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Abstract

The possibility to have a strongly first order electroweak phase transition, which is one
of the Sakharov conditions for electroweak baryogenesis together with CP violation and
baryon number violation, in general Two-Higgs-Doublet Models (2HDMs) is here investi-
gated. Different kinds of Z2 breaking beyond standard assumptions are studied, in partic-
ular by allowing it to be completely broken as well as by assuming it to be only approxi-
mately preserved in the Yukawa sector. Throughout the study a 1-loop thermally corrected
effective potential is used.

Parameter space scans are performed for several kinds of 2HDMs and experimental con-
straints from Higgs physics, flavour physics, electroweak physics and searches for electric
dipole moments of the electron, neutron, mercury and radium are imposed. Also theo-
retical constraints are taken into account, in particular tree level unitarity, perturbativity
and positivity as well as demanding that the tree level minimum of the potential is global.
As a starting point CP conserving models are considered, but after that also CP violating
models (which are relevant for electroweak baryogenesis) are investigated.

It is found that a reasonable amount of points satisfy all imposed constraints for both CP
conserving and CP violating models, and that the average strength of a phase transition
increases when CP violation is added, as favoured by the Sakharov conditions. The CP
violating models with only soft Z2 breaking are seen to more easily satisfy the imposed
constraints than those with a completely broken Z2 symmetry. In the models with only
an approximate Z2 symmetry in the Yukawa sector no difference can be seen when non-
diagonal perturbations, as compared to the case of only having diagonal ones, are allowed.
It is observed that the electroweak constraints in general require small squared mass dif-
ferences between the scalar particles, and that the constraints from electric dipole moment
searches are the most constraining ones. Finally, it is found that low tan β is generally
preferred by all imposed constraints, thus making the picture consistent, and, as is known
from the generation of a baryon asymmetry, low tan β is also favoured since the asymmetry
nB ∼ cot2 β. Hence it is concluded that there indeed is hope for 2HDMs to explain the
observed baryon asymmetry of the Universe through electroweak baryogenesis.



Populärvetenskaplig beskrivning

Vad har egentligen kokande vatten, Higgspartikeln och det faktum att n̊agonting snarare
än ingenting existerar gemensamt? Jo, om vi tittar ut i universum och jämför mängden
vanlig materia, d.v.s. materia best̊aende av partiklar s̊a som protoner och neutroner, med
mängden s.k. antimateria (materiens nemesis i den bemärkelse att dessa förgör varandra
vid kontakt och som med god anledning därför har f̊att prefixet anti-), visar det sig att
det väsentligen inte finns n̊agon antimateria alls. För gemene man är detta väldigt rogi-
vande, ty annars skulle den värld vi känner sannerligen inte kunna existera, men för en
partikelfysiker med antagandet att det inte fanns n̊agon materie-antimaterieasymmetri vid
universums skapelse i Stora Smällen, s̊a sticker detta i ögonen eftersom experiment vid
t.ex. partikelacceleratorn LHC i Schweiz visar att det bildas lika stora delar materia som
antimateria vid en partikelkollision (skapelsen av partiklar i en s̊adan kollision kan ses som
skapelsen av partiklar efter Stora Smällen). Det är därför väldigt underligt, men likväl
intressant, hur materie-antimatieasymmetrin i fr̊aga faktiskt har uppkommit.

Sedan upptäckten av denna asymmetri har flertalet möjliga lösningar föreslagits och en
särskilt populär s̊adan är s.k. elektrosvag baryogenes. Ordet elektrosvag härrör fr̊an det
faktum att mekanismen i fr̊aga är relaterad till det symmetribrott som i partikelfysikens
Standardmodell sker vid den elektrosvaga energiskalan (d.v.s. vid temperaturer av stor-
leksordningen 100 GeV, eller, i mer vardagliga enheter, 1000 miljarder grader Celsius) när
Higgspartikeln ger massa till de partiklar som i dagens universum är massiva, och det
är just denna fasöverg̊ang, den s.k. elektrosvaga fasöverg̊angen, som studeras i detta ar-
bete. Speciellt s̊a måste denna fasöverg̊ang ha en viss egenskap som ocks̊a kokande vatten
har, nämligen att den sker genom att det i rumtiden bildas bubblor (jämför det kokande
vattnet i kastrullen p̊a spisen där det bildas bubblor av vatten̊anga) i vilka massiva par-
tiklar kan existera. Det andra ordet, baryogenes, är mer lättförst̊aeligt och innebär helt
enkelt skapelsen av baryonasymmetrin (baryoner är just dessa partiklar, uppbyggda av tre
kvarkar, som utgör grunden för den vanliga materien).

Det bör nämnas att Standardmodellen trots dess annars s̊a stora framg̊ang inte kan förklara
den observerade asymmetrin i fr̊aga och att det därför krävs n̊agon typ av ny fysik som ännu
inte har observerats, men det är just med anledning av dess framg̊ang som det ofta föresl̊as
nya modeller där mycket är sig likt men n̊agon liten detalj är annorlunda. De s.k. tv̊a-Higgs-
dublettmodellerna, ofta benämnda 2HDMs, är just s̊adana minimalt utvidgade modeller
vars största fysikaliska konsekvens är existensen av inte bara en utan fem Higgspartiklar,
varav tre är oladdade och resterande tv̊a har laddning. Med i skrivande stund enbart en
experimentellt hittad Higgspartikel finns det m̊anga parametervärden i 2HDMs att skruva
p̊a, s̊a att man därför måste undersöka fasöverg̊angen i fr̊aga för ett ofantligt stort antal
punkter och med hjälp av experimentella och teoretiska begränsningar utvärdera hur bra
dessa är, detta för att i slutändan kunna avgöra huruvida 2HDMs, under antagandet att
elektrosvag baryogenes är korrekt, är goda kandidater för att förklara den n̊agot oväntade,
men ack s̊a viktiga, baryonasymmetri som finns i det synliga universum.
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List of Acronyms

Below is a list of the acronyms introduced in this study.

Acronym Full Meaning
2HDM Two-Higgs-Doublet Model
BAU Baryon Asymmetry of the Universe
BSM Beyond Standard Model
CKM Cabibbo-Kobayashi-Maskawa
CL Confidence Level

CMBR Cosmic Microwave Background Radiation

DR
′

Dimensional Reduction
EDM Electric Dipole Moment
EM Electromagnetism

EWBG Electroweak Baryogenesis
EWPT Electroweak Phase Transition
EWSB Electroweak Symmetry Breaking
FCNC Flavour Changing Neutral Current
LHC Large Hadron Collider
PDG Particle Data Group
SLHA Supersymmetry Les Houches Accord

SM Standard Model
SSB Spontaneous Symmetry Breaking
VEV Vacuum Expectation Value
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1 Introduction

The Standard Model (SM) of particle physics attempts to describe the observable Universe
in terms of three of the four fundamental forces in Nature, namely, the weak force, the
strong force and the electromagnetic force, and experiments indicate that it manages to do
so very well. Despite this success, there are phenomena in nature which it fails to explain,
some common examples being the observed matter/antimatter asymmetry of the Universe
and the mysterious dark matter.

The above mentioned asymmetry concerns the fact that in the present Universe there
is a vast abundance of baryons as compared to antibaryons [1], which in light of, e.g.,
particle processes at the Large Hadron Collider (LHC), where matter and antimatter are
produced in equal amounts, is rather peculiar. In the perturbative regime the SM treats
matter and antimatter symmetrically as well, so there is also a problem from the theoretical
perspective1. Thus, a reasonable question to ask is what is required from a particle physics
model to be able to generate an asymmetry such as that observed. It turns out that the
following conditions, called the Sakharov conditions, necessarily must be satisfied [2]:

The model must contain

1. C and CP violation,

2. Baryon number violation,

3. Processes in thermal inequilibrium.

Even though these in principle could be met by the SM it turns out that it actually does
not contain enough CP violation. Moreover, in the framework of so-called electroweak
baryogenesis (EWBG) which will be introduced below, the third condition demands a
strongly first order phase transition2, something which would require the SM Higgs boson to
have a mass mh . mW , where mW ≈ 80 GeV is the mass of the W boson [2]. Experiments
at the LHC have measured mh ≈ 125 GeV [3] and so it can be concluded that the SM
for at least two reasons cannot generate the observed baryon asymmetry of the Universe
(BAU).

Because of these limitations, there is clearly strong observational evidence of the need to
go beyond the SM. However, as the SM has been very successful it is clear that any new
model must incorporate many of its predictions and traits. In the so-called Two-Higgs-
Doublet Models (2HDMs) an additional hypercharged scalar SU(2)L doublet is added to
the SM, thus yielding, e.g., new sources of CP violation and hence possibly an explanation
of the BAU through EWBG. Essentially, EWBG is intimately related to the EWPT, i.e.,
the spontaneous symmetry breaking (SSB) occurring at the electroweak scale (∼ 100 GeV)

1Of course, this assumes that there was no net baryon asymmetry at the creation of the Universe.
2The phase transition in question, called the electroweak phase transition (EWPT), is the process

where particles obtain masses via interactions with the Higgs field (the so-called Higgs mechanism) and
the electroweak symmetry is broken. This phase transition will be defined more properly below.
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due to the scalar fields acquiring non-zero vacuum expectation values (VEVs). This phase
transition is defined by (in terms of the symmetry group SU(3)C × SU(2)L ×U(1)Y of the
SM, where C refers to colour, L to left and Y to hypercharge) SU(2)L×U(1)Y −→ U(1)EM ,
where U(1)EM is the gauge group of electromagnetism, occurring at some temperature near
the electroweak scale. Now, the additional sources of CP violation in 2HDMs come from
the possibility of having a relative complex phase between the VEVs (so-called spontaneous
CP violation) as well as complex phases on certain potential parameters (so-called explicit
CP violation). As a side note, there are alternatives to EWBG, where one example is
so-called leptogenesis (see, e.g., [1]) but the fact that EWBG is thought to occur at the
electroweak scale, i.e., at energies accessible at colliders, makes it easier to falsify and thus
has attracted much interest.

Of course, adding an extra scalar doublet as that above to the SM has several other conse-
quences than just the mentioned additional sources of CP violation and the possibility of
having processes in thermal inequilibrium satisfying experimental bounds. For instance,
one direct physical consequence is the existence of not only one but five Higgs-like parti-
cles [4]. Obviously, with the discovery of a neutral scalar Higgs boson at the LHC in 2012
the question remains which of the neutral scalars in the 2HDM it would correspond to.
Each conceivable scenario has its own phenomenological implications and so it is important
to take this into consideration in analyses by comparing with existing experimental limits.

In this study, the goal is to investigate the EWPT in general 2HDMs and to evaluate, with
the help of experimental as well as theoretical constraints, the possibility of explaining the
BAU through EWBG in such models. There is a certain symmetry, called the Z2 symme-
try, often employed to avoid so-called flavour changing neutral currents which are heavily
constrained by experiments, but as these phenomena have not been ruled out completely
some freedom remains to not demand such a symmetry. Furthermore, many previous in-
vestigations of the EWPT have relied on simplifications such as CP conservation3 (see,
e.g., [2]), but the goal here is to make less simplifications in order to obtain a more realistic
result. In particular, the types of 2HDMs investigated in this study are

1. Z2 breaking and CP conserving

2. Z2 breaking and CP violating

The structure of this thesis is as follows: In Sec. 2 the theoretical background of 2HDMs,
cosmological phase transitions, EWBG and other relevant concepts are presented. After
this, in Sec. 3, the theoretical and experimental constraints and limits used are introduced.
In Sec. 4 there is a brief review of the programs used and written to do the numerical
studies as well as, for the programs already existing before, the corresponding alterations
needed for the studies in question. In Sec. 5 results are presented and analyzed, after
which a summary and some conclusions of the study are given in Sec. 6. Acknowledgments
are given directly after that, and more technical details related to the study have been
relegated to appendices following the acknowledgments.

3Note that this is in contradiction with one of the Sakharov conditions.
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2 Theoretical background

In this section, the main theoretical concepts and tools needed to understand EWBG in
2HDMs are presented. It is assumed that the reader has knowledge of the SM, but the
most important concepts for this study will briefly be reviewed here.

2.1 Cosmology and electroweak baryogenesis

The so-called Hot Big Bang theory tries to explain the creation and evolution of the Uni-
verse and in the light of observations does so quite well (although not without problems in
certain cases). This theory states that, following closely the material in [1], in the begin-
ning of time the Universe was hot and dense, but as time passed the Universe expanded,
cooled off and became less dense. During this evolution certain cosmic epochs arose, of
which a few are worth mentioning (in reverse time order)4

• Recombination: The transition to neutral gas from a plasma consisting of baryons,
electrons and photons. It is light from this epoch that today can be seen in the cos-
mic microwave background radiation (CMBR), since after the transition in question
photons could no longer scatter with electrons in the neutral gas. (T ∼ 0.1 eV)

• Nucleosynthesis : The transition to nuclei from a plasma consisting of protons and
neutrons. (T ∼ 1 MeV)

• QCD transition: The transition to hadronic matter from a quark-gluon plasma in
which the color charged particles could move as individual particles. (T ∼ 100 MeV)

• Electroweak transition: The transition to massive particles from a state with massless
particles, occuring when SU(2)L × U(1)Y → U(1)EM , as explained below. (T ∼ 100
GeV)

As was remarked in Sec. 1, the last of these phase transitions, namely the EWPT, is
of central importance to EWBG. Henceforth denote the critical temperature, i.e., the
temperature at which the EWPT occurs, as TC .

2.1.1 Electroweak baryogenesis

Here the basic concepts of EWBG are presented, starting with the EWPT and then going
on to the three most important steps in the generation of a baryon asymmetry. For the
sake of discussion assume that there is a Higgs VEV, v, and that the model in question
satisfies the three Sakharov conditions enumerated in Sec. 1.

4Throughout this thesis the reduced Planck constant and the Boltzmann constant are set to unity, i.e.,
~ = kB = 1. Note that in these conventions temperature T and energy E have the same units.
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The electroweak phase transition

For temperatures T > TC , the symmetry group of the SM is GSM = SU(3)C × SU(2)L ×
U(1)Y . The subgroup SU(2)L × U(1)Y defines the so-called electroweak symmetry5 of the
SM. At T = TC , this symmetry is broken down to U(1)EM by means of spontaneous
symmetry breaking (for a review of spontaneous symmetry breaking, see App. A). In
mathematical terms,

SU(3)C × SU(2)L × U(1)Y ⊃ SU(2)L × U(1)Y −→ U(1)EM (2.1)

EWBG requires the EWPT to be strongly first order, this in order to avoid any so-called
baryon wash-out through which an obtained baryon asymmetry is erased. The strength of
the phase transition can be characterized by the parameter [5]

ζ =
∆vC
TC

(2.2)

where ∆vC is the difference between the VEV just below the critical temperature and the
VEV just above the critical temperature6. As a rule of thumb from lattice simulations [6],
the transition is strongly first order if ζ & 1. A first order phase transition is such that
bubbles of the new phase nucleate in the old phase7, and so if the phase transition in
question is characterized by the transition of the VEV of the Higgs field from being zero
to being non-zero, the situation can be depicted as in fig. 1. There, bubbles of v 6=
0, i.e., broken electroweak symmetry, nucleate and can either expand or implode, this
depending on bubble properties at the time of nucleation. In-between bubbles v = 0 and
the electroweak symmetry is unbroken, and it is just outside the bubble walls that the
EWBG starts:

Step 1 of EWBG: Scattering with walls

Particles in the surrounding symmetric plasma may scatter with the bubble walls. From
CP violation, these processes can create asymmetries in number densities between particles
and antiparticles.

Step 2 of EWBG: Sphaleron transitions

So-called sphalerons are unstable solutions of the field equations, and since they are non-
perturbative cannot be seen in Feynman diagrams. Furthermore, they have the property
of allowing systems with zero net baryon charge to reach states with non-zero net baryon
charge, and conversely, so that baryon number is violated. This is called the ’t Hooft
effect [1]. From the asymmetries in number densities between particles and antiparticles
generated in Step 1, an excess of e.g., baryons can be created, i.e., if the Universe from the

5It might be that at even higher energies also the strong force is unified with the electroweak force, so
that some other symmetry group breaks down to GSM at some critical temperature T ′

C > TC . This would
mean that the three forces described in the SM are in fact the same at high enough energies.

6Note that ζ measures the jump in VEV at the critical temperature, hence its usefulness.
7This is exactly what happens when water starts boiling.
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Figure 1: Bubbles of broken phase nucleate and start expanding.

beginning had zero net baryon charge, sphaleron transitions in the symmetric phase could
have produced a small baryon asymmetry.

Step 3 of EWBG: Avoiding baryon wash–out

Now, a small baryon asymmetry created as explained above could equally well be washed
out by the reversed process, but if some of the created baryons are swept up into one of the
bubbles, inside which sphaleron transitions are exponentially suppressed [5], a net baryon
charge of the Universe can be obtained as the bubbles expand and eventually cover all of
spacetime. This is how the BAU can be explained in terms of EWBG.

2.2 Two-Higgs-Doublet Models

In the light of EWBG as presented above, it can be shown that the SM alone has too little
CP violation and a too high Higgs mass [5]. This means that there is need for beyond SM
(BSM) physics. However, with the success of the SM the new physics must necessarily
reproduce the experimentally verified results of the SM. The so-called two-Higgs-doublet
models (2HDMs) are effective field theories and minimal extensions of the standard model
with not one, as in the SM, but two complex scalar doublets.

To study the EWPT there is need for the temperature dependent so-called effective poten-
tial introduced in Sec. 2.2.5, as it is at the global minimum of this function that the scalar
fields can acquire non-zero VEVs, thus breaking the electroweak symmetry. Before getting
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there, however, the implications of adding a second scalar doublet and hence differences
from the SM must be considered in more detail.

Since most of the material in this section can be found in, e.g., [4], references are only used
for that which cannot.

2.2.1 Tree level potential

Define the two hypercharged SU(2)L doublets Φi(x) =
(
Φ+
i (x), Φ0(x)

)T
for i ∈ {1, 2}

with hypercharges +1/2. The fields can be rotated according to Φi → Φ′i = UijΦj where
Uij ∈ U(2). Having defined the fields, the most general, gauge invariant and renormalizable
tree level potential can be written

Vtree (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + H.C.
)

+
1

2
λ1

(
Φ†1Φ1

)2

+

+
1

2
λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

+

(
1

2
λ5

(
Φ†1Φ2

)2

+
[
λ6

(
Φ†1Φ1

)
+ λ7

(
Φ†2Φ2

)](
Φ†1Φ2

)
+ H.C.

)
(2.3)

where m2
11, m

2
22, λ1, λ2, λ3, λ4 ∈ R and λ5, λ6, λ7, m

2
12 ∈ C. The fact that the four latter

parameters may be complex is a source for so-called explicit CP violation.

Now, the two fields can both acquire VEVs, v1 and v2, respectively, which can be complex.

Then, bearing in mind that8

√
|v1|2 + |v2|2 = v, where v ≈ 246 GeV is the SM VEV, the

two VEVs can be written |v1| = v cos β and |v2| = v sin β. Therefore, at the minimum9

〈Φ1〉 =
v√
2

(
0

eiξ1 cos β

)
, 〈Φ2〉 =

v√
2

(
0

eiξ2 sin β

)
(2.4)

where β ∈ [0, π/2] and phases eiξi have been included to capture the fact that the VEVs
can be complex. Note that the existence of these phases gives another source for CP
violation, so-called spontaneous CP violation10.

Now expand around the minimum, i.e., let

〈Φi〉 −→ 〈Φi〉+
1√
2

(
ϕ+
i

ηi + iχi

)
=

1√
2

(
ϕ+
i

vi + ηi + iχi

)
=

1√
2

(
ϕ+
i

viR + iviI + ηi + iχi

)
(2.5)

8The reason this is required comes from the masses mW and mZ of the vector bosons being proportional

to

√
|v1|2 + |v2|2 in the same way as they are proportional to v in the SM.

9In principle, one could also allow the upper components of the doublets to be non-zero, but this
scenario is not considered as it corresponds to breaking electrical charge conservation and thus giving
photons mass.

10Note that it would be sufficient to introduce only one relative phase between the two VEVs, but for
later convenience two phases are allowed.
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where ηi and χi are real scalar fields, and viR and and viI are the real and imaginary
parts of vi, respectively. Putting this into Eq. (2.3) gives the mass matrices for the scalar
particles (a more detailed discussion of the masses can be found in Sec. 2.2.3).

There is a special family of bases called the Higgs bases in which only one of the two
doublets, now called H1 and H2, respectively, acquires a VEV. The doublets in the Higgs
bases can be written as linear combinations of Φ1 and Φ2 according to(

H1

H2

)
=

(
ei(γ+ξ1) cos β ei(γ+ξ2) sin β
−e−i(γ+ξ2) sin β e−i(γ+ξ1) cos β

)(
Φ1

Φ2

)
(2.6)

where γ ∈ [0, π] defines which particular Higgs basis is chosen [7]. Obviously, under this
basis change the tree level potential is also transformed (although retaining its general
form) such that

Vtree (H1, H2) = M2
11H

†
1H1 +M2

22H
†
2H2 −

(
M2

12H
†
1H2 + H.C.

)
+

1

2
Λ1

(
H†1H1

)2

+

+
1

2
Λ2

(
H†2H2

)2

+ Λ3

(
H†1H1

)(
H†2H2

)
+ Λ4

(
H†1H2

)(
H†2H1

)
+

+

(
1

2
Λ5

(
H†1H2

)2

+
[
Λ6

(
H†1H1

)
+ Λ7

(
H†2H2

)](
H†1H2

)
+ H.C.

)
(2.7)

where now M2
11, M

2
22, Λ1, Λ2, Λ3, Λ4 ∈ R and Λ5, Λ6, Λ7, M

2
12 ∈ C. These new parameters

are given in terms of the old ones in App. C. Note that there is a corresponding expansion
as that in Eq. (2.5) for the Higgs bases (see Eq. (2.14)).

As will be shown, this basis is convenient to use when finding the masses of the particles
in the most general CP violating case. Yet another basis, the so-called Hybrid basis,
is convenient for parameter space studies in the CP conserving case and introduced in
Sec. 5.1.1.

2.2.2 Tadpole equations

Before going on to find the masses of the scalar particles, the so-called tadpole equations
are needed. In essence, the tadpole equations are nothing but minimization conditions for
the tree level potential, i.e., for Φ = (Φ1, Φ2),

∂ Vtree
∂Φ

∣∣∣∣
Φ=(〈Φ1〉, 〈Φ2〉)

= 0 (2.8)

These can be used to demand that a minimum of the tree level potential indeed occurs
at v ≈ 246 GeV. It should be noted, however, that since Vtree is a polynomial of degree
four in terms of the scalar fields, there may be several minima not necessarily degenerate.
Unless the minima with v ≈ 246 GeV are global (in the sense that any minima at this
distance with the same depths are simultaneously global) there is a possibility to tunnel to
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a deeper one. Such a transition could possibly result in a quite different Universe, so that
the current state of the Universe is metastable (and hence dubbed a panic vacuum) [8].
As will be mentioned in Sec. 3, there exists a condition, whose simplicity to check depends
on the particular kind of 2HDM dealt with, for determining whether or not the minimum
with v ≈ 246 GeV is the global minimum at tree level or not.

Now, decomposing Φ1 and Φ2 according to (cf. Eq. (2.5))

Φ1 =
1√
2

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, Φ2 =

1√
2

(
ϕ5 + iϕ6

ϕ7 + iϕ8

)
(2.9)

where ϕ1, . . . , ϕ8 are real scalar fields, gives Eq. (2.8) as

∂ Vtree
∂ ϕi

∣∣∣∣
ϕ3+iϕ4=v1, ϕ7+iϕ8=v2, ϕj=0∀j /∈{3, 4, 7, 8}

= 0, ∀i ∈ {1, 2, . . . , 8} (2.10)

which is what here will be referred to as the tadpole equations. Using these decreases the
dimensionality of the parameter space. The equations in question are presented in App. B,
but can be solved to give the below equations [9]:

=
(
m2

12

)
= |v1| |v2| eiξ =

[
1

2
λ5e

−2iξ + cot β λ6e
−iξ + tan β λ7e

−iξ
]

(2.11)

m2
11 = λ1 |v1|2 + λ345 |v2|2 − 2ν̃ |v2|2 + tan β <

(
3 |v1|2 λ6 + |v2|2 λ7

)
(2.12)

m2
22 = λ2 |v2|2 + λ345 |v1|2 − 2ν̃ |v1|2 + cot β <

(
|v1|2 λ6 + 3 |v2|2 λ7

)
(2.13)

where λ345 = λ3 +λ4 +< (λ5). Note, however, that < (m2
12) is still a free parameter, and in

the case ξ = 0 the parameter ν =
<(m2

12)
2v1v2

is often introduced to simplify calculations (as,
e.g., in the phenomenological basis presented in Sec. 5.2.2).

2.2.3 The scalar particles and their masses

From the eight degrees of freedom in the scalar fields three give rise to Goldstone modes,
G0 and G± (these giving mass to W± and Z), and five give rise to actual physical Higgs
states. Eq. (2.5) can be written in the Higgs bases for doublets Hi as [7]

H1 =
eiγ√

2

( √
2G+

v + h̃0
1 + i G0

)
, H2 =

e−iγ√
2

( √
2H+

h̃0
2 + i h̃0

3

)
(2.14)

where γ is the angle defining the Higgs basis and the h̃0
j are neutral fields mixing to yield

the physical particles. The masses of these particles are obtained by inserting the above
equation (or Eq. (2.5)) into Eq. (2.7) (or Eq. (2.3)) and expanding. Below, the physical
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particles and their masses are reviewed for both the CP violating and the CP conserving
case.

CP violating models

In the general case with all possible sources of CP violation the situation is quite com-
plicated. It is presumably because of this complexity that many analyses assume CP
conservation or make some other simplifying assumptions, where an example is to only
include one kind of CP violation. For now, no such simplifications are made and all results
below are completely general. In particular, the neutral scalars will all mix with each other
which can be seen from the squared mass matrix obtained when using the expansion in
Eq. (2.14), in the tree level potential. The mass matrix in question,M2

4, in the Higgs basis
corresponding to11 γ = 0, is now a 4× 4 matrix and given by

M2
4 =


v2Λ1 v2< (Λ6) −v2= (Λ6) 0

v2< (Λ6) M2
22 + 1

2
v2 [Λ3 + Λ4 + < (Λ5)] −1

2
v2= (Λ5) 0

−v2= (Λ6) −1
2
v2= (Λ5) M2

22 + 1
2
v2 [Λ3 + Λ4 −< (Λ5)] 0

0 0 0 0

 (2.15)

As can be seen from the horizontal and vertical lines, this is a block diagonal matrix with
four eigenvalues, of which one is m2

G0 = 0 (as it should according to Goldstone’s theorem
which is mentioned in App. A). To find the masses of the three physical states, h1, h2 and
h3, say, it is sufficient to look at the 3× 3 upper left matrix, i.e.,

M̃2
3 =

 v2Λ1 v2< (Λ6) −v2= (Λ6)
v2< (Λ6) M2

22 + 1
2
v2 [Λ3 + Λ4 + < (Λ5)] −1

2
v2= (Λ5)

−v2= (Λ6) −1
2
v2= (Λ5) M2

22 + 1
2
v2 [Λ3 + Λ4 −< (Λ5)]

 (2.16)

The eigenvalues of this are quite lengthy and hence given in App. D. The eigenvectors
(i.e., the physical fields) are even longer and are thus left out completely. What should be
noted though, is that it is possible to define a rotation matrix R3 diagonalizing M̃2 such

that R3 M̃2RT
3 = diag

(
m2
h1
, m2

h2
, m2

h3

)
, where m2

hi
is the squared mass12 of field hi [10].

Furthermore, this rotation matrix may be parametrized in terms of three angles, α1, α2

and α3, with ci = cosαi and si = sinαi, as [11]

R3 =

 c1c2 s1c2 s2

− (c1s2s3 + s1c3) c1c3 − s1s2s3 c2s3

−c1s2c3 + s1s3 − (c1s3 + s1s2c3) c2c3

 (2.17)

where α1 ∈ (−π/2, π/2], α2 ∈ (−π/2, π/2] and α3 ∈ [0, π/2] are the so-called mixing
angles. This means that the neutral scalars indeed do mix, which, as will be seen below,
is a generalization of the CP conserving case where there is only one mixing angle, α1,

11The reason for choosing γ = 0 is to have G0 = =
(
H0

1

)
(cf. Eq. (2.14)), where = denotes imaginary

part (and < would denote real part).
12Here, by convention mh1

≤ mh2
≤ mh3

.
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and the other two are identically zero. In that case, the upper left 2 × 2 matrix in R3

diagonalizes the 2× 2 mass matrix of the two mixing neutral scalars.

The mass matrix for the charged fields is the 2× 2 matrix

M2

charged =

(
0 0
0 M2

22 + 1
2
v2Λ3

)
(2.18)

The eigenvalues of this matrix are m2
G± = 0 and m2

H± = M2
22 + 1

2
v2Λ3. By inspection, the

eigenvectors yield G± = H±1 and H± = H±2 .

CP conserving models

If there is no CP violation, many calculations are much simplified. In particular, the mass
matrix for the neutral scalars in CP conserving 2HDMs is, as these 2HDMs are just a
special case when compared to CP violating ones, again given by Eq. (2.16), but note that
this simplifies to

M̃2
3

∣∣∣
Λi∈R, ∀i

=

 v2Λ1 v2Λ6 0
v2Λ6 M2

22 + 1
2
v2 [Λ3 + Λ4 + Λ5] 0

0 0 M2
22 + 1

2
v2 [Λ3 + Λ4 − Λ5]

 (2.19)

which is block diagonal. This means that there is one scalar particle not mixing with the
others.

The physical scalar states are easily found and, expressed in terms of the fields in Eq. (2.14),
are given by

• CP even neutrals: h = h̃0
1 sin (β − α) + h̃0

2 cos (β − α) and
H = h̃0

1 cos (β − α)− h̃0
2 sin (β − α), for angle β − α = α1 defined in Eq. (2.17), with

mh ≤ mH

• CP odd neutral: A = h̃0
3

• Charged Higgs bosons: H±

As can be seen, it is the pseudoscalar A that cannot mix with the other neutral parti-
cles. Now, the masses for charged scalar and the pseudoscalar are given by [7] (for their
expressions in the general basis, see e.g., [12])

m2
H± = M2

22 + 1
2
v2Λ3

m2
A = m2

H± − 1
2
v2 (Λ5 − Λ4)

(2.20)

whereas, due to mixing, the squares of the masses of the two remaining scalars are given as
the eigenvalues to the upper left block of Eq. (2.19), i.e., squared mass matrix M̃2

2 given
by

M̃2
2 =

(
v2Λ1 v2Λ6

v2Λ6 M2
22 + 1

2
v2 [Λ3 + Λ4 + Λ5]

)
=

(
v2Λ1 v2Λ6

v2Λ6 m2
A + v2Λ5

)
(2.21)
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Rotating to the basis in which M̃2
2 is diagonal, this by the angle α1 = β−α (which defines13

α), mixing the neutral scalars h and H as above, gives the masses of the two particles as,
with m2

+ = m2
H and m2

− = m2
h so that m2

H ≥ m2
h,

m2
± =

1

2

[
m2
A + v2 (Λ1 + Λ5)±

√
[m2

A + v2 (Λ5 − Λ1)]
2

+ 4v4Λ2
6

]
(2.22)

It is one of these two scalars that must correspond to the experimentally verified scalar
with mass ≈ 125 GeV.

2.2.4 Yukawa sector

The Yukawa part of the Lagrangian, LYuk, gives the interactions between the scalar fields
and the fermions, and is therefore very important. The most general form of this La-
grangian is [4]

−LYuk = Q̄L

(
ηD1 Φ1 + ηD2 Φ2

)
dR + Q̄L

(
ηU1 Φ̃1 + ηU2 Φ̃2

)
uR +

+L̄L
(
ηL1 Φ1 + ηL2 Φ2

)
lR + H.C. (2.23)

where the Yukawa matrices ηFi ∈ C3×3 are vectors in flavour space, the scalar fields Φ̃j =

−iσ2 Φ∗j where σ2 =

(
0 −i
i 0

)
. Q̄L and L̄L are quark and lepton doublets, respectively,

under SU(2)L, whereas dR, uR and lR are the corresponding singlets under SU(2)L. In the
Higgs bases there are six matrices, called κF0 and ρF0 , given by(

κ0

ρ0

)F
=

(
cos β sin β
− sin β cos β

)(
η1

η2

)F
(2.24)

Now rotate to the mass eigenstate basis by bi-diagonalizing κF0 with six unitary matrices,

commonly referred to as V F
L and V F

R , according to κF0 → κF = V F
L κ

F
0 V

F †
R =

√
2
v
MF

where MF are the mass matrices of the fermions [13]. Under this rotation ρF0 → ρF =
V F
L ρ

F
0 V

F †
R and if the ρF are non-diagonal there are so-called flavour changing neutral

currents (FCNCs), which are heavily constrained by experiments and therefore not wanted.
There is a theorem by Glashow and Weinberg saying that if a given fermion couples to only
one of the scalar fields, then there will not be any FCNCs present in the theory [14]. A
symmetry is therefore often imposed, this defined by Z2 : Φi 7→ (−1)i+1Φi and Z2 : fR 7→
±fR, where fR is one of the right handed fermions in Eq. (2.23), such that the Lagrangian
L 7→ L. Now, the combinatorial possibilities of assigning charges for the fields under Z2

gives rise to four so-called types. These are

Type I: {fR 7→ fR, ∀ f =⇒
{
ρF = κF cot β, ∀F (2.25)

13Note that β does not exist in the Higgs bases, but that the mixing angles there necessarily must depend
on it. Thus, one may in the CP conserving case write α1 = β − α for some angle α.
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Type II:


uR 7→ uR
dR 7→ −dR
lR 7→ −lR

=⇒


ρD = −κD tan β
ρU = κU cot β
ρL = −κL tan β

(2.26)

Type X:


uR 7→ uR
dR 7→ dR
lR 7→ −lR

=⇒


ρD = κD cot β
ρU = κU cot β
ρL = −κL tan β

(2.27)

Type Y:


uR 7→ uR
dR 7→ −dR
lR 7→ lR

=⇒


ρD = −κD tan β
ρU = κU cot β
ρL = κL cot β

(2.28)

Note that if the leptons are left out of the analysis, there are only types I and II. Fur-
thermore, the requirement that L 7→ L under Z2 yields, as can be seen when looking at
Eq. (2.3), m2

12 = λ6 = λ7 = 0. However, since m2
12 is the coupling for the quadratic combi-

nations of the two fields and λ6 and λ7 are those for the quartic ones, it is often assumed
that m2

12 6= 0. The Z2 symmetry is in this case said to be softly broken14.

It should be noted that there also are other ways to suppress FCNCs, two notable being
through Yukawa alignment and the Cheng-Sher Ansatz [13]. The first of these assumes
that ηF1 and ηF2 , and hence also κF0 and ρF0 , are proportional to one another, so that both κF0
and ρF0 are diagonalized simultaneously, thus yielding an absence of FCNCs. Although this
approach may sound good, one should remember that such a relation can be violated at
another energy scale, thus allowing for contributions to FCNCs in the end either way. As for
the Cheng-Sher Ansatz, off-diagonal entries in the ρF are allowed, but they must be small
enough that experimental constraints are still satisfied. The ansatz has as consequence
that each element ij of ρF can be written as

ρFij = λFij

√
2mimj

v
(2.29)

where mi and mj are fermion masses and λFij ∼ O(1). In fact, from experimental limits
λFij . 0.1 for i 6= j 6= t [13]. Yukawa alignment is not used in this study, but the above
consequence of the Cheng-Sher Ansatz is.

Before going on to the effective potential, stopping for a closer look at the diagonalization
matrices V F

L and V F
R will be useful for Sec. 4. Now, these matrices are in fact related to the

Cabibbo–Kobayashi–Maskawa matrix, or, as it is usually abbreviated, the CKM matrix,
VCKM , this by VCKM = V U

L V
D †
L [13]. Moreover, a flavour basis can be chosen such that

V U
L = V U

R = 1
V L
L = V L

R = 1

V D
L = V †CKM , V

D
R = 1

(2.30)

14The reason why it is said to be softly broken in this case is that at large energies, or, at large field
values, the contributions from the quadratic terms (i.e., the mass terms) in the tree level potential are
negligible as compared to the quartic terms.
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thus yielding 

κU0 = κU =
√

2
v
MU

ρU0 = ρU

κL0 = κL =
√

2
v
ML

ρL0 = ρL

κD0 = VCKM κD =
√

2
v
VCKM MD

ρD0 = VCKM ρD

(2.31)

As can be seen, this only requires VCKM in the down sector so that some calculations can
be simplified.

2.2.5 The effective potential

In order to investigate the EWPT there is obviously need for a temperature dependent
potential, and since temperature effects formally are a loop effect, there is need to go at
least to 1-loop level. The full effective potential at zero temperature can be written, with
the ith loop correction denoted by V(i),

V (Φ1,Φ2) = Vtree (Φ1,Φ2) +
∞∑
i=1

V(i) (Φ1,Φ2) (2.32)

This potential can be obtained from the effective action of a generating functional (see
e.g., [15]), but, as such a derivation is not really relevant here, it is left out to the interested
reader. As is pointed out in [16], the potential in Eq. (2.32) is contained in the full
temperature dependent effective potential but very often temperature corrections are added
to a truncated version of Eq. (2.32). In this study, a 1-loop thermally corrected effective
potential is used. This potential can be shown to have the form [17]

V (Φ1,Φ2, T ) = Vtree (Φ1,Φ2) + VCT (Φ1,Φ2) +

+V(1) (Φ1,Φ2) + VT (Φ1,Φ2, T ) (2.33)

VCT (Φ1,Φ2) consists of counter terms, i.e., terms added so as to absorb infinities when renor-
malizing. The form of this part of the effective potential is the same as the tree level
potential, but with different coefficients. The terms in question can be chosen in several
ways, e.g., by requiring invariance of solutions to the tadpole equations when going to
1-loop level [8].

V(1) (Φ1,Φ2) is the zero temperature 1-loop correction to Vtree given by

V(1) (Φ1,Φ2) =
∑
i

± ni
64π2

m4
i (Φ1,Φ2)

[
ln
m2
i (Φ1,Φ2)

Q2
− ci

]
(2.34)
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Here, the sum runs over all particles of the theory and the upper sign is for bosons whereas
the lower one is for fermions. ni is the multiplicity and mi (Φ1,Φ2) the mass15 of particle i,
and Q is the renormalization scale. The potential is thus explicitly renormalization scale
dependent, as it should since the effective potential is truncated at finite order [8]. Since
large contributions from the terms with the logarithms are unsought, Q needs to be chosen
cleverly. Note that for small masses mi (i.e., masses mi much smaller than Q), the term

m4
i ln

m2
i

Q2 still remains small, whereas it for large masses (i.e., masses mi much larger than

Q) does not. Therefore, Q should be chosen on the order of the largest mass in the model
and is chosen to be 1 TeV in this study, this in accordance with conventions in one of the
used programs16, Vevacious. The constants ci depend on the regularization scheme, which
here has been chosen as dimensional reduction17 (DR

′
) so that ci = 3/2 ∀i [18].

VT (Φ1,Φ2, T ) are the thermal corrections (which can be found from calculating the 1-loop
contributions in the temperature dependent effective potential and subtracting V(1) (Φ1,Φ2))
given by

VT (Φ1,Φ2, T ) = T 4
∑
i

± ni
2π

∫ ∞
0

dx x2 ln

(
1∓ exp

[
−
√
x2 +m2

i (Φ1,Φ2) /T 2

])
(2.35)

This can be approximated both in the high temperature region and the low temperature
region (i.e., when comparing the temperature to the masses) [5]. Denoting the integral for
high temperatures and fermionic degrees of freedom as IfHT (y2) (where y = mi/T has been
introduced, and index i neglected, for simplicity) and that for bosonic ones IbHT (y2), the
expansions can be written

IfHT
(
y2
)

= −7π3

360
− π

24
y2 − 1

32π
y4 ln

(
y2

af

)
+O

(
y5
)

(2.36)

and

IbHT
(
y2
)

= −π
3

45
− π

12
y2 − 1

6
y3 − 1

32π
y4 ln

(
y2

ab

)
+O

(
y5
)

(2.37)

where ln af ≈ 2.6351 and ln ab ≈ 5.4076.

High temperature means y � 1. In the low temperature region, i.e., where y � 1, the two
integrals can be written in the same form,

IbLT
(
y2
)
≈ IfLT

(
y2
)

=
( y

2π5/3

)3/2

e−y
(

1 +
15

8y
+O

(
y−2
))

(2.38)

15In particular, m2
i (Φ1,Φ2) is given as the ith eigenvalue of the corresponding mass matrix as derived

from the potential. These can also get contributions from having a finite temperature, but such effects are
not considered in this study.

16These programs will be presented in Sec. 4.
17In ordinary DR, to which DR

′
is related by a parameter redefinition, both integral measures in loop

integrals and dimensions on gauge fields are shifted according to d = 4 → 4 − 2ε, where d is the number
of dimensions [18].
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In Vevacious the integrals are expanded in this fashion and an extrapolation is made
between the two regions in order to obtain continuity.

As was mentioned at the beginning of this section the effective potential in Eq. (2.33)
is the key to studying the EWPT, this since it is when the global minimum18 of this

function changes from the origin to one at distance
√
|v1|2 + |v2|2 6= 0 from the origin

that the electroweak symmetry is broken. Therefore, the potential in question needs to be
minimized for different temperatures in order to yield a critical VEV and a corresponding
critical temperature, thus resulting in a measure of the strength of the phase transition,
i.e., ζ. In this study quantities are calculated in the Landau gauge19 and any calculated
VEVs and critical temperatures might have unphysical values whereas their respective
ratios ζ = ∆vC/TC do not [8].

3 Theoretical and experimental constraints

In this section, the experimental and theoretical constraints used in the study are presented.
In particular, there are two subsections, one for the former and one for the latter, both
containing respective subsections.

3.1 Theoretical constraints

In this section the theoretical constraints used are presented, with one type of constraint
in each subsection.

3.1.1 Positivity

To insure that the vacua are stable minima, the tree level potential has to be bounded from
below in all field directions, i.e., there can be no direction in which it tends to −∞ [9]. As
an example, for a softly broken Z2 symmetric and CP violating 2HDM the constraints on
the potential parameters are

λ1 > 0, λ2 > 0,
λ3 > −

√
λ1λ2, λ3 + λ4 − |λ5|+

√
λ1λ2 > 0

(3.1)

18Note that this may now have several minima as it depends on two scalar fields, unlike the SM case
where there is only one scalar field.

19This is an Rξ gauge corresponding to the limit ξ → 0. The reason for choosing this gauge here is that
the program Vevacious (see Sec. 4) uses it as well. The reason why in turn Vevacious uses it has to do
with gauge dependence of paths between vacua (which should be considered when calculating tunneling
times). Moreover, the so-called Faddeev-Popov ghosts also decouple in this gauge at 1-loop level [17].
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When λ6 or λ7 are non-zero there are additional, and a lot more complicated, con-
straints [19]. These can be handled numerically as in e.g., [20] or [21], where a matrix
ΛE, whose eigenvalues and properties determine whether or not the potential is stable, is
defined. In particular, the matrix is given by

ΛE =
1

2


1
2

(λ1 + λ2) + λ3 < (λ6 + λ7) −= (λ6 + λ7) 1
2

(λ1 − λ2)
−< (λ6 + λ7) −λ4 −< (λ5) = (λ5) −< (λ6 − λ7)
= (λ6 + λ7) = (λ5) −λ4 + < (λ5) = (λ6 − λ7)
−1

2
(λ1 − λ2) −< (λ6 − λ7) = (λ6 − λ7) −1

2
(λ1 + λ2) + λ3

 (3.2)

and if the eigenvalues are denoted by Λ̃µ, where µ ∈ {0, 1, 2, 3}, then the potential is
stable if and only if the eigenvalues are real and satisfy Λ̃0 > 0 and Λ̃k < Λ̃0 for k 6= 0. In
order to identify which eigenvalue is Λ̃0, a certain projection operator for each eigenvalue
can be defined and for which a specific condition holds for Λ̃0 (see [20]), but these operators
are here left out for simplicity.

3.1.2 Unitarity

The scattering matrix S has to be unitary i.e., S†S = SS† = 1, something which can be
ensured by constraints on its eigenvalues [22]. In particular, S can be expanded according
to S = S(0) + εS(1) + . . ., where S(0) = 1 is the zeroth order contribution, S(1) is the first
order contribution and so on, and ε is some small parameter. As the contributions to S
in general are decreasing with order in weakly coupled theories, it is reasonable to require
that it be unitary already at tree level (i.e., to order ε) [22]. Denoting, for a certain state,
the total hypercharge by Y ∈ {0, ±2} and the total isospin by σ ∈ {0, 1}, which are
conserved in Higgs-Higgs scattering, four matrices S(Y, σ) can be written down as [22]

8π S(2, 1) =

 λ1 λ5

√
2λ6

λ∗5 λ2

√
2λ∗7√

2λ∗6
√

2λ7 λ3 + λ4


8π S(2, 0) = λ3 − λ4

8π S(0, 1) =


λ1 λ4 λ6 λ∗6
λ4 λ2 λ7 λ∗7
λ∗6 λ∗7 λ3 λ∗5
λ6 λ7 λ5 λ3



8π S(0, 0) =


3λ1 2λ3 + λ4 3λ6 3λ∗6

2λ3 + λ4 3λ2 3λ7 3λ∗7
3λ∗6 3λ∗7 λ3 + 2λ4 3λ∗5
3λ6 3λ7 3λ5 λ3 + 2λ4



(3.3)
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The unitarity condition can then be translated into bounds on the respective eigenvalues l
of these matrices. Inspired by the choice in [23], the upper bounds are here chosen so that
the eigenvalues must satisfy |l| ≤ 16π.

3.1.3 Perturbativity

As this study is based on perturbative calculations there is obviously good reason to de-
mand perturbativity. Perturbativity can be ensured by demanding that the quartic Higgs
couplings CHiHjHkHl

, for Hn one of the physical Higgs states, satisfy
∣∣CHiHjHkHl

∣∣ ≤ 4π [23].
The couplings in question can be found in e.g., [24].

3.1.4 Global minimum at tree level

As remarked in Sec. 2.2.2, with a fourth degree polynomial in the fields Φ1 and Φ2, the tree
level potential in Eq. (2.3) can have several minima. A vacuum that does not correspond
to a global minimum is often referred to as a panic vacuum, this as there is a probability of
tunneling to one corresponding to a deeper minimum. It is therefore reasonable to check
whether or not the minimum with v ≈ 246 GeV is the global minimum, something which
for a softly broken Z2 symmetric and possibly CP violating 2HDM is easily checked with
the help of the discriminant [20]

D̃ =

[(
m2
H±

v2
+
λ4

2

)2

− |λ5|2

4

] [
m2
H±

v2
+

√
λ1λ2 − λ3

2

]
(3.4)

such that if D̃ > 0 the tree level minimum in question is in fact global. Just as for
the positivity constraints, when λ6, λ7 6= 0 a numerical approach is needed. In such
cases, again the eigenvalues of the matrix ΛE should be used [20]. In particular, the
full discriminant (from which D̃ can be derived when λ6 = λ7 = 0) is then given by

D =
(

Λ̃0 −
m2

H±
v2

)(
m2

H±
v2
− Λ̃1

)(
m2

H±
v2
− Λ̃2

)(
m2

H±
v2
− Λ̃3

)
and if D > 0, the minimum is

global. When D < 0 the eigenvalues Λ̃µ have to be considered: the minimum is gobal only

if the potential is stable and Λ̃0 <
m2

H±
v2

.

3.2 Experimental constraints

The aim of any physical model is to explain and predict actual phenomena in Nature, so
it is hence essential that any such model satisfies already existing experimental limits. In
this section the experimental constraints used in this study are briefly presented20.

20The interested reader is encouraged to look further into the referenced articles.
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3.2.1 Oblique parameters

As was remarked at the beginning of Sec. 2.2 the SM has had great success as a physics
model describing Nature, but as more and more experiments have been performed some
shortcomings have been unveiled. To remedy these shortcomings many new models, such
as the 2HDMs, have been proposed, but also many have fallen due to not being able
to reproduce predictions close enough to those of the SM. Because of this, the so-called
oblique parameters have been defined to measure how much a new physics model deviates
from the SM, and in particular these parameters are electroweak precision constraints in
the sense that they measure how the new physics couples to the electroweak gauge bosons
via changes in vacuum polarizations. For a general discussion, see, e.g., [25].

The parameters in question are six in total, S, T , U , V , W and X, and are defined such
that they are all zero for the SM. The exact expressions for these parameters are given in
App. E. As is noted in [26], noticeable deviations from the SM can occur for 2HDMs but
in the case these deviations are small the custodial symmetry21 is preserved.

In the review article by the Particle Data Group (PDG) [25] there is plotted an ellipse
(constructed from experimental data) in the ST -plane22 corresponding to 90% confidence
level (CL), inside which lies the SM value (S, T ) = (0, 0). In general it turns out that in
this study U is very small, so using this ellipse as a constraint of ”goodness” is a reasonable
approximation. The ellipse εST can be parametrized as in [27], but with more recent data23,

εST =

S, T ∈ R

∣∣∣∣∣∣ 1 =

(
S cos θ + T̃ sin θ

0.262

)2

+

(
T̃ cos θ − S sin θ

0.063

)2
 (3.5)

where T̃ = T −0.05 and θ = 0.712. In particular, it is required of a good point to lie within
the ellipse in question.

3.2.2 Higgs physics

Naturally, experimental constraints from searches and discovery of the Higgs particle that
was found the LHC are also included. In particular, for a given parameter point this is
done by checking model predictions of branching ratios, cross sections and decay widths,
and then comparing with experimental data to see if the point is excluded or allowed at
95% CL. Moreover, the ”goodness of fit” of a given model to experimental data can be

21The custodial symmetry is connected to the tree level relation cos θW = MW

MZ
, where θW is the weak

mixing angle.
22That is, U has been fixed to zero.
23The authors of [27] refer to an older version of [25].
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measured in terms of a χ2 value. This value is calculated for a given point and constrained24

for a given number, n, say, of degrees of freedom and a p-value (here p = 0.05 since 95%
CL is considered). The number of degrees of freedom n is the difference between number
of observables used and the number of free parameters.

3.2.3 Flavour physics

There are interesting constraints from flavour physics. Two that are used for the CP
conserving models in this study25 come from b → sγ transitions and the mass difference
∆MB from B0 − B̄0 mixing. In [28] the limits are given in the plane spanned by tan β
and mH± for CP conserving models. In the absence of the exact parametrizations of these
constraints, in this study a very conservative approach is used. In particular, the most
constraining value for a given constraint in the mentioned plane is taken as a uniform limit
in the whole plane, so that the allowed region must be rectangular (see e.g., fig. 4b for
such a plot, where the upper right rectangle is the allowed region). The precise limits used
here are: log10 (tan β) > log10 (3) ≈ 0.477 coming from both ∆MB and b → sγ (type I)
and log10 (tan β) > 0 coming from ∆MB and mH± > 350 GeV coming from b→ sγ (type
II). Other than simplifying matters there is good reason to use this approach: the limits
in [28] were found for Z2 symmetric Yukawa sectors so that for any slightly perturbed such
systems the limits in question should be somewhat changed in the plane, but not so much
that the qualitative picture changes (clearly, this is an assumption and should thus be
considered as such). Of course, points lying very close to the limits can still be excluded
but if there is a substantial amount of points situated a bit away from the limits, then they
are most likely allowed.

3.2.4 Electric dipole moments

CP violation can be constrained by measurements of electric dipole moments (EDMs) of
e.g., electrons and neutrons [29], since 2HDMs can give rise to non-zero EDMs. The most
severe constraints on the electron EDM comes from the experiments performed by the
ACME collaboration, in which electric fields are used to measure energy shifts in the ThO
spectrum so that there are resulting asymmetric charge distributions along the spins of
electrons [30]. In [29], constraints of electron, neutron, mercury and radium EDMs for
flavour conserving explicitly CP violating softly broken Z2 symmetric 2HDMs of type I
and type II, are presented in the plane spanned by |sinαb| and tan β (αb is related to
the mixing angles α1, α2 and α3 introduced in Sec. 2.2.3, as is explained in Sec. 5.2.2).

24For a plot of these constraints for different p and n see e.g., [25]. They can be calculated to good
precision by some programs with support for statistics, and, in this study, they were calculated using the
function chi2inv(p, n) available in MATLAB.

25Since flavour physics constraints only were found for CP conserving models no such constraints are
used for the CP violating models studied.
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These constraints are in this study used in a similar manner as the constraints from flavour
physics, and it is required that |sinαb| < 0.005. For a brief review of how EDMs arise, see
App. F.

4 Programs

In this section the programs used are briefly reviewed. For those that have required mod-
ifications there is also some explanation of what has been done.

4.1 Vevacious

Vevacious (see [8]) takes the tree level potential for a given model and calculates all the
tree level minima. It does this with a method called homotopy continuation, which is
guaranteed to find all the tree level minima, not only the global one. Then the program
takes these minima and uses them as starting points for a gradient based minimization
of the zero temperature 1-loop potential (see Sec. 2.2.5). It is possible to do this for an
arbitrary temperature as well, but not without modifications of the source code.

To be able to run the program, a so-called model file defining e.g., the Lagrangian as well
as mass matrices and an SLHA file containing numerical parameter values are required26.
The first of these files can be generated with the help of the Mathematica package27 SARAH

(see [32]). The second file however, i.e., the SLHA file, needs to be created manually. As
was mentioned earlier, the program operates in the Landau gauge and so the calculated
VEVs and critical temperatures might not be physical, but the ratio ζ = ∆vC/TC is.

Modifications

This program in its official form does not calculate ζ = vC/TC , and so this had to be added
to the code. Furthermore, the program was modified to have the possibility of producing
files with data needed to plot an actual phase transition such as that in fig. 3a. These
things were done by defining an array of temperatures and for each its values minimizing
the temperature dependent potential to see where the phase transition occurs, saving the
minima and corresponding temperatures in one data file and the corresponding critical val-
ues in another. As for CP violation, with some alterations the program works if complex
potential parameters and complex phases on the VEVs are separated into real and imagi-
nary parts. These alterations include making sure to use absolute values of the potential
when finding the minima of the effective potential and changing two-dimensional arrays

26An SLHA (or, Supersymmetry Les Houches Accord as is the full name) file contains all the necessary
information to define the model, i.e., all the parameter values. The conventions can be found in [31].

27This package should be used with caution, as it is not quite so general as it is claimed to be. For
instance, it does not always calculate all tadpole equations, thus leaving out valuable information that can
simplify calculations.
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with VEVs to be four-dimensional, thus consisting of two sets of real and imaginary parts.
After discussion with one of the authors of Vevacious, it was concluded that the changes
can be included in the official release of the program.

4.2 2HDMC

2HDMC (see [23]) assumes a CP conserving 2HDM and has essentially everything needed
when working with such models, e.g., the possibility for conventional basis changes, choices
between the different types and calculation of the oblique parameters.

Modifications

• This program in its original form did not allow the user to break an initial Z2 sym-
metry by perturbing the Yukawa matrices in a way relevant for this study and so this
had to be added. In order to do this, first assume that a model is of type28 l ∈ {I, II}
so that ρF0 = aFl κ

F
0 , where the coefficients aFl can be found in Eqs. (2.25) and (2.26).

Now let ρF0 = aFl κ
F
0 → aFl κ

F
0 + δF0 so that (cf. the inverse of Eq. (2.24))(

η1

η2

)F
−→

(
cos β − sin β
sin β cos β

)(
κ0

al κ0 + δ0

)F
=

= κF0

(
cos β − aFl sin β
sin β + aFl cos β

)
+ δF0

(
− sin β
cos β

)
(4.1)

in which Eq. (2.31) then can be used. This is what is implemented in the program.

Furthermore, methods were implemented for

• calculating the masses for a general CP violating model with the results from App. D,

• creating an SLHA file in the form required by Vevacious, both for violation and
conservation of CP ,

• calculating the oblique parameters for a completely general CP violating 2HDM (for
explicit expressions of these parameters, see App. E),

• calculating and checking the positivity constraints in Sec. 3.1.1, thus generalizing
that already existing to the most general CP violating models,

• calculating and checking the unitarity constraints in Sec. 3.1.2, thus generalizing that
already existing to the most general CP violating models,

• calculating and checking the perturbativity constraints in Sec. 3.1.3, thus generalizing
that already existing to the most general CP violating models,

28The reason for not including types X and Y is that the leptons are so light and hence not expected to
contribute much to the phase transition, i.e., when compared to for instance the top quark.
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• calculating the discriminants D̃ and D defined in Sec. 3.1.4 (so that a discriminant
can be calculated for the most general CP violating 2HDM),

• calculating the parameters in the Higgs basis corresponding to γ = 0 in terms of
those in the general basis for a general CP violating 2HDM (this with the equations
in App. C),

• calculating the parameters in the general basis in terms of those in the particular CP
violating kinds of models defined in Sec. 5.2.2,

• setting the hiff , hiV V and hihjV couplings as in Sec. 5.2.2 (i.e., for CP violating
models),

• calculating the angles α1, α2 and α3 defined in Sec. 2.2.3 given the parameters in the
general basis for any explicitly CP violating 2HDM.

Furthermore, the already existing classes DecayTable.cpp and HBHS.cpp in the 2HDMC

package were modified to allow the user to include HiggsBounds and HiggsSignals (see
below) when having CP violating 2HDMs of the kind in Sec. 5.2.2. After discussion with
one of the authors of 2HDMC, it was concluded that some of the changes can be included in
the official release of the program.

4.3 HiggsBounds

This program takes a given model and calculates predictions in the Higgs sector and checks
these against experimental bounds from LEP, LHC and the Tevatron at 95% CL. In general,
this program takes as input the Higgs particles’ respective masses, branching ratios and
cross sections normalized to some reference values. In particular, it identifies which channel
is most constraining and uses that exclusively to constrain the model in question. For more
information, see [33]. This program together with HiggsSignals (see below) are what is
used to do that described in Sec. 3.2.2.

4.4 HiggsSignals

This program takes a given model and calculates a χ2 value yielding the ”goodness of
fit” to experimental data from the LHC and the Tevatron. The calculated value can then
be used for a given p value and n degrees of freedom to measure how good a point in
parameter space is. The input for this program is the same as that for HiggsBounds. For
more information, see e.g. [34]. This program together with HiggsBounds are what is used
to do that described in Sec. 3.2.2.
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4.5 ParamGen and ParamGenComplex

These programs were created for the sole purpose of generating points in parameter
space (with the help of a random number generator form GSL) which are then sent to
Vevacious to calculate ζ, after which experimental constraints are checked with the help
of HiggsSignals and HiggsBounds. The whole chain of events is represented in fig. 2
below in the form of a flow chart. There, the dashed black arrow is the first one, indi-
cating that user input is given to ParamGen/ParamGenComplex. Once this input has been
received 2HDMC, HiggsBounds and HiggsSignals are called to evaluate29 a, in ParamGen or
ParamGenComplex, randomly generated point and produce an SLHA file, which is then sent
to Vevacious. After this, Vevacious, with the help of the model file produced beforehand
by SARAH, generates a file with information about the EWPT for the given point, which,
as is indicated by the red arrows, ParamGen/ParamGenComplex obtains and then sends to
the advanced plotting program ROOT (see [35]) along with other information obtained from
the process in the filled black circle. ROOT then creates a file with information stored in a
tree structure. This last file can then be used in any convenient way, as indicated by the
dashed red arrow and box with dots.

The first of the programs, i.e., ParamGen, assumes CP conservation whereas the other does
not.

Figure 2: A flow chart representing the process of calculating the quantities of interest,
starting from user input and ending with a tree file.

29The filled black circle represents the fact that that the three called programs communicate also with
each other.
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5 Results

In this section the results of the study are presented. Naturally, the section has been
divided into two subsections, the first of which deals with CP conserving models and the
second of which deals with CP violating models. Common for both sections is studies of
the parameter space, which are performed in order to see where ”good” points exist. The
reason why this is interesting to do is the possibility of excluding regions which would
otherwise have to be taken into account in further analyses30. In particular, this is done
for a number of specific kinds of 2HDMs, defined in the respective subsections.

5.1 CP conserving systems

This section is divided into three subsections. The first of these introduces the mentioned
convenient Hybrid basis, which is used for all studies presented in this section. The latter
two present results for particular kinds of Z2 breaking 2HDMs with different Yukawa
structures. The different models defined in these two subsections are compared to each
other as the results are presented. Unless stated otherwise, all parameters are uniformly
distributed.

5.1.1 Hybrid basis

The main problem with the general basis is that it is hard to get an intuitive feeling for
what values the parameters can have so that physically relevant points are chosen. Even
though the Higgs bases are very useful in some cases, choosing parameters there is just as
complicated as when using the general basis. It would be much more convenient to have
as parameters masses and couplings for some of the scalar particles. This is one of the
reasons the so-called Hybrid basis has been developed (see [36] for a more detailed review).

As the name suggests, this basis is a hybrid in the sense that it uses both phenomenolog-
ically important parameters and some of the parameters from the Higgs bases’ tree level
potential. It assumes a, in the general basis31, softly broken Z2 symmetric and CP conserv-
ing 2HDM. As was pointed out in Sec. 1, the discovered Higgs boson hSM just corresponds
to one of the neutral scalars in the 2HDM, i.e., in this case, to either h or H. In fact, the
vector couplings are

ghV V = ghSMV V sin (β − α) , gHV V = ghSMV V cos (β − α) (5.1)

30Having regions of many ”good” points would show that a certain model in the regions in question is
stable against small perturbations in the parameters, but there is always the possibility that a completely
isolated (possibly non-investigated) and hence fine-tuned ”good” point could be the correct one.

31Note that as the basis change from the general basis to the Higgs bases consists of making linear
combinations of the fields, having a Z2 symmetric potential in the general basis does not necessarily give
a Z2 symmetric potential in the Higgs bases.
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where V ∈ {Z, W±} so that something already is known about either h or H. By conven-
tion32, sin (β − α) ∈ [0, 1] and cos (β − α) ∈ [−1, 1]. The Hybrid basis is then given by the
parameters

mh, mH , cos (β − α) , tan β, Λ4, Λ5, Λ7 (5.2)

where Λ4, Λ5 and Λ7 are quartic couplings from the Higgs basis and should be33 of O(1).
The other scalar masses are

m2
A = m2

H sin2 (β − α) +m2
h cos2 (β − α)− v2Λ5 (5.3)

and

m2
H± = m2

A −
1

2
v2 (Λ4 − Λ5) = m2

H sin2 (β − α) +m2
h cos2 (β − α)− 1

2
v2 (Λ4 + Λ5) (5.4)

The Hybrid basis’ parameters can be expressed in terms of the general basis’ parameters
by using the relations in App. C with λ6 = λ7 = γ = ξ = 0.

5.1.2 Flavour diagonal Z2 breaking models

Model A

Model A is a 2HDM with an initial type II Z2 symmetry which is then broken by both
allowing λ6, λ7 ∈ (−π, π) and perturbing the ρ matrices diagonally (see Eq. (4.1)). In
particular, ρii → ρii + ũii ρii for i ∈ {b, t} and ũii ∼ unif (−0.1, 0.1), and the reason for
only perturbing the tt and bb elements is that the corresponding quarks are the heaviest and
hence should contribute most (recall that each term in the effective potential in Eq. (2.34)
is weighted with the masses). The parameters Λ4, Λ5, Λ7 ∈ (−1, 1). Furthermore, tan β ∈
(1/2, e4) (where e4 ≈ 54.6), is distributed logarithmically. h is here taken to be the
discovered scalar with a mass of 125 GeV and mH ∈ (125, 800) (with implicit unit GeV).
The above intervals within which to generate parameters have been chosen for reasons of
perturbativity and unitarity. Here, roughly 105 points are used.

For illustration, first consider some examples of the phase diagram of a model such as Model
A. In fig. 3a the electroweak phase transition is plotted for a certain parameter point where
the scalar masses are mh = 125 GeV (by definition), mH = 768 GeV, mA = 534 GeV and
mH± = 518 GeV. In particular, vC ≈ 430 GeV and TC ≈ 430 GeV and hence ζ ≈ 1.0
and the transition is strongly first order. Note that v increases to about 500 GeV as the
temperature goes to zero, and although this is far from the tree level minimum at roughly
246 GeV one should remember that the calculation is done in the Landau gauge and hence

32Note that this is not the internal convention used by 2HDMC, something which has to be remembered
when using the Hybrid basis there.

33This choice is for reasons of perturbativity and unitarity. Also, these parameters parametrize squared
mass differences between the physical particles (as can be seen from e.g., Eq. (2.20)).
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only the ratio ζ is physical (as was remarked in Sec. 4.1). As opposed to this very nice
behaviour, there are a lot of points resulting in EWPTs as that shown in fig. 3b where
the transition in question is more of a continuous process. The strength of the transition
for the corresponding point is ζ ∼ 10−4 and hence very far from what is sought. In fig. 3c
another very interesting behaviour of the EWPT occurs, where there is a jump between
two non-zero minima at roughly T = 350 GeV. The reason for this comes from having
two scalar fields, something which yields a richer vacuum structure (this possibility was
already noted in Sec. 2.2.2). Also this transition is strongly first order.

In fig. 3d the distribution of ζ is plotted for roughly 104 points, and as can be seen there
is a clear peak around ζ = 0.7 and then essentially monotonically decreasing behaviour as
ζ increases. Note that the vast majority of points have very small ζ, however.

(a) (b)

(c) (d)

Figure 3: Examples and properties of the EWPT in a CP conserving 2HDM: (a) A strongly
first order phase transition. (b) A very weak, or, second order, phase transition. (c) A
strongly first order phase transition, where the rich vacuum structure of the 2HDMs is
exposed. (d) The distribution of ζ.
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Now consider the parameter space of the model, this in order to see the dependence on
some of the parameters. In fig. 4a the two-dimensional section of parameter space spanned
by tan β and cβ−α = cos (β − α) is plotted. The colour convention (and order of plotting)
is as follows:

• Black points: Satisfy only positivity.

• Yellow points: Satisfy positivity, unitarity and perturbativity (for simplicity, call this
set of constraints PUP).

• Green points: Satisfy PUP and ζ & 1 (for simplicity, call this latter constraint PT)

• Blue points: Satisfy PUP and constraints from Higgs searches and measurements
(for simplicity, call these two latter constraints HP).

• Red points: Satisfy PUP, PT, HP, the discriminant condition and the condition to
be within the 90% CL ellipse εST in the ST -plane (for simplicity, call these two latter
constraints D and OBL, respectively).

The above colour convention is used in all the other parameter space plots in this section
as well. As can be seen in the figure in question, there is a substantial amount of red points
(which, except for flavour physics constraints, are ”good” points) centered around cβ−α = 0.
This is expected as (cf. Eq. (5.1)) it was assumed that h = hSM and so it must hold that
sβ−α = sin (β − α) ≈ 1 for ghV V ≈ ghSMV V where V ∈ {Z, W±}. However, despite this
expected behaviour there are points all the way out to |cβ−α| ≈ 0.5, something which can
be understood as a result from the many additional phenomenological consequences due
to the extra scalars. Note that tan β . 10 are favoured for non-black points in general,
and that there is a horizontal band of green (and also red) points around tan β = 1, i.e.,
with strong phase transitions.

The flavour physics constraints are displayed in fig. 4b (the black points have been excluded
for clarity). The allowed region is the upper right rectangle, and as can be seen a substan-
tial amount of red points lie within the area in question, thus surviving all the imposed
constraints. However, as was noted in Sec. 3.2.3, although the limits are conservative the
fact that the Yukawa sector is not Z2 symmetric should in principle ”smear” them out and
points close to the limits could be either excluded or allowed. It should be noted, however,
that there indeed is a quite good amount of points not close to the limits in question and
so should satisfy the flavour constraints.

In fig. 4c the ST -plane is plotted together with the ellipse εST corresponding to 90% CL.
As can be seen, there is a large number of points satisfying both HP and PT constraints
outside εST but a reasonable amount of points still reside within it. All in all, this shows
that 2HDMs of this kind can have a neutral scalar with mass 125 GeV as well as satisfy
certain theoretical and experimental constraints all the while having a sufficiently strong
first order phase transition. This is of course very nice but as far as EWBG is concerned
not much can be said, this since the vital CP violation is absent.
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It is of course interesting to see how the strength of the phase transition, i.e., ζ, depends on
the parameters λ6 and λ7 breaking the Z2 symmetry maximally, as well as on tan β, which
fixes the position of the minimum in the v1v2-plane, the perturbations in the Yukawa sector
and the scalar masses. First consider the dependence on λ6 and λ7. In fig. 4e no clear
correlation can be seen between strength of the EWPT and λ6 and the same conclusion
can be drawn from fig. 4f for the dependence on λ7. Moreover, as these plots suggest, there
are not many ”good” points when |λ6,7| & 2 and so the choice to have λ6,7 ∈ (−π, π) is
not so arbitrary34 (a similar reasoning holds for |Λ4,5,7| & 1).

Next consider the correlation between ζ and tan β. In fig. 4d the number of points satisfying
a strong phase transition decreases rapidly as tan β increases, with only a handful of
allowed (i.e., with ζ & 1) points for tan β & 10, of which even less are ”good”. So, it
would seem that for these kinds of models parameter space scans can be restricted to
tan β ∈ (∼ 1, ∼ 10) and λ6,7 ∈ (−π, π) with good reason. This last result shows some
discrepancy with a favoured large tan β to explain the mass difference between the top and
the bottom quark (for more information, see e.g., [37]), but then again having a large tan β
could be interpreted as a hierarchy problem for the scalar VEVs instead. It should also be
noted that the 2HDMs might not have the final answer to every problem of the SM, but
as every supersymmetric model requires a Higgs sector at least as complicated as that of
the 2HDM a lot can be learned from these studies.

Finally consider how ζ depends on the scalar masses as well as ρbb and ρtt. In figs. 5a-5c,
it can be seen that PT prefers scalar masses . 400 GeV but the other constraints require
mH± , mH , mA & 400 GeV. As can be seen in figs. 5d and 5e, ζ is clearly independent of the
perturbations in the Yukawa sector. This is actually expected, as ρ (which is not related to
the masses) on this level does not enter into the effective potential (see Sec. 2.2.5). Note,
however, that it was not unnecessary to include the perturbations in question, since they
can affect the experimental constraints.

34Simulations with λ6,7 ∈ (−4π, 4π) showed exactly this, but the corresponding plots are here not
included.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: A collection of figures for Model A: (a)–(b) The section of parameter space
spanned by (a) tan β and cβ−α = cos (β − α), and (b) tan β and mH± . (c) The ellipse εST
in the ST -plane. (d)–(f) The strength of the EWPT, ζ, as a function of (d) tan β, (e) λ6

and (f) λ7.
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(a) (b)

(c) (d)

(e)

Figure 5: A collection of figures for Model A: The strength of the EWPT, ζ, as a function
of (a) mH± , (b) mH , (c) mA, (d) the relative difference in ρtt defined as ρtt, red, the ratio
between perturbed and unperturbed ρtt, (e) the relative difference in ρbb defined as ρbb, red,
the ratio between perturbed and unperturbed ρbb.
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Model B

Here, everything is exactly the same as in Model A except for the initial symmetry in the
Yukawa sector, here instead being type I. The qualitative behaviour of the phase transitions
is the same as in Model A, so such plots are here not included. Looking at fig. 6a, it can be
seen that there is a substantial amount of red points, these again centered around cβ−α = 0,
which, as was remarked for Model A, is just as expected. Again there is a band of green
points around tan β = 1 and tan β . 10 are favoured. What can be noted however, is
that the triangular area not allowed for cβ−α & 0.2 in Model A is in fact allowed for Model
B. Such behaviour is not so unexpected because some differences should occur since the
initial symmetries are different.

Looking at the constraints from flavour physics, i.e., in fig. 6b, there is a quite decent
amount of ”good” points in the allowed region (the upper rectangle). However, there
are not as many as for Model A and one thing that can be noted is the requirement for
higher tan β. This is of course good with respect to the mentioned quark mass hierarchy,
but as the number of points surviving as tan β increases decreases there is clearly tension
between PT and the flavour physics constraints, which thus can be seen as a problem for
type I models. Furthermore, as is remarked in [2], the baryon asymmetry is suppressed
with cot2 β (remember that this is not really relevant for CP conserving models, however).
Therefore, in the remainder of this section only Type II models will be considered. Again,
the limits are not exact as the Yukawa sector Z2 symmetry is broken.

The ST-plane in fig. 7a is quite similar to the corresponding one in Model A and no
qualitative difference can be seen. The dependence of ζ on tan β, λ6, λ7, mH± , mH , mA

and the Yukawa perturbations, as shown in figs. 7b-8, is also qualitatively the same as
for Model A. To summarize, Model B, just as Model A, allows for a substantial amount
of ”good” points, but requires larger tan β values than Model A due to flavour physics
constraints.

(a) (b)

Figure 6: A collection of figures for Model B: The section of parameter space spanned by
(a) tan β and cβ−α = cos (β − α), and (b) tan β and mH± .

36



(a) (b)

(c) (d)

(e) (f)

Figure 7: A collection of figures for Model B: (a) The ellipse εST in the ST -plane. (b)–(f)
The strength of the EWPT, ζ, as a function of (b) tan β, (c) λ6, (d) λ7, (e) mH± and (f)
mH .
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(a) (b)

Figure 8: A collection of figures for Model B: The strength of the EWPT, ζ, as a function of
(a) mA, (b) the relative difference in ρtt defined as ρtt, red, the ratio between perturbed and
unperturbed ρtt, and (c) the relative difference in ρbb defined as ρbb, red, the ratio between
perturbed and unperturbed ρbb.

5.1.3 Flavour non-diagonal Z2 breaking models

The kinds of models dealt with here are generalizations of Model A and Model B defined
above. Now, because of the problem with favouring of higher tan β in Type I models, as
with Model B, only a generalization of Model A, the so-called Model A’, is here presented.
However, as is mentioned below, a Model B’ was also studied.

Model A’

As before for Model A, here a study of roughly 105 points for a 2HDM with an initial type
II symmetry which is then broken by both allowing λ6, λ7 ∈ (−π, π) and perturbing the ρ
matrices non-diagonally (see Eq. (4.1)) is presented. In particular, for ũij ∼ unif (−0.1, 0.1),

ρii → ρii + ũii ρii for i ∈ {b, t} and ρji = ρij = 0 → ũij λ̃ij

√
2mimj

v
≡ λij

√
2mimj

v
for i 6= j

and i, j ∈ {c, t}. The reason for only perturbing the t, c and b elements is the same as for
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Model A but here including c as well. Note that this choice of perturbations is inspired35

by the Cheng-Sher ansatz and the experimental constraints mentioned under Eq. (2.29).
Everything else, including the colour conventions in the plots below, is the same as for
Model A.

As can be seen when comparing figs. 9a-10b to figs. 4a-4d, essentially nothing is different
between Model A and Model A’. Perhaps the chosen perturbations were too small to make
a difference, this as the experimental limits should exclude points with too large non-
diagonal elements. Furthermore, as can be seen in fig. 10c, ζ is clearly independent of the
Yukawa perturbations in the ct and tc sector. The same is true for the bb and tt sectors
(not shown here).

Similar studies were performed for Model B’, i.e., a Model B with perturbations in the ct
and tc sectors, and it was found that nothing changed as compared to Model B either.

(a) (b)

Figure 9: A collection of figures for Model A’: The section of parameter space spanned by
(a) tan β and cβ−α = cos (β − α), and (b) tan β and mH± .

35Although there are no limits on λct or λtc in [13] it is reasonable to believe that λct and λtc should be
constrained in the same way as the other λij .
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(a) (b)

(c)

Figure 10: A collection of figures for Model A’: (a) The ellipse εST in the ST -plane. (b)–(c)
The strength of the EWPT, ζ, as a function of (b) tan β and (c) λct, tc.

5.2 CP violating systems

This section is divided into two subsections. Each of these presents results from certain
kinds of CP violating 2HDMs and comparisons between the different ones are made contin-
uously as the results are presented. Again, unless otherwise stated all parameters generated
for the parameter space scans are uniformly distributed.

5.2.1 The masses and CP violation

It is clear from the rotation matrix in Eq. (2.17) that the masses will depend on the
CP violating mixing angles (i.e., the angles parametrizing how the neutral scalars mix).
However, it is not clear how large the effects are. Below, an illustrative example showing
this for a spontaneously CP violating 2HDM is presented.
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Consider a parameter space point36 from the CP conserving case with initial type II symme-
try and non-diagonal perturbations according to the Cheng-Sher Ansatz, where mh = 125
GeV and the other scalar masses are mA = 104 GeV, mH = 627 GeV and mH± = 140
GeV. Next introduce spontaneous CP violation, i.e., allow non-zero complex phases so that
vj = |vj| eiξj , and let the angles vary in ξ1, ξ2 ∈ (0, π). In particular, as one Higgs mass has
been found to be ≈ 125 GeV one of the neutral scalar masses, mhi , say, should lie close to
125 GeV. Here, 105 points are used in the particular phase interval and it is required that
at least one mhi ∈ (120, 130) (with implicit unit GeV). The colour conventions in figs. 11a
and 11b is as follows:

• Black points: No mhj exists in the interval in question,

• Green points: At least one mhj exists in the interval in question,

As can be seen, in fig. 11a there are three green bands of allowed points. First of all, this
shows that it is sufficient to look at the difference ∆ξ = ξ2 − ξ1 as the two outer bands lie
symetrically around the line ξ1 = ξ2. The reason why there are three can be more easily
understood by comparing with another parameter point. Therefore consider a parameter
space point with the remaining scalar masses as mA = 571 GeV, mH = 636 GeV and
mH± = 551 GeV. In fig. 11b, corresponding to the second parameter space point, there
is only one band. Looking at the two respective initial sets of scalar masses of the two
points it is clear that there is one major difference: for the first parameter point A and
h have a very small mass difference whereas there are no such small neutral scalar mass
differences for point two. Thus, for the first parameter point in the two outer bands A

and h have switched roles so that mA
∆ξ 6=0−→ mhi ∈ (120, 130). No such transition occurs

for the second parameter point and therefore there is only one band. This simple example
shows that the CP violating phases do affect the masses severely and that it is not possible
to take a point from the CP conserving case and simply add CP violating phases whilst
not expecting any major consequences. Hence, a proper parameter space study is required
also for CP violating 2HDMs. Because of the low amount of available material concerning
2HDMs with both explicit and spontaneous CP violation, only 2HDMs with explicit CP
violation are investigated below.

36The points chosen in this section are chosen because of mass differences between the neutral scalars,
a valid choice as other properties such as how well they satisfy the constraints in Sec. 3 do not come into
the equations of the masses (see App. D).
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(a) (b)

Figure 11: The mass dependence on spontaneous CP violation, as seen in the ξ1ξ2-plane:
A parameter space point with (a) small initial mass difference between h and A, and (b)
large initial mass difference between h and A.

5.2.2 Flavour diagonal explicitly CP violating 2HDMs

In this section, results from studies of explicitly CP violating flavour diagonal 2HDMs are
presented in respective subsections. Before going on to the results however, a basis useful
for choosing phenomenologically relevant parameter space points is presented.

Phenomenological basis of parameters for explicitly CP violating softly Z2 break-
ing 2HDMs

In [29] a basis of use to parameter scans for explicitly CP violating softly Z2 breaking
2HDMs is presented. In particular, a parametrization is there presented which takes as
input phenomenologically relevant parameters and translates these into the parameters of
the general basis. To obtain the relations between the two bases the squared mass matrix
in the general basis,

M2
gen = v2

 λ1c
2
β + νs2

β (λ345 − ν) cβsβ −1
2
sβ= (λ5)

(λ345 − ν) cβsβ λ2s
2
β + νc2

β −1
2
cβ= (λ5)

−1
2
sβ= (λ5) −1

2
cβ= (λ5) −< (λ5) + ν

 (5.5)

where ν =
<(m2

12)
2v1v2

and λ345 = λ3+λ4−< (λ5), is used (as a sidenote, this is a symmetric 3×3
matrix and so has six independent elements). A rotation matrix, R, of the same form as
R3 in Eq. (2.17) but for angles α, αb and αc, is then defined so that diag

(
m2
h1
,m2

h2
,m2

h3

)
=

RM2
genR

T. This last equation can be rewritten as M2
gen = RTdiag

(
m2
h1
,m2

h2
,m2

h3

)
R

which is a linear system of equations from which the general basis parameters can be
solved for in terms of the nine parameters mh1 , mh2 , mh3 , mH± , ν, tan β, α, αb and αc.
The results for the parameters λi are

λ1 =
m2
h1

sin2 α cos2 αb +m2
h2
R2

21 +m2
h3
R2

31

v2 cos2 β
(5.6)
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λ2 =
m2
h1

cos2 α cos2 αb +m2
h2
R2

22 +m2
h3
R2

32

v2 sin2 β
(5.7)

< (λ5) = ν −
m2
h1

sin2 αb + cos2 αb
(
m2
h2

sin2 αc +m2
h3

cos2 αc
)

v2
(5.8)

λ4 = 2ν −< (λ5)−
2m2

H±

v2
(5.9)

λ3 = ν −
m2
h1

sinα cosα cos2 αb −m2
h2
R21R22 −m2

h3
R31R32

v1v2

− λ4 −< (λ5) (5.10)

= (λ5) =
2 cosαb
v2 sin β

[ (
m2
h2
−m2

h3

)
cosα sinαc cosαc +

+
(
m2
h1
−m2

h2
sin2 αc −m2

h3
cos2 αc

)
sinα sinαb

]
(5.11)

However, as can be seen in the equation

tan β =

(
m2
h2
−m2

h3

)
cosαc sinαc +

(
m2
h1
−m2

h2
sin2 αc −m2

h3
cos2 αc

)
tanα sinαb(

m2
h2
−m2

h3

)
tanα cosαc sinαc −

(
m2
h1
−m2

h2
sin2 αc −m2

h3
cos2 αc

)
sinαb

(5.12)

tan β is not necessarily a free parameter any longer (i.e., unless one of the other parameters
in the equation is solved for in terms of tan β and the remaining ones). Furthermore, since
one of the neutral scalars should have a mass of ≈ 125 GeV there are effectively only seven
(9− 2 = 7) free parameters in the phenomenological basis.

Next consider the couplings of the neutral scalars to fermions (for the flavor diagonal case)
and gauge bosons. These can be parametrized as [29]

Lhff + LhV V = −mf

v
hj
(
cf,j f̄f + c̃f,j f̄ iγ5f

)
+ ajhj

(
2m2

W

v
WµW

µ +
m2
Z

v
ZµZ

µ

)
(5.13)

where (the rest of the relevant couplings, e.g., the hhV couplings, can be found in [24])

ct,j cb,j c̃t,j c̃t,j aj
Type I: Rj2/ sin β Rj2/ sin β −Rj3 cot β Rj3 cot β Ri2 sin β +Ri1 cos β
Type II: Rj2/ sin β Rj1/ cos β −Rj3 cot β −Rj3 tan β Rj2 sin β +Rj1 cos β

(5.14)

In [29], besides introducing the above important relations between phenomenological pa-
rameters and potential parameters as well as a useful parametrization of couplings, ex-
perimental constraints on the mixing angles with respect to EDM searches for the elec-
tron, neutron, mercury and radium are presented. These limits can be summarized as
|sinαb| ≤ 0.005. As is mentioned in Sec. 3.2.4, it is this limit that is used in this study.
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Model C

Model C is a type II flavour diagonal softly Z2 breaking and explicitly CP violating 2HDM.
Since there is CP violation, the tadpole equations give a relation between the imaginary
parts of m2

12 and λ5 and the first parametrization presented in the previous subsection can
be used. However, as is remarked there, this will limit tan β quite severely. In particular,
α, αb, αc ∈ (−π/2, π/2), ν ∈ (−5, 5), mh1 = 125 GeV, mh2 ∈ (125, 900) and mh3 ∈
(mh2 , 900), where the two last ones have implicit unit GeV. The reason for choosing these
intervals is that they are phenomenologically relevant, as is discussed in e.g., [29]. Roughly
105 points are here used.

As can be seen in figs. 12a-13a, when comparing to figs. 3a-3c, the kinds of phase transitions
are the same for CP violating and CP conserving models. In fig. 13a there is a narrow peak
around T = 450 GeV where the potential ends up in its former minimum and this is surely
due to numerical effects as the potential might be very flat around the phase transition
jump in question and hence can end up in either minimum. Now, the distribution of ζ in
fig. 13b is clearly different from that in fig. 3d, with the peak shifted somewhat to the right
(corresponding to in general stronger phase transitions) and an increased width. The effect
that a lot fewer points have very small ζ for CP violating models is not really comparable
to the CP conserving case, as in the latter a much larger interval was used for tan β and it
was seen that strong phase transitions favour small tan β (also, here λ6, λ7 = 0). However,
this nevertheless shows that the strength of the phase transition depends on CP violation,
so that the Sakharov condition demanding CP violation actually makes it easier to have a
strong enough phase transition, as is required by one of the other two Sakharov conditions.

(a) (b)

Figure 12: Examples and properties of phase transitions in a CP violating 2HDM: (a)
A strongly first order electroweak phase transition. (b) A very weak electroweak phase
transition.
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(a) (b)

Figure 13: Examples and properties of phase transitions in a CP violating 2HDM: (a) A
strongly first order electroweak phase transition, where the rich vacuum structure of the
2HDMs is exposed. (b) The distribution of ζ.

Just as for the CP conserving case it is interesting to look at sections of the parameter
space. The colour convention (and order of plotting) used in figs. 14a-14d is the same as
for the CP conserving models, except for the colour red which is redefined as

• Red points: Satisfy PUP, PT, HP, the discriminant condition, the condition to be
within the 90% CL ellipse εST in the ST -plane and the angle EDM requirement
|sinαb| < 0.005 from [29] (for simplicity, call these three latter constraints D, OBL
and EDMC, respectively).

As can be seen in figs. 14a-14d, there are no red points at all, i.e., not a single point
surviving all the constraints imposed. The reason for this can be understood on several
levels. First and foremost, the CP violating angles are distributed on a very large interval
when comparing to EDMC, i.e., |sinαb| < 0.005. Hence it might be that the angle αb is
not sampled well enough in the interesting region with only ∼ 105 points.

Also, as can be noted when comparing fig. 14d with e.g., fig. 4c, T is not so restricted to
the ellipse anymore. This is not so unexpected from the chosen intervals if the parameter
T is analyzed more in detail. Consider Eq. (E.6) but for the moment ignore the terms
dependent on mZ and mW . Then, using

∑3
i=1 R̃ki = 1 for any k as R̃ = RT

3 (see Eq. (2.17))
is a rotation matrix, T can be rewritten as

T ∝
3∑
j=1

(
1− R̃2

1j

)
F
(
m2
H± , m2

hj

)
− R̃2

11F
(
m2
h2
, m2

h3

)
− R̃2

12F
(
m2
h3
, m2

h1

)
− R̃2

13F
(
m2
h1
, m2

h2

)
= R̃2

11

[
F
(
m2
H± , m2

h2

)
+ F

(
m2
H± , m2

h3

)
− F

(
m2
h2
, m2

h3

)]
+

+R̃2
12

[
F
(
m2
H± , m2

h1

)
+ F

(
m2
H± , m2

h3

)
− F

(
m2
h1
, m2

h3

)]
+

+R̃2
13

[
F
(
m2
H± , m2

h1

)
+ F

(
m2
H± , m2

h2

)
− F

(
m2
h1
, m2

h2

)]
(5.15)
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Since F (x, y) ≈ 0 for x ≈ y (see Eq. (E.11)), every term above in T will be small if the
squared mass differences between physical particles are small. In the case they are not,
the CP violating angles in R̃ must combine in such a way so as to cancel all or some of
the terms in question for T to be small. As is remarked in Sec. 5.1.1, the choice of having
Λ4,Λ5,Λ7 ∈ (−1, 1) yields small squared mass differences37 and so with only one non-zero
angle for CP conserving models T should consequently be small, as it also is and can be
seen in e.g., figs. 4c and 7a.

(a) (b)

(c) (d)

Figure 14: A collection of figures for Model C: (a)–(c) The section of parameter space
spanned by (a) tan β and cβ−α = cos (β − α), (b) tan β and cβ−αb

= cos (β − αb), and (c)
tan β and cβ−αc = cos (β − αc). (d) The ellipse εST in the ST -plane.

37Note, however, that these do not make mass differences small between h1 and the other scalars so that
the term proportional to R̃2

13 in T generally could give sizeable contributions, but since R̃2
13 = 0 for CP

conserving models the term in question vanishes and T remains small.
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To illustrate just how restrictive EDMC is in this case, consider figs. 15a-16b, where red
points now are allowed to not satisfy EDMC. As the figures show, a reasonable amount of
red points do exist. However, as is indicated by fig. 16a, the red points are in fact centered
around αb = 0, so that indeed the small αb region is favoured by also the constraints other
than EDMC. For αc both small and large values are allowed (see fig. 16b), but there seem
to be gaps between the allowed regions. This motivates further studies of models where
the mixing angles are generated in smaller intervals than those in Model C. Furthermore,
since the oblique parameters depend so much on mass differences, there is good reason to
choose small squared mass differences just as was done in the CP conserving models when
Λ4, Λ5, Λ7 ∈ (−1, 1).

(a) (b)

(c) (d)

Figure 15: A collection of figures for Model C (without EDMC): (a)–(c) The section of
parameter space spanned by (a) tan β and cβ−α = cos (β − α), (b) tan β and cβ−αb

=
cos (β − αb), and (c) tan β and cβ−αc = cos (β − αc). (d) The ellipse εST in the ST -plane.
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(a) (b)

Figure 16: A collection of figures for Model C (without EDMC): The strength of the
EWPT, ζ, as a function of (a) αb and (b) αc.

Model C’

Inspired by the results for Model C now consider Model C’, a type II flavour diagonal
softly Z2 breaking and explicitly CP violating 2HDM, i.e., just like Model C, but where
the angles αb, αc ∈ (−0.01, 0.01) and masses are chosen so that mh2 ∈ (125, 900), with
implicit unit GeV, m2

h3
− m2

h2
< v2 and

∣∣m2
H± −m2

h2

∣∣ < v2. The choice v2 as an upper
bound is quite reasonable as v is a natural scale for the physics in question and corresponds
to the choice |Λ4| , |Λ5| . 1 in the CP conserving case. Again roughly 105 points are used.

Sections of the parameter space are shown in figs. 17a-18d, with the same colour convention
as in figs. 14a-14d (i.e., where EDMC is included for red points), and as can be seen there
is now a large amount of allowed points. As expected from the analysis for Model C, T
here has a much smaller range and the oblique parameters in the ST -plane lie in a smaller
region (compare fig. 17b with fig. 14d). The dependence on EDMC is shown in fig. 17c
where sinαb is plotted against tan β, and it is seen that the allowed points are uniformly
distributed for tan β roughly between 0.5 and 2. There is an analogous plot for sinαc in
fig. 17d and as no constraint on αc is imposed in EDMC the allowed points for αc are more
scattered than those for αb.

Next consider correlations between the strength of the phase transition and some of the
parameters. No clear correlation between strength of the phase transition (green points)
and αb or αc, respectively, can be seen in figs. 17e-17f. In fig. 18a, it is seen that ζ decreases
as tan β increases so that, as could be seen already in e.g., fig. 17c, low tan β is favoured
once again, just as for generating a baryon asymmetry. As is shown in figs. 18b-18d, the
allowed points seem to demand mh2 ,mh3 & 300 GeV and mH± & 400 GeV but PT favours
scalar masses . 400 GeV, similar to the CP conserving cases. All of the above shows
that there indeed are many good points satisfying all the imposed constraints for softly Z2

breaking explicitly CP violating 2HDMs, and from the favouring of small tan β this shows
that there indeed on this level of the analysis is a possibility to explain the BAU through
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EWBG for these kinds of models.

(a) (b)

(c) (d)

(e) (f)

Figure 17: A collection of figures for Model C’: (a) The section of parameter space spanned
by tan β and cβ−α = cos (β − α). (b) The ellipse εST in the ST -plane. (c)–(d) The section
of parameter space spanned by (c) tan β and sinαb, and (d) tan β and sinαc. (e)–(f) The
strength of the EWPT, ζ, as a function of (e) αb and (f) αc.
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(a) (b)

(c) (d)

Figure 18: A collection of figures for Model C’: The strength of the EWPT, ζ, as a function
of (a) tan β, (b) mH± , (c) mh2 and (d) mh3 .

Phenomenological basis of parameters for explicitly CP violating Z2 breaking
2HDMs

Drawing inspiration from the relations between the phenomenological and general bases
for explicitly CP violating softly Z2 breaking 2HDMs presented earlier, analogous relations
were derived by the author for the case of complex λ6, λ7 6= 0, i.e., for explicitly CP
violating Z2 breaking 2HDMs. This was done using the mass matrix in the general basis
defined in [9], i.e., a generalization of the matrix M2

gen in Eq. (5.5). In particular, when
λ6, λ7 6= 0 it is not possible to obtain an equation for tan β like that in Eq. (5.12) without
solving a polynomial equation of degree four. In fact, being able to have tan β as a free
parameter and then calculating one of the other parameters in terms of it would be very
satisfying, thus yielding freedom to investigate the effects of varying tan β in any non-
forbidden interval. This can actually be done when λ6, λ7 6= 0, assuming that λ6 and
< (λ7) are given and = (λ7) is calculated in terms of the other parameters.

Now, letting the mass matrix in question, which again is a symmetric 3 × 3 matrix and
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hence consists of six independent elements, be defined by38M11,M12,M13,M22,M23 and
M33, the relations between the phenomenological and general bases’ parameters become
(with ν as before and tan β now an independent parameter)

= (λ7) =
1

v2s2
β

[
v2c2

β = (λ6) +M13cβ −M23sβ

]
(5.16)

λ1 =
M11

v2c2
β

− ν tan2 β + tan2 β <
(

3

2
λ6 cot β − 1

2
λ7 tan β

)
(5.17)

λ2 =
M22

v2s2
β

− ν cot2 β + cot2 β <
(
−1

2
λ6 cot β +

3

2
λ7 tan β

)
(5.18)

< (λ5) = ν − M33

v2
+

1

2
< (λ6 cot β + λ7 tan β) (5.19)

λ4 = 2ν −< (λ5)−< (λ6 cot β + λ7 tan β)−
2mH2

±

v2
(5.20)

λ3 = ν +
M12

v2cβsβ
− λ4 −< (λ5)− 3

2
< (λ6 cot β + λ7 tan β) (5.21)

= (λ5) = −M13cβ +M23sβ
v2cβsβ

−= (λ6 cot β + λ7 tan β) (5.22)

where m2
H± = v2

[
ν − 1

2
(λ4 + < (λ6 cot β + λ7 tan β))

]
has been used. Also in this case the

limits obtained from EDM searches and the particular parametrization of the couplings as
presented in [29] can be used. This is done in Model D defined below.

Model D

Model C and Model C’ both assume λ6, λ7 = 0 so that the Z2 symmetry is broken only
softly. Having derived also relations between the parameters in the phenomenological basis
and those in the general basis when λ6, λ7 6= 0, it is again possible to do parameter space
scans in phenomenologically relevant regions. Therefore, consider Model D which is a
generalization (with all parameter intervals the same unless otherwise stated) of Model
C’ with a completely broken Z2 symmetry. In particular, as was shown above tan β is
now a free parameter and is here chosen to be logarithmically distributed in the interval39

38Here Mij =
(
RTdiag

(
m2
h1
,m2

h2
,m2

h3

)
R
)
ij

39The choice to not have also larger tanβ is for reasons of unitarity and perturbativity.
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(1/2, 10). λ6 and λ7 are chosen so that |λ6| , |< (λ7)| ∈ (0, π), and as was discussed when
presenting the phenomenological basis = (λ7) is not independent and given by Eq. (5.16).
Here, roughly 105 points are used and the same colour convention and order of plotting as
in Model C’ is employed.

As can be seen in figs. 19a-19b, only a small fraction of the points satisfy all of the imposed
constraints and in total not many at all even satisfy PUP (it is perturbativity that is most
constraining – less than 1% of the points satisfy it). To understand why this occurs consider
fig. 20a, where log10 (tan β) is plotted against = (λ7). As can be seen, = (λ7) ranges from
roughly -10 to 10, i.e., |= (λ7)| is considerably larger than |< (λ7)|, while PUP requires it
to satisfy |= (λ7)| . π. Since = (λ7) is not a free parameter a possible remedy would be
to require tan β & 1, but as there are many points satisfying PUP for values also smaller
than that and the fact that the generation of a baryon asymmetry favours small tan β such
a solution is not very attractive. As a side note, the plot also shows that as tan β increases
positivity (black points) requires smaller and smaller |= (λ7)| as can be expected given the
structure of the matrix ΛE in Eq. (3.2) and that some of the parameters in the general
basis, e.g., < (λ5) in Eq. (5.19), increase in absolute value as tan β increases, something
which clearly affects the eigenvalues of ΛE from which positivity can be deduced.

In figs. 20b and 20c the strength of the phase transition is plotted against = (λ6) and = (λ7).
No clear correlation can there be seen, but as was also seen in the above analysis PUP (and
hence PT) requires |= (λ7)| . (0, π). Plotting the absolute value of λ7 (not displayed here)
shows that no points satisfying anything more than positivity exist for |λ7| & π, analogous
to Model A in the CP conserving case.

The above results obviously imply that the possibility for these kinds of models to explain
the BAU is limited (at least under the assumption that no isolated and hence in some
sense fine-tuned point is the correct one). It can thus be concluded that models like Model
C’ are preferable to models with a completely broken Z2 symmetry like Model D, unless
|= (λ7)| . (0, π).

(a) (b)

Figure 19: A collection of figures for Model D: (a) The section of parameter space spanned
by tan β and cβ−α = cos (β − α). (b) The ellipse εST in the ST -plane.

52



(a) (b)

(c)

Figure 20: A collection of figures for Model D: (a) The section of parameter space spanned
by tan β and = (λ7). (b)–(c) The strength of the EWPT, ζ, as a function of (b) = (λ6) and
(c) = (λ7).

6 Summary and conclusions

In this study the electroweak phase transition in general Two-Higgs-Doublet Models (2HDMs)
has been investigated and in particular also the possibility of explaining the observed
baryon asymmetry of the Universe (BAU) through electroweak baryogenesis (EWBG). Pa-
rameter space scans have been performed for various kinds of 2HDMs where a Z2 symmetry
was either broken completely or softly. As a starting point only CP conserving 2HDMs
were considered, but as these are not really relevant for EWBG, CP violating models were
also considered. In the CP conserving models perturbations in the Yukawa sector were
added so as to break the respective Z2 symmetries more than by just allowing Z2 breaking
parameters in the tree level potential.

Both experimental and theoretical constraints were imposed on the parameter space points
in order to evaluate them, and perhaps most importantly (from the perspective of explain-
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ing the baryon asymmetry in question) also the constraint that the electroweak phase
transition be strongly first order. The experimental constraints from Higgs physics, elec-
troweak physics, flavour physics as well as searches for electric dipole moments of the
electron, neutron, mercury and radium (the last ones only for CP violating models) were
used. The theoretical constraints consisted of perturbativity and stability of the tree level
potential, tree level unitarity of the scattering matrices as well as demanding that the tree
level minimum is the global one. A one-loop thermally corrected effective potential was
used throughout the study.

In both the CP conserving and CP violating models the properties of the electroweak phase
transition were studied. Both first and second order phase transitions were observed, of
which some transitions were seen to occur in several steps (as expected due to having two
scalar fields and thus more than one minimum of the potential). Also, it was seen that the
distribution of the strength of the phase transition changed as CP violation was added,
this so that the average strength increased.

For the CP conserving models it was found that small perturbations in the ct and tc
Yukawa sectors did not change anything as compared to the case that only perturbations
in the bb and tt sector were used. This could be expected as at this level the perturbations
do not enter into the effective potential (but in principle they can affect the experimental
constraints). The points satisfying all the imposed constraints seem to favour small tan β
and mA, mH , mH± & 400 GeV, but strongly first order phase transitions can also be
obtained for lower masses. There was a substantial amount of points satisfying all of the
imposed constraints for both models with an initial type I and type II symmetry, but
the flavour physics constraints required slightly higher values of tan β for type I models,
something in discrepancy with the known favouring of small tan β for a generated baryon
asymmetry (this favouring is remarked upon in [2]). All in all the investigations showed
that the CP conserving models could satisfy all the imposed constraints, but it should be
remembered that for baryogenesis purposes these kinds of models are not really relevant.

For the CP violating models it was seen that the scalar masses depend on large complex
phases between the vacuum expectation values, so that for a parameter space point from the
CP conserving case to which CP violation is added no neutral scalar particle necessarily
needs to have mass 125 GeV anymore. This clearly motivates the need for parameter
space scans where one neutral scalar mass is fixed to 125 GeV. Explicitly CP violating
flavour diagonal models (with either hard or soft breaking of the Z2 symmetry) were
then considered in more detail, and it was seen that for arbitrary mass differences the
oblique parameters and electric dipole moment searches constrained the number of points
satisfying the imposed constraints quite severely. It was seen that the oblique parameters
are sensitive to the squared mass differences and CP violating angles. In the CP conserving
case the oblique parameters were in general smaller, this as the Hybrid basis was used with
Λ4, Λ5, Λ7 ∈ (−1, 1) which parametrize squared mass differences. In the case when the
CP violating angles in the general basis as well as the squared mass differences between
the two heavier neutral scalars and the charged scalars were chosen to be small, a good
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amount of points in the models with only softly broken Z2 symmetry survived all the
imposed constraints. Again, low tan β was favoured. In the completely Z2 breaking models,
however, only a small fraction of the points survived even the theoretical constraints, in
particular the perturbativity constraint. Despite this last result, the study clearly shows
that there indeed is a possibility for 2HDMs to explain the BAU through EWBG.

As a final remark, there are some interesting extensions and improvements of this study
that could be done in the future. First of all, the case when the lightest neutral scalar
is less than 125 GeV could be investigated. Furthermore, thermally corrected masses and
a more detailed treatment of constraints from flavour physics and electric dipole moment
searches could be included, as well as a study of the cosmological implications coming
from the property of having several potential minima. Last but not least, it would be very
interesting, as well as essential, to study the exact dynamics during the generation and
obtaining an estimate of a baryon asymmetry, this in order to settle whether or not 2HDMs
and the additional CP violation (as compared to the Standard Model) actually can generate
the BAU while satisfying experimental and theoretical constraints. Having already created
parameter scanning tools and a working chain between 2HDMC, Vevacious (which were
both generalized to allow for CP violating models) and ROOT, such investigations would be
a natural next step.
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A Spontaneous symmetry breaking

Spontaneous symmetry breaking (SSB) is a central part in the electroweak symmetry break-
ing (EWSB) discussed in Sec. 2.1. Therefore, this appendix aims at reviewing the basic
ideas behind SSB and their consequences. The discussion closely follows that presented in
[15].

Consider a ferromagnet at some temperature such that there is a magnetic field in a certain
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direction. The reason it has such a magnetic field is because the spins of the atoms con-
stituting the magnet align. However, if the magnet is heated to high enough temperature
the spins of the atoms become randomly distributed, the magnetic field disappears and a
rotational symmetry arises. Thus, going in the opposite direction, for some temperature
there is a transition such that the rotational symmetry is broken – there is a spontaneuosly
broken symmetry. Note that this process is equivalent to the EWSB.

To study something more explicit in terms of field theory, consider the linear sigma model
which is a scalar field theory with a set of N ∈ N real scalar fields, {φi(x)}i∈{1, 2, ..., N} . The
Lagrangian can be written, with the dependence on spacetime coordinate x suppressed
and summation over i for repeated indices in squares,

L =
1

2

(
∂νφ

i
)2

+
1

2
µ2
(
φi
)2 − λ

4

[(
φi
)2
]2

(A.1)

where µ and λ are constants. Note that the Lagrangian has an O(N) symmetry (which is
global), since for Rij ∈ O(N), under φi −→ Rijφ

j, L is invariant, i.e., L −→ L.

The potential part of the Lagrangian is given by the negative of the last two terms in
Eq. (A.1), i.e.,

V
(
φi
)

= −1

2
µ2
(
φi
)2

+
λ

4

[(
φi
)2
]2

(A.2)

Classically, the minimum to this potential is given by a constant field φicl either (i) with dis-

tance to the origin given by (φicl)
2

= µ2

λ
, or (ii) with φicl = 0. The position of the global min-

imum/minima clearly depends on the parameters µ and λ. Note that in case (i), there is a

continuous set of minima on the N -sphere SN =
{
ηi ∈ R, i ∈ {1, 2, . . . , N}

∣∣∣∑i η
2
i = µ2

λ

}
and for N = 2 the so-called Mexican Hat potential is obtained40.

Now, choose coordinates such that φicl lies in one field direction, the Nth, say. Furthermore,
let v = µ√

λ
. Then, it is possible to expand around this minimum so that φi(x) = ϕi(x)

for i ≤ N − 1 and φN(x) = v + σ(x). The Lagrangian in Eq. (A.1) thus becomes, for
k ∈ {1, 2, . . . , N − 1},

L =
1

2

(
∂νϕ

k
)2

+
1

2
(∂νσ)2 − 1

2

(
2µ2
)
σ2 +

−
√
λµσ3 −

√
λµ
(
ϕk
)2
σ − λ

4
σ4 − λ

2

(
ϕk
)2
σ2 − λ

4

[(
ϕk
)2
]2

(A.3)

Note that the fields ϕk have no mass terms whereas the field σ does. Furthermore, there
is no longer an O(N) symmetry but an O(N − 1) symmetry remains. Thus, the O(N)
symmetry has been spontaneously broken to its subgroup O(N − 1). This occurred when
a particular direction was chosen to contain v.

40For a specific choice of parameters µ and λ, that is.
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As a side note, the N − 1 massless fields ϕk appearing as the symmetry was broken
correspond to so-called Goldstone bosons. Their existence can be inferred from Goldstone’s
theorem, saying that for every broken continuous symmetry, a massless particle appears.
A proof of this is left out here, but can easily be found elsewhere.

It should be noted that the above analysis only assumed a global symmetry but when also
spontaneous breaking of local symmetries (i.e., gauge symmetries) is allowed the Higgs
mechanism can be derived. In particular, for such theories, the Goldstone bosons are
”eaten” when giving mass to the gauge bosons and hence disappear from the physical
picture.

B Tadpole equations for general 2HDMs

Below the tadpole equations for 2HDMs with both spontaneous and explicit CP violation
are given. In this study they are used to eliminate m2

11, m2
22 and = (m2

12) from the equations,
thus yielding a lower-dimensional parameter space to scan through. Note that the vj are
complex, and thus can be divided into real and imaginary parts according to vj = vjR+ivjI .
For notational simplicity, the fact that each partial derivative below is evaluated at the
point ϕ3 + iϕ4 = v1, ϕ7 + iϕ8 = v2, ϕj = 0∀j ∈ {1, 2, 5, 6} is left out.

0
!

=
∂ Vtree
∂ ϕ3

∝ 4m2
11v1R + 2λ1v

2
1Iv1R + 2λ1v

3
1R − 2im2

12v2I + iλ6v
2
1Iv2I + 2λ6v1Iv1Rv2I +

+3iλ6v
2
1Rv2I + iλ5v1Iv

2
2I + 2λ3v1Rv

2
2I + 2λ4v1Rv

2
2I − λ5v1Rv

2
2I + iλ7v

3
2I +

−2m2
12v2R + λ6v

2
1Iv2R − 2iλ6v1Iv1Rv2R + 3λ6v

2
1Rv2R + 2λ5v1Iv2Iv2R +

+2iλ5v1Rv2Iv2R + λ7v
2
2Iv2R − iλ5v1Iv

2
2R + 2λ3v1Rv

2
2R + 2λ4v1Rv

2
2R +

+λ5v1Rv
2
2R + iλ7v2Iv

2
2R + λ7v

3
2R − i(v1I − iv1R)(v2I + iv2R)2λ∗5 +(

v2
1I + 2iv1Iv1R + 3v2

1R

)
(−iv2I + v2R)λ∗6 − iv3

2Iλ
∗
7 + v2

2Iv2Rλ
∗
7 +

−iv2Iv
2
2Rλ

∗
7 + v3

2Rλ
∗
7 + 2iv2I

(
m2

12

)∗ − 2v2R

(
m2

12

)∗
(B.1)

0
!

=
∂ Vtree
∂ ϕ4

∝ 4m2
11v1I + 2λ1v

3
1I + 2λ1v1Iv

2
1R − 2m2

12v2I + 3λ6v
2
1Iv2I + 2iλ6v1Iv1Rv2I +

+λ6v
2
1Rv2I + 2λ3v1Iv

2
2I + 2λ4v1Iv

2
2I + λ5v1Iv

2
2I + iλ5v1Rv

2
2I + λ7v

3
2I + 2im2

12v2R +

−3iλ6v
2
1Iv2R + 2λ6v1Iv1Rv2R − iλ6v

2
1Rv2R − 2iλ5v1Iv2Iv2R + 2λ5v1Rv2Iv2R +

−iλ7v
2
2Iv2R + 2λ3v1Iv

2
2R + 2λ4v1Iv

2
2R − λ5v1Iv

2
2R − iλ5v1Rv

2
2R + λ7v2Iv

2
2R +

−iλ7v
3
2R + (v1I − iv1R) (v2I + iv2R)2 λ∗5 +

(
3v2

1I − 2iv1Iv1R + v2
1R

)
(v2I + iv2R)λ∗6 +

+v3
2Iλ
∗
7 + iv2

2Iv2Rλ
∗
7 + v2Iv

2
2Rλ

∗
7 + iv3

2Rλ
∗
7 − 2v2I

(
m2

12

)∗ − 2iv2R

(
m2

12

)∗
(B.2)

0
!

=
∂ Vtree
∂ ϕ7

∝ 2im2
12v1I − iλ6v

3
1I − 2m2

12v1R + λ6v
2
1Iv1R − iλ6v1Iv

2
1R + λ6v

3
1R − iλ5v

2
1Iv2I +
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+2λ5v1Iv1Rv2I + iλ5v
2
1Rv2I − iλ7v1Iv

2
2I + λ7v1Rv

2
2I + 4m2

22v2R + 2λ3v
2
1Iv2R +

+2λ4v
2
1Iv2R − λ5v

2
1Iv2R − 2iλ5v1Iv1Rv2R + 2λ3v

2
1Rv2R + 2λ4v

2
1Rv2R + λ5v

2
1Rv2R +

+2λ7v1Iv2Iv2R + 2iλ7v1Rv2Iv2R + 2λ2v
2
2Iv2R − 3iλ7v1Iv

2
2R + 3λ7v1Rv

2
2R + 2λ2v

3
2R +

+i (v1I − iv1R)2 (v2I + iv2R)λ∗5 + i (v1I − iv1R)2 (v1I + iv1R)λ∗6 + iv1Iv
2
2Iλ
∗
7 +

+v1Rv
2
2Iλ
∗
7 + 2v1Iv2Iv2Rλ

∗
7 − 2iv1Rv2Iv2Rλ

∗
7 + 3iv1Iv

2
2Rλ

∗
7 + 3v1Rv

2
2Rλ

∗
7 +

−2iv1I

(
m2

12

)∗ − 2v1R

(
m2

12

)∗
(B.3)

0
!

=
∂ Vtree
∂ ϕ8

∝ −2m2
12v1I + λ6v

3
1I − 2im2

12v1R + iλ6v
2
1Iv1R + λ6v1Iv

2
1R + iλ6v

3
1R + 4m2

22v2I +

+2λ3v
2
1Iv2I + 2λ4v

2
1Iv2I + λ5v

2
1Iv2I + 2iλ5v1Iv1Rv2I + 2λ3v

2
1Rv2I + 2λ4v

2
1Rv2I +

−λ5v
2
1Rv2I + 3λ7v1Iv

2
2I + 3iλ7v1Rv

2
2I + 2λ2v

3
2I − iλ5v

2
1Iv2R + 2λ5v1Iv1Rv2R +

+iλ5v
2
1Rv2R − 2iλ7v1Iv2Iv2R + 2λ7v1Rv2Iv2R + λ7v1Iv

2
2R + iλ7v1Rv

2
2R +

+2λ2v2Iv
2
2R + (v1I − iv1R)2(v2I + iv2R)λ∗5 + (v1I − iv1R)2(v1I + iv1R)λ∗6 +

+3v1Iv
2
2Iλ
∗
7 − 3iv1Rv

2
2Iλ
∗
7 + 2iv1Iv2Iv2Rλ

∗
7 + 2v1Rv2Iv2Rλ

∗
7 + v1Iv

2
2Rλ

∗
7 +

−iv1Rv
2
2Rλ

∗
7 − 2v1I

(
m2

12

)∗
+ 2iv1R

(
m2

12

)∗
(B.4)

These can be solved to yield Eqs. (2.11)-(2.13) in Sec. 2.2.2 [9].

C Relations between potential parameters in the gen-

eral basis and those in the Higgs bases

In this appendix, the relations between the parameters in the general basis (see, e.g.,
Eq. (2.3)) and those in the Higgs bases (see, e.g., Eq. (2.7)) are given explicitly. The
relations are, with ξ = ξ2 − ξ1 and λ345 = λ3 + λ4 + <

(
λ5e

2iξ
)
, [7]

Λ1 = λ1c
4
β + λ2s

4
β +

1

2
λ345s

2
2β + 2s2β

[
c2
β<
(
λ6e

iξ
)

+ s2
β<
(
λ7e

iξ
)]

(C.1)

Λ2 = λ1s
4
β + λ2c

4
β +

1

2
λ345s

2
2β − 2s2β

[
s2
β<
(
λ6e

iξ
)

+ c2
β<
(
λ7e

iξ
)]

(C.2)

Λ3 =
1

4
s2

2β (λ1 + λ2 − 2λ345) + λ3 − s2βc2β<
[
(λ6 − λ7) eiξ

]
(C.3)

Λ4 =
1

4
s2

2β (λ1 + λ2 − 2λ345) + λ4 − s2βc2β<
[
(λ6 − λ7) eiξ

]
(C.4)

Λ5e
2i(ξ−2γ) =

1

4
s2

2β (λ1 + λ2 − 2λ345) + <
(
λ5e

2iξ
)

+ ic2β=
(
λ5e

2iξ
)

+

−s2βc2β<
[
(λ6 − λ7) eiξ

]
− is2β<

[
(λ6 − λ7) eiξ

]
(C.5)
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Λ6e
i(ξ−2γ) = −1

2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β − i=

(
λ5e

2iξ
)]

+ cβc3β<
(
λ6e

iξ
)

+

+sβs3β<
(
λ7e

iξ
)

+ ic2
β=
(
λ6e

iξ
)

+ is2
β=
(
λ7e

iξ
)

(C.6)

Λ7e
i(ξ−2γ) = −1

2
s2β

[
λ1s

2
β − λ2c

2
β + λ345c2β + i=

(
λ5e

2iξ
)]

+ sβs3β<
(
λ6e

iξ
)

+

+cβc3β<
(
λ7e

iξ
)

+ is2
β=
(
λ6e

iξ
)

+ ic2
β=
(
λ7e

iξ
)

(C.7)

M2
11 = m2

11c
2
β +m2

22s
2
β −<

(
m2

12e
iξ
)
s2β (C.8)

M2
22 = m2

11s
2
β +m2

22c
2
β + <

(
m2

12e
iξ
)
s2β (C.9)

M2
12e

i(ξ−2γ) =
1

2

(
m2

11 −m2
22

)
s2β + c2β<

(
m2

12e
iξ
)

+ i=
(
m2

12e
iξ
)

(C.10)

These relations are easily inverted to give the general basis’ parameters as functions of
the Higgs bases’ parameters: simply replace parameters in Eqs. (C.1)-(C.10) as Λi ↔ λi,
M2

ij ↔ m2
ij, β ↔ −β and ξ ↔ ξ − 2γ.

D Scalar masses in CP violating 2HDMs

The eigenvalues of the 3 × 3 matrix M̃2
3 (see Eq. (2.16)) can be found by solving the

characteristic equation
∣∣∣M̃2

3 −m21
∣∣∣ = 0, where m2 is an eigenvalue. This is equivalent to

solving a third degree polynomial equation, namely

0 = −
(
m2
)3

+
1

4

[
8M2

22 + 4Λ1v
2 + 4Λ3v

2 + 4Λ4v
2
] (
m2
)2

+
1

4

[
− 4M4

22 − 8Λ1M
2
22v

2 +

−4Λ3M
2
22v

2 − 4Λ4M
2
22v

2 + = (Λ5)2 v4 + 4= (Λ6)2 v4 − 4Λ1Λ3v
4 − Λ2

3v
4+

−4Λ1Λ4v
4 − 2Λ3Λ4v

4 − Λ2
4v

4 + < (Λ5)2 v4 + 4< (Λ6)2 v4
]
m2 +

1

4

[
4Λ1M

4
22v

2 +

−4= (Λ6)2M2
22v

4 + 4Λ1Λ3M
2
22v

4 + 4Λ1Λ4M
2
22v

4 − 4M2
22< (Λ6)2 v4 −= (Λ5)2 Λ1v

6

−2= (Λ6)2 Λ3v
6 + Λ1Λ2

3v
6 − 2= (Λ6)2 Λ4v

6 + 2Λ1Λ3Λ4v
6 + Λ1Λ2

4v
6

−2= (Λ6)2< (Λ5) v6 − Λ1< (Λ5)2 v6 + 4= (Λ5)= (Λ6)< (Λ6) v6 − 2Λ3< (Λ6)2 v6

−2Λ4< (Λ6)2 v6 + 2< (Λ5)< (Λ6)2 v6
]
≡ a

(
m2
)3

+ b
(
m2
)2

+ cm2 + d (D.1)

where coefficients a, b, c and d have been defined. The solutions to this equation are the
squared masses of the neutral scalars, m̃2

1, m̃2
2 and m̃2

3 (note that it is not possible to define
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an order relation at this stage, so here no reference is made to the ordered masses m2
h1

,
m2
h2

or m2
h3

). The solutions are

m̃2
1 = − b

3a
− 21/3 (−b2 + 3ac)

3a

(
−2b3 + 9abc− 27a2d+

√
4 (−b2 + 3ac)3 + (−2b3 + 9abc− 27a2d)2

)1/3
+

+

2−1/3

(
−2b3 + 9abc− 27a2d+

√
4 (−b2 + 3ac)3 + (−2b3 + 9abc− 27a2d)2

)1/3

3a
(D.2)

m̃2
2 = − b

3a
−

2−2/3
(
1 + i

√
3
)

(−b2 + 3ac)

3a

(
−2b3 + 9abc− 27a2d+

√
4 (−b2 + 3ac)3 + (−2b3 + 9abc− 27a2d)2

)1/3
+

+

2−4/3

(
−2b3 + 9abc− 27a2d+

√
4 (−b2 + 3ac)3 + (−2b3 + 9abc− 27a2d)2

)1/3

3a
(D.3)

m̃2
3 = − b

3a
−

2−2/3
(
1− i

√
3
)

(−b2 + 3ac)

3a

(
−2b3 + 9abc− 27a2d+

√
4 (−b2 + 3ac)3 + (−2b3 + 9abc− 27a2d)2

)1/3
+

+

2−4/3

(
−2b3 + 9abc− 27a2d+

√
4 (−b2 + 3ac)3 + (−2b3 + 9abc− 27a2d)2

)1/3

3a
(D.4)

From the above expressions, which are already quite lengthy, it is obvious that their cor-
responding forms in the general basis (which can be found by using the transformations in
App. C) will be a lot messier, thus validating the comment about the convenience of the
Higgs bases in Sec. 2.2.1.

E Oblique parameters

Here, the exact expressions for the oblique parameters S, T , U , V , W and X are presented.
Letting R̃ = R T

3 (i.e., the rotation matrix from Eq. (2.17)), the parameters are given by [4],
with the physical neutral Higgs particles’ masses mhi = mi, mhSM

= 125 GeV is the mass
of the SM Higgs boson, cos θW = cW and sin θW = sW ,

S =
1

24π

{(
s2
W − c2

W

)2
G (z+, z+) + R̃2

11G (z2, z3) + R̃2
12G (z3, z1) + R̃2

13G (z1, z2) +
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+
3∑
j=1

[
R̃2

1jĜ (zj) + ln
m2
hSM

m2
H±

]
− Ĝ (zhSM

)− ln
m2
hSM

m2
H±

}
(E.5)

T =
1

16πs2
Wm

2
W

{
3∑
j=1

(
1− R̃2

1j

)
F
(
m2
H± , m2

j

)
− R̃2

11F
(
m2

2, m
2
3

)
+

−R̃2
12F

(
m2

3, m
2
1

)
−R̃2

13F
(
m2

1, m
2
2

)
+ 3

3∑
j=1

R̃2
1j

[
F
(
m2
Z , m

2
j

)
− F

(
m2
W , m

2
j

)]
+

−3
[
F
(
m2
Z , m

2
hSM

)
− F

(
m2
W , m

2
hSM

)]}
(E.6)

U =
1

24π

{
3∑
j=1

(
1− R̃2

1j

)
G (w+, wj)−

(
s2
W − c2

W

)2
G (z+, z+)− R̃2

11G (z2, z3) +

−R̃2
12G (z3, z1)− R̃2

13G (z1, z2) +
3∑
j=1

R̃2
1j

[
Ĝ (wj)− Ĝ (zj)

]
− Ĝ (whSM

) + Ĝ (zhSM
)

}
(E.7)

V =
1

96πc2
W s

2
W

[(
s2
W − c2

W

)2
H (z+, z+) + R̃2

11H (z2, z3) + R̃2
12H (z3, z1) + R̃2

13H (z1, z2) +

+
3∑
j=1

R̃2
1jĤ (zj)− Ĥ (zhSM

)

]
(E.8)

W =
1

96πs2
W

[
3∑
j=1

(
1− R̃2

1j

)
H (w+, wj) +

3∑
j=1

R̃2
1jĤ (wj)− Ĥ (whSM

)

]
(E.9)

X =
c2
W − s2

W

48π
G (z+, z+) (E.10)

where

F (x, y) =

{ x+y
2
− xy

x−y ln x
y
, x 6= y

0, x = y
(E.11)

G(x, y) = −16

3
+ 5(x+ y)− 2(x− y)2 + 3

[
x2 + y2

x− y
− x2 + y2 +

(x− y)3

3

]
ln
x

y
+

+
[
1− 2(x+ y) + (x− y)2

]
f
(
x+ y − 1, 1− 2(x+ y) + (x− y)2

)
(E.12)
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f (z, w) =


√
w ln

∣∣∣ z−√wz+
√
w

∣∣∣ , w > 0

0, w = 0√
−w arctan

√
−w
z
, w < 0

(E.13)

za =
m2
a

m2
Z

, wa =
m2
a

m2
W

, a ∈ {+, 1, 2, 3, hSM} (E.14)

H (x, y) = 2− 9(x+ y) + 6(x− y)2 + 3

[
−x

2 + y2

x− y
+ 2

(
x2 − y2

)
− (x− y)3

]
ln
x

y
+

+3
[
x+ y − (x− y)2

]
f
(
x+ y − 1, 1− 2(x+ y) + (x− y)2

)
(E.15)

Ĥ(x) = 47− 21x+ 6x2 + 3

(
7− 12x+ 5x2 − x3 − 3

x+ 1

x− 1

)
lnx+

+3
(
28− 20x+ 7x2 − x3

) f (x, x2 − 4x)

x− 4
(E.16)

F Electric dipole moments

As is discussed in [29], searches for EDMs of the electron, neutron, mercury and radium
can be used to constrain the CP violating angles in 2HDMs. In particular, they constrain
the angle αb in the general basis (see Sec. 5.2.2) even though it might be better to constrain
the actual physical CP violating angles α1, α2 and α3 defined in Sec. 2.2.3. Everything
below follows closely the material presented in [29].

The dipole moments are given by T and P violating low energy effective operators and the
corresponding Lagrangian for fermions can be written

Lefff = e
∑
f

δf
Λ2
NP

mffiγ5fF
µν (F.17)

where ΛNP is the scale of new physics beyond the SM and δf is a rescaled version of a
fermion EDM. δf can be calculated from 2-loop Barr-Zee diagrams (see fig. 21) and for the
electron it is given by

δe = (δe)
hγγ
t + (δe)

hZγ
t + (δe)

hγγ
W + (δe)

hZγ
W + (δe)

hγγ
H+ + (δe)

hZγ
H+ + (δe)

HWγ
H+ (F.18)

where, e.g., the top contribution in the hγγ channel is given by

(δe)
hγγ
t = −NCQeQte

2 1

64π2

3∑
i=1

[
f
(
zit
)
ct,ic̃e,i + g

(
zit
)
c̃t,ice,i

]
(F.19)

and cf,i and c̃f,i are defined as in Sec. 5.2.2, zit = m2
t/m

2
hi

and f as well as g are loop
functions. Similar results hold for also other particles.
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Figure 21: A Barr-Zee diagram.
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