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Abstract

In this thesis, a holographic model for quantum chromodynamics (QCD) is used to estimate
the electromagnetic contribution to the kaon mass difference. The principal ideas of the
model are inspired by the AdS/CFT correspondence, which is believed to be exact. The
calculation is first performed theoretically, highlighting the expansion of the result into a
diagrammatic structure referred to as Witten diagrams, and similar to that of Feynman
diagrams of perturbative quantum field theory. To this end, several relations between
the propagators are derived. An outline of the full theoretical calculation is given before
proceeding to attempt to evaluate numerically the electromagnetic mass difference to first
loop order. This calculation is done in Euclidean space, and the results are fitted to
analytical formulae to extrapolate to Minkowski space. The final values are off by several
orders of magnitude, which is believed to be in part due to an unidentified numerical glitch,
but the overall expected physical behaviour, near the mass pole, is reproduced correctly
by the model.



Popularvetenskapligt sammanfattning

Quantum field theory is the framework of the very successful Standard Model of particle
physics, our best description yet of the behaviour of the elementary particles that we be-
lieve our world is made up of. It is therefore the language in which the subjacent ideas to
this theory are univocally expressed, without the disputable interpretations that translat-
ing to our normal language requires. The Standard Model is split up into different sectors
that each describe one or more of the four currently accepted fundamental interactions of
nature. The two most important sectors are the electroweak sector and quantum chromo-
dynamics (QCD). The electroweak sector is a unified theory of the electromagnetic and
weak interactions, the first of which is responsible for cohesion of matter on our scale, and
the latter can be used to explain radioactive reactions. Quantum chromodynamics, on
the other hand, describes the strong-interaction responsible for the cohesion of the atomic
nucleus.

Now, understanding how the world works on the scale of elementary particles may seem
something of a curiosity at most, but it is exactly those theoretical advances that lead us to
many of the electronic devices that are currently pullulating in our everyday lives. Besides,
some of the large scale particle accelerators that we use to study this science have found
applications in all sorts of unrelated domains, even in medicine!

Unfortunately quantum field theory is not perfect: there are practical issues that make
some direct calculations extremely difficult; this is especially the case for QCD. In light
of this, physicists often need to be creative in finding other ways to get at results. In
particular, it is sometimes possible to find a way to map a difficult problem onto another,
if possible, simpler one. When this is possible the problems are said to be dual; a simple
example of this can be found in many optimisation problems, where minimising problems
can be transformed into maximisation problems and vice versa.

Such an approach is adopted in this work, where we make use of an extension of the
so-called AdS/CFT correspondence proposed by Juan Maldacena in 1997. In its original
form, it relates a theory of gravity to a quantum field theory. In practice, this means
that one can do calculations in the theory of gravity and deduce results in the quantum
field theory or vice versa. As of yet, the correspondence is still formally at the stage of
conjecture but given the empirical evidence for it, physicists would be extremely surprised
if it turned out to be false.

Unfortunately however, the above correspondence cannot be exploited in its original
form. This is because it postulates a relationship between two very particular theories pos-
sessing extremely stringent symmetry properties. Whilst symmetry often helps simplify
the resolution of a problem, those in question here are not shared by realistic theories. For
instance, the symmetry properties of these theories would forbid the existence of a mass
scale; which is manifestly false. Nevertheless, some physicists hope that the correspon-
dence still holds, at least in an approximate form, if some of the symmetries are removed
in someway so that the resulting field theory displays characteristics of one of the more re-
alistic theories, namely in the case of this thesis, quantum chromodynamics. Two kinds of
approaches are possible at this point, the first, which is theoretically more satisfying, would



be to propose a scheme describing explicitly how the symmetry should be broken and then
show that the resulting theory has all the characteristics of quantum chromodynamics; this
however is extremely difficult with our current understanding of the AdS/CFT correspon-
dence. The second approach is much more phenomenological: it consists in starting from
QCD, postulating that a correspondence holds by providing a so-called “dictionary”, and
then fitting parameters in the model to reproduce known experimental/ theoretical results;
the model used in the present work was obtained in this way. The aim of this thesis is to
use a model, obtained using the phenomenological approach described above, to calculate a
particular physical observable known as the ‘kaon electromagnetic mass difference’ in order
to ascertain whether the prediction differs from other models. In turn, this could allow us
to understand more about the workings of the strong interaction and provide further ways
of testing the extremely successful Standard Model, hence pushing back in a tiny way the
boundaries of human ignorance.
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Preface

This thesis is essentially organised into four main sections. The first is a brief introduction
to the AdS/CFT correspondence, of which a large part is dedicated to the study of anti-de-
Sitter (AdS) spacetime. The main aim was to understand, in more precise terms, what is
meant by the boundary of anti-de-Sitter spacetime and in what sense this boundary could
be thought of as flat Minkowski spacetime. It also seemed interesting to distinguish between
the Poincaré Patch and global AdS spacetime; the model used in this thesis is restricted
to the Poincaré Patch, but there are extended versions of the AdS/CFT correspondence
on global AdS spacetime. Following this is a brief review of some of the arguments that
establish the practical form of the AdS/CFT correspondence on which the philosophy of
the AdS/QCD model is based.

The second section discusses the model used in the work, reproducing some of the
main arguments to justify its postulated form and highlighting some of the freedom one
has in the construction. It is then described how to use the model to calculate the kaon
electromagnetic mass difference.

The third section outlines the theoretical calculation of 4-point functions using the
holographic model and discusses the diagrammatic structure of the obtained expression.

Finally, the fourth section presents the numerical results of the calculation of the kaon
electromagnetic mass difference.



1 Introduction

1.1 Overview

The present work is a continuation and extension of [1,2]. The main goal was to calculate
the electromagnetic contribution to the kaon mass difference, in the holographic model
for quantum chromodynamics (QCD) of |3-5], by generalising the methods used in [6] to
calculate 4-point functions in the scalar case. The electromagnetic mass difference itself
is interesting for precision calculations, where it is fruitful to separate out the different
contributions having different origins. A large part of the problem of calculating the
kaon electromagnetic mass difference, reduces to the effective computation of the non-

perturbative diagram in figure [I} y

K K

Figure 1: Kaon electromagnetic self-energy diagram

Currently, there is no known method for extracting the information contained in the
shaded circle of diagram [I]| directly from QCD alone, and it is therefore necessary to resort
to different models, like Chiral perturbation theory, to obtain such results; this was done
for example in |7]. In this thesis, a holographic or “AdS/QCD” model will be used to
model the non-perturbative physics.

The principal theoretical idea of this work and such models stems from a conjecture
formulated by J. Maldacena [§] in 1997 in the context of String Theory, known as the
“AdS-CFT correspondence”. In its strongest form, the conjecture postulates a full duality
between string theory, in the background AdSs x S°, and a conformal field theory (CFT)
in 4-dimensions. For this reason, it is considered to be a realisation of the holographic
principle [9], as one can regard the 4-dimensional theory as “living” on the (conformal)
boundary of the 5-dimensional anti-de-Sitter (AdS) spacetime. This type of phenomena
is not totally foreign to mathematics and physics; one can notably cite Cauchy’s integral
formula for a holomorphic function f on a domain D of the complex plane:

Vzo € D, f(z) = L ) dz (1.1)
21t Jop 2 — 20

The formula shows that the information about the function inside the domain is actually
contained on its contour, despite the difference in dimensions. From a practical point of
view, the interesting feature of AdS/CFT is the fact that weak coupling calculations in one
theory are strong coupling calculations in the other; on one hand, this makes the duality
difficult to check, but, on the other, it means that if it holds then one can use perturbative
methods in one theory to deduce non-perturbative results in the other. To date, however,
there is no formal proof of Maldacena’s conjecture, and it is beyond the scope of this text
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to attempt to explore that aspect of it. Nevertheless, one can note that recently numerical
tests of the conjecture, like those in [10,|/11], have provided compelling evidence for it. In
these articles, calculations are done for quantum black holes and good agreement is found.

Maldacena’s conjecture suggests that certain quantum field theories may be holographic
duals to higher dimensional string theories, but it should be noted that the theories on both
sides of the correspondence are highly symmetric. On one hand, anti-de-Sitter spacetime is
a maximally symmetric solution to Einstein’s field equations, and, on the other, conformal
field theories can be thought of as fixed points of the renormalisation group and therefore
possess, in particular, the very stringent property of scale invariance; a property that is
shared by no realistic field theories. It is hence quite unclear whether such a principle could
be generalised to less symmetric field theories. There are at least two ways to explore this
possibility, one can either attempt to break some of the symmetries of the theories in the
correspondence and attempt to derive more realistic field theories, or, one can start from
a realistic field theory and attempt to guess the dual string theory. The second approach
has, up to now, been the most fruitful and many calculations have been performed in QCD
using so-called holographic models. It turns out that QCD is a particularly good candidate
for testing this hypothesis as it is approximately conformal in the high energy limit; this
gives an idea of what a dual theory may look like in this limit. Furthermore, from the
point of view of QCD, exploring this hypothesis is particularly interesting as it provides
alternative models for accessing non-perturbative results using well known methods.

This text begins with a brief review of the ideas of the AdS-CF'T correspondence before
moving on to describe the holographic model that will be used to effectively perform the
calculation. This will be followed by an overview of the theoretical calculation carried out,
and, finally, the numerical results shall be discussed.

1.2 AdS space-time

The main setting for the calculations that follow is the so-called anti-de-Sitter (AdS) space-
time, which appears on the string theory side of the AdS/CFT correspondence. It can be
defined in several ways, all of which give interesting insights into its nature; the first of
which is to see it as a solution to Einstein’s equations.

As a solution to Einstein’s equations AdS, can be characterised as the homogenous
and isotropic solution to Einstein’s equation ((1.2)) in d dimensions (the indices M, N run
through {0,d — 1}) with negative cosmological constant (A).

GMN + AgMN =0 (1.2)

From a purely geometric point of view, it is a maximally symmetric spacetime with
Lorentzian signature and negative Ricci scalar or scalar curvature. Such spaces have con-
stant sectional curvature and, as it can be shown that the curvature tensor takes the special
form:

R
Ryvas = K-(JuaGus = GusGva)s K = dd—1



where d is the dimension of the manifold and R is the Ricci scalar. A proof of this result for
manifolds with Euclidean signature (+,+, +, +) can be found in [12]] Its relevance is that
it shows that maximally symmetric spacetimes can be classified simply by their dimension
and the sign of the Ricci scalar. Defining AdS space in this way puts the emphasis on the
symmetry properties of AdS,; space, notably that it has a global SO(2,d — 1) symmetry;
this proves to be an important feature that supports the plausibility of the AdS/CFT
correspondence to be discussed in a future section. In this thesis, the convention for the
Lorentzian metric signature will follow that of particle physicists, i.e. (+,— — —).

As an embedded manifold A convenient way of studying and visualising the geometry
of AdS space is to embed it into flat space with one extra time-like dimension; the main
advantage is that many of its properties can be seen directly by calculation. It can, in that
space, be defined as the set of points M that satisfy:

ey

|OM]2 = L2 (1.3)
where O is an arbitrary origin for the affine spacetime and the constant L is related to
the Ricci curvature tensor b: L? = —@. For example, the surface AdS; can be

embedded into a 3-dimensional Minkowski spacetime with two time-like directions (&, €5)
and one space-like direction (7). Choosing an orthonormal basis for the associated vector
space (€, €1, €3), and denoting by (X° X', X?) the coordinates of a point M in the frame
(0, €y, €1, €3), then equation can be rewritten:
LX) = (X 4+ (X7) =1 (14)
The reader will without a doubt recognise as the equation for a one-sheeted
hyperboloid in 3 dimensions; it is represented figure This provides some geometric
intuition about AdS spacetime: pictorially, the fields and objects under study will be
constrained to live on a higher dimensional hyperboloid. More importantly, from (|1.3)) it
can be seen directly that the isometry group is O(2,n — 1), as O(2,n — 1) is by definition
the group of transformations of Minkowski spacetime that leave the Minkowski metric, and
thus distances, invariant. The connected component containing the identity is SO(2,n—1)
and AdS space is therefore also invariant under that group.

1.2.1 Local coordinates, global parametrisations and metric

In order to write the metric of AdS, space it is necessary to find solutions to (L.3). To do
this it is convenient to first rewrite (1.3) with the canonical coordinates (X, ..., X4) of
the embedding Minkowski space:

% ((X0)2 Sy (xR (Xd)?) —1 (1.5)

=1

'The result differs only in the order of the indices: R0 = /ﬁ.(gwgp# — gwgpl,)
2In the following L will be referred to simply as the curvature, in virtue of this formula



Figure 2: One-sheeted hyperboloid £ ((X?)? — (X*)? 4+ (X?)?) =1

In this work we will use the solution which define the so-called Poincaré coordinates:

L2 2
X0=§<1+%(f2—t2+L2))
Xizrz forie{l,...,d—2} (1.6)
2 2
Xd-lzé’— <1+%(f2—t2—L2)>
T
'
xi==1
L

r>0teR = (z', ..., 29%) e R¥?

In these coordinates the metric of AdSy then reads:

2 2

L r Y
ds* = —ﬁdTQ + ﬁ(ﬂuudx“dx )
where 7, is the usual (d —1)—dimensional Minkowski metric with signature (+,—,..., —)

Often, and as will be done in this work, one makes the change of variable z = LTQ so that

the metric becomes: )

L
ds* = ?(n,wdx“dx” —dz?) (1.7)
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These coordinates do not, however, cover the whole of AdS spacetime but only an open
set referred to as the Poincaré patch. This will nevertheless be sufficient in this work where
an artificial cut-off of spacetime will be introduced. From it can be seen that the
Poincaré Patch is, topologically, “just” warped Minkowski spacetime with an extra spatial
dimension denoted z. Moreover, in the z-coordinate has been distinguished from the
other spacetime dimensions. This notational convention will be maintained throughout
this thesis work, more specifically: Greek indices will be used to denote the first (d — 1)-
coordinates and capital roman indices will be understood to contain the z coordinate. On
many occasions, it will be preferable to introduce the short-hand, ny,, so that the metric
can be written:

(1.8)

1.e.

where gprn is the metric of AdS; and n,/y is the metric of d-dimensional Minkowski space-
time.

Global parametrisation: Despite the Poincaré patch being sufficient for this work,
in order to study the global structure of AdS-spacetime it is more convenient to use a
more natural solution to (1.5)) which is a generalisation to d dimensions of the standard
parametrisation of a hyperbola x = cosh(t),y = sinh(¢),t € R:

X" = Lcoshpcost (1.9)

X?= Lcoshpsint (1.10)

X' =LQqsinhp i€ {1,....,d—1} (1.11)

T€[0,2n[,p >0 (1.12)
d—1

Where the Qg;; must satisty Z Q?l,i = 1, or, in other words, parametrise a (d — 1)-
i=1
dimensional hypersphere. A solution can be defined by induction on the dimension d:
QQ,I = COS 91, QQ’Q = sin 01 ifd=2 (113)
QdJrLZ' = Qd,ifl sinfy, 1 € {1,...,d— 1} Qd+1,d = cosby, ifd>2 (114)

With this parametrisation, the metric of AdS space-time can be shown to take the

following form:
ds* = L*(cosh? pd7? — dp? — sinh® pdQ2_)) (1.15)

Where, dQ? denotes the metric of the d-dimensional unit sphere, defined iteratively by the
following equations dQ? = d;, dQ2,, = d63_, sin® 6,,,dQ23.
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1.2.2 Conformal boundary

Given the above definition of AdS space the more mathematical reader may have realised
that it is a manifold without boundary as it is locally homeomorphic to an open set of some
R™. This would not be true if it had a boundary point in the usual (intuitive)ﬂ sense, as we
would fail to find an open neighbourhood around that point that would be homeomorphic
to R™. It is therefore natural to wonder what is meant by “boundary” in the case of the
AdS/CFT correspondence.

In short, the term “boundary” will be used to denote the “infinitely far away”, i.e. for
example, in the global coordinates (7, p, ;) defined above, when p — oco. Interestingly, it
can be shown in these coordinates that in AdS Space it is possible for a light signal to
reach this boundary in finite observer time (for a stationary observer at some p = py); this
corroborates the idea that a theory on such a background might be holographic. In order
to study this boundary, which, in the case of AdS space and in a sense to be defined in the
following, is Minkowski spacetime, it is convenient to conformally compactifyf] spacetime;
this procedure is in fact required to properly define global conformal transformations on
Minkowski space-time.

Conformal compactification The main idea of conformal compactification is to at-
tempt to study the asymptotic behaviour of a Lorentzian manifold by deforming it in
such a way that angles are preserved and such that the “infinitely far away” is brought to
a finite distance; in particular the topological and causal structures should be preserved.
Mathematically, this amounts to mapping a semi-Riemannian manifold (M, g) into another
(N, h) using a conformal map ¢ i.e. a map that has the property that there is a function
Q: M — R, such that:

Qp)gp(Xp, Yp) = ) (dgp(Xp), ddp(Y3))

for all vector fields X,Y and points p € M. Having done this, the “points at infinity” can
be adjoined to spacetime as they are now at a finite distance, the added points will be
referred to as the conformal boundary. It is interesting to note that the above procedure
is by no means uniquely defined and there are a whole class of conformal transformations
that are possible to achieve this aim.

Minkowski spacetime In order to understand the above it is informative to look at the
case of (1+1)-dimensional Minkowski space time for which the metric is:

ds* = dt* — da? (1.16)

The first step is to perform coordinate transformations so as to obtain coordinates that
are finite in extent (this is always possible using the function arctan) and such that the

3Manifolds with boundaries are modelled on the half-space H" = {z € R", z,, > 0}
4The term compactification is a bit of a misnomer, as the obtained manifolds may not necessarily be
compact in the usual topological sense
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metric has an overall factor (which will be singular at the points that map to infinity) that
can be removed. For Minkowski space time, the standard approach is to switch to “light
cone coordinates”, defined by:

u=t—xv=t+zx (1.17)

after which the metric becomes:

ds* = dudv (1.18)

The coordinates are then made finite in extent by the further coordinate transformation:

u=tanwu,v =tan?v; w,0 €] —

[ (1.19)

| N

™
92 )

after which the metric is:

1
ds® = —diidd (1.20)

 cos2 i cos? ¥

The overall factor can be removed by a conformal transformation and the resulting
metric is: d$* = dad?o. This new metric is regular at the boundary +/ — %, where the
physical metric would be singular.

To represent the above, one can draw a so-called “Penrose diagram” for Minkowski
spacetime which is represented in figure , where we have introduced # and ¢ such that:
4 =1t—20=t+7;d5 = df> — d#%. The diagram represents the conformally deformed
Minkowski spacetime and allows in particular to visualise infinity.

A Timelike infinity

Distant future

«Lightlike infinity »

Distant
spacetime

o Distant

! p» Spacelike infinity
spacetime

Distant past

Figure 3: Penrose diagram for (1+1)-dimensional Minkowski space in the & —# plane. The
coloured dots and the edges of the diamond are the points at “infinity” that have been
appended to the conformally deformed spacetime

For general d-dimensional Minkowski space-time, the procedure is quite similar with
the exception that we use a positive r coordinate. The final result is essentially the same,

13



except that only half of the diamond is retained (due to the restriction » > 0) and each
point in the diamond in the 2D diagram represents a sphere. The reader can refer to [13]
for a full treatment.

anti-de-Sitter spacetime Now we are familiar with the ideas of conformal compactifi-
cation, we can look at what happens for AdS space-time. Recall that in global coordinates
the metric takes the following form:

2

ds? =
cos? 0

(dr? — d#* — sin?0dQ3_,)

s
5
perform a conformal transformation in order to remove the factor %, and note that on
the boundary the metric is:

In these coordinates the boundary is situated at 6 = To conformally compactify, we

ds* = dr? —dQ2

which is conformally compactified d-dimensional Minkowski spacetime. It is in this sense
that the boundary of AdS space will be considered to be Minkowski space-time. In Poincaré
coordinates, the conformal boundary discussed here is situated at z = 0.

Physics in AdS space One final remark can be made regarding the AdS geometry as
it has been introduced: as one can see from figure [2} it allows for closed time-like curves.
Physically, this would lead us to run into causality issues and all of the paradoxes that
follow. The issue is nevertheless easily circumvented: instead of considering AdS space as
above, we can “unwind” the time axis by considering the universal cover of AdS space. This
amounts to allowing 7 to take values in all of R, without identifying points, i.e. according
to the points of coordinates (7, p,6;) and (7 + 27, p, §;) should be the same point, to
“unwind” the time axis, one should consider these points to be distinct. Except from in
this chapter, no further distinction will be made between AdS and its universal cover and
it will always be understood that we are referring to its universal cover.

1.3 Maldacena’s Conjecture

The strongest form of Maldacena’s conjecture stated in the introduction will not actually
be required for the calculations in this work as the aim is to use it to determine a non-
perturbative result of a given field theory. It will therefore only be necessary to work in
the low-energy limit of the string theory where it reduces to supergravity. In this case, the
AdS/CFET correspondence postulates equivalence between a strongly coupled conformal
field theory and a weakly coupled supergravity theory. Moreover, as the calculations will
only be done to tree order, the classical equations of motion for the fields will be sufficient.
Before proceeding, a few words should be said on “conformal field theories”, for a full
introduction, the reader can refer to [14,/15]. Conformal field theories are field theories on a
flat space background with the property of being invariant under conformal transformations
of spacetime as defined in In order to determine the symmetry group of the theory it

14



is actually necessary to conformally compactify Minkowski space-time in order to be able
to define global conformal transformations [15]; the interesting point and a vital ingredient
underlying the ideas presented in this chapter is that the symmetry group of a conformal
field theory in d dimensions is the same as the isometry group of AdSy,1; this helps to
motivate some of the identifications made in the following. The reader will find in recent
books such as [16}[17], a pedagogical review of some of the heuristic arguments used to
“derive” the conjecture that will be not covered in this text. It will, however, be necessary
to state the practical form of the correspondence, which is the object of this section.

1.3.1 Holographic dictionary

The set of rules that allow us to relate objects from the two different theories will be
referred to as the “Holographic dictionary”. In AdS/CFT, operators in the conformal field
theory will be associated with fields in the supergravity theory with mass determined by
the relation: 1
T=E(AA=(d=1))+pp—(d=1)) (1.21)
where d is the dimension of the AdS space, L is the curvature of the AdS space, p is the
tensor rank of the operator, which can be thought of as being related to its spin, and A is
the conformal dimension of the operator, which, in turn, is related to its mass dimension
through dimensional analysis. The conformal dimension of the operator describes how it
behaves under scaling, for instance, for an eigenfunction of the scaling operator [16] we
have the following transformation rules:

m

T — A\ (1.22)
¢(x) = ¢'(x) = A\2¢(\x) (1.23)

In the scalar case, equation (|1.21]) can be derived by solving the Klein-Gordon equation
(O + m?)¢ = 0 and studying the solutions. In the Poincaré patch:

22 L4

24 1 _
3M(9MN\/§3N) = EUNMC{)M(E;@V) =2 (2277“”@81, — 249,22 dﬁz)

1
NG

So the Klein-Gordon equation becomes:

D:

220" 9,0,¢ — 290,2°790,¢ + m*L* ¢ =0

Performing a partial Fourier transform in the first 4-coordinates:

(—22k® + m*L?)p — 290,220, = 0

or:

(=222 4+ m’L2)$ — 2(2 — ). — 220.0.6 = 0
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This equation closely resembles Bessel’s equation: z2y” +zy’ + (22 — o?)y = 0, and can
be brought to this form via two ad-hoc change of variables:

z=kz
which removes the k2
(=22 + m2L?) ¢ — (2 — d)D:p — 320:0: = 0
Followed by:

~ d—1

¢p=271

The equation for v is then the Bessel equation:

_1)\2
(32 — m2L% — (d 41>

The two Bessel’s functions (or modified Bessel’s functions for k% < 0) J,, K, are two

Y+ 2 059 + F20:050

linearly independent solutions for 1, thus ¢ is some linear combination of 2z J,((k2)2z)
and Z%Ka((kz)%z). The asymptotic behaviour of ¢ is then: ¢ ~ cp2®* fi + 122 fo:

1
part of the solution is non-normalisable’] at the boundary®} Nevertheless, it should not be

discarded as it defines a field on the boundary by fy(k) = lim._,o ¢(k, 2)z=2~, or in position
space fo(z) = [ % fo(k)e=%=. The following reasoning shows how this operator should

transform under scaling:

where Ay = S4/m2L? + (=1 " For large enough m2, it can be shown that the ¢, 22 f,

T -A_ _ 7 —A_ —1\—-A_
fO()‘m) - ll_{% qﬁ()\x, Z>Z - E_E%A (Z)‘ ) ¢()\.’L’, Z)
= lim A2 278 oAz, A2 = A2 fo(x)
z'—0 ——
=5(z.')
given the

symmetry group
of AdS space

fo can be interpreted as the source for the corresponding operator O in the field theory
on the 4 dimensional boundary; it should be renormalised so as to make the integral finite.
Lastly, A is identified with the conformal dimension of . This final identification can be
elucidated by the following heuristic argument |18|. First of all, to control the singularities
in AdS space when z — 0, the usual limiting procedure is applied, i.e. a small cut-off Ly or

5A solution is said to be normalisable if the action is finite when evaluated on this field
2

D
6This is not always true. As discussed in [17], there is a mass regime, namely e < m?L? <

2
——+1; D =d—1, where both solutions are normalisable and there are two consistent ways of imposing

boundary conditions on the fields
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¢ is introduced and is understoodd to be sent to 0 in the final results. As the action contains
terms of the type [__d%z (£)" ¢(e, )0 fdd (£ ) e2-¢oO(z), these should be
finite, which leads us to identify: O, ) = +(’)

The above therefore shows how the theories are effectlvely linked together, and it leads
to the further assumption that the partition functions are identical, i.e.

Zo|polcrr = Z|do)string

In the classical limit of the string theory the partition function reduces to e*[¢[¢o]], from
which it follows that the 4-dimensional n-point function of operators O; can be calculated
from the dual holographic theory via:

(QOu(m)... Onla) |0) = S

1.24
60,1(21) . 6d0n(Tn) bo1="=¢0n=0 ( )

In (1.24), the statd] |2) is the interacting theory vacuum state and it is understood that
all the source terms are set to 0 in the final resultfl This formula is the basis for all the
calculations that follow.

1.4 LSZ (Lehmann-Symanzik-Zimmerman) reduction formula

The AdS/CFT dictionary describes how to evaluate correlation functions of operators
O4,...0, in the quantum field theory using results from the dual higher dimensional
theory. In practice however, the objects of interest are in fact S-matrix elements. The LSZ
reduction formula is the tool from Quantum Field Theory that describes how to relate the
correlation functions to S-matrix elements. When the operators O; are field operators ¢,
the following relation can be derived from perturbation theory [19]:

[ dipeT ™ d*x, etiPnyn
<p1pn‘S|Q1Qn>:|:Z :

— O+ mZ)} . {@ — O+ )
x (QT{¢(x1) ... O(zn)d(y1) - - A(yn) } 1)
(1.25)

Interestingly enough, as remarked in [20], the only assumption about the fields that is re-
quired to derive that result is the fact that they can create one particle states, consequently,
the formula holds for any sequence of such operators (O;):

d*x e P d*x,, ePnn

(P3Pl S |p1p2) = { —77 (D1+m2)]..[i T(Dn+m2)
Q) T{O1(21)Os(x2) ... On(2)} Q) (1.26)

Here, the constant Z is a field renormalisation factor.

"This notation will be used throughout this work
8i.e. The derivative is evaluated at zero
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2 AdS/QCD model

In the previous discussion, the explicit form of the AdS/CFT correspondence, or so-called
holographic dictionary, was given in the low energy string theory case. However, as pre-
viously suggested, it is not directly applicable to realistic phenomenological theories like
QCD which do not possess the conformal symmetry present in the field theory of the cor-
respondence (such an invariance forbids, for instance, the existence of any mass scale like
that present in QCD). Nevertheless, under the assumption that such a duality may be
extended to other less symmetric theories, it is possible to construct models, inspired by
the above correspondence, to perform calculations to ascertain whether they can be used
to predict known or new results in QCD. The case of QCD is particularly interesting as
the theory is approximately conformal at high energy where the mass parameters become
negligible. Hence, if there is a dual theory, it is natural to assume, by analogy with the
conformal case, that the gravity background be of the form AdS; x X5 where X5 is some
compact manifold; in the following we will ignore expansions of the fields onto this compact
manifold. The background should however be modified in some way when z — oo to model
low-energy QCD; the 5th coordinate z of AdS5 being interpreted as an inverse energy scale.
The simplest way to do this is to introduce a cut-off at some z = Lq; this is known as
a hard-wall model and was first introduced in |21]. Different models have extended upon
this idea and have introduced different types of particles. The model used in this work was
first proposed in [3}/4].

With regards to the holographic dictionary of the theory, it is assumed that it takes
the same form as in the conformal field theory case; any corrections, for example, to the
conformal dimension A, which only really makes sense in the high-energy massless quark
limit and is necessary in determining the mass of the corresponding field, are neglected.

Once this has been postulated, the model is then constructed by choosing operators
from QCD and by writing the simplest possible Lagrangian for their corresponding fields.
The operators chosen in [3] are listed in table ; they are simply the quark bilinears. The

u
model in this work will account for 3 quark flavours ¢, p = [ d . The choice of the
S /LR
operators can be justified by the fact that they will have some non-zero overlap with the
states of low-energy QCD, so it will be possible to extract information about low energy
QCD processes using the LSZ theorem.

4D 5D | p | A | m?L?
qryut®qr | Ly | 1] 3 0
QrYyut*qr | Ry | 1) 31 0

q1.9Rr %X 0] 3 -3

Table 1: 4 dimensional operators and their 5D equivalents

In table [1| the ¢* are infinitesimal generators of SU(3) related to the Gell-Mann ma-
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trices by t* = %; the Gell-Mann matrices and their important properties are listed in
appendix [C| To write a Lagrangian, simple symmetry considerations are made: QCD has
an approximate global SU(3); x SU(3)g chiral flavour symmetry. In the 5-dimensional
theory, this should be promoted to a spontaneously broken gauge symmetry. The simplest
action, given in matrix form, encoding all of these components is then:

1
S = / d°x/gtr <(DMX)TDMX + %XTX — F(FL’MNFAL/[N + FR’MNFAI}N)) (2.27)
95

Where D is the gauge covariant derivative that acts on X according to:
Dy X =0uX —iLyX +iXRy
and FL Nﬂ is the field strength:
Flv = 0uLy — OnLas — i[Lar, Ly

The matrices Ly and Ry are defined by: Ly = L%t* and Ry = R%t", they are Lie-
algebram valued 1-forms which, in the fundamental representation of SU(3), is represented
by the set of all traceless Hermitian matrices. This implies in particular thaflT| L, = R%, =
0

The model has now at least one parameter for fitting to QCD: the constant gs. It can
be determined by calculating the vector current two-point function |3] and comparing the
result with the perturbation theory result in QCD. The result is:

B 1272
=N

9

where N, is the number of colours and will be taken to be 3 in this work.

2.1 Symmetry breaking and vacuum

The matrix X is, a priori, a general complex matrix and, following [3], can be parametrised
by X = e™(Xo+ S)e™. S and 7 are general Hermitian matrices representing respectively
the scalar and pseudo-scalar degrees of freedom. A priori, the matrix 7 contains a U(3)
singlet field, i.e. its 0th component need not be zero. In this work, however, the singlet
will be ignored. Xy, on the other hand, is the holographic equivalent of the V&CUUIDE; it

9FE . being defined similarly

19Tn mathematical literature, the Lie-algebra of SU(3) is often denoted su(3)

HTt can be noted that the “low-energy limit” of the string theory in the AdS/CFT correspondence is
related to a large N, limit in the field theory |16]. In this limit the anomalous currents are approximately
negligible and the flavour symmetry becomes an approximate U(3) symmetry; this means that we could
in principle keep the a = 0 components.

12 and is a function of z alone
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corresponds to the solution to the equations of motion when all other excitation fields are
set to zero, i.e. its components satisfy:

L3 L3
0, (;@Xo,ij) + 3;X0ij =0 (2.28)

The general solution can be shown to be of the form A;;z+ Bijz?’, where the matrices A
and B are determined by the boundary conditions at the IR and UV boundaries. From the
holographic dictionary, the general interpretation of the parameters is as follows: A;; is a
source term for X, and B;; is related to 1 point functions, like the quark condensate (gq);
in other words, A;; introduces a mechanism to mimic the explicit chiral symmetry breaking
in QCD by the quark masses and B;; introduces a mechanism to recreate the spontaneous
symmetry breaking. The interpretation of A;; as a mass-matrix follows from the fact that,
as noted in [16], adding $X¢ B 7.9 to the Lagrangian is equivalent to adding masses for
the quarks. Several approaches are possible at this point, for instance, as in [4], one can
introduce a potential on the IR boundary to fix the boundary condition at z = Lq; the
parameters are then determined by comparing to QCD and fitting to experimental results.
Alternatively, following |1], both A;;, M;; can be considered parameters to the model that
can be fitted to experimental data. The latter approach will be used in this work and the
approximation m, = mE will made such that the solution can be written:

v(2z) 0 0
0  w(2) O
0 0 ws(2)

1
Xo(2) = 5
with vy(2) = (mgz +0,2° g € {u, s},

The parameter ( = % is introduced as suggested in [4,22] so as to get the correct
scaling with the number of colours N..
Alternatively, on the basis (¢,) defined in appendix ,

1 1
XO(Z) = %(2% + Us) to + %(UU — US) tg (229)

Previously, in [1,2], the scalar degree of freedom S was neglected.

13This simplifies things slightly, but it would not be adapted for a precise calculation of the kaon
electromagnetic mass difference since it does play a role. Here however, our main aim is to ascertain
whether or not AdS/QCD models could produce correct results
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2.2 From AdS/QCD to the kaon electromagnetic mass difference

K K

AdS/QCD
Model

Figure 4: Kaon self-energy diagram

The AdS/QCD model described above provides the tools required to evaluate diagram
to first loop order. The diagram is reproduced in figure 4| for convenience. The expression
that this diagram represents can be written in the form:

12 [
2 J (@2m)*k?+1i0

K|V, (k)V,(—Fk) | K) (2.30)

WU — %Evud — %Ews.
The amplitude (K| V,(k)V,(—k)|K) is related to the four-point function:

(Q P(p) P (=p)Vulk)Vo (k) 1) (2.31)

via the LSZ theorem. The four-point function, on the other hand, can be evaluated using

the holographic model by means of (1.24). Through the correspondence table [1| one can
see that:

1
3 8
Ve (VH +\/§VH)
P+ % ac{4,56,7}

The “vector” field V" is defined by V' = %(LZ—{—RZ), and similarly an “axial” field is defined
by A% = (L% — RY).
This thesis will attempt to evaluate (2.30)) through the study of the function:

1) = 5 [ Gy @ PO pVat-)]9) (2.32)

To determine I1, one must begin by determining the 4-point function . To this end
the postulated holographic dictionary stipulates, through equation , that one must
perform a functional derivative on the action of the 5D theory with respect to the sources
fields 7, Vob, ., of the 4-D operators V, P. These source terms enter the problem as boundary
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conditions for the 5D fields when z — 0, or, introducing a small cut-off Ly to regulate the
theory, at z = Ly. The action therefore needs to be rewritten as a function of these sources.
This can be achieved through solving the equations of motion with the correct boundary
conditions, expanding in powers of the source fields. As previously stated, calculations in
the 5-dimensional theory will be performed to tree-order, which implies that the classical
equations of motion are sufficient in this case. The method is therefore the following:

1. Solve classical equations of motion in 5D theory with the correct boundary conditions
2. Express the 5D action S as a function of the boundary sources

3. Evaluate the functional derivative as prescribed by ((1.24))
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3 Calculating 4-point functions

In this section, we will outline the theoretical calculation of momentum space 4-point
functions of the form:

(Q P (p1) P* (p2) V" (p3) V""" (p4) 1€2) (3.33)

using the holographic model presented in the previous section. We introduce here the
notation P* and V; to denote the 4D operators corresponding to the fields 7* and V7
respectively. Since the AdS/QCD model action ([2.27)) contains an infinite amount of inter-
actions when expanded in terms of the fields 7, S,V and A, we must first determine which
of those are relevant. In fact, it will only be necessary to expand to order 4 in these fields
for the computation of four-point functions, as higher order terms will not contribute to
the functional derivative[”]

3.1 Equations of motion

The first step is to expand the action to order 4 in the fields; as the overall expression
is relatively long, the action will be separated into two parts: Siinetic and Sinter- Skinetic
contains all terms up to order 2 in the fields, whilst Siyer contains all interaction terms up
to order 4. With this notation the equations of motion will take the form:

(5Skinetic . 5Sinter

0X 0X

where X is any one of the ﬁelds{T_g]. Due to the large number of terms in Siyer, the two
parts will be treated separately.

3.1.1 ’Skinetic
It is shown in appendix , by direct expansion of (2.27)), that the kinetic term takes the

following form :

1 1
Skinetic = /d%\/g (§M$2VM’GVACZ - 4—92(va§ — Vi) (VMY e — Ny i)
5

1 v / 1
+59" On S O S 4 2™ r(On Xot ") Oy S* = S fXGV O S

1 abe MM’ cqay/b 3 aQa 3 a Qa
1 1
+5 M (Onm® — Ay ) (07 — AM) — 4—92(VMA‘}V — VyAG) (VAN — VNAM’a)>
5

(3.34)

14They will cancel when the derivative is evaluated at mg = Vo = Ag = Sp =0
Bor field components
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where f%¢ are the SU(3) structure constants defined in appendix The result of ‘wlg%mfor
the different fields is given in appendix [B.I It will also be practical to treat the compo-
nents of the fields V = V,e* + V,é" and A = A.e* + A, é" separately and to decompose
the projections of these fields onto (¢") into longitudinal and transverse parts, (cf. the
Hodge/Helmholtz Decomposition Theorem |23]) i.e.:

Ve =VE, + 0.8 WOV, =0 (3.35)
AL = A%+ 8,0 n"vo,A%, =0 (3.36)

Furthermore, the boundary conditions for the first four coordinates (o, 1, z2, 3) will
be assumed such that it is possible to perform a partial Fourier transform of the fields:

d4k etz _ WV v
f(x)—/(mr) Ff(R) | ke = ket = ke (3.37)

Introducing the above, and:

gaL> My

2727 f2
> B (z) = =—"

ol (2) = Z

z z

it can be shown that the equations of motion take the form:

Lo\ ol(@) | P& o pea Ky 0Sims G2
_ ) _ f 5 pfbedbye 4 o int g5
- <,zaz6 ) z & 223 JSX (2m) ik sVl L

af — k2. 1. - 92 0Sin k,k,

(3.38)

z L (5Vg*f
(3.39)
L*G3 toes éw fafC 195 0Sint
_2—23ff C@S Xg 8 Xcsa + (9 ff = ( 7T) fgf/* (340)
1 ~ ﬁf(Z) ~ N g k (SSmt
“aaf) (b — 7Y = (97)425 41
az< az¢) & A = e (3.41)
Bf _ Af 1 Af _ 495 6Smt kuka
> AMJ_ - 8 ;aZA,u,J_ - _(277) Z(SA;JC Nue — 12
(3.42)
Bl K287 oy g5 0Sin
k2 f 2 ¢ Q.
—k Lo+ ’6—827%f = +(27r)49f5§jf; (3.44)
z z
. K8 g S LD 105,
f 3 f_ Xego — int
0. (;azs ) + L (5 - ;> S 5 Xge = —(2m)* St (3.45)
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where it has been used that, for any real-valued field X:
oS [ d'z ... 08
5)6*(107 z) N / (27r)4e 60X (x,2)
The * denotes complex conjugation. Equations (3.41),(3.44)),(3.43]) and (3.38]),(3.40)),(3.39))
respectively can be shown to be linearly dependant and, in the following, as the chosen

gauge is such that A, = V, =0, equations ) and ( - Will be discarded Whilst

it is relatively clear that the lefthand sides (LHS) of equations and -
are linearly dependant, more work is required to show it for the LHS of - and
(13.39)).

Starting from the LHS of (3.40)), one begins by taking a further z-derivative:
1202 R afc k2 .
—0, =9 f0,8°X5 ) — 0. f I 9,.X55° —0,¢7
223 23 z

Or, after expanding out the derivatives:
L L afc .
_az( gSffbca Sb> Xc g5ffbca Sba Xc a ( = f L9 Xc) Sa
B g5 fafc
23 2

Using (2.28)) and the antisymmetry of the symbols f%¢, the expression becomes:
L2 3L%q2 afc . 2 R
_az ( 95 ffbca Sb> Xc 95 f2 nga + az (_azé-f)
z

2’5

9.X50.5% + 0, (%az{f)

Multiplying ((3.45) by 95 o and adding it to the above then yields:

L2 2 rafc . k2 . fchc k2 N fbe dbe
3 Js f2 nga+az< aé-f) f—( i) Sb f f g5XeX0£

25 2 23 25

Again, using the antisymmetry of %, the above simplifies to:

2 R 2,2 £fbcyc 1.2 fbc £dbe
0. (k—azé“f)+ R M LT f % g5X6XC§d

2 23
Furthermore as: —3 X§X{ fcak JF = [t Xo][t®, X,] and is only non-zero when a = b in
which case: [t%, Xo][t?, Xo] = —1 M3, the above expression is in fact:
b (Ca) BRI Kol
z 2 23 2

which is linearly dependent on (3.38)).

It can be checked explicitly using FORM and follows from gauge invariance that the
interaction terms satisfy:

; 581111: 58th - ffbc 5Sint
ot T a2 e
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3.1.2 Propagators

Solving the above equations exactly is a difficult problem due to the non-linear terms
coming from the interaction Lagrangian. Furthermore, for the purposes of this work, it is
also a necessary requirement that the dependence of the solution on the boundary source
fields appear explicitly in the solution so as to facilitate the computation of the functional
derivative. If the interaction terms were independent of the fields, then the problem would
be to solve a non-homogenous linear equation, which can be done using a Green’s function
technique. This leads to the idea of attempting to solve iteratively the above equations,
which is in very many ways similar to the perturbative expansions of usual quantum field
theory. To illustrate the method it is informative to study the more simple scalar case
studied in [2,6]. The action for this toy scalar model is:

1 m? A
_ 5 1 MN _ 2 4
S= /d T/ 29 O PONG B ¢ 24¢
from which we deduce the equation of motion:
2 Ag
(O+m)p = —gd) (3.46)

where [ = \/igaM(gMN\/ﬁaN@.

To implement correctly the asymptotic behaviour near the boundary a small cut off
Ly is introduced and is understood to be sent to 0 in the final results. The boundary
condition at Lg is then ¢(z, Ly) = Lopo(x). In order to completely determine the solution
a second boundary condition is required; the simplest being 0,¢(x, L1) = 0, which will be
used throughout this work. Dependence of the results on this second boundary condition
was explored in [3] where it was found that it had little effect on the final results.

For the iterative resolution two Green’s functions are defined: K and G, which will be
referred to respectively as the bulk to boundary and bulk to bulk propagators. They are
the solutions to the following systems of equations:

O+ m*)K(z,2',2) =0
K(x,2', Ly) = 6(x — 2’) (3.47)
0.K(z,2',L1) =0

2 / n _ 6(z—z")é(z—2')
(B +m?)G(r,2',2,2) = =5=7255

G(z,2', Lo, 2") =0 (3.48)
0.G(x,2',L1,2') =0

The bulk to boundary propagator will be used to set the correct boundary condition,
and the bulk to bulk propagator will be used to incorporate the interactions. The iterative
procedure is then defined as follows:

26



b1 (z,2) = /K(x,x’,z)Lo¢0(x)d4:U’ (3.49)
n>1: ¢pu(r,2)=0¢ — %/@G(z,x’, 2,2 (pn(2', 2))3d2 d s’ (3.50)

It is left to the reader to check that if the sequence converges then the limit will be a
solution to (3.46]).

A few more remarks are in order: firstly, as [J does not depend explicitly on z,
K(z,2',z) = K(x—2',0,2) and G(z,2,2z,2') = G(x — ', 0, z, 2’); in other words the prop-
agators only depend on the difference x — 2. Thus, the integrals over the variable 2’ can be
seen as convolutions with the functions K (z, z) = K (z,0, 2) and G(z, z, 2') = G(x,0, z, 2').
In particular this means that these convolutions will become products when performing
the Fourier transform on the variable z*. In the rest of this report, the ~ will be dropped
and the notations G(x, 2, z,2'); G(x — 2/, z,2") will be used interchangeably. Lastly, the
presence of the factor \/Lg in the definition of the bulk to bulk propagator is a convention
that is particularly useful for obtaining coordinate independent expressions and integrals.
As in this work only the Poincaré coordinates are used, this precaution will not be taken.

In the vein of the above example, the Fourier space bulk to boundary and bulk to bulk
propagators for the fields V', are naturally defined by the equations:

g, (k i - (30K, (k,2)) =0

(k Lo) _ (3.51)
3 K$ (k, L) =
MT_HG‘{Q(I{;, 2,z ) — 0, (%@G%(lﬂ, 2, z’)) =d(z—2)
Gk, Ly,2") =0 (3.52)

8,Go(k, Ly, 2') = 0

and similarly for K3 ,G% . In some cases, an analytic solution in terms of Bessel’s func-
tions can be found [1.2], but generally it will be necessary to resort to numerics.

The situation is slightly more complicated for the fields &%, 5% n* and ¢, as in the
chosen basis their equations are coupled. However, viewing the system of equations as a
matrix equation allows us to see that the Green’s “function”, if it exists, would be a matrix
of functions. This is best illustrated by the equations involving m and ¢, since there is no
mixing between components with different values of a, which is the case for S and &.

Starting with the bulk to boundary propagators, the aim is to find functions K¢,, Kg_,
K3, K7, such that: m, ¢1 defined by:

0\ _ (Kb Ki ) (4%
f K, Ki )\ %mg

K
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solve the homogenous equations associated with , with the correct boundary
conditions. The off-diagonal elements of K will be referred to as "mixed propagators”. The
correct boundary condition for the field 7 is in fact & 7r0 as, according to table |1 2X
corresponds to ¢;qr and the boundary condition was modlﬁed in as advocated by [22]

It can then be seen that K§,, K§ , KT,, K7 should be solutions to the following bound-
ary value problems:

0. (L0.K3,) = FE(Kg, — Kqy) =0

9. ( 9 K,‘id,) szﬁa(K% - Kg¢) =0

Kg, (k Ly) =1 (3.53)
Kiy(k, Lo) =0

0, K ok, Ly) = 0. K2, (k, L) = 0

9. (Lo.rg,) — “E(Ke, —Ke) =0

0. (Lo.K2,) — 2 (Kg, — K2) =0

K (k, Lo) = 1 (3.54)
Kgﬂ(k;,Lo) =0

0.K¢ (k,Ly) = 0.K¢, (k, L) = 0

\

Analogously, one finds that G§;, G3_, G, and G are solutions to the boundary value
problems given by:

0, (%?ZG;(ﬁ(k,z,z’)) (Gg¢(k: 2,2") = Gey(k,2,2") = 0(2 — 2/)

0. (£0.G24(k,z,2)) — (G¢¢(k 2,7 — G3r¢(k 2,7)) =0 (3.55)
Gg¢(k,L0,2’/) =0= Ga (/{5 L(), )

8ZG‘$¢(/€,L1, Z/> == 8 Ggr¢<k Ll,Z/) =0

0. (10.G(k, 2,2')4,) — T2 (G(k, 2,2') = Gk, 2, 2) = 6(2 = )
0. (2001 (k. 2,2) = FE (G (2, ') = Clte (k. 2,2) = 0

3.56
G;?w(k‘? L(], Z/) = G;ﬂ,(/{? Lo, ) 0 ( )
L angm(k, Ll, Z/) = 0ZG‘;M(I<:, Ll, Z,) =0
The iterative procedure then generalises in the following fashion:
¢ 1 (k,z) o (k, z)
n>1: ne > = ( !
B < 71'?1_’_1(]{5,2’) W%(kaz)
a a 2 4, g5 kd 681nt
+/dz’< Goolk,2,2") Gor(k, 2, 2) > m) L b 5250 | o o
Goyk,2,2) Go(k,z,2) _(277)495 3 .

where the vertical bar notation |ga ra 1. indicates that these expressions should be evalu-
ated at the specified fields and values of £ and z. Again, the off-diagonal elements G will
be referred to as mixed propagators.
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Finally, regarding S and £%, it can be seen from equations (3.38)),(3.45]) that one must
look at the values of f¢ for a given [ € {0,...,8} to ascertain how many equations are
indeed coupled. One finds that:

e S* couples with &£°
e 5% couples with &*

S6 couples with &7

S7 couples with £°

All €% and S°, a,b € {0, 1,2, 3,8} are mutually independent

The propagators can then be defined analogously to the previous cases, except that now
any “off-diagonal” propagators will mix different values of the gauge index a. No more
details will be given here as for the particular problem studied here it will be shown that
they will not be required.

3.1.3  Sinter

The interaction terms in the action can be determined by continuing the expansion of
to order 4. Terms remain manageable up to order 3 and the full calculation, although
tedious, can be performed by hand. For verification purposes, the calculations were also
performed using FORM. Not all of the terms are in fact required for the computation of the
process in diagram [I] and therefore, in order to keep the number of terms manageable, the
irrelevant terms should be identified and discarded. The four-point functions of interest
should contain two pseudo-scalar fields and two vector fields. Diagrammatically, to tree
order, there are only a small number of types of process (ignoring physical considerations)
that one can envisage, represented figure .

Vv T Vv T T T

AJV/7/S AJV/x/S
Vv (a) n n (b) \% \% (c) 1%

Figure 5: Interactions expected heuristically, no physical considerations taken into account.
The fields can be either the field or their derivatives

This suggests the types of vertices that should be kept in our expansion. However, due
to the fact that the equations for ¢ and 7 and £ and S are coupled, there are, a priori,
more 3-4 point vertices to consider than that which the naive analysis suggests. Indeed, the
expansion of A will contain factors of my and the expansion of S will contain factors of &.
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This means that, for instance, the two three-point vertices AAS, VV'S, or a 4-point vertex
AASS could actually produce valid terms. Nevertheless, for the calculation of diagram
only the components a € {3,8} are of any relevance for the external vector fields and for
these values of a there is no £, .S mixing.

Overall, the interaction terms contained in the theory are given in table [2 This table
should also be understood to define the coefficients \;.

Order 3 Order 4 Order 4
NGy Vay My N | \abedyraysb AMe ANd |/ MGG
AgPeDy Vig ADM AGN | \gbed 7 MO AG AN 9y mdM
)\gbc(?MANVMAN )\‘fngVJ& VY Mobgepd oy AM
)\ZbcaMANVNAM VMVNVMVN AMAMTF?T
)\gbcvjng”vac Ay Ay AM AN o, T
)\gbc’zaﬂaﬁbSc OymOM7SS A,

A2y OM Sorre oM ST S

AP A, Oy SAMzS
Ngbe QS AMb e OymTAMSS
Nbedp e AM O Ge V.S
)\zlzl{caMsavM,bSC 8M7TVM7TS
Nedy e oM e O SVM
)\‘fgcﬁMW“VM’bﬂc Vi AMrS
Aabey/a/Mbge Ay AMSS
Njge Aa AMbGe Vi VMSS

Table 2: Interaction terms : When specified, the coefficient )\; is an expression involving
combinations of X, f7* and d"/*; as not all terms were relevant not all of the interactions
were given labels. Their expressions are given in appendix

The interaction Lagrangian density Lier defined by Siyter = / d4x\/§£inter is then

simply the sum of all of these terms. After performing a Fourier transform on the first four
spacetime coordinates, multiplications become convolutions according to the transforma-
tion rule:

d4,A
A(z,2)B a:zr—>/ VA(k — K, 2)

Physically, this can be interpreted as momentum conservation since the above can be
rewritten:

d ., ) — A4k A4k AS(E 4 1 A VAR
/WAU{:,Z)A(/@ K, )—/(%)4 2y -(2m) (K + K — k)A(K, 2)A(K", 2)



3.2 Iteration

As all fields have been determined after a partial Fourier transform on the first 4 space-
time coordinates, it is more convenient to express the action S as a function of the Fourier
transformed fields. The momentum-space 4-point correlation function for operators O; is
given by:

(O1(p1)O2(p2) O3(p3)Oa(ps)) = /d4l‘1d4502d4$3d4$46i(pm+'"+p4“)<01($1)02($2)03($3)O4(ﬂ?4)>

(3.57)
Just like the position-space correlation function can be obtained from the action S of
the 5-dimensional theory by taking the functional derivative with respect to the operator
source, it follows that the momentum-space correlation function can be obtained from S
by taking functional derivatives with respect to the Fourier transform of the source field.
The relationship that follows from (3.57)) is:

5SS
06,1 (P1)095 2(P2)00% 3(p3) 005 4(Pa) $o,1=-=¢0,4=0

(Q]O1(p1)O2(p2)O3(p3) Oa(pa) |2y = (2m)"°

where, * indicates complex conjugation. Again, this derivative should be evaluated at 0

(all the source terms are set to 0 in the final result).

The action should now be rewritten in terms of the momentum space fields, that in
turn, should then be expanded in powers of the source fields by the iterative procedure
discussed in m Beginning with Syinetic, that is itself split up into a vector/scalar and
pseudo-scalar sectors, the result is:

» ak L (B —k . 1. A
A/7T . a a UV AQ,*
Skinetic - / (27T)4 /dZQ_gg ( AM,L(]{’ Z) - 82’ (;azAM,L(kv Z))) 77“ AV,L(k7 Z)

z

L ﬁaazﬁ'a(k7 z) 5ak.2 » - »
+2952> (82 ( z ) T > (7(k, z) — ¢k, 2)) | 7" (k, 2)
bomgk? (L gk, 2) - 70k, 2)) - 0. (20.6%(h,2) ) ) 6 (k. 2)
2g§ = 72 m ,Z ' > . ,Z ,Z
d'k L {kQ > rl d'k L [1 rl

+ 7o N4 0.2 —82 Pp* "‘/ — = pTazAa Az,*
/(271')4 29? z ¢ ¢ Lo (27T)4 29; 277 o, L L e
d*k L [p*, ] Ly
_/ (2m)* 292 [;aﬂ (=k, 2)m ““)LO
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N 4 a 2
v/S d*k L (a"—Fk" ., L, o vy ax
Skinetic - / (271')4 /dZ 2 ( Vu,J_<k7 Z) - az ;anM,J_(k? Z) T]“ VV,L(ka Z)

295 z
i 2 ot a _ 1 Fa . ggLQ abc yc Qb | Fa,x
borat? (T2~ 0, (10.82002) ) - B x| éne
1 L3 K23 L3\ k2X0L3
+5 (az( 9.5%) + (—23 + 3—5) Sa — fhact 02 gb) @
d'k n"L [1 rl / d*k k2L { ]Ll
+ 0. k) Ve (b, 2)|  + 0 (k
[ e [V k)| [ ke
L e b d*k [1L3 ., . &
|: a X S (O Z):| " _/(27'(')4 {55325 (—I{J,Z)S (k’, Z):| "

The boundary terms come from an integration by parts performed in order to make
the equations of motion appear explicitly in the expression. In this way, the final result
only contains interaction terms and boundary terms. It can be seen that the bulk kinetic
terms essentially reproduce all of the interaction terms after the use of egs. -,
- to - and (| - and the change of variable & — —k. The notable exceptlon
to this are interactions containing z-derivatives like A5 or A7, where a further integration
by parts is sometimes required to bring it to that form; this will produce extra boundary
terms. As before, when expressing Siyer as a function of the Fourier transformed fields,
all multiplications give rise to momentum conservation integrals such that it is a sum of
terms of the form:

/ d*k  d*k’ dAR”
(2m)® (2m)" (2m)?
/ d4/€ d4k’/ d4k,// d4k///

(2m)* (2m)* (27)* (27)°

In order to calculate a 4-point function of the form: (Qz*z*VV! | Q); formula
implies that relevant terms should be exactly of order 2 in the source fields Vj 1, &, and
order 2 in my. This indicates how many times the equations of motion should be used to
generate all of the required terms. Under the assumption that all the equations of motion
for the different fields are used simultaneously once per field and per iteration, then a total
of 4-5 iterations are required.

Finally, out of the above boundary terms the only ones that will be able to produce
relevant terms, under the above criterion for a 4-point function of the form , are a
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priori :
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The IR (z = L;) boundary conditions on the fields V,,¢ and 7 imply that only the
contributions at z = Ly contribute to the final expression.

3.2.1 Intermediate considerations

The iterative expansion of the action S as a function of the fields éo, ‘A/LO and 7, was
performed using the computer algebra software FORM. More than 2000 terms were gener-
ated. This highlighted a defect in the approach presented here: despite the fact that they
simplify and make expressions more readable, the constants \; (cf. table[2)) also hide many
of the possible cancellations that can occur. The simplest example of this, for instance,
is the fact that Ay,..., A\ are equal up to sign. Nevertheless, an attempt to perform the
whole calculation using FORM without introducing these constants produced even more
terms (~ 100000 !). Whilst it is not necessarily a problem that cancellations happen at
a later point in the calculation (when expanding the coefficients )\;), there are some cases
where it is important to know that the they occur before, for example, using a momentum
conservation Dirac delta function. In particular, this is the case for the terms containing
factors of k—I%(S(lﬁ + p1 + p2), in the case po = —p;. When calculating the 4-point function:

(Q 7 (p1) 78 (p2) V< (p3)V¥(py) |Q) this can only occur for terms containing A; or Ay4 as
can be seen from table 2 This is because, to produce such a momentum conservation
integral the two vector fields must be on the same vertex. The terms containing A4 are
quickly removed as it can be shown that: Vb,d, A3 = \§%¢ = 0. Using FORM, it was
verified that the A\; terms of this form also vanish when ps = —p; in virtue of, firstly, the
z <> 7/ symmetry in our expressions (as they are dummy integration variables and the
expression is symmetric in these variables) and, secondly, the antisymmetry properties of
A1. Due to these cancellations, it also transpires that the mixed propagators for S¢ and &°
are not required for this 4-point function. The expression is thus well defined in the case

P2 = —P1.
3.2.2 Functional derivative

In order to obtain the desired 4-point function, the functional derivative required is with
respect to the full vector field source Vj, so the following relations should be used:

N kuky\ Lov - ik, por
VJ_O,M = (nw/ - %) n %,U; 50 = ﬁn ‘/070 (358)

33



Up to this point, our expansion has been done in the general case where we assume
that the vector field has both longitudinal and transverse components. However, in the
4-dimensional theory and, at the very least for a € 3,8, despite our gauge choice in the 5
dimensional theory, there should still be a U(1) gauge freedom such that we can choose
to work in the Lorentz gauge where ‘70“ = Ao‘f . This choice is made in the following and
thus no further distinction will be made between V and V. This can be justified further
by the absence of physical particles contained in the longitudinal modes £%, a € {3,8}, as
can be seen from equation (3.38). Indeed, in the case a € {3,8} the mixing term and a*
vanish making the equation reduce to:

1 - ko 0Sim g2
0.7 ) = — 4 o Tt J5
% <23Z‘5 ) Cm) e 577 L

The bulk to boundary propagator is then trivial: K¢ = 1, and has no poles.

3.2.3 Diagrammatic structure - Witten diagrams

The final expansion of the 4-point function (QP%(p1)P*(p2)V}(ps)V5(pa)|) has a dia-
grammatic structure similar to that of Feynman diagrams in QED/QCD. These diagrams
are known as Witten diagrams and, in this expansion, are essentially of two types:

™ (w@@ (p3) Vi (m@r (p3)

Vi(p1) 7(pa) Vi(p1) 7(pa)
Figure 6: Types of Witten diagram : the diagram on the left will be referred to as Type I
and the one to the right Type II .

The momentum space Witten ruled™| are:
e The outer ellipse represents the boundary; the points on it are the boundary operators

e A line originating from the boundary and terminating in the bulk is a bulk to bound-
ary propagator.

— External lines with fields ¢ or £ should be multiplied by —ik,,
— Multiply by (—ik,) for each derivative 0,X (k)

16Tn these rules, the factors of L have been omitted. In our model its actual value is of no importance
and so the simplest choice (L = 1) was made. It is however relatively straightforward to determine what
they should be. They are produced by the metric related terms /g,g*”. The only subtlety is that one must

2
multiply by gf” instead of just g2 to account for the asymmetry between terms coming from the iteration

and those sitting directly in the action.
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e Any line between two inner vertices (like the wiggly line in @ is a bulk to bulk
propagator.

— Transverse propagators must by multiplied by a factor (77,“, — k%’;”) where k is

the momentum exchanged

— Longitudinal propagators should be multiplied by a factor k‘;f”

e The inner vertices are interactions from table They carry a coefficient \; and
factors of z coming from metric related terms like /gg"”g’" or /gg"”

e Multiply by [ dz for each inner vertex
e Momentum is conserved at each vertex
e Multiply by the infamous symmetry factor, determined just as for Feynman diagrams.

e Multiply by % for each external pion line. (This is due to the holographic dictionary:
qq < g(—z and the boundary conditions for Xj)

e For diagrams with two vertices, multiply by g¢Z (This comes from an asymmetry
between terms coming from the iteration — the equations of motion are multiplied
by % — and those in the action. The asymmetry can be resolved by absorbing a
factor of g5 into the \; corresponding to 3-vertices.)

e Multiply by the overall momentum conservation factor (27)%(p; + pa + p3 + pa)
(usually hidden in the normalisations)

To illustrate the above rules, we consider an example. In particular, it is insightful
to look at an example that involves mixed propagators. For instance, one can draw the
following diagram:

Vf (p2)

Vo (p1) —ipasT®(pa)
Where the pentagram is, for example, =—— and the dotted lines indicate mixed bulk
to boundary propagators. The corresponding expression is o<

/\éjknuu

2(¢CLa)2 aB, s 8 dzdz’
92(CLo)*n™"n / A ot pa )

4 232/3
f=1

XK (pr, 2) KV, (D2, 2') (—ip3y ) K5 (p3, 2) (—ipay ) K (pa, 2 )NETNY
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Whilst this structure transpires quite naturally for the bulk terms, further relation-
ships between the bulk to boundary and boundary to boundary propagators K and G are
required to show that it is also the case for the boundary terms. For the non-mixed equa-
tions, these relations can be derived in a classical manner in position space using Green’s
second identity, or, in momentum space, by a simple integration by parts. For instance:

Ky (k7)) = /de‘“/L(k,z’)(S(z —2')
1 a _ 1.2
— /de{Z(k;,z') (—8Z (—G%(k‘,z,z')) + a . K %(kz,z,z'))
1 a _ 1.2
= /de%(k,z, 2') (—62 (;K{ﬁl(l@,z)) + %K‘aa(k‘, z))

L1 Ll

- EK@(/@ 2)0.G (k. =, z’)} 4 Eazf(%(k, )G (k, =, z’)]

Lo Lo

1 a
_— L_OaZGVJ-(k7 LO, Z,)

Similar results are obtained for the other propagators:

a 1 a
K¢¢<k, Z/) == _L_OazGd)d)(k, I/O7 Z/>

a ! k2 a /
K74k, 2') = L—O@,G (k, Lo, 2")
K gk, 2') = p <L0)82G’fr¢(k, Lo, 7'
0
B*(Lo)

Kor(k,2') = — 0.G2_(k, Ly, 2")

0

A short derivation of some of these results is given in appendix [B.3} analogous results
can also be obtained for S and &.

The full expression of (Q| 7% (p1)7l(p2)V*<(p3)V"%(ps)|Q) is the sum of all possible
Witten diagrams and, in the general case, there are a large number of terms. However,
in order to calculate the function II defined by equation , one must specialise to the
case p1 = —pa = p;ps = —ps = k;a = b; e, d € {3,8}. Here, the sum of all Witten diagrams
of type IE] contains near 800 terms which reduces to around 200 when the open indices are
contracted to calculate II(p?) (2.31)). This long expression will not be given in this text.

17¢f. fig |§|
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On the contrary, there are a very small number of diagrams of type II which are:

Lo\? (2
[ (552) (Bxst o s (h ) KLk ) 2,
2 dca WV gC d a 2
+;)‘16 (2)p!'p" Ky, (k, 2) Ky, (k, 2) K§, (p, 2)

2
0 K 0, 2 I b, ) K . 22

2
2N I VI b ) K .2

2
+§>\§§a(2)77WKxC/(ka 2) K (k, 2) K2 (p, 2)°

2 17 C a
SN PR (h KL DK (0,21

This expression serves as a good, simple illustration of the Witten rules described abovﬂ

18The overall momentum conservation Dirac delta function (27)*3(p; + p2 + p3 + pa) has been omitted
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4 Numerical results

4.1 Introduction

The numerical study here will use the parameters of model Al in [1], given in table [3

Parameter Value
L, (322.47 MeV)~!
My 8.291 MeV
My 188.48 MeV
05 = 0y (213.66 MeV)?

Table 3: Al Model parameters

These values were determined by viewing m,, m, and o, as fitting parameters. Whilst
they play the same roles as the quark masses and quark condensate respectively, their
values need not be the same and indeed, as can be seen from table |3 are not in general.
Model AT was matched to the experimental values of my, fr, mg and M,. The value used
for the kaon mass my in [1] was the averagd™| of that of the charged kaons, 493.7 MeV,
and the neutral kaons, 497.7 Me\/FE], which is myx = 495.7 MeV.

Given electromagnetic interactions, the fact that the neutral kaon is “heavier” than
the charged kaon is rather counter-intuitive. It can partly be understood by the fact
that m, < mg. This explanation is supported further by other examples. In the case
of the pion, where the averaged mass content of u and d is approximately the same, one
finds that: m(7%) = 139.5 MeV > m(n°) = 135.0 MeV, whereas like in the kaon case,
m(B* = bu) = 52792 MeV < m(B° = bd) = 5279.5 MeV. A brief estimate of the
expected electromagnetic contribution can be obtained through classical considerations:
the 0.56 fm charge radius of the K, if inserted into Coulombs law, corresponds to a mass
split of the order of a MeV.

The value of 1 x 1072 GeV ™! was chosen for the UV cut-off Ly. As represented in
figure [7, the dependence on the choice of Ly of the first pole — which corresponds to
the kaon state — in the pseudo-scalar bulk to boundary propagators is approximately
negligible for values of Ly below —. Finally, as in [1,2], L was fixed to 1 since it has no
importance.

The aim is now to obtain a numerical estimate of ([2.32)):

M) =5 [ it (2 P@P oV, (V0 [2)

The pseudo-scalar current operator P that has a non-zero overlap with the charged kaon

19For mass considerations, as we have assumed m,, = mgy, we cannot really distinguish between K, and
Ki
20Values from |24
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Figure 7: Position of pole in Ky, for different values of Lg

states K/~ corresponds, in the holographic model, to: 1(7%(p, z) — iw°(p, 2)), therefore:

N =

(] Pp) P (~p)Vu(MV(—k) 192) = § (0] PHO)P(~p) (VA(R) + = VER)VE(—K) + —=Vi(~

V3 V3

47 (0 PP0) PP (=) (V3(R) + VAR (VE(—R) + —=VE(~

V3 V3

= 2 (2 PA0) P (-p)(VER) + —=VE(R)(VA(—h) + Vi

V3 V3

(4.59)

Where charge conservation and conjugation, which are both symmetries of our 5D action
and QCD, have been used to conclude that:

(Q P (p) P (=p)Vu(k)Vu(=) 1) = (Q] P (p) P*(=p)V,u(k)V,. (=) |2)
(Q P ()P (=p)Vulk)Vo (=) [Q) = (Q P*(p) P (=p)Vu(k) Vo (=) [) = 0

Thes relations follow from :

(Q P(p) PT(=p)Vu(k)V,(—k) Q) = (Q] PT(p) P(—p)V,u(k)V(—k) |)
(Q P(p)P(—p)Vu(k)V, (=) Q) = 0
(Q PY(p) P (—p)Vu(k)Vu(—k) |Q) = 0

Determining the general expression of the required quantities was the objective of the
previous section. The dependence of that result on the variables k, z, 2/, p is such that:
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i QPP PV VIR [0) = [ e [ kP 5+ [ el gt

Type I:iriagrams Type II‘giagrams
(4.60)
In general, momentum integrals with Minkowski signature, (+, — — —), are ill-defined

and difficult to evaluate due to their oscillatory behaviour. However, sometimes it is
possible to perform a change of variables, referred to as a Wick rotation, to go to Euclidean
signature, (+, +, 4+, +), where things are generally better defined. A Wick rotation amounts
to the change of variable kg — —iky. In an integral, this is the same as calculating the
integral along the contour in figure 8] assuming that the contribution on the circle segments
vanishes when the radius tends to infinity and that the poles are contained in the upper
left and lower right quadrants of the complex plane. We will suppose that our expressions
satisfy these hypotheses. Furthermore, to avoid having to deal numerically with complex
numbers, we will also make the change of variable py = —ipy and study II for Euclidean
p% = > (p:;)?. To evaluate the momentum space integral with Euclidean signature, one can

Euclidean
signature

<
<

Y

\—__Minkowski

signature

Figure 8: Wick rotation integration contour

use 4-dimensional spherical coordinates (kg, @, 2, ¢3). If we choose the axes such that p is
on one them:

f[(p%) =TII(—p}) = : (4w/dk5E sin? pdpdzd2' kS f° =k, ¢, —p%, 2, 2)
+ / 2’ dkpdzk?, ;Cd(—k‘%,—pQE,z))

We will now concentrate on the numerical evaluation of I1(p3%).
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4.2 Calculating ﬁ(p%)

In order to compute ﬁ(p%) one must evaluate numerically two multidimensional integrals.
It was anticipated that the integral with respect to kg be the most difficult to evaluate
numerically, and thus it was treated separately from the others. For the Type II diagrams,
with the exception of the z integral the others are trivial and can be done analytically;
the z integral behaves very well numerically. On the contrary, for the Type I diagrams,
whilst integration with respect to z and 2’ at fixed kg and ¢ does not seem to pose any
numerical difficulties, the 3-dimensional integral z,z’, ¢ proved to be more troublesome.
For this reason, the ¢ integral was also done separately. In figures [0} and [I0] the typical
dependancy of the integrand on ¢ , after integration with respect to z and 2/, is represented
for several values of p% and u = Hik The variables f1, fo and f3 correspond respectively
to the SU(3) indices ¢,d and a in (4.60).

Despite their slightly oscillatory behaviour, these curves are reasonably well approxi-
mated by a sequence of monomialﬁ. They were fitted to polynomials of degree 10 by the
least square method using Gnuplot [25]. To illustrate the “goodness" of the fit, figure
represents one of the curves and its polynomial approximation; since we are only interested
in approximating the integral this is more than sufficient.

Li¢?
4

8
Lg<2e2 .

21All the curves and results presented here correspond in reality to l:[(p%) The constant will
in fact cancel

22Fitting to Chebyshev polynomials may have been more appropriate
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Figure 9: Integrand as a function of s = %; the variable u is defined by k =
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Figure 10: Integrand as a function of s = %; the variable u is defined by k = *-
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Figure 11: Example of least square fit to polynomial of degree 10
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From the fitted curves, we obtain an estimate of the function of kg that is left to
be integrated. The results are represented graphically in figures [I2I3[I4] and [I5] For
the Type I diagram contribution, it became very difficult to obtain numerical values for
points v > 0.721, and similarly for the Type II diagrams for u > 0.9. In these respective
ranges of u, the numerical evaluation of the bulk-to-boundary and bulk-to-bulk propagators
(which are obtained by solving numerically the differential equations using the shooting
method, as in [2|) had difficulties converging. This hindered significantly the execution
time of the numerical integration routine. Nevertheless, the calculated curve sections are
again relatively well approximated by polynomials of degree 10. In this case, fitting to
Chebyshev polynomials was rendered impossible because of the practical difficulties in the
neighbourhood of 1.

Type I contribution: f; =3 fo =3

p% =0.001 ——
g | i p% =0.002 ——
p% =0.003
7L i p% = 0.01
p2E =0.0242
6 - R p2E =0.0315 ——
p2E =0.0419 ——
5 F . p2E2: 0.050 ——
Al | ];E =01 ——
pE2: 0.15 ——
3 | i gE = 02
9 | | ps =0.24
p2E2: 0.28 ——
10 i pp =03 ——
pQE =0.3215 ——
0 L . - T T —
0 01 02 03 04 05 06 0.7 0.8
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Type I contribution: f; =3 fo =38
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Type II contribution: f; =3 f, =3
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Type II contribution: f; =3 fo =38
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In order to proceed to estimate the full momentum integral, one can either truncate
the integral at the last calculated value or, alternatively, attempt a guess at the behaviour
of the function beyond that point; both possibilities were considered in the following.@
When the curves was completed with an analytical guess, a simple logarithm Alnu + B
was chosen in the case of the Type I diagrams, and an exponential C'(1 —exp(b(1 — u))) in
that of the Type II diagrams. These choices were founded on the steepness of the observed
final decrease and were fitted under the assumption that the functions are integrable and
hence, at the very least, vanish when k& — oo or u — 1. In particular, this implies that
B = 0 in the anstaz Alnu + B. The parameter b was intended to be chosen so as to
match the derivatives, but a value of b = —50 was retained globally, as it gave a reasonable
match for most of the curves. Furthermore, the contribution of Type II diagrams being,
in amplitude, much smaller than that of type I diagrams, a perfect fit was not necessary.

After combining these results according to (4.59), we obtain the curves in figure
The values of p% were chosen near 0, where the effect of the pole at the kaon mass for
Minkowski p? should be the dominant behaviour.

23 A third possibility is of course also possible: to complete the calculation with data from high-energy
perturbative QCD as in [7]. Lack of time prevented us from pursuing this possibility
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Contributions to II(p%) - Truncated case
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Figure 16: Different contributions to l:[(p%)
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I1(p3%) - Truncated case
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Figure 17: TI(p3%)
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4.3 Kaon electromagnetic mass difference

In order to obtain the kaon-electromagnetic mass difference from the curves in figure
Api, + B
(P + m?)>
pole behaviour of the 4-point function; the LSZ reduction formula was then applied, after
using the fitted curve to extrapolate to the pole. Firstly, however, we must determine the
field renormalisation constant Z that appears in the LSZ formula. This can be determined

from the kaon two-point function through it’s asymptotic behaviour near the pole:

they were fitted to a function of the type This function accounts for the double

Z

2

(Q P(p)P(=p) 1) = (Q P*(p) P*(=p) 1) ~ o

Fortunately, the two-point function can be retrieved straight-forwardly from the Ad-
S/QCD model. In the expansion of section , it can only be produced by the boundary

term: Ok L (L) (L
0) o ar_ a(g. S0

This yields, after iterating to second order in 7 and applying the Fourier space version of
equation (|1.24)):

Q) PY(p) P (=p) 1) = (2m)"0(p + (—p))g% : gO) 9. K (p, Lo) (%LO>

ﬂ4(Lo)a K4
QELO z5
0.2 ‘
0.15 + .
0.1 - g
0.05 - .
0 _

—0.05 + .
—0.1 + R
—0.15 + .
—0.2 | | | | |

-0.3-0.2-0.1 0 0.1 0.2 0.3

p2

Figure 18: 2-point function

The general behaviour of the 2-point function is illustrated in figure [18] To extract the
constant Z, we fit the curve to %ﬁ;zﬂf in the range [—0.3, 0] where we obtained values
for the function TI. An estimation of the kaon electromagnetic mass difference will then be
given by:

Sm? — 6_2 B — Am3
2 Z() + Zlm%( + ng}l(
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A B

Truncated | 5.60 + 0.01 | —3-1073+1-1073

Completed | 7.15 &+ 0.01 | —3-1073+£1-10"3

Table 4: Values of fitting parameters for II(p%)

Truncated case Completed case

—_
(@)

N —

0 0.050.10.150.20.250.30.35 0 0.050.10.150.20.250.30.35

% PE

S = N W ks Ot Oy N
T
|
O P N W Ot 3 00 ©
T
|

2 .
Figure 19: Plot of g(p%) = (p% +m%)? (C%o) II(p%) and its linear fit . The curves overlap

so well that we can hardly distinguish them.

The obtained values for A and B in our two cases are given in table [4} they were

2 \*-
obtained by fitting a line to (p3 + m%)? (@) I1(p%). The overall constant *2° appears

in both the expression for II(p%) and the two-point function and so has been factored
out of both expressions. In figure , the curve g(p%) = (p% + m3%)? <C%0 >2 I1(p%) has
been represented with its linear fit to illustrate graphically the goodness of the fit. There
are slight discrepancies to the linear model for larger values of p% where higher order
corrections(~ In m%;—p b for instance) begin to contribute.

The renormalisation constant was estimated to be

L3¢
4

which leads to the estimations of the electromagnetic mass difference given in table [f

Zo+ Zim3e + Zomj = —7.07 x 107* GeV?/
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2
omi;

Truncated | 89.25 GeV?

Completed | 114 GeV?

Table 5: Model estimates of the kaon electromagnetic mass difference

The order of magnitude is very different from the value obtained in |7] which was:
Sm2, = (2.32+0.70)- 1073 GeV’

However, if we divide the results by (27) we would obtain 1.45 - 1072 GeV? and 1.85 - 1072 GeV?
respectively for the truncated and completed cases; these values are closer to the value
of |7], although this may simply be coincidental. This suggests that there is an incorrect
normalisation factor in the program written for this thesis; unfortunately it was not identi-
fied. Similarly, multiplying by L2 would give the correct order of magnitude which further
supports the hypothesis of an overall mistake in some constant. Moreover, the two-point
function is surprisingly small which could be a defect of the model employed. It can also be
noted that the large kr behaviour of the curves in figures and [15]is essentially un-
known. Inspired by the form of the curves obtained for the the Type II contribution, where
a sharp dip is observed in the u ~ 0.8 — 0.9 region, one can imagine that similar behaviour
could occur for the Type I curves. This could introduce further cancellations, although it
is not believed that they will be sufficient to account for the several orders of magnitude
difference with the expected result. Nevertheless, despite this disappointing result, one can
note that the AdS/QCD model has correctly reproduced the expected physical behaviour
of the 4-point function near the pole; notably the double mass pole singularity.
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5 Conclusions

In this thesis, an attempt was made to calculate the electromagnetic contribution to the
kaon electromagnetic mass difference using a 5-dimension holographic model for QCD.
The full calculation of 4-point functions of the type (Q| P*(p1)P*(p2) Vi (ps) Vi (pa) [€2) was
performed using scripts in FORM, that, although contains sections of code that are spe-
cialised to this particular problem, should be straight-forward to generalise to any n-point
function. Much time was spent establishing that the calculation could be recast into a dia-
grammatic formalism similar to perturbation theory Feynman diagrams, known as Witten
diagrams, and reducing the large number of terms in the full expansion. For the latter,
certain sections of the expansion were studied in detail in order to verify that they vanish
and symmetry properties of the coupling constants was studied in detail.

After the theoretical expansion was completed, the 1-loop momentum integral was
evaluated numerically in several steps. Certain intermediate functions were fitted to poly-
nomials to accelerate the calculation which, unfortunately, was rather time consuming.
The "goodness" of the fit was studied briefly, but, an overall estimation of errors was not
attempted and generally the error is not yet under control. This is mostly due to numer-
ical difficulties encountered in evaluating the expression of the 4-point for large values of
k. In this region, the execution time of the integration routine was significantly increased
(>11 days without convergence) and the numerical determination of the bulk-to-boundary
(K) and bulk-to-bulk propagators (G) had difficulties attaining a relative accuracy of 1073,
Furthermore, in terms of execution time, the computation of K and G is the limiting factor.
Time is to be gained here by improving the treatment of these functions. One possibility
could be to attempt to fit them to analytic functions at large k2, or alternatively, one could
attempt to incorporate the integration routine into the main program in order to limit the
number of calls to the functions that evaluate K and G by storing the values. It can also
be noted that a significant?’] difference in execution time was observed between different
compilers. The GNU GCC compiler produced an executable that was approximately 8-10
times slower than the executable produced by the LLVM compiler; this phenomenon is not
understood.

The actual numerical value obtained for the kaon electromagnetic mass difference was
several orders of magnitude off from the value calculated in [7]. It is believed that this is due
to an unidentified error in a normalisation constant in the numerical program. Nevertheless,
the model correctly reproduced the expected physical behaviour near the kaon mass, which
is an encouraging result for the model. Moreover, all of these considerations were performed
using a so-called “Hard-Wall model”, that, despite being the simplest way of modifying the
AdS geometry to account for the non-conformal behaviour of QCD at low energies, is
known to be rather crude. Whilst such a model can produce good results for the ground
states, it does not, for instance, produce the correct Regge trajectories: (Hard-wall models
predict: m, ~ n, where it should be m,, ~ n?). An interesting extension to the work here

24The difference was surprisingly significant: the Intel Core i5 2.5Ghz (2 cores) processor in the laptop
using the LLVM compiler executed the program faster than the Intel i7 3.5Ghz (8 cores) processor in the
desktop using the GNU compiler!
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would be to reproduce these calculations, after correcting the numerical errors, using other
numerical fitting schemes or in a “Soft-wall model" like in [1], where a background dilaton
field is introduced to smoothly break the conformal symmetry.

Finally a short remark can be made about the AdS/QCD model used here. Although
it is built by analogy with the conformal case, there is still some amount of freedom in
the choice of parameters and the way to fit it to experimental and theoretical results from
QCD; this is particularly apparent in the choice of the boundary conditions for the field
Xo which are treated differently across the literature. The generalisation of quantities that
are specifically defined in conformal theories, like the conformal dimension, is also an open
question.
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A Explicit calculation of the kinetic part of the action

The aim of this appendix is to perform the rather cumbersome calculation that consists in
expanding to second order in the fields 7, A,V and S. The overall expansion should
be done to order 4, but, the full calculation will only be shown explicitly to order 2 in
order to illustrate the methods. Furthermore, although this calculation is already present
in [1], it is presented again here with slightly different notation in order to highlight some
hidden assumptions that were made in [1]. The full calculation to order 4 was performed
at first by hand, and then checked using FORM |[26].

1
S = / d°x\/gTr ((DMX)T(DMX) + %XTX — 4—92(FAL4NF£”N - FﬁNFjg”N)> (A1)
5

where L and R are not indices but simply denote the left-handed and right-handed
parts.

A.1 Notations

For convenience, the notation is recalled here:

Flin = OuLy—OnLy —i[Las, Ly]
F&v = OuRn — OnRa — i[Ru, Ry
Ly = Vu+Ay
Ry = Vu—Ay
DuX = 0uX —iLyX +iXRy
X = "(Xo+ S)e™with X} = X,

For further clarity, the following notation will be used throughout this section:
o ‘=’ will always denote an exact equality in the usual sense

e ‘~’ will denote that two expressions are related by the equivalence relation defined
by Tr(A) = Tr(B).

Recall that the trace is linear form on the vector space M,,(C) that is invariant under
transposition and has the following important property that will be used extensively in the
following;:

Tr(AB) = Tr(BA) (A.2)

or with our notations AB ~ BA. This means that products of several matrices that are
related by circular permutations of the factors will be equal in the sense of ~.

Finally, using the linearity of the trace, the three terms of the sum in (A.1l) will be
treated separately.

95



A.2 Quadratic term XX

This is the easiest term because, in virtue of (A.2): XTX = e (X, + S)%e™™ = X2+
2X,S + S°.

A.3 The field strength term: Fi  FMN + plit AN

To simplify further this short calculation the following extra notations will be used:

Vun = 0uVn — OnVur (A.3a)
Ay = OuAy — OnAn (A.3b)
Cun = [V, Vn] + [Awr, AN] (A.3¢)
Dun = [V, An] + [An, Vi] (A.3d)

By direct calculation it can be shown that, in terms of the fields V and A, Fi; and
FE . take the form:

Fin = Vun + Aun — i(Cun + Dun)
Fiy =Vun — Aun — i(Cyuy — D)

Cun and Dysy are already terms of order 2 in the fields and and therefore will only
produce terms of higher order, thus:

FL FMN L pROEMN o Vi n VMY L Vv AMY o A VN Ay AMY
-+ VMNVMN — VMNAMN — AMNVMN -+ AMNAMN
~ VNV MN 424,y AMN

In this work, the Hermitian matrices will be systematically decomposed onto the basis
(t,) as it is an orthogonal basis with respect to the inner product defined by (A, B) =
Tr(AB). In fact, Tr(tt?) = 1.

Decomposing onto this basis then yields:

8
Vin = 0uVy — OnVir = > _(VuVi — VVit®

a=1

8 8
Vi VMY = (Z(VMV]S} - VNVA‘})t“) (Z(VMVN”’ - VNVM’b)tb>

a=1 b=1

8

1

= 5 D (VaVi = VaVip) (VHV e — vyt
a=1

Reproducing the above steps for Ay;nyAMY | the final result is then:
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8
Fiin PN + Fiin g™ Y (Vi — VaVi) (VI Ve - iyte)
a=1
3

+ > (VarAfy — VA ) (VM AN — gV gMe)

a=1

A.4 The kinetic term (D3 X)"(DX)
Expanding the exponential terms in X, it follows that:
1 : .
X = Xo+ S +i{Xo,7} = 5 {m {m, Xo}} + i{m, 5} — %{ﬁ,xo} - %W{XO,W}W

— % {m, {S,7}} + i{ﬂ‘l, Xo} — é{S, )} — %W{S, w4+ éﬂ'{ﬂ'{X@, T}m— %7?%((0#2 )—I— O(5)
A4

Where {, } denotes an anti-commutator.

A.4.1 Calculations with the matrices m, V), Ays

The first step is to calculate: Dy X = 0y X — Ly X +iX Ry. From (A.4) it follows that:

1 1
O X =0pXo + OnS + i{Onm, Xo} + i{m, OnXo} — 5{8M7T> {Xo,7}} — 5{7Ta {OmXo, m}}
1
- 5{#, {Xo,0um}} +i{0ym, S} +i{m, Oy S}t + O(3)
As {, } is a bilinear map and therefore the derivative will act on it in the same way as

a product.
Replacing Ly, and Ry, by their expressions in terms of Vj; and Ayy:

—ZLMX+ZXRM = Z[Xo, VM]—Z{AM, X0}+[VM, {71', Xo}]+{AM, {71', Xo}}—i-Z[S, VM]—Z{AM, S}

where [,] denotes a commutator.
The covariant derivative is then:

1 1
DMX :8MXQ + 8MS + ’L.{a]\/[ﬂ'7 X()} + i{ﬂ', 8MX0} — 5{6M7r, {X(), 7T}} — 5{71', {aMX(), 7T}}

_ %{ﬂ, (X0, 07y} + {0, S} + i{m, 0 S} + i[Xo, Vir] — i{ Ans, Xo}
- Vars £, Xo}] + {Aur, {7, Xo}} i[5, Var] — i{ Aur, S} + O(3)
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From which we deduce its hermitian conjugate:

1 1
(D]\/[,Xv)-r :8MX0 + 8MS — i{aMW, XQ} — i{ﬂ', 8MX()} — 5{8M7r, {Xo, 7T}} — 5{7’('7 {aMX(), 7T}}

- %{w, (Xo, Oy} — {0, S} — i{m, OrSY + i[Xo, Vaa] + i Ans, Xo}
— [Var, {7, Xo}] + {Aur, {m, Xo}} +4[S, V] + i{Ap, S} + O(3)

This follows from the fact that %\ff) = (4)" and from the following basic facts about
Hermitian matrices A, B:

o {A, B} = {41, B} = {4, B}
o [A,B] = [Bl, A] = —[Af, Bl = —[4, B]

The next step is to perform the product of the above two expressions (contracting the
open M index):

0-th order
The only term to 0-th order is clearly: 0y Xo0™ X,

1st order

To first order:
{First order terms} = 0™ X (0pS + i{0nm, Xo} + 4{m, O Xo} + i[Xo, V] — 1{Anr, Xo})
+(OMS —i{oMn, Xo} — i{m, M Xy} +i[Xo, VM| + i{AM X })om X,

where for a scalar field O™ = MV = ¢gMVV iy
As only the trace of the above expression is interesting, it can be simplified greatly

using (A2
{First order terms} ~ 20y, Xo0™S + 2i[0™ Xo, Xo]Var

The term 2i[0™ Xy, Xo]Vas cancels because [0 X, Xo] = 0 follows from the choice of
vacuum made in section 2.1

o8



2nd order

Applying the same techniques as above the second order terms are:

{Second order terms} = —0™ X, ({0y7, {7, Xo}} + {7, {07, Xo}} + {7, {7, 0 X0} })
+200 X0 (0[S, Var] + {Aur, {7, Xo}}) + 00 SOM S + 200,15 [ Xo, VY]
+{0M 7, XoH{Oum, Xo} + 2{0™ m, Xo}H{m, OpXo} + {m, O XoHm, 0 X}
—2{ 0y, Xo H A, Xo} — [Xo, Varl[Xo, VY] — 2{7, O Xo H{AM, X}
HAw, XoHAY, Xo}
(A.5)

Several further simplifications are possible after expansion of the double anti-commutators.
The green terms can be simplified as follows:

—M Xy ({Onm, {7, Xo}} + {7, {0nm, Xo}} + {7, {7, 0 Xo}}) + 2{O 7, Xo {7, O X0}
{7, O Xo Hm, 0M X}
~2(0pm XomOp Xo + O XoOn Xom + XoOymmOy Xo + Xo0pm0Xom)
+ (mOM XomOn Xo + (00 Xo)* T + O Xom2 00 Xo + Onr XomOn XoT)

Q(Wa)\,[Xo’/Taﬂ[Xg + TF2<0A\14¥(}>2)

J/

- <((\)]\,]X08A\,]7TX07T + GMX()@MWTXO + 8MX0X07r8M7r + aj\,onﬂ'Xo@M?T + 83,1X07701\1X07r
+ O Xom* O Xo + (0 X0)* 7% + O XomOn Xom + Oy Xom XoOum + On XomOym X
+ 8MX0X08M777T + aMXOaMﬂ'X(ﬂT)

Terms of the same colour (that is not black) in the above expression are equal, so when

a term appears twice in the negative part it cancels its counterpart in the positive part.
Unfortunately, not all terms cancel immediately and the remaining ones are:

XoOymmoyXo — O XoOymw Xg + Oy X0y Xom — Oy XoXomOym
~On XoXoOymm — XoOyuXoOynmm + w0y XoOyXo — OOy XoXo
~ 00 Xo, Xo|Oymm + 0N [ Xo, Opr Xo
~[0nm Xo, Xo|[Om, 7]

The term therefore cancels under the assumption that [Xo, dy Xo] = 0.
The red terms in ({A.5)) simplify as follows:
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—2{m, 0M Xo M Anr, Xo} + 20M Xo{Apr, {7, Xo}}
=2 (= (7™ Xo + M Xom)(An Xo + XoAn) + 0V Xo(Ay (X0 + Xom) + (mXo + Xom) Apr))
=2 (= (0" XAy Xo + 70N Xo XoAnr + OM Xom A Xo + )+ M XAy X
+OM XAy Xom + + M Xo XomA)
~ 2(0M Xg Ay Xo — mOM Xo Xo Ay + 0M Xo Xom Apr — OM Xom Apr Xo)
~ 2([Xo, 0™ Xo] Ay + [0M Xo, Xo]mAnr)
~ 2[0M X, Xo|[7, An]

The remaining terms in (A.5)) can be reshuffled so that the above shows that, under
the assumption [0, Xy, Xo] = 0:

(D X)) (D X) ~ Oy Xo0™ Xo + 2i[00 S, Xo] VM + 2i[00 X, STVM + {0M 7, X oum, Xo}

—[Xo, VM][ X0, Var] + {AM, XoH{ Anr, Xo} — 2{0M 7, Xo H{Anr, Xo}
(A.6)

A.4.2 Introducing explicitly the SU(3) index
As before the matrices 7,5,V and A should be decomposed onto the basis (¢,). (A.6) then

becomes:

(Dpr X)) (DarX) ~ O XGOM XEt° + 2003, S XV [t #%)t° + 2000, XSV M [t 10t
+OM o0y {t, Xo Ht?, Xo} — VEMVE[Xo, t9][ X0, t7]
+ASM AL L0 X P, Xo) — 20Mm AL (e, XoH{t, Xo}

(A7)

All of the above traces can be calculated as functions of the structure coefficients fi/*

and d* defined in [l
It is important to evaluate [ Xy, t%][Xo, t’] and {Xo, t*}{ X0, t*} for all a,b € {0, ...,8}.
This can be done by a direct calculation:

[Xo, t][Xo, 1] = X§XE[te, t*][t%, "]

— i ngfcakfdbltktl
1
tl"([X07 ta] [Xo, tb]) — _g SX(C]lfcakfdbk
1
=3 ((Xg)2f0akf0bk 4 XOX3(foak (80K 4 fBak gobky | (Xg)szakabk)

60



Clearly: f%* =0 for all a, hence:

tr[Xo, t*][Xo, t°] = —é(xg)2f8a’ff8b’f (A.8)

It is easily seen from (C.25]) that f3e f8% = 35 5o that :

X, #][Xo, 1] = 2 (X5)0° (A9)
Similarly for tr{ X, t*}{Xo,t*}:
{Xo, 1M X, 1} = Xngdcakddbltktl
tr({Xo, t“}H{Xo, t"}) = %Xngdcakddbl
— @daOkdbOk @(dzﬁkdb(}k + daOkdb8k> + (XT(Wda&cdbSk

The only combinations of the indices {a, k,0} and {a, k, 8}, such that d**® # 0 or d*0
are:

(=)

Ya € {0’ o ,8}’daa0 — i,d118 — d228 — d338 — 1 ,d448 — d558 — d668 — d788 — —ﬁ'dSSS -

3a ﬁv 67

(A.10)
Thus:
(0 ifa#b
(X28 (daaO) 4 XOXS\/EdaaS + (X§)2 (daa8)2 ifa="> g {07 8}
tr({Xo, 1" }H{Xo, t"}) = <X§>2 (d000)2 4 (X0 (0382 ifa=>b=0
(XQ)2 (d808) + X0X8(d888d880) + (d880d880 + d888d888) ifa=b=28
¢
\ Xo2X§((d088) + @o00g880y 4 Kol (X dosgdgss if {a,b} = {0,8}
(A.11)
Finally, using (A.10)) and the expressions for X and X given in (2.29) :
1 25ab
“ o | —g(vu —v,)%0” ifa€4,56,7
e[ Xo, #°][Xo, ] = { 0 otherwise (A-12)
202 +02) a=b=0
sv2 a=0be{1,2,3}
a b 1 2 _
{Xo, t*HXo,t"} = ¢ 5(tut0vs)” a=0e{4,506,7} (A.13)
sW2+202) a=b=38

?(’Ui - 'U?) {a7 b} = {078}
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So that one can define the quantities M{ and MG, following [1}2]:

1

S My = =Tr([t, Xo]*) (A.14)
- s

For completeness, the mixed quantity M8°? can be defined by:
AP = (e X0} Xo) (A16)

It is however not needed unless a pseudo-scalar flavour singlet is included in the theory.
Overall:

1 1 1
(DX )T(DMX )~ —28MX613MX3 — —2fabCaMSaX3[/ Me _ —2fab63MXngV Mye
(A.17)

1 1
+5 MV 4 S M (O — A3p) (9% 7" — AM)

Combining all of the previous results yields equation (3.34]).

B Intermediate results for the calculation of the 4-point
function

B.1 Kinetic part functional derivative

(f7" X500 S” + 70N X5S7)

5Skinetic L Oéf 77LM/
z 2

I LM’Vf -
f 2 n M’
JACHIRE (B.18)

! ! 1
—|—77MM 77LN aM(;(aM/Vf/ — 8N/Vf/)))

68 inetic L f / ’ / 1
inet ( B WM (Angr — Oapre!) + MM PN aM(;(aM/AfV, — 8M/A§4,))> (B.19)

S AL (") @\ =z
5Skinetic L MM’ Bf f f
S — P e —A B.2
seiwy) ~ gt O\ O A (B:20)
5Skinetic MM’ L3 f MM’ L3 f 3X({L3
= — — O — Z o X 270
soiey 1 OulgOw S| = (g Xo)
~ ~~ d (B.21)
=0 EOM for vacuum
C L e 1, e / L3 . 3L3
—nMM oyt TeoMXgVip + §ffb U aM(;XgVM/) + ?Sf
Where the following notations have been introduced:
27277f2 272 7f2
g: L= M, gsL*M
ol (2) = 5Z—2V B (z) = 52—2A (B.22)
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B.2 Coupling coefficients

In this section, the coupling coefficients \; are given in terms of the SU(3) structure con-
stants d and f, the Einstein summation convention is used in that repeated indices in a
product are summed over. Lowercase roman letters are gauge indices and vary from 0 to
8. The expressions in table [0] were calculated by hand and checked with FORM; all other
expressions were obtained using FORM.

The first 4 coefficients are not independent and are related by:

abc __
A ¢ =

AP = AP = g™ = ¢ (B.23)

1

)\cllbc 2Jt‘abc
)\g,abc f"dlfabl 8ZXd
)\gbc 1 faclfbled
)\abc 1 fadlfcled

9

abc d( jacl ybdl adl jbcl
N[ X (el e T
)\1111170 1 fabc

2

)\tlzgc dacl dble(z)i

abc 1 vy d gdal £cbl
Al4 ZXof /
/\(111570 ngd)l dadl

abc 1 abl fedl cbl radl
Mg" | =52 (S + )

T
)\(11’1;0 _@fackfbdk

Table 6: Coupling coeflicients

| . 1 .. o 3 o 1 . )
——XSX(]) fackszkd]kki . _XéXé fackfbkzd]kki . _X(Z)Xé fackdbk:zdjk:k . _XéXé fazkfbckdjk:ki
32 16 16 32
1 3 3 1
16X1X] fazkfck]dbkk + 16X X] fazkdbckd]kk + 16X2Xj fazkdbkkdck] + 16X Xj fakabckd]kk

_3% X X3 paki peik gokk; | 116 X X3 fhek qoki gikk | 116 X X3 fhik peki gakk; _ 116 X X7 fbik qack gikk
_ 1_16 X X g fpoik Jakk geki _ 312 Xi X7 g poki peik gakk; | 116 Xi X7 g feik gaki goik _ 136 Xi X 3 feik qakk gk
_éXéngackdbikdjkki _ iXéngackdbkidjkki _ %Xéxgdaikdbckdjkki _ iXéngaikdbkkdcka-
+411 Xi Xg qki qoek qikk; é Xi Xg doki ok geik; 4 i Xi Xg dRk qbik geki; % Xi Xg Jakk goki gejk ;
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1
= — 1Xjfablfcik jkl 1 R .
030 fIRL XX pabl peik gtk ; 1 .
o Xo fU A+ — XX f A+ 1Xinf bl Jeik itk
JE— 0 o a Ccl d]

12
i 64 64
= iy fracl £bjk ri 1 o
128 OXOf lfbjkf e _ _XIXJfacl bjk gilk : 1 . . 32
1 64 0<*0 f d""1 + 1— éXéfaclfblkfijk B 1 i vj pac B
+— infaclfijk blk - 3 ' 28 64X0X0 F fblkdzjki
64 00 d”" i + —XZXJfaCl ilk bk - 3 .
64~ 00 A — — éXéfacldbjkdilk L g 4
32 + 3—2X0X0faddblkdljk

3 .
X X7 foil gbek pikl 3 i
0 0 f _ 1 a‘ C ;
fH A+ = XX kd’lkz’+i § X3 ol polk geik; L vi s pait
J— (Z) Ofaj fbklfcik

12
i o 5
+3—2X0Xé fa]lfcikdblki . iXinfajlfilkdbck- 3 o 64
1 64~ 070 [ —XéXjfajldbckduk 1 ivirai
+— XX e L iy patk 132 ’ " EXOXéfaﬂdbldeik
64 3_2 OXOJM fbdd”ki _ X x palk gbjl geik; | P
1 . 32770 Of fde% — — i 7 palk gbjk geil
32 o XL fAE fetdRG — 1 i i palk pijl ghk 1 64" o/ ST
1 4 4 32 0 Of f d’¢ i+1—Xéngalkdbcldijk_i i~ ralk 1bj '
T T KO XS 4 S XX A TR ——
_3_2 éngbjlfCikdalk@' n iXin — 312 E OXof C dalkdmk
o 64710 of S d**i + —Xéngbjldackduk L i ,
+3_2X(Z)ngblkfcﬂdajki _ iXZ P 312 E OXOf J dalkdczk
3 64 X S 39 o X frEde gt ixi J eblk jajk i
_6_4X8Xéfcufj’l’kdabki + 3 yixd peil jabk i 12 16 o X fH
39 0Xp S d" B~ xix I peil gaik gblk 1 .
1 . 16 o Xp frdVE + — X X cil salk b
—ﬁXéXéfijldackdblk . 1 XZXJf]ld P 3 16 0 Of d®%d jk
16 ijl qalk gbck - =~ xci xJ filk < 5
3 o 16 0<*0 XX dacl bjk D i ‘
—3—2X8Xéfj’l’kdabkd0il B iXindabld — 332 0Xo.f d7” + 32X0X8f lk gajk gbel
1677040 cik gikl; _ 2 xi 3 gacl ik qilk ; 1 .
_'_3 i il ol ikl oy 1670 od a7 d" + — 8ngaddblkdijk'
XoXod 3l ok Jikl s ) 16 1
16 0 i+ = XX qadl gokl geik; 1. .. . -
g H0M0 A% 4+ = XX A dP R L i i atk bk sci
8 (e gXOXOd“ db7* geil;
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)\clzlécd _ L (Z)’ngabkfcdkfkijdkkkz- + iXéngabkadkdkijdkkk + L éngabkfckifdkjdkkki

128 64 128
+6i4 X X7 fabk ek gdki ik _ 6i4 X3 X7 fabk fki geki ik | 6_14 X3 X] fabk phid gedk ik
_3% X X7 fabh gedh ghi ghkk; | 3% i XS pabk ek gdki iy 6_14 X XJ fack pbik gdkj ik
-I—% i X3 pack gbki pdkj gk _ 6_14 i xJ pack pdki bk ghkk 3% X X7 fack qoki gaki gk
_ %8 X3 X podh foki pohs gikk; | 634 X3 X podk ok geki ik | 3_12 XX podk peik ki ik
_6_14 i X3 padk foki ok ghkk _ 3% X3 X3 fadk goki ek gk _ 3_12 i X3 paik pbk ok gk
_6_14 XX poik podk gk gk _ 3% i X3 faik pohj godk ik _ % i X faik gbdk ek ik
_6%1 i X3 paki pbdk pokj iy 6%1 i X3 paki pbki podk ghi; 3_12 i X poki pbki ged ik
_6i4 X3 X] faki pedk gbki ik _ 3_12 X3 X3 fodk peik gaki ghik | % X X7 fodk aki ki ki
_6i4 X X7 foik podk gaki ik | 6%1 i xJ bk pdhi gack gk _ 3% X X3 fhik qack gaki kit
_3_12 X3 X7 fbik qadh ek gkkk; 6i4 X3 X] foki podk gaki ik _ 3_12 X1 XJ foki feik gadk ik
_6i4 XX ok peki godk gk 6i4 X X pedk ghid qabh gk _ 3% X3 X ek Javk qhid ghkk;
—I—% i X3 pedk gaki gbki ik 4 3% i X peik qabh gdki ik 3% X X7 peik qadk qoki ki
_% X3 X etk qaki qodk gk | 6i4 X3 X feki b gadk ik _ SLQ X3 X ik qabk geki gk
+3i2 i X ik gack gbki kl; 3% X X3 fhid Jabk godk gk % X XJ bk gedk s ik
_1_% X X7 bk ek ki gikk _ 1_16 X X] dack ok ki gikk % X X] dadk goki goks gk

1

_gXéngakidbdkdckjdkkk + %Xéngakidbkjdcdkdkkk

B.3 Short derivation of relations between K and G

The relations between the mixed propagators given in the main text were:
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a 1 a
K¢¢(k’ Z/) = —L—OGZG¢¢(I€, Lo, Z/)

/{52
Ko (k, 2 = —82Ga7r(k, Loy, ?)

R Kok, ) = - f”)a G2, (k. Lo, 2)
Kor(k,2') = —5 (Lo )aszm(k,Lo,z’)

Lo

These relations can be derived by performing a double integration by parts to specific
linear combinations of eqs. (3.53)) to (3.56). For example, the first two follow from:

—]{?2K¢¢(l{i, Z/) = —]CQK¢¢(/{Z, Z/) + 0 x sz)(k, Z)
= —k2/d2K¢¢(k, 2)0(z — 2')
Ba k‘25a ,
/dZKmb (k,2) . —0,Grp(k,z,2) | — (Gop(k,2,2") — Gro(k, 2, 2))

= k: de¢¢ (k,z (EL ( 0,Gro(k, 2 z)) - %(G¢¢(k,z,z') — Gm(/{:,z,z')))
/dZszb (k,z ( (ﬁ:ﬁ Gro(k, 2,2 )) - klﬁ“ (Gyolk, z,2") — Gm(k,zw/)))

1 Ly Ly Ba Ly Ba Ly
— |:;K¢¢8ZG¢¢} + k? |:;83K¢¢G¢¢ :| + |:?KW¢82GW¢} — |: 0 Kmmep}
Lo R LO/ R LO/ R L(L
=0 =0 =0

— k2 / dzGyg (az (%asz(k, z)) — %(Kw(kw z) — Krg(k, z)))

+ / =Gy (az (ﬁaa Kok, z)) _ sza (Ko, 2) — Kw(k?,z)))

J

-~

=0

k? ,
= L—082G¢¢(/€, LQ, z )
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Ky = / dzKr(k,2)8(z — 2') — / dz0 x k2K (k, 2)
_ / Ky (k, 2) (az (g@sz(lﬁ,z,z')) B G ) — G (B 2. z')))

2
- kQ/de¢¢(k,z) ((’L (%@Gw(k‘,z,z’))

a

(Gpr(ky2,2") — Grr(k, 2, z’)))

z

1 Ll 1 Ll a Ll /Ba Ll
S—_— |:;K¢¢82G¢7r} + k2 {;@KM)GM :| + [7Kﬂ¢8sz} — [ 8ZKW¢GW}

Lo Lo Lo z Lo
N ~~ d ~~ 7N ~~
=0 =0 =0

e / dem\(az G@Kw(k,z)) O Kk, =) — Kw(k,z)))

z
~

=0

o f dem\(ﬁz (Zoreuths)) = 2ol 2) — Kol 2)

z

-~

=0

J/

k‘2
= _8,2G¢>7T<k7 L07 Z/)
Lo

The two remaining relations are obtained in a similar fashion.
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C SU®)
The defining commutation relations of infinitesimal generators g; are given by:
[9:, 951 = i " g1 (C.24)

In the fundamental representation of the group an interesting orthogonal basis for the Lie
algebra su(3) is given by the so-called Gell-Mann matrices, they are:

010 0 — 0 1 0 0 0 01
AM=1100 =171 0 0 |A=10 —-120 M=10200
000 0 0 0 0 0 O 100
00 —2 000 00 O 1 10 0
=100 0 XM=1001 |XM=]00 — Xd=—7=| 01 0
v 0 010 0 ¢« O V3 00 -2

These matrices are Hermitian, traceless and such that tr(\\;) = 24;;.

The structure constants f“* can be obtained by orthogonally projecting [);, A;] onto
)\ki
tl"([)\z, /\]]Ak) _ tI‘([/\“ )\j]Ak)
From this formula it can be seen that the structure constants are completely antisymmetric
in the three indices and:

fijk —

f123 _ 2; f147 — f165 _ f246 _ f257 _ f345 _ f376 _ 1; f458 — f678 _ \/g (025)

The subset of Hermitian matrices forms a subspace of the real vector space of complex
valued matrices M,,(C) and an orthogonal basis can be constructed from the Gell-Mann

matrices by appending the matrice \g = \/gl to the set {A;}icq1,..8y. The structure

.....

constants can be extended to include the value 0 for its indices and remain totally anti-
symmetric.
In this thesis, Hermitian matrices are decomposed onto an orthogonal basis ¢; de-
fined by t; = )‘3 such that tr(t;t;) = %&j. In this basis a general Hermitian matrix
a d+e f+1ig
A=| d—ie b h+1j can be decomposed in the following fashion:

f—ig h—1ij c

2 1
A= \/;(a—i-b—l—c)to—l—thl—2et2+(a—b)t3+2ft4—2gt5+2ht6—2jt7—i—%(a+b—2c)t8 (C.26)

Furthermore in this extended basis (t,), one can define the coefficients d“* by:
d7% = 2Tr({t*, t/ }t") (C.27)
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In this way:
{t t7} = d'9*¢k (C.28)

It should be noted that equation (C.28) holds only in the extended basis {t* : a €
{0,...,8}}, this is not the case is most other sources on the topic where the t° component
is separated from the others so that:

a 4+b 5ab - : abk
{t ,t}:?I—i—ZZd t

a=1 b=1

In this thesis however, unless stated explicitly otherwise, it will always be understood
that ¢y is included in the sum, so that equation (C.28]) is valid.
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