αv are separated into the linear case (treated in [7]),
where α is a constant, and the nonlinear case (treated in [6]), where α is a scalar function
α = α(x). This gives v × curl v = 0. By equation (1.4) we get that v satis�es (1.1) if
∇H = 0, that is H constant. So a divergence free Beltrami �eld gives a �ow satisfying
(1.1)-(1.2) if we let

p = −1

2
|v|2.

On the other hand
v · ∇H = v · (v × curl v) = 0,

that is, H is constant along the integral curves so if H is constant on Ω0 and the integral
curves of v cover Ω we get that H is constant in all of Ω. This in turn implies that

v × curl v = ∇H = 0,

hence v is a Beltrami �eld.
So requiring a solution to be a Beltrami �eld essentially determines the boundary

condition in equation (3.3) as opposed to requiring the solution to be axisymmetric which
determines the boundary condition in (3.2). However, if we require the solution to be a
linear Beltrami �eld we �nd that

n · curl v = α0n · v = α0φ.

for some constant α0, so in this case we only need to know this constant for both boundary
conditions to be determined.

The nonlinear case is di�erent in this regard as such a boundary condition is not
restricted. In [6] an existence result is proven for the problem

curl v = αv in Γ,

div v in Γ,

n · v = φ on ∂Γ,

n · curl v = α0φ on ∂Γ−,

for smooth domains Γ where ∂Γ−, as in section 2, is the subset of ∂Γ with φ < 0, and α
and α0 are functions in Γ and on ∂Γ−, respectively. Hence, for nonlinear Beltrami �elds a
condition similar to (3.2) (or maybe rather (2.5) since the domain is smooth) is required.
The reason that the last condition is only needed on ∂Γ− comes from the fact that

0 = div curl v = div (αv) = αdiv v + (v · ∇)α

61



combined with div v = 0 implies that α is constant along the integral curves of v and if
they cover Γ this is su�cient.
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8 Discussion

The main result in this thesis is proven under numerous restrictions on the boundary data.
Some of these restrictions are possibly arti�cially put in place and can hopefully be reduced
or removed. For example the requirement that we have no vorticity on the vertical sides
seems like a good candidate to be removed as it is easy to construct a �ow satisfying
(1.1)-(1.3) which has constant vorticity in the x3-direction in all of Ω.

Another possible thing to look into is the bound on g and h given by equation (3.1).
A possibility for this was proposed by Alber as he found that the corresponding constant
bounding g and h behaves like ∼ 1

L0
, where L0 is the least upper bound of all the integral

curves of v0. This would mean that for `short' domains the bound practically disappears
and the condition could be removed if `longer' domains could be treated as several `short'
domains the condition could be removed. This approach seems more feasible for cylindrical
domains than for the general domains Alber worked with. The reason is that the constant
also depends on the length of the domain and to estimate this dependence seems more
straightforward in the cylindrical case.

The most obvious way, though, to continue the work done in this thesis would be to
consider more general domains with edges and corners. Maybe the most natural would be
to allow the the boundary of U to have corners.
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A Irrotational Solutions

For our main result to be meaningful we also need to know that there exists an irrotational
solution to (1.1)-(1.3) with enough regularity, that is, a function v ∈ H3(Ω) with div v = 0,
curl v = 0 and

n · v = φ

on ∂Ω. Su�cient conditions for this are that

φ = 0 on ∂U × (0, L),

φ0 = φ|Ω0 , φL = φ|ΩL ∈ H5/2(U), (A.1)∫
Ω0

φ dS = −
∫

ΩL

φ dS, (A.2)

and
n · ∇φ0 = n · ∇φL = 0 on ∂U. (A.3)

This can be seen by introducing a potential Φ, which satis�es Φ = ∇v and ∆Φ = 0 in Ω
and n · ∇Φ = φ on ∂Ω and treating this problem in a similar way to the one in Section 4.
The di�erence is that here the operator S has Neumann boundary conditions. Due to
this 0 is an eigenvalue, which gives us the condition (A.2). In Fourier variables (as in
Propositions 4.9 and 4.11) the problem reads

Φ̂′′n = λnΦ̂n, 0 < x3 < L

Φ̂′n = −φ̂0,n, x3 = 0,

Φ̂′n = φ̂L,n, x3 = L,

with solution
Φ̂0 = −φ̂0,0x3 + a = φ̂L,0x3 + a,

for n = 0, where a is an arbitrary constant and

Φ̂n = φ̂0,n
cosh(

√
λn(x3 − L))√

λn sinh(
√
λnL)

+ φ̂L,n
cosh(

√
λnx3)√

λn sinh(
√
λnL)

for n 6= 0 given that φ̂0,0 = −φ̂L,0. Squaring and integrating gives∫ L

0

(λ4
n|Φ̂n|2 + λ3

n|Φ̂′n|2 + λ2
n|Φ̂′′n|2 + λn|Φ̂′′′n |2 + |Φ̂′′′′n |2) dx3 . λ5/2

n (|φ̂0,n|2 + |φ̂L,n|2),

which gives Φ ∈ H4(Ω) given that φ0, φL ∈ D(S5/4). Through the characterization of
D(S5/4) this means that (A.1) and (A.3) has to be satis�ed.

Additionally it follows that v3 = ∂
∂x3

Φ ≥ b > 0 in Ω̄ given that the inequality holds at

Ω0 and ΩL. Through elliptic regularity and Sobolev's embedding theorem we get ∂
∂x3

Φ ∈
C∞(Ω)∩C1(Ω̄). The function is also harmonic and it follows that it takes its least value at
the boundary. To eliminate the possibility that this happens at the boundary ∂U × (0, L)
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we use Hopf's lemma (see e.g. maximum principles in [9]). It states that if ∂
∂x3

Φ has a

minimum at some x ∈ ∂U × (0, L) then either n ·∇ ∂
∂x3

Φ(x) < 0 or ∂
∂x3

Φ is a constant in Ω̄,

which would immediately imply that ∂
∂x3

Φ ≥ b > 0 since this is true at Ω0 and ΩL. As for

the case if ∂
∂x3

Φ is not constant we already know n · ∇ ∂
∂x3

Φ(x) = 0 for all x ∈ ∂U × (0, L)

so ∂
∂x3

Φ takes its minimum at Ω0 or ΩL, which also means that ∂
∂x3

Φ ≥ b > 0 in Ω̄.
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