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Abstract

This thesis considers solitary standing wave solutions to the Davey-Stewart-
son equation, which is a model for surface waves on a body of water in
three dimensions. In a special case, the Davey-Stewartson equation is re-
duced to the well-known non-linear Schrödinger equation with cubic power
which is known to have a countable familiy of radial standing waves. One
of the aims of this thesis is to investigate whether this also is the case for
the Davey-Stewartson equation by considering the linearization around these
radial solutions. In particular, for the ground state it can be shown that the
kernel is empty if we restrict the equation to even functions. We numerically
investigate if the same is true for the excited states. Also, numerical contin-
uation and bifurcation detection is done using the radial solutions as initial
values.
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1 Introduction

The Davey-Stewartson (DS) equation1

iAt + a1Axx + a2Ayy = −a3|A|2A− a4φxA,

b1φxx + φyy = b2(|A|2)x,

where A = A(x, y, t) and φ = φ(x, y, t) are the (complex) wave-amplitude
and (real) mean velocity potential, was derived in 1974 by A. Davey and K.
Stewartson [7] as a model for weakly non-linear surface waves in the form of
wave packets on a body of water of finite depth. In fact, the same equation
appeared already in the paper [3] from 1969 by Benney and Roskes. Djord-
jevic and Redekopp [8] extended the model to include surface tension effects.
In Cartesian coordinates, the water surface is described asymptotically by

z = ε
(
iAei(kx−Ωt) − iĀe−i(kx−Ωt)

)
+O(ε2),

where A = A(ε(x− cgt), εy, ε2t) and 0 < ε� 1. Here k is the wave number
of the background wave train which is modulated by the envelope A, Ω the
angular frequency and cg = ∂Ω/∂k the corresponding group speed. Formulas
for the coefficients a1, a2, a3, a4 and b1, b2 in terms of physical quantities can
be found in [8]. In particular, it can be shown that

a2, a4, b2 ≥ 0,

whereas the other coefficients have arbitrary signs. In what follows, we will
however take a more general approach and only assume that

a1, a2, a3, b1, b2 6= 0.

In this thesis, we look for solitary standing wave solutions of the Davey-
Stewartson equation of the form A(x, y, t) = eiωtψ(x, y) and φ = φ(x, y) with

1We will use the term ‘equation’ throughout the thesis, although it can of course also
be seen as a system of two equations. Later on we will rewrite the system as a single,
scalar, non-local equation.
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ψ(x, y), φ(x, y)→ 0 as |(x, y)| → ∞. This gives the equations

a1ψxx + a2ψyy − ωψ = −a3|ψ|2ψ − a4φxψ,

b1φxx + φyy = b2(|ψ|2)x.

Rescaling x, y, ψ and φ one can transform this into

εψxx + ψyy − ωψ = −δ|ψ|2ψ − γφxψ, (1.1)

φxx + ρφyy = (|ψ|2)x, (1.2)

where ε = ±1, δ = ±1, ω = ±1 and γ ∈ R and ρ ∈ R are arbitrary. When
ε = 1 and ρ > 0, the Davey-Stewartson equation (1.1)–(1.2) is called elliptic-
elliptic. This is the case which will be considered throughout the thesis. In
addition, we will assume that ω = 1 and in most of the thesis we will also
assume that δ = 1. The restriction ω = 1 can be shown to be necessary for
the existence of solitary standing waves by similar considerations as in section
3.1; see e.g. [9]. Under these assumptions, letting γ = 0 reduces equation
(1.1) to the well-known focusing cubic non-linear Schrödinger (NLS) equation

ψxx + ψyy − ψ = −|ψ|2ψ. (1.3)

The physical interpretation of having γ → 0 in the surface-wave model is
that the depth of the fluid tends to infinity [8].
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2 The non-linear Schrödinger
equation

Consider the stationary two-dimensional cubic NLS equation

ψxx + ψyy − ψ = −|ψ|2ψ (2.1)

where ψ : R2 → C. In this thesis, focus will be given to radial solutions of
the form

ψ = Q(r), Q : [0,∞)→ R (2.2)

where Q(r) → 0 as r → ∞. These are not the only solutions to the NLS
equation however. Solutions of the form ψ = Q(r)eimθ, m ∈ Z have been
obtained by Lions and Iaia & Warchall, see [16] and [11]. From now on we
consider real-valued solutions, in which case equation (2.1) reduces to

−∆ψ + ψ − ψ3 = 0. (2.3)

Equation (2.3) is known to have countably many radial solutions {ψn}∞n=0,
each with exactly n number of roots as a function of |x|, see for example
[12] and [17]. The solutions are smooth and decay exponentially to zero
together with all their derivatives as |x| → ∞. In particular, the solution
without roots, ψ0, is often referred to as the ground state. This solution is a
decreasing positive function of |x| which tends to 0 as |x| goes to infinity. The
radial solutions ψn with n ≥ 1 are known as excited states. The uniqueness of
the ground state was proved by Kwong [15] and the uniqueness of the excited
states was until recently an open question, but finally proved by Cortázar et
al. [6].

In the remainder of this chapter, we assume that ψ∗ is one of the known
radial solutions {ψn}∞n=0 to the NLS equation discussed in this chapter. Our
interest is the Fréchet derivative of the left hand side of equation (2.3) in a
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radial solution ψ∗, here denoted by T and obtained by considering

−∆(ψ∗ + v) + (ψ∗ + v)− (ψ∗ + v)3 =

−∆ψ∗ + ψ∗ − ψ3
∗ −∆v + v − 3(ψ∗)

2v︸ ︷︷ ︸
Tv

+R(v)

where
R(v) = −3ψ∗v

2 − v3 (2.4)

and v ∈ H2(R2). Since H2(R2) is an algebra (Theorem A.4) we have

‖R(v)‖L2(R2) ≤ ‖R(v)‖H2(R2) ≤ C‖ψ∗‖H2(R2)‖v‖2
H2(R2) + ‖v‖3

H2(R2)

≤ C̃‖v‖2
H2(R2) = O(‖v‖2

H2(R2))

as ‖v‖H2 → 0. This shows that T is the Fréchet derivative of the right hand
side of equation (2.3) if this is considered as an operator from H2(R2) to
L2(R2).

The operator T can be decomposed as T = A + B, where Av = v −∆v
and Bv = −3ψ2

∗v. The operator A = I − ∆ is a self-adjoint operator on
L2(R2) with domain D(A) = H2(R2) and it is known that

σ(I −∆) = σess(I −∆) = [1,∞); (2.5)

see for example Hislop and Sigal [10, p.73]. Since ψ∗ is real, smooth and
exponentially decaying, it is clear that B is a bounded, symmetric operator
on L2(R2). We show in Proposition 3.2 below that it is also relatively A-
compact. It therefore follows from Theorem A.7 that T is self-adjoint on
L2(R2) with domain H2(R2) and from Theorem A.8 that

σess(T ) = σess(I −∆) = [1,∞).

In particular, T can only have point spectrum below one and one can in fact
show that it only has finitely many eigenvalues less than one (see Chang et
al. [4]). However, the main interest for us is the eigenvalue zero. Note that,

T∂xψ∗ = −∆∂xψ∗ + ∂xψ∗ − 3(ψ∗)
2∂xψ∗ = ∂x(−∆ψ∗ + ψ∗ − ψ3

∗) = 0

and the symmetry in x and y yields the inclusion

span{∇ψ∗} ⊆ N (T ) (2.6)

for all radial solutions ψ∗. The following result, relying on Sturm-Liouville
theory, is due to Chang et al. [4]. Here the special case of cubic non-linearity
in two dimensions is discussed but a similar result holds for arbitrary powers
p > 1 and is presented with a complete proof in [4]. Note that the proof by
Chang et al. also works in Rd for any d ≥ 1.
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Proposition 2.1 Let ψ0 be the unique ground state of (2.3). Then we have

N (T ) = span{∂xψ0, ∂yψ0}. (2.7)

This proposition says that the ground state is non-degenerate, meaning
that the only solutions to the linearized equation at the ground state are
related to symmetries of the equation (in this case translation invariance in
x and y).

Before giving the proof we state two lemmas which we will use in the
proof. In the second lemma and the proof of the proposition, we use the
notation A|V ≥ 0 to indicate that

〈Av, v〉 ≥ 0

for all v ∈ V , where A is a self-adjoint operator on a Hilbert space X and V
a closed (but not necessarily A-invariant) subspace of X. Similarly, A|V > 0
means that there exists a constant c > 0 such that

〈Av, v〉 ≥ c‖v‖2

for all v ∈ V . The notation A ≥ 0 (or A > 0) is used in place of A|X ≥ 0 (or
A|X > 0).

Lemma 2.2
Tψ0 = −2ψ3

0 and T ψ̃0 = −2ψ0,

where
ψ̃0 = (1 + x · ∇)ψ0.

Proof This follows by straightforward computations.

Lemma 2.3 T |{ψ3
0}⊥ ≥ 0.

Proof This follows from a variational characterization of ψ0 and is proved
in Chang et al. [4], to which we refer for details.

Proof of Proposition 2.1 Since the potential in T is radial, any solution
of Tv = 0 can be decomposed as

v(r, θ) = v1,1(r) +
∑
k≥1

vk,1(r) cos(kθ) + vk,2(r) sin(kθ) (2.8)

where r = |x| and Tv = 0 if and only if Akvk,j = 0 where k = 0, 1, 2, . . .,
j = 1, 2 (only j = 1 if k = 0) and

A0 = −∂2
r −

1

r
∂r + 1− 3ψ2

0(r), Ak = A0 + k2r−2.
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The operators Ak are singular Sturm-Liouville operators on the half-line
(0,∞), since they can be written in the form

Akw = −1

r
(rw′)′ +

(
1− 3ψ2

0(r) +
k2

r2

)
w.

Each operator Ak is an unbounded self-adjoint operator on the weighted
L2 space {w ∈ L2

loc((0,∞)) :
∫∞

0
|w(r)|2rdr < ∞}. In the remainder of

the proof, we will use 〈u, v〉 to denote the corresponding inner product∫∞
0
u(r)v(r)rdr. Note that there is a difference between the case k = 0

and the cases k ≥ 1 in that 0 is of limit circle type for k = 0 and limit point
type for k ≥ 1. For these definitions and more on singular Sturm-Liouville
problems we refer to Teschl [22] and Zettl [26]. What will be essential for us is
that each Ak is bounded from below and has essential spectrum [1,∞), that
the eigenvalues below the essential spectrum are simple and can be ordered
in increasing order λ1 < λ2 < · · · and that an eigenfunction wk correspond-
ing to λk has exactly k − 1 zeros on (0,∞). For these facts we refer to [26,
Chapter 10].

Case 1, k = 1. Note that ∇ψ0 = ψ′0(r)x
r
. Since A1ψ

′
0 = 0 and ψ′0(r) < 0

(monotonicity of ground state) for r ∈ (0,∞), ψ′0(r) is the ground state of A1

(which is unique up to multiplication by a constant). From Sturm-Liouville
theory it follows that A1 ≥ 0 and A1|{ψ′0}⊥ > 0.

Case 2, k ≥ 2. Since Ak = A1 + (k2 − 1)r−2 and k2 > 1, we have Ak > 0
and hence Akvk = 0 has no nonzero L2-solution.

Case 3, k = 0. Note that the first eigenvalue of A0 is negative since the nu-
merator in the Rayleigh quotient 〈A0ψ0, ψ0〉 = 〈−2ψ3

0, ψ0〉 = −2
∫
ψ4

0(r)rdr <
0. The second eigenvalue is non-negative due to Lemma 2.3, which implies
that A0|{ψ3

0}⊥ ≥ 0, and the min-max principle (Theorem A.9) which implies

that λ2 ≥ infψ⊥ψ3
0

〈A0ψ,ψ〉
〈ψ,ψ〉 . Hence, if there is a non-zero solution of A0v0 = 0,

then 0 is the second eigenvalue. By Sturm-Liouville theory, v0(r) can be taken
to have only one positive zero, which we denote by r0 > 0. Lemma 2.2 implies
that A0ψ0 = −2ψ3

0 and A0ψ̃0 = −2ψ0, since ψ0 and ψ̃0 = (1+x ·∇)ψ0 are ra-
dial functions. Hence, we have 〈ψ3

0, v0〉 = −1
2
〈A0ψ0, v0〉 = −1

2
〈ψ0, A0v0〉 = 0

and 〈ψ0, v0〉 = −1
2
〈A0ψ̃0, v0〉 = −1

2
〈ψ̃0, A0v0〉 = 0. Let α = ψ2

0(r0). Since
ψ′0(r) < 0 for r > 0, the function ψ3

0 − αψ0 = ψ0(ψ2
0 − α) is positive for

r < r0 and negative for r > r0. Thus v0(ψ3
0 − αψ0) does not change sign,

contradicting 〈v0, ψ
3
0 − αψ0〉 = 0.

Combining these cases proves the lemma.
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2.1 Restriction to even functions

For all radial solutions of equation (2.3) we have the inclusion

span{∇ψ∗} ⊆ N (T ) (2.9)

and in particular for the ground state ψ0, we appeal to Proposition 2.1 which
says that

N (T ) = span{∇ψ0}. (2.10)

The partial derivatives can be excluded from the kernel by restricting the
operator to subspaces of even functions

H2
e (R2) = {ψ ∈ H2(R2) : ψ(x1, x2) = ψ(−x1, x2) = ψ(x1,−x2)∀x1, x2 ∈ R2},

L2
e(R2) = {ψ ∈ L2(R2) : ψ(x1, x2) = ψ(−x1, x2) = ψ(x1,−x2)∀x1, x2 ∈ R2}.

Note that the Laplacian ∆ and the potential preserve eveness but that an
even function has an odd derivative. So, when dealing with the ground state,
we can restrict equation (2.3) to even functions and conclude that

N (T ) = {0}. (2.11)

It will be assumed throughout this thesis that the excited states are non-
degenerate as well, which means that the identity in equation (2.10) is as-
sumed to hold even when ψ∗ is an excited state. This assumption is verified
numerically when computing the solutions.
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3 The Davey-Stewartson equa-
tion

In the previous chapter we considered the special case γ = 0 of the stationary
DS equation which reduced to the NLS equation. We also saw that the NLS
equation has an infinite family of real-valued localized radial solutions. The
main goal of the remaining chapters in this thesis is to investigate whether
there is also an infinite family of localized solutions of the DS equation for
γ 6= 0. We begin by reviewing known results.

A first step is to rewrite the DS equation in a form similar to the NLS
equation. From now on, we restrict to real-valued solutions. Solving equation
(1.2) for φx and substituting into (1.1), we obtain the equation

∆ψ − ψ = −δψ3 − γL(ψ2)ψ (3.1)

where L is defined by

Lu = F−1

(
ξ2

1

ξ2
1 + ρξ2

2

û

)
. (3.2)

Here F(u) = û and F−1 denotes the Fourier transform of u and the inverse
Fourier transform respectively. Note that L is a bounded operator on Hs(R2)

since
ξ21

ξ21+ρξ22
∈ L∞(R2).

3.1 Domain of parameters

This section aims to derive conditions on the parameters δ and γ necessary
for the existence of a non-trivial solitary solution ψ such that ψ ∈ H1(R2).
We write the DS equation as

(I −∆)ψ = δψ3 + γL(ψ2)ψ (3.3)

and note that if ψ ∈ H1(R2) then, according to Cipolatti [5], the right hand
side of equation (3.3) belongs to L2(R2). But this gives ψ ∈ H2(R2)⇒ ψ2 ∈
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H2(R2) ⇒ L(ψ2) ∈ H2(R2) and hence (I −∆)ψ ∈ H2(R2) ⇒ ψ ∈ H4(R2).
By repeating this argument we can conclude that ψ ∈ Hs(R2) ∀ 1 ≤ s.

We state the DS equation again in the form

ψ −∆ψ − δψ3 − γL(ψ2)ψ = 0 (3.4)

and assume that the parameter ρ occuring in the operator L is strictly posi-
tive. By multiplying with ψ and doing partial integration we get

0 <

∫
R2

ψ2 + |∇ψ|2dx =

∫
R2

δψ4 + γL(ψ2)ψ2dx (3.5)

from which we conclude that there can not possibly exist any non-trival solu-
tions if the right hand side of equation (3.5) is non-positive. For a real-valued

ψ we have ψ4 = ψ2ψ2 ⇒
∫
R2 ψ

4dx =
∫
R2 ψ̂2ψ̂2dξ =

∫
R2 |ψ̂2|2dξ. Therefore,

applying the Fourier transform yields∫
R2

δ|ψ̂2|2 + γ
ξ2

1

ξ2
1 + ρξ2

2

|ψ̂2|2dξ =

∫
R2

(
δ +

γξ2
1

ξ2
1 + ρξ2

2

)
|ψ̂2|2dξ (3.6)

and a necessary condition for existence of solutions is that

δ +
γξ2

1

ξ2
1 + ρξ2

2

> 0 (3.7)

for at least some ξ1 and ξ2. We have that

0 < δ +
γξ2

1

ξ2
1 + ρξ2

2

=
(δ + γ)ξ2

1 + δρξ2
2

ξ2
1 + ρξ2

2

⇔ 0 < (δ + γ)ξ2
1 + δρξ2

2 . (3.8)

Clearly this can only hold for some ξ1 and ξ2 if δ + γ > 0 or δ > 0. Assume
δ > 0. Then (δ + γ)ξ2

1 + δρξ2
2 = δρξ2

2 > 0 if ξ1 = 0 and ξ2 6= 0. If δ + γ > 0,
then (δ + γ)ξ2

1 + δρξ2
2 = (δ + γ)ξ2

1 > 0 if ξ2 = 0, ξ1 6= 0.
In total, the necessary conditions for a solution are

δ > 0 or γ > −δ (3.9)

and in fact, one can show that these conditions are not only necessary but
also sufficient. For example, Papanicolaou et al. [19] prove the existence of
a ground state solution when δ, γ > 0 and Cipolatti [5] assumes γ > 0 and
proves the existence of a ground state solution when δ > −γ. Recall that
a ground state solution is a positive solution which goes to 0 as |x| goes to
infinity. Finally, Eden and Topaloglu [9] consider the more general equation

−∆v + ωv = −χ|v|2v − bF−1
(
α(ξ1, ξ2)v̂2

)
v (3.10)

where the function α is assumed to

9



• be even, homogeneous of zero degree and satisfy

• 0 ≤ α(ξ1, ξ2) ≤ αM ∀(ξ1, ξ2) ∈ R2 and

• α1 = lim
s→∞

α(sξ1, ξ2) and α2 = lim
s→0+

α(sξ1, ξ2) exist.

Equation (3.1) satisfies these conditions with ω = 1, χ = −δ, b = −γ, αM =
1, α1 = 1, α2 = 0. In this setting Eden and Topaloglu show that there exists
a ground state solution in H1(R2) when χ + α1b < 0 or χ + α2b < 0 and
ω > 0. For the Davey-Stewartson equation this shows that the conditions
(3.9) are sufficient.

Furthermore, Eden and Topaloglu [9] point out that a function ψ ∈
H1(R2) solves equation (3.4) if and only if ψ is a critical point of the func-
tional J defined as

J(ψ) =

∫
R2

ψ2 + |∇ψ|2

2
−
(
δψ4

4
+ γ

L(ψ2)ψ2

4

)
dx (3.11)

which on the Fourier-side equals∫
R2

|ψ̂|2 + |ξ|2|ψ̂|2

2
− 1

4

(
δ + γ

ξ2
1

ξ2
1 + ρξ2

2

)
|ψ̂2|2dξ. (3.12)

The ground state solution corresponds to the critical point of J with the
smallest non-zero value. Also, a solution ψ to equation (3.1) is exponentially
decreasing, see Cipolatti [5].

In addition to (3.5), a solution ψ ∈ H1(R2) must also satisfy the Pohozaev
type identity

2

∫
R2

ψ2dx =

∫
R2

δ|ψ|4 + γL(ψ2)ψ2dx, (3.13)

see Eden and Topaloglu [9]. Identity (3.13) is derived by considering the
scalings ψa,b(x, y) = saψ(sbx, sby) and then differentiating J(ψ) along the
one-parameter family defined by s 7→ ψ0,−1. Combining (3.5) with (3.13) one
finds that ∫

R2

ψ2dx =

∫
R2

|∇ψ|2dx. (3.14)

Equation (3.5) and (3.14) will here be denoted as the integral identities
and will be a tool for evaluating the precision of the numerical solutions
in the following chapters. Specifically, identity (3.5) should be valid for all
numerical solutions while the second identity (3.14) is assumed to hold ap-
proximately. The reason is that we will be solving the equation on a periodic
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domain which is not invariant under the scaling used to derive equation
(3.13). Therefore, the numerical value of the difference∫

R2

|∇ψ|2dx−
∫
R2

|ψ|2dx =

∫
R2

(|ξ|2 − 1)|ψ̂|2dξ (3.15)

will be of interest later on.

3.2 Linearization around non-radial solutions

Motivated by the results in previous section we proceed by considering equa-
tion (3.1) with δ = 1. By definition, the left hand side of equation (3.1) is an
element of L2(R2) if ψ ∈ H2(R2) and to show that this is true for the right
hand side as well, we rely on Theorem A.2, the Sobolev embedding theorem,
which gives the estimate

‖L(ψ2)ψ‖L2(R2) ≤ C‖L(ψ2)‖L2(R2)‖ψ‖L∞(R2) ≤ C‖L(ψ2)‖L2(R2)‖ψ‖H2(R2) ≤
≤ C‖ψ2‖L2(R2)‖ψ‖H2(R2) ≤ C‖ψ‖3

H2(R2) <∞
(3.16)

for some non-negative constant C. Since all the summands belong to L2(R2),
the operator

G : H2(R2)× R→ L2(R2) (3.17)

defined by
G(ψ, γ) = ψ −∆ψ − ψ3 − γL(ψ2)ψ (3.18)

is well-defined. Also note that G is well-defined as an operator from H2
e (R2)

to L2
e(R2) since the Fourier-transform and the inverse Fourier-transform ap-

pearing in L preserve eveness and since

ξ2
1

ξ2
1 + ρξ2

2

is even in ξ1 and ξ2. Bearing this restriction in mind we will still continue
to use the notation as in equation (3.17). The NLS equation is obtained by
setting γ = 0,

G(ψ, 0) = ψ −∆ψ − ψ3 = 0 (3.19)

for which the existence of radial solutions ψn ∈ H2(R2) is known.
To calculate the Fréchet derivative of the operator in (3.18) for an arbi-

trary γ, we consider

γL(ψ2)ψ = γF−1

(
ξ2

1

ξ2
1 + ρξ2

2

F(ψ2)

)
ψ (3.20)
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appearing in the right hand side of equation (3.1). The partial Fréchet-
derivative of (3.20) is derived by using linearity of the Fourier transform,

γL((ψ + v)2)(ψ + v)− γL(ψ2)ψ = 2γL(ψv)ψ + γL(ψ2)v +R(v)

where R(v) = O(‖v‖2
H2(R2)) is given by

R(v) = γ
(
L(v2)ψ + 2L(ψv)v + L(v2)v

)
. (3.21)

Merging the calculations with previous ones yields the derivative of G at ψ∗
for an arbitrary γ,

Gψ(ψ∗, γ)(v) = (I −∆)v︸ ︷︷ ︸
A(v)

+

−3ψ2
∗v − γ

(
2F−1

(
ξ2

1

ξ2
1 + ρξ2

2

F(ψ∗v)

)
ψ∗ + F−1

(
ξ2

1

ξ2
1 + ρξ2

2

F(ψ2
∗)

)
v
)

︸ ︷︷ ︸
B(v)

.

We already know from chapter 2 that A(v) is a self-adjoint operator on L2(R2)
with domain H2(R2) and that its essential spectrum is [1,∞). In order to
study the spectrum of Gψ(ψ∗, γ) we use the results from appendix A.

Proposition 3.1 Suppose f ∈ L2(R2) and that {wi}∞i=1 is a bounded se-
quence in H2(R2). Then {fwi}∞i=1 has a convergent subsequence in L2(R2).

Proof If Ω ⊂ R2 is open and bounded, we have that H2(R2) is compactly
embedded in C(Ω); see Theorem A.3. Next we observe that for all n =
1, 2, 3, . . . there exists an Rn such that ‖f‖L2(R2\BRn (0)) < 1/n. Beginning
with n = 1 and using the compact embedding, we can extract a subsequence
{w1,j}∞j=1 uniformly convergent on BR1(0). In the next step we consider
n = 2 and extract a subsequence from {w1,j}∞j=1 denoted by {w2,j}∞j=1 which
converges uniformly on the ball with radius R2. Continuing this procedure
creates, for each n, a subsequence uniformly convergent on BRn(0) and by
a diagonalization argument we extract the sequence {w′j}∞j=1 = {wj,j}∞j=1

which is a subsequence of the original sequence {wi}∞i=1 and which converges
uniformly on each BRn(0) to a function w ∈ C(R2) ∩ L∞(R2). Moreover,
{fw′j}∞j=1 converges in L2(BRn(0)) for each n to fw ∈ L2(R2). Finally, since

sup
j
‖fw′j‖L2(R2\BRn (0)) ≤ sup

j
‖f‖L2(R2\BRn (0))‖w′j‖L∞(R2)

≤ C

n
sup
j
‖w′j‖H2(R2) → 0

as n→∞, it follows that fw′j → fw in L2(R2).
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Proposition 3.1 implies that the multiplication operator H2(R2) 3 v 7→

ψ2
∗v ∈ L2(R2) is compact. Then note that F−1

(
ξ21

ξ21+ρξ22
F(·)

)
is bounded on

H2(R2) so it follows from the proposition with wn = vn and f =

F−1

(
ξ21

ξ21+ρξ22
F(ψ2

∗)

)
that the operator F−1

(
ξ21

ξ21+ρξ22
F(ψ2

∗)

)
v is compact. Fi-

nally we can show that H2(R2) 3 v 7→ F−1

(
ξ21

ξ21+ρξ22
F(ψ∗v)

)
ψ∗ ∈ L2(R2)

is a compact operator by applying Proposition 3.1 with f = ψ∗ and wn =

F−1

(
ξ21

ξ21+ρξ22
F(ψ∗vn)

)
. In total, we conclude that B is a compact operator

from H2(R2) to L2(R2).

Proposition 3.2 Let A be the operator above defined on D(A) = H2(R2).
Then, the operator B : L2(R2) → L2(R2) defined as above is symmetric and
relatively A-compact.

Proof The operator B is symmetric since〈
F−1

(
ξ2

1

ξ2
1 + ρξ2

2

F(ψ∗v)

)
ψ∗, u

〉
=

〈
F−1

(
ξ2

1

ξ2
1 + ρξ2

2

F(ψ∗v)

)
, ψ∗u

〉
=〈

ξ2
1

ξ2
1 + ρξ2

2

F(ψ∗v),F(ψ∗u)

〉
=

〈
v,F−1

(
ξ2

1

ξ2
1 + ρξ2

2

F(ψ∗)

)
ψ∗

〉
.

Since the inclusion D(A) = H2(R2) ⊂ L2(R2) = D(B) trivially holds it only
remains to be shown that BRA(λ) is compact for some λ ∈ ρ(A), where
RA(λ) is the resolvent of A and ρ(A) the resolvent set of A. Since I−∆ is an
isometric isomorphism, it has a bounded inverse. Hence λ = 0 ∈ ρ(A). It is
then sufficient to show that B(I −∆)−1 is a compact operator from L2(R2)
to L2(R2). But this is true since B is a compact operator from H2(R2) to
L2(R2) and since a composition of a bounded and a compact map is compact.

It now follows from Theorem A.7 that Gψ(ψ∗, γ) is self-adjoint on L2(R2)
with domain H2(R2) and from Theorem A.8 that

σess(Gψ(ψ∗, γ)) = σess(I −∆) = [1,∞).

independently of γ. Recall from previous chapter that if γ = 0 we know that

0 /∈ σ(Gψ(ψ∗, 0)) (3.22)

if ψ∗ is the ground state solution. If ψ∗ equals an excited state we have
just shown that 0 belongs to the spectrum if and only if it is in the point
spectrum. Throughout this thesis it is assumed that

0 /∈ σp(Gψ(ψ∗, 0)) (3.23)
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and this assumption is verified numerically when it is used. Under this as-
sumption, all requirements of the Implicit function theorem A.6 are satisfied
and we can conclude that for each excited state ψn, there exists an open set
Un around 0 and an open set Vn around ψn, such that the DS equation has
a unique solution in Vn for each γ ∈ Un.

14



4 Numerical methods

The aim of this chapter is to find numerical solutions to the DS equation for
γ 6= 0. Recall that the DS equation reduces to the NLS equation if γ = 0
and that this equation has a countable family of radial solutions. Solutions
to the DS equation are then obtained by doing numerical continuation from
these radial solutions. While doing so, we also compute the eigenvalues of
the linearization to look for bifurcations.

4.1 Numerical continuation

Simply put, the idea behind numerical continuation is to use a known (com-
puted) solution, say u0, such that F (u0, γ0) = 0, as initial guess to compute
an u1 such that F (u1, γ1) = 0 where the pair (u0, γ0) in some sense is close
to (u1, γ1). Obviously this requires the solution of the problem to depend
continuously on the parameter in question (in this case γ).

For a more extensive motivation, we assume the following framework,
which we simultaneously show that our problem fits into. Bear in mind
that this only serves as an introduction and for a more rigorous approach to
numerical continuation we refer to Seydel [21]. Assume that we would like
to solve

F (u, γ) = 0 (4.1)

where F : X ×R→ Y , F is at least C1 and that the function spaces X and
Y are Hilbert spaces. Also, we assume that there exists at least one solution
(u0, γ0) = (u(γ0), γ0) to equation (4.1) such that the Jacobian Fu(u0, γ0) is
invertible. Then we know from the implicit function theorem that there also
exists a solution (u(γ), γ) to equation (4.1) if |γ−γ0| is small enough. For each
given solution (u0, γ0) to equation (4.1) we can trace out further solutions by
numerical continuation which usually yields a smooth (but unknown) curve
in the (u, γ)-plane. Such a curve can be parametrized with s ∈ R as

S = {(u(s), γ(s)) : s ∈ R}. (4.2)
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The curve S is often, in this context, called a branch and the set of solutions
to equation (4.1) is the union of all possible branches. Let τ0 denote the
tangent to u0 at γ0 along this curve and assume that it can be numerically
computed. Then the following scheme can be applied to find another root of
(4.1).

(1) Calculate (u1, γ1) = (u0, γ0) + ∆γτ0, where τ0 = (·, 1), and use this as
initial guess in (2).

(2) Iterate (ui1, γ1) until convergence using for example Newton’s method.
If it does not converge, decrease ∆γ and recalculate (1).

(3) If (2) converges, set (u0, γ0) to be equal to the solution obtained in (2).
Choose an appropriate step-size and return to (1).

The observant reader now notices an inconsistency in the algorithm provided.
Assume that a given branch forms a parabola in the (u, γ)-plane characterized
by having γ′(s) < 0 for some s. Then an algorithm only taking steps of
positive γ-direction will not work. The cure is to add another constraint
making sure we find a solution in the hyperplane orthogonal to the tangent;
see [21]. However, as long as our program is able to trace out the curve, we
consider this extension redundant. Still, the algorithm does not explicitly
tell us how to calulate the tangent vector or what iterative solver to use, and
this will be discussed below.

A very useful tool to visualize a branch, or possible several branches, is to
create a curve by replacing u in S by its norm ‖u‖ and plot it against γ, see
[21]. Such a plot is called a bifurcation diagram, or branching diagram. The
branches can start and end at different γ, also branches can intersect, merge
and split. Seydel [21], defines a branch point (with respect to γ) as a point
γ∗ such that the number of solutions (branches) to equation (4.1) differs as
γ passes over γ0.

Concerning our problem, we know that the ground state and each excited
state will induce its own branch starting in γ = 0 but its further behaviour is
still unknown. We also know that as long as the eigenvalues of the linearized
operator are non-zero, the continuation exists and is unique. Note that the
bifurcation diagram does not distinguish between two solutions if they have
equal norm for a given γ.

A bifurcation can occur only if the linearized operator has an eigenvalue
equal to zero for some γ. Theoretically, having an eigenvalue equal to zero
would cause numerical issues but in practice we normally expect the algo-
rithm to ”jump over” such solutions. Therefore, if we for each γ during the
continuation calculate and keep track of the eigenvalues close to zero we can
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detect possible bifuraction points by checking if an eigenvalue passes zero.
However, we should not forget that there might be numerical issues even if
the Jacobian is just almost singular. Nonetheless, keeping track of the eigen-
values detects possible bifurcation and also helps us ensure that we do not
accidentically switch branch in the continuation if our initial guess turns out
to be unsatisfactory.

In this thesis, the numerical continuation will start in one of the countably
many radial solutions satisfying equation (3.1) with γ = 0. An initial guess
to such a radial solution is found with the shooting method on an interval
(ε, R], where 0 < ε,R and ε close to zero, and then translated into a two
dimensional solution by rotation and linear interpolation. Also, since the
solutions are exponentially decreasing, R is chosen such that the solution is
approximately equal to zero outside this interval.

4.2 Iterative methods

In this thesis, the choice of iterative solver in the numerical continuation is
a preconditioned Newton Conjugate Gradient (NCG) method in accordance
to recomendations of Yang [25, 24] who claims that this method converges
significantly faster than any other method for many non-linear wave equa-
tions. Even though speed is not our main concern it is nevertheless a desired
feature. Moreover, Yang [25] notices that this method can converge for the
ground state as well as for excited states, which for us is a crucial property.
One of the biggest advantages of the NCG method is that it does not require
construction of any matrices. However, this might be wanted anyways by
the user when calculating eigenvalues related to the problem. As the name
indicates, the NCG method is based on an outer and an inner loop where
the outer loop is an ordinary Newtion iteration of the form

un+1 = un + Dun, (4.3)

where Dun denotes the usual Newton corrector, which is iterated until the
supremum of the residual is sufficently small. Conjuate Gradient refers to
the inner loop which calculates the Newton update Dun for each step in the
outer loop. Using the notation in Yang [25] we denote by L0 the operator
for which we aim to solve the equation L0u = 0 and let L1,n denote the
operator L0 linearized around un. We then note that if u were represented
by a matrix (possibly after a discretization), the Newton-update would be
obtained by solving the system of equations L1,nDun = −L0un. However, one
main advantage of the Conjugate Gradient method is that it is ”matrix-free”
and allows us to use spectral methods to calculate the Newton corrector.
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On the downside, this algorithm is in theory guaranteed to work only if the
linearization L1 is symmetric and positive definite but according to Yang
[25], the postive definiteness requirement is redundant in practice. A com-
plete description and corresponding discussion about the preconditioned CG
method is found in Yang [25] and therefore only a short description with a
few highlighted details is provided here. The CG method begins by assuming
no Newton correction is needed and then proceeds to iterate as follows:

• Du(0) = 0

• R(0) = −L0u

• D(0) = M−1R(0)

• a(i) = 〈R(i),M−1R(i)〉
〈D(i),L1D(i)〉

• Du(i+1) = Du(i) + a(i)D(i)

• R(i+1) = R(i) − a(i)L1D
(i)

• b(i+1) = 〈R(i+1),M−1R(i+1)〉
〈R(i),M−1R(i)〉

• D(i+1) = M−1R(i+1) + b(i+1)D(i)

The first remark concerns the choice of preconditioner M which should
be easily invertible and according to Yang [25] often taken as the linear
differential part of L0 since equation (3.1) can be rewritten as

ψ − (1−∆)−1
(
δψ + γL(ψ2)ψ

)
= 0. (4.4)

Therefore, the choice for our algorithm will be a discretization of M = 1−∆.
The second remark concerns the stopping condition for the CG method. As
Yang points out, one should avoid oversolving and neither is it clear how to
measure the error. Following Yang’s recommendations we measure the error
in the M−1 weighted 2-norm and stop whenever ‖R(i)‖M < εCG‖R(0)‖M
where εCG is taken between 10−1 and 10−3. Thus, we choose εCG = 10−2.
The final remark concerns the ”matrix-free” implementation of this algorithm
where the derivatives are computed on the fourier-side after transformation
which is referred to as spectral differentiation. This method is known to
provide high accuracy despite a relatively coarse grid. Bearing our restriction
to even functions in mind, we use a fast-discrete-cosinus-transform (FDCT)
instead of a full fast-discrete-fourier-transform (FDFT), see Trefethen [23].
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5 Results

Due to eveness we restrict the computations to a square in the first quad-
rant, impose periodic boundary conditions and due to exponential decrease
of the solution, we assume that the solution is approximately equal to zero
outside the computational domain. Throughout this chapter, if nothing else
is explicitly stated, all results are based on a grid formed by

(
Lx
2N

, · · · , Lx
2N

+ k
Lx
N
, · · · , (2N − 1)Lx

2N
)×

(
Ly
2N

, · · · , Ly
2N

+ k
Ly
N
, · · · , (2N − 1)Ly

2N
)

(5.1)

where Lx = Ly = 3π, k = 0, 1, · · · , N − 1 and N = 64. Also ρ = δ = 1 if
nothing else is explicitly stated. Hence, plots showing ”the whole” solution
to the DS equation are created by even reflections from the first quadrant.
Also, recall the integral identities from previous chapters serving as measures
of numerical correctness. Graphs occuring under the titles ”integral identity
1” and ”integral identity 2” refer to equation (3.5) and (3.14) respectively
and show the absolute value of the difference of the right- and left-hand-side
of these equations.

Similar results have been obtained by Akylas and Kim, see [13, 14], who
did numerical continuation of the ground state but instead of an equidistant
grid they mapped the whole first quadrant to a bounded domain in the first
quadrant where the problem then was solved. Milewski and Yang [18] used
a method similar to ours in a study of flexural-gravity waves modelled by
the Davey-Stewartson equation (but with different values of the coefficients
compared to [8]). These studies lack a systematic discussion of the existence
of ground states and excited states and their dependence on the parameters
in the equation, though.
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5.1 Ground state

Figure 5.1 visualizes the radial ground state when γ = 0. When γ is in-
creasing the radial property is lost as seen in figure 5.2. Note that figure
5.2 does not visualize the actual solution for γ = 0.1 but rather shows what
happens to the solution, in particular we can see how the radial structure is
replaced by a peak shaped as an eight. In figure 5.3 we see how the solution
and the norm decreases as γ increases. The integral identities are seen in
the bottom subfigures of figure 5.3. The first integral identity which is ex-
pected to be equal to zero, is satisfyingly small in magnitude, with a sudden
peak at γ ≈ 150. Note that occasionally the error reaches machine epsilon
≈ 10−16 and can not be visualized in a logarithmic plot, hence the ”gaps”
in the graph. The second integral identity is a measure of the incorrectness
caused by the use of a bounded domain with periodic boundary conditions,
expected to be approximately equal to zero, and is visualized in the bottom
right subplot in figure 5.3. The error is small for γ = 0 with a sudden increase
thereafter. Still it is many orders less than the norm of the solution ψ.

The point spectrum of the ground state consists only of two isolated eigen-
values which are visualized in figure 5.4. Even though the spectrum of the
discretization consists of a point spectrum only, it is here after assumed that
all eigenvalues greater than or equal to one belong to the essential spectrum
of the operator that was discretized. Interesting to notice is that no bifurca-
tion happens, and the eigenvalues seem to converge to non-zero values as γ
increases and the L2−norm of the solutions seem to tend to zero.

Figure 5.1: Ground state solution when γ = 0 computed with N = 256.

When calculating a ground state solution for negative γ we need a larger
domain to preserve numerical accuracy. The reason is that the solution tends
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Figure 5.2: Difference between gound state solutions when γ = 0 and γ = 0.1.
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Figure 5.3: Numerical continuation of the ground state for γ ∈ [0, 500].

to grow along the x-axis as seen in figure 5.5, here a grid with Lx = 10π and
N = 128 is used. As γ decreases the error in the second integral identity
grows, most likely since the norm increases, because as figure 5.6 shows the
domain seems to be suffciently large. However, if we would continue to use
N = 64, the error in the second integral identity would approach a value of
10 when γ tends to -5.
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Figure 5.4: Eigenvalues of the ground state solution for γ ∈ [0, 500].

Figure 5.5: Numerical continuation of the ground state for γ ∈ [−5, 0].

Figure 5.6: Ground state solution from above with γ = −5.
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5.2 First excited state

Figure 5.7 visualizes the first excited solution to the DS equation. It is radial
since γ = 0 and is the initial solution to the numerical continuation with
result collected in figure 5.8.
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Figure 5.7: First excited state when γ = 0.
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Figure 5.8: Numerical continuation with γ ∈ [0, 500].

No bifurcation is detected and the smallest positive and smallest negative
eigenvalues from the point spectrum of the first excited state are visualized
in figure 5.9. We can also notice vague oscillations which seem to appear on
what otherwise would approximately be elliptic level curves centered in the

23



origin. This phenomena reappear and is more visible in the second excited
state.
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Figure 5.9: Two eigenvalues of the first excited state for γ ∈ [0, 500].

Solution ψ(x,y) to DS-equation with γ =505.5

x

-10

-5

0

5

10

y

-10

-5

0

5

10

Figure 5.10: First excited state for γ = 500 seen from above.

When considering negative gamma, figure 5.11 and 5.12 show that the
norm increases drastically when γ is decreasing. Compared to the ground
state, the solution spreads along the x-axis much faster which induces the
larger norm but also a large error in the second integral identity. When seen
from above, we note that the solution spreads along the y-axis as γ tends to
infinty but along the x-axis as γ decreases.
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Figure 5.11: Numerical continuation with γ ∈ [−3, 0].

Figure 5.12: First excited state viewed from above with γ = −3.

5.3 Second excited state

When calculating the second excited state we need to enlarge the domain
by using Lx = 5π. The result is found in figure 5.13. Figure 5.14 shows
the largest negative and smallest positive eigenvalue, both converging as
previously. Once again, the norm increases rapidly for negative γ resulting
in a loss of accuracy while the solution spreads as an ellipse along the x-axis.
For the calculations with γ < 0, Lx = 7π and N = 128 were used. In both
cases the oscillations mentioned in the previous section are amplified.

Finaly we consider the functional in equation (3.11) where the solutions
to the DS equation correspond to critical points. As expected, the value of
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Figure 5.13: Numerical continuation with γ ∈ [0, 500].
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Figure 5.14: Two eigenvalues of the second excited state for γ ∈ [0, 500].

the functional visualized in figure 5.16 is lower for the ground state solutions
than the excited solutions.
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Figure 5.15: Numerical continuation with γ ∈ [−1, 0].
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Figure 5.16: Value of the functional J(ψ) for different solutions.

5.4 Negative delta

This section investigates how the ground state is affected by letting the pa-
rameter δ become negative. We recall from previous chapters that if δ < 0
then γ > −δ is a necessary and sufficient condition for existence of a ground
state solution and it is therefore natural to investigate what happens when
γ → −δ from above. In this section a mesh with Lx = Ly = 10π is used and
N = 128 except when calculating the eigenvalue where N = 64 where used,
but the only argument for using N = 128 is that it provides a smaller error
in the second integral identity. Figure 5.17 shows the ground state solution
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for γ close to −δ and the visible peak reminds us of the peak occuring when
δ = 1 and γ < 0 in previous section, except for a rotation by ninety de-
grees. But when comparing norms, the solution in figure 5.17 is larger than
for negative γ. Figure 5.18 shows how the eigenvalue in the point spectrum
closest to zero seems to approach zero as γ tends to −δ but the uncertainty is
high since the second integral identity is far from satisfied and the size of the
computational domain seems to be insufficent. However, trying to continue
the numerical continuation beyond −δ results in the trivial solution ψ ≡ 0
which is interesting since the norm seems to tend to infinity as γ → −δ+.
Figure 5.19 shows a similar result as figure 5.17 but for δ = −1 and this is
expected since we can always rescale the problem to get δ = −1 if δ < 0.

An issue with the numerical continuation when δ < 0 is the lack of an ini-
tial solution. It turned out that the solutions corresponding to δ = −0.1, γ =
1 and δ = −1, γ = 3 were approximately radial with L2-norms between 0
and 10 which gave convergence in the Newton CG algorithm. For negative
δ with a larger magnitude one is, considering the decrease of the L2-norms,
probably forced to do the continuation on an unnecessary large interval un-
less some other trick is used. For example, one could keep γ fixed and use δ
as continuation parameter.

Figure 5.17: Numerical continuation with δ = −0.1 and γ ∈ [0.115, 1].
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Figure 5.19: Numerical continuation with δ = −1 and γ ∈ [1.13, 3].
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6 Summary and discussion

In summary, we have successfully applied the implicit function theorem to the
radial solutions of the DS equation and concluded that there exist solutions
when γ is sufficiently close to zero. The numerical results show that for
positive γ the numerical continuation runs smoothly in the sense that it
provides accurate results without any struggles. This is probably because we
are able to solve the DS equation for the radial solution with high accuracy
when γ = 0 and then the norm decreases as γ → ∞. Still, for the excited
states, the Newton CG algorithm converges slower and a larger domain is
needed due to the higher variation, and larger L2-norm, of the solution. No
bifurcations were found and the eigenvaules are assumed not to change sign
as γ →∞. Interesting was that we were able to find solutions for negative γ
as well. The implicit function theorem only provided existence of solutions
but nothing else. Even though we were guaranteed the existence of solutions
for all γ < 0 when δ = 1 we were not able to find a solution for large negative
γ and the reason is the increasing norm and the need of a larger domain which
was computationaly heavy. The excited states grew even faster in norm for
negative γ, which was not very surprising since their L2-norms are larger
than the L2-norm of the ground state, which made it even harder to find
solutions. Our best guess is that higher excieted states will grow even faster,
both in norm as well as in domain, for negative γ. No bifurcations were
detected either.

When considering negative δ we saw that the norm seemed to explode as
γ → δ+ and trying to compute a solution past this limit resulted in the trivial
solution. Interesting is that an eigenvalue seems to tend to 0 as γ → δ+ but
if this is due to a bifurcation or because the computational domain is too
small remains unknown. Another observation is that the limit solution as
γ → δ+ seems to have equal shape independent of δ but for negative δ with
larger magnitude it becomes harder to compute a solution with γ close to
−δ. Also, the second integral identity is far from satisfied here, so we should
be careful when drawing any conclusions.
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A Mathematical framework

The reader is assumed to be familiar with the mathematical concepts appear-
ing throughout this thesis and the purpose of this appendix is thus merely to
avoid possible misunderstandings which may arise from the notation used.
For convenience, the main theorems upon which the results of this thesis
rely can be found in this appendix as well as a part of the mathematical
framework.

A.1 Lebesgue and Sobolev spaces

Definition For 1 ≤ p < ∞, let Lp(R2) be the space of all complex-valued
Lebesgue p-integrable functions,

Lp(R2) = {f : R2 → R,
∫
R2

|f |p dx <∞}. (A.1)

Functions which only differ on a set of measure zero are identified by creating
the quotient vector space Lp = Lp/N where N = {f ∈ Lp : ‖f‖p = 0} where
the norm is given by

‖f‖p =

(∫
R2

|f |pdx
) 1

p

. (A.2)

Similarly, we let L∞(R2) denote the space of essentially bounded complex-
valued functions defined on R2 where two functions are considered equal if
they only differ on a set of measure zero.

The space L2 equipped with the inner-product

〈f, g〉 =

∫
R2

fg dx (A.3)

is a Hilbert space. Special subspaces of the Lp-spaces, Sobolev spaces, consist
of those functions whose weak partial derivatives belong to the same space as
the differentiated function and they are the foundation of much of the work
carried out in this thesis.
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Definition For k ∈ N the Sobolev space Hk(R2) is defined as

Hk(R2) = {f ∈ L2(R2) : ∂αf ∈ L2(R2), |α| ≤ k} (A.4)

where ∂α = ∂α1
x1
∂α2
x2

and |α| = α1 + α2.

The notation W k,2 is often seen instead of Hk, which indicates that this is
a special case of a more general definition where L2 is replaced by Lp. The
spaces Hk are, as the notation indicates, Hilbert spaces under the inner-
product ∑

|α|≤k

∫
R2

∂αf(x)∂αg(x)dx (A.5)

but the reader should be aware that this thesis uses the slightly different
fractional Sobolev spaces defined in the next section. Finally, we need a few
theorems helping us to relate the set of Sobolev functions to other spaces
of functions such as the continuous ones. Note that the theorems below are
special cases adapted to fit the framework in this thesis. For the full general
versions the reader is referred to the literature cited in the corresponding
proofs.

Theorem A.1 (Sobolev Embedding Theorem) Let Ċ(R2) be defined by

Ċ(R2) = {f : R2 → R, f continuous and f(x)→ 0 as |x| → ∞}.

Then H2(R2) ↪→ Ċ(R2) meaning that H2(R2) ⊂ Ċ(R2) and the inclusion
map is continuous.

Proof See for example [1, Chapter 4].

Theorem A.2 (Sobolev Embedding Theorem)

H1(R2) ↪→ Lp(R2), ∀p ∈ [2,∞).

Proof See for example [1, Chapter 4].

Theorem A.3 (Rellich-Kondrachov Theorem) H2(R2) is compactly em-
bedded in C(Ω) for any bounded open subset Ω of R2.

Proof See for example [1, Chapter 6].

Theorem A.4 H2(R2) is an algebra under multiplication in the sense that
u, v ∈ H2(R2) ⇒ uv ∈ H2(R2), and there exists a constant C > 0 indepen-
dent of u and v such that

‖uv‖H2(R2) ≤ C‖u‖H2(R2)‖v‖H2(R2).

Proof See for example [1, Chapter 4].
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A.2 The Fourier transform

Definition For f ∈ L2(R2) the Fourier transform, F : L2(R2)→ L2(R2), is
defined by

F(f)(ξ) = f̂(ξ) =
1

2π

∫
R2

f(x)e−ix·ξdx (A.6)

for all ξ ∈ R2.

Recall that F is an isomorphism on L2(R2) since it preserves the inner-
product

〈F(f),F(g)〉 = 〈f,F−1F(g)〉 = 〈f, g〉

∀f, g ∈ L2(R2). The Sobolev space Hk(R2) can also be defined using the
Fourier transform. First note that there exist constants C1, C2 such that
C1(1 + |ξ|2)k ≤

∑
|α|≤k ξ

2α ≤ C2(1 + |ξ|2)k for each ξ ∈ R2. By interchanging

the sum and integral in (A.5) and applying the Fourier transform we get∑
|α|≤k

∫
R2

∂αf(x)∂αg(x)dx =

∫
R2

∑
|α|≤k

ξ2α| ˆf(ξ)|2dξ <∞ (A.7)

and therefore f ∈ L2(R2) belongs to Hk(R2) if and only if

‖f‖2
Hk(R2) =

∫
R2

(1 + |ξ|2)k|f̂(ξ)|2dξ <∞ (A.8)

which, unlike (A.7), is well-defined for any real k. Thus, we can introduce the
extended family of (fractional) Sobolev spaces, Hs(R2) where s ∈ R, defined
by

Hs(R2) = {f ∈ L2(R2) : (1 + |ξ|2)s/2f̂(ξ) ∈ L2(R2)} (A.9)

equipped with a norm defined by the integral in (A.8) with k replaced by s.

Theorem A.5 The map −∆ + I : H2(R2) → L2(R2) is an isometric iso-
morphism.

Proof −∆ + I is surjective since for any g ∈ L2(R2) the function f defined
by f̂ = ĝ

|ξ|2+1
satisfies (−∆+I)f = g and by (A.9) it is clear that f ∈ H2(R2).

The isometry property follows from the observation,

‖(−∆ + I)f‖L2(R2) = ‖F((−∆ + I)f)‖L2(R2) =

‖(1 + |ξ|2)|f̂ |‖L2(R2) = ‖f‖H2(R2).
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A.3 Operator theory

Let X and Y be Banach spaces and let T be a linear operator

T : D(T ) ⊆ X → Y (A.10)

where the domain of T , D(T ), is a linear subspace of X. We will denote the
null-space and the range of T by N (T ) and R(T ) respectively.

Definition Let T be a linear operator defined on D(T ) as above. If D(T ) is
dense in X, we say that the operator T is densely defined.

Throughout this thesis, all linear operators are assumed to be densely defined.
In particular, for a bounded linear operator T , the domain of T is assumed to
be equal to the whole space X since T can be extended uniquely by continuity
to a linear operator with domain D(T ) = X.

Definition Let X, Y be Banach spaces. We denote by L(X, Y ) the space
of all continuous linear operators from X to Y . In particular, if X = Y , we
write L(X) = L(X,X).

We can use linear operators to define what it means to differentiate an op-
erator, whenever this is possible.

Definition (Fréchet derivative) Let F be an operator between Banach
spaces X and Y and let U ⊂ X be open. Then F is said to be differentiable
at x ∈ U (in the sense of Fréchet) if there exists a linear map T ∈ L(X, Y )
such that

F (x+ v) = F (x) + T (v) +R(v) (A.11)

where ‖R(v)‖Y
‖v‖X

→ 0 as ‖v‖X → 0.

The map T , often denoted dF (x) or DxF , is called the Fréchet-derivative of
F at x and is, if it exists, unique [2]. We can also define partial derivatives
of an operator.

Definition (Partial Fréchet derivatives) Suppose that X, Y and Z are
Banach spaces, that U ⊂ X × Y is open and F : U → Z. Suppose that
(x0, y0) ∈ U . Then Ux0 = {y ∈ Y : (x0, y) ∈ U} is open. If the function
F (·, y0) has a Fréchet derivative at x0 we denote it by Fx(x0, y0) ∈ L(X,Z)
and refer to it as the partial Fréchet derivative of F with respect to x at
(x0, y0). Similarly Fy(x0, y0) : Y → Z will denote the partial Fréchet deriva-
tive of F with respect to y.
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The next theorems are central in this thesis since they allow us to deduce
the existence of solutions to the DS equation.

Theorem A.6 (Implicit Function Theorem) Let F ∈ Ck(Λ×U, Y ), k ≥
1, where Y is a Banach space and Λ (resp. U) is an open subset of Banach
space Z (resp. X). Suppose that F (λ∗, u∗) = 0 and that Fu(λ

∗, u∗) is invert-
ible.

Then there exist neighbourhoods Θ of λ∗ in Z and U∗ of u∗ in X and a
map g ∈ Ck(Θ, X) such that

• F (λ, g(λ)) = 0 for all λ ∈ Θ,

• F (λ, u) = 0, (λ, u) ∈ Θ× U∗, implies u = g(λ),

• g′(λ) = −[Fu(p)]
−1 ◦ Fλ(p), where p = (λ, g(λ)) and λ ∈ Θ.

Proof See for example [2, p.38].

Definition Let X be a Banach space. For a linear operator T : D(T ) ⊆
X → X the resolvent set of T is defined by

ρ(T ) = {λ ∈ C : (T − λI)−1 exists and is bounded} (A.12)

and the complement σ(T ) is defined as the spectrum of T . The resolvent of
T is a function on ρ(T ) defined by RT (λ) = (T − λI)−1.

There are several ways of classifying the elements in the spectrum and here
we will use the definition given by Hislop and Sigal [10].

Definition The point spectrum of T , denoted as σp(T ), is the set of all
eigenvalues of T with finite algebraic multiplicity and which also are iso-
lated points points of σ(T ). The essential spectrum of T is then defined by
σess(T ) = σ(T ) \ σp(T ).

Definition An operator T : D(T ) ⊆ X → X is closed if for every sequence
{xn} ∈ D(T ) such that xn → x and Txn → y in X it holds that x ∈ D(T )
and y = Tx.

Definition Let A be an operator on a Hilbert space H with domain D(A).
The adjoint of A, A∗, is defined on the domain

D(A∗) ={x ∈ H : |〈Ay, x〉| ≤ Cx‖y‖
for some constant Cx and all y ∈ D(A)}

as the map A∗ : D(A∗) → H satisfying 〈Ay, x〉 = 〈y, A∗x〉 for all y ∈ D(A)
and x ∈ D(A∗). A is called self-adjoint if A = A∗.
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It is easily seen that a self-adjoint operator is closed.

Definition An operator A onH with domain D(A) is called symmetric if A∗

is an extension of A or, equivalently, if 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ D(A).

For the last part of this Appendix we will only consider self-adjoint operators
on a Hilbert space H. The purpose of this remainder is to give some defi-
nitions enabling us to make sense of and apply Weyl’s theorem which helps
us find the essential spectrum of certain operators occurring in the thesis.
Moreover, we recall some results which can be used to locate the eigenvalues
below the essential spectrum.

Definition Let A be a closed operator on H with domain D(A) such that
ρ(A) 6= ∅. An operator B is called relatively A-compact if

• D(A) ⊂ D(B) and

• BRA(z) is compact for at least one (and hence all) z ∈ ρ(A).

Theorem A.7 Suppose A is a self-adjoint operator on H and B is symmet-
ric and relatively A-compact. Then A+B with domain D(A) is self-adjoint
on H.

Proof See for example Hislop and Sigal [10, p.141].

Theorem A.8 (Weyl’s Theorem) Let A and B be self-adjoint operators
on H and let A−B be relatively A-compact. Then

σess(A) = σess(B) (A.13)

Proof See for example Hislop and Sigal [10, p.142].

Suppose now that A is a self-adjoint operator on a Hilbert spaceH. Recall
that the Rayleigh quotient corresponding to A is defined by

〈Ax, x〉
‖x‖2

, x ∈ D(A),

and that inf σ(A) = infx∈D(A)
〈Ax,x〉
‖x‖2 (see e.g. [22]). A is said to be bounded

from below if inf σ(A) > −∞. If A is bounded from below, then there is
at most countably many eigenvalues below the essential spectrum, which
can be ordered in increasing order: λ1 ≤ λ2 ≤ · · · (repeated according to
multiplicity). The following min-max theorem gives a way of computing the
nth eigenvalue.
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Theorem A.9 Let A be a self-adjoint operator and let λ1 ≤ λ2 ≤ · · · be the
eigenvalues of A below the essential spectrum. Then

λn = max
x1,...,xn−1∈H

inf
D(A)3x⊥{x1,x2,...,xn−1}

〈Ax, x〉
‖x‖2

.

Proof See for example Teschl [22, p.141].
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