Abstract

The main focus of this thesis is Wedderburn’s theorem that a finite
division ring is a field. We present two proofs of this. The thesis also
contains a proof of a theorem of Jacobson and a proof of a generalisation
by Artin and Zorn that a finite alternative ring is associative, and therefore
a field.



0 Introduction

It is well-known that a ring is a set with two operations in which certain axioms
hold. Usually each one of the axioms seems independent of the other ones, at
least at a first look. In this thesis, we will give two different proofs of a theorem
that shows that that is not always the case. At first we make a formal definition
of the special kind of ring that will be studied.

Definition 0.1. A division ring is a ring D with identity 1p satisfying the
following aziom: For all a € D\{Op}, the equation ax = 1p has a solution
reD.

The difference between the definition of a division ring and the definition of
a field is that in a field we also assume multiplicative commutativity.
The main theorem of this thesis is Wedderburn’s theorem.

Theorem 0.1 (Wedderburn’s theorem). A finite division ring is a field.

What Theorem 0.1 really tells us is that in the finite case, the general ring
axioms together with existence of identity and inverses automatically imply
multiplicative commutativity, i.e: ab = ba for all a,b e D.

In Section 1 we prove the so called class equation, which will be used in
section two where we give a first proof of Wedderburn’s theorem. Section 3
contains a second proof of Wedderburn’s theorem. Section 4 contains a proof
of a theorem of Jacobson. When nothing else is mentioned, [3] (mainly Section
7.2) is used for the definitions and proofs in Section 1-4.

In Section 5 we consider so-called alternative rings, which are rings that are
not necessarily associative. We prove that finite alternative rings with identity
in which the above inverse axiom hold are fields. Here [9] is used.

In Section 6, the end of the thesis, we give examples that shows that there
exist non-commutative division rings and non-associative alternative rings. This
is taken from [8] when nothing else is mentioned.

To understand this thesis, some basic knowledge of discrete mathematics
and abstract algebra is needed.



1 The class equation

In the first proof of Wedderburn’s theorem we need a formula in group theory
called the Class equation. For that we need some theory about equivalence
classes and a special equivalence relation called conjugacy. At first, we make
formal definitions of equivalence relations and equivalence classes. In the two
first definitions and the two first theorems, [5] has been used as a complement

of [3].

Definition 1.1. An equivalence relation on a set S is a relation ~ that for all
a,b,c € S satisfies the three following conditions:

1: a ~ a (reflexivity)

2:a~b=0b~a (symmetry)

3:a~bb~c=a~c (transitivity)

Definition 1.2. Let S be a set, a € S. Then the equivalence class of a is
[a] ={x €S |a~x}.

We have two important results that are valid in any equivalence class.
Proposition 1.1. Let S be a set, a,b€ S. Then a ~b < [a] = [}].

Proof. =: Assume that a ~ b. We prove that [a] = [b] by showing that both
[a] < [b] and [b] < [a]. Let c € [a]. Then ¢ ~ a. Now we have both ¢ ~ a and
a ~ b, so by transitivity ¢ ~ b, and hence ¢ € [b]. So we have that ¢ € [a] implies
that ¢ € [b], which forces [a] < [b]. By symmetry, our assumption a ~ b implies
that b ~ a. So by reversing the roles of a¢ and b in the above argument, we get
that [b] € [a], and thus we must have [a] = [b], which is what we wanted.

<«: Assume that [a] = [b]. Reflexivity gives that a € [a], which is the same as
a € [b], which means that a ~ b, and the theorem is proved. O

Proposition 1.2. Two equivalence classes of an equivalence relation on a set
S are either equal or disjoint.

Proof. Let a,be S, and let [a] and [b] be equivalence classes. If [a] n [b] = &,
we are done. Otherwise, there exists an element ¢ € [a] N [b], which implies that
c € [a] but also ¢ € [b]. This gives that ¢ ~ a and ¢ ~ b. By symmetry and
transitivity, a ~ b. Proposition 1.1 now gives that [a] = [b]. O

Now we shall define a special relation called conjugacy and show that it is
an equivalence relation.

Definition 1.3. Let G be a group, a,b € G, then b is a conjugate of a if
b = ¢ lac for some c € G. We write this as a o b, and the relation is called
conjugacy.

Proposition 1.3. Conjugacy is an equivalence relation on a group G, which
means that for all a,b,c e G, the following conditions hold:

1:aca

2:a0b=boa

3:aobboc=aoc.



Proof. Let a,b,ce G.

1: We let e be the identity element in G. Then a = e~ 'ae, and hence a ¢ a.

2: Assume that a o b. Then b = z 'az for some z € G. Multiplying with
(z7H~! from the left and with =% from the right we get (z71)~tbz~! =
(x71) "tz lazz~?!, which is the same as a = (7 1)~ 1bx~!. Now let 27! = y.
Then a = y~ by, where y € G, which tells that a ~ b.

3: Assume that a ~ band b ~ ¢. Then b = z~'az and ¢ = y~ by, for some z,y €
G. Hence we can write ¢ = y Yz tax)y = (y 'z Ha(zy) = (xy) ta(zy),
where zy € G, such that a ~ ¢, and the proof is done. O

The equivalence class Cl(a) = {x € G | aox} of a in G is called the conjugacy
class of a in G.

Every a € G is contained in Cl(a) since aoa, and therefore a is contained in at
least one conjugacy class. Since different equivalence classes are disjoint, every a
is contained in exactly one conjugacy class. Hence we have that |G| = 3 |Cl(a)|
where each conjugacy class is represented exactly once in the sum.

Now we are going to define something else that, as we will see soon, has
strong connections with the conjugacy classes.

Definition 1.4. Let G be a group, a € G. Then the centralizer of a in G is the
set C(a) = {zr € G| za = ax}.

Proposition 1.4. C(a) is a subgroup of G.

Proof. Since a clearly commutes with itself, we must have a € C(a), so that
C(a) is nonempty. Assume that 2,y € C(a). We have to show closure and
existence of inverse elements in C(a).

Closure: We have that xa = ax and ya = ay. Hence

(zy)a = z(ya) = z(ay) = (za)y = (ax)y = a(wzy),

which gives that zy € C(a).
Inverse: We have that

—1

z e =z a(ze™t) = 27 (az)x !

=z Yza)z™! = (z7 x)az™! = az?,

and therefore 271 € C(a), and we are done. O

The strong connections between conjugacy classes and the centralizer will
be clear in the following theorem. Here [4] has been used as a complement.
Theorem 1.5. Let G be a finite group, then |Cl(a)| = %, i.e. the number
of elements in G that are conjugate to a equals the number of right cosets (the
so-called index) of the centralizer of a € G.

Proof. We shall show that there is a one-to-one correspondence between conju-
gates of a € G and right cosets of C'(a). We say that x generates the conjugate
a of a if « = x7'axz. We do this proof by showing that two elements are in



the same right coset of C(a) if and only if they generate the same conjugate of
a€ed.

Let z,y € G, and assume that z and y lie in the same coset of C(a), i.e.
C(a)r = C(a)y. Then z € C(a)y, which gives that x = ky for some k € C(a).
Therefore

v ax = (ky) alky) = (y 'k aky =y~ 'k~ (ak)y =
=y 'k (ka)y =y (k' k)ay =y ay,

which means that x and y generate the same conjugate of a € G.

We now assume that x and y generate the same conjugate of @ € G. Thus
z lax = y~lay. If we multiply with 2 from the left and with y~! from the
right, we get (zx~1)ary™' = xy~la(yy~!), and hence a(zy~!) = (zy~1a.
This implies that zy~! € C(a), which means that x = y (mod C(a)), which
is equivalent to C'(a)z = C'(a)y since congruence is an equivalence relation. The

proof is now complete. O

From this theorem we get the main result of this chapter, the so-called Class
equation.

Corollary 1.6 (Class Equation). Let G be a group and C(a) the conjugacy class
of a € G. Then |G| =3, %, where the sum runs over exactly one element a
from each conjugacy class.

Proof. The formula follows immediately from Theorem 1.5 and the fact that

G| = 2| Cl(a)]. O
We end this section with a property that will be used in the next section.

Proposition 1.7. Let G be a group, and let Z(G) = Z = {z € G | zx = xz for
all x € G} be its center. Then a€ Z < C(a) = G.

Proof. =: Assume that a € Z. Then za = ax for all z € G, and hence C(a) = G.
<«: Assume that C'(a) = G. Then za = ax for all x € G, which gives that a € Z,
and we are done. O



2 Wedderburn’s theorem

We need some more lemmas and results before the actual proof of Wedderburn’s
theorem.

Proposition 2.1. A finite subring of a division ring is itself a division ring.

Proof. Let D be a division ring and R a finite subring of D. We let a € R\{Og},
and must show that then also a=! € R. Closure of R gives that all elements in
the set S = {a,a? a?,...} lies in R. Since R is finite, we must have Op # a’ =
a* € S € R for some j > k. In D we have Op = a/ —a* = (/=% — 1p)a*. Since
there are no zero divisors in D and a* # 0p, we must have ¢’ * = 1p. Now
a’~% € § < R, and hence 1p € R. We now have that aa/ %=1 = ¢/=F = 1p,
which implies that a=! = /%=1 € R. O

Proposition 2.2. Let R be a ring, and let Z be its center defined by
Z ={z€ R | zx =z for all x € R}.
Then Z is a subring of R.

Proof. Since Op € Z, Z # &. We have to show closure under subtraction and
multiplication. Let o, 5 € Z.

Subtraction: We have that ar = za and Sz = x0 for all x € D. Hence
(a — B)x = ax — fr = za — z8 = z(a — B), and therefore « — S € Z.
Multiplication: We have that ax = za and Sz = z3. Hence (aff)z = a(fz) =
a(zB) = (ax)B = (xa)B = z(af), and therefore af € Z. O

If D is a division ring, we know that D\{0p} is a group under multiplication.
So it is natural to define the centralizer C'(a) = {x € D | za = ax}. Here the
zero element Op in C(a) is included.

Proposition 2.3. Let R be a ring. Then the centralizer C(a) of R is a subring
of R.

Proof. This is done the same way as in Proposition 2.2. Just change Z to C(a)
and the variable = to a fixed a. O

Proposition 2.4. Let D be a finite division ring and let K be a subring of D
that is also a division ring. If K contains q elements, D contains q" elements,
where n is the dimension of D as a vector space over K.

Proof. Assume that n is the dimension of D over K. Then D has a basis of n
vectors. Call them ey, e, ...,e,. Then every element a € D can be written as
a = aje; +ages + ...+ apey, where all a; € K. Hence the number of elements in
K is the number of different aye; + ases + ... + ane,. Since K has ¢ elements,
there are ¢ choices for each «;. Therefore, by the multiplication principle, there
are ¢" elements in D. O

Lemma 2.5. If (z™ —1) | (z™ — 1) in Z[z], then m | n.



Proof. We assume that m } n, and shall show that (z™—1) } (2 —1). We have
n =qgm + r, where ¢ € N and 0 < r < m. We use long division of polynomials
to get the relation

(" —1) = (2™ = )" ™ + 2" + 2" 4 (2" — 1),

which can easily be verified. Here deg(z" — 1) = r < m = deg(a2™ — 1), so that
the relation is exactly the division algorithm when z™ — 1 is divided by =™ — 1.
Therefore (™ — 1) t (2™ — 1) O

Corollary 2.6. Ift € N\{0,1} and (™ — 1)|(t" — 1), then m | n.
Proof. Substituting = with ¢ € N\{0, 1} in the above proof we get
(" —1) = (™ = )" 4TI 4t 4 (17— 1),

which, since 0 < r < m implies that 0 < t" — 1 < t™ — 1, is the division
algorithm when the integer t” — 1 is divided by the integer t™ — 1. Hence
™ —=1)f (@™ —=1). O

For the proof of Wedderburn’s theorem, we also need something called cyclo-
tomic polynomials. Here [7] is used as a complement in Definition 2.1, Propo-
sition 2.7 and Proposition 2.8. In C the solutions of o = 1 are the k numbers
on the form a = €™/¥ where j € {0,1,...,k — 1}. These o’s are the k roots of
the polynomial #¥ — 1 € C[z]. The a’s with a” # 1 whenever r < k are called
primitive kth roots of unity. These are exactly the a’s where ged(j, k) = 1. Tt
follows from the fact that if j and & have a common nontrivial factor, say I,
then o/t = (e2imi/kYk/l — ¢2imt — 1 and k/l < k so that the kth root « is not
primitive.

Definition 2.1. The polynomial
(I)k(:ﬂ) _ H ((ﬂ _ eZiTrj/k:)

ged(j,k)=1
1<j<k

1s called the kth cyclotomic polynomial.
Proposition 2.7. We have that z* — 1 = Hk,‘k D ().

Proof. From the factor theorem, we have

-1 = H (x— eQi”j/k).

1<j<k

We let r = ged(j, k), j/ = j/r and k¥ = k/r. Then e2mi/k — ¢2imi'/F  where
ged(5', k') = 1. Now (z — e2™'/K) is a factor in @ (x). Since j runs over all
integers from 1 to k, all the possible such fractions j'/k’ in simplest form where
K'|k will be obtained this way. Therefore there is a one-to-one correspondence
between the factors in 2* — 1 and [],, , @4 (z), and we have equality. O



Proposition 2.8. For all k € N\{0}, ®x(x) is a monic polynomial with integer
coefficients.

Proof. We use induction on k. We have that ®;(x) = v —e?™ = x—1, which is a
monic polynomial with integer coeflicients. We make the induction assumption
that ®4(x) is monic and with integer coefficients when d < k and d|k, and shall
show that then also @ (z) is monic and with integer coefficients. We now have
that o% — 1 = ®y(x)f(x), where f(z) is a product of monic polynomials with
integer coefficients, and hence itself monic and with integer coefficients. Then
Oy (x) = ‘”fk(;)l has integer coefficients by an analogue of the division algorithm
for monic polynomials. O

Proposition 2.9. For all d | k with d < k we have that
(o) | S

b() xd—1
and the quotient is a polynomial with integer coefficients.

Proof. We have that
ob =1 =] al),

dlk

zd—1= H@T(x).

r|d

and therefore even

We have that every divisor of d also divides k. Thus

b —1= (=)o)
i

For a fixed d with d < k we have that ®,(z) is not a factor in #¢ — 1, and hence

k-1 3 >
2d—1 k() T‘nk r(2),
r#k
rfd
which gives that
k
¥ —1
®i(@) |
and the quotient
zF—1
d
e D, ()
P () Hl_i
r<k
ryd

is a product of polynomials with integer coefficients, which is again a polynomial
with integer coefficients. O



Corollary 2.10. For allt€ Z, k € N\{0,1} and d | k with d # k we have

tk—1

Proof. Since the product

[[o @

rlk

r<k

rid
from the proof of Proposition 2.9 is a polynomial with integer coefficients, it
follows immediately that the quotient

tzfl
ti—1
=1 [2@®)
() Mq "
r<k
ryd
is an integer. O

Lemma 2.11. Let 0 € C with 6 # 1 be a kth root of unity and q € N\{0}. Then
lg—0] >q—1.

Proof. Let 8 = a + bi, where a,b € R. Then |0| = v/a? + b2 = 1. This and the
fact that 6 # 1 give that a < 1. We now have

lg— 0] =g — (a+bi)| = |(g —a) = bi| = /(¢ —a)® + (=b)?
=/® —2qa + (a® + 02) = \/¢? — 2aq + 1
>V@E -2+ 1=/(¢g—1)2=|¢g—1]=q—1

Now we are ready for the first proof of Wedderburn’s theorem.

Proof. Let D be a finite division ring. We will show that the multiplicative
commutativity axiom holds in D by showing that its center Z = {z € D|za = xz
for all € D} has the same number of elements as the whole of D. Because
that would imply that Z = D, and therefore the axiom would hold in D.

We assume that Z has g elements. Then, by Proposition 2.4, D has ¢"
elements for some n € N\{0}. So we want to show that we must have n = 1.
We define the centralizer C(a) = {z € G | za = az} for a € D. Then Z is
contained in C'(a), and since Z is a subring of D, it is a subring of C'(a). Thus,
by Proposition 2.4 again, C(a) contains ¢"™(® elements, where m(a) € N\{0} is
depending on a € D.

Now we have that the groups D\{0p}, Z\{Op}, and C(a)\{0p} (under mul-
tiplication) have orders ¢" — 1, ¢ — 1 and ¢"™(® — 1 respectively. Since we know
from Proposition 2.3 that C(a) is a subring of D, it is clear that C'(a)\{0p} is a
subgroup of D\{0Op}. Lagrange’s theorem in group theory therefore gives that



(g™ —1) | (¢™ —1). Hence we have that m(a) | n by Corollary 2.6. The num-
ber of elements in the conjugacy class Cl(a) for a € D\{0p} is (¢"—1)/(¢™(®) —1).
So by the class equation we have

¢"=1= D T
m(a)lnq @ -1

where the sum runs over exactly one a from each conjugacy class. Proposition
1.7 gives that a € Z if and only if C(a) = D, but C(a) = D if and only if
m(a) = n. Hence we can rewrite the equation as

N ¢ —1

¢"—1=(q-1)+ Z pry g
m(a)\nq -1
m(a)#n

where the sum now only runs over a’s that are not contained in Z.

We know that this equation holds under our assumptions and definitions
and shall show that the equality is impossible unless n = 1. We assume for
contradiction that n > 1 and shall find an integer which divides all the terms
in the equation except ¢ — 1, which leads to the contradiction that the integer
divides the left-hand side but not the right-hand side of the equation.

If we in Corollary 2.10 let the ¢ be our ¢ and k be our n, we have that

" -1
Pn(q) i
when d | n and d < n. Then it is obvious that we also have ¢,,(¢) | ¢" — 1.
Therefore we have found an integer which divides the left-hand side and all the
terms in the sum. It only remains to show that ¢,,(¢) f (¢—1). By Lemma 2.11,
|g — 6] > ¢ — 1 when 0 is a root of unity. We must have ¢ > 2 since Op,1p € Z.
Therefore |¢,(q)| = [Ilg — 0] > ¢ — 1, and ¢, (q) t (¢ — 1). Therefore we must
have n = 1, which forces that a finite division ring is a field! O
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3 Second proof of Wedderburn’s theorem

Now we shall give a second proof of Wedderburn’s Theorem. We need several
definitions and results before the actual proof. For Definition 3.1, Definition 3.2
and Proposition 3.1 [2] is used.

Definition 3.1. A group endomorfism is a homomorphism from a group to

itself.

Definition 3.2. Let G be an abelian group under addition, then we let End(G)
be the set of endomorphisms in G, that is, End(G)={f : G — G| f(a+b) =

fa)+ f(b)}-

Proposition 3.1. Define addition and multiplication in End(G) as (f +g)(a) =
f(a) + g(a) and fg(a) = f(g(a)). Then it is a ring.

Proof. We have to check all the ring axioms. Let f,g,h €End(G) and a,b € G.
At first we show closure under addition. We have to show that f + g is again
an endomorphism. We have

(f+g)a+b)=fla+b)+glat+b)=f(a)+ f(b) +g(a) + g(b)
= (f(a) +g(a)) + (f(b) +g(b)) = (f + g)(a) + (f + g)(D)

and therefore it is true.
Now we show additive commutativity. Since G is abelian we have

(f +9)(a) = fla) + g(a) = g(a) + f(a) = (9 + f)(a).

Additive associativity follows from

(f+(g+h)(a) = fla

It is easily checked that the endomorphism k defined by k(a) = eq for all
a € G works as Ogpq(q), and that the identity map from G to G works as

1End(G)'
We define the element —f by (—f)(a) = —f(a). It follows from

(—f)a+b) = —fla+b) = —(f(a) + £(b))
= —f(a) ~ F(b) = (~N)@) + (~)(b)

that —f €End(G). It is also clear that f + (= f) = Opnq(q)-
The multiplication is clearly associative, since both (fg)h(a) and f(gh)(a)
means f(g(h(a))).

11



Closure under multiplication follows from

fgla+b) = flg(a) + (b)) = fa’ + 1),

where @’ + b € G.
At last we must show the distributive laws. We have

(f(g+h))(a) = f((g + h)(a)) = f(g(a) + h(a))
= f(9(a)) + f(h(a)) = Fg(a) + fh(a)
= (fg+ fh)(a),

so that f(g+ h) = fg+ fh. We also have
((f +9)h)(a) = (f + g)(h(a)) = f(h(a)) + g(h(a)) = (fh)(a) + gh(a)
= (fh+ gh)(a),
so that (f + g)h = fh + gh. This finishes the proof. O

Now we shall define a special endomorphism that will be used. The proof of
the binomial theorem in [1] has been used as help for the proof of Lemma 3.2.

Lemma 3.2. Let R be a ring and a € R. Let T, : R — R be the endomorphism
(Here R is viewed as an abelian group under addition) with T, (z) = za—ax. For
m € N we define T™(x) such that T?(x) = To(T,(2)), T3(x) = To(Tou(Tu(x)))

and so on. .
" (x) = Z (—1)* ™) gk gpam—k
‘ k=0 k .

Proof. We prove this formula by induction on m. For m = 1, the formula gives
T, = Zizo(fl)k(}g)akxakk = za — ax, which is true by the definition of Tj,.

Now we assume that the formula is true for m = n, and show that it is then
even true for m = n + 1. We have

12



j=0
_ Z(*l)k <Z>akxank+1 n Z( 1)j+1< ')ajJrl:L,anj
k=0 j=0 J
_ 2(_1)k (Z‘)akxan k+1 + e
k=1

_|_
=
|
=
x>
N
™
| 3

1) akxan—k-kl + (_1)n+1an+11,

k=1
_ Z(_l)k [(Z) + (k n 1>:| akxankarl + e + (_1)n+1an+1m
k=1 o
= 1
_ Z (71)k <n_]: )akl,ankJrl + za”t! n (71)n+1an+1x
k=1
sy n+1
=) ( 1)’“( & )aka:a"_kH,
k=0

which is exactly the form the formula should take when m = n + 1. Hence the
formula follows by induction. In the calculations we used the so-called Pascal’s

relation
n N n _(n+ 1
k k—1) k)

which is very easy to prove by just writing the fractions on the left-hand side
on a common denominator and then cancelling some common factors. O

Corollary 3.3. Let R be a ring, and let p be a prime with px = Og for all
x e R. Then TP (z) = za?” — aP" x for all m € N\{0}.

Proof. Lemma 3.2 gives

.
TV (@) = Y (—1)k<pk )ap’“mp’“k.
k=0

It is shown in [6] that p is a factor in (p;:) except when k = 0 or k = p™. Hence
all terms in the sum except the first and the last vanish, which means that

m

" (z) ca?" 4+ (_1>p7nap'm,x.

When p is odd, we immediately get TP" () = za?" — a?" x, which is what we
wanted. When p = 2 we have
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T2 (z) = xa®" +a* - 0p =2a® +a* 220" 2 =2d> —d* z,

and the proof is done. O

Lemma 3.4. Let F be a field containing p™ elements. In F|x] we then have

" —x = H(w—/\).

AeF

Proof. Let g(x) = 2" — x. Then deg(g) = p™. Therefore we know that g()
has at most p” roots in F. Since \?" ' = 1 for all A € F\{0r}, we have that
A" = X, which is the same as \*" — XA = 0p, which obviously is true even for
A = 0p. This gives that every A € F is a root of g(x), and the formula follows
from the factor theorem. O

We need a theorem that we state without proof. It can be proved the same
way as Theorem 22.4 in [2].

Theorem 3.5. Let R and S be rings and let f : R — S be a homomorphism.
Let a € S be an element that commutes with f(x) for all x € R. Then there
exists a homomorphism f : R[u] — S such that f [r= f and f(u) = a. Here
R[u] denotes a polynomial ring.

Lemma 3.6. Let D be a division ring of characteristic p (the smallest p € N\{0}
with plp = 0p). Let Z be the center of D and let P = {Op,1p,2 - 1p,...,(p —
1)1} be the subfield of D isomorphic to Z,. Let a € D\Z be an element
satisfying a?" = a for some n € N\{0}. Then there exists an x € D with
rar~! # a but rax~! € P(a), where P(a) is the field obtained by adjoining a to
P.

Proof. The relation a?” = a implies that a € D is a root of the polynomial
a?" — z in P[z]. Thus a is algebraic over P, which implies that P(a) is a
finite field containing p™ elements for some m € N\{0}. All these elements
y € P(a) satisfy y*" =y (as in the proof of Lemma 3.4). Defining the function
T, : D — D as before, we now have TP" (2) = za?" — a?" z = za — az = T,(z)
for all z € D. Hence T?" = T,. Let a € P(a) and € D. Then o commutes
with a since both are contained in P(a), and

T, (ax) = (ax)a — a(azx) = aza — (ac)z = aza — (aa)z
= a(za — ax) = aT,(x).

We can therefore say that the endomorphism I, satisfying I,,(z) = ax commutes
with T, in End(D).
Now we use Lemma 3.4 to write



In Theorem 3.5 we let R be our P(a), S our End(D), a our T,, R[u] the
polynomial ring P(a)[u] and f the homomorphism with f(a) = I,. Then
we can use f on both the left-hand-side and the right-hand-side of the above
equality to get
" T, = [] (To—1a).
a€eP(a)

Since TP" — T, = Op we get

[] (T.-1.) =0p.

a€eP(a)

Now, for all a € P(a)\{0p()}, we assume that y = Op whenever (T, —
I.)(y) = Op. Then the relation forces that T, = Ogpnq(p), so that To(y) = Op
for all y € D. This means that ya — ay = Op for all y € D, so that a € Z, which
contradicts the assumption that a € D\Z.

There must therefore exist some o € P(a) and z € D with o,z # Op
satisfying (T, — I,)(z) = Op, which means that za — ax — ax = 0p. Moving ax
and azx to the right-hand-side and multiplying with z=! from the right we get
rar~! = a+a. Since both a and « are in P(a), closure gives that xaz~! € P(a),
but a + o # a since a # 0p. Therefore the proof is complete. O

Corollary 3.7. The element xaxz~" € P(a) in the above lemma satisfies rax™' =

a® for some i € N\{1}.

Proof. Let ord(a) = k in the field P(a). Then the set S = {1,a,a?,...,a*"'} is
the set of all the k distinct roots of the polynomial u* — 1p(,) € P(a)[u]. We
have that

-1 1 -1

Wr = (zaz™ ) (zaz™Y)...(xaz™ ) = za(z ™ x)az ™ . zax

(zazx™
=zafr =227 = 1P

such that zaxr~! € S. Hence zaz~! = a’ for some i € {0,2,3, ...,k — 1}. Here we

exclude 1, since we know that zax™! # a. More generally we have i € N\{1},
which was to be proved. O

Lemma 3.8. Let F be a finite field, and let o, € F\{Or}. Then there exist
a,be F satisfying 1p + aa? + $b? = Op.

Proof. Assume that F' has characteristic 2. Then F' contains 2" elements, where
n € N\{0}. Then for all 2 € F we have 22" = z, which gives that any = € F is a
square. This implies that we can let o' = a? for some a € F. If we let b = O,
we can use this a and b to get

1F+aa2+[3b2 = 1F+aa71+50p=1p+1F+0F=2(1F) =0p,

which is what we wanted.
Assume that F' has characteristic p, where p is an odd prime. Then F' has
p™ elements for some n € N\{0}. We define the set S, = {1p +az? | z € F} and
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shall calculate the number of elements in S,. We do this by checking how often
1p + ax? = 1p + ay?. The relation is equivalent to that az? —ay? = 0p. Since
a # 0p we can multiply by a~! to get 22 — 3% = (z + y)(z — y) = 0, leading to
x = ty. This gives that for all w € F, x = w and x = —w generate the same
element of S,, but for two elements ¢, j € F' with ¢ # +j we have that x = i and
x = j generate different elements of S,. Therefore, when = # 0p, each of the
B n{ L pairs z, —2 generate one element in S, each, and z = +0 generate only
one element. Thus the number of elements in S, are

"o no142 4l
CAb N
2 > >

The same reasoning on the set Sg = {—B2% | z € F'} gives that Sz also contains
L;l elements. Together S, and Sg contain p™ + 1 > p™ elements, which means
that S, N Sg # O, so there exists an element r € S, N S3. Then r = 1 + aa?
for some a € F, but also r = —3b? for some b € F. Using these a and b we get

Op =7 —1r = 1p 4+ aa® + b2, and we are done. O
Now it is time for the second proof of Wedderburn’s theorem.

Proof. Let D be a finite division ring and Z = {z € D | zy = vz for all v € D}
its center. Our goal in this proof is to reach a contradiction when assuming
that D\Z # @. So we assume for contradiction that there exists an element
w € D\Z. In order to reach the contradiction, we need several technicalities,
and will therefore divide the proof into some steps.

We let D be a division ring and make the induction assumption that any
division ring having fewer elements than D is a field. Using this assumption we
make a first claim.

Claim 3.9. Let a,3 € D such that aBt = Bta for some t € N\{0,1}, but
af3 # Ba. Then Bt e Z.

Proof. We have that C(8%) = {y € D | Bty = 3!} is a subring of D that
is also a division ring. Now «, 3 € C(") but a and 8 do not commute, which
implies that C(3?) is not commutative. Therefore, by the induction assumption,
C(BY) = D. By Proposition 1.7, 8t € Z. O

Since D is finite, D\{Op} is a finite group under multiplication, and hence
every element in D\{0Op} (and specifically in D\Z since Op € Z) has finite order.
Therefore w* = 1p for some k € N\{0,1}. Since 1p € Z it follows that when
w € D\Z, w® € Z for some s € N\{0,1}. The smallest such s we call the
order of w relative to Z. Clearly s < k. We now let a be an element in D\Z
with the least order relative to Z. This least order, call it r, must be a prime
number. We prove this claim by assuming for contradiction that r is composite.
Then r = ryry for some r1,7r9 with 1 < r1,79 < r. Since a” € Z we now have
a™" = (a™)™ € Z, which implies that a™ has order < ro < r contradicting the
fact that r is the least order.
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Now we shall use this @ € D\Z with prime order r relative to Z to produce
two elements a1 and by satisfying these two conditions:
1:a] =bj e Z.
2: a1by = pbyay, where p e Z with g # 14 but u” = 1p.

We know from Corollary 3.7 that there exists an z € D with zax™
where ¢ € N\{0, 1}. Using this, we have

1=a7'75(l,

and so on. Specifically 2" taz=(""1 = a’"'. Since 7 is a prime, Fermat’s
little theorem gives that i"~! = 1 (mod r), which means that i"~! = ¢r + 1
for some q € Z. Therefore we have @il = qirtl = a?"a, which we rewrite
as Aa where A = a?" = (a")?, so that A € Z by closure of Z. This implies
that 2"~ taz~("=Y) = Aa, which by multiplying with 2"~ from the right can be
rewritten as 2" "'a = Aaz" L.

We have that za # ax. This follows from the fact that if we assume za = ax
we would reach the contradiction zaz™! = a by just multiplying with ="' from
the right in the relation. Therefore x ¢ Z, implying that 2"~! ¢ Z by the
definition of 7. We have that 2" ~ta # az"~!. Otherwise Claim 3.9 would lead
us to the contradiction that 2"~! € Z. Hence we have that A # 1p. If we let
b = 2" ! we have ba = \ab, or bab~! = Aa when just multiplying with 6~! from
the right. Since a” € Z we now have

Na" = (Xa)" = (bab )" =ba"b"! = a"(bb" ') = a”,

forcing A" = 1p € Z. Hence the order |A| =r.
Claim 3.10. Let y € D such that y" = 1p. Then y = \* for some i € N.

Proof. In the field Z(y) obtained by adjoining Z and y, there are at most r
roots of the polynomial u” — 1p € Z(y)[u]. The set S = {1p, A\, A2, ..., A" "1} is
the set of r different roots of the polynomial. Hence we must have y € S, which
gives that y = A’ for some i € {0,1,...,7 — 1}, or more generally i € N. O

Since A" = 1p and A € Z we have that
b" = 1pb" = N'b" = (Ab)" = (a"'ba)" = a'b"a,

which, by multiplying with a from the left, gives ab” = b"a. Claim 3.9 and the
fact that ab # ba now gives that b" € Z.

Since Z is a field, it contains a primitive element o, which works as a cyclic
generator of the multiplicative group Z\{0p}. Therefore " = ¢™ and " = o™,
for some m,n € N.

Claim 3.11. We have that r f m and r | n.
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Proof. Assume for contradiction that m = kr for some k € N. Then a” = o*",
and multiplying with o=*" gives that a"o~*" = 1p, or equivalently (ac—%)" =
1p. Then, by Claim 3.10, ac™"* = )\’ for some i € N. Multiplying with o*, we get
a = No¥, and closure of Z hence implies that a € Z, which is a contradiction.
Therefore r } m, and by the same argument we also have r / n. O

Now let a; = a™ and b; = b".
Claim 3.12. We have that a1by = A™""bja,.

Proof. From the relation bab~! = A\a from above we get A"'ba = ab by multi-
plying with b from the right and with A~! from the left. We now have that

arby = a™b" = a™ H(ab)b" ! = a™ T (AT ba)b" T = A a2 (ab)ab™ !

= 2A"1a™ (A ba)ab™ ™t = A 2a™ 3 (ab)a?b" T = . = AT ba™ b !
= A7 Hab)b" 2 = XTba™ (AT ba) b2 = AT Db 2 (ab)ab™
— = AT T2 = = AT = AT hay.

O

Now let p = A™™" € Z. Since r=|)| is a prime and r } m, r } n, we have
r f mn. Hence p = A™™" # 1p, but we have

/~LT _ (Afmn)r _ Af(mn)r _ ()\r)fmn _ len =1p.

Now we have reached our first goal, i.e. we have produced elements a; and by
satisfying
1l:a] =07 € Z.
2: a1by = pbiaq, where p € Z with p # 14 but " = 1p.
Now we shall proceed by using these elements a; and b; to reach the con-
tradiction we want.
Claim 3.13. We have that
r(r—1)
(ar b)) = p T
Proof. From a1b; = pbya; we get bya;' = (a='p)by = pay by by multiplying
with a; ' both from the left and from the right, and hence

(a7 'b1)? = ay t(bray )by = a7t (pay 'b1)by = pay b,

(a7 'b1)? = ay ' (bray ')?br = ay * (pay 'b1)?br = ay ' p?(ay '01)%Dy
= ay P (pa ?0})by = p'ai b,

(a7 '01)" = ay (bray )% = ayt(pay '1)°by = ap i (a1 01) 0

_ —1,3,, 142 —3;3\; _ 14243 —4;4
=ay p(p " atbY)by = p ap by,
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and so on. Specifically
(al—lbl)r _ M1+2+A..+(r71)a1—rb71’ _ u1+2+...+(r71)(ar)71ar

1424+ (r—1 rr=1)
=1 V=T

which was to be proved. O
Claim 3.14. The prime r must be odd.

Proof. Assume for contradiction that 7 = 2. Then a? = b? = a for some a € Z,
and a1b; = pbiay with p # 1, but ,u2 = 1p. Hence p satisfies Op = /ﬁ —1p =
(b —1p)(p + 1p). Since Z contain no zero divisors and u # 1p, we must have
i = —1p. Therefore a1b; = —bja; # bia;. The last inequality implies that
Op # 2bja; = 2 - 1pbyay, and therefore D has not characteristic 2.

In Lemma 3.8, we now let the @ be our —« and § = 1z. Then there are
T,w € Z satisfying 1p + 72 — aw? = Op. We now consider the expression
(a1 + 7b1 + wayby)?. We have

(a1 + 701 + wa1b1)2 = a% + Ta by + wa%bl + 7bia; + T2b% + Twbiaiby
+waibia; + Twalb% + w?aibraiby
= a% + Taiby + wa%bl —Tai1by + 72b% — Twalb?
—wbia? + Twa b3 — w?aib?

=a+71%a—w?? =a(lp + 7% - aw?) = alp = 0p

Since D contains no zero divisors we must have that a; + 7b1 + wa1b; = Op.
Since the characteristic is not 2 and a1 # 0p, we have that 2a2 # 0p. But

2a1 = 2a3 4+ 0p + 0p = 2a3 + (Tarby — Tarby) + (waiby — waib)
= (a? + Ta1by + waiby) + (a? + Thiay + waibiay)
= ai(a1 + b1 + waib1) + (a1 + 7b1 + waiby)aq
=a10p +0pa; = 0p

which is a contradiction, so the claim is proved. O

Since r is odd we have

r(r—1) r—1 r—1

(ay'b)" =p 7 =W)7 =17 =1p,

so that (al_lbl) solves " = 1p. Therefore, by Claim 3.10, we have that al_lbl =
M for some j € N. Multiplying with a; from the left we get by = a1\ = Ma;.
Then pbia; = a1by = a1(May) = (Mai)a; = biay, which contradicts the fact
that pu # 1p. Therefore the assumption that there is an element w € D\Z
cannot be true, and thus we must have that Z = D, and Wedderburn’s theorem
is again proved! O
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4 Jacobson’s theorem

Now we focus on a generalisation of Wedderburn’s theorem.

Theorem 4.1 (Jacobson’s theorem). Let D be a division ring such that for all
a € D, there is a h(a) € N\{0,1} depending on a, satisfying a™® = a. Then D
s a field.

Proof. If a € D\{Op} we have that ™ = a and (2a)™ = 2a for some m,n €
N\{0,1}. Let s = (n —1)(m — 1) + 1. Then s > 1, and by construction of s we
have

s m—1

a® = a(n—l)(m—1)+1 _ (an—1>m—1a _ (an —l)m—l

a a=(aa )" ta=1pa=a,

and also
(20)° = (20)" DD — ((20)" )" (20) = ((20)"(20) )" (2a)
= ((2a)(2a) )" (20) = 2a.

We also have (2a)® = 2°a® = 2°a. Combining these relations we get 2°a = 2a,
or equivalently (2° — 2)a = O0p. This gives that D has characteristic p > 0. We
let P be the subfield of Z isomorphic to Z,. Since a is a root of the polynomial
u™ —u € Plu], a is algebraic over P. Therefore P(a), the field obtained by
adjoining a to P, is finite and contains p" elements for some h € N\{0}. Hence
a?' 1 = 1p(a), SO that a?" = a. We now fix our a and assume for contradiction
that @ € D\Z. Then the conditions in Lemma 3.6 and Corollary 3.7 are satisfied,
so that there is a b € D with bab~! = a*, for some pu € N\{1}. Since b € D, the

same argument as above gives that b?° = b for some k € N\{0,1}. Now let

gl

pijai’bj where p; ; € P
1

ph
S=<zxeD|z= Z

i=1j
The set S is clearly finite but nonempty. We show that it is a subring of
D. We have to show closure under subtraction and multiplication. Closure
under subtraction is almost immediate. The elements in S can be seen as linear
combinations of the vectors a*b/, and we know that a linear combination of
some vectors minus another linear combination of the same vectors is again a
linear combination of the vectors. To show closure under multiplication we let
y,z € S. Then y = f:l Z?il pija't’ and z = 22121;1;1 wrsa”b®. We now
have that

ph, pk‘, ph, pk ph, pk‘, ph, pk
Y DI | D30 YRR B 3D 9) op s
i=1j=1 r=1s=1 i=1j=1r=1s=1

From bab~! = a* we get ba = a*b by multiplying with b from the right. There-
fore we have

aibjarbs _ aibj—l(ba)ar—lbs — aibj_l(a’ub)ar_lbs -

20



Continuing substituting bas with a*bs in this way we will end up with a™bi**,
where w is a very large integer, but we can use the relations a(*) = @ and
bh®) = b to reduce it to a’bia’"b® = a'b* = with 1 < ¢t < p" and 1 < u < pF.
Hence a'b/a"b® = 1,1,a'b* € S. Since a'b’a"b® € S and p;;prs € P, we have
that yz € S.

Proposition 2.1 now gives that S is a division ring, and therefore Wedder-
burn’s theorem gives that it is a field. But a,b € S, so that ba = ab, which is
a contradiction since the fact that bab™! # a gives that ba # ab if we multiply
with b from the right. This contradiction proves the theorem. O
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5 Alternative rings and the Artin-Zorn theorem

Now we are going to discuss a generalisation of Wedderburn’s theorem to so-
called Alternative rings.

Definition 5.1. An alternative ring is a ring ¥ in which the multiplication

associativity axiom is replaced by the weaker so-called alternative axiom: For
all a,be ¥, (aa)b = a(ab), (ab)a = a(ba) and (ba)a = b(aa).

In the rest of this section we let ¥ denote an alternative ring. Generally,
when associativity does not hold, for all a,b,¢c € ¥ we can use the so-called

associator
[a,b,c] = (ab)c — a(bc)

as some kind of "measurement” of how close it is to be associative. It is straight-
forward that the associator is linear in the three arguments.

Proposition 5.1. let ¥ be an alternative ring and a,b,c,d € V. Then
[ab, c,d] — [a,bc,d] + [a, b, cd] = [a,b,c]d + a[b, ¢, d].
Proof. Using the definition of the associator and distributivity we have
[ab,c,d] — [a,be,d] + [a, b, cd] = (( b)e)d — (cd))
(( (be))d ) + ( )(cd) —a(b(cd)))
= (((ab)e)d - )d) + (a a(b(cd)) )

((ab)cfa (be) )dJra( be)d — b(e ) = [a,b,c]d + a[b, ¢,d].

O

In ¥, it follows from the definition of the associator that the alternative
axiom is equivalent to the claim that for all a,b e ¥ we have

[a,a,b] = [a,b,a] = [b,a,a] = Og.

Proposition 5.2. Let a,b,c € ¥. Then the associator [a,b, c] alternates in the
arguments, that is, if two arguments changes place, only the sign changes.

Proof. We have

Op =[a+b,a+0b,c]=]a,a,c]+[a,bc]+[ba,c]+[bb,c]
=[a,b,c] + [b,a,¢],
so that [a,b,c] = —[b,a,c]. Starting with Oy = [a,b + ¢, b + ¢| instead, similar

reasoning gives us that [a,b,c] = —[a,¢,b], and from 04 = [a + ¢,b,a + c] we
get [a,b,c] = —[¢,b,a], and the result follows. O
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It follows from the proposition that if the associator [a,b,c] = Oy, then the
associator = Oy for any permutation of a,b and c¢. Hence we have that if 3 fixed
elements in W associate in some order, they associate in every order.

Before stating and proving the last results, we introduce some notation that
will be used to simplify the discussions.

Definition 5.2. If My, My and M3 are subsets of ¥ we can write
[My, Ma, M3] = 0y

if
[m1,ma, m3] = Og

whenever m; € M;. We can also use a mized notation where one or two argu-
ments are fixed elements in ¥V, and the others subsets of V.

Definition 5.3. Let C' and D be subsets of a ring X and let x € X and n e N.
Then we let

C+D={c+d|ceC,de D}
CD = {cd|ceC,de D}
—C={-clceC}
2C = {zc|ce C}
Cx={cx|ceC}
nC=C+C+..+C (nterms)
(—n)C =-C—-C—..=C (nterms)

Definition 5.4. If M = {a,b,c,...} is a subset of ¥ we let (M) = {a,b,c,...)
be the set generated from M by taking the possible sums of plus or minus the
products of the elements in M.

Proposition 5.3. Let M be a nonempty subset of an alternative ring ¥. Then
(M) is an alternative subring of U.

Proof. Since the elements in M are in (M), it is clearly nonempty. We have
to show closure under subtraction and multiplication. It is almost obvious. A
difference of two sums of plus or minus some products of elements in M is again
that kind of sum, and a product of two sums of that kind is again that kind of
sum. O

Definition 5.5. A subset T of U satisfying [T, T, ¥] = Oy is called an A-set.
If T is a ring, we call it an A-ring.

Theorem 5.4. Let T be an A-set in U. Then the ring {I'y is an A-ring.
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Proof. We have to show that the ring (T") satisfies [(T'),(T"), ¥] = 0g. We let
A =T,
As = A1 Ay,
Az = A1 As U AxAy,
Ay = A1 As U AsAy U Ay A,
A, = U A A

i+j=n

We now let B,, = {Zle zia; | zi € Zya; € Ay} Then (I') = 3| B,,. Therefore,
by linearity of the associator, it is enough to show that [B,,, B;,, U] = Oy for all
n,m € N\{0}, and by linearity again, we only have to show [A,, An, ¥] = Og.
We use induction over m +n. If m + n = 2, we must have m = n = 1,
and [A1, 4;,¥] = [I',T, ¥] = Og by the definition of I'. We now assume that
[Aj, A, ¥] = Oy whenever 2 < j+k < m+n for some fixed positive integer m+
n. We must show that then also [A,, An, U] = Og. Permuting the arguments
A,, and A,, in the associator only changes the sign, and therefore we can assume
that m > n which forces m > 2. Let a,, € A, a, € A, and x € V. Then we
can write a,, = a’a” where a’ € A, and a” € A, for some r and s with r +s = m.
Using Proposition 5.1 we have

[d'd",z,a,] — [d',a"z,an] + [, d" za,] = d'[a",z,a,] + [, d", z]ay.
This implies that
[ArAs, W, Ay —[Ar, AW, An ] +[Ar, As, VAL | = A [As, U, An ] +[A, As, V] A,

Sincer+n<m+n,r+s<m+nand s+n < m+ n, our assumption gives
that that all the terms except the first one vanish, which leaves us with

[A-A5, 0, A, ] = 0g.
From this we get that [A,,, A,, ¥] = Oy, which is what we wanted. O
Definition 5.6. The opposite of a ring R is the set R’ that contains the same

elements of R, but with the multiplication = in R’ of two elements a and b is
redefined as a *b = b - a, where - is the multiplication in R.

Proposition 5.5. Let ¥ be an alternative ring. Then its opposite ¥’ is also an
alternative ring.

Proof. 1t is easy to show that the ring axioms still hold, since we are able to
construct exactly the sums and products as in ¥, by just interchanging the
factors. We only show the alternative axiom. Let - be the multiplication in ¥
and # the multiplication in ¥’'. For a,b € ¥’ we have

[a,a,b]q,/:(a*a)*b—a*(a*b):b.(a.a)_(b.a).a:_[b7a7a]\l}:0%

[a,b,blgr = (axb)xb—ax(bxb)=b-(b-a)—(b-b)-a=—[b,b,a]ly = Oy,

[a,b,alg = (axb)xa—a=x(bxa)=a-(b-a)— (a-b) -a=—[a,b,a]ly = 0y.
U
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Theorem 5.6. Let A and B be two A-rings in V. Then the ring C = (A + B)
18 associative.

Proof. We have to show that when we assume that [A, A, U] = 0y = [B, B, ¥],
it follows that [(A + B),{A + B),(A + B)] = [C,C,C] = Oy. From the last
theorem we have that if A+ B is an A-ring, (A + B) is also an A-ring. So if we
show that [A+ B, A+ B,C] = 0y, we are done. A and B are obviously subsets
of the ring C, which gives that they can be seen as A-sets. The linearity of the
associator and the definition of a sum of two subgroups under addition gives
[A+B,A+B,C]=[A4,A,C]+[B,B,C]+[A,B,C]+[B,A,C] =[A,B,C] -
[A, B, C]. Hence it is enough to show [A, B, C] = Oy.

Claim 5.7. Whenever we have [A, B,x| = Oy for some fixed x € ¥, we also
have

[A, B,xA] = [A, B, Az] = [A, B,2B] = [A, B, Bz] = Oy.

Proof. Since the associator alternates in the arguments it is clear that [A, B, Bx] =

Oy if we know that [A, B, Az] = Og. Then the rest follows if we consider the

opposite alternative ring of . Therefore it is enough to show [A, B, Az] = Oy.
If ay,a0 € A,b e B, Proposition 5.1 gives that

[a1az, z,b] — [a1, azx,b] + [a1, az, xb] = a;[az, z,b] + [a1, ag, z]b.

Proposition 5.2 and the fact that [4, A, U] = [A, B, z] = Og give that the right-
hand-side and the first and third term in the left-hand-side are Og. This leaves
us with [ay,as2,b] = Og, which means that [A, Az, B] = Og and hence even
[A,B,A.Z’] IO\I;. O

‘We now let

N1 :AUB,
N2 = ((AU B)Nl) ) (Nl(A ) B)),
N,, = ((A U B)Nm_l) U (Nm_l(A U B))

We call the elements in these sets normal products. We shall show that
[A, B, Np,] = 0y for all m € N\{0}. We use induction over m. We have

[A,B,Nl] = [A,B7AU B] = O\II

We now assume that [A, B, N,,,_1] = Og, and shall show that then also [A, B, N,,,] =
Og. Every element in NNV, can be written as an,,—1, "m—_1a, bNpy_1 OT Nyp_1b,
where a € A, b € B, and n,,—1 € Np,—1. Therefore [A4, B, N,;,] = Oy by Claim
5.7, and the induction proof is done.

We now let M, = {Zle an; | a; € Z,n; € N,,}. The linearity of the
associator gives that [A, B, M,,] = Og for all m € N\{0}. It is now clear that
[A,B,M] = Oy, where M = >°_| M,,. We call the elements in M normal

elements.
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If we can show that M = C, the proof is done. At first we show that M
is a subring of ¥. We must show closure under subtraction and multiplication.
Closure under subtraction follows immediately from the construction. To show
closure under multiplication, we show that N,,M < M for all m € N\{0}.
We use induction over m. We have that NyM = (Au B)M. (Au B)M
consists of sums of products a;IN; = N;1, where different a;’'se A u B. So
(Au B)M < M. Now we assume that N,,_1M < M and shall show that
then also N,,M < M. We have that N,, = N,,_1a or N,,, = aN,,_1 for some
a€ AuB. If N,,, = N,,_1a we have

NpM = (Np—1a)M = Np_1(aM) + [Np_1,a, M]
= m,l(aM) — [Nmfl,M, a]
= m_l(CLM) — (Nm_lM)CL + Nm_l(Ma).

We know that aM < M and Ma < M. This and the assumption N,,_1M < M
give that all the three last terms are subsets of M, and hence N,,M < M. If
instead N,;, = aN,,_1 we do the same reasoning, only changing the order in the
products. The distributive law now gives that MM < M.

Therefore M is a ring. Since M is constructed from the elements in A U B,
it must be a subset of (A U B), but (A U B) is the least ring containing all the
elements in AU B. This forces M = (Au B). It is clear that A+ B € (A u B),
and thus (A + B) € (A u B). It is also clear that A U B < A + B, so that
(Au B) < (A+ B). This forces (AuB)={(A+ B)=C

Therefore M = C so that [A, B, C] = Oy, and the proof is done. O

Corollary 5.8 (Artin’s theorem). Let a,b € . Then the ring {a,b) is associa-
tive.

Proof. The single element sets {a} and {b} are clearly A-sets. Hence, by Theo-
rem 5.4, (a)y and {b) are A-rings. Theorem 5.6 now gives that the ring {((a)+ (b))
is associative. It is clear that {(a, by € ((a)+{b)), so that {a, b) is associative. [

Now we are ready to state and prove the main result of this section.

Theorem 5.9 (the Artin-Zorn theorem). Let A be a finite alternative ring with
identity 1n in which every nonzero element has a multiplicative inverse. Then
A is a field.

Proof. Let a,b,c € A. Then the ring {a,b) is associative by Artin’s theorem.
Therefore it is a finite division ring, which is a field by Wedderburn’s theorem.
The field F' = {a, by contains a primitive element x which works as a generator
of F\{0x}. It follows that {a,b) = {(x). Therefore {a,b,c) = {x,c), so that
{a,b,c) is a field. This forces [a,b,c] = 0y for all a,b,c € A, which means that
A is an associative ring. Hence it is a finite division ring, which is a field by
Wedderburn’s theorem! O
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6 Examples

We shall give examples of infinite division rings that are not fields and infinite
alternative rings that are not associative. We will use so-called Cayley-Dickson
process. At first we need a definition.

Definition 6.1. Let F be a field. Then K is a nonassociative F-algebra over
F if K is a vector space over F and there is a multiplication K x K — K with
(a,b) — ab which is F-bilinear, which includes that a(ab) = (aa)b = a(abd) for
alla e F and a,be K.

We now let K be an nonassociative F-algebra with dimension n. An involu-
tion in K is a linear operator, denoted by overline on the elements, that satisfies
Ty =y T and T = x for all 2,y € K. In this case we also assume that x + T € F
and 2T € F for all x € K. We fix such an involution.

Now we construct an F-algebra L of dimension 2n as the set of ordered
pairs (a,b) where a,b € K, where addition is defined as (a1,b1) + (az,b2) =
(a1 + as, by + b2), and multiplication as

(al, bl)(ag, bg) = (a1a2 + ubggl,ﬁlbg + agbl)

for all ay, a2, b1,bs € K, and where € F\{Op} is fixed. It is easy to show that
1r = (1k,0) and that K’ = {(a,0k) | @ € K} is isomorphic to K. The element
v = (0,1) € L satisfies v> = (u,0x), which can be viewed as p € F. With this
defined, we can think of L as a direct sum and write L = K’ + vK'. Identifying
K’ with K we can write (a,b) € L as = a + vb, and then the multiplication
can be written as

(a1 + Ub1>(a2 + ’Ubg) = (a1a2 + ,ub251> + ’U(Elbg + agbl).

When z € L satisfies © = (a,b) = a + vb we can define T = @ — vb. It is easy
to show that this now will be an involution in L.

When we in this construction let n =1, K = F =R, p = —1, v = ¢ and
T = x for z € R it follows that we get L = C where the involution in C is the
normal conjugate. Since this can be viewed as a construction of C, we write
uc = —1 and ve = 4.

If we now let K = C, but still /' = R, we will get L = H (The quaternions
defined in Section 24 in [2]) by this construction, when we let up = —1, vy = j
and vg(—1) = j(—1) = k. We have that ij = ivg = (i +vg0)(0+vyl) = v(—i) =
k. We also have that ji = vgi = —vg(—i) = —k. By similar reasoning we get
all the relations in the definition of H.

Since ij = k # —k = ji, we have that H is not commutative. It is shown
in Section 24 in [2] that H is a division ring. Therefore the quaternions is an
example of a division ring that is not a field. Therefore Wedderburn’s theorem
is only valid in the finite case, and it really makes sense to talk about fields and
division rings as different mathematical structures in general.

If we now let K = H, the construction gives us L = O, the so-called octonions
or Cayley numbers.

On page 44 in [8] there is a proof of the next proposition.
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Proposition 6.1. Let K and L be the F-algebras defined as before. Then K is
associative if and only if L is alternative.

Since H is associative, Proposition 6.1 gives that O is at least alternative.
Proposition 6.2. The octonions Q is not associative.

Proof. Since H is not commutative, there exist some g1, g2 € H so that q1qo —
q2q1 # 0. Therefore

[vo, g2, 1] = (vog2)q1 — vo(g2q1) = (0 + vol)(g2 + va0)) (g1 + ve0) — vo(g2q1)
= (0 + q2v0)(q1 + v00) — vo(g2q1)

v0(q192) — vo(q2q1)

=vo(q192 — q2q1)

# 0.

O

This gives that there exist infinite alternative rings that are not associative,
so that it surely makes sense to distinguish between alternative rings and normal
rings in general.
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