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Abstract
In this thesis, a holographic model for quantum chromodynamics (QCD) is used to estimate
the electromagnetic contribution to the kaon mass difference. The principal ideas of the
model are inspired by the AdS/CFT correspondence, which is believed to be exact. The
calculation is first performed theoretically, highlighting the expansion of the result into a
diagrammatic structure referred to as Witten diagrams, and similar to that of Feynman
diagrams of perturbative quantum field theory. To this end, several relations between
the propagators are derived. An outline of the full theoretical calculation is given before
proceeding to attempt to evaluate numerically the electromagnetic mass difference to first
loop order. This calculation is done in Euclidean space, and the results are fitted to
analytical formulae to extrapolate to Minkowski space. The final values are off by several
orders of magnitude, which is believed to be in part due to an unidentified numerical glitch,
but the overall expected physical behaviour, near the mass pole, is reproduced correctly
by the model.



Populärvetenskapligt sammanfattning
Quantum field theory is the framework of the very successful Standard Model of particle
physics, our best description yet of the behaviour of the elementary particles that we be-
lieve our world is made up of. It is therefore the language in which the subjacent ideas to
this theory are univocally expressed, without the disputable interpretations that translat-
ing to our normal language requires. The Standard Model is split up into different sectors
that each describe one or more of the four currently accepted fundamental interactions of
nature. The two most important sectors are the electroweak sector and quantum chromo-
dynamics (QCD). The electroweak sector is a unified theory of the electromagnetic and
weak interactions, the first of which is responsible for cohesion of matter on our scale, and
the latter can be used to explain radioactive reactions. Quantum chromodynamics, on
the other hand, describes the strong-interaction responsible for the cohesion of the atomic
nucleus.

Now, understanding how the world works on the scale of elementary particles may seem
something of a curiosity at most, but it is exactly those theoretical advances that lead us to
many of the electronic devices that are currently pullulating in our everyday lives. Besides,
some of the large scale particle accelerators that we use to study this science have found
applications in all sorts of unrelated domains, even in medicine!

Unfortunately quantum field theory is not perfect: there are practical issues that make
some direct calculations extremely difficult; this is especially the case for QCD. In light
of this, physicists often need to be creative in finding other ways to get at results. In
particular, it is sometimes possible to find a way to map a difficult problem onto another,
if possible, simpler one. When this is possible the problems are said to be dual; a simple
example of this can be found in many optimisation problems, where minimising problems
can be transformed into maximisation problems and vice versa.

Such an approach is adopted in this work, where we make use of an extension of the
so-called AdS/CFT correspondence proposed by Juan Maldacena in 1997. In its original
form, it relates a theory of gravity to a quantum field theory. In practice, this means
that one can do calculations in the theory of gravity and deduce results in the quantum
field theory or vice versa. As of yet, the correspondence is still formally at the stage of
conjecture but given the empirical evidence for it, physicists would be extremely surprised
if it turned out to be false.

Unfortunately however, the above correspondence cannot be exploited in its original
form. This is because it postulates a relationship between two very particular theories pos-
sessing extremely stringent symmetry properties. Whilst symmetry often helps simplify
the resolution of a problem, those in question here are not shared by realistic theories. For
instance, the symmetry properties of these theories would forbid the existence of a mass
scale; which is manifestly false. Nevertheless, some physicists hope that the correspon-
dence still holds, at least in an approximate form, if some of the symmetries are removed
in someway so that the resulting field theory displays characteristics of one of the more re-
alistic theories, namely in the case of this thesis, quantum chromodynamics. Two kinds of
approaches are possible at this point, the first, which is theoretically more satisfying, would
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be to propose a scheme describing explicitly how the symmetry should be broken and then
show that the resulting theory has all the characteristics of quantum chromodynamics; this
however is extremely difficult with our current understanding of the AdS/CFT correspon-
dence. The second approach is much more phenomenological: it consists in starting from
QCD, postulating that a correspondence holds by providing a so-called “dictionary”, and
then fitting parameters in the model to reproduce known experimental/ theoretical results;
the model used in the present work was obtained in this way. The aim of this thesis is to
use a model, obtained using the phenomenological approach described above, to calculate a
particular physical observable known as the ‘kaon electromagnetic mass difference’ in order
to ascertain whether the prediction differs from other models. In turn, this could allow us
to understand more about the workings of the strong interaction and provide further ways
of testing the extremely successful Standard Model, hence pushing back in a tiny way the
boundaries of human ignorance.
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Preface
This thesis is essentially organised into four main sections. The first is a brief introduction
to the AdS/CFT correspondence, of which a large part is dedicated to the study of anti-de-
Sitter (AdS) spacetime. The main aim was to understand, in more precise terms, what is
meant by the boundary of anti-de-Sitter spacetime and in what sense this boundary could
be thought of as flat Minkowski spacetime. It also seemed interesting to distinguish between
the Poincaré Patch and global AdS spacetime; the model used in this thesis is restricted
to the Poincaré Patch, but there are extended versions of the AdS/CFT correspondence
on global AdS spacetime. Following this is a brief review of some of the arguments that
establish the practical form of the AdS/CFT correspondence on which the philosophy of
the AdS/QCD model is based.

The second section discusses the model used in the work, reproducing some of the
main arguments to justify its postulated form and highlighting some of the freedom one
has in the construction. It is then described how to use the model to calculate the kaon
electromagnetic mass difference.

The third section outlines the theoretical calculation of 4-point functions using the
holographic model and discusses the diagrammatic structure of the obtained expression.

Finally, the fourth section presents the numerical results of the calculation of the kaon
electromagnetic mass difference.
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1 Introduction

1.1 Overview

The present work is a continuation and extension of [1,2]. The main goal was to calculate
the electromagnetic contribution to the kaon mass difference, in the holographic model
for quantum chromodynamics (QCD) of [3–5], by generalising the methods used in [6] to
calculate 4-point functions in the scalar case. The electromagnetic mass difference itself
is interesting for precision calculations, where it is fruitful to separate out the different
contributions having different origins. A large part of the problem of calculating the
kaon electromagnetic mass difference, reduces to the effective computation of the non-
perturbative diagram in figure 1.

γ

K K

Figure 1: Kaon electromagnetic self-energy diagram

Currently, there is no known method for extracting the information contained in the
shaded circle of diagram 1 directly from QCD alone, and it is therefore necessary to resort
to different models, like Chiral perturbation theory, to obtain such results; this was done
for example in [7]. In this thesis, a holographic or “AdS/QCD” model will be used to
model the non-perturbative physics.

The principal theoretical idea of this work and such models stems from a conjecture
formulated by J. Maldacena [8] in 1997 in the context of String Theory, known as the
“AdS-CFT correspondence”. In its strongest form, the conjecture postulates a full duality
between string theory, in the background AdS5 × S5, and a conformal field theory (CFT)
in 4-dimensions. For this reason, it is considered to be a realisation of the holographic
principle [9], as one can regard the 4-dimensional theory as “living” on the (conformal)
boundary of the 5-dimensional anti-de-Sitter (AdS) spacetime. This type of phenomena
is not totally foreign to mathematics and physics; one can notably cite Cauchy’s integral
formula for a holomorphic function f on a domain D of the complex plane:

∀z0 ∈ D, f(z0) =
1

2πi

∮
∂D

f(z)

z − z0

dz (1.1)

The formula shows that the information about the function inside the domain is actually
contained on its contour, despite the difference in dimensions. From a practical point of
view, the interesting feature of AdS/CFT is the fact that weak coupling calculations in one
theory are strong coupling calculations in the other; on one hand, this makes the duality
difficult to check, but, on the other, it means that if it holds then one can use perturbative
methods in one theory to deduce non-perturbative results in the other. To date, however,
there is no formal proof of Maldacena’s conjecture, and it is beyond the scope of this text
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to attempt to explore that aspect of it. Nevertheless, one can note that recently numerical
tests of the conjecture, like those in [10, 11], have provided compelling evidence for it. In
these articles, calculations are done for quantum black holes and good agreement is found.

Maldacena’s conjecture suggests that certain quantum field theories may be holographic
duals to higher dimensional string theories, but it should be noted that the theories on both
sides of the correspondence are highly symmetric. On one hand, anti-de-Sitter spacetime is
a maximally symmetric solution to Einstein’s field equations, and, on the other, conformal
field theories can be thought of as fixed points of the renormalisation group and therefore
possess, in particular, the very stringent property of scale invariance; a property that is
shared by no realistic field theories. It is hence quite unclear whether such a principle could
be generalised to less symmetric field theories. There are at least two ways to explore this
possibility, one can either attempt to break some of the symmetries of the theories in the
correspondence and attempt to derive more realistic field theories, or, one can start from
a realistic field theory and attempt to guess the dual string theory. The second approach
has, up to now, been the most fruitful and many calculations have been performed in QCD
using so-called holographic models. It turns out that QCD is a particularly good candidate
for testing this hypothesis as it is approximately conformal in the high energy limit; this
gives an idea of what a dual theory may look like in this limit. Furthermore, from the
point of view of QCD, exploring this hypothesis is particularly interesting as it provides
alternative models for accessing non-perturbative results using well known methods.

This text begins with a brief review of the ideas of the AdS-CFT correspondence before
moving on to describe the holographic model that will be used to effectively perform the
calculation. This will be followed by an overview of the theoretical calculation carried out,
and, finally, the numerical results shall be discussed.

1.2 AdS space-time

The main setting for the calculations that follow is the so-called anti-de-Sitter (AdS) space-
time, which appears on the string theory side of the AdS/CFT correspondence. It can be
defined in several ways, all of which give interesting insights into its nature; the first of
which is to see it as a solution to Einstein’s equations.

As a solution to Einstein’s equations AdSd can be characterised as the homogenous
and isotropic solution to Einstein’s equation (1.2) in d dimensions (the indices M,N run
through {0, d− 1}) with negative cosmological constant (Λ).

GMN + ΛgMN = 0 (1.2)

From a purely geometric point of view, it is a maximally symmetric spacetime with
Lorentzian signature and negative Ricci scalar or scalar curvature. Such spaces have con-
stant sectional curvature and, as it can be shown that the curvature tensor takes the special
form:

Rµναβ = κ.(gµαgνβ − gµβgνα), κ =
R

d(d− 1)
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where d is the dimension of the manifold and R is the Ricci scalar. A proof of this result for
manifolds with Euclidean signature (+,+,+,+) can be found in [12]1. Its relevance is that
it shows that maximally symmetric spacetimes can be classified simply by their dimension
and the sign of the Ricci scalar. Defining AdS space in this way puts the emphasis on the
symmetry properties of AdSd space, notably that it has a global SO(2, d − 1) symmetry;
this proves to be an important feature that supports the plausibility of the AdS/CFT
correspondence to be discussed in a future section. In this thesis, the convention for the
Lorentzian metric signature will follow that of particle physicists, i.e. (+,−−−).

As an embedded manifold A convenient way of studying and visualising the geometry
of AdS space is to embed it into flat space with one extra time-like dimension; the main
advantage is that many of its properties can be seen directly by calculation. It can, in that
space, be defined as the set of points M that satisfy:

‖
−−→
OM‖2 = L2 (1.3)

where O is an arbitrary origin for the affine spacetime and the constant L is related to
the Ricci curvature tensor by2: L2 = −d(d−1)

R
. For example, the surface AdS2 can be

embedded into a 3-dimensional Minkowski spacetime with two time-like directions (~e0, ~e2)
and one space-like direction (~e1). Choosing an orthonormal basis for the associated vector
space (~e0, ~e1, ~e2), and denoting by (X0, X1, X2) the coordinates of a point M in the frame
(O, ~e0, ~e1, ~e2), then equation (1.3) can be rewritten:

1

L2
((X0)2 − (X1)2 + (X2)2) = 1 (1.4)

The reader will without a doubt recognise (1.4) as the equation for a one-sheeted
hyperboloid in 3 dimensions; it is represented figure 2. This provides some geometric
intuition about AdS spacetime: pictorially, the fields and objects under study will be
constrained to live on a higher dimensional hyperboloid. More importantly, from (1.3) it
can be seen directly that the isometry group is O(2, n− 1), as O(2, n− 1) is by definition
the group of transformations of Minkowski spacetime that leave the Minkowski metric, and
thus distances, invariant. The connected component containing the identity is SO(2, n−1)
and AdS space is therefore also invariant under that group.

1.2.1 Local coordinates, global parametrisations and metric

In order to write the metric of AdSd space it is necessary to find solutions to (1.3). To do
this it is convenient to first rewrite (1.3) with the canonical coordinates (X0, . . . , Xd) of
the embedding Minkowski space:

1

L2

(
(X0)2 −

d−1∑
i=1

(X i)2 + (Xd)2

)
= 1 (1.5)

1The result differs only in the order of the indices: Rρµνσ = κ.(gνσgρµ − gµσgρν)
2In the following L will be referred to simply as the curvature, in virtue of this formula
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Figure 2: One-sheeted hyperboloid 1
L2 ((X0)2 − (X1)2 + (X2)2) = 1

In this work we will use the solution which define the so-called Poincaré coordinates:

X0 =
L2

2r

(
1 +

r2

L4

(
~x2 − t2 + L2

))
X i =

rxi

L
for i ∈ {1, . . . , d− 2} (1.6)

Xd−1 =
L2

2r

(
1 +

r2

L4

(
~x2 − t2 − L2

))
Xd =

rt

L
r > 0, t ∈ R, ~x = (x1, . . . , xd−2) ∈ Rd−2

In these coordinates the metric of AdSd then reads:

ds2 = −L
2

r2
dr2 +

r2

L2
(ηµνdxµdxν)

where ηµν is the usual (d−1)−dimensional Minkowski metric with signature (+,−, . . . ,−)

Often, and as will be done in this work, one makes the change of variable z = L2

r
so that

the metric becomes:
ds2 =

L2

z2
(ηµνdxµdxν − dz2) (1.7)
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These coordinates do not, however, cover the whole of AdS spacetime but only an open
set referred to as the Poincaré patch. This will nevertheless be sufficient in this work where
an artificial cut-off of spacetime will be introduced. From (1.7) it can be seen that the
Poincaré Patch is, topologically, “just” warped Minkowski spacetime with an extra spatial
dimension denoted z. Moreover, in (1.7) the z-coordinate has been distinguished from the
other spacetime dimensions. This notational convention will be maintained throughout
this thesis work, more specifically: Greek indices will be used to denote the first (d − 1)-
coordinates and capital roman indices will be understood to contain the z coordinate. On
many occasions, it will be preferable to introduce the short-hand, ηNM so that the metric
can be written:

ds2 =
L2

z2
ηNMdxNdxM (1.8)

i.e.
gMN =

L2

z2
ηMN

where gMN is the metric of AdSd and ηMN is the metric of d-dimensional Minkowski space-
time.

Global parametrisation: Despite the Poincaré patch being sufficient for this work,
in order to study the global structure of AdS-spacetime it is more convenient to use a
more natural solution to (1.5) which is a generalisation to d dimensions of the standard
parametrisation of a hyperbola x = cosh(t), y = sinh(t), t ∈ R:

X0 = L cosh ρ cos τ (1.9)
Xd = L cosh ρ sin τ (1.10)
X i = LΩd,i sinh ρ i ∈ {1, . . . , d− 1} (1.11)
τ ∈ [0, 2π[, ρ ≥ 0 (1.12)

Where the Ωd,i must satisfy
d−1∑
i=1

Ω2
d,i = 1, or, in other words, parametrise a (d − 1)-

dimensional hypersphere. A solution can be defined by induction on the dimension d:

Ω2,1 = cos θ1; Ω2,2 = sin θ1 if d = 2 (1.13)
Ωd+1,i = Ωd,i−1 sin θd, i ∈ {1, . . . , d− 1} Ωd+1,d = cos θd if d ≥ 2 (1.14)

With this parametrisation, the metric of AdS space-time can be shown to take the
following form:

ds2 = L2(cosh2 ρdτ 2 − dρ2 − sinh2 ρdΩ2
d−1) (1.15)

Where, dΩ2
d denotes the metric of the d-dimensional unit sphere, defined iteratively by the

following equations dΩ2
1 = dθ1, dΩ2

d+1 = dθ2
d+1 sin2 θd+1dΩ2

d.
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1.2.2 Conformal boundary

Given the above definition of AdS space the more mathematical reader may have realised
that it is a manifold without boundary as it is locally homeomorphic to an open set of some
Rn. This would not be true if it had a boundary point in the usual (intuitive)3 sense, as we
would fail to find an open neighbourhood around that point that would be homeomorphic
to Rn. It is therefore natural to wonder what is meant by “boundary” in the case of the
AdS/CFT correspondence.

In short, the term “boundary” will be used to denote the “infinitely far away”, i.e. for
example, in the global coordinates (τ, ρ, θi) defined above, when ρ → ∞. Interestingly, it
can be shown in these coordinates that in AdS Space it is possible for a light signal to
reach this boundary in finite observer time (for a stationary observer at some ρ = ρ0); this
corroborates the idea that a theory on such a background might be holographic. In order
to study this boundary, which, in the case of AdS space and in a sense to be defined in the
following, is Minkowski spacetime, it is convenient to conformally compactify4 spacetime;
this procedure is in fact required to properly define global conformal transformations on
Minkowski space-time.

Conformal compactification The main idea of conformal compactification is to at-
tempt to study the asymptotic behaviour of a Lorentzian manifold by deforming it in
such a way that angles are preserved and such that the “infinitely far away” is brought to
a finite distance; in particular the topological and causal structures should be preserved.
Mathematically, this amounts to mapping a semi-Riemannian manifold (M, g) into another
(N, h) using a conformal map φ i.e. a map that has the property that there is a function
Ω : M −→ R+ such that:

Ω(p)gp(Xp, Yp) = hφ(p)(dφp(Xp), dφp(Yp))

for all vector fields X, Y and points p ∈ M . Having done this, the “points at infinity” can
be adjoined to spacetime as they are now at a finite distance, the added points will be
referred to as the conformal boundary. It is interesting to note that the above procedure
is by no means uniquely defined and there are a whole class of conformal transformations
that are possible to achieve this aim.

Minkowski spacetime In order to understand the above it is informative to look at the
case of (1+1)-dimensional Minkowski space time for which the metric is:

ds2 = dt2 − dx2 (1.16)

The first step is to perform coordinate transformations so as to obtain coordinates that
are finite in extent (this is always possible using the function arctan) and such that the

3Manifolds with boundaries are modelled on the half-space Hn = {x ∈ Rn, xn ≥ 0}
4The term compactification is a bit of a misnomer, as the obtained manifolds may not necessarily be

compact in the usual topological sense
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metric has an overall factor (which will be singular at the points that map to infinity) that
can be removed. For Minkowski space time, the standard approach is to switch to “light
cone coordinates”, defined by:

u = t− x; v = t+ x (1.17)

after which the metric becomes:

ds2 = dudv (1.18)

The coordinates are then made finite in extent by the further coordinate transformation:

u = tan ũ, v = tan ṽ; ũ, ṽ ∈]− π

2
,
π

2
[ (1.19)

after which the metric is:

ds2 =
1

cos2 ũ cos2 ṽ
dũdṽ (1.20)

The overall factor can be removed by a conformal transformation and the resulting
metric is: ds̃2 = dũdṽ. This new metric is regular at the boundary +/ − π

2
, where the

physical metric would be singular.
To represent the above, one can draw a so-called “Penrose diagram” for Minkowski

spacetime which is represented in figure 3, where we have introduced x̃ and t̃ such that:
ũ = t̃ − x̃; ṽ = t̃ + x̃; ds̃ = dt̃2 − dx̃2. The diagram represents the conformally deformed
Minkowski spacetime and allows in particular to visualise infinity.

t
~

x~

Timelike infinity

Spacelike infinity

«3Lightlike infinity3»

Distant past

Distant future

  Distant 
spacetime

  Distant
spacetime

Figure 3: Penrose diagram for (1+1)-dimensional Minkowski space in the x̃− t̃ plane. The
coloured dots and the edges of the diamond are the points at “infinity” that have been
appended to the conformally deformed spacetime

For general d-dimensional Minkowski space-time, the procedure is quite similar with
the exception that we use a positive r coordinate. The final result is essentially the same,
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except that only half of the diamond is retained (due to the restriction r ≥ 0) and each
point in the diamond in the 2D diagram represents a sphere. The reader can refer to [13]
for a full treatment.

anti-de-Sitter spacetime Now we are familiar with the ideas of conformal compactifi-
cation, we can look at what happens for AdS space-time. Recall that in global coordinates
the metric takes the following form:

ds2 =
L2

cos2 θ
(dτ 2 − dθ2 − sin2 θdΩ2

d−1)

In these coordinates the boundary is situated at θ = π
2
. To conformally compactify, we

perform a conformal transformation in order to remove the factor L2

cos2 θ
, and note that on

the boundary the metric is:
ds2 = dτ 2 − dΩ2

d−1

which is conformally compactified d-dimensional Minkowski spacetime. It is in this sense
that the boundary of AdS space will be considered to be Minkowski space-time. In Poincaré
coordinates, the conformal boundary discussed here is situated at z = 0.

Physics in AdS space One final remark can be made regarding the AdS geometry as
it has been introduced: as one can see from figure 2: it allows for closed time-like curves.
Physically, this would lead us to run into causality issues and all of the paradoxes that
follow. The issue is nevertheless easily circumvented: instead of considering AdS space as
above, we can “unwind” the time axis by considering the universal cover of AdS space. This
amounts to allowing τ to take values in all of R, without identifying points, i.e. according
to (1.9) the points of coordinates (τ, ρ, θi) and (τ + 2π, ρ, θi) should be the same point, to
“unwind” the time axis, one should consider these points to be distinct. Except from in
this chapter, no further distinction will be made between AdS and its universal cover and
it will always be understood that we are referring to its universal cover.

1.3 Maldacena’s Conjecture

The strongest form of Maldacena’s conjecture stated in the introduction will not actually
be required for the calculations in this work as the aim is to use it to determine a non-
perturbative result of a given field theory. It will therefore only be necessary to work in
the low-energy limit of the string theory where it reduces to supergravity. In this case, the
AdS/CFT correspondence postulates equivalence between a strongly coupled conformal
field theory and a weakly coupled supergravity theory. Moreover, as the calculations will
only be done to tree order, the classical equations of motion for the fields will be sufficient.
Before proceeding, a few words should be said on “conformal field theories”, for a full
introduction, the reader can refer to [14,15]. Conformal field theories are field theories on a
flat space background with the property of being invariant under conformal transformations
of spacetime as defined in 1.2.2. In order to determine the symmetry group of the theory it
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is actually necessary to conformally compactify Minkowski space-time in order to be able
to define global conformal transformations [15]; the interesting point and a vital ingredient
underlying the ideas presented in this chapter is that the symmetry group of a conformal
field theory in d dimensions is the same as the isometry group of AdSd+1; this helps to
motivate some of the identifications made in the following. The reader will find in recent
books such as [16, 17], a pedagogical review of some of the heuristic arguments used to
“derive” the conjecture that will be not covered in this text. It will, however, be necessary
to state the practical form of the correspondence, which is the object of this section.

1.3.1 Holographic dictionary

The set of rules that allow us to relate objects from the two different theories will be
referred to as the “Holographic dictionary”. In AdS/CFT, operators in the conformal field
theory will be associated with fields in the supergravity theory with mass determined by
the relation:

m2 =
1

L2
(∆(∆− (d− 1)) + p(p− (d− 1))) (1.21)

where d is the dimension of the AdS space, L is the curvature of the AdS space, p is the
tensor rank of the operator, which can be thought of as being related to its spin, and ∆ is
the conformal dimension of the operator, which, in turn, is related to its mass dimension
through dimensional analysis. The conformal dimension of the operator describes how it
behaves under scaling, for instance, for an eigenfunction of the scaling operator [16] we
have the following transformation rules:

x→ λx (1.22)
φ(x)→ φ′(x) = λ∆φ(λx) (1.23)

In the scalar case, equation (1.21) can be derived by solving the Klein-Gordon equation
(�+m2)φ = 0 and studying the solutions. In the Poincaré patch:

� =
1
√
g
∂M(gMN√g∂N) =

zd

Ld
ηNM∂M(

z2

L2

Ld

zd
∂N) =

1

L2

(
z2ηµν∂µ∂ν − zd∂zz2−d∂z

)
So the Klein-Gordon equation becomes:

z2ηµν∂µ∂νφ− zd∂zz2−d∂zφ+m2L2 φ = 0

Performing a partial Fourier transform in the first 4-coordinates:

(−z2k2 +m2L2)φ̂− zd∂zz2−d∂zφ̂ = 0

or:

(−z2k2 +m2L2)φ̂− z(2− d)∂zφ̂− z2∂z∂zφ̂ = 0

15



This equation closely resembles Bessel’s equation: x2y′′+xy′+ (x2−α2)y = 0, and can
be brought to this form via two ad-hoc change of variables:

z̃ = kz

which removes the k2:

(−z̃2 +m2L2) φ̂− z̃(2− d)∂z̃φ̂− z̃2∂z̃∂z̃φ̂ = 0

Followed by:

φ̂ = z
d−1
2 ψ

The equation for ψ is then the Bessel equation:

(z̃2 −m2L2 − (d− 1)2

4
)ψ + z̃ ∂z̃ψ + z̃2∂z̃∂z̃ψ

The two Bessel’s functions (or modified Bessel’s functions for k2 < 0) Jα, Kα are two
linearly independent solutions for ψ, thus φ̂ is some linear combination of z

d−1
2 Jα((k2)

1
2 z)

and z
d−1
2 Kα((k2)

1
2 z). The asymptotic behaviour of φ is then: φ ∼ c2z

∆+f1 + c1z
∆−f0;

where ∆± = d−1
2
±
√
m2L2 + (d−1)2

4
. For large enough m2, it can be shown that the c1z

∆−f0

part of the solution is non-normalisable5 at the boundary6. Nevertheless, it should not be
discarded as it defines a field on the boundary by f0(k) = limz→0 φ(k, z)z−∆− , or in position
space f0(x) =

∫
ddk

(2π)d
f0(k)e−ikx. The following reasoning shows how this operator should

transform under scaling:

f0(λx) = lim
z→0

φ(λx, z)z−∆− = lim
z→0

λ−∆−(zλ−1)−∆−φ(λx, z)

= lim
z′→0

λ−∆−z′−∆− φ(λx, λz′)︸ ︷︷ ︸
=φ(x,z′)
given the

symmetry group
of AdS space

= λ−∆−f0(x)

f0 can be interpreted as the source for the corresponding operator O in the field theory
on the 4 dimensional boundary; it should be renormalised so as to make the integral finite.
Lastly, ∆+ is identified with the conformal dimension of O. This final identification can be
elucidated by the following heuristic argument [18]. First of all, to control the singularities
in AdS space when z → 0, the usual limiting procedure is applied, i.e. a small cut-off L0 or

5A solution is said to be normalisable if the action is finite when evaluated on this field
6This is not always true. As discussed in [17], there is a mass regime, namely −D

2

4
< m2L2 ≤

−D
2

4
+ 1;D = d− 1, where both solutions are normalisable and there are two consistent ways of imposing

boundary conditions on the fields
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ε is introduced and is understood to be sent to 0 in the final results. As the action contains
terms of the type

∫
z=ε

ddx
(
L
ε

)d
φ(ε, x)O(ε, x) =

∫
ddx

(
L
ε

)d
ε∆−φ0O(x), these should be

finite, which leads us to identify: O(ε, x) = ε∆+O(x).
The above therefore shows how the theories are effectively linked together, and it leads

to the further assumption that the partition functions are identical, i.e.

ZO[φ0]CFT = Zφ[φ0]string

In the classical limit of the string theory the partition function reduces to eiS[φ[φ0]], from
which it follows that the 4-dimensional n-point function of operators Oi can be calculated
from the dual holographic theory via:

〈Ω| O1(x1) . . .On(xn) |Ω〉 =
(−i)nδnS

δφ0,1(x1) . . . δφ0,n(xn)

∣∣∣∣
φ0,1=···=φ0,n=0

(1.24)

In (1.24), the state7 |Ω〉 is the interacting theory vacuum state and it is understood that
all the source terms are set to 0 in the final result8. This formula is the basis for all the
calculations that follow.

1.4 LSZ (Lehmann-Symanzik-Zimmerman) reduction formula

The AdS/CFT dictionary describes how to evaluate correlation functions of operators
O1, . . .On in the quantum field theory using results from the dual higher dimensional
theory. In practice however, the objects of interest are in fact S-matrix elements. The LSZ
reduction formula is the tool from Quantum Field Theory that describes how to relate the
correlation functions to S-matrix elements. When the operators Oi are field operators φ,
the following relation can be derived from perturbation theory [19]:

〈p1 . . . pn|S |q1 . . . qn〉 =

[
i

∫
d4x1e

−iq1x1
√
Z

(�1 +m2)

]
. . .

[
i

∫
d4xne

+ipnyn

√
Z

(�n +m2)

]
×〈Ω|T{φ(x1) . . . φ(xn)φ(y1) . . . φ(yn)} |Ω〉

(1.25)

Interestingly enough, as remarked in [20], the only assumption about the fields that is re-
quired to derive that result is the fact that they can create one particle states, consequently,
the formula holds for any sequence of such operators (Oi):

〈p3 . . . pn|S |p1p2〉 =

[
i

∫
d4x1e

−ip1x1
√
Z

(�1 +m2)

]
. . .

[
i

∫
d4xne

ipnxn

√
Z

(�n +m2)

]
×〈Ω|T{O1(x1)O2(x2) . . .On(xn)} |Ω〉 (1.26)

Here, the constant Z is a field renormalisation factor.
7This notation will be used throughout this work
8i.e. The derivative is evaluated at zero
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2 AdS/QCD model
In the previous discussion, the explicit form of the AdS/CFT correspondence, or so-called
holographic dictionary, was given in the low energy string theory case. However, as pre-
viously suggested, it is not directly applicable to realistic phenomenological theories like
QCD which do not possess the conformal symmetry present in the field theory of the cor-
respondence (such an invariance forbids, for instance, the existence of any mass scale like
that present in QCD). Nevertheless, under the assumption that such a duality may be
extended to other less symmetric theories, it is possible to construct models, inspired by
the above correspondence, to perform calculations to ascertain whether they can be used
to predict known or new results in QCD. The case of QCD is particularly interesting as
the theory is approximately conformal at high energy where the mass parameters become
negligible. Hence, if there is a dual theory, it is natural to assume, by analogy with the
conformal case, that the gravity background be of the form AdS5 ×X5 where X5 is some
compact manifold; in the following we will ignore expansions of the fields onto this compact
manifold. The background should however be modified in some way when z →∞ to model
low-energy QCD; the 5th coordinate z of AdS5 being interpreted as an inverse energy scale.
The simplest way to do this is to introduce a cut-off at some z = L1; this is known as
a hard-wall model and was first introduced in [21]. Different models have extended upon
this idea and have introduced different types of particles. The model used in this work was
first proposed in [3, 4].

With regards to the holographic dictionary of the theory, it is assumed that it takes
the same form as in the conformal field theory case; any corrections, for example, to the
conformal dimension ∆, which only really makes sense in the high-energy massless quark
limit and is necessary in determining the mass of the corresponding field, are neglected.

Once this has been postulated, the model is then constructed by choosing operators
from QCD and by writing the simplest possible Lagrangian for their corresponding fields.
The operators chosen in [3] are listed in table 1; they are simply the quark bilinears. The

model in this work will account for 3 quark flavours qL,R =

 u
d
s


L,R

. The choice of the

operators can be justified by the fact that they will have some non-zero overlap with the
states of low-energy QCD, so it will be possible to extract information about low energy
QCD processes using the LSZ theorem.

4D 5D p ∆ m2L2

qLγµt
aqL LaM 1 3 0

qRγµt
aqR Ra

M 1 3 0
qLqR

2
z
X 0 3 -3

Table 1: 4 dimensional operators and their 5D equivalents

In table 1 the ta are infinitesimal generators of SU(3) related to the Gell-Mann ma-
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trices by ta = λa

2
; the Gell-Mann matrices and their important properties are listed in

appendix C. To write a Lagrangian, simple symmetry considerations are made: QCD has
an approximate global SU(3)L × SU(3)R chiral flavour symmetry. In the 5-dimensional
theory, this should be promoted to a spontaneously broken gauge symmetry. The simplest
action, given in matrix form, encoding all of these components is then:

S =

∫
d5x
√
gtr
(

(DMX)†DMX +
3

L2
X†X − 1

4g2
5

(FL,MNFL
MN + FR,MNFR

MN)

)
(2.27)

Where D is the gauge covariant derivative that acts on X according to:

DMX = ∂MX − iLMX + iXRM

and FL
MN

9 is the field strength:

FL
MN = ∂MLN − ∂NLM − i[LM , LN ]

The matrices LN and RN are defined by: LN = LaN t
a and RN = Ra

N t
a, they are Lie-

algebra10 valued 1-forms which, in the fundamental representation of SU(3), is represented
by the set of all traceless Hermitian matrices. This implies in particular that11 L0

N = R0
N =

0
The model has now at least one parameter for fitting to QCD: the constant g5. It can

be determined by calculating the vector current two-point function [3] and comparing the
result with the perturbation theory result in QCD. The result is:

g2
5 =

12π2

Nc

where Nc is the number of colours and will be taken to be 3 in this work.

2.1 Symmetry breaking and vacuum

The matrix X is, a priori, a general complex matrix and, following [3], can be parametrised
by X = eiπ(X0 + S)eiπ. S and π are general Hermitian matrices representing respectively
the scalar and pseudo-scalar degrees of freedom. A priori, the matrix π contains a U(3)
singlet field, i.e. its 0th component need not be zero. In this work, however, the singlet
will be ignored. X0, on the other hand, is the holographic equivalent of the vacuum12; it

9FRMN being defined similarly
10In mathematical literature, the Lie-algebra of SU(3) is often denoted su(3)
11It can be noted that the “low-energy limit” of the string theory in the AdS/CFT correspondence is

related to a large Nc limit in the field theory [16]. In this limit the anomalous currents are approximately
negligible and the flavour symmetry becomes an approximate U(3) symmetry; this means that we could
in principle keep the a = 0 components.

12 and is a function of z alone
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corresponds to the solution to the equations of motion when all other excitation fields are
set to zero, i.e. its components satisfy:

∂z

(
L3

z3
∂zX0,ij

)
+ 3

L3

z5
X0ij = 0 (2.28)

The general solution can be shown to be of the form Aijz+Bijz
3, where the matrices A

and B are determined by the boundary conditions at the IR and UV boundaries. From the
holographic dictionary, the general interpretation of the parameters is as follows: Aij is a
source term for X0 and Bij is related to 1 point functions, like the quark condensate 〈qq〉;
in other words, Aij introduces a mechanism to mimic the explicit chiral symmetry breaking
in QCD by the quark masses and Bij introduces a mechanism to recreate the spontaneous
symmetry breaking. The interpretation of Aij as a mass-matrix follows from the fact that,
as noted in [16], adding 1

2
Xαβ

0 qαqβ to the Lagrangian is equivalent to adding masses for
the quarks. Several approaches are possible at this point, for instance, as in [4], one can
introduce a potential on the IR boundary to fix the boundary condition at z = L1; the
parameters are then determined by comparing to QCD and fitting to experimental results.
Alternatively, following [1], both Aij, Mij can be considered parameters to the model that
can be fitted to experimental data. The latter approach will be used in this work and the
approximation mu = md

13 will made such that the solution can be written:

X0(z) =
1

2

 vu(z) 0 0
0 vu(z) 0
0 0 vs(z)


with vq(z) = ζmqz + σqz

3 1
ζ
, q ∈ {u, s}.

The parameter ζ =
√
Nc

2π
is introduced as suggested in [4, 22] so as to get the correct

scaling with the number of colours Nc.
Alternatively, on the basis (ta) defined in appendix C,

X0(z) =
1√
6

(2vu + vs)︸ ︷︷ ︸
X0

0

t0 +
1√
3

(vu − vs)︸ ︷︷ ︸
X8

0

t8 (2.29)

Previously, in [1, 2], the scalar degree of freedom S was neglected.

13This simplifies things slightly, but it would not be adapted for a precise calculation of the kaon
electromagnetic mass difference since it does play a role. Here however, our main aim is to ascertain
whether or not AdS/QCD models could produce correct results
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2.2 From AdS/QCD to the kaon electromagnetic mass difference

AdS/QCD
   Model

K K

γ

Figure 4: Kaon self-energy diagram

The AdS/QCD model described above provides the tools required to evaluate diagram 1
to first loop order. The diagram is reproduced in figure 4 for convenience. The expression
that this diagram represents can be written in the form:

δm2 =
ie2

2

∫
d4k

(2π)4

ηµν

k2 + i0
〈K| Vµ(k)Vν(−k) |K〉 (2.30)

where the operator Vµ = 2
3
uγµu− 1

3
dγµd− 1

3
sγµs.

The amplitude 〈K| Vµ(k)Vν(−k) |K〉 is related to the four-point function:

〈Ω|P (p)P †(−p)Vµ(k)Vν(−k) |Ω〉 (2.31)

via the LSZ theorem. The four-point function, on the other hand, can be evaluated using
the holographic model by means of (1.24). Through the correspondence table 1 one can
see that:

Vµ ←→
(
V 3
µ +

1√
3
V 8
µ

)
P ←→ πa, a ∈ {4, 5, 6, 7}

The “vector” field V a
µ is defined by V a

µ = 1
2
(Laµ+Ra

µ), and similarly an “axial” field is defined
by Aaµ = 1

2
(Laµ −Ra

µ).
This thesis will attempt to evaluate (2.30) through the study of the function:

Π(p2) =
ie2

2

∫
d4k

(2π)4

ηµν

k2 + i0
〈Ω|P (p)P †(−p)Vµ(k)Vν(−k) |Ω〉 (2.32)

To determine Π, one must begin by determining the 4-point function (2.31). To this end
the postulated holographic dictionary stipulates, through equation (1.24), that one must
perform a functional derivative on the action of the 5D theory with respect to the sources
fields πa0 , V b

0,µ of the 4-D operators V , P . These source terms enter the problem as boundary
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conditions for the 5D fields when z → 0, or, introducing a small cut-off L0 to regulate the
theory, at z = L0. The action therefore needs to be rewritten as a function of these sources.
This can be achieved through solving the equations of motion with the correct boundary
conditions, expanding in powers of the source fields. As previously stated, calculations in
the 5-dimensional theory will be performed to tree-order, which implies that the classical
equations of motion are sufficient in this case. The method is therefore the following:

1. Solve classical equations of motion in 5D theory with the correct boundary conditions

2. Express the 5D action S as a function of the boundary sources

3. Evaluate the functional derivative as prescribed by (1.24)

22



3 Calculating 4-point functions
In this section, we will outline the theoretical calculation of momentum space 4-point
functions of the form:

〈Ω|P a(p1)P b(p2)Vµ,c(p3)Vν,d(p4) |Ω〉 (3.33)

using the holographic model presented in the previous section. We introduce here the
notation P a and Vaµ to denote the 4D operators corresponding to the fields πa and V a

µ

respectively. Since the AdS/QCD model action (2.27) contains an infinite amount of inter-
actions when expanded in terms of the fields π, S, V and A, we must first determine which
of those are relevant. In fact, it will only be necessary to expand to order 4 in these fields
for the computation of four-point functions, as higher order terms will not contribute to
the functional derivative.14

3.1 Equations of motion

The first step is to expand the action (2.27) to order 4 in the fields; as the overall expression
is relatively long, the action will be separated into two parts: Skinetic and Sinter. Skinetic

contains all terms up to order 2 in the fields, whilst Sinter contains all interaction terms up
to order 4. With this notation the equations of motion will take the form:

δSkinetic

δX
= −δSinter

δX

where X is any one of the fields15. Due to the large number of terms in Sinter, the two
parts will be treated separately.

3.1.1 Skinetic

It is shown in appendix A, by direct expansion of (2.27), that the kinetic term takes the
following form :

Skinetic =

∫
d5x
√
g

(
1

2
Ma2

V V
M,aV a

M −
1

4g2
5

(∇MV
a
N −∇NV

a
M)(∇MV N,a −∇NV M,a)

+
1

2
gMM ′∂MS

a∂M ′S
a + 2gMM ′tr(∂MX0t

a)∂M ′S
a − 1

2
fabcXc

0V
M,a∂MS

b

−1

2
fabcgMM ′∂MX

c
0S

aV b
M ′ +

3

L2
Xa

0S
a +

3

2L2
SaSa

+
1

2
Ma 2

A (∂Mπ
a − AaM)(∂Mπa − AM,a)− 1

4g2
5

(∇MA
a
N −∇NA

a
M)(∇MAN,a −∇NAM,a)

)
(3.34)

14They will cancel when the derivative is evaluated at π0 = V0 = A0 = S0 = 0
15or field components
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where fabc are the SU(3) structure constants defined in appendix C. The result of δSkinetic
δX

for
the different fields is given in appendix B.1. It will also be practical to treat the compo-
nents of the fields V = Vz~e

z + Vµ~e
µ and A = Az~e

z + Aµ~e
µ separately and to decompose

the projections of these fields onto (~eµ) into longitudinal and transverse parts, (cf. the
Hodge/Helmholtz Decomposition Theorem [23]) i.e.:

V a
µ = V a

⊥,µ + ∂µξ
a ηµν∂νV

a
⊥,µ = 0 (3.35)

Aaµ = Aa⊥,µ + ∂µφ
a ηµν∂νA

a
⊥,µ = 0 (3.36)

Furthermore, the boundary conditions for the first four coordinates (x0, x1, x2, x3) will
be assumed such that it is possible to perform a partial Fourier transform of the fields:

f(x) =

∫
d4k

(2π)4
e−ik ·xf̂(k) k ·x = ηµνk

µxν = kµx
ν (3.37)

Introducing the above, and:

αf (z) =
g2

5L
2M f 2

V

z2
βf (z) =

g2
5L

2M f 2
A

z2

it can be shown that the equations of motion take the form:

∂z

(
1

z
∂z ξ̂

f

)
− αf (z)

z
ξ̂f +

L2g2
5

2z3
f fbcŜbXc

0 = −(2π)4 kσ
ik2

δSint

δV̂ ∗fσ

g2
5

L
(3.38)

αf − k2

z
V̂ f
µ,⊥ − ∂z

(
1

z
∂zV̂

f
µ,⊥

)
= −(2π)4 g

2
5

L

δSint

δV̂ ∗fσ

(
ηµσ −

kµkσ
k2

)
(3.39)

−L
2g2

5

2z3
f fbc∂zŜ

bXc
0 −

L2g2
5

z3

fafc

2
∂zX

c
0Ŝ

a +
k2

z
∂z ξ̂f = +(2π)4 g

2
5

L

δSint

δV̂ ∗fz
(3.40)

∂z

(
1

z
∂zφ̂

f

)
− βf (z)

z
(φ̂f − π̂f ) = (2π)4i

g2
5

L

kσ
k2

δSint

δÂ∗fσ
(3.41)

βf − k2

z
Âfµ,⊥ − ∂z

(
1

z
∂zÂ

f
µ,⊥

)
= −(2π)4 g

2
5

L

δSint

δÂ∗fσ

(
ηµσ −

kµkσ
k2

)
(3.42)

∂z

(
βf

z
∂zπ̂

f

)
− k2βf

z
(φ̂f − π̂f ) = −(2π)4 g

2
5

L

δSint

δπ̂∗f
(3.43)

−k2

z
∂zφ̂

f +
βf

z
∂zπ̂

f = +(2π)4 g
2
5

L

δSint

δÂ∗fz
(3.44)

∂z

(
L3

z3
∂zŜ

f

)
+ L3

(
k2

z3
+

3

z5

)
Ŝf − fafc

2
k2L

3

z3
Xc

0 ξ̂
a = −(2π)4 δSint

δŜ∗f
(3.45)
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where it has been used that, for any real -valued field X:

δS
δX̂∗(p, z)

=

∫
d4x

(2π)4
eip ·x δS

δX(x, z)

The ∗ denotes complex conjugation. Equations (3.41),(3.44),(3.43) and (3.38),(3.40),(3.39)
respectively can be shown to be linearly dependant and, in the following, as the chosen
gauge is such that Az = Vz =0, equations (3.44) and (3.40) will be discarded. Whilst
it is relatively clear that the lefthand sides (LHS) of equations (3.41),(3.43) and (3.44)
are linearly dependant, more work is required to show it for the LHS of (3.38),(3.40) and
(3.39).

Starting from the LHS of (3.40), one begins by taking a further z-derivative:

−∂z
(
L2g2

5

2z3
f fbc∂zŜ

bXc
0

)
− ∂z

(
L2g2

5

z3

fafc

2
∂zX

c
0Ŝ

a

)
+ ∂z

(
k2

z
∂z ξ̂f

)
Or, after expanding out the derivatives:

−∂z
(
L2g2

5

2z3
f fbc∂zŜ

b

)
Xc

0 −
L2g2

5

2z3
f fbc∂zŜ

b∂zX
c
0 − ∂z

(
L2g2

5

z3

fafc

2
∂zX

c
0

)
Ŝa

−L
2g2

5

z3

fafc

2
∂zX

c
0∂zŜ

a + ∂z

(
k2

z
∂z ξ̂f

)
Using (2.28) and the antisymmetry of the symbols fabc, the expression becomes:

−∂z
(
L2g2

5

2z3
f fbc∂zŜ

b

)
Xc

0 +
3L2g2

5

z5

fafc

2
Xc

0Ŝ
a + ∂z

(
k2

z
∂z ξ̂f

)
Multiplying (3.45) by ffbcg25X

c
0

2L
and adding it to the above then yields:

3L2g2
5

z5

fafc

2
Xc

0Ŝ
a + ∂z

(
k2

z
∂z ξ̂f

)
+

L2g2
5f

fbcXc
0

2

(
k2

z3
+

3

z5

)
Ŝb − f fbcfdbe

4
k2L

2g2
5

z3
Xe

0X
c
0 ξ̂
d

Again, using the antisymmetry of fabc, the above simplifies to:

∂z

(
k2

z
∂z ξ̂f

)
+

L2g2
5f

fbcXc
0

2

k2

z3
Ŝb − f fbcfdbe

4
k2L

2g2
5

z3
Xe

0X
c
0 ξ̂
d

Furthermore as: −1
8
Xc

0X
d
0f

cakfdbk = [ta, X0][tb, X0] and is only non-zero when a = b in
which case: [ta, X0][ta, X0] = −1

2
Ma

V , the above expression is in fact:

∂z

(
k2

z
∂z ξ̂f

)
+

L2g2
5f

fbcXc
0

2

k2

z3
Ŝb − k2αf (z)

z
ξf

which is linearly dependent on (3.38).
It can be checked explicitly using FORM and follows from gauge invariance that the

interaction terms satisfy:

ikσ
δSint

δV̂ ∗fσ
= ∂z

δSint

δV̂ ∗fz
− f fbc

2

δSint

δŜ∗b
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3.1.2 Propagators

Solving the above equations exactly is a difficult problem due to the non-linear terms
coming from the interaction Lagrangian. Furthermore, for the purposes of this work, it is
also a necessary requirement that the dependence of the solution on the boundary source
fields appear explicitly in the solution so as to facilitate the computation of the functional
derivative. If the interaction terms were independent of the fields, then the problem would
be to solve a non-homogenous linear equation, which can be done using a Green’s function
technique. This leads to the idea of attempting to solve iteratively the above equations,
which is in very many ways similar to the perturbative expansions of usual quantum field
theory. To illustrate the method it is informative to study the more simple scalar case
studied in [2, 6]. The action for this toy scalar model is:

S =

∫
d5x
√
g

1

2
gMN∂Mφ∂Nφ−

m2

2
φ2 − λ

24
φ4

from which we deduce the equation of motion:

(�+m2)φ = −λ
6
φ3 (3.46)

where � = 1√
g
∂M(gMN√g∂Nφ).

To implement correctly the asymptotic behaviour near the boundary a small cut off
L0 is introduced and is understood to be sent to 0 in the final results. The boundary
condition at L0 is then φ(x, L0) = L0φ0(x). In order to completely determine the solution
a second boundary condition is required; the simplest being ∂zφ(x, L1) = 0, which will be
used throughout this work. Dependence of the results on this second boundary condition
was explored in [3] where it was found that it had little effect on the final results.

For the iterative resolution two Green’s functions are defined: K and G, which will be
referred to respectively as the bulk to boundary and bulk to bulk propagators. They are
the solutions to the following systems of equations:


(�+m2)K(x, x′, z) = 0
K(x, x′, L0) = δ(x− x′)
∂zK(x, x′, L1) = 0

(3.47)


(�+m2)G(x, x′, z, z′) = δ(z−z′)δ(x−x′)√

g

G(x, x′, L0, z
′) = 0

∂zG(x, x′, L1, z
′) = 0

(3.48)

The bulk to boundary propagator will be used to set the correct boundary condition,
and the bulk to bulk propagator will be used to incorporate the interactions. The iterative
procedure is then defined as follows:
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φ1(x, z) =

∫
K(x, x′, z)L0φ0(x)d4x′ (3.49)

n ≥ 1 : φn+1(x, z) = φ1 −
λ

6

∫
√
gG(x, x′, z, z′)(φn(x′, z′))3dz′d4x′ (3.50)

It is left to the reader to check that if the sequence converges then the limit will be a
solution to (3.46).

A few more remarks are in order: firstly, as � does not depend explicitly on x,
K(x, x′, z) = K(x−x′, 0, z) and G(x, x′, z, z′) = G(x−x′, 0, z, z′); in other words the prop-
agators only depend on the difference x−x′. Thus, the integrals over the variable x′ can be
seen as convolutions with the functions K̃(x, z) = K(x, 0, z) and G̃(x, z, z′) = G(x, 0, z, z′).
In particular this means that these convolutions will become products when performing
the Fourier transform on the variable xµ. In the rest of this report, the ~ will be dropped
and the notations G(x, x′, z, z′);G(x − x′, z, z′) will be used interchangeably. Lastly, the
presence of the factor 1√

g
in the definition of the bulk to bulk propagator is a convention

that is particularly useful for obtaining coordinate independent expressions and integrals.
As in this work only the Poincaré coordinates are used, this precaution will not be taken.

In the vein of the above example, the Fourier space bulk to boundary and bulk to bulk
propagators for the fields V a

⊥ , are naturally defined by the equations:


αa−k2
z

Ka
V⊥

(k, z)− ∂z
(

1
z
∂zK

a
V⊥

(k, z)
)

= 0
Ka
V⊥

(k, L0) = 1
∂zK

a
V⊥

(k, L1) = 0

(3.51)


αa−k2
z

Ga
V⊥

(k, z, z′)− ∂z
(

1
z
∂zG

a
V⊥

(k, z, z′)
)

= δ(z − z′)
Ga(k, L0, z

′) = 0
∂zG

a(k, L1, z
′) = 0

(3.52)

and similarly for Ka
A⊥
, Ga

A⊥
. In some cases, an analytic solution in terms of Bessel’s func-

tions can be found [1,2], but generally it will be necessary to resort to numerics.
The situation is slightly more complicated for the fields ξa, Sa, πa and φa, as in the

chosen basis their equations are coupled. However, viewing the system of equations as a
matrix equation allows us to see that the Green’s “function”, if it exists, would be a matrix
of functions. This is best illustrated by the equations involving π and φ, since there is no
mixing between components with different values of a, which is the case for S and ξ.

Starting with the bulk to boundary propagators, the aim is to find functions Ka
φφ, Ka

φπ,
Ka
πφ, Ka

ππ such that: π1, φ1 defined by:(
φa1
πa1

)
=

(
Ka
φφ Ka

φπ

Ka
πφ Ka

ππ

)
︸ ︷︷ ︸

K

(
φa0
L0ζ

2
πa0

)
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solve the homogenous equations associated with (3.43),(3.41) with the correct boundary
conditions. The off-diagonal elements of K will be referred to as ”mixed propagators”. The
correct boundary condition for the field π is in fact L0ζ

2
π0 as, according to table 1,2

z
X

corresponds to qLqR and the boundary condition was modified in 2.1 as advocated by [22].
It can then be seen that Ka

φφ, K
a
φπ, K

a
πφ, K

a
ππ should be solutions to the following bound-

ary value problems:


∂z
(

1
z
∂zK

a
φφ

)
− βa(z)

z
(Ka

φφ −Ka
πφ) = 0

∂z
(
βa

z
∂zK

a
πφ

)
− k2βa

z
(Ka

φφ −Ka
πφ) = 0

Ka
φφ(k, L0) = 1

Ka
πφ(k, L0) = 0

∂zK
a
φφ(k, L1) = ∂zK

a
πφ(k, L1) = 0

(3.53)


∂z
(

1
z
∂zK

a
φπ

)
− βa(z)

z
(Ka

φπ −Ka
ππ) = 0

∂z
(
βa

z
∂zK

a
ππ

)
− k2βa

z
(Ka

φπ −Ka
ππ) = 0

Ka
ππ(k, L0) = 1

Ka
φπ(k, L0) = 0

∂zK
a
ππ(k, L1) = ∂zK

a
φπ(k, L1) = 0

(3.54)

Analogously, one finds that Ga
φφ, G

a
φπ, G

a
πφ and Ga

ππ are solutions to the boundary value
problems given by:


∂z
(

1
z
∂zG

a
φφ(k, z, z′)

)
− βa(z)

z
(Ga

φφ(k, z, z′)−Ga
πφ(k, z, z′)) = δ(z − z′)

∂z
(
βa

z
∂zG

a
πφ(k, z, z′)

)
− k2βa

z
(Ga

φφ(k, z, z′)−Ga
πφ(k, z, z′)) = 0

Ga
φφ(k, L0, z

′) = 0 = Ga
πφ(k, L0, z

′)
∂zG

a
φφ(k, L1, z

′) = ∂zG
a
πφ(k, L1, z

′) = 0

(3.55)


∂z
(

1
z
∂zG(k, z, z′)aφπ

)
− βa(z)

z
(Ga

φπ(k, z, z′)−Ga
ππ(k, z, z′)) = δ(z − z′)

∂z
(
βa

z
∂zG

a
ππ(k, z, z′)

)
− k2βa

z
(Ga

φπ(k, z, z′)−Ga
ππ(k, z, z′)) = 0

Ga
ππ(k, L0, z

′) = Ga
φπ(k, L0, z

′) = 0
∂zG

a
ππ(k, L1, z

′) = ∂zG
a
φπ(k, L1, z

′) = 0

(3.56)

The iterative procedure then generalises in the following fashion:

n ≥ 1 :

(
φan+1(k, z)
πan+1(k, z)

)
=

(
φa1(k, z)
πa1(k, z)

)

+

∫
dz′
(
Gaφφ(k, z, z′) Gaφπ(k, z, z′)

Gaπφ(k, z, z′) Gaππ(k, z, z′)

)
︸ ︷︷ ︸

G

 (2π)4i
g25
L
kσ
k2

δSint
δÂ∗aσ

∣∣∣
φan,π

a
n,k,z

′

−(2π)4 g
2
5
L
δSint
δπ̂∗a

∣∣∣
φan,π

a
n,k,z

′


where the vertical bar notation |φan,πan,k,z′ indicates that these expressions should be evalu-
ated at the specified fields and values of k and z. Again, the off-diagonal elements G will
be referred to as mixed propagators.
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Finally, regarding Sa and ξa, it can be seen from equations (3.38),(3.45) that one must
look at the values of falc for a given l ∈ {0, . . . , 8} to ascertain how many equations are
indeed coupled. One finds that:

• S4 couples with ξ5

• S5 couples with ξ4

• S6 couples with ξ7

• S7 couples with ξ6

• All ξa and Sb, a, b ∈ {0, 1, 2, 3, 8} are mutually independent

The propagators can then be defined analogously to the previous cases, except that now
any “off-diagonal” propagators will mix different values of the gauge index a. No more
details will be given here as for the particular problem studied here it will be shown that
they will not be required.

3.1.3 Sinter

The interaction terms in the action can be determined by continuing the expansion of
(2.27) to order 4. Terms remain manageable up to order 3 and the full calculation, although
tedious, can be performed by hand. For verification purposes, the calculations were also
performed using FORM. Not all of the terms are in fact required for the computation of the
process in diagram 1 and therefore, in order to keep the number of terms manageable, the
irrelevant terms should be identified and discarded. The four-point functions of interest
should contain two pseudo-scalar fields and two vector fields. Diagrammatically, to tree
order, there are only a small number of types of process (ignoring physical considerations)
that one can envisage, represented figure 5.

A/V/π/S

V

V

π

π

(a)

A/V/π/S

π

V

V

π

(b) V

π

V

π

(c)

Figure 5: Interactions expected heuristically, no physical considerations taken into account.
The fields can be either the field or their derivatives

This suggests the types of vertices that should be kept in our expansion. However, due
to the fact that the equations for φ and π and ξ and S are coupled, there are, a priori,
more 3-4 point vertices to consider than that which the naive analysis suggests. Indeed, the
expansion of A will contain factors of π0 and the expansion of S will contain factors of ξ0.
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This means that, for instance, the two three-point vertices AAS, V V S, or a 4-point vertex
AASS could actually produce valid terms. Nevertheless, for the calculation of diagram 1,
only the components a ∈ {3, 8} are of any relevance for the external vector fields and for
these values of a there is no ξ, S mixing.

Overall, the interaction terms contained in the theory are given in table 2. This table
should also be understood to define the coefficients λi.

Order 3 Order 4 Order 4

λabc1 ∂MV
a
NV

MV N λabcd16 V a
MV

b
NA

M,cAN,d VMV
MSS

λabc2 ∂MV
a
NA

b,MAc,N λabcd17 V a
MV

M,bAcNA
N,d ∂Mπ∂

Mπππ
λabc3 ∂MANV

MAN λabcd18 V a
MV

M,bπcπd ∂MπA
Mππ

λabc4 ∂MANV
NAM VMVNV

MV N AMA
Mππ

λabc5 V a
MA

b,Mπc AMANA
MAN ∂zππππ

λabc,z6 ∂zπ
aπbSc ∂Mπ∂

MπSS Azπππ
λabc7 ∂Mπ

a ∂MSbπc ∂Mπ∂
MSπS

λabc,z8 SπAz ∂MSA
MπS

λabc9 ∂MS
aAM,bπc ∂MπA

MSS
λabc10 ∂Mπ

aAM,bSc VzππS
λabc11 ∂MS

aV M,bSc ∂MπV
MπS

λabc12 ∂Mπ
a ∂Mπa ∂MSV

Mππ
λabc13 ∂Mπ

aV M,bπc VMA
MπS

λabc14 V
a
MV

M,bSc AMA
MSS

λabc15 A
a
MA

M,bSc VMV
MSS

Table 2: Interaction terms : When specified, the coefficient λi is an expression involving
combinations of X0, f

ijk and dijk; as not all terms were relevant not all of the interactions
were given labels. Their expressions are given in appendix B.2

The interaction Lagrangian density Linter defined by Sinter =

∫
d4x
√
gLinter is then

simply the sum of all of these terms. After performing a Fourier transform on the first four
spacetime coordinates, multiplications become convolutions according to the transforma-
tion rule:

A(x, z)B(x, z) 7→
∫

d4k′

(2π)4
Â(k′, z)Â(k − k′, z)

Physically, this can be interpreted as momentum conservation since the above can be
rewritten:∫

d4k′

(2π)4
Â(k′, z)Â(k − k′, z) =

∫
d4k′

(2π)4

d4k′′

(2π)4
(2π)4δ(k′′ + k′ − k)Â(k′, z)Â(k′′, z)
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3.2 Iteration
As all fields have been determined after a partial Fourier transform on the first 4 space-
time coordinates, it is more convenient to express the action S as a function of the Fourier
transformed fields. The momentum-space 4-point correlation function for operators Oi is
given by:

〈O1(p1)O2(p2)O3(p3)O4(p4)〉 =

∫
d4x1d4x2d4x3d4x4e

i(p1x1+···+p4x4)〈O1(x1)O2(x2)O3(x3)O4(x4)〉
(3.57)

Just like the position-space correlation function can be obtained from the action S of
the 5-dimensional theory by taking the functional derivative with respect to the operator
source, it follows that the momentum-space correlation function can be obtained from S
by taking functional derivatives with respect to the Fourier transform of the source field.
The relationship that follows from (3.57) is:

〈Ω|O1(p1)O2(p2)O3(p3)O4(p4)|Ω〉 = (2π)16 δ4S
δφ̂∗0,1(p1)δφ̂∗0,2(p2)δφ̂∗0,3(p3)δφ̂∗0,4(p4)

∣∣∣∣∣
φ̂0,1=···=φ̂0,4=0

where, ∗ indicates complex conjugation. Again, this derivative should be evaluated at 0
(all the source terms are set to 0 in the final result).

The action should now be rewritten in terms of the momentum space fields, that in
turn, should then be expanded in powers of the source fields by the iterative procedure
discussed in 3.1.2. Beginning with Skinetic, that is itself split up into a vector/scalar and
pseudo-scalar sectors, the result is:

SÂ/π̂kinetic =

∫
d4k

(2π)4

∫
dz

L

2g2
5

(
βa − k2

z
Âaµ,⊥(k, z)− ∂z

(
1

z
∂zÂ

a
µ,⊥(k, z)

))
ηµνÂa,∗ν,⊥(k, z)

+
L

2g2
5

(
∂z

(
βa∂zπ̂

a(k, z)

z

)
+
βak2

z
(π̂a(k, z)− φ̂a(k, z))

)
π̂a,∗(k, z)

+
L

2g2
5

k2

(
βa

z
(φ̂a(k, z)− π̂a(k, z))− ∂z

(
1

z
∂zφ̂

a(k, z)

))
φ̂a,∗(k, z)

+

∫
d4k

(2π)4

L

2g2
5

[
k2

z
∂zφ̂

aφ̂a,∗
]L1

L0

+

∫
d4k

(2π)4

L

2g2
5

[
1

z
ηρτ∂zA

a
ρ,⊥A

a,∗
τ,⊥

]L1

L0

−
∫

d4k

(2π)4

L

2g2
5

[
βa

z
∂zπ

a(−k, z)πa(k, z)

]L1

L0
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S V̂ /Ŝkinetic =

∫
d4k

(2π)4

∫
dz

L

2g2
5

(
αa − k2

z
V̂ a
µ,⊥(k, z)− ∂z

(
1

z
∂zV̂

a
µ,⊥(k, z)

))
ηµνV̂ a,∗

ν,⊥(k, z)

+
L

2g2
5

k2

(
αa

z
ξ̂a(k, z)− ∂z

(
1

z
∂z ξ̂

a(k, z)

)
− g2

5L
2

2z3
fabcXc

0Ŝ
b

)
ξ̂a,∗(k, z)

+
1

2

(
∂z(

L3

z3
∂zŜ

a) +

(
k2L3

z3
+ 3

L3

z5

)
Ŝa − f back

2Xc
0L

3

2z3
ξ̂b
)
Ŝa,∗

+

∫
d4k

(2π)4

ηµνL

2g2
5

[
1

z
∂zV̂

a
µ,⊥(−k, z)V̂ a

ν,⊥(k, z)

]L1

L0

+

∫
d4k

(2π)4

k2L

2g2
5

[
1

z
∂z ξ̂

a(−k, z)ξ̂a(k)

]L1

L0

−
[
L3

z3
∂zX

a
0 Ŝ

a(0, z)

]L1

L0

−
∫

d4k

(2π)4

[
1

2

L3

z3
∂zŜ

a(−k, z)Ŝa(k, z)

]L1

L0

The boundary terms come from an integration by parts performed in order to make
the equations of motion appear explicitly in the expression. In this way, the final result
only contains interaction terms and boundary terms. It can be seen that the bulk kinetic
terms essentially reproduce all of the interaction terms after the use of eqs. (3.38), (3.39),
(3.41) to (3.43) and (3.45) and the change of variable k → −k. The notable exception
to this are interactions containing z-derivatives like λ12 or λ7, where a further integration
by parts is sometimes required to bring it to that form; this will produce extra boundary
terms. As before, when expressing Sinter as a function of the Fourier transformed fields,
all multiplications give rise to momentum conservation integrals such that it is a sum of
terms of the form:
∫

d4k

(2π)4

d4k′

(2π)4

d4k′′

(2π)4
dz
√
g(2π)4δ(k + k′ + k′′)λA(k)B(k′)C(k′′) 3-point vertices∫

d4k

(2π)4

d4k′

(2π)4

d4k′′

(2π)4

d4k′′′

(2π)4
dz
√
g(2π)4δ(k + k′ + k′′ + k′′′)λA(k)B(k′)C(k′′)D(k′′′) 4-point vertices

In order to calculate a 4-point function of the form: 〈Ω|πaπbV c
µV

d
ν | Ω〉; formula (3.2)

implies that relevant terms should be exactly of order 2 in the source fields V0,⊥, ξ0 and
order 2 in π0. This indicates how many times the equations of motion should be used to
generate all of the required terms. Under the assumption that all the equations of motion
for the different fields are used simultaneously once per field and per iteration, then a total
of 4-5 iterations are required.

Finally, out of the above boundary terms the only ones that will be able to produce
relevant terms, under the above criterion for a 4-point function of the form (3.33), are a
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priori :∫
d4k

(2π)4

ηµνL

2g2
5

[
1

z
∂zV̂

a
µ,⊥(−k, z)V̂ a

ν,⊥(k, z)

]L1

L0

= −
∫

d4k

(2π)4

ηµνL

2g2
5

1

L0

∂zV̂
a
µ,⊥(−k, L0)V̂ a

0,ν,⊥(k)∫
d4k

(2π)4

k2L

2g2
5

[
1

z
∂z ξ̂

a(−k, z)ξ̂a(k)

]L1

L0

= −
∫

d4k

(2π)4

k2L

2g2
5

1

L0

∂z ξ̂
a(−k, L0)ξ̂a0(k)

−
∫

d4k

(2π)4

L

2g2
5

[
βa

z
∂zπ

a(−k, z)πa(k, z)

]L1

L0

=

∫
d4k

(2π)4

L

2g2
5

βa(L0)

L0

∂zπ
a(−k, L0)πa0(k)

ζL0

2

The IR (z = L1) boundary conditions on the fields V⊥, ξ and π imply that only the
contributions at z = L0 contribute to the final expression.

3.2.1 Intermediate considerations

The iterative expansion of the action S as a function of the fields ξ̂0, V̂⊥,0 and π̂0 was
performed using the computer algebra software FORM. More than 2000 terms were gener-
ated. This highlighted a defect in the approach presented here: despite the fact that they
simplify and make expressions more readable, the constants λi (cf. table 2) also hide many
of the possible cancellations that can occur. The simplest example of this, for instance,
is the fact that λ1, . . . , λ4 are equal up to sign. Nevertheless, an attempt to perform the
whole calculation using FORM without introducing these constants produced even more
terms (∼ 100000 !). Whilst it is not necessarily a problem that cancellations happen at
a later point in the calculation (when expanding the coefficients λi), there are some cases
where it is important to know that the they occur before, for example, using a momentum
conservation Dirac delta function. In particular, this is the case for the terms containing
factors of 1

k21
δ(k1 + p1 + p2), in the case p2 = −p1. When calculating the 4-point function:

〈Ω|πa(p1)πb(p2)V µ,c(p3)V ν,d(p4) |Ω〉 this can only occur for terms containing λ1 or λ14 as
can be seen from table 2. This is because, to produce such a momentum conservation
integral the two vector fields must be on the same vertex. The terms containing λ14 are
quickly removed as it can be shown that: ∀b, d, λ3bd

14 = λ8bd
14 = 0. Using FORM, it was

verified that the λ1 terms of this form also vanish when p2 = −p1 in virtue of, firstly, the
z ↔ z′ symmetry in our expressions (as they are dummy integration variables and the
expression is symmetric in these variables) and, secondly, the antisymmetry properties of
λ1. Due to these cancellations, it also transpires that the mixed propagators for Sa and ξb
are not required for this 4-point function. The expression is thus well defined in the case
p2 = −p1.

3.2.2 Functional derivative

In order to obtain the desired 4-point function, the functional derivative required is with
respect to the full vector field source V0, so the following relations should be used:

V̂⊥0,µ =

(
ηµν −

kµkν
k2

)
ηνσV̂0,σ; ξ̂0 =

ikν
k2
ηvσV̂0,σ (3.58)
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Up to this point, our expansion has been done in the general case where we assume
that the vector field has both longitudinal and transverse components. However, in the
4-dimensional theory and, at the very least for a ∈ 3, 8, despite our gauge choice in the 5
dimensional theory, there should still be a U(1) gauge freedom such that we can choose
to work in the Lorentz gauge where V̂ a

0 = V̂ a
0,⊥. This choice is made in the following and

thus no further distinction will be made between V and V⊥. This can be justified further
by the absence of physical particles contained in the longitudinal modes ξa, a ∈ {3, 8}, as
can be seen from equation (3.38). Indeed, in the case a ∈ {3, 8} the mixing term and αa
vanish making the equation reduce to:

∂z

(
1

z
∂z ξ̂

f

)
= −(2π)4 kσ

ik2

δSint

δV̂ ∗fσ

g2
5

L

The bulk to boundary propagator is then trivial: Kξ = 1, and has no poles.

3.2.3 Diagrammatic structure - Witten diagrams

The final expansion of the 4-point function 〈Ω|P a(p1)P a(p2)Vbµ(p3)Vcν(p4)|Ω〉 has a dia-
grammatic structure similar to that of Feynman diagrams in QED/QCD. These diagrams
are known as Witten diagrams and, in this expansion, are essentially of two types:

Vµ(p1)

π(p2)

π(p4)

Vν(p3)

z z′

Vµ(p1)

Vν(p2)

π(p4)

π(p3)

z

Figure 6: Types of Witten diagram : the diagram on the left will be referred to as Type I
and the one to the right Type II .

The momentum space Witten rules16 are:

• The outer ellipse represents the boundary; the points on it are the boundary operators

• A line originating from the boundary and terminating in the bulk is a bulk to bound-
ary propagator.

– External lines with fields φ or ξ should be multiplied by −ikµ
– Multiply by (−ikµ) for each derivative ∂µX(k)

16In these rules, the factors of L have been omitted. In our model its actual value is of no importance
and so the simplest choice (L = 1) was made. It is however relatively straightforward to determine what
they should be. They are produced by the metric related terms √g,gµν . The only subtlety is that one must
multiply by g25

L instead of just g25 to account for the asymmetry between terms coming from the iteration
and those sitting directly in the action.
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• Any line between two inner vertices (like the wiggly line in 6) is a bulk to bulk
propagator.

– Transverse propagators must by multiplied by a factor
(
ηµν − kµkν

k2

)
where k is

the momentum exchanged

– Longitudinal propagators should be multiplied by a factor kµkν
k2

• The inner vertices are interactions from table 2. They carry a coefficient λi and
factors of z coming from metric related terms like √ggµνgρτ or √ggµν

• Multiply by
∫
dz for each inner vertex

• Momentum is conserved at each vertex

• Multiply by the infamous symmetry factor, determined just as for Feynman diagrams.

• Multiply by ζL0

2
for each external pion line. (This is due to the holographic dictionary:

qq ↔ X
2z

and the boundary conditions for X0)

• For diagrams with two vertices, multiply by g2
5 (This comes from an asymmetry

between terms coming from the iteration — the equations of motion are multiplied
by g25

L
— and those in the action. The asymmetry can be resolved by absorbing a

factor of g5 into the λi corresponding to 3-vertices.)

• Multiply by the overall momentum conservation factor (2π)4δ(p1 + p2 + p3 + p4)
(usually hidden in the normalisations)

To illustrate the above rules, we consider an example. In particular, it is insightful
to look at an example that involves mixed propagators. For instance, one can draw the
following diagram:

πf

V a
α (p1)

−ip3βπ
c(p3)

−ip4δπ
d(p4)

V b
γ (p2)

z z′

Where the pentagram is, for example, λ
ijk
5 ηµν

z3
and the dotted lines indicate mixed bulk

to boundary propagators. The corresponding expression is ∝

g2
5(ζL0)2ηαβηγδ

4

8∑
f=1

∫
dzdz′

z3z′3
Gf
ππ(p1 + p3, z, z

′)

×Ka
V⊥

(p1, z)K
b
V⊥

(p2, z
′)(−ip3γ)K

c
φπ(p3, z)(−ip4γ)K

d
φπ(p4, z

′)λacf5 λbdf5
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Whilst this structure transpires quite naturally for the bulk terms, further relation-
ships between the bulk to boundary and boundary to boundary propagators K and G are
required to show that it is also the case for the boundary terms. For the non-mixed equa-
tions, these relations can be derived in a classical manner in position space using Green’s
second identity, or, in momentum space, by a simple integration by parts. For instance:

Ka
V⊥

(k, z′) =

∫
dzKa

V⊥
(k, z′)δ(z − z′)

=

∫
dzKa

V⊥
(k, z′)

(
−∂z

(
1

z
Ga
V⊥

(k, z, z′)

)
+
αa − k2

z
Ga
V⊥

(k, z, z′)

)
=

∫
dzGa

V⊥
(k, z, z′)

(
−∂z

(
1

z
Ka
V⊥

(k, z)

)
+
αa − k2

z
Ka
V⊥

(k, z)

)
︸ ︷︷ ︸

=0

−
[

1

z
Ka
V⊥

(k, z)∂zG
a
V⊥

(k, z, z′)

]L1

L0

+

[
1

z
∂zK

a
V⊥

(k, z)Ga
V⊥

(k, z, z′)

]L1

L0

=
1

L0

∂zG
a
V⊥

(k, L0, z
′)

Similar results are obtained for the other propagators:

Ka
φφ(k, z′) = − 1

L0

∂zG
a
φφ(k, L0, z

′)

Ka
πφ(k, z′) =

k2

L0

∂zG
a
φπ(k, L0, z

′)

k2Kφπ(k, z′) =
βa(L0)

L0

∂zG
a
πφ(k, L0, z

′)

Kππ(k, z′) = −β
a(L0)

L0

∂zG
a
ππ(k, L0, z

′)

A short derivation of some of these results is given in appendix B.3; analogous results
can also be obtained for S and ξ.

The full expression of 〈Ω| πa(p1)πb(p2)V µ,c(p3)V ν,d(p4) |Ω〉 is the sum of all possible
Witten diagrams and, in the general case, there are a large number of terms. However,
in order to calculate the function Π defined by equation (2.32), one must specialise to the
case p1 = −p2 = p; p3 = −p4 = k; a = b; c, d ∈ {3, 8}. Here, the sum of all Witten diagrams
of type I17 contains near 800 terms which reduces to around 200 when the open indices are
contracted to calculate Π(p2) (2.31). This long expression will not be given in this text.

17cf. fig 6
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On the contrary, there are a very small number of diagrams of type II which are:∫
dz

(
ζL0

2

)2(
2

z
λcda16 (z)pµpνKc

V (k, z)Kd
V (k, z)Ka

φπ(p, z)2

+
2

z
λdca16 (z)pµpνKc

V (k, z)Kd
V (k, z)Ka

φπ(p, z)2

+
2

z
λcda17 (z)ηµνKc

V (k, z)Kd
V (k, z)Ka

φπ(p, z)2p2

+
2

z
λdca17 (z)ηµνKc

V (k, z)Kd
V (k, z)Ka

φπ(p, z)2p2

+
2

z3
λcda18 (z)ηµνKc

V (k, z)Kd
V (k, z)Ka

ππ(p, z)2

+
2

z3
λdca18 (z)ηµνKc

V (k, z)Kd
V (k, z)Ka

ππ(p, z)2

)
This expression serves as a good, simple illustration of the Witten rules described above18

18The overall momentum conservation Dirac delta function (2π)4δ(p1 + p2 + p3 + p4) has been omitted
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4 Numerical results

4.1 Introduction

The numerical study here will use the parameters of model AI in [1], given in table 3.

Parameter Value
L1 (322.47 MeV)−1

mu 8.291 MeV
ms 188.48 MeV

σs = σu (213.66 MeV)3

Table 3: AI Model parameters

These values were determined by viewing mu,ms and σs as fitting parameters. Whilst
they play the same roles as the quark masses and quark condensate respectively, their
values need not be the same and indeed, as can be seen from table 3, are not in general.
Model AI was matched to the experimental values of mπ, fπ,mK and Mρ. The value used
for the kaon mass mK in [1] was the average19 of that of the charged kaons, 493.7 MeV,
and the neutral kaons, 497.7 MeV20, which is mK = 495.7 MeV.

Given electromagnetic interactions, the fact that the neutral kaon is “heavier” than
the charged kaon is rather counter-intuitive. It can partly be understood by the fact
that mu < md. This explanation is supported further by other examples. In the case
of the pion, where the averaged mass content of u and d is approximately the same, one
finds that: m(π±) = 139.5 MeV > m(π0) = 135.0 MeV, whereas like in the kaon case,
m(B+ = bu) = 5279.2 MeV < m(B0 = bd) = 5279.5 MeV. A brief estimate of the
expected electromagnetic contribution can be obtained through classical considerations:
the 0.56 fm charge radius of the K+, if inserted into Coulombs law, corresponds to a mass
split of the order of a MeV.

The value of 1× 10−3 GeV−1 was chosen for the UV cut-off L0. As represented in
figure 7, the dependence on the choice of L0 of the first pole — which corresponds to
the kaon state — in the pseudo-scalar bulk to boundary propagators is approximately
negligible for values of L0 below 1

100
. Finally, as in [1, 2], L was fixed to 1 since it has no

importance.
The aim is now to obtain a numerical estimate of (2.32):

Π(p2) =
ie2

2

∫
d4k

(2π)4

ηµν

k2 + i0
〈Ω|P (p)P †(−p)Vµ(k)Vν(−k) |Ω〉

The pseudo-scalar current operator P that has a non-zero overlap with the charged kaon
19For mass considerations, as we have assumed mu = md, we cannot really distinguish between K0 and

K±

20Values from [24]
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Figure 7: Position of pole in Kφπ for different values of L0

states K+/− corresponds, in the holographic model, to: 1
2
(π4(p, z)− iπ5(p, z)), therefore:

〈Ω|P (p)P †(−p)Vµ(k)Vν(−k) |Ω〉 =
1

4
〈Ω|P 4(p)P 4(−p)(V3

µ(k) +
1√
3
V8
µ(k))(V3

ν (−k) +
1√
3
V8
ν (−k) |Ω〉

+
1

4
〈Ω|P 5(p)P 5(−p)(V3

µ(k) +
1√
3
V8
µ(k))(V3

ν (−k) +
1√
3
V8
ν (−k) |Ω〉

=
1

2
〈Ω|P 4(p)P 4(−p)(V3

µ(k) +
1√
3
V8
µ(k))(V3

ν (−k) +
1√
3
V8
ν (−k) |Ω〉

(4.59)

Where charge conservation and conjugation, which are both symmetries of our 5D action
and QCD, have been used to conclude that:

〈Ω|P 4(p)P 4(−p)Vµ(k)Vν(−k) |Ω〉 = 〈Ω|P 5(p)P 5(−p)Vµ(k)Vν(−k) |Ω〉
〈Ω|P 4(p)P 5(−p)Vµ(k)Vν(−k) |Ω〉 = 〈Ω|P 5(p)P 4(−p)Vµ(k)Vν(−k) |Ω〉 = 0

Thes relations follow from :

〈Ω|P (p)P †(−p)Vµ(k)Vν(−k) |Ω〉 = 〈Ω|P †(p)P (−p)Vµ(k)Vν(−k) |Ω〉
〈Ω|P (p)P (−p)Vµ(k)Vν(−k) |Ω〉 = 0

〈Ω|P †(p)P †(−p)Vµ(k)Vν(−k) |Ω〉 = 0

Determining the general expression of the required quantities was the objective of the
previous section. The dependence of that result on the variables k, z, z′, p is such that:
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ηµν

k2 + i0
〈Ω|P a(p)P a(−p)Vc,µ(k)Vd,µ(−k) |Ω〉 =

∫
dzdz′facd1 (k2, k.p, p2, z, z′)︸ ︷︷ ︸

Type I diagrams

+

∫
dzfacd2 (k2, p2, z)︸ ︷︷ ︸
Type II diagrams

(4.60)
In general, momentum integrals with Minkowski signature, (+,− − −), are ill-defined

and difficult to evaluate due to their oscillatory behaviour. However, sometimes it is
possible to perform a change of variables, referred to as a Wick rotation, to go to Euclidean
signature, (+,+,+,+), where things are generally better defined. AWick rotation amounts
to the change of variable k0 → −ik0. In an integral, this is the same as calculating the
integral along the contour in figure 8, assuming that the contribution on the circle segments
vanishes when the radius tends to infinity and that the poles are contained in the upper
left and lower right quadrants of the complex plane. We will suppose that our expressions
satisfy these hypotheses. Furthermore, to avoid having to deal numerically with complex
numbers, we will also make the change of variable p0 = −ip0 and study Π for Euclidean
p2
E =

∑
(pi)

2. To evaluate the momentum space integral with Euclidean signature, one can

Euclidean 

signature

Minkowski 

signature

Figure 8: Wick rotation integration contour

use 4-dimensional spherical coordinates (kE, φ, φ2, φ3). If we choose the axes such that p is
on one them:

Π̃(p2
E) = Π(−p2

E) =
e2

(2π)4

(
4π

∫
dkE sin2 φdφdzdz′k3

Ef
acd
1 (−k2

E, φ,−p2
E, z, z

′)

+

∫
2π2dkEdzk3

Ef
acd
2 (−k2

E,−p2
E, z)

)
We will now concentrate on the numerical evaluation of Π̃(p2

E).
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4.2 Calculating Π̃(p2
E)

In order to compute Π̃(p2
E)21 one must evaluate numerically two multidimensional integrals.

It was anticipated that the integral with respect to kE be the most difficult to evaluate
numerically, and thus it was treated separately from the others. For the Type II diagrams,
with the exception of the z integral the others are trivial and can be done analytically;
the z integral behaves very well numerically. On the contrary, for the Type I diagrams,
whilst integration with respect to z and z′ at fixed kE and φ does not seem to pose any
numerical difficulties, the 3-dimensional integral z, z′, φ proved to be more troublesome.
For this reason, the φ integral was also done separately. In figures 9, and 10, the typical
dependancy of the integrand on φ , after integration with respect to z and z′, is represented
for several values of p2

E and u = k
1+k

. The variables f1, f2 and f3 correspond respectively
to the SU(3) indices c, d and a in (4.60).

Despite their slightly oscillatory behaviour, these curves are reasonably well approxi-
mated by a sequence of monomials22. They were fitted to polynomials of degree 10 by the
least square method using Gnuplot [25]. To illustrate the “goodness" of the fit, figure 11
represents one of the curves and its polynomial approximation; since we are only interested
in approximating the integral this is more than sufficient.

21All the curves and results presented here correspond in reality to Π̃(p2E) 8
L2

0ζ
2e2

. The constant L2
0ζ

2

4 will
in fact cancel

22Fitting to Chebyshev polynomials may have been more appropriate

41



0

0.5

1

1.5

2

2.5

3

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s = φ
π

f1 =8 f2 =3 f3 = 4 p2
E=0.01

u =0.012536
u =0.05
u =0.10
u =0.15
u =0.20
u =0.25
u =0.30
u =0.35
u =0.40
u =0.45
u =0.50
u =0.55
u =0.60
u =0.65
u =0.721

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s = φ
π

f1 =3 f2 =3 f3 = 4 p2
E=0.0242

u =0.012536
u =0.05
u =0.10
u =0.15
u =0.20
u =0.25
u =0.30
u =0.35
u =0.40
u =0.45
u =0.50
u =0.55
u =0.60
u =0.65
u =0.721

Figure 9: Integrand as a function of s = φ
π
; the variable u is defined by k = u

1−u

42



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s = φ
π

f1 =8 f2 =8 f3 = 4 p2
E=0.001

u =0.012536
u =0.05
u =0.10
u =0.15
u =0.20
u =0.25
u =0.30
u =0.35
u =0.40
u =0.45
u =0.50
u =0.55
u =0.60
u =0.65
u =0.721

Figure 10: Integrand as a function of s = φ
π
; the variable u is defined by k = u

1−u

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

s = φ
π

f1 = 3 f2 = 8 f3 = 4 p2
E = 0.05

Fitted curve
Calculated data
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From the fitted curves, we obtain an estimate of the function of kE that is left to
be integrated. The results are represented graphically in figures 12,13,14 and 15. For
the Type I diagram contribution, it became very difficult to obtain numerical values for
points u ≥ 0.721, and similarly for the Type II diagrams for u ≥ 0.9. In these respective
ranges of u, the numerical evaluation of the bulk-to-boundary and bulk-to-bulk propagators
(which are obtained by solving numerically the differential equations using the shooting
method, as in [2]) had difficulties converging. This hindered significantly the execution
time of the numerical integration routine. Nevertheless, the calculated curve sections are
again relatively well approximated by polynomials of degree 10. In this case, fitting to
Chebyshev polynomials was rendered impossible because of the practical difficulties in the
neighbourhood of 1.
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In order to proceed to estimate the full momentum integral, one can either truncate
the integral at the last calculated value or, alternatively, attempt a guess at the behaviour
of the function beyond that point; both possibilities were considered in the following.23

When the curves was completed with an analytical guess, a simple logarithm A lnu + B
was chosen in the case of the Type I diagrams, and an exponential C(1− exp(b(1− u))) in
that of the Type II diagrams. These choices were founded on the steepness of the observed
final decrease and were fitted under the assumption that the functions are integrable and
hence, at the very least, vanish when k → ∞ or u → 1. In particular, this implies that
B = 0 in the anstaz A lnu + B. The parameter b was intended to be chosen so as to
match the derivatives, but a value of b = −50 was retained globally, as it gave a reasonable
match for most of the curves. Furthermore, the contribution of Type II diagrams being,
in amplitude, much smaller than that of type I diagrams, a perfect fit was not necessary.

After combining these results according to (4.59), we obtain the curves in figure 17.
The values of p2

E were chosen near 0, where the effect of the pole at the kaon mass for
Minkowski p2 should be the dominant behaviour.

23A third possibility is of course also possible: to complete the calculation with data from high-energy
perturbative QCD as in [7]. Lack of time prevented us from pursuing this possibility
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4.3 Kaon electromagnetic mass difference

In order to obtain the kaon-electromagnetic mass difference from the curves in figure 17;

they were fitted to a function of the type
Ap2

E +B

(p2
E +m2)2

. This function accounts for the double

pole behaviour of the 4-point function; the LSZ reduction formula was then applied, after
using the fitted curve to extrapolate to the pole. Firstly, however, we must determine the
field renormalisation constant Z that appears in the LSZ formula. This can be determined
from the kaon two-point function through it’s asymptotic behaviour near the pole:

〈Ω|P (p)P †(−p) |Ω〉 = 〈Ω|P 4(p)P 4(−p) |Ω〉 ∼ Z

p2 −m2
K

Fortunately, the two-point function can be retrieved straight-forwardly from the Ad-
S/QCD model. In the expansion of section 3, it can only be produced by the boundary
term: ∫

d4k

(2π)4

L

2g2
5

βa(L0)

L0

∂zπ
a(−k, L0)πa0(k)

ζL0

2

This yields, after iterating to second order in πa0 and applying the Fourier space version of
equation (1.24):

〈Ω|P 4(p)P 4(−p) |Ω〉 = (2π)4δ(p+ (−p)) L
g2

5

β4(L0)

L0

∂zK
4
ππ(p, L0)

(
ζL0

2

)2
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Figure 18: 2-point function

The general behaviour of the 2-point function is illustrated in figure 18. To extract the
constant Z, we fit the curve to Z0+Z1p2+Z2p4

p2−m2
K

in the range [−0.3, 0] where we obtained values
for the function Π. An estimation of the kaon electromagnetic mass difference will then be
given by:

δm2 =
e2

2

B − Am2
K

Z0 + Z1m2
K + Z2m4

K
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A B

Truncated 5.60 ± 0.01 −3 · 10−3 ± 1 · 10−3

Completed 7.15 ± 0.01 −3 · 10−3 ± 1 · 10−3

Table 4: Values of fitting parameters for Π̃(p2
E)
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K)2

(
2
ζL0

)2

Π̃(p2
E) and its linear fit . The curves overlap

so well that we can hardly distinguish them.

The obtained values for A and B in our two cases are given in table 4; they were

obtained by fitting a line to (p2
E +m2

K)2

(
2

ζL0

)2

Π̃(p2
E). The overall constant ζL0

2
appears

in both the expression for Π̃(p2
E) and the two-point function and so has been factored

out of both expressions. In figure 19, the curve g(p2
E) = (p2

E + m2
K)2

(
2
ζL0

)2

Π̃(p2
E) has

been represented with its linear fit to illustrate graphically the goodness of the fit. There
are slight discrepancies to the linear model for larger values of p2

E where higher order
corrections(∼ ln

m2
K+p2E
m2
K

for instance) begin to contribute.
The renormalisation constant was estimated to be

Z0 + Z1m
2
K + Z2m

4
K = −7.07× 10−4 GeV2/

L2
0ζ

2

4

which leads to the estimations of the electromagnetic mass difference given in table 5.
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δm2
K

Truncated 89.25 GeV2

Completed 114 GeV2

Table 5: Model estimates of the kaon electromagnetic mass difference

The order of magnitude is very different from the value obtained in [7] which was:

δm2
K+ = (2.32± 0.70) · 10−3 GeV

2

However, if we divide the results by (2π)6 we would obtain 1.45 · 10−3 GeV2 and 1.85 · 10−3 GeV2

respectively for the truncated and completed cases; these values are closer to the value
of [7], although this may simply be coincidental. This suggests that there is an incorrect
normalisation factor in the program written for this thesis; unfortunately it was not identi-
fied. Similarly, multiplying by L2

0 would give the correct order of magnitude which further
supports the hypothesis of an overall mistake in some constant. Moreover, the two-point
function is surprisingly small which could be a defect of the model employed. It can also be
noted that the large kE behaviour of the curves in figures 12,13,14 and 15 is essentially un-
known. Inspired by the form of the curves obtained for the the Type II contribution, where
a sharp dip is observed in the u ∼ 0.8− 0.9 region, one can imagine that similar behaviour
could occur for the Type I curves. This could introduce further cancellations, although it
is not believed that they will be sufficient to account for the several orders of magnitude
difference with the expected result. Nevertheless, despite this disappointing result, one can
note that the AdS/QCD model has correctly reproduced the expected physical behaviour
of the 4-point function near the pole; notably the double mass pole singularity.
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5 Conclusions
In this thesis, an attempt was made to calculate the electromagnetic contribution to the
kaon electromagnetic mass difference using a 5-dimension holographic model for QCD.
The full calculation of 4-point functions of the type 〈Ω|P a(p1)P b(p2)V c

µ (p3)V c
ν (p4) |Ω〉 was

performed using scripts in FORM, that, although contains sections of code that are spe-
cialised to this particular problem, should be straight-forward to generalise to any n-point
function. Much time was spent establishing that the calculation could be recast into a dia-
grammatic formalism similar to perturbation theory Feynman diagrams, known as Witten
diagrams, and reducing the large number of terms in the full expansion. For the latter,
certain sections of the expansion were studied in detail in order to verify that they vanish
and symmetry properties of the coupling constants was studied in detail.

After the theoretical expansion was completed, the 1-loop momentum integral was
evaluated numerically in several steps. Certain intermediate functions were fitted to poly-
nomials to accelerate the calculation which, unfortunately, was rather time consuming.
The "goodness" of the fit was studied briefly, but, an overall estimation of errors was not
attempted and generally the error is not yet under control. This is mostly due to numer-
ical difficulties encountered in evaluating the expression of the 4-point for large values of
k. In this region, the execution time of the integration routine was significantly increased
(>11 days without convergence) and the numerical determination of the bulk-to-boundary
(K) and bulk-to-bulk propagators (G) had difficulties attaining a relative accuracy of 10−3.
Furthermore, in terms of execution time, the computation ofK and G is the limiting factor.
Time is to be gained here by improving the treatment of these functions. One possibility
could be to attempt to fit them to analytic functions at large k2, or alternatively, one could
attempt to incorporate the integration routine into the main program in order to limit the
number of calls to the functions that evaluate K and G by storing the values. It can also
be noted that a significant24 difference in execution time was observed between different
compilers. The GNU GCC compiler produced an executable that was approximately 8-10
times slower than the executable produced by the LLVM compiler; this phenomenon is not
understood.

The actual numerical value obtained for the kaon electromagnetic mass difference was
several orders of magnitude off from the value calculated in [7]. It is believed that this is due
to an unidentified error in a normalisation constant in the numerical program. Nevertheless,
the model correctly reproduced the expected physical behaviour near the kaon mass, which
is an encouraging result for the model. Moreover, all of these considerations were performed
using a so-called “Hard-Wall model”, that, despite being the simplest way of modifying the
AdS geometry to account for the non-conformal behaviour of QCD at low energies, is
known to be rather crude. Whilst such a model can produce good results for the ground
states, it does not, for instance, produce the correct Regge trajectories: (Hard-wall models
predict: mn ∼ n, where it should be mn ∼ n2). An interesting extension to the work here

24The difference was surprisingly significant: the Intel Core i5 2.5Ghz (2 cores) processor in the laptop
using the LLVM compiler executed the program faster than the Intel i7 3.5Ghz (8 cores) processor in the
desktop using the GNU compiler!
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would be to reproduce these calculations, after correcting the numerical errors, using other
numerical fitting schemes or in a “Soft-wall model" like in [1], where a background dilaton
field is introduced to smoothly break the conformal symmetry.

Finally a short remark can be made about the AdS/QCD model used here. Although
it is built by analogy with the conformal case, there is still some amount of freedom in
the choice of parameters and the way to fit it to experimental and theoretical results from
QCD; this is particularly apparent in the choice of the boundary conditions for the field
X0 which are treated differently across the literature. The generalisation of quantities that
are specifically defined in conformal theories, like the conformal dimension, is also an open
question.
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A Explicit calculation of the kinetic part of the action
The aim of this appendix is to perform the rather cumbersome calculation that consists in
expanding (A.1) to second order in the fields π,A, V and S. The overall expansion should
be done to order 4, but, the full calculation will only be shown explicitly to order 2 in
order to illustrate the methods. Furthermore, although this calculation is already present
in [1], it is presented again here with slightly different notation in order to highlight some
hidden assumptions that were made in [1]. The full calculation to order 4 was performed
at first by hand, and then checked using FORM [26].

S =

∫
d5x
√
gTr

(
(DMX)†(DMX) +

3

L2
X†X − 1

4g2
5

(FL
MNF

MN
L + FR

MNF
MN
R )

)
(A.1)

where L and R are not indices but simply denote the left-handed and right-handed
parts.

A.1 Notations

For convenience, the notation is recalled here:

FL
MN = ∂MLN − ∂NLM − i[LM , LN ]

FR
MN = ∂MRN − ∂NRM − i[RM , RN ]

LM = VM + AM

RM = VM − AM
DMX = ∂MX − iLMX + iXRM

X = eiπ(X0 + S)eiπ with X†0 = X0

For further clarity, the following notation will be used throughout this section:

• ‘=’ will always denote an exact equality in the usual sense

• ‘∼’ will denote that two expressions are related by the equivalence relation defined
by Tr(A) = Tr(B).

Recall that the trace is linear form on the vector spaceMn(C) that is invariant under
transposition and has the following important property that will be used extensively in the
following:

Tr(AB) = Tr(BA) (A.2)

or with our notations AB ∼ BA. This means that products of several matrices that are
related by circular permutations of the factors will be equal in the sense of ∼.

Finally, using the linearity of the trace, the three terms of the sum in (A.1) will be
treated separately.
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A.2 Quadratic term X†X

This is the easiest term because, in virtue of (A.2): X†X = e−iπ(X0 + S)2eiπ =
tr
X2

0 +

2X0S + S2.

A.3 The field strength term: FL
MNF

MN
L + FR

MNF
MN
R

To simplify further this short calculation the following extra notations will be used:

VMN = ∂MVN − ∂NVM (A.3a)
AMN = ∂MAN − ∂NAM (A.3b)
CMN = [VM , VN ] + [AM , AN ] (A.3c)
DMN = [VM , AN ] + [AM , VN ] (A.3d)

By direct calculation it can be shown that, in terms of the fields V and A, FL
MN and

FR
MN take the form:

FL
MN = VMN + AMN − i(CMN +DMN)

FR
MN = VMN − AMN − i(CMN −DMN)

CMN and DMN are already terms of order 2 in the fields and and therefore will only
produce terms of higher order, thus:

FL
MNF

MN
L + FR

MNF
MN
R ∼ VMNV

MN + VMNA
MN + AMNV

MN + AMNA
MN

+ VMNV
MN − VMNA

MN − AMNV
MN + AMNA

MN

∼ 2VMNV
MN + 2AMNA

MN

In this work, the Hermitian matrices will be systematically decomposed onto the basis
(ta) as it is an orthogonal basis with respect to the inner product defined by (A,B) =
Tr(AB). In fact, Tr(tatb) = 1

2
δab.

Decomposing onto this basis then yields:

VMN = ∂MVN − ∂NVM =
8∑

a=1

(∇MV
a
N −∇NV

a
M)ta

VMNV
MN =

(
8∑

a=1

(∇MV
a
N −∇NV

a
M)ta

)(
8∑
b=1

(∇MV N,b −∇NV M,b)tb

)

=
tr

1

2

8∑
a=1

(∇MV
a
N −∇NV

a
M)(∇MV N,a −∇NV M,a)

Reproducing the above steps for AMNA
MN , the final result is then:
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FL
MNF

MN
L + FR

MNF
MN
R ∼

tr

8∑
a=1

(∇MV
a
N −∇NV

a
M)(∇MV N,a −∇NV M,a)

+
8∑

a=1

(∇MA
a
N −∇NA

a
M)(∇MAN,a −∇NAM,a)

A.4 The kinetic term (DMX)†(DMX)

Expanding the exponential terms in X, it follows that:

X = X0 + S + i {X0, π} −
1

2
{π, {π,X0}}+ i{π, S} − i

6
{π3, X0} −

i

2
π{X0, π}π

− 1

2
{π, {S, π}}+

1

24
{π4, X0} −

i

6
{S, π3} − i

2
π{S, π}π +

1

6
π{π{X0, π}}π −

1

12
π2X0π

2 +O(5)

(A.4)

Where {, } denotes an anti-commutator.

A.4.1 Calculations with the matrices π, VM , AM

The first step is to calculate: DMX = ∂MX − iLMX + iXRM . From (A.4) it follows that:

∂MX =∂MX0 + ∂MS + i{∂Mπ,X0}+ i{π, ∂MX0} −
1

2
{∂Mπ, {X0, π}} −

1

2
{π, {∂MX0, π}}

− 1

2
{π, {X0, ∂Mπ}}+ i{∂Mπ, S}+ i{π, ∂MS}+O(3)

As {, } is a bilinear map and therefore the derivative will act on it in the same way as
a product.

Replacing LM and RM by their expressions in terms of VM and AM :

−iLMX+iXRM = i[X0, VM ]−i{AM , X0}+[VM , {π,X0}]+{AM , {π,X0}}+i[S, VM ]−i{AM , S}

where [, ] denotes a commutator.
The covariant derivative is then:

DMX =∂MX0 + ∂MS + i{∂Mπ,X0}+ i{π, ∂MX0} −
1

2
{∂Mπ, {X0, π}} −

1

2
{π, {∂MX0, π}}

− 1

2
{π, {X0, ∂Mπ}}+ i{∂Mπ, S}+ i{π, ∂MS}+ i[X0, VM ]− i{AM , X0}

+ [VM , {π,X0}] + {AM , {π,X0}}+ i[S, VM ]− i{AM , S}+ O(3)
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From which we deduce its hermitian conjugate:

(DMX)† =∂MX0 + ∂MS − i{∂Mπ,X0} − i{π, ∂MX0} −
1

2
{∂Mπ, {X0, π}} −

1

2
{π, {∂MX0, π}}

− 1

2
{π, {X0, ∂Mπ}} − i{∂Mπ, S} − i{π, ∂MS}+ i[X0, VM ] + i{AM , X0}

− [VM , {π,X0}] + {AM , {π,X0}}+ i[S, VM ] + i{AM , S}+ O(3)

This follows from the fact that d(M†)
dt = (dM

dt )† and from the following basic facts about
Hermitian matrices A,B:

• {A,B}† = {A†, B†} = {A,B}

• [A,B] = [B†, A†] = −[A†, B†] = −[A,B]

The next step is to perform the product of the above two expressions (contracting the
open M index):

0-th order

The only term to 0-th order is clearly: ∂MX0∂
MX0

1st order

To first order:

{First order terms} = ∂MX0 (∂MS + i{∂Mπ,X0}+ i{π, ∂MX0}+ i[X0, VM ]− i{AM , X0})
+(∂MS − i{∂Mπ,X0} − i{π, ∂MX0}+ i[X0, V

M ] + i{AM , X0})∂MX0

where for a scalar field ∂M = gMN∂M = gMN∇M

As only the trace of the above expression is interesting, it can be simplified greatly
using (A.2):

{First order terms} ∼ 2∂MX0∂
MS + 2i[∂MX0, X0]VM

The term 2i[∂MX0, X0]VM cancels because [∂MX0, X0] = 0 follows from the choice of
vacuum made in section 2.1.
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2nd order

Applying the same techniques as above the second order terms are:

{Second order terms} = −∂MX0 ({∂Mπ, {π,X0}}+ {π, {∂Mπ,X0}}+ {π, {π, ∂MX0}})
+2∂MX0(i[S, VM ] + {AM , {π,X0}}) + ∂MS∂

MS + 2i∂MS[X0, V
M ]

+{∂Mπ,X0}{∂Mπ,X0}+ 2{∂M π,X0}{π, ∂MX0}+ {π, ∂MX0}{π, ∂MX0}
−2{∂Mπ,X0}{AM , X0} − [X0, VM ][X0, V

M ]− 2{π, ∂MX0}{AM , X0}
+{AM , X0}{AM , X0}

(A.5)

Several further simplifications are possible after expansion of the double anti-commutators.
The green terms can be simplified as follows:

−∂MX0 ({∂Mπ, {π,X0}}+ {π, {∂Mπ,X0}}+ {π, {π, ∂MX0}}) + 2{∂M π,X0}{π, ∂MX0}
+{π, ∂MX0}{π, ∂MX0}

∼2(∂MπX0π∂MX0 + ∂MπX0∂MX0π +X0∂Mππ∂MX0 +X0∂Mπ∂X0π)

+ (π∂MX0π∂MX0 + π(∂MX0)2π + ∂MX0π
2∂MX0 + ∂MX0π∂MX0π)︸ ︷︷ ︸

2(π∂MX0π∂MX0 + π2(∂MX0)2)

−
(
∂MX0∂MπX0π + ∂MX0∂MππX0 + ∂MX0X0π∂Mπ + ∂MX0πX0∂Mπ + ∂MX0π∂MX0π

+ ∂MX0π
2∂MX0 + (∂MX0)2π2 + ∂MX0π∂MX0π + ∂MX0πX0∂Mπ + ∂MX0π∂MπX0

+ ∂MX0X0∂Mππ + ∂MX0∂MπX0π

)
Terms of the same colour (that is not black) in the above expression are equal, so when

a term appears twice in the negative part it cancels its counterpart in the positive part.
Unfortunately, not all terms cancel immediately and the remaining ones are:

X0∂Mππ∂MX0 − ∂MX0∂MππX0 + ∂MπX0∂MX0π − ∂MX0X0π∂Mπ

∼∂MX0X0∂Mππ −X0∂MX0∂Mππ + π∂MπX0∂MX0 − π∂Mπ∂MX0X0

∼[∂MX0, X0]∂Mππ + π∂Mπ[X0, ∂MX0]

∼[∂MX0, X0][∂Mπ, π]

The term therefore cancels under the assumption that [X0, ∂MX0] = 0.
The red terms in (A.5) simplify as follows:
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− 2{π, ∂MX0}{AM , X0}+ 2∂MX0{AM , {π,X0}}
=2
(
−(π∂MX0 + ∂MX0π)(AMX0 +X0AM) + ∂MX0(AM(πX0 +X0π) + (πX0 +X0π)AM)

)
= 2

(
−(π∂MX0AMX0 + π∂MX0X0AM + ∂MX0πAMX0 + ∂MX0πX0AM) + ∂MX0AMπX0

+∂MX0AMX0π + ∂MX0πX0AM + ∂MX0X0πAM
)

∼ 2(∂MX0AMπX0 − π∂MX0X0AM + ∂MX0X0πAM − ∂MX0πAMX0)

∼ 2([X0, ∂
MX0]AMπ + [∂MX0, X0]πAM)

∼ 2[∂MX0, X0][π,AM ]

The remaining terms in (A.5) can be reshuffled so that the above shows that, under
the assumption [∂zX0, X0] = 0:

(DMX)†(DMX) ∼ ∂MX0∂
MX0 + 2i[∂MS,X0]V M + 2i[∂MX0, S]V M + {∂Mπ,X0}{∂Mπ,X0}
−[X0, V

M ][X0, VM ] + {AM , X0}{AM , X0} − 2{∂Mπ,X0}{AM , X0}
(A.6)

A.4.2 Introducing explicitly the SU(3) index

As before the matrices π, S, V and A should be decomposed onto the basis (ta). (A.6) then
becomes:

(DMX)†(DMX) ∼ ∂MX
a
0∂

MXb
0t
atb + 2i∂MS

aXb
0V

M,c[ta, tb]tc + 2i∂MX
a
0S

bV c,M [ta, tb]tc

+∂Mπa∂Mπ
b{ta, X0}{tb, X0} − V a,MV b

M [X0, t
a][X0, t

b]

+Aa,MAbM{ta, X0}{tb, X0} − 2∂MπaAbM{ta, X0}{tb, X0}
(A.7)

All of the above traces can be calculated as functions of the structure coefficients f ijk
and dijk defined in C.

It is important to evaluate [X0, t
a][X0, t

b] and {X0, t
a}{X0, t

b} for all a, b ∈ {0, . . . , 8}.
This can be done by a direct calculation:

[X0, t
a][X0, t

b] = Xc
0X

d
0 [tc, ta][td, tb]

=
1

4
Xc

0X
d
0f

cakfdbltktl

∴ tr([X0, t
a][X0, t

b]) = −1

8
Xc

0X
d
0f

cakfdbk

= −1

8

(
(X0

0 )2f 0akf 0bk +X0
0X

8
0 (f 0akf 8bk + f 8akf 0bk) + (X8

0 )2f 8akf 8bk
)
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Clearly: f 0ak = 0 for all a, hence:

tr[X0, t
a][X0, t

b] = −1

8
(X8

0 )2f 8akf 8bk (A.8)

It is easily seen from (C.25) that f 8akf 8bk = 3δab, so that :

tr[X0, t
a][X0, t

b] = −3

8
(X8

0 )2δab (A.9)

Similarly for tr{X0, t
a}{X0, t

a}:

{X0, t
a}{X0, t

a} = Xc
0X

d
0d

cakddbltktl

∴ tr({X0, t
a}{X0, t

a}) =
1

2
Xc

0X
d
0d

cakddbl

=
(X0

0 )2

2
da0kdb0k +

X0
0X

8
0

2
(da8kdb0k + da0kdb8k) +

(X8
0 )2

2
da8kdb8k

The only combinations of the indices {a, k, 0} and {a, k, 8}, such that dak8 6= 0 or dak0 6=
are:

∀a ∈ {0, . . . , 8}, daa0 =

√
6

3
; d118 = d228 = d338 =

1√
3

; d448 = d558 = d668 = d788 = −
√

3

6
; d888 = − 1√

3
(A.10)

Thus:

tr({X0, t
a}{X0, t

b}) =



0 if a 6= b
(X0

0 )2

2
(daa0)2 +X0

0X
8
0

√
2
3
daa8 +

(X8
0 )2

2
(daa8)2 if a = b 6∈ {0, 8}

(X0
0 )2

2
(d000)2 +

(X8
0 )2

2
(d088)2 if a = b = 0

(X0
0 )2

2
(d808)2 +X0

0X
8
0 (d888d880) +

(X8
0 )2

2
(d880d880 + d888d888) if a = b = 8

X0
0X

8
0

2
((d088)2 + d000d880) +

(X8
0 )2

2
d088d888 if {a, b} = {0, 8}

(A.11)
Finally, using (A.10) and the expressions for X0

0 and X8
0 given in (2.29) :

tr[X0, t
a][X0, t

b] =

{
−1

8
(vu − vs)2δab if a ∈ 4, 5, 6, 7

0 otherwise (A.12)

{X0, t
a}{X0, t

b} =



1
6
(2v2

u + v2
s) a = b = 0

1
2
v2
u a = b ∈ {1, 2, 3}

1
8
(vu + vs)

2 a = b ∈ {4, 5, 6, 7}
1
6
(v2
u + 2v2

s) a = b = 8√
2

6
(v2
u − v2

s) {a, b} = {0, 8}

(A.13)
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So that one can define the quantities Ma
V and Ma

A, following [1, 2]:

1

2
Ma 2

V = −Tr([ta, X0]2) (A.14)

1

2
Ma 2

A = Tr({ta, X0}2) (A.15)

For completeness, the mixed quantity M80 2
A can be defined by:

1

4
M80 2

A = tr({ta, X0}{tb, X0}) (A.16)

It is however not needed unless a pseudo-scalar flavour singlet is included in the theory.
Overall:

(DMX)†(DMX) ∼ 1

2
∂MX

a
0∂

MXa
0 −

1

2
fabc∂MS

aXb
0V

M,c − 1

2
fabc∂MX

a
0S

bV M,c

+
1

2
Ma 2

V V M,aV a
M +

1

2
Ma 2

A (∂Mπ
a − AaM)(∂Mπa − AM,a)

(A.17)

Combining all of the previous results yields equation (3.34).

B Intermediate results for the calculation of the 4-point
function

B.1 Kinetic part functional derivative

δSkinetic

δV f
L (x′)

=
L

g2
5

(
αf

z
ηLM

′
V f
M ′ −

ηLM
′

2
(f fbcXc

0∂M ′S
b + fafc∂M ′X

c
0S

a)

+ηMM ′ηLN
′
∂M(

1

z
(∂M ′V

f
N ′ − ∂N ′V

f
M ′))

) (B.18)

δSkinetic

δAfL(x′)
=
L

g2
5

(
βf

z
ηLM

′
(AM ′ − ∂M ′πf ) + ηMM ′ηLN

′
∂M(

1

z
(∂M ′A

f
N ′ − ∂M ′A

f
M ′))

)
(B.19)

δSkinetic

δπf (x′)
= − L

g2
5

ηMM ′∂M ′

(
βf

z
(∂Mπ

f − AfM)

)
(B.20)

δSkinetic

δSf (x′)
= −ηMM ′∂M(

L3

z3
∂M ′S

f ) +

(
−ηMM ′∂M(

L3

z3
∂M ′X

f
0 ) +

3Xf
0L

3

z5

)
︸ ︷︷ ︸

=0 EOM for vacuum

−ηMM ′ L
3

2z3
fafc∂MX

a
0V

c
M ′ +

1

2
f fbcηMM ′∂M(

L3

z3
Xb

0V
c
M ′) +

3L3

z5
Sf

(B.21)

Where the following notations have been introduced:

αf (z) =
g2

5L
2M f 2

V

z2
βf (z) =

g2
5L

2M f 2
A

z2
(B.22)
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B.2 Coupling coefficients

In this section, the coupling coefficients λi are given in terms of the SU(3) structure con-
stants d and f , the Einstein summation convention is used in that repeated indices in a
product are summed over. Lowercase roman letters are gauge indices and vary from 0 to
8. The expressions in table 6 were calculated by hand and checked with FORM; all other
expressions were obtained using FORM.

The first 4 coefficients are not independent and are related by:

λabc1 = λabc2 = λabc3 = −λabc4 (B.23)

λabc1 − 1
2g25
fabc

λz,abc6 −fcdlfabl
8

∂zXd
0

λabc7
1
8
faclf bdlXd

0

λabc9 −1
4
fadlf cblXd

0

λabc10 −Xd
0 (dacldbdl + dadldbcl)

λabc11
1
2
fabc

λabc12 dacldbdlXd
0

λabc14
1
4
Xd

0f
dalf cbl

λabc15 Xd
0d

cbldadl

λabc16 − 1
8g25

(fablf cdl + f cblfadl)

λabc17 − 1
8g25
fackf bdk

Table 6: Coupling coefficients

λabc5 = − 1

32
X i

0X
j
0f

ackf bikdjkki− 1

16
X i

0X
j
0f

ackf bkidjkki− 3

16
X i

0X
j
0f

ackdbkidjkk − 1

32
X i

0X
j
0f

aikf bckdjkki

− 1

16
X i

0X
j
0f

aikf ckjdbkki+
3

16
X i

0X
j
0f

aikdbckdjkk +
3

16
X i

0X
j
0f

aikdbkkdckj +
1

16
X i

0X
j
0f

akif bckdjkki

− 1

32
X i

0X
j
0f

akif cjkdbkki+
1

16
X i

0X
j
0f

bckdakidjkk +
1

16
X i

0X
j
0f

bikf ckjdakki− 1

16
X i

0X
j
0f

bikdackdjkk

− 1

16
X i

0X
j
0f

bikdakkdckj − 1

32
X i

0X
j
0f

bkif cjkdakki+
1

16
X i

0X
j
0f

cikdakjdbkk − 3

16
X i

0X
j
0f

cikdakkdbkj

−1

8
X i

0X
j
0d

ackdbikdjkki− 1

4
X i

0X
j
0d

ackdbkidjkki− 1

8
X i

0X
j
0d

aikdbckdjkki− 1

4
X i

0X
j
0d

aikdbkkdckji

+
1

4
X i

0X
j
0d

akidbckdjkki+
1

8
X i

0X
j
0d

akidbkkdcjki+
1

4
X i

0X
j
0d

akkdbikdckji+
1

8
X i

0X
j
0d

akkdbkidcjki
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λabc13 =
1

128
X i

0X
j
0f

ablf cikf jkl +
1

64
X i

0X
j
0f

ablf cikdjlki+
1

64
X i

0X
j
0f

ablf j,l,kdciki+
1

32
X i

0X
j
0f

abldcikdjlk

− 1

128
X i

0X
j
0f

aclf bjkf ilk − 1

64
X i

0X
j
0f

aclf bjkdilki+
1

128
X i

0X
j
0f

aclf blkf ijk − 1

64
X i

0X
j
0f

aclf blkdijki

+
1

64
X i

0X
j
0f

aclf ijkdblki+
3

64
X i

0X
j
0f

aclf ilkdbjki− 3

32
X i

0X
j
0f

acldbjkdilk +
1

32
X i

0X
j
0f

acldblkdijk

+
3

128
X i

0X
j
0f

ajlf bckf ikl +
3

64
X i

0X
j
0f

ajlf bckdilki+
1

32
X i

0X
j
0f

ajlf blkdciki+
1

64
X i

0X
j
0f

ajlf bklf cik

+
1

32
X i

0X
j
0f

ajlf cikdblki− 3

64
X i

0X
j
0f

ajlf ilkdbcki− 3

32
X i

0X
j
0f

ajldbckdilk +
1

16
X i

0X
j
0f

ajldblkdcik

+
1

64
X i

0X
j
0f

alkf bclf ijk − 1

32
X i

0X
j
0f

alkf bcldijki− 1

32
X i

0X
j
0f

alkf bjldciki− 1

64
X i

0X
j
0f

alkf bjkf cil

− 1

32
X i

0X
j
0f

alkf cildbjki− 1

32
X i

0X
j
0f

alkf ijldbcki+
1

16
X i

0X
j
0f

alkdbcldijk − 1

16
X i

0X
j
0f

alkdbjkdcil

+
1

32
X i

0X
j
0f

bclf ijkdalki− 5

64
X i

0X
j
0f

bclf ilkdajki+
5

32
X i

0X
j
0f

bcldajkdilk +
1

16
X i

0X
j
0f

bcldalkdijk

− 1

32
X i

0X
j
0f

bjlf cikdalki+
1

64
X i

0X
j
0f

bjlf ilkdacki+
1

32
X i

0X
j
0f

bjldackdilk − 1

16
X i

0X
j
0f

bjldalkdcik

+
1

32
X i

0X
j
0f

blkf cildajki− 1

64
X i

0X
j
0f

blkf ijldacki+
1

32
X i

0X
j
0f

blkdacldijk +
1

16
X i

0X
j
0f

blkdajkdcil

− 3

64
X i

0X
j
0f

cilf j,l,kdabki+
3

32
X i

0X
j
0f

cildabkdjlk − 1

16
X i

0X
j
0f

cildajkdblk +
1

16
X i

0X
j
0f

cildalkdbjk

− 1

32
X i

0X
j
0f

ijldackdblk − 1

16
X i

0X
j
0f

ijldalkdbck − 3

32
X i

0X
j
0f

ilkdacldbjk +
5

32
X i

0X
j
0f

ilkdajkdbcl

− 3

32
X i

0X
j
0f

j,l,kdabkdcil − 3

16
X i

0X
j
0d

abldcikdjkli− 3

16
X i

0X
j
0d

acldbjkdilki+
1

16
X i

0X
j
0d

acldblkdijki

+
5

16
X i

0X
j
0d

ajldbckdikli+
1

8
X i

0X
j
0d

ajldbkldciki+
1

8
X i

0X
j
0d

alkdbcldijki− 1

8
X i

0X
j
0d

alkdbjkdcili
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λabcd18 =
1

128
X i

0X
j
0f

abkf cdkfkijdkkki+
1

64
X i

0X
j
0f

abkf cdkdkijdkkk +
1

128
X i

0X
j
0f

abkf ckifdkjdkkki

+
1

64
X i

0X
j
0f

abkf ckiddkjdkkk − 1

64
X i

0X
j
0f

abkfdkidckjdkkk +
1

64
X i

0X
j
0f

abkfkijdcdkdkkk

− 1

32
X i

0X
j
0f

abkdcdkdkijdkkki+
1

32
X i

0X
j
0f

abkdckiddkjdkkki− 1

64
X i

0X
j
0f

ackf bikddkjdkkk

+
1

128
X i

0X
j
0f

ackf bkifdkjdkkki− 1

64
X i

0X
j
0f

ackfdkidbkjdkkk +
1

32
X i

0X
j
0f

ackdbkiddkjdkkki

− 3

128
X i

0X
j
0f

adkf bkif ckjdkkki+
3

64
X i

0X
j
0f

adkf bkidckjdkkk +
1

32
X i

0X
j
0f

adkf cikdbkjdkkk

− 1

64
X i

0X
j
0f

adkf ckidbkjdkkk − 3

32
X i

0X
j
0f

adkdbkidckjdkkki− 1

32
X i

0X
j
0f

aikf bdkdckjdkkk

− 1

64
X i

0X
j
0f

aikf cdkdbkjdkkk − 1

32
X i

0X
j
0f

aikf ckjdbdkdkkk − 1

16
X i

0X
j
0f

aikdbdkdckjdkkki

− 1

64
X i

0X
j
0f

akif bdkf ckjdkkki− 1

64
X i

0X
j
0f

akif bkjf cdkdkkki− 1

32
X i

0X
j
0f

akif bkjdcdkdkkk

− 1

64
X i

0X
j
0f

akif cdkdbkjdkkk − 1

32
X i

0X
j
0f

bdkf cikdakjdkkk +
1

16
X i

0X
j
0f

bdkdakidckjdkkki

− 1

64
X i

0X
j
0f

bikf cdkdakjdkkk +
1

64
X i

0X
j
0f

bikfdkjdackdkkk − 1

32
X i

0X
j
0f

bikdackddkjdkkki

− 1

32
X i

0X
j
0f

bikdadkdckjdkkki− 1

64
X i

0X
j
0f

bkif cdkdakjdkkk − 1

32
X i

0X
j
0f

bkif cjkdadkdkkk

− 1

64
X i

0X
j
0f

bkif ckjdadkdkkk +
1

64
X i

0X
j
0f

cdkfkijdabkdkkk − 1

32
X i

0X
j
0f

cdkdabkdkijdkkki

+
1

16
X i

0X
j
0f

cdkdakidbkjdkkki+
1

32
X i

0X
j
0f

cikdabkddkjdkkki+
1

32
X i

0X
j
0f

cikdadkdbkjdkkki

− 1

16
X i

0X
j
0f

cikdakjdbdkdkkki+
1

64
X i

0X
j
0f

ckifdkjdabkdkkk − 1

32
X i

0X
j
0f

dikdabkdckjdkkki

+
1

32
X i

0X
j
0f

dikdackdbkjdkkki− 1

32
X i

0X
j
0f

kijdabkdcdkdkkki− 1

16
X i

0X
j
0d

abkdcdkdkijdkkk

+
1

16
X i

0X
j
0d

abkdckiddkjdkkk − 1

16
X i

0X
j
0d

ackdbkiddkjdkkk +
1

16
X i

0X
j
0d

adkdbkidckjdkkk

−1

8
X i

0X
j
0d

akidbdkdckjdkkk +
1

8
X i

0X
j
0d

akidbkjdcdkdkkk

B.3 Short derivation of relations between K and G

The relations between the mixed propagators given in the main text were:

65



Ka
φφ(k, z′) = − 1

L0

∂zG
a
φφ(k, L0, z

′)

Ka
πφ(k, z′) =

k2

L0

∂zG
a
φπ(k, L0, z

′)

k2Kφπ(k, z′) =
βa(L0)

L0

∂zG
a
πφ(k, L0, z

′)

Kππ(k, z′) = −β
a(L0)

L0

∂zG
a
ππ(k, L0, z

′)

These relations can be derived by performing a double integration by parts to specific
linear combinations of eqs. (3.53) to (3.56). For example, the first two follow from:

−k2Kφφ(k, z′) = −k2Kφφ(k, z′) + 0×Kπφ(k, z)

= −k2

∫
dzKφφ(k, z)δ(z − z′)

+

∫
dzKπφ(k, z)

(
∂z

(
βa

z
∂zGπφ(k, z, z′)

)
− k2βa

z
(Gφφ(k, z, z′)−Gπφ(k, z, z′))

)
= −k2

∫
dzKφφ(k, z)

(
∂z

(
1

z
∂zGπφ(k, z, z′)

)
− βa

z
(Gφφ(k, z, z′)−Gπφ(k, z, z′))

)
+

∫
dzKπφ(k, z)

(
∂z

(
βa

z
∂zGπφ(k, z, z′)

)
− k2βa

z
(Gφφ(k, z, z′)−Gπφ(k, z, z′))

)
= −k2

[
1

z
Kφφ∂zGφφ

]L1

L0

+ k2

[
1

z
∂zKφφGφφ

]L1

L0︸ ︷︷ ︸
=0

+

[
βa

z
Kπφ∂zGπφ

]L1

L0︸ ︷︷ ︸
=0

−
[
βa

z
∂zKπφGπφ

]L1

L0︸ ︷︷ ︸
=0

− k2

∫
dzGφφ

(
∂z

(
1

z
∂zKφφ(k, z)

)
− βa

z
(Kφφ(k, z)−Kπφ(k, z))

)
︸ ︷︷ ︸

=0

+

∫
dzGπφ

(
∂z

(
βa

z
∂zKπφ(k, z)

)
− k2βa

z
(Kφφ(k, z)−Kπφ(k, z))

)
︸ ︷︷ ︸

=0

=
k2

L0

∂zGφφ(k, L0, z
′)
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Kπφ =

∫
dzKπφ(k, z)δ(z − z′)−

∫
dz0× k2Kφφ(k, z)

=

∫
dzKπφ(k, z)

(
∂z

(
βa

z
∂zGππ(k, z, z′)

)
− k2βa

z
(Gφπ(k, z, z′)−Gππ(k, z, z′))

)
− k2

∫
dzKφφ(k, z)

(
∂z

(
1

z
∂zGφπ(k, z, z′)

)
− βa

z
(Gφπ(k, z, z′)−Gππ(k, z, z′))

)
= −k2

[
1

z
Kφφ∂zGφπ

]L1

L0

+ k2

[
1

z
∂zKφφGφπ

]L1

L0︸ ︷︷ ︸
=0

+

[
βa

z
Kπφ∂zGππ

]L1

L0︸ ︷︷ ︸
=0

−
[
βa

z
∂zKπφGππ

]L1

L0︸ ︷︷ ︸
=0

− k2

∫
dzGφπ

(
∂z

(
1

z
∂zKφφ(k, z)

)
− βa

z
(Kφφ(k, z)−Kπφ(k, z))

)
︸ ︷︷ ︸

=0

+

∫
dzGππ

(
∂z

(
βa

z
∂zKπφ(k, z)

)
− k2βa

z
(Kφφ(k, z)−Kπφ(k, z))

)
︸ ︷︷ ︸

=0

=
k2

L0

∂zGφπ(k, L0, z
′)

The two remaining relations are obtained in a similar fashion.
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C SU(3)

The defining commutation relations of infinitesimal generators gi are given by:

[gi, gj] = if ijkgk (C.24)

In the fundamental representation of the group an interesting orthogonal basis for the Lie
algebra su(3) is given by the so-called Gell-Mann matrices, they are:

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

λ3 =

 1 0 0
0 −1 0
0 0 0

 λ4 =

 0 0 1
0 0 0
1 0 0


λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0

λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


These matrices are Hermitian, traceless and such that tr(λiλj) = 2δij.
The structure constants f ijk can be obtained by orthogonally projecting [λi, λj] onto

λk:

f ijk =
tr([λi, λj]λk)
itr(λkλk)

=
tr([λi, λj]λk)

2i

From this formula it can be seen that the structure constants are completely antisymmetric
in the three indices and:

f 123 = 2; f 147 = f 165 = f 246 = f 257 = f 345 = f 376 = 1; f 458 = f 678 =
√

3 (C.25)

The subset of Hermitian matrices forms a subspace of the real vector space of complex
valued matrices Mn(C) and an orthogonal basis can be constructed from the Gell-Mann
matrices by appending the matrice λ0 =

√
2
3
I to the set {λi}i∈{1,...,8}. The structure

constants can be extended to include the value 0 for its indices and remain totally anti-
symmetric.

In this thesis, Hermitian matrices are decomposed onto an orthogonal basis ti de-
fined by ti = λi

2
such that tr(titj) = 1

2
δij. In this basis a general Hermitian matrix

A =

 a d+ ie f + ig
d− ie b h+ ij
f − ig h− ij c

 can be decomposed in the following fashion:

A =

√
2

3
(a+b+c)t0+2dt1−2et2+(a−b)t3+2ft4−2gt5+2ht6−2jt7+

1√
3

(a+b−2c)t8 (C.26)

Furthermore in this extended basis (ta), one can define the coefficients dijk by:

dijk = 2Tr({ti, tj}tk) (C.27)
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In this way:
{ti, tj} = dijktk (C.28)

It should be noted that equation (C.28) holds only in the extended basis {ta : a ∈
{0, . . . , 8}}, this is not the case is most other sources on the topic where the t0 component
is separated from the others so that:

{ta, tb} =
δab

3
I +

8∑
a=1

8∑
b=1

dabktk

In this thesis however, unless stated explicitly otherwise, it will always be understood
that t0 is included in the sum, so that equation (C.28) is valid.
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