
Abstract

The main focus of this thesis is Wedderburn’s theorem that a finite
division ring is a field. We present two proofs of this. The thesis also
contains a proof of a theorem of Jacobson and a proof of a generalisation
by Artin and Zorn that a finite alternative ring is associative, and therefore
a field.
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0 Introduction

It is well-known that a ring is a set with two operations in which certain axioms
hold. Usually each one of the axioms seems independent of the other ones, at
least at a first look. In this thesis, we will give two different proofs of a theorem
that shows that that is not always the case. At first we make a formal definition
of the special kind of ring that will be studied.

Definition 0.1. A division ring is a ring D with identity 1D satisfying the
following axiom: For all a P Dzt0Du, the equation ax “ 1D has a solution
x P D.

The difference between the definition of a division ring and the definition of
a field is that in a field we also assume multiplicative commutativity.

The main theorem of this thesis is Wedderburn’s theorem.

Theorem 0.1 (Wedderburn’s theorem). A finite division ring is a field.

What Theorem 0.1 really tells us is that in the finite case, the general ring
axioms together with existence of identity and inverses automatically imply
multiplicative commutativity, i.e: ab “ ba for all a, b P D.

In Section 1 we prove the so called class equation, which will be used in
section two where we give a first proof of Wedderburn’s theorem. Section 3
contains a second proof of Wedderburn’s theorem. Section 4 contains a proof
of a theorem of Jacobson. When nothing else is mentioned, [3] (mainly Section
7.2) is used for the definitions and proofs in Section 1-4.

In Section 5 we consider so-called alternative rings, which are rings that are
not necessarily associative. We prove that finite alternative rings with identity
in which the above inverse axiom hold are fields. Here [9] is used.

In Section 6, the end of the thesis, we give examples that shows that there
exist non-commutative division rings and non-associative alternative rings. This
is taken from [8] when nothing else is mentioned.

To understand this thesis, some basic knowledge of discrete mathematics
and abstract algebra is needed.
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1 The class equation

In the first proof of Wedderburn’s theorem we need a formula in group theory
called the Class equation. For that we need some theory about equivalence
classes and a special equivalence relation called conjugacy. At first, we make
formal definitions of equivalence relations and equivalence classes. In the two
first definitions and the two first theorems, [5] has been used as a complement
of [3].

Definition 1.1. An equivalence relation on a set S is a relation „ that for all
a, b, c P S satisfies the three following conditions:
1: a „ a (reflexivity)
2: a „ bñ b „ a (symmetry)
3: a „ b, b „ cñ a „ c (transitivity)

Definition 1.2. Let S be a set, a P S. Then the equivalence class of a is
ras “ tx P S | a „ xu.

We have two important results that are valid in any equivalence class.

Proposition 1.1. Let S be a set, a, b P S. Then a „ b ðñ ras “ rbs.

Proof. ñ: Assume that a „ b. We prove that ras “ rbs by showing that both
ras Ď rbs and rbs Ď ras. Let c P ras. Then c „ a. Now we have both c „ a and
a „ b, so by transitivity c „ b, and hence c P rbs. So we have that c P ras implies
that c P rbs, which forces ras Ď rbs. By symmetry, our assumption a „ b implies
that b „ a. So by reversing the roles of a and b in the above argument, we get
that rbs Ď ras, and thus we must have ras “ rbs, which is what we wanted.
ð: Assume that ras “ rbs. Reflexivity gives that a P ras, which is the same as
a P rbs, which means that a „ b, and the theorem is proved.

Proposition 1.2. Two equivalence classes of an equivalence relation on a set
S are either equal or disjoint.

Proof. Let a, b P S, and let ras and rbs be equivalence classes. If ras X rbs “ ∅,
we are done. Otherwise, there exists an element c P rasXrbs, which implies that
c P ras but also c P rbs. This gives that c „ a and c „ b. By symmetry and
transitivity, a „ b. Proposition 1.1 now gives that ras “ rbs.

Now we shall define a special relation called conjugacy and show that it is
an equivalence relation.

Definition 1.3. Let G be a group, a, b P G, then b is a conjugate of a if
b “ c´1ac for some c P G. We write this as a ˛ b, and the relation is called
conjugacy.

Proposition 1.3. Conjugacy is an equivalence relation on a group G, which
means that for all a, b, c P G, the following conditions hold:
1: a ˛ a
2: a ˛ bñ b ˛ a
3: a ˛ b, b ˛ cñ a ˛ c.
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Proof. Let a, b, c P G.
1: We let e be the identity element in G. Then a “ e´1ae, and hence a ˛ a.
2: Assume that a ˛ b. Then b “ x´1ax for some x P G. Multiplying with
px´1q´1 from the left and with x´1 from the right we get px´1q´1bx´1 “

px´1q´1x´1axx´1, which is the same as a “ px´1q´1bx´1. Now let x´1 “ y.
Then a “ y´1by, where y P G, which tells that a „ b.
3: Assume that a „ b and b „ c. Then b “ x´1ax and c “ y´1by, for some x, y P
G. Hence we can write c “ y´1px´1axqy “ py´1x´1qapxyq “ pxyq´1apxyq,
where xy P G, such that a „ c, and the proof is done.

The equivalence class Clpaq “ tx P G | a˛xu of a in G is called the conjugacy
class of a in G.

Every a P G is contained in Clpaq since a˛a, and therefore a is contained in at
least one conjugacy class. Since different equivalence classes are disjoint, every a
is contained in exactly one conjugacy class. Hence we have that |G| “

ř

|Clpaq|
where each conjugacy class is represented exactly once in the sum.

Now we are going to define something else that, as we will see soon, has
strong connections with the conjugacy classes.

Definition 1.4. Let G be a group, a P G. Then the centralizer of a in G is the
set Cpaq “ tx P G | xa “ axu.

Proposition 1.4. Cpaq is a subgroup of G.

Proof. Since a clearly commutes with itself, we must have a P Cpaq, so that
Cpaq is nonempty. Assume that x, y P Cpaq. We have to show closure and
existence of inverse elements in Cpaq.
Closure: We have that xa “ ax and ya “ ay. Hence

pxyqa “ xpyaq “ xpayq “ pxaqy “ paxqy “ apxyq,

which gives that xy P Cpaq.
Inverse: We have that

x´1a “ x´1apxx´1q “ x´1paxqx´1 “ x´1pxaqx´1 “ px´1xqax´1 “ ax´1,

and therefore x´1 P Cpaq, and we are done.

The strong connections between conjugacy classes and the centralizer will
be clear in the following theorem. Here [4] has been used as a complement.

Theorem 1.5. Let G be a finite group, then |Clpaq| “ |G|
|Cpaq| , i.e. the number

of elements in G that are conjugate to a equals the number of right cosets (the
so-called index) of the centralizer of a P G.

Proof. We shall show that there is a one-to-one correspondence between conju-
gates of a P G and right cosets of Cpaq. We say that x generates the conjugate
α of a if α “ x´1ax. We do this proof by showing that two elements are in
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the same right coset of Cpaq if and only if they generate the same conjugate of
a P G.

Let x, y P G, and assume that x and y lie in the same coset of Cpaq, i.e.
Cpaqx “ Cpaqy. Then x P Cpaqy, which gives that x “ ky for some k P Cpaq.
Therefore

x´1ax “ pkyq´1apkyq “ py´1k´1qaky “ y´1k´1pakqy “

“ y´1k´1pkaqy “ y´1pk´1kqay “ y´1ay,

which means that x and y generate the same conjugate of a P G.
We now assume that x and y generate the same conjugate of a P G. Thus

x´1ax “ y´1ay. If we multiply with x from the left and with y´1 from the
right, we get pxx´1qaxy´1 “ xy´1apyy´1q, and hence apxy´1q “ pxy´1qa.
This implies that xy´1 P Cpaq, which means that x ” y (mod Cpaq), which
is equivalent to Cpaqx “ Cpaqy since congruence is an equivalence relation. The
proof is now complete.

From this theorem we get the main result of this chapter, the so-called Class
equation.

Corollary 1.6 (Class Equation). Let G be a group and Cpaq the conjugacy class

of a P G. Then |G| “
ř |G|
|Cpaq| , where the sum runs over exactly one element a

from each conjugacy class.

Proof. The formula follows immediately from Theorem 1.5 and the fact that
|G| “

ř

|Clpaq|.

We end this section with a property that will be used in the next section.

Proposition 1.7. Let G be a group, and let ZpGq “ Z “ tz P G | zx “ xz for
all x P Gu be its center. Then a P Z ô Cpaq “ G.

Proof. ñ: Assume that a P Z. Then xa “ ax for all x P G, and hence Cpaq “ G.
ð: Assume that Cpaq “ G. Then xa “ ax for all x P G, which gives that a P Z,
and we are done.
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2 Wedderburn’s theorem

We need some more lemmas and results before the actual proof of Wedderburn’s
theorem.

Proposition 2.1. A finite subring of a division ring is itself a division ring.

Proof. Let D be a division ring and R a finite subring of D. We let a P Rzt0Ru,
and must show that then also a´1 P R. Closure of R gives that all elements in
the set S “ ta, a2, a3, ...u lies in R. Since R is finite, we must have 0D ‰ aj “
ak P S Ď R for some j ą k. In D we have 0D “ aj ´ ak “ paj´k ´ 1Dqa

k. Since
there are no zero divisors in D and ak ‰ 0D, we must have aj´k “ 1D. Now
aj´k P S Ď R, and hence 1D P R. We now have that aaj´k´1 “ aj´k “ 1D,
which implies that a´1 “ aj´k´1 P R.

Proposition 2.2. Let R be a ring, and let Z be its center defined by

Z “ tz P R | zx “ xz for all x P Ru.

Then Z is a subring of R.

Proof. Since 0R P Z, Z ‰ ∅. We have to show closure under subtraction and
multiplication. Let α, β P Z.
Subtraction: We have that αx “ xα and βx “ xβ for all x P D. Hence
pα´ βqx “ αx´ βx “ xα´ xβ “ xpα´ βq, and therefore α´ β P Z.
Multiplication: We have that αx “ xα and βx “ xβ. Hence pαβqx “ αpβxq “
αpxβq “ pαxqβ “ pxαqβ “ xpαβq, and therefore αβ P Z.

If D is a division ring, we know that Dzt0Du is a group under multiplication.
So it is natural to define the centralizer Cpaq “ tx P D | xa “ axu. Here the
zero element 0D in Cpaq is included.

Proposition 2.3. Let R be a ring. Then the centralizer Cpaq of R is a subring
of R.

Proof. This is done the same way as in Proposition 2.2. Just change Z to Cpaq
and the variable x to a fixed a.

Proposition 2.4. Let D be a finite division ring and let K be a subring of D
that is also a division ring. If K contains q elements, D contains qn elements,
where n is the dimension of D as a vector space over K.

Proof. Assume that n is the dimension of D over K. Then D has a basis of n
vectors. Call them e1, e2, ..., en. Then every element a P D can be written as
a “ α1e1`α2e2` ...`αnen, where all αi P K. Hence the number of elements in
K is the number of different α1e1 ` α2e2 ` ...` αnen. Since K has q elements,
there are q choices for each αi. Therefore, by the multiplication principle, there
are qn elements in D.

Lemma 2.5. If pxm ´ 1q � pxn ´ 1q in Zrxs, then m � n.
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Proof. We assume that m ffl n, and shall show that pxm´1q ffl pxn´1q. We have
n “ qm ` r, where q P N and 0 ă r ă m. We use long division of polynomials
to get the relation

pxn ´ 1q “ pxm ´ 1qpxn´m ` xn´2m ` ...` xn´qmq ` pxr ´ 1q,

which can easily be verified. Here degpxr ´ 1q “ r ă m “ degpxm ´ 1q, so that
the relation is exactly the division algorithm when xn ´ 1 is divided by xm ´ 1.
Therefore pxm ´ 1q ffl pxn ´ 1q

Corollary 2.6. If t P Nzt0, 1u and ptm ´ 1q|ptn ´ 1q, then m � n.

Proof. Substituting x with t P Nzt0, 1u in the above proof we get

ptn ´ 1q “ ptm ´ 1qptn´m ` tn´2m ` ...` tn´qmq ` ptr ´ 1q,

which, since 0 ă r ă m implies that 0 ă tr ´ 1 ă tm ´ 1, is the division
algorithm when the integer tn ´ 1 is divided by the integer tm ´ 1. Hence
ptm ´ 1q ffl ptn ´ 1q.

For the proof of Wedderburn’s theorem, we also need something called cyclo-
tomic polynomials. Here [7] is used as a complement in Definition 2.1, Propo-
sition 2.7 and Proposition 2.8. In C the solutions of αk “ 1 are the k numbers
on the form α “ e2iπj{k, where j P t0, 1, ..., k ´ 1u. These α’s are the k roots of
the polynomial xk ´ 1 P Crxs. The α’s with αr ‰ 1 whenever r ă k are called
primitive kth roots of unity. These are exactly the α’s where gcdpj, kq “ 1. It
follows from the fact that if j and k have a common nontrivial factor, say l,

then αk{l “ pe2iπj{kqk{l “ e2iπ j
l “ 1, and k{l ă k so that the kth root α is not

primitive.

Definition 2.1. The polynomial

Φkpxq “
ź

gcdpj,kq“1
1ďjďk

px´ e2iπj{kq

is called the kth cyclotomic polynomial.

Proposition 2.7. We have that xk ´ 1 “
ś

k1�k Φk1pxq.

Proof. From the factor theorem, we have

xk ´ 1 “
ź

1ďjďk

px´ e2iπj{kq.

We let r “ gcdpj, kq, j1 “ j{r and k1 “ k{r. Then e2iπj{k “ e2iπj1{k1 , where
gcdpj1, k1q “ 1. Now px ´ e2iπj1{k1q is a factor in Φk1pxq. Since j runs over all
integers from 1 to k, all the possible such fractions j1{k1 in simplest form where
k1|k will be obtained this way. Therefore there is a one-to-one correspondence
between the factors in xk ´ 1 and

ś

k1�k Φk1pxq, and we have equality.
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Proposition 2.8. For all k P Nzt0u, Φkpxq is a monic polynomial with integer
coefficients.

Proof. We use induction on k. We have that Φ1pxq “ x´e2iπ “ x´1, which is a
monic polynomial with integer coefficients. We make the induction assumption
that Φdpxq is monic and with integer coefficients when d ă k and d|k, and shall
show that then also Φkpxq is monic and with integer coefficients. We now have
that xk ´ 1 “ Φkpxqfpxq, where fpxq is a product of monic polynomials with
integer coefficients, and hence itself monic and with integer coefficients. Then

Φkpxq “
xk
´1

fpxq has integer coefficients by an analogue of the division algorithm

for monic polynomials.

Proposition 2.9. For all d � k with d ă k we have that

Φkpxq
ˇ

ˇ

ˇ

xk ´ 1

xd ´ 1
,

and the quotient is a polynomial with integer coefficients.

Proof. We have that
xk ´ 1 “

ź

d�k

Φdpxq,

and therefore even
xd ´ 1 “

ź

r�d

Φrpxq.

We have that every divisor of d also divides k. Thus

xk ´ 1 “ pxd ´ 1q
ź

r�k
rffld

Φrpxq.

For a fixed d with d ă k we have that Φkpxq is not a factor in xd´ 1, and hence

xk ´ 1

xd ´ 1
“ Φkpxq

ź

r�k
r‰k
rffld

Φrpxq,

which gives that

Φkpxq

ˇ

ˇ

ˇ

ˇ

xk ´ 1

xd ´ 1
,

and the quotient
xk
´1

xd´1

Φkpxq
“

ź

r�k
răk
rffld

Φrpxq

is a product of polynomials with integer coefficients, which is again a polynomial
with integer coefficients.
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Corollary 2.10. For all t P Z, k P Nzt0, 1u and d | k with d ‰ k we have

Φkptq
ˇ

ˇ

ˇ

tk ´ 1

td ´ 1
.

Proof. Since the product
ź

r�k
răk
rffld

Φrpxq

from the proof of Proposition 2.9 is a polynomial with integer coefficients, it
follows immediately that the quotient

tk´1
td´1

Φkptq
“

ź

r�k
răk
rffld

Φrptq

is an integer.

Lemma 2.11. Let θ P C with θ ‰ 1 be a kth root of unity and q P Nzt0u. Then
|q ´ θ| ą q ´ 1.

Proof. Let θ “ a ` bi, where a, b P R. Then |θ| “
?
a2 ` b2 “ 1. This and the

fact that θ ‰ 1 give that a ă 1. We now have

|q ´ θ| “ |q ´ pa` biq| “ |pq ´ aq ´ bi| “
a

pq ´ aq2 ` p´bq2

“
a

q2 ´ 2qa` pa2 ` b2q “
a

q2 ´ 2aq ` 1

ą
a

q2 ´ 2q ` 1 “
a

pq ´ 1q2 “ |q ´ 1| “ q ´ 1.

Now we are ready for the first proof of Wedderburn’s theorem.

Proof. Let D be a finite division ring. We will show that the multiplicative
commutativity axiom holds in D by showing that its center Z “ tz P D|zx “ xz
for all x P Du has the same number of elements as the whole of D. Because
that would imply that Z “ D, and therefore the axiom would hold in D.

We assume that Z has q elements. Then, by Proposition 2.4, D has qn

elements for some n P Nzt0u. So we want to show that we must have n “ 1.
We define the centralizer Cpaq “ tx P G | xa “ axu for a P D. Then Z is
contained in Cpaq, and since Z is a subring of D, it is a subring of Cpaq. Thus,
by Proposition 2.4 again, Cpaq contains qmpaq elements, where mpaq P Nzt0u is
depending on a P D.

Now we have that the groups Dzt0Du, Zzt0Du, and Cpaqzt0Du (under mul-
tiplication) have orders qn ´ 1, q´ 1 and qmpaq ´ 1 respectively. Since we know
from Proposition 2.3 that Cpaq is a subring of D, it is clear that Cpaqzt0Du is a
subgroup of Dzt0Du. Lagrange’s theorem in group theory therefore gives that
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pqmpaq´1q � pqn´1q. Hence we have that mpaq � n by Corollary 2.6. The num-
ber of elements in the conjugacy class Clpaq for a P Dzt0Du is pqn´1q{pqmpaq´1q.
So by the class equation we have

qn ´ 1 “
ÿ

mpaq�n

qn ´ 1

qmpaq ´ 1
,

where the sum runs over exactly one a from each conjugacy class. Proposition
1.7 gives that a P Z if and only if Cpaq “ D, but Cpaq “ D if and only if
mpaq “ n. Hence we can rewrite the equation as

qn ´ 1 “ pq ´ 1q `
ÿ

mpaq�n
mpaq‰n

qn ´ 1

qmpaq ´ 1
,

where the sum now only runs over a’s that are not contained in Z.
We know that this equation holds under our assumptions and definitions

and shall show that the equality is impossible unless n “ 1. We assume for
contradiction that n ą 1 and shall find an integer which divides all the terms
in the equation except q ´ 1, which leads to the contradiction that the integer
divides the left-hand side but not the right-hand side of the equation.

If we in Corollary 2.10 let the t be our q and k be our n, we have that

φnpqq
ˇ

ˇ

ˇ

qn ´ 1

qd ´ 1
,

when d � n and d ă n. Then it is obvious that we also have φnpqq � q
n ´ 1.

Therefore we have found an integer which divides the left-hand side and all the
terms in the sum. It only remains to show that φnpqq ffl pq´1q. By Lemma 2.11,
|q ´ θ| ą q ´ 1 when θ is a root of unity. We must have q ě 2 since 0D, 1D P Z.
Therefore |φnpqq| “

ś

|q ´ θ| ą q ´ 1, and φnpqq ffl pq ´ 1q. Therefore we must
have n “ 1, which forces that a finite division ring is a field!
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3 Second proof of Wedderburn’s theorem

Now we shall give a second proof of Wedderburn’s Theorem. We need several
definitions and results before the actual proof. For Definition 3.1, Definition 3.2
and Proposition 3.1 [2] is used.

Definition 3.1. A group endomorfism is a homomorphism from a group to
itself.

Definition 3.2. Let G be an abelian group under addition, then we let End(G)
be the set of endomorphisms in G, that is, End(G)“ tf : G Ñ G | fpa ` bq “
fpaq ` fpbqu.

Proposition 3.1. Define addition and multiplication in End(G) as pf`gqpaq “
fpaq ` gpaq and fgpaq “ fpgpaqq. Then it is a ring.

Proof. We have to check all the ring axioms. Let f, g, h PEnd(G) and a, b P G.
At first we show closure under addition. We have to show that f ` g is again
an endomorphism. We have

pf ` gqpa` bq “ fpa` bq ` gpa` bq “ fpaq ` fpbq ` gpaq ` gpbq

“ pfpaq ` gpaqq ` pfpbq ` gpbqq “ pf ` gqpaq ` pf ` gqpbq

and therefore it is true.
Now we show additive commutativity. Since G is abelian we have

pf ` gqpaq “ fpaq ` gpaq “ gpaq ` fpaq “ pg ` fqpaq.

Additive associativity follows from

`

f ` pg ` hq
˘

paq “ fpaq `
`

pg ` hqpaq
˘

“ fpaq `
`

gpaq ` hpaq
˘

“
`

fpaq ` gpaq
˘

` hpaq

“ pf ` gqpaq ` hpaq

“
`

pf ` gq ` h
˘

paq.

It is easily checked that the endomorphism k defined by kpaq “ eG for all
a P G works as 0EndpGq, and that the identity map from G to G works as
1EndpGq.

We define the element ´f by p´fqpaq “ ´fpaq. It follows from

p´fqpa` bq “ ´fpa` bq “ ´
`

fpaq ` fpbq
˘

“ ´fpaq ´ fpbq “ p´fqpaq ` p´fqpbq

that ´f PEndpGq. It is also clear that f ` p´fq “ 0EndpGq.
The multiplication is clearly associative, since both pfgqhpaq and fpghqpaq

means fpgphpaqqq.
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Closure under multiplication follows from

fgpa` bq “ fpgpaq ` gpbqq “ fpa1 ` b1q,

where a1 ` b1 P G.
At last we must show the distributive laws. We have

pfpg ` hqqpaq “ fppg ` hqpaqq “ fpgpaq ` hpaqq

“ fpgpaqq ` fphpaqq “ fgpaq ` fhpaq

“ pfg ` fhqpaq,

so that fpg ` hq “ fg ` fh. We also have

ppf ` gqhqpaq “ pf ` gqphpaqq “ fphpaqq ` gphpaqq “ pfhqpaq ` ghpaq

“ pfh` ghqpaq,

so that pf ` gqh “ fh` gh. This finishes the proof.

Now we shall define a special endomorphism that will be used. The proof of
the binomial theorem in [1] has been used as help for the proof of Lemma 3.2.

Lemma 3.2. Let R be a ring and a P R. Let Ta : RÑ R be the endomorphism
(Here R is viewed as an abelian group under addition) with Tapxq “ xa´ax. For
m P N we define Tma pxq such that T 2

a pxq “ TapTapxqq, T
3
a pxq “ TapTapTapxqqq

and so on.

Tma pxq “
m
ÿ

k“0

p´1qk
ˆ

m

k

˙

akxam´k.

Proof. We prove this formula by induction on m. For m “ 1 , the formula gives
Ta “

ř1
k“0p´1qk

`

1
k

˘

akxa1´k “ xa´ ax, which is true by the definition of Ta.
Now we assume that the formula is true for m “ n, and show that it is then

even true for m “ n` 1. We have
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Tn`1
a pxq “ TapT

n
a pxqq “

“

˜

n
ÿ

k“0

p´1qk
ˆ

n

k

˙

akxan´k

¸

a´ a

˜

n
ÿ

j“0

p´1qj
ˆ

n

j

˙

ajxan´j

¸

“

n
ÿ

k“0

p´1qk
ˆ

n

k

˙

akxan´k`1 `

n
ÿ

j“0

p´1qj`1

ˆ

n

j

˙

aj`1xan´j

“

n
ÿ

k“1

p´1qk
ˆ

n

k

˙

akxan´k`1 ` xan`1

`

n
ÿ

k“1

p´1qk
ˆ

n

k ´ 1

˙

akxan´k`1 ` p´1qn`1an`1x

“

n
ÿ

k“1

p´1qk
„ˆ

n

k

˙

`

ˆ

n

k ´ 1

˙

akxan´k`1 ` xan`1 ` p´1qn`1an`1x

“

n
ÿ

k“1

p´1qk
ˆ

n` 1

k

˙

akxan´k`1 ` xan`1 ` p´1qn`1an`1x

“

n`1
ÿ

k“0

p´1qk
ˆ

n` 1

k

˙

akxan´k`1,

which is exactly the form the formula should take when m “ n` 1. Hence the
formula follows by induction. In the calculations we used the so-called Pascal’s
relation

ˆ

n

k

˙

`

ˆ

n

k ´ 1

˙

“

ˆ

n` 1

k

˙

,

which is very easy to prove by just writing the fractions on the left-hand side
on a common denominator and then cancelling some common factors.

Corollary 3.3. Let R be a ring, and let p be a prime with px “ 0R for all
x P R. Then T p

m

a pxq “ xap
m

´ ap
m

x for all m P Nzt0u.

Proof. Lemma 3.2 gives

T p
m

a pxq “
pm
ÿ

k“0

p´1qk
ˆ

pm

k

˙

ap
m

xap
m
´k.

It is shown in [6] that p is a factor in
`

pm

k

˘

except when k “ 0 or k “ pm. Hence
all terms in the sum except the first and the last vanish, which means that

T p
m

a pxq “ xap
m

` p´1qp
m

ap
m

x.

When p is odd, we immediately get T p
m

a pxq “ xap
m

´ ap
m

x, which is what we
wanted. When p “ 2 we have
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T 2m

a pxq “ xa2m

` a2m

x´ 0R “ xa2m

` a2m

x´ 2a2m

x “ xa2m

´ a2m

x,

and the proof is done.

Lemma 3.4. Let F be a field containing pn elements. In F rxs we then have

xp
n

´ x “
ź

λPF

px´ λq.

Proof. Let gpxq “ xp
n

´ x. Then degpgq “ pn. Therefore we know that gpxq
has at most pn roots in F . Since λp

n
´1 “ 1F for all λ P F zt0F u, we have that

λp
n

“ λ, which is the same as λp
n

´ λ “ 0F , which obviously is true even for
λ “ 0F . This gives that every λ P F is a root of gpxq, and the formula follows
from the factor theorem.

We need a theorem that we state without proof. It can be proved the same
way as Theorem 22.4 in [2].

Theorem 3.5. Let R and S be rings and let f : R Ñ S be a homomorphism.
Let a P S be an element that commutes with fpxq for all x P R. Then there
exists a homomorphism f̄ : Rrus Ñ S such that f̄ �R“ f and f̄puq “ a. Here
Rrus denotes a polynomial ring.

Lemma 3.6. Let D be a division ring of characteristic p (the smallest p P Nzt0u
with p1D “ 0D). Let Z be the center of D and let P “ t0F , 1F , 2 ¨ 1F , ..., pp ´
1q1F u be the subfield of D isomorphic to Zp. Let a P DzZ be an element
satisfying ap

n

“ a for some n P Nzt0u. Then there exists an x P D with
xax´1 ‰ a but xax´1 P P paq, where P paq is the field obtained by adjoining a to
P .

Proof. The relation ap
n

“ a implies that a P D is a root of the polynomial
xp

n

´ x in P rxs. Thus a is algebraic over P , which implies that P paq is a
finite field containing pm elements for some m P Nzt0u. All these elements
y P P paq satisfy yp

m

“ y (as in the proof of Lemma 3.4). Defining the function
Ta : D Ñ D as before, we now have T p

m

a pzq “ zap
m

´ ap
m

z “ za´ az “ Tapzq
for all z P D. Hence T p

m

a “ Ta. Let α P P paq and x P D. Then α commutes
with a since both are contained in P paq, and

Tapαxq “ pαxqa´ apαxq “ αxa´ paαqx “ αxa´ pαaqx

“ αpxa´ axq “ αTapxq.

We can therefore say that the endomorphism Iα satisfying Iαpxq “ αx commutes
with Ta in End(D).

Now we use Lemma 3.4 to write

up
m

´ u “
ź

αPP paq

pu´ αq.
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In Theorem 3.5 we let R be our P paq, S our EndpDq, a our Ta, Rrus the
polynomial ring P paqrus and f the homomorphism with fpαq “ Iα. Then
we can use f̄ on both the left-hand-side and the right-hand-side of the above
equality to get

T p
m

a ´ Ta “
ź

αPP paq

pTa ´ Iαq.

Since T p
m

a ´ Ta “ 0D we get

ź

αPP paq

pTa ´ Iαq “ 0D.

Now, for all α P P paqzt0ppaqu, we assume that y “ 0D whenever pTa ´
Iαqpyq “ 0D. Then the relation forces that Ta “ 0EndpDq, so that Tapyq “ 0D
for all y P D. This means that ya´ ay “ 0D for all y P D, so that a P Z, which
contradicts the assumption that a P DzZ.

There must therefore exist some α P P paq and x P D with α, x ‰ 0D
satisfying pTa´ Iαqpxq “ 0D, which means that xa´ ax´αx “ 0D. Moving ax
and αx to the right-hand-side and multiplying with x´1 from the right we get
xax´1 “ a`α. Since both a and α are in P paq, closure gives that xax´1 P P paq,
but a` α ‰ a since α ‰ 0D. Therefore the proof is complete.

Corollary 3.7. The element xax´1 P P paq in the above lemma satisfies xax´1 “

ai for some i P Nzt1u.

Proof. Let ordpaq “ k in the field P paq. Then the set S “ t1, a, a2, ..., ak´1u is
the set of all the k distinct roots of the polynomial uk ´ 1P paq P P paqrus. We
have that

pxax´1qk “ pxax´1qpxax´1q...pxax´1q “ xapx´1xqax´1...xax´1

“ xakx´1 “ xx´1 “ 1P paq,

such that xax´1 P S. Hence xax´1 “ ai for some i P t0, 2, 3, ..., k´ 1u. Here we
exclude 1, since we know that xax´1 ‰ a. More generally we have i P Nzt1u,
which was to be proved.

Lemma 3.8. Let F be a finite field, and let α, β P F zt0F u. Then there exist
a, b P F satisfying 1F ` αa

2 ` βb2 “ 0F .

Proof. Assume that F has characteristic 2. Then F contains 2n elements, where
n P Nzt0u. Then for all x P F we have x2n

“ x, which gives that any x P F is a
square. This implies that we can let α´1 “ a2 for some a P F . If we let b “ 0F ,
we can use this a and b to get

1F ` αa
2 ` βb2 “ 1F ` αα

´1 ` β0F “ 1F ` 1F ` 0F “ 2p1F q “ 0F ,

which is what we wanted.
Assume that F has characteristic p, where p is an odd prime. Then F has

pn elements for some n P Nzt0u. We define the set Sα “ t1F `αx
2 | x P F u and
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shall calculate the number of elements in Sα. We do this by checking how often
1F `αx

2 “ 1F `αy
2. The relation is equivalent to that αx2´αy2 “ 0F . Since

α ‰ 0F we can multiply by α´1 to get x2 ´ y2 “ px` yqpx´ yq “ 0, leading to
x “ ˘y. This gives that for all w P F , x “ w and x “ ´w generate the same
element of Sα, but for two elements i, j P F with i ‰ ˘j we have that x “ i and
x “ j generate different elements of Sα. Therefore, when x ‰ 0F , each of the
pn´1

2 pairs x,´x generate one element in Sα each, and x “ ˘0 generate only
one element. Thus the number of elements in Sα are

pn ´ 1

2
` 1 “

pn ´ 1` 2

2
“
pn ` 1

2
.

The same reasoning on the set Sβ “ t´βx
2 | x P F u gives that Sβ also contains

pn`1
2 elements. Together Sα and Sβ contain pn`1 ą pn elements, which means

that Sα X Sβ ‰ ∅, so there exists an element r P Sα X Sβ . Then r “ 1F ` αa
2

for some a P F , but also r “ ´βb2 for some b P F . Using these a and b we get
0F “ r ´ r “ 1F ` αa

2 ` βb2, and we are done.

Now it is time for the second proof of Wedderburn’s theorem.

Proof. Let D be a finite division ring and Z “ tz P D | zγ “ γz for all γ P Du
its center. Our goal in this proof is to reach a contradiction when assuming
that DzZ ‰ ∅. So we assume for contradiction that there exists an element
w P DzZ. In order to reach the contradiction, we need several technicalities,
and will therefore divide the proof into some steps.

We let D be a division ring and make the induction assumption that any
division ring having fewer elements than D is a field. Using this assumption we
make a first claim.

Claim 3.9. Let α, β P D such that αβt “ βtα for some t P Nzt0, 1u, but
αβ ‰ βα. Then βt P Z.

Proof. We have that Cpβtq “ tγ P D | βtγ “ γβtu is a subring of D that
is also a division ring. Now α, β P Cpβtq but α and β do not commute, which
implies that Cpβtq is not commutative. Therefore, by the induction assumption,
Cpβtq “ D. By Proposition 1.7, βt P Z.

Since D is finite, Dzt0Du is a finite group under multiplication, and hence
every element in Dzt0Du (and specifically in DzZ since 0D P Z) has finite order.
Therefore wk “ 1D for some k P Nzt0, 1u. Since 1D P Z it follows that when
w P DzZ, ws P Z for some s P Nzt0, 1u. The smallest such s we call the
order of w relative to Z. Clearly s ď k. We now let a be an element in DzZ
with the least order relative to Z. This least order, call it r, must be a prime
number. We prove this claim by assuming for contradiction that r is composite.
Then r “ r1r2 for some r1, r2 with 1 ă r1, r2 ă r. Since ar P Z we now have
ar1r2 “ par1qr2 P Z, which implies that ar1 has order ď r2 ă r contradicting the
fact that r is the least order.
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Now we shall use this a P DzZ with prime order r relative to Z to produce
two elements a1 and b1 satisfying these two conditions:
1: ar1 “ br1 P Z.
2: a1b1 “ µb1a1, where µ P Z with µ ‰ 1d but µr “ 1D.

We know from Corollary 3.7 that there exists an x P D with xax´1 “ ai ‰ a,
where i P Nzt0, 1u. Using this, we have

x2ax´2 “ xpxax´1qx´1 “ xaix´1 “ pxax´1qi “ paiqi “ ai
2

,

x3ax´3 “ xpx2ax´2qx´1 “ xai
2

x´1 “ pxax´1qi
2

“ pai
2

qi “ ai
3

,

and so on. Specifically xr´1ax´pr´1q “ ai
r´1

. Since r is a prime, Fermat’s
little theorem gives that ir´1 ” 1 (mod r), which means that ir´1 “ qr ` 1

for some q P Z. Therefore we have ai
r´1

“ aqr`1 “ aqra, which we rewrite
as λa where λ “ aqr “ parqq, so that λ P Z by closure of Z. This implies
that xr´1ax´pr´1q “ λa, which by multiplying with xr´1 from the right can be
rewritten as xr´1a “ λaxr´1.

We have that xa ‰ ax. This follows from the fact that if we assume xa “ ax
we would reach the contradiction xax´1 “ a by just multiplying with x´1 from
the right in the relation. Therefore x R Z, implying that xr´1 R Z by the
definition of r. We have that xr´1a ‰ axr´1. Otherwise Claim 3.9 would lead
us to the contradiction that xr´1 P Z. Hence we have that λ ‰ 1D. If we let
b “ xr´1 we have ba “ λab, or bab´1 “ λa when just multiplying with b´1 from
the right. Since ar P Z we now have

λrar “ pλaqr “ pbab´1qr “ barb´1 “ arpbb´1q “ ar,

forcing λr “ 1D P Z. Hence the order |λ| “ r.

Claim 3.10. Let y P D such that yr “ 1D. Then y “ λi for some i P N.

Proof. In the field Zpyq obtained by adjoining Z and y, there are at most r
roots of the polynomial ur ´ 1D P Zpyqrus. The set S “ t1D, λ, λ

2, ..., λr´1u is
the set of r different roots of the polynomial. Hence we must have y P S, which
gives that y “ λi for some i P t0, 1, ..., r ´ 1u, or more generally i P N.

Since λr “ 1D and λ P Z we have that

br “ 1Db
r “ λrbr “ pλbqr “ pa´1baqr “ a´1bra,

which, by multiplying with a from the left, gives abr “ bra. Claim 3.9 and the
fact that ab ‰ ba now gives that br P Z.

Since Z is a field, it contains a primitive element σ, which works as a cyclic
generator of the multiplicative group Zzt0Du. Therefore ar “ σm and br “ σn,
for some m,n P N.

Claim 3.11. We have that r ffl m and r ffl n.
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Proof. Assume for contradiction that m “ kr for some k P N. Then ar “ σkr,
and multiplying with σ´kr gives that arσ´kr “ 1D, or equivalently paσ´kqr “
1D. Then, by Claim 3.10, aσ´k “ λi for some i P N. Multiplying with σk, we get
a “ λiσk, and closure of Z hence implies that a P Z, which is a contradiction.
Therefore r ffl m, and by the same argument we also have r ffl n.

Now let a1 “ am and b1 “ bn.

Claim 3.12. We have that a1b1 “ λ´mnb1a1.

Proof. From the relation bab´1 “ λa from above we get λ´1ba “ ab by multi-
plying with b from the right and with λ´1 from the left. We now have that

a1b1 “ ambn “ am´1pabqbn´1 “ am´1pλ´1baqbn´1 “ λ´1am´2pabqabn´1

“ λ´1am´2pλ´1baqabn´1 “ λ´2am´3pabqa2bn´1 “ ... “ λ´mbambn´1

“ λ´mbam´1pabqbn´2 “ λ´mbam´1pλ´1baqbn´2 “ λ´pm`1qbam´2pabqabn´2

“ ... “ λ´2mb2ambn´2 “ ... “ λ´mnbnam “ λ´mnb1a1.

Now let µ “ λ´mn P Z. Since r=|λ| is a prime and r ffl m, r ffl n, we have
r ffl mn. Hence µ “ λ´mn ‰ 1D, but we have

µr “ pλ´mnqr “ λ´pmnqr “ pλrq´mn “ 1´mnD “ 1D.

Now we have reached our first goal, i.e. we have produced elements a1 and b1
satisfying
1: ar1 “ br1 P Z.
2: a1b1 “ µb1a1, where µ P Z with µ ‰ 1d but µr “ 1D.

Now we shall proceed by using these elements a1 and b1 to reach the con-
tradiction we want.

Claim 3.13. We have that

pa´1
1 b1q

r “ µ
rpr´1q

2 .

Proof. From a1b1 “ µb1a1 we get b1a
´1
1 “ pa´1µqb1 “ µa´1

1 b1 by multiplying
with a´1

1 both from the left and from the right, and hence

pa´1
1 b1q

2 “ a´1
1 pb1a

´1
1 qb1 “ a´1

1 pµa´1
1 b1qb1 “ µa´2

1 b21,

pa´1
1 b1q

3 “ a´1
1 pb1a

´1
1 q2b1 “ a´1

1 pµa´1
1 b1q

2b1 “ a´1
1 µ2pa´1

1 b1q
2b1

“ a´1
1 µ2pµa´2

1 b21qb1 “ µ1`2a´3
1 b31,

pa´1
1 b1q

4 “ a´1
1 pb1a

´1
1 q3b1 “ a´1

1 pµa´1
1 b1q

3b1 “ a´1
1 µ3pa´1

1 b1q
3b1

“ a´1
1 µ3pµ1`2a´3

1 b31qb1 “ µ1`2`3a´4
1 b41,
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and so on. Specifically

pa´1
1 b1q

r “ µ1`2`...`pr´1qa´r1 br1 “ µ1`2`...`pr´1qparq´1ar

“ µ1`2`...`pr´1q “ µ
rpr´1q

2 ,

which was to be proved.

Claim 3.14. The prime r must be odd.

Proof. Assume for contradiction that r “ 2. Then a2
1 “ b21 “ α for some α P Z,

and a1b1 “ µb1a1 with µ ‰ 1, but µ2 “ 1D. Hence µ satisfies 0D “ µ2 ´ 1D “
pµ´ 1Dqpµ` 1Dq. Since Z contain no zero divisors and µ ‰ 1D, we must have
µ “ ´1D. Therefore a1b1 “ ´b1a1 ‰ b1a1. The last inequality implies that
0D ‰ 2b1a1 “ 2 ¨ 1Db1a1, and therefore D has not characteristic 2.

In Lemma 3.8, we now let the α be our ´α and β “ 1Z . Then there are
τ, ω P Z satisfying 1D ` τ2 ´ αω2 “ 0D. We now consider the expression
pa1 ` τb1 ` ωa1b1q

2. We have

pa1 ` τb1 ` ωa1b1q
2 “ a2

1 ` τa1b1 ` ωa
2
1b1 ` τb1a1 ` τ

2b21 ` τωb1a1b1

` ωa1b1a1 ` τωa1b
2
1 ` ω

2a1b1a1b1

“ a2
1 ` τa1b1 ` ωa

2
1b1 ´ τa1b1 ` τ

2b21 ´ τωa1b
2
1

´ ωb1a
2
1 ` τωa1b

2
1 ´ ω

2a2
1b

2
1

“ α` τ2α´ ω2α2 “ αp1D ` τ
2 ´ αω2q “ α0D “ 0D

Since D contains no zero divisors we must have that a1 ` τb1 ` ωa1b1 “ 0D.
Since the characteristic is not 2 and a1 ‰ 0D, we have that 2a2 ‰ 0D. But

2a2
1 “ 2a2

1 ` 0D ` 0D “ 2a2
1 ` pτa1b1 ´ τa1b1q ` pωa

2
1b1 ´ ωa

2
1b1q

“ pa2
1 ` τa1b1 ` ωa

2
1b1q ` pa

2
1 ` τb1a1 ` ωa1b1a1q

“ a1pa1 ` τb1 ` ωa1b1q ` pa1 ` τb1 ` ωa1b1qa1

“ a10D ` 0Da1 “ 0D

which is a contradiction, so the claim is proved.

Since r is odd we have

pa´1
1 b1q

r “ µ
rpr´1q

2 “ pµrq
r´1
2 “ 1

r´1
2

D “ 1D,

so that pa´1
1 b1q solves yr “ 1D. Therefore, by Claim 3.10, we have that a´1

1 b1 “
λj for some j P N. Multiplying with a1 from the left we get b1 “ a1λ

j “ λja1.
Then µb1a1 “ a1b1 “ a1pλ

ja1q “ pλ
ja1qa1 “ b1a1, which contradicts the fact

that µ ‰ 1D. Therefore the assumption that there is an element w P DzZ
cannot be true, and thus we must have that Z “ D, and Wedderburn’s theorem
is again proved!
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4 Jacobson’s theorem

Now we focus on a generalisation of Wedderburn’s theorem.

Theorem 4.1 (Jacobson’s theorem). Let D be a division ring such that for all
a P D, there is a hpaq P Nzt0, 1u depending on a, satisfying ahpaq “ a. Then D
is a field.

Proof. If a P Dzt0Du we have that an “ a and p2aqm “ 2a for some m,n P
Nzt0, 1u. Let s “ pn´ 1qpm´ 1q ` 1. Then s ą 1, and by construction of s we
have

as “ apn´1qpm´1q`1 “ pan´1qm´1a “ pana´1qm´1a “ paa´1qm´1a “ 1Da “ a,

and also

p2aqs “ p2aqpn´1qpm´1q`1 “ pp2aqm´1qn´1p2aq “ pp2aqmp2aq´1qn´1p2aq

“ pp2aqp2aq´1qn´1p2aq “ 2a.

We also have p2aqs “ 2sas “ 2sa. Combining these relations we get 2sa “ 2a,
or equivalently p2s ´ 2qa “ 0D. This gives that D has characteristic p ą 0. We
let P be the subfield of Z isomorphic to Zp. Since a is a root of the polynomial
un ´ u P P rus, a is algebraic over P . Therefore P paq, the field obtained by
adjoining a to P , is finite and contains ph elements for some h P Nzt0u. Hence

ap
h
´1 “ 1P paq, so that ap

h

“ a. We now fix our a and assume for contradiction
that a P DzZ. Then the conditions in Lemma 3.6 and Corollary 3.7 are satisfied,
so that there is a b P D with bab´1 “ aµ, for some µ P Nzt1u. Since b P D, the

same argument as above gives that bp
k

“ b for some k P Nzt0, 1u. Now let

S “

$

&

%

x P D

ˇ

ˇ

ˇ

ˇ

ˇ

x “
ph
ÿ

i“1

pk
ÿ

j“1

ρija
ibj where ρi,j P P

,

.

-

.

The set S is clearly finite but nonempty. We show that it is a subring of
D. We have to show closure under subtraction and multiplication. Closure
under subtraction is almost immediate. The elements in S can be seen as linear
combinations of the vectors aibj , and we know that a linear combination of
some vectors minus another linear combination of the same vectors is again a
linear combination of the vectors. To show closure under multiplication we let

y, z P S. Then y “
řph

i“1

řpk

j“1 ρija
ibj and z “

řph

r“1

řpk

s“1 ωrsa
rbs. We now

have that

yz “

¨

˝

ph
ÿ

i“1

pk
ÿ

j“1

ρija
ibj

˛

‚

¨

˝

ph
ÿ

r“1

pk
ÿ

s“1

ωrsa
rbs

˛

‚“

ph
ÿ

i“1

pk
ÿ

j“1

ph
ÿ

r“1

pk
ÿ

s“1

ρijωrsa
ibjarbs.

From bab´1 “ aµ we get ba “ aµb by multiplying with b from the right. There-
fore we have

aibjarbs “ aibj´1pbaqar´1bs “ aibj´1paµbqar´1bs “ ...
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Continuing substituting bas with aµbs in this way we will end up with awbj`s,
where w is a very large integer, but we can use the relations ahpaq “ a and
bhpbq “ b to reduce it to aibjarbs “ atbu “ with 1 ď t ď ph and 1 ď u ď pk.
Hence aibjarbs “ 1p1pa

tbu P S. Since aibjarbs P S and ρijρrs P P , we have
that yz P S.

Proposition 2.1 now gives that S is a division ring, and therefore Wedder-
burn’s theorem gives that it is a field. But a, b P S, so that ba “ ab, which is
a contradiction since the fact that bab´1 ‰ a gives that ba ‰ ab if we multiply
with b from the right. This contradiction proves the theorem.
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5 Alternative rings and the Artin-Zorn theorem

Now we are going to discuss a generalisation of Wedderburn’s theorem to so-
called Alternative rings.

Definition 5.1. An alternative ring is a ring Ψ in which the multiplication
associativity axiom is replaced by the weaker so-called alternative axiom: For
all a, b P Ψ, paaqb “ apabq, pabqa “ apbaq and pbaqa “ bpaaq.

In the rest of this section we let Ψ denote an alternative ring. Generally,
when associativity does not hold, for all a, b, c P Ψ we can use the so-called
associator

ra, b, cs “ pabqc´ apbcq

as some kind of ”measurement” of how close it is to be associative. It is straight-
forward that the associator is linear in the three arguments.

Proposition 5.1. let Ψ be an alternative ring and a, b, c, d P Ψ. Then

rab, c, ds ´ ra, bc, ds ` ra, b, cds “ ra, b, csd` arb, c, ds.

Proof. Using the definition of the associator and distributivity we have

rab, c, ds ´ ra, bc, ds ` ra, b, cds “
´

`

pabqc
˘

d´ pabqpcdq
¯

´

´

`

apbcq
˘

d´ a
`

pbcqd
˘

¯

`

´

pabqpcdq ´ a
`

bpcdq
˘

¯

“

´

`

pabqc
˘

d´
`

apbcq
˘

d
¯

`

´

a
`

pbcqd
˘

´ a
`

bpcdq
˘

¯

“

´

pabqc´ apbcq
¯

d` a
´

pbcqd´ bpcdq
¯

“ ra, b, csd` arb, c, ds.

In Ψ, it follows from the definition of the associator that the alternative
axiom is equivalent to the claim that for all a, b P Ψ we have

ra, a, bs “ ra, b, as “ rb, a, as “ 0Ψ.

Proposition 5.2. Let a, b, c P Ψ. Then the associator ra, b, cs alternates in the
arguments, that is, if two arguments changes place, only the sign changes.

Proof. We have

0Ψ “ ra` b, a` b, cs “ ra, a, cs ` ra, b, cs ` rb, a, cs ` rb, b, cs

“ ra, b, cs ` rb, a, cs,

so that ra, b, cs “ ´rb, a, cs. Starting with 0Ψ “ ra, b ` c, b ` cs instead, similar
reasoning gives us that ra, b, cs “ ´ra, c, bs, and from 0A “ ra ` c, b, a ` cs we
get ra, b, cs “ ´rc, b, as, and the result follows.
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It follows from the proposition that if the associator ra, b, cs “ 0Ψ, then the
associator “ 0Ψ for any permutation of a, b and c. Hence we have that if 3 fixed
elements in Ψ associate in some order, they associate in every order.

Before stating and proving the last results, we introduce some notation that
will be used to simplify the discussions.

Definition 5.2. If M1,M2 and M3 are subsets of Ψ we can write

rM1,M2,M3s “ 0Ψ

if
rm1,m2,m3s “ 0Ψ

whenever mi P Mi. We can also use a mixed notation where one or two argu-
ments are fixed elements in Ψ, and the others subsets of Ψ.

Definition 5.3. Let C and D be subsets of a ring X and let x P X and n P N.
Then we let

C `D “ tc` d | c P C, d P Du

CD “ tcd | c P C, d P Du

´C “ t´c | c P Cu

xC “ txc | c P Cu

Cx “ tcx | c P Cu

nC “ C ` C ` ...` C (n terms)

p´nqC “ ´C ´ C ´ ...´ C (n terms)

Definition 5.4. If M “ ta, b, c, ...u is a subset of Ψ we let xMy “ xa, b, c, ...y
be the set generated from M by taking the possible sums of plus or minus the
products of the elements in M .

Proposition 5.3. Let M be a nonempty subset of an alternative ring Ψ. Then
xMy is an alternative subring of Ψ.

Proof. Since the elements in M are in xMy, it is clearly nonempty. We have
to show closure under subtraction and multiplication. It is almost obvious. A
difference of two sums of plus or minus some products of elements in M is again
that kind of sum, and a product of two sums of that kind is again that kind of
sum.

Definition 5.5. A subset Γ of Ψ satisfying rΓ,Γ,Ψs “ 0Ψ is called an A-set.
If Γ is a ring, we call it an A-ring.

Theorem 5.4. Let Γ be an A-set in Ψ. Then the ring xΓy is an A-ring.
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Proof. We have to show that the ring xΓy satisfies rxΓy, xΓy,Ψs “ 0Ψ. We let

A1 “ Γ,

A2 “ A1A1,

A3 “ A1A2 YA2A1,

A4 “ A1A3 YA3A1 YA2A2,

An “
ď

i`j“n

AiAj .

We now let Bn “ t
řk
i“1 ziai | zi P Z, ai P Anu Then xΓy “

ř8

n“1Bn. Therefore,
by linearity of the associator, it is enough to show that rBn, Bm,Ψs “ 0Ψ for all
n,m P Nzt0u, and by linearity again, we only have to show rAn, Am,Ψs “ 0Ψ.
We use induction over m ` n. If m ` n “ 2, we must have m “ n “ 1,
and rA1, A1,Ψs “ rΓ,Γ,Ψs “ 0Ψ by the definition of Γ. We now assume that
rAj , Ak,Ψs “ 0Ψ whenever 2 ď j`k ă m`n for some fixed positive integer m`
n. We must show that then also rAm, An,Ψs “ 0Ψ. Permuting the arguments
Am and An in the associator only changes the sign, and therefore we can assume
that m ě n which forces m ě 2. Let am P Am, an P An and x P Ψ. Then we
can write am “ a1a2 where a1 P Ar and a2 P As for some r and s with r`s “ m.
Using Proposition 5.1 we have

ra1a2, x, ans ´ ra
1, a2x, ans ` ra

1, a2, xans “ a1ra2, x, ans ` ra
1, a2, xsan.

This implies that

rArAs,Ψ, Ans´rAr, AsΨ, Ans`rAr, As,ΨAns “ ArrAs,Ψ, Ans`rAr, As,ΨsAn.

Since r ` n ă m` n, r ` s ă m` n and s` n ă m` n, our assumption gives
that that all the terms except the first one vanish, which leaves us with

rArAs,Ψ, Ans “ 0Ψ.

From this we get that rAm, An,Ψs “ 0Ψ, which is what we wanted.

Definition 5.6. The opposite of a ring R is the set R1 that contains the same
elements of R, but with the multiplication ˚ in R1 of two elements a and b is
redefined as a ˚ b “ b ¨ a, where ¨ is the multiplication in R.

Proposition 5.5. Let Ψ be an alternative ring. Then its opposite Ψ1 is also an
alternative ring.

Proof. It is easy to show that the ring axioms still hold, since we are able to
construct exactly the sums and products as in Ψ, by just interchanging the
factors. We only show the alternative axiom. Let ¨ be the multiplication in Ψ
and ˚ the multiplication in Ψ1. For a, b P Ψ1 we have

ra, a, bsΨ1 “ pa ˚ aq ˚ b´ a ˚ pa ˚ bq “ b ¨ pa ¨ aq ´ pb ¨ aq ¨ a “ ´rb, a, asΨ “ 0Ψ,

ra, b, bsΨ1 “ pa ˚ bq ˚ b´ a ˚ pb ˚ bq “ b ¨ pb ¨ aq ´ pb ¨ bq ¨ a “ ´rb, b, asΨ “ 0Ψ,

ra, b, asΨ1 “ pa ˚ bq ˚ a´ a ˚ pb ˚ aq “ a ¨ pb ¨ aq ´ pa ¨ bq ¨ a “ ´ra, b, asΨ “ 0Ψ.
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Theorem 5.6. Let A and B be two A-rings in Ψ. Then the ring C “ xA`By
is associative.

Proof. We have to show that when we assume that rA,A,Ψs “ 0Ψ “ rB,B,Ψs,
it follows that rxA ` By, xA ` By, xA ` Bys “ rC,C,Cs “ 0Ψ. From the last
theorem we have that if A`B is an A-ring, xA`By is also an A-ring. So if we
show that rA`B,A`B,Cs “ 0Ψ, we are done. A and B are obviously subsets
of the ring C, which gives that they can be seen as A-sets. The linearity of the
associator and the definition of a sum of two subgroups under addition gives
rA`B,A`B,Cs “ rA,A,Cs ` rB,B,Cs ` rA,B,Cs ` rB,A,Cs “ rA,B,Cs ´
rA,B,Cs. Hence it is enough to show rA,B,Cs “ 0Ψ.

Claim 5.7. Whenever we have rA,B, xs “ 0Ψ for some fixed x P Ψ, we also
have

rA,B, xAs “ rA,B,Axs “ rA,B, xBs “ rA,B,Bxs “ 0Ψ.

Proof. Since the associator alternates in the arguments it is clear that rA,B,Bxs “
0Ψ if we know that rA,B,Axs “ 0Ψ. Then the rest follows if we consider the
opposite alternative ring of Ψ. Therefore it is enough to show rA,B,Axs “ 0Ψ.

If a1, a2 P A, b P B, Proposition 5.1 gives that

ra1a2, x, bs ´ ra1, a2x, bs ` ra1, a2, xbs “ a1ra2, x, bs ` ra1, a2, xsb.

Proposition 5.2 and the fact that rA,A,Ψs “ rA,B, xs “ 0Ψ give that the right-
hand-side and the first and third term in the left-hand-side are 0Ψ. This leaves
us with ra1, a2x, bs “ 0Ψ, which means that rA,Ax,Bs “ 0Ψ and hence even
rA,B,Axs “ 0Ψ.

We now let

N1 “ AYB,

N2 “
`

pAYBqN1

˘

Y
`

N1pAYBq
˘

,

Nm “
`

pAYBqNm´1

˘

Y
`

Nm´1pAYBq
˘

.

We call the elements in these sets normal products. We shall show that
rA,B,Nms “ 0Ψ for all m P Nzt0u. We use induction over m. We have

rA,B,N1s “ rA,B,AYBs “ 0Ψ.

We now assume that rA,B,Nm´1s “ 0Ψ, and shall show that then also rA,B,Nms “
0Ψ. Every element in Nm can be written as anm´1, nm´1a, bnm´1 or nm´1b,
where a P A, b P B, and nm´1 P Nm´1. Therefore rA,B,Nms “ 0Ψ by Claim
5.7, and the induction proof is done.

We now let Mm “ t
řk
i“1 aini | ai P Z, ni P Nmu. The linearity of the

associator gives that rA,B,Mms “ 0Ψ for all m P Nzt0u. It is now clear that
rA,B,M s “ 0Ψ, where M “

ř8

m“1Mm. We call the elements in M normal
elements.
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If we can show that M “ C, the proof is done. At first we show that M
is a subring of Ψ. We must show closure under subtraction and multiplication.
Closure under subtraction follows immediately from the construction. To show
closure under multiplication, we show that NmM Ď M for all m P Nzt0u.
We use induction over m. We have that N1M “ pA Y BqM . pA Y BqM
consists of sums of products aiNj “ Nj`1, where different ai’sP A Y B. So
pA Y BqM Ď M . Now we assume that Nm´1M Ď M and shall show that
then also NmM Ď M . We have that Nm “ Nm´1a or Nm “ aNm´1 for some
a P AYB. If Nm “ Nm´1a we have

NmM “ pNm´1aqM “ Nm´1paMq ` rNm´1, a,M s

“ Nm´1paMq ´ rNm´1,M, as

“ Nm´1paMq ´ pNm´1Mqa`Nm´1pMaq.

We know that aM ĎM and Ma ĎM . This and the assumption Nm´1M ĎM
give that all the three last terms are subsets of M , and hence NmM Ď M . If
instead Nm “ aNm´1 we do the same reasoning, only changing the order in the
products. The distributive law now gives that MM ĎM .

Therefore M is a ring. Since M is constructed from the elements in AYB,
it must be a subset of xAYBy, but xAYBy is the least ring containing all the
elements in AYB. This forces M “ xAYBy. It is clear that A`B Ď xAYBy,
and thus xA ` By Ď xA Y By. It is also clear that A Y B Ď A ` B, so that
xAYBy Ď xA`By. This forces xAYBy “ xA`By “ C

Therefore M “ C so that rA,B,Cs “ 0Ψ, and the proof is done.

Corollary 5.8 (Artin’s theorem). Let a, b P Ψ. Then the ring xa, by is associa-
tive.

Proof. The single element sets tau and tbu are clearly A-sets. Hence, by Theo-
rem 5.4, xay and xby are A-rings. Theorem 5.6 now gives that the ring xxay`xbyy
is associative. It is clear that xa, by Ď xxay`xbyy, so that xa, by is associative.

Now we are ready to state and prove the main result of this section.

Theorem 5.9 (the Artin-Zorn theorem). Let Λ be a finite alternative ring with
identity 1Λ in which every nonzero element has a multiplicative inverse. Then
Λ is a field.

Proof. Let a, b, c P Λ. Then the ring xa, by is associative by Artin’s theorem.
Therefore it is a finite division ring, which is a field by Wedderburn’s theorem.
The field F “ xa, by contains a primitive element x which works as a generator
of F zt0Λu. It follows that xa, by “ xxy. Therefore xa, b, cy “ xx, cy, so that
xa, b, cy is a field. This forces ra, b, cs “ 0Λ for all a, b, c P Λ, which means that
Λ is an associative ring. Hence it is a finite division ring, which is a field by
Wedderburn’s theorem!
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6 Examples

We shall give examples of infinite division rings that are not fields and infinite
alternative rings that are not associative. We will use so-called Cayley-Dickson
process. At first we need a definition.

Definition 6.1. Let F be a field. Then K is a nonassociative F-algebra over
F if K is a vector space over F and there is a multiplication K ˆK Ñ K with
pa, bq ÞÑ ab which is F-bilinear, which includes that αpabq “ pαaqb “ apαbq for
all α P F and a, b P K.

We now let K be an nonassociative F -algebra with dimension n. An involu-
tion in K is a linear operator, denoted by overline on the elements, that satisfies
xy “ y x and x “ x for all x, y P K. In this case we also assume that x` x P F
and xx P F for all x P K. We fix such an involution.

Now we construct an F -algebra L of dimension 2n as the set of ordered
pairs pa, bq where a, b P K, where addition is defined as pa1, b1q ` pa2, b2q “
pa1 ` a2, b1 ` b2q, and multiplication as

pa1, b1qpa2, b2q “ pa1a2 ` µb2b1, a1b2 ` a2b1q

for all a1, a2, b1, b2 P K, and where µ P F zt0F u is fixed. It is easy to show that
1L “ p1K , 0q and that K 1 “ tpa, 0Kq | a P Ku is isomorphic to K. The element
v “ p0, 1q P L satisfies v2 “ pµ, 0Kq, which can be viewed as µ P F . With this
defined, we can think of L as a direct sum and write L “ K 1` vK 1. Identifying
K 1 with K we can write pa, bq P L as x “ a ` vb, and then the multiplication
can be written as

pa1 ` vb1qpa2 ` vb2q “ pa1a2 ` µb2b1q ` vpa1b2 ` a2b1q.

When x P L satisfies x “ pa, bq “ a` vb we can define x “ a´ vb. It is easy
to show that this now will be an involution in L.

When we in this construction let n “ 1, K “ F “ R, µ “ ´1, v “ i and
x “ x for x P R it follows that we get L “ C where the involution in C is the
normal conjugate. Since this can be viewed as a construction of C, we write
µC “ ´1 and vC “ i.

If we now let K “ C, but still F “ R, we will get L “ H (The quaternions
defined in Section 24 in [2]) by this construction, when we let µH “ ´1, vH “ j
and vHp´iq “ jp´iq “ k. We have that ij “ ivH “ pi`vH0qp0`vH1q “ vp´iq “
k. We also have that ji “ vHi “ ´vHp´iq “ ´k. By similar reasoning we get
all the relations in the definition of H.

Since ij “ k ‰ ´k “ ji, we have that H is not commutative. It is shown
in Section 24 in [2] that H is a division ring. Therefore the quaternions is an
example of a division ring that is not a field. Therefore Wedderburn’s theorem
is only valid in the finite case, and it really makes sense to talk about fields and
division rings as different mathematical structures in general.

If we now let K “ H, the construction gives us L “ O, the so-called octonions
or Cayley numbers.

On page 44 in [8] there is a proof of the next proposition.
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Proposition 6.1. Let K and L be the F -algebras defined as before. Then K is
associative if and only if L is alternative.

Since H is associative, Proposition 6.1 gives that O is at least alternative.

Proposition 6.2. The octonions O is not associative.

Proof. Since H is not commutative, there exist some q1, q2 P H so that q1q2 ´

q2q1 ‰ 0. Therefore

rvO, q2, q1s “ pvOq2qq1 ´ vOpq2q1q “
`

0` vO1qpq2 ` vO0q
˘

pq1 ` vO0q ´ vOpq2q1q

“ p0` q2vOqpq1 ` vO0q ´ vOpq2q1q

“ vOpq1q2q ´ vOpq2q1q

“ vOpq1q2 ´ q2q1q

‰ 0.

This gives that there exist infinite alternative rings that are not associative,
so that it surely makes sense to distinguish between alternative rings and normal
rings in general.
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