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Abstract 

  

Several digital technologies are now available to record and document archaeological 

excavations. A large number of studies have been published concerning the use of laser scanning, 

image based 3D modelling and GIS. By integrating different typologies of 3D data from Uppåkra, 

an Iron Age central place in southern Sweden, this thesis focuses on the development  and 

evaluation of how 3D Geographic Information Systems (3D GIS) affect archaeological practice. In 

specific a Digital Terrain Model (DTM) was created for the site and the surrounding landscape. A 

UAV (drone) was used to document the excavation area in higher resolution, and image based 

3D modelling was used to record the ongoing excavation on a single-context level. These different 

typologies of data were subsequently imported in a 3D GIS system (ArcScene) in order to conduct 

various types of spatial analysis (e.g. hillshade and slope analysis) as well as to create 3D 

drawings of the excavated contexts, using the textured 3D models as a geometrical reference. 

The ability to virtually revisit previous stages of the excavation and the use of tablet PC’s for 

documentation and discussion at the trowel’s edge increased reflexivity on the excavation and 

stimulated on-site interpretation by the excavation team. The model based drawing approach 

furthermore improved the drawing resolution compared to traditional documentation using a total 

station, especially for complicated contexts. This approach allowed connecting different typologies 

of data in the same virtual space, 1) increasing the possibility of researchers and scholars to gain 

a complete overview of all the information available, as well as 2) exponentially increasing the 

possibilities to perform new analysis. The ability to interact and navigate with all the data in 3D 

improved the impact of the data and comes closer to simulating the real world. Though some 

challenges still have to be faced, such as inaccurate georeferencing and unrealistic colour 

projection, the method was found to significantly improve the documentation quality by creating a 

multi-scale 3D documentation platform. By further developing this method, it can help us to 

improve the standards of archaeological excavation documentation. 
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1 - Introduction - Research questions and methods 

 

Archaeological fieldwork practice is a destructive process. Once the remains are uncovered and 

documented, the physical evidence is removed in order to progress with the investigation. The 

possibility of using technology to document in three dimensions (hereafter 3D) the stratigraphic 

sequence (length, width and depth) detected by archaeologists during the field investigation 

process, opens new important scenarios for what concerns archaeological practice and field 

interpretation, increasing the possibilities to visualize what Harris described as fourth dimension: 

time (1989, p.83).  

 

One of the tasks of the archaeologists is to record these dimensions as accurate as possible, 

since the practice of excavating is in itself a destructive process. Barker describes the practice of 

field archaeology as an unrepeatable experiment (1993, p.13). In order to digitally record the 

archaeological remains so that they can be studied in the three dimensions and by other scholars, 

the 3D data has to be organized and managed as a dataset which can be used to diachronically 

simulating the investigation process (Callieri et al., 2011; Dellepiane et al., 2013). The 

documentation has to capture as many aspects of the real world as possible, since archaeological 

methods keep being developed and new questions to the material will be asked in the future. The 

standards of documentation for today’s research might not be sufficient to answer tomorrow’s 

questions, so archaeologists have to strive to improve the quality of their recording and 

documentation at all times. Since the last few decades, archaeologicalist have several new digital 

tools to their disposal which can contribute to an improvement of documentation methods. In order 

to do this, a solid methodological and theoretical frame has to be developed. Digital developments 

in archaeology need the creation of theoretical support (Zubrow, 2006, p.9).  

Many studies have explored the potentials of digital methods in archaeology. However they 

have been limited by factors such as time-consuming (Dell’Unto, 2014, p.153) or the lack of a 3D 

visualisation and analysis platform (Dell’Unto, 2014, p.156). Moreover, these studies often use the 

3D methods still to create a final output which is bi-dimensional (De Reu, 2014). However, the 

rapid development of technologies and 3D software packages allow us today to take these 

experiments a step further. This thesis aims to explore and discuss the potentials and limitations 

of 3D recording and modelling1 of archaeological excavations, by discussing how these digital 

techniques can change the process of excavation and interpretation in both theory and practice. 

After the presentation and discussion of several digital techniques and their use within 

archaeology as well as theoretical implications that these techniques have, I will integrate the 

conclusions that I drew into a discussion concerning an experiment developed in the frame of the 

excavation site of Uppåkra, an Iron Age central place located in southern Sweden.  

 

In the frame of a field investigation activity, developed by the Department of Archaeology and 

Ancient History, Lund University, an experiment concerning the 3D digital recording of the ongoing 

excavation was conducted in order to evaluate the potential of 3D Geographic Information 

                                                
1 During the course of this thesis I use the terms 3D recording, modelling and documenting. 3D 
recording refers to the data acquisition. 3D modelling refers to the use of this data in order to create a 
model, i.e. a mathematical representation of a 3D surface of an object. 3D documenting lastly refers to 
the broader concept of documenting archaeological remains in 3D, and can thus include both 3D 
recording and 3D modelling.    
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Systems (GIS) in support of field practice. The methodology developed and described in the frame 

of this thesis as well as the implications that his approach had on the field investigation and 

interpretation process have been evaluated and discussed in the final chapters in a discussion 

regarding the use of 3D recording techniques in archaeological excavations.  

In summary, the questions that this thesis aims to answer are the following. 1) What is the 

state-of-the-art concerning 3D recording of archaeological excavations? 2) What theoretical 

implications do these techniques have? and 3) How can these techniques and theoretical 

backgrounds be successfully combined and integrated in order to create a fluent, accurate and 

theoretically supported workflow for real-time 3D documentation of all archaeological contexts on 

excavations? The latter will be discussed with a case study from the excavation in Uppåkra, 

Sweden.    

1.1 - Research History 

 

This section aims to provide with a short introduction on the research history in the field of digital 

3D recording. Archaeology, as well as many other disciplines, is going through a ‘digital revolution’, 

but before the introduction of digital recording instruments, analog recording methods had been 

the standard for many decades. In this thesis I will not provide an extensive history of analog 

recording techniques, but rather refer to some works by other authors that deal with this subject 

in great detail (e.g. Barker 1993; Roskams 2001; Jensen 2012). What follows is a short 

introduction concerning several digital techniques that have been developed throughout the years, 

most of which are still in use. For a more extensive description and technical details of 3/4D GIS, 

laser scanning and photogrammetry I refer to chapter two, which deals with the current state-of-

the-art in 3D recording technology.   

 

Since the early 1980’s, computers have been used to record and analyse excavation data. 

Geographical Information Systems (GIS) came in use to relate different typologies of data and 

further analyse them in for example a predictive model (Barker, 1993, p.158). In the years 

following, GIS have revolutionized the way archaeologists conduct spatial analyses and caused a 

highly specialized field of archaeology that deals with the practical as well as theoretical 

implications of GIS (Allen, Green and Zubrow, 1990; Gaffney and van Leusen, 1995; Kvamme 

1999; Lock 2001; Connoly and Lake, 2006; McCoy and Ladefoged, 2009; Llobera, 2012). 

However it is necessary to highlight that Geographic Information Systems function as data 

management platform and their use and development in archaeology strictly depends on the 

possibility of having access to new and different typologies of data.    

 By using an Electronic Distance Meter (EDM) and an electronic theodolite, the location 

of individual artefacts could be digitally recorded in 3D as early as the 1980’s as well (Barker, 

1993, p.187). The introduction of these two tools in archaeology led to an increased accuracy in 

the 3D recording of points from ± 5 cm to ± 5 mm. The new technique was also faster and easier 

compared to manual drawing, and moreover reduced cumulative systematic errors due to 

measuring from a wrong basepoint. In fact the introduction of these techniques was found to be 

so useful that instead of one or a few points, outlines of entire objects were measured in 3D and 

then digitized in the computer (Dibble, 1987, pp. 250-251). 

By the later 1980’s, GIS was used to visualize sites (e.g. only Roman or Early Iron Age 

sites) with their locations plotted on a 3D Digital Terrain Model (DTM - figure 1), and the potential 
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for this technique to be used in the 3D stratigraphical analysis of excavations was recognized. In 

fact, Trevor Harris was already mentioning the possibilities for dividing archaeological layers 

according to their temporal stratigraphy, and combining this data with an archaeological 

database inside a GIS (Harris, 1987, p.168). An early example of 3D stratigraphic modelling can 

be found in Reilly (1990).   

 

 
 

Figure 1. Early example of 3D GIS showing a selection of sites visualized as dark patches projected on a Digital 

Terrain Model (DTM). Source: Harris, 1987, p.165. 

 

The theodolite can be seen as the ancestor of the Total Station in archaeology, which became 

widely used in the 1990’s (Rick, 1996). Over time, total stations have largely replaced optical 

theodolites. With the introduction of the Robotic Total Station (RTS) the instrument became even 

easier to use since the remote control option allowed for the operation of the instrument by a single 

person. Moreover, a radio linkage between a control pad and the main station allowed for much 

quicker acquisitions, which made the instrument suitable to map entire landscapes (Kvamme, 

Ernenwein and Markussen, 2006). Total station data has been used for CAD (Computer 

Aided/Assisted Design/Draughting/Drawing) drawings in 3D since the later 1980’s (Lock, 2003, 

p.53). Where a total station could not be used or did not provide enough detail, a 3Space Tracker 

was developed which could provide an accuracy of less than 2 millimeters (Lock, 2003, p.107).

 A next step in the digitization of 3D data in archaeology was the introduction of the GPS 

(Global Positioning System), which was developed in the late 1970’s but was restricted in use of 

the more accurate data by the US Department of Defence until May 2000 (Connoly and Lake, 

2006, p.63). A Differential GPS (DGPS) which calculates differential correction between the 

estimated and actual location of the receiver, has accuracy to the centimeter or better. A GPS is 

easier to handle and much faster than a total station. Moreover it reduces the dependence on 
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existing maps or coordinates which a total station needs to locate itself (Barratt, Gaffney and 

Goodchild, 2000, p.133). Furthermore, contrary to a total station where data visualization is only 

possible after importing the data in a computer, the obtained data from a RTK (Real Time 

Kinematic) GPS can be visualized and analyzed immediately on a little screen that is connected 

to the survey pole or ‘rover’ (Roosevelt, 2014, p.32). A final advantage of using a GPS over a total 

station is that a GPS does not require intervisibility between the base and the rover, something 

which can be very limiting in the case of for example urban survey. However, a GPS also has 

some limitations, which are mainly connected to the possibility of connecting with the satellites for 

example in heavily built-up or vegetated areas (Connoly and Lake, 2006, pp. 63-64). 

 The techniques described so far, although increasingly accurate, fast and without doubt 

very useful in the recording of 3D data, require a great deal of time if the goal is to acquire not just 

points but entire sites or even landscapes. They also have some other limitations, such as the fact 

that they require the archaeologists to walk over the features that need to be recorded, which can 

be problematic in the case of for example a waterlogged site, organic material or other vulnerable 

surfaces (Doneus and Neubauer, 2005, p.2). A new technique that solved some of these problems 

and significantly increased the speed and ease of acquiring thousands of points with a very low 

labour intensity is laser scanning (see chapter 2.1). Laser scanners came on the market in the late 

1990’s. They are very suitable for the documentation of standing structures such as buildings or 

caves, which, due to the geometrical complexity, are very hard to document with a total station or 

GPS, and have been used a lot since the early 2000’s to document archaeological sites (Doneus 

and Neubauer, 2005; Lambers et al., 2007), caves (Lerma et al., 2010) and most of all, 

architectural remains (Strumpfel et al., 2003; Dell’Unto et al., 2013a; Dell’Unto et al., 2013b; 

Dell’Unto et al., 2015).                

 Besides their terrestrial use, laser scanners have also revolutionized remote sensing in 

archaeology. Airborne Laser Scanning (ALS), also widely known as LIDAR (Light Detection And 

Ranging), has come in use in archaeology in the last decade. The earliest LIDAR systems were 

developed by NASA in the 1970’s, but limitations positioning and georeferencing equipment, the 

high cost and limitations in software and hardware prevented the adoption of the technique for 

commercial survey projects until the late 1990’s (Opitz and Cowley, 2013, p.15). The main 

application of LIDAR is the creation of Digital Surface Models (DSM) or Digital Terrain Models 

(DTM) from the dense point cloud that it produces. The revolutionary characteristic of LIDAR is 

that it provides archaeologists with the possibility to select and visualize different typologies of 

elements (such as vegetation, structures, etc.) at a landscape scale previously acquired and 

classified by the system, providing archaeologists with the opportunity to effectively ‘see through’ 

vegetation (Doneus et al., 2008; Chase et al., 2011). Furthermore, it has proven to be extremely 

suitable for the discovery of new sites or to provide new information about the extension of already 

known sites, such as Stonehenge (Bewley, Crutchley and Shell, 2005). 

 

The last development in 3D recording techniques in archaeology that will be described in 

this section is photogrammetry (image based 3D reconstruction techniques - see chapter 2.3). 

Together with laser scanning, this technique has revolutionized the concept of 3D recording in 

archaeology, but has also caused some “misunderstandings and ambiguities” (Campana, 2014, 

p.8). The introduction of these techniques has led some scholars to argue that recording and 

documentation in archaeology were now fully objective (e.g. Anderson, 1982, p.200). But 

essentially they are still subjective and based on interpretation (Campana, 2014, p.8). This subject 
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regarding the theoretical implications of digital 3D recording techniques will be discussed in detail 

in chapter three of this thesis.     

Photogrammetry has been used for archaeology since the 1950’s. Despite its huge 

potential as a fast and accurate method, a number of significant drawbacks such as high costs 

and high demand of specialized operators has been the reason why the technique has not been 

able to become a standard method for archaeological recording and documentation (Anderson, 

1982, pp.201-204; Fussel, 1982, p.165). In the last few decades however, the technique has 

become very popular because of lowered costs of both cameras and post processing tools, and 

the introduction of digital photography (e.g. Gisiger et al., 1997, p.11).  

A development that has been closely connected with aerial photography and 

photogrammetry is the use of UAVs (Unmanned Aerial Vehicles). Since Giacomo Boni used a 

balloon to take aerial pictures of the Forum Romanum in the late 19th century, archaeologists 

have recognized the potential of using aerial pictures for the creation of maps and orthophotos in 

order to analyse the data from a clear viewpoint (see Ceraudo, 2013 for an overview of the use of 

aerial photography in archaeology). Tools that have been used to place a camera on a high point 

above the scene range from pigeons, poles and towers to kites, balloons and rockets (see 

Verhoeven, 2009 for an overview of utilized technologies).  

Aerial photographs can be extremely helpful to detect archaeological sites which are 

(partly) hidden beneath the surface. It makes use of not only visible archaeological features, but 

also archaeological traces which are an impression by the archaeological material on surrounding 

elements (humidity, vegetation, relief etc.) These traces can be classified in crop-marks, soil-

marks, shadow sites and others (Ceraudo, 2013, pp.28-29). A recent application of aerial photos 

in archaeology is the creation of textured 3D- and digital terrain models, using the 

photogrammetric techniques. The acquisition method of choice in present day archaeology is most 

often a UAV (Unmanned Aerial Vehicle), since they offer several advantages over the traditional 

tools (see chapter 2.4). Especially in the last five years, UAVs have been increasingly used to map 

and analyze archaeological sites using aerial photography and photogrammetry (Remondino et 

al., 2011; Roosevelt, 2014; Smith et al., 2014; Fernández-Hernandez et al., 2015).     

 

In the last few years, 3/4D GIS systems became available for use in archaeology (Esri, 2013). 

Whereas the data obtained in 3D until recently was mostly restricted to 2D (bi-dimensional) 

visualization within GIS, it is now possible to visualize the 3D data in a 3D spatial context. 

However, as is discussed by Stefano Campana (2014, p.11), archaeologists still have a habit of 

thinking in two dimensions, because we have been educated to reduce reality from three 

dimensions into two. 3D Models are often just used in the end of the process to make 

reconstructions. Instead we should create a process “in which the 3D model no longer constitutes 

the end but rather the means of achieving better understanding through analysis and simulation” 

(Campana, 2014, p.10). Throughout the last ten years, many case studies have been conducted 

in which the potential of 3D models derived from photogrammetry or laser scanning, or a 

combination of both, as (almost) real time data for analysis and documentation of excavations has 

been explored (Katsianis et al., 2008; Callieri et al., 2011; Doneus et al., 2011; Dellepiane et al., 

2013; DeReu et al., 2013; Dell’Unto, 2014; DeReu et al., 2014). However, the models are still 

rarely used as an analytic tool on excavations, providing with a fully real time documentation of 

the stratigraphy and the archaeological contexts. As will be seen in the next chapter, the current 

state-of-the-art of technology allows us to use the models as a geometrical and visual background, 

which serves as an interpretational tool and can be used in combination with overlaying digital 
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drawings of contexts and features. In current GIS systems such as ESRI’s ArcScene (version 

10.2.2), these drawn contexts in the form of 3D polygons can be linked to a database within the 

software which replaces a manual context sheet, providing all the information required in 

traditional context sheets (Archaeological Site Manual, 1994). The next step is to combine different 

3D recording techniques in a multi-scale analysis, focusing on the landscape, the intra-site level 

and the stratigraphical and single context level. It is in this line that the case study in Uppåkra was 

conducted, and this method will be evaluated and discussed in the following chapters of this thesis.  
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2 - Materials and methods 

 

This chapter aims to summarize the state-of-the-art regarding 3D recording, modelling and 

analysis technologies that are currently used in archaeology, and introduces the materials and 

methods that have been used for analysis in this thesis. The developments that have been 

described in chapter 1.1 have led to the state of technology that we are facing now. The best 

results will be obtained by integrating these different technologies. This chapter presents a 

selection of the technologies that can be used for recording and analyzing 3D data, and will focus 

on the methods that have most potential for archaeological practice and have proven their use in 

several case studies. 

2.1 - Terrestrial Laser Scanning for 3D recording of archaeological stratigraphy 

 

Laser scanning refers to a method where a surface is scanned by laser beams, followed by a 

measurement of the travelling distance of these beams. The output data is normally a dense point 

cloud that represents the scanned surface, from which information about the morphology of the 

object can be derived (Opitz, 2013, p.13). In archaeology, laser scanners are mainly used for three 

purposes: to record objects, to record structures on the ground or to record the landscape from 

above. These methods are referred to as terrestrial- (TLS) and airborne laser scanning (ALS). 

Although they clearly have different methods of data capturing, the basic technology of laser 

ranging that they use is the same. The methods and algorithms that are used for the post 

processing of the data are also generally the same (Vosselman and Maas, 2010, p.ix). For this 

reason, I will first provide a short technological description of general laser scanning techniques 

that are used in archaeology, and then focus on specific applications of both terrestrial- and 

airborne laser scanning.  

Laser scanners can be divided in three categories, separated by the method they use to capture 

the data: time-of-flight (TOF - figure 2), Phase Shift and Triangulation. The time-of-flight method 

is most suitable for the mid- and long range of archaeological excavations and landscapes. The 

TOF method uses the known velocity of light waves in a given medium, and measures the time 

delay (also called time-of-flight) of light travelling from a source to a reflective target and back to 

a light detector (Vosselman and Maas, 2010, p.2). The light detector can record multiple returns, 

in case there are multiple objects (such as vegetation) in the way of the light wave. In airborne 

laser scanning, at least the first and last return is recorded. Most systems detect four to five 

different returns. Some terrestrial laser scanners are now also able to record different returns. 

Most commercial TOF laser scanners have a range uncertainty for a single pulse in the order of 

5-10 mm (Vosselman and Maas, 2010, p.5). There are several different methods to capture the 

light returns, each with their own pros and cons. For more detailed information about them I refer 

to publications that deal with the technical characteristics of laser scanners in great detail (e.g. 

Vosselman and Maas, 2010).  
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Figure 2. Time-of-Flight laser scanning principle. Source: van Genechten, 2008, p.22.  

 

A second typology of instruments which measure the travelling time of the laser beam, but uses a 

different method to measure the distance of the object, is called Phase Shift (Vosselman and 

Maas, 2010, pp.5-8). In this method, a continuous laser beam is sent out from the scanner 

(contrary to TOF which sent out multiple short laser pulses), and the distance to the object is 

calculated by measuring the phase shift between the emitted and received laser beams (Opitz 

and Cowley, 2013, pp.13-14). Traditionally, TOF were more suitable for longer ranges, whereas 

Phase Shift dominated the shorter distances. During the last decade, experiments in 

archaeological recording using both TOF and Phase Shift scanners have shown very similar 

results (San José Alonso, 2011).    

 

The third method of measuring that is used by a category of laser scanning devices is triangulation. 

This method is more suitable for surveys with a range of less than five meters and is thus mostly 

used for recording artefacts, and not for archaeological site or landscape survey. For this reason, 

I will not describe this method in this thesis but again refer to Vosselman and Maas (2010), who 

cover the triangulation method in great detail (pp. 8-11). 

 

Laser scanners have revolutionized the accuracy with which we can now record 3D data in 

archaeology, and have been successfully used to document ongoing excavations context by 

context. However, experiments conducted by Doneus and Neubauer (2005) demonstrated that 

the use of these tools in support of archaeological practice was problematic in terms of time 

consumption (Doneus and Neubauer, 2005, p.3) and later articles showed how despite the 

exponential growth of technology this still represents a major problem (Forte et al., 2015). The 

major limitations stand in the long post processing time and the fact that the output data is not 

easy to manage. Furthermore, even though some laser scanners are equipped with a camera 

capable of recording colour information, due to the low resolution of the sensor the pictures are 

often not sufficient to be used for transferring the colour information to the models. For this reason, 

in order to map the colour information, it is often necessary to acquire an additional set of pictures 

by using a more resolute camera (Doneus and Neubauer, 2005, p.4). The case studies by Doneus 
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and Neubauer show that despite the capability of the scanners to capture a large amount of 3D 

data in a relatively short time, they cannot yet be used as a single tool to document archaeological 

stratigraphy in 3D. One needs to take scans from several positions which need to be aligned and 

thus result in a lot of post processing work. The time spent for aligning the point clouds prevents 

the possibility of the models being used directly in the field as an analytic tool for the excavators. 

Even though in the last ten years laser scanners have become quicker and equipped with better 

cameras, the post processing time is still a major obstacle that stands in the way for the technique 

to be used for the documenting of archaeological stratigraphy (Forte et al., 2012).    

2.2 - Airborne Laser Scanning for 3D recording of archaeological 

landscapes and sites 

 

Airborne laser scanning (ALS, often referred to as LIDAR) consists of two basic components: a 

laser scanning systems which detects a point on the ground, and a GPS combined with an Inertial 

Measurement Unit (IMU) to measure the position of the scanning system (Vosselman and Maas, 

2010, p.22). The scanner works with the same principles as terrestrial laser scanners (TLS). In 

most cases a TOF scanner is used because of its long range scanning capacity. Usually the data 

density that can be acquired is between 0.2 and 50 points/m². The GPS and IMU combination is 

able to reconstruct the flight path with an accuracy of 10 cm or less. The onboard measurement 

systems are complemented with a GPS station on the ground, which serves as a reference for 

differential GPS calculation (figure 3 - Vosselman and Maas, 2010, pp.22-23). 

 

There are two kinds of LIDAR systems that are relevant to discuss in this thesis: discrete return 

and full wave form. Discrete return systems record a limited number of returns for which the 

intensity is greater than a set value. Full wave form systems record all the returns (Opitz and 

Cowley, 2013, p.15). Following this difference in return recording, it is clear that full wave form 

LIDAR has more potential in filtering out unwanted classifications such as low vegetation (Doneus 

et al., 2008; Lasaponara, Coluzzi and Masini, 2011). However, the success of the use of this type 

of LIDAR is depending on the method of classification, since an inappropriate classification will 

lead to the removal of archaeological features, or the creation of false information (see Opitz and 

Cowley, 2013, pp.20-23 for more information about different classification methods and their 

consequences for the dataset).  



 

15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Airborne Laser Scanning (ALS) principle. Source: Vosselman and Maas, 2010, p.21. 

 

2.3 - Image Based 3D Reconstructions and close range 

photogrammetry 

 

Photogrammetry is a technique for obtaining geometric information from photographic images. 

Generally a minimum of two images of the same static scene or object from different points of 

view are needed to establish a geometric relationship between the images and the scene. A 

stereoscopic view and derivation of 3D data from the different relative positions of the object in 

the images allows the reconstruction of 3D surface geometry from the 2D images (Remondino, 

2014, p.63). Photogrammetry in archaeology is used in different scales. We can make a distinction 

between satellite photogrammetry (distance to object ca. 200 km), aerial photogrammetry (ca. 300 

m) and close range photogrammetry (< 300 m) (Luhmann, 2007, p.5). This thesis will focus on 

close range photogrammetry, since that is the category in which the recording of archaeological 

excavations on a single context level belongs (Luhmann et al., 2007, p.5).  

 

There are several approaches and algorithms to reconstruct camera orientation and geometry 

from images. Currently one of the most used methods is based on the employment of Structure-

from-Motion (SfM) algorithms. These algorithms belong to the computer vision research field and 

together with stereo-reconstruction techniques provide the opportunity to create accurate 3D 

models from images without prior information about the location of image acquisition, or about 

the camera parameters used to perform the acquisition (Verhoeven, 2011, p.67). In the frame of 

this thesis, Agisoft Photoscan 1.1.5 (http://www.agisoft.com/) was used. This software employs 

SfM algorithms for estimating the camera parameters (see chapter 2.5.2). With the SfM method, 

the 3D scene geometry and camera motion are reconstructed from a sequence of 2D images 

which are taken by a camera that moves around the scene. The Sfm algorithm detects common 

http://www.agisoft.com/
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feature points in multiple images and uses them to reconstruct the movement of those points 

throughout the image sequence. With this information the locations of those points can be 

calculated and visualized as a 3D point cloud (Verhoeven, 2011, p.68 - figure 4).   

 
 

Figure 4. Structure from Motion (SfM) photogrammetric principle. Source: Theia-sfm.org  (2016).  

 

The image based approach offers several advantages over laser scanning. The equipment 

necessary to generate the 3D model (both hardware and software) are low cost. Images from an 

average priced DSLR (Digital Single Lens Reflex) camera are of much higher resolution and allow 

for better texture projection compared to images coming from a scanner’s camera, and finally by 

using these techniques it is also possible to gather 3D resolute information using archived images 

of monuments or objects which are no longer available (Remondino, 2014, p.64; Gruen, 

Remondino and Zhang, 2004). However, a photogrammetric approach requires more expertise 

during the acquisition and post processing of the data. In order to reach the final output which is 

the same as the one coming from a laser scanner (a dense point cloud), instead of a fully 

automated process as used by laser scanning, image based 3D modelling employs a semi-

automated process in which the operator has more influence on the final result. Due to new semi-

automated procedures for the processing of images (Remondino, 2014, p.64) and the emergence 

of integrated commercial software packages that largely automate the post processing of the 

images, such as Photoscan, the process has become easier to control by the operator without 

losing the advantage of manually overseeing the complete modelling process. Moreover, the 

process of image based 3D reconstruction does not stop with the creation of a dense point cloud, 

contrary to laser scanning this is only one steps in the pipeline (figure 5).  
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Image based 3D reconstruction subsequently allows the operator to create a textured mesh, i.e. 

a finished 3D model.           

2.4 - Unmanned Aerial Vehicles (UAVs) 

 

A drone is the more common term for a range of Unmanned Aerial Vehicles (UAVs). UAVs offer 

several advantages over manned aircraft systems. This technology provides archaeologists with 

the opportunity to map areas which are impossible to reach, or to gather broader overviews of 

sites and landscape from a remote distance. Furthermore, UAVs can function in different weather 

conditions. More advantages include the lack of a highly trained human pilot and the 

accompanying economic expenses and lower cost of the equipment compared to most manned 

aircrafts (Eisenbeiss, 2009, p.3-4).  

 

There are many different types of UAVs available. Examples are (heli)kites, helicopters, fixed wing 

devices, balloons and blimps. However, these devices all have certain drawbacks (Eisenbeiss, 

2009, p.35). 

In recent years, a large amount of radio- controlled (multi) copter platforms (UAVs) has 

been employed during mapping operations in the cultural heritage sector together with more 

traditional tools (De Reu et al., in press). These devices offer several advantages over traditional 

UAVs such as kites or balloons: they have a big range, are not dependent on wind, can be 

remotely controlled with very high accuracy and run on electricity and not for example helium. 

Moreover, they can be equipped with a wide range of sensors (e.g. thermal, infrared or LIDAR). 

However, there are also some drawbacks but they are mainly connected to logistics such as the 

need of permission to fly in certain areas. Due to the high demand from many different fields, the 

price of drones is going down rapidly and new models are released constantly with better cameras, 

lower weight and new features. The drone used for our study in Uppåkra, a Phantom 2 Vision+, 

is already out of production and succeeded by multiple new models with better cameras at the 

time of writing.    

 

If the images that are acquired by the drone are to be used for image based 3D reconstruction 

techniques, some considerations need to be made regarding the flight planning. In order for the 

SfM algorithm to work successfully, an image overlap of 60-80% is advised (Verhoeven et al., 

2013, p.43). With the most recent drones, an integrated camera system can be programmed to 

take a picture every few seconds, and the flight path can be predefined and automated (Eisenbeiss 

and Sauerbier, 2011, p.402). Mobile apps such as ‘Pix4D’ (Pix4D, 2016) provide predefined flight 

grids that are customized for specific drones. A gimbal is usually integrated in the drone for camera 

stabilization in the air. For more detailed information about flight planning strategies and UAV 

photogrammetry, see Eisenbeiss, 2009 & Eisenbeiss and Sauerbier, 2011.  

 

For optimal usage of the 3D model in GIS, it is crucial for the model to be georeferenced. 

Georeferencing (or ground registration) refers to the allocation of spatial information to spatial data 

in order to define its correct location and rotation in relation to a specific coordinate system 

(Verhoeven et al., 2013, p.41). For the georeferencing of image based models, Ground Control 

Points (GCP’s) are usually placed in the scene and captured by the camera on the pictures. The 

location of the GCP’s is measured with a total station or GPS, and assigned (in Photoscan or other 
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software) to the specific location in the picture which represents the GCP’s. Photoscan needs at 

least three GCP’s that are spatially well distributed (not too close to each other and distributed 

over the entire scene), but more GCP’s are advised (Verhoeven et al., 2013, p.47).     

2.5 - Software 

 

This section will discuss and evaluate some of the standard software packages that are currently 

used for the acquisition, management and analysis of 3D data in archaeology. It is evident that 

the software presented here will develop rapidly. New releases will come out which will make the 

versions that are discussed in this thesis outdated and perhaps not usable anymore. However, I 

think it is important to have a brief look at the current possibilities (and limitations) that 

archaeologists are facing with the software that is available, since in the digital era software should 

be seen as an essential part of scientific methods, rather than just a tool.    

 

2.5.1 - ESRI ArcGIS 10.2.2 

 

ESRI (Environmental Systems Research Institute - http://www.esri.com) was founded in 1969 and 

is specialized in GIS software and geodatabase management. ESRI was the producer of ArcView, 

one of the early commercial GIS systems that was released in 1995. ArcView was replaced by 

ArcGIS in 2000. ArcGIS included a 3D analyst, which displayed a growing interest and provided 

with tools for management, analyses and visualization of 3D data. With the release of ArcScene 

in 2002, this 3D interest had grown to such a substantial amount that a separate application was 

created for it (Shephard, 2003; Esri, 2013; ArcScene, 2014). ArcScene is a 3D GIS which allows 

the user to interact and navigate with her/his 3D data. Contrary to ArcMap, which has a 3D analyst 

but still has a mainly bi-dimensional viewer; in ArcScene the user is able to perform any possible 

analysis in 3D.  

ArcGIS’ latest version (10.3.1) needs the recommended system requirements 

(desktop.arcgis.com, 2016): Windows 7 or later, Hyper-threading (HHT) or Multi-core processor, 

2GB of RAM and NVIDIA, ATI, and Intel chipsets supported. For this thesis, ArcGIS version 10.2.2 

was used. ArcGIS comes in three different versions: basic, standard and advanced. Information 

on pricing for an ArcGIS license is hard to find, which illustrates a possible problem with the 

software in the fact that it is aimed for big companies and not very user friendly when it comes to 

licensing and pricing for small and private companies. An ArcGIS standard license costs $3000 

USD (€2760) per year. ESRI offers special licenses for students and educational institutions, but 

if one’s budget is insufficient to pay a substantial amount per year for a GIS license, the solution 

can be sought in open-source GIS software such as GRASS (https://grass.osgeo.org/) or QGis 

(http://www.qgis.org/en/site/). However, ArcGIS is the only GIS system capable to manage and 

visualize 3D datasets.    

 

 

 

http://www.qgis.org/en/site/
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2.5.2 - Agisoft Photoscan 

 

Agisoft LLC (http://www.agisoft.com) was founded in 2006 and has its expertise in image 

processing algorithms and digital photogrammetry techniques. Its product, Photoscan, is one of 

the leading software packages in the field of digital photogrammetry and widely used for 

archaeological applications (Photoscan, 2015). There is other similar software, but Photoscan 

offers the most inclusive package of the photogrammetry process, from importing images to 

exporting textured models. Photoscan comes in two different versions, a ‘standard´ and a 

‘professional’. The standard version provides with all the necessary tools to create a 3D model 

from images, organized in a ladder of steps from automatic camera calibration, automatic tie-point 

search and image alignment to the generation of sparse and dense point clouds, and finally the 

creation of a textured 3D model (figure 5). It is possible for the user to intervene at any stage and 

disable or mask certain parts of images that could disturb the process, such as translucent or 

glossy material. The professional edition includes all these features, and is enhanced with the 

possibilities of georeferencing, orthophoto generation, DEM (Digital Elevation Model) export and 

advanced area and volume measurements. For this thesis, Photoscan standard version 1.1.5 and 

professional version 1.1.6 were used, but by the time of writing Agisoft has already released 

version 1.2.3.  

The recommended system requirements (Agisoft, 2016) are as follows: Windows XP or 

later (or MAC OS X Snow Leopard or later), Intel Core i7 processor, 12GB of RAM and a graphic 

card NVidia GeForce 8xxx series or later, or ATI Radeon HD 5xxx series or later. However, a 

better configuration will lead to increased processing speed of the images and improved 

navigation of the models, which can be an important factor in time limited archaeological practice 

such as excavations. Photoscan does not require an internet connection, which can be a very 

important factor in excavation practice as well.     

A stand-alone license of the standard addition currently costs $179 USD (€163), whereas 

the professional version costs $3499 USD (€3186). However, Agisoft provides special licenses 

with reduced prices to university students and institutions, which accounts to a price of respectively 

$59 USD (€54) and $549 USD (€500) for the standard and professional versions. This means that 

archaeological departments connected to universities can easily afford multiple licenses for their 

research and education, which stimulates the rapid increase in the use of digital photogrammetry 

in archaeology. Non-education archaeological institutions will have to pay more for their license, 

but the standard version of Photoscan is still quite affordable and will provide with the opportunity 

to include a photogrammetric recording workflow in their projects, which can be georeferenced in 

external software.  
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Figure 5. Different steps from 2D images to a 3D textured model of a runestone. A) One of the 198 original images 

used to create the model. B) Top view in Photoscan showing the reconstructed camera positions as blue panes. C) 

Dense point cloud showing detail of carved rune. D) Detail of textured model. 
Images and models by Sjoerd van Riel. 
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3 - Theoretical issues on the use of 3D recording 

in archaeology 

 

The rise of a self-conscious archaeological theory debate can be traced back to the 1960’s, when 

the so called new archaeology or processual archaeology emerged (e.g. Clarke, 1968; Binford, 

1977). Theorizing and reflexivity was taken further by post processual archaeology from the 1980’s 

onwards (Hodder, 1986; Shanks and Tilley, 1987; Hodder, 1989; Shanks and Tilley, 1992; Tilley, 

1993; Hodder, 2001). GIS and digital technologies can hardly be placed within the limits of these 

paradigms. In fact, one point of view is that digital technologies are essentially just methodological; 

a set of tools that can be used to solve problems which are created by theoretical issues (Zubrow, 

2006, p.11). However, another point of view is that digital technologies impact the current 

paradigm to such an extent that we can speak of a “digital revolution” (Zubrow, 2006, p.12) and 

influence the creation of new archaeological theory. This chapter aims to discuss these different 

points of view and the effect that new digital technologies have on archaeological theory. In 

particular, it will reflect on the implications of digital archaeology on landscape archaeology, and 

subsequently on the implications that digital techniques have on reflexivity and interpretation at 

the trowel’s edge.        

3.1 - The Digital Turn: implications of digital archaeology 

 

The Digital Turn or Digital Revolution that archaeology is witnessing has several consequences 

for the current paradigm. The digital technologies offer us opportunities that we did not have 

before. Amongst others to manipulate and evaluate accurate measurements, to model and 

simulate real world processes and to create virtual worlds. Furthermore the technologies allow for 

the spread of all this information around the world with increasing speed, thus creating a “digital 

village” (Zubrow, 2006, p.12) in which the distance between archaeologists and their study areas, 

sites, artefacts and also colleagues is vanishing. Digital archaeology is filling the gap between 

processual ‘scientific’ and post processual ‘interpretational’ archaeology (Zubrow, 2010, p.2). 

Thus digital technologies should be seen as active agents that influence our thinking, rather than 

passive tools. There is a symbiotic relationship between the development of digital technologies 

and archaeological theory (Lock, 2003, p.1).  

 

When we look back at the history of the introduction of several digital recording techniques, it has 

often been claimed that they were more objective compared to their predecessors (e.g. Anderson, 

1982, p.200). The terms precision and accuracy are often used as a synonym for objectivity (Lock, 

2003, p.4). It is argued that the more precise and accurate a recording technique, the more 

objective it is. But it is not taken into account that the process of the recording is still subjective 

and based on interpretation. Before the recording even takes place, it is subjectively decided what 

should be regarded as features, and which ones are worth recording. Secondly, the method of 

recording is decided. Since archaeological excavations are destructive by nature, it is the method 

of recording which determines how the feature will be preserved for the future (on paper, as a 

manual drawing or digitally as a series of points, line or photograph). The scale of recording is 

decided, which will affect the virtual preservation of the feature. According to most established 
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excavation guidelines (e.g. the Museum of London Archaeological Site Manual - Westman, 1994), 

the method of find retrieving depends on a preliminary interpretation of the nature of the context. 

The method of recording is also directly influenced by the way that a context is preliminary 

interpreted and categorized, using different sheets for e.g. ‘deposits’ and ‘cuts’. According to 

Hodder (1999, pp.80-84), these interpretations derive from our theoretical pre-understanding of 

the archaeological record (figure 6). 

 

 
 

Figure 6. Relation between data and theory in archaeology, according to Hodder. Source: Hodder, 1999, p.84. 

 

In this way, (digital) recording and the resulting models are part of the hermeneutic spiral, the 

process of interpretation. Figure 7 shows a visualization of the position of digital models within the 

hermeneutic spiral of archaeological interpretation. Their position derives from the data acquired 

out of the archaeological record in combination with the theoretical model that is used. In turn, 

these models are interpreted by the archaeologist and result in statements about the past (Lock, 

2003, p.7).  
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Figure 7. Visualization of the position that digital models can take within the hermeneutic spiral.  

Source: Lock, 2003, p.7   

      

3.2 - Digital technologies and landscape archaeology theory 

 

This section will discuss some theoretical developments within the study of landscape 

archaeology. Since archaeological sites are not isolated phenomena, their interpretation should 

be understood in a wider context. It is important to discuss first what comprises a landscape, and 

with the remains of what we are actually dealing with when we are excavating a site. After a 

possible definition of landscape and its components, I will discuss one of the current paradigms 

within post processual landscape archaeology; phenomenology. In particular, I will argue that 

digital archaeology has the potential to bring together different theoretical standpoints in landscape 

archaeology.  

 

Landscape may be seen as consisting of a series of places, which are connected to each other 

by space. Space can be seen as a mere container of material objects, existing independently of 

these objects that fill it (Connoly and Lake, 2006, p.3). But it can also be seen as a “positional 

quality of the world of material objects or events” (Harvey, 1969, p.195) in which it is impossible 

for space to exist independently from the objects that are in it. In this view, everything that fills 

space is connected. The places are not cut off, but connected to the whole (Chapman, 2006, 
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p.130). According to Tim Ingold (2000), places get meaning from those who spend time in them. 

Each of these places is special because of the unique combination of experiences, sights and 

sounds that take place in them. These sensual and mental experiences derive from the kind of 

activities in which the inhabitants of a place are engaged. This engagement with the world is what 

comprises the business of dwelling and what gives each place its unique significance (Ingold, 

2000, p.192). By the array of related activities that are carried out by the people and animals that 

are dwelling in the landscape, something is created that can be called a taskscape. This taskscape 

is a social environment, where people tend to one another in the performance of their tasks (Ingold, 

2000, p.196). One can regard the reconstruction of ancient taskscapes as one of the goals of 

archaeological excavations and analysis. Since the rise of post processual archaeology, scholars 

adopted the goal of reconstructing also the social environment of the taskscape, the agency of 

objects and the phenomenology of past people’s tasks. The space of landscape is no longer seen 

as a ‘container’ in which human activities take place, decentered from agency and meaning. 

Rather, space is regarded as a medium in which human activity takes place. Space is involved in 

action (or tasks) and is socially produced and given meaning by particular societies and individuals 

(Tilley, 1994, p.10). 

The use of sensory human experience to study past land- and taskscapes is what defines 

phenomenological studies. “It (phenomenology) attempts to reveal the world as it is actually 

experienced directly by a subject as opposed to how we might theoretically assume it to be. The 

aim is not to explain the world but to describe that world as precisely as possible in the manner in 

which human beings experience it … coping with that attribute which is most distinctively human: 

subjectivity” (Tilley and Bennett, 2004, p.1) This definition explains what phenomenology does but 

also reveals what could be recognized as one of its main problems: the subjectivity of humans in 

combination with “revealing the world as it is experienced”. When an archaeologist is walking 

around a monument and perceiving it in a certain way, it is difficult to prove that a person who 

perceived the same monument hundreds of years ago had a similar experience. This problem is 

also recognized by Johnson (2012), who states that “although phenomenology proposes a 

problematizing of human bodily experience, practitioners often tend towards a position of psychic 

human unity and away from an anthropological understanding of human experiences as being 

culturally different” (p.277). In my opinion this is one of the biggest problems with phenomenology: 

that it is impossible to project our own experiences of a landscape on a prehistoric person, who 

lived in a totally different culture with a different habitus. There is no way of proving any experience 

that this prehistoric person might have had. Together with the problem of only experiencing 

contemporary landscapes because the prehistoric ones are lost, this is one of the most common 

critiques on phenomenological research: the fact that it cannot be verified (Fleming, 2006, p.268). 

 

However, I think that digital technologies and in specific the use of virtual reality systems  represent 

powerful simulation tools capable of providing archaeologists with information that can be used to 

apply a stronger control on phenomenological aspects of the interpretation. In past years GIS has 

been accused of being a processual tool. It has been denied the possibility to work together with 

a phenomenological approach, with the argument that “it can only produce an abstract knowledge. 

It can’t reproduce a sense of place acquired through being in place.” (interview with C. Tilley, in: 

Bender, 1998, p.81). It has also been argued that the use of GIS has re-introduced the positivist 

approach of processual archaeology (Wheatly, 1993, p.133; Gaffney et al., 1996, p.132) But Tilley 

and others are mainly referring to the GIS tools available in the 1990s, when the software was 

indeed mainly used to produce bi-dimensional maps. After two decades of rapid development, I 
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would argue that GIS and other digital methods are not a hindrance, but a tool that eventually can 

be used in support of phenomenological claims. Llobera (2012) discusses the use of GIS as a 

‘scaffolding model/method’, with which he means a model to “investigate concrete components or 

specific aspects of theory...constructed to explore how processes or concepts may play out within 

the specifics of a certain context. While no comprehensive interpretation is meant to emerge from 

their application, their construction can be seen as an attempt to shorten the gap that often exists 

between empirical information and narratives” (pp.503-504). GIS can functions as a scaffolding 

method within the field of phenomenology, since it allows for the testing of at least two of the 

human senses that are used in phenomenological studies: visibility and sound.  

The first human sense that can be effectively studies through GIS is visibility. Llobera 

(2003; 2012) introduced the concept of a visualscape, referring to the visual structuring of space. 

Visualscapes are considered to be a substantial source of many observations by archaeologists 

in the field (Llobera, 2012, p.501). They can be analyzed through a GIS by, amongst others, 

viewshed analysis. By using viewshed analyses, it is in fact possible to estimate which part of the 

landscape was visible from a certain point. Perhaps even more important, one can identify ‘empty’ 

places in the landscape which are in between, but within visible range of, different monuments 

and thus might have been significant places in the past but did not leave any physical remains 

(Chapman, 2006, p.136). A state-of-the-art example of 3D GIS-based visibility analysis to 

investigate the symbolic dimension embodied in standing structures and its paintings can be found 

in Landeschi et al. (2016), in which a 3D line-of-sight (LOS) analysis was employed in order to 

simulate past human perception of a Pompeian house. Virtual Reality (VR) can be used to test 

different scenarios of how the past landscape might have looked, thus overcoming the critique on 

phenomenology that it deals only with the modern landscape. One can simulate different 

archaeological scenarios such as different positions of the sun, and use immersive systems such 

as Oculus Rift (Oculus.com, 2016) to experience these scenarios, almost as if one was really 

there.  

The second human sense that can be experimented within GIS is sound. One example of 

this is a study on the impact of church bells in early medieval towns. This has been done for the 

medieval city of Lund, where researchers have plotted medieval churches and processional routes 

and calculated the range of sound to explore in which parts of the city it was possible to hear the 

bells (Staaf, 1996). Thus, GIS has developed from a mainly bi-dimensional, ‘processual’ 

mapping tool into an interactive tool that can explore and reconstruct human interaction with the 

landscape, including at least two of the human senses (visibility and sound). There are several 

case studies that show a successful integration of virtual reality and phenomenology (e.g. 

Winterbottom and Long, 2006). The main advantages of the use of GIS and VR in support of 

phenomenological studies, is that they help overcome two of the major issues that I described 

earlier in this section. The first one is the problem of temporality. Where it is only possible to walk 

and experience the contemporary landscape in real life, GIS and VR help to reconstruct and test 

hypothetical past landscapes including vegetation, buildings etc. and experience those. The 

second problem with phenomenology that can now be overcome relates to the issue of verification. 

Using GIS and VR, experiments can be done over and over, under different or the same 

circumstances, and by different persons. This allows for referencing to more than the personal 

experience of an archaeologist, which could make phenomenology a bit more ‘scientific’ in the 

eyes of its critics.     
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3.3 - Reflexivity and interpretation at the Trowel’s Edge 

 

In the previous sections I have discussed some of the implications that digital technologies have 

on a wide range of landscape archaeological theory and practice, including the highly 

interpretational field of phenomenological archaeology. This section will focus on the single 

excavation scale and discuss the role of interpretation and theory on this level.  

 

The digital recording techniques that have been described in this thesis have had a major impact 

on the field of archaeological practice. One aspect of this impact is the erosion of the traditional 

separation between data acquisition and data description (Connoly and Lake, 2006, p.37). 

Traditionally, a division existed between a-theoretical excavation practice and recording on the 

one hand, and interpretational and theoretical post-excavation work on the other (Beck and Beck, 

2000, pp.173-174). The context sheets that make a distinction between description and 

interpretation as advocated by Barker (1977;1982;1993) and described by Hodder (1999), are still 

in use at excavations today. Carver (1989) argued that this practice of distinguishing between 

description and interpretation is particularly strong in Britain, where “English excavators, 

particularly, believe that there ought to be a science of retrieving archaeological evidence which 

has nothing to do with the interpretations that are subsequently made” (p.669). However, when 

the information acquired during post-excavation can also be available in the field, the barriers 

between excavation and post-excavation (and with it, between practice and theory) can be broken 

down (Beck and Beck, 2000, p.174). This is needed because theoretical interpretation is an 

integral part of archaeological practice. As Hodder (1999) shows, archaeological excavations are 

driven by theory from the beginning, rather than theory as a final process after the ‘objective’ 

empirical evidence is recorded (figure 6). Even the most practical actions in an archaeological 

excavation involve interpretation. Hodder gives the example of ‘interpretation at the trowel’s edge’: 

“As the hand and trowel move over the ground, decisions are made about which bumps, changes 

in texture, colours to ignore and which to follow. This is a practical bodily interpretation. It is 

influenced by one’s interpretation of what is happening and by what one is finding. If an artifact 

flicks out, we interpret whether it came from this layer or that” (p.92).   

The occurrence of interpretation in the field is a prerequisite for a research-centered 

approach (Beck and Beck, 2000, p.176). Such an approach involves specific questions that are 

formulated before the excavation starts, and that are going to be ‘asked’ to the archaeological 

material. A question-centered approach has several advantages. The result of the work is more 

likely to be a coherent story, since the archaeologists know what they are collecting and why they 

are collecting it. But this approach can also be destructive, when the selectiveness results in 

ignoring the archaeological remains that are deemed irrelevant to the questions (Morris, 1997). In 

order to prevent such ‘tunnel vision’ and for the excavators to “place their thoughts in context and 

make balanced judgements based on a greater understanding of the site as a whole” (Beck and 

Beck, 2000, p.180), a reflexive methodology is required. 

 

A definition of reflexivity according with Hodder is “the examination of the effects of archaeological 

assumptions and actions on the various communities involved in an archaeological process, 

including other archaeologists and non-archaeological communities” (Hodder, 2000, p.9). On the 

site of Çatalhöyük in Turkey, where Hodder is leading the Çatalhöyük Research Project, reflexivity 

is engendered by diary writing and filming, amongst others. The goal of these processes is to 
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encourage the archaeologists to examine their own assumptions and provide contextual 

information on the excavation process which can be reviewed and evaluated by others (Hodder, 

2000, p.9). In a recent article which is evaluating these and other reflexive methods in Çatalhöyük, 

it was shown that the digital techniques that have been developed in the last 15 years and applied 

in the Çatalhöyük Research Project facilitate several aspects of a reflexive approach. One 

example that is given is the use of tablets on the site which allow “more information to be 

concentrated at the moment of excavation and interpretation in the trench” (Berggren et al., 2015, 

p.437). In this way, the process of excavating is aimed to be made “virtually reversible” (Berggren 

et al., 2015, p.437). The use of digital tools has even allowed for “reflexive re-interpretation”, where 

the use of digital 3D modelling made it possible to positively confirm skull retrieval at Çatalhöyük 

(Berggren et al., 2015, p.440-441). Furthermore, the project at Çatalhöyük showed that an intra-

site 3D GIS improved the excavator’s abilities to present and interpret archaeological data, and 

that the use of tablets in the field enhanced the reflexive method significantly (Berggren et al., 

2015, p.442). In fact, the tablets were found to be a “reflexive tool in their own right”, by providing 

the archaeologists with the possibility to produce a graphic archive that incorporated all the 

available data, including 50 year old georeferenced excavation plans of the area, allowing for more 

informed decisions and interpretations and thus improving the reflexive engagement of the 

excavators (Berggren et al., 2015, p.443).  

 

In conclusion, I have argued that digital technologies bridge field data and theory with landscape 

theory. They help verifying viewpoints that are traditionally seen as extremely theoretical (e.g. 

phenomenology) and theorizing practices that are seen as a-theoretical (e.g. fieldwork practice). 

More importantly, this is done in the same virtual space of a GIS. In these multi-scale platforms 

archaeological data from a landscape level down to artefact level can be visualized, categorized 

and analyzed which stimulates a reflexive and theoretical approach.  
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4 - From theory to methods: the case study of Uppåkra 

 

In this chapter, the 3D recording technologies and the theoretical viewpoints described above will 

be brought together and discussed in the light of an excavation that was conducted in the autumn 

of 2015 in Uppåkra, Sweden. This excavation was chosen as case-study for this thesis for several 

reasons. Firstly the author of this thesis has personal experience with excavating and digitally 

documenting the site. Secondly the site has an extensive history of experimenting with 3D 

recording, as will be discussed in chapter 4.1. These years of experience have led to the current 

method of 3D documentation that was used on site and discussed in chapter 4.2 and onwards. 

The third and final reason why Uppåkra is a suitable site for this study is because of its complicated 

stratigraphy (Larsson, 2003, p.10). This complexity provides a challenge to the digital methods 

that have been developed by Lund University, DARKLab (Digital Archaeology Laboratory), but 

strengthens the robustness of the method’s workflow.    

  The site of Uppåkra is located approximately five kilometers south of Lund in southern 

Sweden (figure 8). It was first discovered in 1934, when excavations revealed cultural layers that 

were more than two meters thick (Vifot, 1936; Stjernquist, 1996) and has been the subject of 

extensive archaeological research from 1996 onwards, when the ‘Uppåkra Research Project’ was 

initiated (Larsson, 2003). 

  
 

Figure 8. Location of Uppåkra (red dot) in southern Sweden, some 60km east of Copenhagen (København).  
Pictures ©2016 Landsat, Data SIO, NOAA, U.S. Navy, GNA, GEBCO, Map data ©2016 GeoBasis-DE/BKG 

(©2009),Google. Source: maps.google.com, 2016. 
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In the period 1997-2000, almost 20.000 objects were found during large-scale metal detecting 

surveys. These objects suggested a settlement sequence from the late Pre-Roman Iron Age until 

the late Viking Age (Hårdh, 2000; 2003). A cluster of metal objects with high technological and 

chronological variety was found in the area just south of the church, which is the highest place in 

the landscape today. Excavations between 1999 and 2005 focused on this location, and revealed 

the remains of a distinctive cult house-like building in which more than a hundred gold-figure foils 

(Watt, 2004), a metal beaker (Hårdh, 2004) and a glass bowl (Stjernquist, 2004) were found 

(Larsson, 2007, pp.12-14). Figure 9 shows an overview of the Uppåkra landscape elevation, 

based on LIDAR data, together with the locations of the 2001-2004 excavation trenches and the 

location of the cult house. On this figure, it is clearly visible that the cult house was located on 

what is the highest point of the landscape today (visualized in white colours). 

  Since the late 1990’s, several geophysical prospection methods have been applied to 

explore a large portion of the land around the cult house area, as the land was found to be very 

suitable for the testing of geophysical methods (Lorra, Kroll and Thomsen, 2001; Trinks et al., 

2013). Since 2010, prospections have been carried out by the Ludwig Boltzmann Institute for 

Archaeological Prospection and Virtual Archaeology (LBI ArchPro).The goal of these prospection 

surveys has been to integrate spatiotemporal analysis and archaeological interpretation, thereby 

focussing on the wider landscape instead of just the site (Trinks et al., 2013, p.1). These 

prospection surveys have revealed a large number of anomalies indicating the remains of 

approximately 60 Iron Age buildings in the centre of the settlement, in the same area where the 

cult house has been found (figure 10 - Trinks et al., 2013, p.2).  
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Figure 9. Map showing a Digital Terrain Model of the Uppåkra area. The assumed extent of the Iron Age settlement 

and the location of the 2015 excavation are marked in black and the 2001-2004 excavations in red. The location of the 

cult house is marked in yellow. LIDAR © Lantmäteriet I2014/00579. Site extension boundary after Sjernquist, 1998, 

p.4. Location of trenches and cult house after Larsson, 2007, p.14. 
Map by Sjoerd van Riel. 
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Figure 10. Map showing the extension of the magnetic archaeological prospection survey conducted by the Ludwig 

Boltzmann Institute for Archaeological Prospection and Virtual Archaeology in 2010-2012. The assumed extent of the 

Iron Age settlement is marked in blue and the 2001-2004 excavations in red. 
Courtesy of Immo Trinks, LBI ArchPro   
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In 2015 a new project called ‘The Key to Uppåkra: digitizing a unique archaeological cultural 

heritage’ was created, which aims to create an integrated database containing the spatial and 

chronological data of Uppåkra that has been acquired over the years, and to visualize this data 

for further research and the public (ark.lu.se, 2015). The data generated in the frame of this project 

could be integrated with the 3D analyses that were conducted during the course of this thesis in 

order to create a multi-scale 3D GIS system containing all the spatial and attribute data of the 

Uppåkra excavations thus far, which could subsequently be used in order to perform analyses 

which were not possible before this integration, e.g. the combination of old and new excavation 

data in the same virtual space.         

4.1 - Excavation, recording and documentation methods in Uppåkra 

 

The excavation method in Uppåkra follows the single context method (Westman, 1994). All 

contexts, layers and other features are measured with a robotic total station (RTS) and 

photographed and drawn by hand when necessary. The method of find retrieval depends on a 

preliminary interpretation of the context in which the find is located (e.g. a potentially more 

interesting context will be water-sieved, but a context that is interpreted as a secondary deposit 

will not). In general, all finds are connected to the context in which they were found through a 

unique context number which is directly linked to the graphic documentation made by total station. 

During the excavation archaeologists and students are encouraged to keep field diaries, which 

should provide a more narrative and less coded documentation.  

  Since 2010, experiments with using 3D models to document and interpret on-going 

excavations have been conducted in Uppåkra via a collaboration between the Department of 

Archaeology and Ancient History of Lund University, Sweden and the Visual Computing Lab in 

Pisa, Italy (Callieri et al., 2011; Dellepiane et al., 2013; Dell’Unto, 2014, pp.152-153). The first tool 

that was tested for its suitability to record an ongoing excavation of an Iron Age longhouse was a 

ToF laser scanner. Although the device was extremely accurate and had a short acquisition time, 

the post processing took too long to use this instrument for the documentation of an ongoing 

excavation (Dell’Unto, 2014, p.153). In the frame of the same experiments, image based 3D 

reconstruction techniques were carried out. Due to the relatively easy acquisition process and fast 

post processing, the employment of such techniques proved to be more promising for further 

development of a 3D field documentation method. Due to the hardware and software limitations 

that occurred at that time, this approach was tested on a small portion of the ongoing excavation 

in order to provide archaeologists with 3D models which could be used to evaluate the excavation 

process and to take accurate measurements concerning the spatial relations among the different 

contexts and materials retrieved during the field investigation. However, these experiments were 

conducted separately from the regular excavation practice, by a special team. The results 

encouraged the researchers to discuss possible uses of this approach for the definition of formal 

guidelines for field archaeologists so that the method could be better integrated with the normal 

excavation workflow (Dell’Unto, 2014, p.153; Dellepiane et al., 2013, p.209).  

In 2011, in occasion of a seminar excavation (Söderberg and Piltz Williams, 2012), an 

experiment was designed to evaluate the impact of the models on the process of excavating, with 

the following goals: (1) to assess the sustainability of a documentation method based on the 

combination of 3D models and traditional data, (2) to evaluate the use of 3D models as geometrical 

references for documentation, and (3) to shed light on whether the use of different visualization 
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tools increased comprehension of the stratigraphic sequence of the site within the time frame of 

the investigation (Dell’Unto, 2014, p.153). The subject of this experiment was a late Neolithic grave 

which was detected the year before during the geophysical prospections (Trinks et al., 2013, p.4; 

Larsson et al., 2015). The grave was documented combining a total station for graphic 

interpretations by the excavators, with image based 3D modelling for better understanding of the 

excavated material (Dell’Unto, 2014, p.154). The models were produced daily and used by the 

excavators to discuss the stratigraphical sequence and to create visualizations which provided a 

deeper understanding of the contexts. Though able to reach most of their goals, the researchers 

acknowledged an important limitation of the method at the time, namely the impossibility of using 

a 3D visualization platform to visualize both the traditional documentation acquired by total station 

and the 3D models generated by image based 3D reconstruction techniques. This prevented a 

“complete visual description of the site’s documentation” and caused the loss of a large part of the 

communication power of the 3D models (Dell’Unto, 2014, p.156). To solve this problem, the 

models were imported into ArcScene. A big advantage of this method was the possibility to 

connect attribute tables to the models, which allows for the direct connection of field records with 

the 3D models. However, there were still several challenges to be overcome such as the fact that 

at that time ArcScene was only able to import models which consisted of less than 34.000 

polygons (Dell’Unto, 2014, p.157). 

During the 2012 excavation season, 3D documentation using image based 3D 

reconstruction was carried out by students during the course of seminar excavations from Lund 

University’s Department of Archaeology and Ancient History (Söderberg, Piltz Williams and 

Bolander, 2014, pp.14,26). In 2013 and 2014, image based 3D modelling was again used by 

students of Lund University (Apel and Piltz, in press). In specific, the 3D models of an Iron Age 

low-temperature oven (Apel and Piltz Williams, in press) were used in a study that explored the 

potential of the models as geometrical reference for 3D drawing in ArcScene (Kimball, 2014). This 

study found that archaeological drawings could be successfully accomplished in a 3D GIS, thereby 

successfully connecting the metadata (context numbers etc.) with the drawings through attribute 

tables in the GIS database. Furthermore, a chronological overview of the context could be 

provided, with the possibility of switching back and forth between different phases of the 

excavation (Kimball, 2014, p.63). Although the study showed very promising results and 

demonstrated the potential that 3D models have to be used for 3D context drawing, the author 

also recognized that the presented methodology could not be seen as a replacement of traditional 

documentation methods, but rather had to be used as complementary methods (Kimball, 2014, 

p.64). Furthermore, the study did not explore the possibilities of 3D drawing directly in the field, 

since the models were created previously and the drawing was only applied when the excavation 

was already over (Kimball, 2014, pp.29-30).  

This thesis instead explores the possibilities for adapting these 3D context drawing 

methods in order to be used for real-time documenting of all archaeological contexts. In the 

following chapters, I will discuss the methods of 3D data acquisition during the excavation of 2015. 

I will focus on only one of the three excavation trenches, specifically the one that was located 

around the oven that had been excavated in the previous years and discussed in the thesis 

described above. The objective for the 2015 excavation in this area was to determine if there were 

any older ovens located underneath. In order to do this in an effective manner, it was decided to 

create a section which measured about 8 meters in east-west direction and 50 cm in north-south 

direction. At the end of the excavation, the section reached about 65 cm deep. Such a section is 

very suitable for a study such as this thesis, since it provides a deeply stratified ‘micro-excavation’ 
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of a small area, which is a challenge for the single-context documentation methodology since it is 

hard to distinguish between different context in such a narrow but deep trench (see chapter 5.2.3).   

4.2 - Methods of 3D data acquisition during the excavation of 2015 

 

This thesis is based on the 3D recording activity and documentation conducted during the 2015 

fieldwork season. In this section I will discuss the different methods of 3D data recording and 

documentation employed in support of the field documentation and analysis. First I will discuss 

the methods for 3D landscape recording (sections 4.2.1 and 4.2.2) and after that I will discuss the 

methods that have been used for the trench and context recording (sections 4.2.3 and 4.3).        

4.2.1 - LIDAR 

 

The LIDAR data used in the frame of this study was acquired and made available from the Swedish 

land survey service (lantmäteriet) with the license of Lund University (© Lantmäteriet 

I2014/00579). The full wave form scanning was commissioned by the Swedish government and 

carried out by lantmäteriet in April 2010. The point clouds are georeferenced in SWEREF 99 ™ 

(plane) and RH 2000 (height). The points are classified in four classes representing the ground, 

water, bridges and unclassified points (Lantmäteriet, 2015). The area of Uppåkra has fairly good 

conditions for ALS survey since there are little natural factors that can disturb the point cloud 

classification, such as heavy vegetation, steep terrain or water (Lantmäteriet, 2015, pp.11-17). 

This has resulted in a point cloud with an average point spacing (distance between the points) of 

0.93m. Due to flight overlap, the point density in my study area differs in certain areas (figure 11). 

The point clouds coming from the different acquisition flights have also been slightly mismatched. 

As a result of this, a horizontal band will be seen in most DTMs of Uppåkra since they will be 

based on the same raw laser data (figures 9, 11, 13 and 14).  
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Figure 11. Map of the Uppåkra study area representing the flight coverage (blue colour represents > 1 point/m² and 

green colour > 0.5 points/m²). Estimated site extensions and 2015 trench location are visualized in black.  

LIDAR © Lantmäteriet I2014/00579. Images by Sjoerd van Riel.   

 

The point spacing resolution of 0.93m means that the DTM that can be created with the data will 

be detailed enough to visualize changes in the morphology of the terrain and big features such as 

mounds. However, the DTM will not be able to reveal any kind of feature that is smaller than about 

one meter. This is a significant limitation if the goal is tracing archaeological features, since many 

of those (e.g. post holes, small waste pits or other smaller deposits) will be too small to be visible 

in the DTM. However, the LIDAR data is particularly useful for the creation of terrain models which 

highlight different aspects of the landscape in general, such as slope or aspect. For this reason, it 

can be extremely helpful to create a more detailed DTM from a point cloud that is generated with 

the use of photogrammetry from aerial photographs. The use of UAVs for this method has proved 

to provide much more detailed terrain models in comparison with models coming from LIDAR data, 

which can lead to the identification of more archaeological structures (De Reu et al., in press). The 

survey carried out in Uppåkra to test this method will be described in section 4.2.2 of this thesis.  

 

From the LIDAR point cloud, a Triangulated Irregular Network (TIN) is created, which is a vector-

based interpolation that results in a mesh of triangles which represent the surface morphology 

(figure 12 - see Connoly and Lake, 2006, pp.107-109 for detailed information about the creation 

of a TIN).  
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Figure 12. Lidar point cloud and TIN visualization of one of the Bronze- or Iron Age mounds in Uppåkra.  

LIDAR © Lantmäteriet I2014/00579. Image by Sjoerd van Riel.   

 

TIN data structures are extremely useful but also have some limitations. One of them is that they 

lack mathematical potential. In order to compare surface morphology systematically, a TIN needs 

to be converted to a raster (Chapman, 2006, p.73). This can be done in several ways. In my case, 

the raster image was created in ArcGIS by interpolating raster cell values from the elevation of the 

input TIN at a specified sampling distance, in this case 10cm (Chapman, 2006, p.77). On the 

raster Digital Elevation Model (DEM), several surface analyses can be performed in order to detect 

archaeological features or to understand terrain formation in relation to archaeological distribution. 

In this case, a hillshade (figure 13A) and slope (figure 13B) analysis have been created. 

Hillshading is used to display details of topographic change. Hillshading creates a shaded 

relief from the surface raster by considering the illumination source angle and shadows (Kokalj, 

Zakšek and Oštir, 2013, p.103). In my case, the default settings of ArcGIS with an altitude angle 

of light (measured from the horizon) of 45° and an azimuth angle of light (measured as a compass 

clockwise from the north) of 315° degrees were used. One of the major drawbacks of hillshade 

analysis results from the fact that linear features that are located parallel to the direction of the 

light source will not be visible (Kokalj, Zakšek and Oštir, 2013, p.104). To overcome this problem, 

the user can produce several hillshades with different azimuth (angle of light) values (figure 14). 

Slope analysis uses the combination of both gradient and aspect, in this case resulting in a raster 

map of which the cell values relate to the inclination of slope calculated in degrees. An advantage 

of slope analysis over hillshade analysis is that it is not affected by the orientation of the features. 

However, a slope analysis is less powerful for low relief landscapes (Challis, Forlin and Kincey, 

2011, p.287). 
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Figure 13. Raster DEM with a cell size of 10cm showing a hillshade (A) and slope (B) analysis of Uppåkra. 

Note the artificially created horizontal band due to difference in point density that is well visible in the slope analysis. 

Highlighted is one of the two remaining Bronze- or Iron Age mounds. Site extensions and 2015 trench location are 

visualized in black. LIDAR © Lantmäteriet I2014/00579. Images by Sjoerd van Riel. 
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Figure 14. Different hillshade analyses with azimuth set on 315°(A) and 360°(B). Note the difference in potential for 

identifying structures that are oriented in north-south direction (A) or east-west direction (B). Estimated site extensions 

and 2015 trench location are visualized in black. LIDAR © Lantmäteriet I2014/00579. 
Images by Sjoerd van Riel.  

 

The LIDAR data provided by lantmäteriet has not led to the identification of previously unknown 

features in Uppåkra. As a result of agricultural ploughing, possible micro topography resulting from 

archaeological features is not easy to identify. The relatively low resolution of the LIDAR available 

from Lantmäteriet (0.93m point spacing) further decreases the likelihood to detect smaller 

archaeological features. Instead, the LIDAR data for this study has been mostly contributory for a 

sense of ‘site-awareness’ on the landscape scale. With site-awareness I mean the archaeologists’ 

experience of where the site is located in the landscape, and how different areas of the site are 

related to each other. Moreover, it is important to be aware of the location of a specific excavation 

within the site, in this case our 2015 campaign trench, for which the location is marked with a black 

cross in figures 9, 11, 13 and 14. Landscape archaeology should not be separated from excavating 

archaeology, since the position of the excavation in the landscape has significant influences on its 

characteristics. In chapter three I have argued that the use of digital technologies can help 

integrating landscape- and field archaeology. One example of this is the integration of LIDAR data 

into the GIS system and in direct spatial relation with the field recording in order to stress the 

relation between the contexts retrieved in the field and the surrounding site. If we take a look at 

the 2015 excavation trench location, several observations can be made. Firstly the trench is 

located just outside the highest area (the ‘plateau’) where the cult house has been found (figure 

9). It is also located alongside the modern road which runs north-south alongside two mounds 

which date from the Bronze- or Iron Age (figures 9, 12, 13 and 14). In other words, the trench is 

not located in the most significant area of the site (the plateau with the cult house), but still quite 
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close to it. The interpretation of this location is outside of the scope of this thesis, but it is important 

that observations of site location and positioning relative to other structures on the site are included 

in the excavation documentation in order to maintain a reflexive method.  

4.2.2 - UAV Image Acquisition 

 

For the acquisition of aerial pictures, a Phantom 2 Vision+ drone was used (Dji.com, 2014). By 

the time of writing, this drone is already out of production and replaced by the Phantom 4. This 

illustrates the high demand for drones and because of that, a rapid development in technology. 

Drones will get cheaper and more powerful in the years to come, and we as archaeologists have 

to find a way to make use of this technology and develop a customized methodology that fits the 

archaeological practice and contributes to new methods, rather than just adapt the technology 

without theorizing its use. 

The Phantom 2 is a quadcopter (four rotors) with a mounted 12 megapixel camera (figure 

15). The camera’s FOV (Field Of View) can be set between an angle of 110° and °85. The 

Phantom 2 was remotely controlled in manual flying mode since the acquisition campaign was not 

just focused on the landscape but also on the trench, and thus required a flexible flight pattern. 

For the acquisition of the landscape, the camera was turned in a 180° angle, aiming downwards. 

For the acquisition of the trench an angle between 90° and 135° was used, as can be seen on 

figure 15.  

 

 
 

Figure 15. Phantom 2 Vision+ during the image acquisition campaign. Image courtesy by Giacomo Landeschi - 

Department of Archaeology and Ancient History, Lund University.   

 

A total of 780 pictures were taken, divided over three different flights. Since the use of drones for 

both landscape and site analysis is still a developing field of study and experiments have to be 
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conducted to test different methods, several flight methods were tested (all in manual mode) to 

see which would give the best results. It was decided to carry out three separate flights focusing 

on the landscape, an overview of the trench and a close-up of the section in the trench (figure 16).    

 

 
  

Figure 16. Camera positions of the three different UAV flights, focussing on the landscape (A), an overview of the 

trench (B) and a close-up of the section in the trench (C). Pictures acquired by Nicolò Dell’Unto.  

3D models by Sjoerd van Riel.  

 

During the image based 3D reconstruction process, the images from the different acquisitions 

were combined in order to realize a 3D model which represented both the trench and the 

landscape. In this way, the 3D models generated by employing the pictures acquired by the 

drone allowed bridging the 3D model of the entire site (LIDAR) with the 3D models of the 

contexts retrieved and created during the excavation, providing a typology of information which 

is multiscalar and fills the gap that existed between close range photogrammetry/TLS and ALS. 

Figure 17 visualizes different 3D recording techniques categorized by object size and object 

complexity (or rather: recording complexity). It shows an inability to record in 3D objects which 

are between 100m and 2km in size with a recording resolution of more than 10.00 points (which 

is achieved with total station survey, e.g. extremely time consuming).  
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Figure 17. 3D Digital recording methods by object size and recording complexity. UAV survey can bridge the gap 

between TLS/close range photogrammetry, total station survey and ALS. Source original figure: Opitz, 2013 p.14. 

Additional edits in red by Sjoerd van Riel.    

 

Using a combination of UAV and image based 3D modelling, it is possible to bridge this gap (red 

circle). UAVs can cover a range from a few meters up to more than a kilometer, and provide 

models which consist of several thousands and up to several millions of points. More importantly, 

the operator has direct control over the resolution of the model by changing the dense cloud 

settings in Photoscan. Moreover, contrary to laser scanning and total station survey the resolution 

of the model is not so much depending on the acquisition settings, but rather on the post 

processing. This means that data from the same acquisition can be used to create multiple models 

with different characteristics, depending on the needs of the archaeologists.  
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Figure 18. Comparison between the Digital Terrain Models (32 classes) coming from LIDAR (A) and UAV survey with 

image based 3D modelling (C). Highlighted is the point density on the location of the 2015 excavation trench (B). 

Image by Sjoerd van Riel.   

 

The 3D models from the UAV survey for this study were processed in a way that resulted in a 

much higher resolution than the LIDAR data (figure 18). With a point density of less than 10 cm, it 

is possible to map out the morphology of the terrain in much higher detail (compare for example 

the modern road in the north of the surveyed area). Unfortunately the acquisition was originally 

focused on the excavation area and for this reason the datasets produced did not allow for 

extensive surface analysis such as hillshading. However, the combination of UAV survey and 

image based 3D modelling was found to be a useful method to bridge the existing gap between 

close range photogrammetry and LIDAR, and contributed to a more including and complete 

documentation of the wider excavation area.  
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4.2.3 - Robotic Total Station (RTS) and GPS 

 

A Leica TCRP 1203+ R1000 (robotic) total station was used as the main instrument for the 

recording of individual finds and soil samples. The traditional documentation system in Sweden is 

designed for the use of this instrument to record all the spatial data, including layers and features 

retrieved on site as result of the excavation. This data is then imported into a GIS platform 

(Intrasis.com, 2016) specifically designed to host and manage archaeological records. Intrasis is 

a GIS platform developed by ‘Arkeologerna’ (http://arkeologerna.com/) at the National Historical 

Museums in Sweden, and customized to be used in archaeological investigation environments. 

Intrasis allows for the visualization of all the recorded data that is collected during several seasons 

of excavation. However, the options to conduct spatial analysis are limited compared to ArcGIS 

and the system does not allow 3D visualization (figure 19).  

 
 Figure 19. The excavation trench of seasons 2013-2015 visualized in Intrasis. Layers are visualized as black 

lines. Image courtesy by Birgitta Piltz-Williams.  

 

In the light of the Field Archaeology course for Master students at Lund University, an Altus Real 

Time Kinematic (RTK) GPS was also used to measure and georeference the retrieved contexts. 

In specific, the main use of the GPS was the recording of the GCPs in order to georeference the 

3D models. The GPS was chosen over the RTS for this task, because the GPS data proved to be 

more convenient for quick importation in ArcGIS due to a more straightforward georeferencing 

procedure. However, this negatively impacted the georeferencing accuracy of the 3D models, 



 

44 
 

since the GPS is less accurate than the RTS. This problem will be more elaborately discussed in 

chapter 5.2.2.     

4.3 - Image Based Modelling and 3D context drawing 

 

The 3D models that were created during the excavation were not just serving as visualization or 

representation tools. Rather they are an integral part of the documentation process itself. Because 

the approach of image acquisition is determined by the documentation process and its different 

components, I will in this section first describe the data organization structure before discussing 

the image acquisition method itself.   

 

The information that is required for the manual context sheets in Uppåkra has been included in 

the ArcGIS database by the DARKLab. The database was divided in three parts: a basemap 

consisting of additional information such as historical maps and satellite images, the topographic 

survey files such as GCPs and find locations, and the 3D models coming from image based 

modelling (figure 20).  
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Figure 20. Uppåkra ArcGIS Geodatabase structure. Original image (Dell’Unto et al, submitted).  

Additional edits by Sjoerd van Riel.  
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The main goal of this work was to document all contexts by using 3D drawings in ArcScene, using 

the 3D models as result of image based reconstruction techniques as 3D geometrical reference. 

In other words, the contexts could only be drawn as soon as the 3D models were completed. To 

ensure a smooth workflow for this process, a standard approach had to be developed. A schematic 

visualization of this approach is shown in figure 21. 

 

 

 

 
 

Figure 21. Workflow for the acquisition of georeferenced 3D models designed by the DARKLab and used for 3D 

context drawing in ArcScene. Diagram created by Sjoerd van Riel.  

 

The process starts with the acquisition of the images (orange blocks in figure 21). The images 

were taken with a Canon EOS 550D DSLR (Digital Single Lens Reflex) camera (focal length 

55mm, resolution 18 megapixels). Depending on the type of feature that was acquired, between 

28 (for a detail of a section) and 180 (for the entire trench) images were taken. These were then 

exported to Photoscan (blue blocks in figure 21), where the images were aligned and a sparse 

point cloud was created. The sparse point cloud was then cleaned and processed to a dense point 

cloud. Subsequently the mesh was created, and finally the texture projected. The last step in 

Photoscan consisted of georeferencing the model. In order to do this, at least three GCPs are 

needed. For our models, four GCPs were measured with the GPS, from which the coordinates 

were exported to ArcScene (green blocks in figure 21). These coordinates were used to 

georeference the models in Photoscan Pro, after which the models were exported to ArcScene in 

order to be used for 3D context drawing. Depending on the amount of images and the chosen 

processing quality, the total time for this workflow was between 22 minutes (for a detail of a 
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section) and one hour and 28 minutes (for the whole trench). The complete procedure was carried 

out on a laptop in the ‘field office’ of the site. In addition, a Microsoft Surface 3 tablet was used as 

a portable field computer. The ArcScene GIS data was synchronized with this tablet so that all the 

data could be analyzed directly in the field, at the trowel’s edge. This allowed for context drawing 

on the tablet with the virtual trench as geometrical reference, and the real trench in front of the 

archaeologist providing essential information that cannot be modeled such as the grain size and 

dampness of the soil. This method allows for a highly reflexive approach, the implications of which 

will be discussed in chapter 5.1 of this thesis.    

 

 
 

Figure 22. 3D Polylines representing several archaeological contexts in ArcScene, with additional information for each 

context provided in the database tables. Image by Sjoerd van Riel.  

 

Each archaeological context was drawn as a closed 3D polyline. Once this line was created, 

additional information about the context was provided in the connected database tables, such as 

orientation, colour and contents (figure 22). As stated above, it is crucial that this documentation 

occurs at the trowel’s edge since many of the necessary observations can only be made during 

direct physical interaction with the archaeological remains.    
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5 - Results and discussion 

 

This chapter will discuss the influence of the 3D data recording and documentation methods on 

the excavation practice in Uppåkra. The discussion will include results in terms of accuracy, 

precision and resolution of the models and drawings, as well as theoretical influences of the 

methods. In section 5.1 I will discuss the impact of the method on the excavation and interpretation 

process. I will highlight the subjective nature of the methods and discuss the influence of the 

choices that were made on the results. In section 5.2 I will discuss the current limitations of the 

methods and problems that were encountered during the 3D documentation and analysis in 

Uppåkra.  

 

5.1 The impact of the method on the excavation and interpretation process 

 

“On-site interpretation requires an archive that can be easily analysed and quickly synthesised” 

(Beck and Beck, 2000, p.176). 

 

In order to break down the barrier between methods and theory, and reach a research-centred 

approach, on-site interpretations have to be made. On-site interpretations in turn require a well-

organized archive. Using a 3D GIS which includes georeferenced 3D models, drawings and 

context information, this archive is provided. Given the fact that the data is representing different 

stages of the excavation as well as different periods of use of the site, it is actually more 

appropriate to refer to the archive as a 4D GIS. A suggested adjustment to the GIS database 

which enhances this 4D nature of the data in the form of a ‘spectral signature’ will be discussed in 

chapter 5.3. 

 

Model based drawing is found to offer several improvements compared to traditional 

documentation in terms of reflexivity and inclusiveness. One of these is the further elimination of 

the archive division between spatial and attribute data (Beck and Beck, 2000, p.177). Traditionally 

a division existed between the spatial site data (plan and section drawings) and attribute data 

(context sheets). With the introduction of computer applications, this division was reduced. Total 

station drawings can be queried and the attribute data that is connected is only a mouse-click 

away in software such as IntraSIS. However, when a total station is used as 3D data recording 

device there is still a need to take separate photographs to record texture and colour information. 

Using image based 3D modelling instead, the workflow results in the integration of spatial and 

texture data. This example is illustrated by a comparison of figures 19 and 23. In IntraSIS, contexts 

are represented by merely a polyline. Additional texture- and colour information has to be retrieved 

out of photographs which are connected to the contexts through the database. Using model based 

drawing instead, the texture and colour is included by the very nature of the data acquisition 

method, which is image based. Barriers of different data classes can be taken down further by the 

inclusion of e.g. 3D models of significant individual finds (see chapter 5.3). 

A second advantage of model based drawing is the higher level of precision when compared to 

total station drawings. Though very accurate (if handled carefully), total station drawings usually 

represent a very simplified version of the real feature. This is because surveyors tend to take too 
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few points out of time concerns or plain negligence. An example of this can be seen in figure 23, 

where three circular shaped features are shown as they are drawn using a total station (in red) 

and model based drawing (in green). Note that the red polylines which represent the outline of 

each feature are very irregular compared to the green ones. This is because the round features 

are represented by too few points (seven or eight). Since the lines are created by connecting the 

too small amount of points, the lines do not come out very smoothly. The model based drawings 

on the other hand are much smoother since they are not created by connecting several points, 

but instead by directly drawing a line.    

 

 
 

Figure 23. Three circular shaped features visualized in ArcScenes orthographic view. Two different methods of 

context drawing are visualized: total station drawing based on points (red) and model based drawing based on a 

polyline which is drawn with the 3D model as geometrical reference (green).  

Model and drawings by Sjoerd van Riel.   

 

Figure 23 also illustrates a third advantage of model based drawing over total station drawing, 

namely the fact that the drawing pipeline is more direct and transparent. The results of a total 

station drawing acquisition can only be visualized after the raw data has been exported to a 

computer and imported in a GIS such as IntraSIS. The usual practice is that the concerned 

features are removed in the meantime. This means that in case a mistake in the drawing is 

discovered, it is already too late to redo the drawing. This can result in imprecise drawings such 

as the circular feature on the right side in figure 23, where the lower left point is taken in the wrong 

position. With model based drawing on the other hand, the drawing is made directly on top of the 

3D model which means that the outline of the feature can be followed at the trowel's edge. In this 

way, the method is capable of combining the best of traditional drawing (documenting at the 

trowel’s edge) and digital recording (producing data which includes geometrical description, colour 

information etc.).   
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After explaining some of the most important advantages of model based drawing over total station 

drawing, I will now discuss the method in the light of excavation logistics, especially the factor 

time. As discussed in chapter 4.3, the time for the entire pipeline from image acquisition until 3D 

context drawing varied between 22 minutes and one hour and 28 minutes. The biggest factors 

that influence the processing time for the models are the amount of images and the chosen 

processing settings. These factors in turn depend on the foreseen goal of the model, e.g. if the 

model is used as a general overview to represent the state of excavation, the geometrical quality 

of the model will be lower than when the model is to be used for detailed analysis of complicated 

archaeological features. To exemplify this, we can take a look at the graph presented in figure 24.  

   
Figure 24. Graph showing the resolution (measured in amount of polygons divided by 10.000), processing time and 

amount of images for each 3D model. Created by Sjoerd van Riel. 

 

The graph shows the relation between the amount of images, resolution and processing time for 

each model that has been created during the excavation. The processing time consists of the 

(partly estimated) total time spent on the acquisition of the images, model processing in 

Photoscan, georeferencing and exporting the model to ArcScene. On the X axis, the models have 

been categorized according to the type of feature(s) which they represent. Seven models consist 

of a part of the section (A). Five models consist of the complete section (B) and two models consist 

of the complete trench (C). Some general trends can be recognized from the graph. Firstly, the 

models that represent a bigger surface are naturally created from more images. This results from 

the fact that the SfM algorithm needs an overlap between the images, thus a bigger surface will 
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naturally require more images to create a 3D model. However, the graph also shows that the 

higher number of images does not necessarily result in a higher resolution of the model.  

The models representing the entire trench (C) consist of respectively 74.400 and 353.700 

polygons. The reason why those models consist of relatively few polygons is that they were 

created using the lowest quality processing settings for the dense cloud and mesh building. Model 

TR03_6 on the other hand which represents only a part of the section but is processed with 

medium settings consists of more than 500.000 polygons. However due to the small amount of 

images that were used to create the model (38), the processing time is still significantly lower than 

the low resolution models in category C. It is apparent from these examples that the processing 

time is really a result of the combination of the amount of images and the processing settings. For 

a more consistent investigation of the relation between the amount of images and specific 

processing parameters, an experiment should be conducted where all the models are run with the 

same settings on the same PC, and then repeat this procedure with different settings. 

Unfortunately such an experiment did not fit in the timeframe of this thesis, and moreover it would 

give more useful results for field practice if it would be conducted on the PC that is used on the 

field, which is less powerful than the one that was used for this thesis. 

In order to evaluate what effects the processing parameters have on the resulting model, 

the images taken in the final stage of the section at the end of the excavation were processed in 

low and higher settings (figure 25). Even though the geometry is much more detailed in the higher 

quality model (25B and C), the models do not show many differences after the texture is projected 

(25D). The time it took to create the models was respectively 60 and 80 minutes for the low and 

higher quality model. A good practice could therefore be to process a model with lower settings in 

the field to be used for initial model based drawing, after which the model can be reprocessed if a 

more detailed geometry is required. The geometry resulting from the low quality processing 

parameters is sufficient to be used for initial context drawing, and therefore no more time should 

be spent on improving the geometry during the excavation, when time is costly. This example 

illustrates another advantage of using image based modelling, namely the flexibility and possibility 

to reprocess models for different objectives. However, to be able to do this it is crucial that the 

image acquisition campaign is carried out properly. It is good practice to take more images than 

deemed necessary since it does not take a lot of extra time but it can prove extremely useful during 

post processing.     
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Figure 25. Comparison of dense cloud (A), wireframe mesh (B), solid mesh (C) and textured mesh (D) for a lower 

quality model (left) and a higher quality model (right) of the section. Created by Sjoerd van Riel.   

            

From the above discussion can be concluded that the method has several implications on the 

practice of archaeological fieldwork. It requires a significantly different workflow from the one that 

is traditionally used with a total station as primary recording device (figure 21). If the method is to 

become common practice for field archaeologists, it requires a switch in the mindset of the 
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archaeologists. Several miscommunications and misunderstandings happened because the 

image based 3D modelling and model based drawing method is not yet a standard procedure. 

Few archaeologists have knowledge of image based 3D modelling techniques or 3D drawing 

techniques in ArcScene. The bias which is created due to a lack of familiarity with the method is 

evident from the Uppåkra 2015 field report written by a group of master students which at that 

moment were not trained in the use of 3D recording and documenting techniques (Nemecek et 

al., unpublished student report). The authors refer to the method as “an investigation of the use of 

digital archaeology in the field” (Nemecek et al., unpublished student report, p.10) and to the 

practice as “photos for 3D imagery were taken” (Nemecek et al., unpublished student report, p.11). 

The models are referred to solely as “visually strong tools for the documentation” (Nemecek et al., 

unpublished, p.21). The analytical potential of the method is not mentioned. This illustrates a 

discrepancy between archaeologists who have not (yet) been trained in the use of 3D recording 

and documentation techniques and those who are employing it. In order to overcome this, the 

workflow will need to be better implemented in the common practice of archaeological field work. 

This means that several stages of the excavation need to be approached in a different way. Firstly, 

when it is decided that the current state of excavation should be documented, contrary to total 

station documentation it is very important that the trench is cleaned. Since the contexts will be 

recorded with texture and colour information, everything that is irrelevant (trowels, buckets etc.) 

has to be removed or else it will be visible and disturb the documentation. It is good practice to 

also scrape the top surface of the trench since the soil will be in the most natural condition when 

it is fresh and has not been exposed to the sun or rain for hours. Indeed, these rules are 

corresponding with the common rules for standard photographing in field archaeology (Roskams, 

2001). Secondly, the recording and drawing process itself takes a lot longer compared to total 

station documentation. As can be seen in figure 24, it took at least 22 minutes until a model was 

ready for drawing. Then the context drawing itself would take another 15 minutes or so, depending 

on the amount of contexts and their complexity. Total station recording of these contexts on the 

other hand would have taken only several minutes. Though I argue that that the advantages of 

model based drawing (such as the higher resolution of the drawings, the integration of drawings, 

colour and texture information and less post processing work if the excavation is over) outweigh 

this disadvantage, it has to be anticipated that it will take more time to record and document before 

a feature can be excavated compared with total station documentation.  

 

Apart from some more practical advantages that the method provided, it was also found to 

significantly increase reflexivity on the excavation. Even though there is no formal documentation 

of interpretation and subjectivity to the same extent as in the Çatalhöyük project, reflexives and 

discussion amongst the excavators can take place without these formalized guidelines, if the right 

conditions are created. The crucial part is to allow time for reflection and regard these moments 

as a natural part of the fieldwork (Berggren, 2001, p.21). In the Uppåkra excavations, such 

reflexive moments could be created with the use of the tablet PC’s. By having the entire site 

database including historical maps, terrain models and the complete excavation documentation 

together on the same portable device, discussion and interpretation could be moved from the 

office to the field (and not vice versa). By having a sequence of 3D models and associated 

drawings (figure 26) which represent different stages of the excavation, the team could virtually 

go back to a previous stage of excavating in order to discuss and interpret contexts and features 

directly in the field. During this experiment it was also possible to benefit from the 3D models of 

previous excavation seasons, imported and visualized in the system in spatial relation with the 
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information retrieved on site in 2015. My notion that digital technologies enhance reflexivity in the 

excavation process by allowing different types of information being concentrated at the trowel’s 

edge and making the excavation process virtually reversible is supported by the experiences of 

the Çatalhöyük Research Project (Berggren et al., 2015, p.437). 

 

 
 

Figure 26. Visualization in ArcScene of several horizontal interfaces of contexts with which the user can interact in 3D. 

Drawings by Giacomo Landeschi and Sjoerd van Riel. Image by Sjoerd van Riel. 

 

There are still some improvements that could be made regarding the use of tablets in the Uppåkra 

excavations. Most challenges are related to practical issues such as the inability to use the tablets 

properly in very sunny or rainy conditions. However, this problem can easily be overcome by using 

a covering case which protects the device from rain and removes the reflection of the sun on the 

surface of the tablet. A more substantial problem that I encountered in the Uppåkra project was 

the fact that we only had one tablet to use. This meant that it was almost always in use in order to 

draw contexts and feed information to the database, instead of being used for discussion and 

reflection. A proposed solution could be to use one tablet for context drawings and filling in the 

database, and have another tablet which is used for reflexive and narrative/interpretative 

purposes. Even though the excavators in Uppåkra are encouraged to keep a field diary, these are 

often disappearing into private archives and not shared with the archaeological community. 

Perhaps one tablet could be functioning as a ‘digital diary’, where the archaeologists insert a field 

diary at the end of each day. If this tablet is synchronized with the ‘drawing tablet’ on each day, it 

encourages the archaeologists to directly connect their interpretations and diaries with the 

documented contexts. These ‘daily sketches’ can then be included in the more formal 

documentation of the site, as they have been found to be a helpful record of the interpretation 

process as well as the work progress (Berggren et al., 2015, p.437).              
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5.2 - Problems and limitations 

 

The novelty of the method and lack of standardized methodology causes for several challenges 

which still need to be overcome. The problems that I encountered can be divided in three different 

categories: colour representation, georeferencing and positioning of the models and visualization 

limitations. The following sections will discuss each of these problems in detail.  

 

5.2.1 - Problems regarding colour information 

 

In archaeological excavations, colour is often used in support of interpretation. It is a fundamental 

part of the recording, often with its own section on a context sheet (Barker, 1993, p.164; Westman, 

1994, pp.30-31; Roskams, 2001, pp.175-176). In most situations, colour is recorded describing 

the tone (‘dark’), hue (‘greyish’) and dominant colour (‘brown’) (Roskams, 2001, p.175). Recording 

colour information on photographs can be a problematic issue. Colour of soil looks different in 

different situations. If the weather is sunny, colours will show up more bright and shiny than in a 

cloudy situation. Soil changes colour when it is exposed, a dried out feature can look very different 

compared to when it was fresh. As discussed in the previous section, it is therefore important to 

clean the surface just before a photographic acquisition is made. All contexts should be recorded 

as if they were just exposed. To create further homogeneity, contexts should be recorded as much 

as possible during the same weather circumstances. Photographic recording is best done in 

cloudy weather, so that the sun cannot dry out the soil or cast shadows over the context. Finally, 

the ‘white balance’ should be set on the camera before each acquisition, in order to remove 

unrealistic colour casts as much as possible. Despite taking some of these precautions, we still 

experienced problems with colour projection on the 3D models in Uppåkra. As can be seen on 

figure 27, two different models created on different days but displaying the same section show 

very different results.    

  
Figure 27. Two 3D models of the same section showing different colour information.  

Models and image by Sjoerd van Riel.   
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The difference in colour likely occurs at least partly due to different weather conditions. Probably 

it was sunny when the model on the right was created and cloudy when the model on the left was 

created. In order to better understand the reasons for this problem, it is necessary to have more 

information about the weather conditions on the specific moments when the models were created. 

However, this information is not available at the moment. This illustrates the importance of keeping 

a field diary with the weather conditions for each day. Another solution could be to add a column 

in the attribute table in which the weather conditions during the acquisition campaign can be 

described.  

 

A possible solution to overcome problems regarding colour information on photographs is the use 

of RAW format images. RAW images must be developed using additional software such as 

Photoshop or GIMP. The user can edit (colour) information of the photograph in a controlled 

environment, after which the images can be converted into a more useable format such as JPG 

(Kimball, 2014, p.62). In this way the archaeologist has control over the image editing process, 

instead of letting the camera altering some image properties automatically as is the case with the 

JPG format (Kimball, 2014, p.62).  

However, there are some disadvantages in using this method in archaeological excavation. 

The main reason why RAW images cannot be used for 3D modelling in the time-frame of an 

excavation is that Photoscan is not able to process RAW format pictures. In order for the images 

to be used for image based 3D modelling, they need to be converted in a format such as TIFF or 

JPG. This operation does not fit in the time-frame of archaeological excavation practice and would 

make the use of this technique not sustainable. A possible solution would be to acquire the images 

in both formats (JPG and RAW, most DSLR cameras allow for the simultaneous capture of JPG 

and RAW format images), and then using the JPG images for immediate creation of 3D models 

and the RAW images for processing models during post excavation activities. This method would 

utilize the advantages of both JPG (speed and user-friendliness) and RAW (possibility to edit the 

colour information) format images without impacting the image acquisition workflow (Kimball, 

2014, p.62).            

5.2.2 - Problems regarding positioning of the models 

 

When taking a closer look at figure 27, another problem catches the eye. At the place where the 

two models meet, the wall of the section seems to jump in a few centimeters. In reality the walls 

of the section were straight. This means that the models can have a discrepancy of several 

centimeters, and since the contexts are drawn with the models as geometrical reference these will 

be inaccurate on the level of several centimeters as well. This is an unacceptable error level when 

the models are meant to be used for analysis and interpretation rather than just visualization tools. 

It is therefore important to understand where this inaccuracy comes from, and how to improve the 

accuracy of the models.  

 Photoscan automatically calculates the georeferencing error level in the metric order of 

centimeters. The error in the models that were produced for this thesis varied between 5mm and 

20mm with an average error of 13mm. The error level in Photoscan does not explain the 

discrepancy of the models as shown in figure 27. The discrepancy arises not from inaccuracy in 
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the model geometry, but rather from the inaccuracy of the GPS measurements through which the 

models are georeferenced and scaled (figure 28).  

 

 

 
 

Figure 28. Cluster of 18 points acquired with the GPS which represent the same Ground Control Point (GCP A).  

A line measurement in ArcMap shows that the measurements have an error of as much as 8.5 cm.  
Image by Sjoerd van Riel. 

 

Figure 28 shows a cluster of points which represent a single ground control point in the field (GCP 

A). In order to evaluate and correct the GPS inaccuracy, a set of four fixed ground control points 

was set up in Uppåkra. These points were recorded each day after the GPS base station was set 

up. Since the points were not moved during the excavation, the GPS points which represent the 

ground control points should be located in the same position for each day. But due to the 

inaccuracy of the GPS the points shift a little bit, which causes the distribution of the points to be 

quite widespread. Due to the fact that the ground control points that have been used to 

georeference the 3D models of the trench and contexts were also measured on a daily basis, a 

similar error distribution can be expected for the georeferencing of the 3D models, which causes 

mismatches between different models as can be seen in figure 27.  
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A possible solution to solve this problem could be to have fixed ground control points for the 

georeferencing of the models and measure them only once at the beginning of the excavation. 

These points should then be used for the remaining part of the excavation to georeference future 

models. In this way, the accumulating error of a slight mismatch on each day will be avoided. 

However, this method will require that the ground control points stay in place for the whole 

excavation, and moreover have to be visible in each acquisition round. This means that they have 

to be placed close enough to the features that are going to be recorded to appear in the 3D model, 

but they cannot be in the way of the excavating process. To meet these requirements will be easier 

in some excavation circumstances than others, depending on the characteristics of the excavation 

method and features. A second possible solution could be to use a total station instead of a GPS 

for the recording of the ground control points, since a total station has a higher accuracy compared 

to a GPS. However, a total station has other disadvantages which have been discussed earlier in 

this thesis, such as longer post processing time and the impossibility for direct visualization of the 

obtained data. The optimal approach will therefore be depending on the priorities of the 

archaeologists and the tools available. However, it is important to recognize the consequences 

that different tools and methods will have on the documentation.   

5.2.3 - Problems regarding documentation methods and visualization 

 

Besides colour projection and inaccuracy issues, the third problem that I encountered relates to 

the lack of visualization and symbology options in the documentation principles. This problem is 

part of a bigger issue in field archaeology, namely the impossibility to document the full extent of 

the excavated area. Because this problem relates directly to the challenges in 3D documentation 

and presentation of the data I will discuss shortly the various methods are commonly used to 

excavate and document archaeological sites. 

Traditionally, the documentation consists of the recording of plans and sections. Plans 

record the length and width of an archaeological interface. Sections record their thickness. Plans 

are the records of single interfaces and do not show a sequence, whereas sections represent the 

time dimension of a site (Harris, 1989, p.83). Three types of plans can be distinguished: multi-

context single-level, multi-context phase and single-context (Roskams, 2001, p.137). A single-

level (‘top’) plan is a drawing done at a designated time, consisting of all the features that are 

visible in the trench at that time. A phase-plan is a multi-context drawing created when the exposed 

stratigraphy is considered to belong to the same time period. A single-context plan lastly is, as the 

name suggests, a plan of one context which is exposed to its full extent (Roskams, 2001, pp.137-

141). Sections can also be divided in three types, distinguished not by their output but rather by 

their purpose. The first type is used to record the stratigraphic sequence, often of the trench walls. 

The second type is used to provide information about the internal stratigraphy of a single deposit, 

say different filling phases of a posthole. The third and last type is used to shed light on specific 

stratigraphic problems on a site (Roskams, 2001, pp.143-144). The motivation to create a section 

through the trench in Uppåkra belongs in the third category. Since the excavations follow the 

single-context method of planning and excavating, it is crucial to understand the boundaries of 

individual contexts in order to record them in a single plan. The section was established since we 

had troubles doing this and wanted to obtain more information about the vertical relation between 

different contexts, amongst others whether or not there was another structure located underneath 

the oven which was excavated during the 2013-2014 excavations.      
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A combination of both plan and section recording has long been the standard in archaeological 

documentation, since they complement each other.  

According to Harris (1989), “Plans give the length and width of a site, if you will, and sections 

record its depth: these three dimensions are woven together by the stratigraphic sequence, which 

represents the fourth dimension, time, on archaeological sites.” (p.83). Harris was discussing 4D 

on archaeological sites as early as the 1980s. However, until recently the documentation was 

confined to bi-dimensional plan- and section drawings or photographs. Figure 29 illustrates the 

standard drawing procedure of plan- and section drawings. A portion of the section in Uppåkra 

containing eight possible postholes2 is used as an example (29A). Figure 29B shows the postholes 

as they would be drawn in a manual or digital single-level or phase-plan, respectively section. 

Figure 29 C and D shows what a combination of these two types of drawing would result in. These 

drawings are hypothetical and created by the author; they are not part of the official site 

documentation.    

 

 
 

Figure 29. Illustrating the concept of plan- and section drawings (B) in archaeological excavations. A combination of 

plan- and section will give the contours of the upper interface and the depth of the feature  
(C and D). Images by Sjoerd van Riel.  

 

Since the features were in the real situation excavated and documented according to the single-

context method, the section drawing is purely hypothetical because there has never been a section 

in the real situation. Hence the white/blue ‘hypothetical layer’.  

 The method of plan- and section documenting has several limitations. The first one relates 

to incompleteness of the contexts in the plan. Due to the fact that layers are overlapping each 

other, only a part of the layers’ surface will be exposed at a time. A plan drawing would thus only 

partially record any units of stratification which partly lie under other deposits (Harris, 1989, p.89). 

                                                
2 At the moment of writing it is unsure whether the features are interpreted as postholes, animal 

burrows or something else. In this discussion they will be referred to as postholes.   
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By sectioning each context some of the underlying layers can be recognized, but their upper 

interface will still be undocumented. A second limitation derives from the fact that only a ‘slice’ of 

the vertical extent of the context will be recorded. In the hypothetical example presented in figure 

29, the postholes are sectioned in east-west direction. In this way the vertical angle is only 

recorded in east-west direction, therefore information about the angling in north-south direction is 

lost. This problem can be partly overcome by sectioning a feature in quadrants, but it will still be 

impossible to reconstruct the total volume of a feature with this method. 

The above described problems were reasons for the development of the single-context 

method (Harris 1979;1989). In this method, ideally every unit of stratification is recorded in both 

plan and section together with a set of coordinates and a number of elevations on a pre-printed 

context sheet. The context is then removed in its entirety, and the same procedure will be repeated 

for the next context (Harris, 1989, p.95). The individual records of single-contexts can then be 

used to create composite plans. Critique on this method includes the arguments that it denies the 

possibility for on-site interpretation since every unit is presented to be floating free of any of its 

associates (Roskams, 2001, p.141) and that it holds the incorrect assumption that all contexts are 

clear-cut and easily distinguishable (Barker, 1993, p.169). Moreover it is claimed that the quality 

of drawing drops when the site is split into unconnected units (Barker, 1993, p.169; Roskams, 

2001, p.140). A good practice could be to document single-context where possible, and a 

composite drawing where necessary.   

 

The above discussion is relevant for this thesis because a new method of documenting a site, in 

this case based on image based 3D modelling and 3D context drawing in ArcGIS, reopens the 

debate concerning what should be documented and how. As discussed before, the timing of 3D 

acquisition is subjective and depends on the theoretical strategy of recording. Figure 30 illustrates 

the result of different documentation methods if they would be followed using image based 3D 

modelling.  

 

 
Figure 30. Illustrating the result that different documentations principles would give if they would be applied on 3D 

recording. Visualized are single-level planning (A), phase-planning (B) and single-context planning (C).  
Images by Sjoerd van Riel.    

 

The illustration shows the same cluster of postholes that were used to illustrate the result of plan- 

and section drawings (figure 29). The traditional method of single-level planning would mean that 

acquisitions are done of big surfaces which are exposed at the same time during the excavation 

(30A). This means that a surface is recorded which was probably never exposed during the lifetime 

of the site. Certain stratigraphic units would be laid down at earlier periods than others, but this 
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would not be visible from the plan (Harris, 1989, p.86). Phase-planning would mean that only those 

contexts are acquired that are thought to belong to the same archaeological time period (30B). 

Unlike the arbitrary single-level plan, from the phase-plan it would immediately be apparent to the 

observer that postholes one, five and seven are thought to belong to the same phase.3 Clearly the 

value of this type of visualization depends on the validity of the phasing interpretation. As 

discussed above, it is impossible to recognize all units of stratification in this manner, since some 

deposits will be sealed by others which makes them invisible from the top (Roskams, 2001, p.140). 

Single-context planning finally would mean that acquisitions capture only one context at a time 

(30C). I have already discussed some of the traditional arguments against this method above, 

such as the suggested isolation of contexts and the lack of on-site interpretation. 

 

During the excavation in Uppåkra, the method presented in figure 30A was used. 3D models were 

created on moments when a major surface had been found, instead of creating 3D models for 

single phases or contexts. However, the excavation followed the single-context method, and a 

context sheet as well as graphic documentation was produced for every individual context. Thus 

one could argue that a discrepancy exists between the documentation method followed by the 

excavation team (single-context), and the one that is implemented in digital documentation 

practice (single-level). This is mostly a consequence of a shift in recording and documenting tools 

that are utilized. In practice it is much easier to acquire a single-level of a trench in a set of images 

and create a 3D model of this in Photoscan than it is to create separate 3D models for each 

individual context.  

 The model based drawing approach offers some opportunities that were not available with 

2D total station drawings. One of these is the possibility to generate volumes which could be used 

for artefact density mapping of specific contexts. Using a total station, volumes can be partly 

reconstructed by measuring the upper and lower interface of a context such as a posthole. 

However, often only the upper interface is recorded and information about the vertical extension 

of the context is only described on a context sheet. The resulting documentation from this method 

is illustrated in figure 31. In the best scenario, both the upper and lower interface of a context is 

documented with the total station, which would result in two lines representing these interfaces. In 

figure 31A the hypothetical results of documenting upper (in brown) and lower (in red) interfaces 

with this method are illustrated. Figures 31B and C show one method, in this case using a spiral, 

of how the volume of the postholes can be documented using model based drawing. As previously 

discussed, the lack of standardization due to the novelty of 3D documentation in archaeology 

results in the fact that drawing conventions as they exist for manual drawing (e.g. Westman, 1994), 

do not exist for 3D drawing yet. This means that experiments need to be conducted to find suitable 

ways of visualization for different types of contexts. The spiral representation for postholes has 

the advantage of showing the depth and angling of the posthole in 3D, but also has some 

limitations such as the lack of mathematical potential, e.g. volume calculation. Another pitfall for 

this method of drawing can be observed in figure 31D. This posthole has been acquired with too 

few images, which caused problems for the SfM algorithm to reconstruct the geometry for the 

bottom part of the posthole. Hence the deepest part of the posthole is recreated as loose chunks 

of geometry which are not connected to the rest of the model and thus cannot be used for 3D 

drawing, since the 3D polyline in ArcScene needs the geometry of the model as geometrical 

                                                
3 The assumption that postholes one, five and seven are contemporary is hypothetical. I do not have 

information about the actual interpretation of these features. 
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reference. This problem illustrates the importance of a good image acquisition campaign, since 

the use of poor images has consequences for the quality of the documentation and the context 

will likely will be gone when the mistake is discovered. 

 
 

Figure 31. Illustration comparing the digital documentation of postholes in single-context excavation using total station 

(A) and model based drawing (B-C) as well as visualizing the consequences of a poor image acquisition session (D). 

Created by Sjoerd van Riel 
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5.3 - Suggestions for further research 

 

As discussed in the previous section there are still several problems to overcome, such as 

insufficient colour projection and georeferencing accuracy. Future research should focus on fixing 

these problems in order to create new methods that can be successfully used to record and 

document archaeological excavations in 3D. Next to working on repairing these flaws, future 

research should also aim to develop new features which will enrich the final documentation.  

A first example of this is to include a preliminary dating record in the geodatabase context tables, 

in order to add an archaeological chronological dimension which can help interpreting the site. 

This could potentially lead to the identification of ‘spectral signatures’, i.e. period specific 

deposition patterns (Beck and Beck, 2000, p.177). Naturally, the success of this procedure would 

be depending on the availability of finds with high potential for on-site dating, such as pottery or 

coins. Alternatively, experiments could be conducted using a relative dating sequence, such as to 

visualize all the contexts which are interpreted to be pre- or post- another context, date, or 

whatever the archaeologists choose as a reference. By including this traditionally post-excavation 

phasing work partially in the excavation documenting process, the supposed division between ‘a-

theoretical’ excavation practice and recording on the one hand and interpretational/theoretical 

post-excavation work on the other hand can be deconstructed further. This will improve 

interpretation and reflexivity during the recording and documentation process.  

A second suggestion for future improvements is to include 3D models of significant 

individual finds in the documentation database. One way of doing this could be to leave significant 

finds in-situ and include them in the image based modelling acquisition. This would have the 

advantage that all the information about the exact position and location where the find has been 

retrieved is kept, but it would also mean that the artefact will be only partly visible, since it will be 

partly buried or covered by deposits. Another way of doing this would be to retrieve the artefact 

and document its context as usual, and then create a 3D model of the entire object in the lab. This 

model can then be imported in ArcScene and connected to its original position in the 

corresponding model of the trench, so that the artefact can be studied in detail and in connection 

to its original context. This method prevents the segregation of artefacts into their specialized 

groups, which would result in fragmentation of the data and lack of discourse between various 

specialist sub-groups (Beck and Beck, 2000, p.177).           
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6 - Conclusion 

 

Digital technology has changed the way of how archaeological sites are recorded and 

documented. The recent development of 3D visualization GIS software and low-cost 3D modelling 

software which creates high-quality 3D models from ‘ordinary’ digital images has revolutionized 

the Digital Turn by allowing archaeologists to use 3D models not just for visualization, but also for 

analysis. Moreover the use of 3D models for analysis is not limited to artefact or building analyses, 

but extends to documenting and analyzing entire archaeological sites. 

The goal of this thesis has been to explore the potential of several methods of 3D data 

acquisition, post-processing and analysis in the frame of an ongoing excavation in Uppåkra, 

southern Sweden. After providing a short historical background on the subject of digital 

archaeological documentation practice in chapter one, I have discussed several digital recording 

and documentation methods as well as their associated software programs in chapter two. 

Specifically, LIDAR data was used to conduct analysis on the landscape in which the site is 

located. In support of a more detailed landscape analysis of the immediate surroundings of the 

excavation area, a UAV (Unmanned Aerial Vehicle) was used to provide a Digital Terrain Model 

(DTM) with a resolution that was significantly higher than the DTM created with the LIDAR data. 

The UAV model was used to cover a scale which neither close range photogrammetry nor LIDAR 

was covering, thereby closing the gap between several 3D recording methods and creating a 

multi-scalar 3D dataset. For the recording of the trench and its contexts, image based 

reconstruction techniques were used to create resolute 3D models in Photoscan, which were 

georeferenced with a RTK GPS and imported into a 3D GIS (ArcScene). This resulted in a multi-

scale 3D dataset ranging from the landscape to the single-context level, organized spatially and 

diachronically in the same visualization platform.  

This thesis has also set out to discuss the theoretical implications of these 3D methods 

and digital methods in general within archaeological excavation practice, which was presented in 

chapter three. It was argued that digital recording is a subjective process which is based on 

interpretations which are in turn based on a theoretical pre-understanding. These different steps 

of subjectivity and interpretation result in a 3D database which should not be seen as more 

objective compared to traditional documentation, but rather as the result of a series of choices 

which were made by the excavators. In order to make this subjectivity transparent and open for 

discussion, it is important that a reflexive documentation method is maintained, where the obtained 

digital data is easily accessible and where space for interpretation is integrated in the excavation 

process, rather than something that is saved for post-excavation work. Moreover, a multi-scale 

approach where theory and data from landscape and intra-site perspectives are included will 

further enhance such a reflexive method. I have argued that the use of digital technologies 

significantly improves the process of reflexivity and that it is able to bridge the gap between certain 

aspects of landscape archaeology and field practice. 3D GIS systems are capable of integrating 

data from landscape to single-context scale in the same virtual environment. Tablet PC’s can be 

taken out in the field so that all this data is accessible for the excavators in order to analyze a 

trench in its wider context.  

In chapter four I have provided the results of the various recording techniques, from the 

landscape level with LIDAR technology down to the single-context level with image based 3D 

modelling technology. The result of these analyses together with the theoretical discussion have 
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then been taken together in a discussion concerning the impact of 3D recording and 

documentation technologies in archaeological practice, which is presented in chapter five.  

I have argued that the described method has several advantages over traditional recording 

and documentation methods. Firstly, model based drawings are more precise than total station 

drawings. Secondly, the method overcomes the traditional separation of vector (in this case points 

and lines) and raster (in this case images) data. Thirdly, the method is more able to visualize and 

analyze the obtained data in 3D or 4D, rather than visualizing and analyzing 3D data in a bi-

dimensional environment such as IntraSIS or ArcMap. Fourthly, the method allows virtually 

revisiting some stages of the excavation and analyzing features which have been excavated on 

different days in relation to each other. Finally, the method is more inclusive of several typologies 

of data coming from different acquisition methods or times, which enhances a reflexive recording 

and documentation method.  

However, some drawbacks and flaws have also been discussed in chapter five. Firstly, 

there are problems with the colour projection on the 3D models which results in misleading 

information. Secondly, the cumulative inaccuracy of the GPS measurements has led to inaccurate 

georeferencing of the 3D models, which makes some of the strong points of the method such as 

the possibility to virtually deconstruct the excavation process and revisit some of the excavation 

stages less effective. The third problem is not so much an issue with the method itself but rather 

the consequence of introducing a new recording and documentation method which demands a 

different approach from the archaeologists in the field. It takes time to change the way of thinking 

for archaeologists who have been trained in certain methods of documenting an excavation, as 

was shown for example from the student field report which is discussed in chapter four.  

Given the fact that in my opinion the advantages of the discussed method outweigh the 

disadvantages, and that solving most of the problems which I have discussed is just a matter of 

time and more experimentation, I argue that the methods presented in this thesis can bring the 

recording and documentation methods that are used in archaeology a step forward. It should not 

be seen as a replacement of traditional documentation, since it is still in development and therefore 

still facing many challenges. But if future studies focus on further improving the use of 3D recording 

and documentation techniques and 3D GIS systems in support of archaeological practice and 

solving the problems that have been highlighted in this thesis, big steps forward can be taken in 

the field of archaeological excavation documentation in the years to come.             
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