

Development of a dashboard as part
of PinDown’s new graphical user
interface

LTH School of Engineering at Campus Helsingborg

Department of Computer Science

Bachelor thesis:
Mai Linh Nguyen
Erik Samuelsson

 Copyright Mai Linh Nguyen, Erik Samuelsson

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2016

Abstract

Dashboards are used in many different situations where it is necessary to be able to display

information on a single screen, in a way so that the information can be monitored at a

glance. This thesis explore the possibility of using a dashboard for the new graphical user

interface of PinDown, an automatic debugging tool developed by Verifyter. The dashboard

will be used to monitor projects from a single view.

The thesis investigate the current implementation of the interface in terms of usability as a

reference point for what needs to be improved with the new design. We present three

different frameworks for web application development, Ruby on Rails, Django and Play,

and compare them against each other with respect to backwards compatibility, ability to

obfuscate, compile to WAR and server-side thread safety. We evaluated the dashboard

design through user tests of the developed proof of concept.

The result of this thesis was a prototype of the new graphical user interface which can be

further built upon. The prototype was designed according to reliable design principles and

the underlying architecture was carefully chosen, to make a robust basis for further

development. For back end development we concluded that any of the mentioned

frameworks could be used. The decision to use Play framework was based on our own

experience with the Java programming language and the current implementation being

written in Java. To visualize data in graphs we used NVD3, a charting library written in

D3.js and to make the application responsive we used Bootstrap, a front end framework that

makes the design respond to resize and different screen types.

Our conclusion is that the design met Verifyter’s needs and that the dashboard should

improve the usability of PinDown. The evaluation did not lead to any redesign but we

found a few usability issues that were corrected.

Keywords: Dashboard design, dashboard development, usability, framework comparison.

Sammanfattning

Dashboards används i många olika situationer där det är nödvändigt att kunna visa

information på en skärm, på ett sätt så att informationen kan ses över med enkelhet. Detta

examensarbete utforskar möjligheten att använda en dashboard för PinDowns nya

användargränssnitt. PinDown är ett verktyg för automatisk debugging skapat av Verifyter.

Dashboarden kommer användas för att bevaka projekt.

Examensarbetet undersöker den nuvarande implementationen av användargränssnittet i

form av användbarhet för att använda som referenspunkt för vad som bör förbättras i och

med den nya designen. Vi presenterar tre ramverk för webbapplikationsutveckling, Ruby on

Rails, Django och Play, och jämför de mot varandra med avseende på bakåtkompatibilitet,

möjligheten att fördunkla (eng. obfuscate) kod, kompilera till WAR och trådsäkerhet på

serversidan. Vi evaluerade dashboardens design genom användbarhetstester av den

implementation som gjordes i syfte att bevisa konceptet.

Resultatet av examensarbetet var en prototyp av det nya användargränssnittet som sedan

kan användas för vidareutveckling. Prototypen följer beprövade designprinciper och den

underliggande arkitekturen är noga utvald, för att skapa en robust grund för fortsatt

utveckling. Vi kom fram till att vardera av de tre nämnda ramverken kunde användas för

back-end-utveckling. Valet att använda Play framework baserades på vår egen erfarenhet

av programmeringsspråket Java, samt att den nuvarande implementationen är skriven i

Java. För att visualisera data i grafer använde vi NVD3, ett grafbibliotek skrivet i D3.js. För

att få designen att reagera på förändringar av fönsterstorlek och olika skrämtyper användes

Bootstrap.

Vår slutsats är att designen möter de krav som Verifyter ställer och att dashboarden bör

förbättra användbarheten av PinDown. Evalueringen ledde inte till någon omkonstruktion

av dashboarden, däremot hittades några problem med användbarheten som åtgärdades.

Nyckelord: Dashboarddesign, dashboardutveckling, användbarhet, jämförelse av ramverk.

Foreword

First of all, we would like to thank Daniel Hansson and Patrik Granath for the opportunity

to write this thesis.

We would also like to thank our supervisor Dr. Emelie Engström for her guidance in

writing this thesis.

List of contents

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Goal and questions ... 1

1.3 Delimitation ... 2

1.4 Terminology .. 2

1.5 Approach ... 2

1.6 Outline ... 2

2 Background ... 3

3 A brief introduction to PinDown ... 4

3.1 What is PinDown? ... 4

3.2 Usability of the current GUI .. 5

4 Dashboard architecture .. 8

4.1 Front end ... 8

4.1.1 JavaScript libraries ... 8

4.1.2 JavaScript libraries comparison .. 11

4.2 Back end .. 11

4.2.1 Web frameworks .. 12

4.2.2 Frameworks comparison .. 16

5 Dashboard development ... 17

5.1 Methodology ... 17

5.1.1 Requirement elicitation ... 17

5.1.2 Dashboard type selection ... 17

5.1.3 Dashboard design .. 19

5.2 Dashboard goals ... 20

5.3 Dashboard selection model ... 20

5.4 Dashboard design ... 21

5.4.1 Dashboard design principles .. 21

5.4.2 Dashboard components ... 23

5.4.3 Project view mockups ... 24

5.5 Presenting the design... 28

6 Evaluation .. 29

6.1 Scenarios ... 30

6.2 Follow-up questions ... 31

6.3 Improving the design .. 32

7 Conclusion ... 34

7.1 Questions .. 34

7.1.1 What are the pros and cons with the current implementation
in terms of usability?.. 34

7.1.2 What web frameworks are of interest, and how are they
different from each? .. 34

7.1.3 What needs does Verifyter have when it comes to design
and functionality of the new GUI? ... 35

7.1.4 How should the project dashboard be designed? 35

7.2 Future work ... 35

References ... 36

Appendix .. 38

A. PinDown ... 38

B. Mockup ... 40

C. User tests ... 41

1

1 Introduction

This thesis was commissioned by Verifyter AB, a software startup company which has

developed a verification tool called PinDown that automatically debugs test failures. The

goal of this thesis was to design a dashboard for one of the features of the graphical user

interface. Based on a set of criteria we looked into which frameworks would be good

options for implementing the design and for future development of the web application.

1.1 Motivation

Verifyter was founded in 2010. With PinDown, the company offer a tool that automate the

processes of diagnosing soft- and hardware failures, thus allowing developers, who might

spend valuable time doing the diagnosis manually, to spend their time on development.

Users interacts with PinDown through a web application, it has four panes: Test, Results,

Open Bugs and Settings (See Appendix A). Under the Test pane the user can view

information about the latest test run. Results and Open Bugs present additional information

and under the Settings pane the user can add new projects, edit or remove projects and

change system settings.

We think PinDown is a powerful tool, as it free up developers from doing manual work, but

it could benefit from a new GUI. As an example we could look at graphs as they are useful

to convey a lot of information in one area of the screen and as such they are an important

component for this kind of user interface. In the current GUI there is the option to see

graphs, but the user has to navigate to the Result pane and click on the graph icon in the

upper-right corner. The graphs also doesn’t function properly as it happens sometimes that

the user need to refresh the page in order to show graphs. With a new GUI Verifyter is

looking to address some issues as well as to update the overall look and feel.

1.2 Goal and questions

In this thesis we made a design for the project dashboard. We also investigated different

frameworks that can be used for developing web applications and implemented the

dashboard as a proof of concept.

The thesis consisted of two problems. The first one was to design a new project dashboard

and the second was to implement this design as part of PinDown’s new graphical user

interface. For the second problem we chose frameworks for web application development

to work with. To better understand the problems we worked with these questions:

Question 1: What are the pros and cons with the current implementation in terms of

usability?

Question 2: What web frameworks are of interest, and how are they different from each

other?

Question 3: What needs does Verifyter have when it comes to design and functionality of

the new GUI?

Question 4: How should the project dashboard be designed considering the following

questions: What are Verifyter’s needs? How will user experience be improved?

2

1.3 Delimitation

In this thesis we’ve made a comparison between three frameworks, Ruby on Rails, Django

and Play.

Only the overview and the project dashboard were implemented.

1.4 Terminology

Throughout the thesis we will refer to the overview and the dashboard. The overview is a

view of a list of current projects, listed individually or as part of a group. From the

overview the user can select a project and explore it further with the dashboard. The

dashboard is a view with graphs, logs and history of a specified project. The dashboard is

also referred to as the project view or project dashboard. We think that the reader should

have no trouble to understand what we mean from the context.

Furthermore in chapter 3 and 6 we mention labs. With labs we mean a form of training in

which the user will work with a set of tasks.

1.5 Approach

For chapter three and four we made analysis based on different sets of criteria. To give our

opinion on these criteria we researched literature, documentation, forums and mail groups.

For chapter three we worked with PinDown to build our own opinion of it and for chapter

four we completed some of the basic introductory examples for each of the frameworks we

researched to get an initial point of view. For chapter five we followed a process described

in 5.1 Methodology.

1.6 Outline

In the first chapter the purpose and problems are introduced. The second chapter introduce

the theoretical background. Chapter three and four discuss question one and two, and the

result of their respective pre-study. These questions aim at understanding the current

implementation and what frameworks to use for the new GUI. In chapter five question three

and four are discussed and the methodology used to answer them, followed by the result

and a presentation of the new GUI. In chapter six the work is evaluated and in chapter

seven we’ll discuss our conclusion. Figures and tables are numbered based on their

respective chapter.

3

2 Background

There are four questions that we have focused on in this thesis, the first three can be

thought of as sub-questions leading up to the fourth question, which can be thought of as

the main research question. The first question aim at investigating the usability of the

current implementation to find out what needs to be improved. The second question aim

towards which framework to use and the third question investigate what requirements

Verifyter has of the new GUI. The goal of the fourth question is to find out how the

dashboard should be designed. The development of a dashboard requires careful planning

and consideration. Before the development begins it is useful to have a clear definition of

what a dashboard is, or at least should be. We have chosen this definition by Stephen Few:

“A dashboard is a visual display of the most important information needed to achieve one

or more objectives; consolidated and arranged on a single screen so the information can be

monitored at a glance.” (Few 2006)

This definition gives a robust foundation from which the development can take place. Once

it has been decided what type of information the dashboard should display, one needs to

decide how. There are many design principles that can be used when designing a

dashboard. In Information Dashboard Design (Few 2006) Stephen Few give his deliberate

opinion, state facts and argument over design choices, to give the reader knowledge in how

to design to make an optimal dashboard. However, design principles are not exclusive to

dashboards, and most of them origin from other fields e.g. psychology and the study of

human visual perception. In Information Visualization (Ware 2000) Colin Ware presents,

explains and discuss scientific research of human perception which has led to some of the

design principles that we in turn have used in this thesis.

For the graph components we’ve made use of Tufte’s principles of data-ink ratio, found in

The Visual Display of Quantitative Information (Tufte 2001). A concept of min-

maximizing the area used for valuable information.

When investigating usability concerns we’ve worked with Lauesen’s definition given in

Software Requirements – Styles and Techniques (Lauesen 2002). It consist of five factors;

ease of learning, task efficiency, ease of remembering, subjective satisfaction and

understandability. When setting up our user tests we had found Usability Testing Essentials

(Barnum 2011) to be relevant and insightful, as she is very experienced in the field.

On the subject of developing a dashboard we found that Dashboard Development Guide

(Staron 2015) had a process of working which we followed with a few modifications to

make it fit better for our thesis. When working with design goals we found that Flesch’s

thesis Design, Development and Evaluation of a Big Data Analytics Dashboard (Flesch

2014) was relevant to us, even though his dashboard had a different purpose to ours.

As for source criticism. All of the decisions that have had an impact on the thesis has come

from a source which we consider to be trustworthy, e.g. from authors who are respected in

their field or peer reviewed. Regarding technology choices we’ve had to read a lot of forum

threads to further our knowledge, and either tried it out ourselves or researched code

documentation.

4

3 A brief introduction to PinDown

In this chapter we’ll give a brief introduction to PinDown and then with Lauesen’s

definition of usability we’ll look at each factor and give our opinion. We’ll suggest what we

think are some pros and cons of the current implementation and how we can apply this

knowledge in our own design.

3.1 What is PinDown?

In short, PinDown is a tool for automatic debugging of regression failures. This means that

when a bug is introduced to a feature, PinDown is able to track when and by whom the

faulty code was committed. By making a failing test pass, PinDown proves that the faulty

code was correctly identified.

PinDown is integrated to a regression test system in two steps. The first step is to give

PinDown information about the output from the regression test script, that is, the structure

of the test results. Next, PinDown is provided with scriptable steps which let it run

individual tests it wishes to debug. These are the same steps that an engineer would do

during manual debugging, to reproduce a specific failure.

Figure 3: The automatic debug process of PinDown. Used with permission from Verifyter.

Figure 3 shows the process that PinDown follows. It starts with the regression test results

produced by the user’s test scripts. Then, PinDown will find when and with which commit

the regression bug occurred. PinDown finds when the test started to fail by running older

snapshots of the revision control system. To make sure that this is the only commit that

causes this test or build to fail, it patch the code locally in a way such that the bad commit is

undone. If the test that was failing now passes, a bug report is issued to the person who

made the bad commit. Else, if the patch causes a test or build failure, e.g. if there are two or

more bad commits that affect the test results, the debug process continues.

5

3.2 Usability of the current GUI

To identify the pros and cons in terms of usability of the current GUI we used the definition

of usability given in Software Requirements (Lauesen 2002, p. 256). The definition is made

out of five factors:

 “

1. Ease of learning: How easy is the system to learn for various groups of users?

2. Task efficiency: How efficient is it for the frequent user?

3. Ease of remembering: How easy is it to remember for occasional user?

4. Subjective satisfaction: How satisfied is the user with the system?

5. Understandability: How easy is it to understand what the system does?

 “(Lauesen 2002)

For each factor in Lauesen’s definition of usability we’ll discuss our experience with the

tool and also what some pros and cons are that we found while trying it out. When

discussing these factors we’ll do it in the context of PinDown.

Factor 1: Ease of learning

When talking about ease of learning, you also have to consider who the user is. What sort

of background does the user have? Someone who is familiar with the terminology might be

able to pick up on how to work the tool as they explore it, while someone who does not

might consider having a look at the manual first, read through the documentation and work

with labs to acquire knowledge. Exactly how someone will learn to operate a tool is hard to

predict, and the goal of this factor is not to determine how, but rather how to make it as

easy as possible for users to learn in a way suitable for them.

We would argue that a user will most likely need to work with the labs as a minimum to be

able to configure the tool properly, this is because PinDown is integrated into an existing

system and therefore it needs to know a few things before it can start its work. But what if

we only consider the interface, how easy is it to learn? Can someone without training

complete a given task by intuition? Depending on the task we think that it could be done

because some parts of the interface are self-explanatory, but for more complex tasks we

think that the user needs to work with the labs first to grasp the concept. However, we are

intrigued by this question and in our design we would like to see if looking up information

in our design is intuitive or not.

Factor 2: Task efficiency

When isolating tasks, i.e. when looking up a value in a graph, or read a log. We found that

the current interface is efficient. It is a straightforward process and it doesn’t change over

time which means that the time it takes to complete a task is likely to be reduced with

experience. However we found that performing a combination of tasks is not as efficient.

E.g. if you wanted to look up a value from a graph, and also look at the PinDown debug

log, you would first need to go to the Results pane, then to see the logs you would have to

change pane to Test, and access the PinDown log via the button in the lower-right corner.

See appendix A.

In our design we have tried to make the combination of tasks more efficient by having all of

this information present within the dashboard and as such eliminate the need to switch

between different views.

6

Factor 3: Ease of remembering
This is an important factor and we would argue that the two previous factors depend on it.

The reason we say this is because if it is hard to remember how to complete a task, it

doesn’t matter how efficient it is or how easy it is to learn, since progression would be

either too slow or non-existent. We think that ease of remembering can also be thought of

in terms of a learning curve, and how steep it is. The steeper the curve is, the more

important it is that it is easy to remember how the interface works, where to find

information and how to interpret it. However, Lauesen adds to this factor, “for occasional

user” and because PinDown is not likely to have occasional users we think that it is fine to

expect some practice. That said we don’t think that the learning curve is very steep as

reflected in factor 1.

Factor 4: Subjective satisfaction

From our own brief experience it is hard to draw any conclusion when it comes to

satisfaction. While the experience wasn’t unpleasant in any way, we think that the problem

with task efficiency discussed in factor 2 could be a source for dissatisfaction. If we only

consider esthetic qualities we think that it does its job well and it is something we’ve also

considered in our own design. We’ve moved away from things that are flashy and purely

esthetic as these are things that users will get tired of eventually, something that Stephen

Few comes back to time and time again in Information Dashboard Design (Few, 2006).

Factor 5: Understandability
This is also an important factor, perhaps the most important factor of them all. What good

is a system that is easy to learn and very efficient, easy to remember and pleasant to use, if

you have no idea of how and why to use it? It should make sense to complete a task, or a

combination of tasks. The interface needs to be intuitive to use and there needs to be a clear

connection between e.g. pressing a button and displaying a message. If the users doesn’t

know what the button is doing, or why the message is displaying when the button is

pressed, then it’s a reason for concern. It doesn’t mean that every user needs to understand

everything at first glance, but after some exploration of the interface it should become

apparent. We think that a way to support this factor is to design the interface so that it can

be easily understood with a brief presentation, through documentation or labs. It shouldn’t

be a worry that things aren’t understood at first glance, but if things are still confusing even

after the user have worked through labs then perhaps the design need some rework.

7

Table 3: A summary of our conclusion of the usability of the current GUI.

Factor Pros Cons Reasoning

Ease of learning X We found that learning the system is easy, but

it does require the user to take some time to do

labs or read documentation. This is not a bad

thing as it will give opportunity to show the

user the potential of the tool.

Task efficiency X We found that for doing individual tasks it

wasn’t a problem, but a combination of tasks

require the user to switch between views,

making tasks more complex than they need to

be.

Ease of remembering X Most of the components of the interface are

self-explanatory e.g. the PinDown log button

brings up the PinDown log. This helps with

remembering.

Subjective satisfaction X Because it is subjective we can only really

speak for ourselves, and we weren’t

dissatisfied by any means. However, because

of the task efficiency we count it as a

drawback and this is something we’ll try to

address with the new design.

Understandability X We had no trouble understanding the current

interface as we found it intuitive, and also well

explained in training documentation.

8

4 Dashboard architecture

Before we could start designing the GUI we had to decide which front and back end

frameworks to use in our development, the reason to do this before starting the design was

so that we could be certain that we could achieve backwards compatibility with the

technology we would choose.

4.1 Front end

In this section we’ll first present the JavaScript libraries that we’ve used, and then in the

comparison we’ll give our reasoning to why. For the front end side Verifyter made a list of

criteria that they expect to be satisfied. The criteria were:

 Backward compatibility: The client-side shall support older web browsers. Internet

Explorer 11 and later version, Firefox 16.0.1 and later version.

 Responsiveness: The client-side should have responsive design and cross-browser

rendering.

 Offline JavaScript libraries: All of the JavaScript libraries that are used for

implementation of client-side shall be hosted locally or on an intranet.

To make the client-side responsive we needed a HTML framework. From early meeting

with Verifyter they recommended that we made a research about Bootstrap which is a

HTML, CSS and JavaScript framework for development of responsive design.

When it came to JS libraries, we could make use of any JS library, as long as it met the

client-side’s criterion of working offline.

There is a fair amount of JS libraries that achieve the same goal, but a set of popular JS

libraries were chosen for data visualization to be compared against each other. They were

Google charts, D3.js and Van charts. We made comparisons between these libraries against

our criteria to select the most appropriate one.

4.1.1 JavaScript libraries
Bootstrap (http://getbootstrap.com/)

In order to make the web application responsive for different devices we used Bootstrap

which is a front-end library/web framework that facilitates the development of dynamic

websites and web applications. Bootstrap supports responsive web design which means that

the layout of the web page or web application regulates dynamically depending on the

properties of the platform.

Since the components of the dashboard are organized in a grid pattern (see 5.3.3), it was

easy for us to apply Bootstrap in our design, because Bootstrap makes responsive layout

based on grid systems. Figure 4.1 show what the grid system looks like.

http://getbootstrap.com/

9

Figure 4.1 Bootstrap’s grid system.

It uses the grid systems to create layouts through a sequence of rows and columns.

Bootstrap contains predefined classes for different layout options, e.g. “md” in figure 4.1

indicates that this is the layout displayed on a desktop. For layouts that should be displayed

on phones, the class “xs” would be used instead. For tablets “sm” and for larger desktops

“lg”. These classes can then be used in combination e.g. to make the layout change

depending on the device used you could write:

<div id =”tableDiv” class=”col-md-6 col-xs-12”> some code </div>.

In addition to support of responsive design Bootstrap also has many reusable interface

components like buttons, typography, forms etc. Which we used to created our user

interface.

10

D3.js and NVD3

To visualize data in graphs we used D3.js (Bostock, M. et al, 2011). It is a JS library that

make use of SVG, HTML5 and CSS to create visualizations. When creating a graph with

D3.js one usually follow these steps:

 Selection: The D3.js functions select()and selectAll() return an element or

a set filtered on elements from current document. These elements could be filter like

in JQuery (a JavaScript library) by unique identification (#id), by class (.class), by

tag, by attribute or by place in hierarchy. Once an element has been selected the

content can be manipulated by other operators e.g. append(‘svg’)adds a svg-

element to the selected element and attr(‘width’,’35’) defined the width of

the svg-element to 35 pixel.

 Data joins: D3.js binds input data to element by the data() operator which takes

data arrays in different formats as parameter. The data formats can e.g. be JSON,

Comma-Separated Values (CSV) or geoJSON. In order to read other formats one

could write a JavaScript function for that format.

 Appending nodes depending on data: Once the data is bound to selected elements,

modifying content based on input data will follow these steps: appending new

nodes, updating existing nodes, destructing nodes.

1. Appending nodes: The enter() function and chained functions after it

will be invoked for each item in the dataset that aren’t already represented

by a DOM node.

2. Updating nodes: The update() function will be invoked for all nodes in in

the selection that have a corresponding item in the dataset. This step updates

the nodes when the value of the item has been changed.

3. Destructing nodes: The function exit() will be invoked for all nodes in

the selection that doesn’t have a corresponding item in the dataset. The step

remove nodes from the document.

Putting the above steps together could look something like:

var svg = d3.select('#piechart')

 .append('svg')

 .attr('width', 200)

 .attr('height', 200)

 .append('g')

 .attr('transform', 'translate(100,100)');

var path = svg.selectAll('path')

 .data(pie(dataset))

 .enter()

 .append('path')

 .attr('d', arc)

 .attr('fill', function(d, i) {

 return color(d.data.label);});

11

We wanted to make our stacked area charts interactive, so that when the user mouse-over

the graph they would see a tooltip with information about the node they’re currently

holding the mouse over. For this we used NVD3 which is a library that provides re-usable

charts for D3. It simplified the code a lot by replacing most of the native D3 code with

function calls to pre-built NVD3-functions.

JQuery Treetable

To organize projects in the overview in a tree structure we used a plug-in for JQuery called

JQuery Treetable.

4.1.2 JavaScript libraries comparison
After researching Bootstrap we were confident that bootstrap met our first criterion of

backward compatibility. Bootstrap supports Firefox, Internet Explorer and Google Chrome

on Windows. It behaves well even on web browser for Linux though they are not officially

supported. Bootstrap let us achieve the criterion of responsiveness and the library can be

hosted locally which means that bootstrap meet all of our criteria.

Table 4.1 shows that each of the chart libraries we looked into met our criteria expect for

Google Charts (https://developers.google.com/chart/) that failed on one criterion: to be able

to host locally. To render charts with Google Chart it is required that the machine has live

access to Google’s jsapi, through their website. This means that we’re not permitted to host

it locally or on an intranet.

Table 4.1 The result of the comparison of JavaScript libraries against the criteria.

Library Backward

compatibility

Responsive Hosted locally

Google Charts Yes Yes No

Van Charts Yes Yes Yes

D3.js Yes Yes Yes

Our decision to go with D3.js was based on two things. First of it is open source whereas

Van Charts (http://www.vancharts.com/) is not. Second, it has a large community and is

very well documented. Mike Bostock, one of the developers of D3.js have created many

useful examples and tips on how to create many different types of charts. D3.js is a very

large and complex library and it takes a lot of time to get comfortable using it. We strongly

recommend Curran Kelleher’s screencasts to get to know the basics of D3.js, found on:
https://github.com/curran.

4.2 Back end

The decision to implement the new web application using a web application framework was

based on the idea that a framework makes development easier by simplifying things. There

is a vast amount of frameworks available and it can be difficult to choose between them. To

give guidance in the matter a set of criteria were expressed after a meeting with Verifyter,

where we discussed their user base, their current implementation and their requirements.

Among the most important was backward compatibility with Java virtual machine (JVM).

Another criterion to consider was the ease of potentially having to learn a new language

like Ruby or Python. This aspect meant that a large community and good documentation

would also have to be considered.

https://developers.google.com/chart/

12

Ruby on Rails (http://rubyonrails.org/), Django (https://www.djangoproject.com/) and Play

framework (https://www.playframework.com/) were chosen because of their popularity and

strong communities, to be compared against each other on the following criteria:

 Backward compatible with JVM.

 Compile to WAR.

 Able to obfuscate.

 Server-side thread-safe.

For both the front end and back end, each criterion was written after a discussion with

Verifyter about the new GUI. To fit within our time frame each criterion would have to be

briefly researched through documentations, discussion forums and mail groups. The goal of

this stage was to find suitable frameworks to use in development of the overview and

project dashboard. For each framework we tried a simple “Hello world!” example. After we

had decided upon frameworks we made a small feasibility study to ensure backwards

compatibility by putting together a small example that we compiled on a machine with Java

6 and then ran it on another machine that was offline.

In this section we’ll describe the architecture of Django, Ruby on Rails and Play

framework. Since each of these frameworks follow the Model-View-Controller (MVC)

design pattern, we will start with a brief introduction of the pattern and then describe the

frameworks individually. Then we’ll present the result of the comparison.

4.2.1 Web frameworks
The MVC design pattern splits a given software application into three interconnected

components which is Model, View, Controller.

 Model: The model contains all the data and the state of the application domain. It

manages all the business logic and have no knowledge of the user interface.

 View: The view presents data to the user by generating the user interface. It is

passive and doesn’t do any processing. Different views can access the same model

for different purposes.

 Controller: The Controller contains classes which are used for communication

between the models, the views and the user. It receives events from the user, interact

with the model and display the appropriate view to the user.

The purpose behind separating these components is to distinguish the user interface logic

from business logic. This means that each component can be as independent of the other as

possible. Changes that are made to one component don’t affect changes that are made to the

others.

http://rubyonrails.org/
https://www.djangoproject.com/
https://www.playframework.com/

13

Play framework

In The main concepts of Play framework’s documentation the MVC pattern applied to web

architecture is described as follows.

Figure 4.2 Play framework’s web architecture.

The MVC pattern separates the play application in two layers: The Presentation layer and

the Model layer. The Presentation layer contains the View and Controller layer. See figure

4.2.

 The Model layer: contains classes that describes behaviors and property of objects.

 The View layer: The function of the view layer is to handle the data displaying. It

generates the data received from the model into views which is user interface. The

view is produced in a “Web Format” like HTML, XML or JSON.

 The Controller: The controller listens to events (HTTP request) from user action,

extracts the data encapsulated in the event, processes them, and applies changes to

the database by the model classes if needs and then responds to the event by sending

view with encapsulated data in a HTTP response.



In figure 4.2 you can see a HTTP request life cycle which clarifies how it works between

layers.

 The user sends a HTTP request by interacts with the user interface (HTML)

 The router tries to map the specific route for this request. Once the specific route

was found, the corresponding action method in application class will be invoked.

 The invoked method code is executed and makes required changes to the database

by invoking methods from model classes. Data sends then back to application class.

 The action method sends data to corresponding JavaScript function which handles

view rendering.

 A HTTTP response contains the HTML, XML or JSON file sends back to the client

as response.

14

Ruby on Rails

The working principles of Ruby on Rails (RoR) framework is very similar to Play

framework, since the RoR framework also follows the MVC design pattern. The definitions

of these components Model, View, Controller in RoR is identical with the definitions on

Play framework except the name of the components are called different.

 Model (ActiveRecord): The model manages relationship, validation, association,

transactions between the objects and the database. This Model is implemented in the

ActiveRecord library.

 View (ActionView): This subsystem is implemented in the ActionView library. The

view defines how the data should be presented. Which view should be displayed is

triggered by the controller’s decision.

 Controller (ActionController): This subsystem is implemented in ActionController

and its work tasks are direct traffic, invoke the action methods for requested URLs,

retrieves data from database through the models and organizing that data and calls

the specific view to display that data.

The framework treats a HTTP request in steps describes below:

 A HTTP request comes in through user input.

 Rails redirects the incoming request to a specific controller’s method by using the

routers.rb file (the routes.rb file contains a list of available action and type of action

- get, post and patch in the controller).

 The method in controller that mapped to the specific route will be invoked.

Controller is a Ruby class which have methods corresponds to each specific route.

 The controller retrieves data in the database through the models

 All retrieved data is saved in a temporary memory location.

 The controller calls the specific view, passes in the retrieved data to that view and

renders HTML file.

 The controller sends the HTML/XML and metadata to the browser to display on the

screen.

Django

Although Django appears to be a MVC framework, there are some things that are different

with the MVC pattern used in Django, compared to Play and Ruby on Rails. In The Django

Book (Holovaty and Kaplan-Moss, 2009, chapter 5) they describe how the three

components are divided in Django:

 Model: The model has a data-access role and are managed by Django’s database

layer

 View: The view handles which data to display and how to display it. This is

managed by the views and templates.

 Controller: The controller’s role is to decide which view function will be invoked

and send HTTP Response to user. This is conducted by the framework itself.

15

Since the controller is managed by the framework itself and developers work most on the

template, view and model, Django has been referred to as an MTV framework.

 Model: The model layer contains everything about the data: the behaviors and

property of the data, relationship between the data and how to access and validate it.

 Template: The template is presentation layer. It contains all the decision on how

thing should be displayed

 View: The business logic layer. View is referred as Controller in other web

framework. This layer manages the access to the model and which template will

display the retrieved data from model.

Figure 4.3 Django’s web architecture.

Figure 4.3 show a HTTP request life cycle which clarifies how it works between

components.

 The user sends a HTTP request by interacts with the user interface (Webpage)

 When a request comes in the framework determines the root URLconf by checking

the ROOT-URLCONF setting (All this happens in the controller part which the

developer don’t need to handle)

 When the controller has found the root URLconf, it will check all of the

URLpatterns in the URLconf in order to find the one that matches the requested

URL.

 If it finds a match it will invoked the corresponding view function.

 The view function invokes the model to get requested data, mapped the data with

associated template (which can be HTML or XML) and return an HTTP Response

 The framework transforms the View’s HTTP Response into proper HTTP Response

which result a web page.

16

4.2.2 Frameworks comparison
As mentioned in 2.2.2 we chose Ruby on Rails, Django and Play because of their large

communities and because all of them are well documented. This aspect is important

because it makes searching for information much less of a hassle. When making

comparisons against the criteria, see table 4.2 we found that any of the three frameworks

could be used. These criteria alone would not be enough to decide which framework to use,

therefore we consider an additional factor, preference.

Table 4.2. The result of the comparison of frameworks against the criteria.

 Backward

compatible with

JVM

Compile to WAR Able to obfuscate Server-

side

thread-

safe

Ruby on Rails Yes (with JRuby, a

Java

implementation of

Ruby)

Yes Yes Yes

Django Yes (with Jython,

a Java

implementation of

Python)

Yes Yes Yes

Play Yes Yes Yes Yes

To have preferences require experience and to be experienced with each framework would

take a lot of time. After trying out the basic “Hello world” example we browsed different

blog posts, articles and forums to try and see what other people had found and what their

thoughts were. For this we set up a few guidelines for an opinion to be considered:

 The person should have experience with more than one framework.

 Claims made should be reasoned for and/or in some way backed up by a source.

 There must be no obvious bashing of other frameworks.

After reading through many forum threads and blog posts we came to the conclusion that

while a lot of opinions where valid, it was hard to get away from one's own bias. As an

example, reading through the blog post Rails vs Django vs Play framework by a software

developer named Diogo Nunes, in which he compared each of the frameworks we

investigated, we found ourselves wondering how well Play would hold up against the other

two, rather than which framework he would actually recommend.

Yevgeniy Brikman, a software engineer who previously worked at LinkedIn, provides lots

of useful links, as well as sharing his own knowledge, in this blog post The Ultimate Guide

to Getting Started with the Play Framework. But at this point in time we had already

decided to go with Play.

Reading what other people thought was interesting but it was our own experience with the

Java language that led us to use Play. It would also be easier for Verifyter since there

current solution is Java based, and any of the other options would require more installations

on customers end.

17

5 Dashboard development

In this chapter we’ll describe the process we worked with and then the result of each of the

process steps will be presented.

5.1 Methodology

In Dashboard development guide (Staron 2015) there is a description of a dashboard

development process consisting of five stages:

1. Requirement elicitation

2. Dashboard type selection

3. Dashboard design

4. Impact evaluation

5. Dashboard maintenance

For this thesis we found that the first three stages were of particular interest, as they are

within our scope. The following is a brief description of the steps, as well as how and when

we chose to differ from them in our process.

Figure 5.1 The first three steps of the Dashboard development guide (Staron 2015)

5.1.1 Requirement elicitation
In the first stage of the development process the goal is to identify stakeholders,

information providers and users by making interviews in the organization, and then collect

high level expectations. During this stage we worked out the goals of the dashboard as

suggested by Staron (2015) by finding out what the information needs were and how it

should be satisfied and visualized. In the Dashboard development guide (Staron 2015) there

is a clear distinction between the different stages, however because part of our thesis was to

compare different frameworks that would be used to develop the dashboard, we had already

done so before moving on to the next stage, which was to find the technology to be used. In

retrospect this meant that we could more freely move between stages and even if they were

separated we could treat the first and second steps of the process as one step. The result of

this stage were the goals of the dashboard, the elicited requirements and a paper mockup of

the visual content.

5.1.2 Dashboard type selection
In the second stage we used the dashboard selection model (Staron et al. 2015) to identify

the purpose of the dashboard in terms of what information it should display and how. The

dashboard selection model is a model that helps with selecting properties of a dashboard

depending on stakeholder’s information needs. The model consist of seven dimensions

where each dimension has two alternatives and stakeholders grade which one should have

focus, from equal to full. Because part of the thesis was to evaluate different options of

frameworks for front- and back end we were helped in the second stage as to which

technology to choose based on our research. In turn this meant that we could use the

18

dashboard selection model to validate our choice, as well as elicit requirements that were

missed in previous stage.

Staron (2015) suggest this stage to be concluded with a prototype as a feasibility study of

the chosen technology. During the evaluation of different frameworks we had already set up

a feasibility study of the technology that we had selected which meant that we could

conclude this stage still with a simple paper mockup which we could use when moving on

to the designing of the dashboard. Table 5.1 shows the different dimensions, their

alternatives and a brief description of each.

Table 5.1: Dimensions and their respective alternatives as described in the Dashboard

selection model (Staron et al. 2015).

Dimension Description Alternatives Description

Type What kind of

visualization is needed?

Report /

Dashboard

Report: require

flexible format.

Dashboard: require

same structure every

update.

Data acquisition Input of data into the

tool.

Manual /

Automated

Manual: user enter

data into the tool.

Automated: data is

imported.

Stakeholders Defining the

stakeholders.

Individuals /

Group

Individuals: used by an

individual.

Group: used by a team.

Delivery How data will be

provided to

stakeholders.

Fetched /

Delivered

Fetched: user actively

seek information.

Delivered: information

is delivered, e.g.

through email.

Update How data is updated. Periodically /

Continuously

Data can be updated

periodically or

continuously.

Aim The aim of the

dashboard.

Information /

Decision support

Information: designed

to spread information.

Decision support:

designed for specific

decisions.

Data flow How much processing

of data to be done in the

dashboard.

Raw data /

Indicators

Raw data: no

additional

interpretation is done.

Indicators: analysis

models applied.

19

5.1.3 Dashboard design
During the third step of the process the dashboard design was created according to the

requirements elicited during the first step and implemented using the selected technology

from step two. The design process started with the use of paper mockups of the components

of which the dashboard should consist. This made it possible to get quick feedback on the

placement of the components. In Information Dashboard Design (Few 2006 p.113) Few

describe two categories of which important data can be divided into; information that is

always important and information that is only important at the moment. These two

categories can be emphasized by different means, static and dynamic respectively. Few

says: “Because location is static, this is a variable that we can leverage to highlight

information that is always important.”

In order for us to know which information should be regarded as important we asked that

each component was ranked by Verifyter in order of importance. While it is true in most

cases that each component in itself is important, it is necessary to establish an internal

hierarchy to know which component should be emphasized over another. We allowed for

components to be equal in importance, except for the most important component which

could only be graded to one item. This was done so that the components could be arranged

according to the different emphasis regions (Few 2006, p. 114). The reason to only let one

item be the most important even though there are two regions with greater emphasis, we

argue, is because it is much harder to utilize two regions efficiently than it is to utilize one

region efficiently.

 Figure 5.2: Different regions of the dashboard have different emphasis.

20

5.2 Dashboard goals

Following the process described in Dashboard development guide (Staron 2015) the first

stage is dedicated to eliciting requirements and working with the goals of the dashboard.

The goals can be split into two parts; the design and the functionality. Where the design is

not just focusing on the look and feel but also the realization of it. The goals of the design

were identified as:

 Responsiveness: in order for the dashboard to work well on different screen sizes

and different devices types, e.g. laptops, phones, tablets, it needs to be responsive.

 Accessibility: our definition of accessibility is the same as the one expressed by

Flesch (2014) which says: “The dashboard should be accessible as easily as possible

for users. It should therefore have as few hard dependencies in terms of installed

software, operating system or device type as possible.” This also reflect the need of

backwards compatibility. There is also another type of accessibility to consider and

it is one in terms of usability for people with disabilities as mentioned in Usability

Testing Essentials (Barnum 2011, p. 108), however this has not been considered in

this thesis.

 Ease of use: the dashboard should be designed in a way so that users can work with

it without any training. A way to achieve this is to design based on the concept of

Don’t make me think (Krug 2006).

The goals of the functionality derived from the requirements that we elicited. The

dashboard should show trends in projects through graphs, and there should be logs that

convey reports of bugs and PinDown log messages. The user should be able to look up

previous runs and get details about them.

5.3 Dashboard selection model

Requirements for the dashboard was elicited through a continuous discussion and also from

a presentation by Verifyter of their vision of the new GUI. While the purpose of the

dashboard selection model is to find characteristics of the dashboard, we also used it as a

way to elicit requirements missed by the discussion, and as a way to validate the

requirements that we had elicited.

Figure 5.3 Graphical representation of the dashboard selection model, as described in

Dashboard Selection Model (Staron et al. 2015). The blue and yellow rings indicates two

stakeholders we asked to participate.

21

The result of the dashboard selection model is shown in figure 5.3. For the most part both

participants had similar answers, which was somewhat to be expected. The interesting

dimensions to investigate further with discussion were the ones that they were leaning

towards different alternatives on, although there was not one dimension on which they both

picked the opposites. Because the answer depends on how the participant interpret the

question, we asked them to describe to us with a few sentences what they thought about

each dimension. Table 5.2 shows a summary of what their expectations of the dashboard

were.

Table 5.2 Summary of the answers to each dimension.

Dimension Summary

Type The dashboard should display data visualization with graphs and

make use of logs to display messages. The layout should be fixed

but responsive meaning that the layout will differ depending on

the screen size, but should be the same among equal sizes.

Data acquisition Data input is fully automated, imported from a database.

Stakeholders The dashboard should be used by individuals for the most part,

but could also be used by a team of developers to discuss a

project.

Delivery Stakeholders will seek the information they require but to some

extent it would be good to have information sent by email.

Update Data should be updated continuously.

Aim The dashboard should provide information about the status of the

project.

Data flow Data should be visualized in graphs and in logs. The user is not

expected to look at raw data but rather see trends in the graphs.

5.4 Dashboard design

The initial design of the dashboard was first laid out with the help of paper mockups, then it

transitioned into a digital mockup which became a working prototype. The design

principles which we have been researching focus on the placement of components and their

graphical representation. First we will present the design principles and then we will

present the design and the reasoning behind it, according to said principles.

5.4.1 Dashboard design principles
If we know what the user is looking for, we can help them find it by making it stand out

from its surrounding. For example if you wanted to draw attention to a specific word within

a text the easiest way to accomplish this would be to write it in bold. This is called pre-

attentive processing and while words and letters aren’t pre-attentively processed, line

thickness is. Pre-attentive processing is perhaps not a design principle as much as it is a

phenomenon that occurs within our visual field, however, being aware of pre-attentive

processing is useful when designing a dashboard. Colin Ware (2000) says: “In essence, pre-

attentive processing determines what visual objects are offered up to our attention.”

Another way to look at it is if instead of drawing attention towards something, you'd

wanted to draw attention away from something. In the above example when attention is

drawn towards a single word, it is at the same time drawn away from the rest of the text.

22

If this happens unintentionally it can turn into a major concern, why it is important to factor

in pre-attentive processing. In Information visualization: perception for design (Ware, 2000,

p. 165) Ware presents four categories, each with several features which are pre-attentively

processed. The categories are:

 Form, such as line orientation, length, width, size. Spatial groupings, added marks

and numerosity.

 Color, different variety of hue and intensity.

 Motion, can be flicker or direction of motion.

 Spatial position, e.g. 2D position or convex/concave shape from shading.

Another phenomenon which occur in our visual field is the way we perceive form, e.g. we

have a tendency to group things together based on shared characteristics. This tendency,

among other perceptual phenomena are described by Max Wertheimer, Wolfgang Köhler,

and Kurt Koffka as set of principles, called the gestalt principles. Gestalt meaning shape in

German. The gestalt principles can be described as “rules of the organization of perceptual

scenes” (Dejan Todorovic, 2008) and they aim to give understanding as to how certain

objects in our visual field are grouped together. In our design we've made use of the

following gestalt principles:

 The principle of proximity, objects that are located close to each other will be

perceived as belonging to the same group. In dashboard design this principle can be

used to direct the way users scan data, from left to right, or from top to bottom. The

way to achieve this is by placing sections of data closer together, either horizontally

or vertically depending on the direction it should be viewed.

 The principle of similarity, objects that are similar to each other in color, size, shape

and orientation will be perceived as belonging to the same group. In a dashboard

this can be used to make connections between objects that aren’t placed close to

each other or objects that are reoccurring.

 The principle of enclosure, objects that are enclosed by a visual border will be

perceived as belonging to the same group. A visual border can be a line, or a

background color.

To make sure that we didn’t waste valuable dashboard space, nor distracted users from their

tasks, we made use of Tufte’s (2001) principle of data-ink ratio which says: “Maximize the

data-ink ratio, within reason.” Tufte explain the principle as: “Every bit of ink on a graphic

requires a reason. And nearly always that reason should be that ink presents new

information.”

In The visual display of Quantitative Information (Tufte, 2001, p. 93) Tufte talks about

“data-ink ratio”, a concept in which the ink used to print a graph can be divided into ink

that present data and ink that present non-data. In the example with a graph, the non-data

would be the axis, and the data ink would be ticks and the values plotted. Tufte defines the

data-ink ratio as:

23

“Data-ink ratio = data-ink / total ink used to print the graphic

= proportion of a graphic's ink devoted to the non-redundant display of data-information

= 1.0 – proportion of a graphic that can be erased without loss of data-information.”

 (Tufte 2001)

The definition give reason to also consider Tufte’s two principles of erasing:

 “Erase non-data ink, within reason.”

 “Erase redundant data-ink, within reason.”

Where non-data ink fails to convey any statistical information and redundant data-ink

depicts the same information over and over.

5.4.2 Dashboard components
The goal of the paper mockup described in 5.1.3 was to get feedback on the placement of

the components. While all components are important externally, it is necessary for the

design to distinguish between them internally and structure them hierarchical as this will

help with the placement. The visual components of which the project view of the dashboard

should consist of were identified as:

 Current graph – a graph that show the result of the tests that are currently running. A

result can be either pass or fail. If no tests are currently run, the graph should show

the last run tests for the specific project.

 Result graph – a graph that show a summary of the end results of each previous

PinDown run for that specific project.

 Bug log – a log that show bugs found from the current run.

 PinDown log – PinDown debug log.

 Run history – a list of previous PinDown runs.

 Recent commits – a list of recent commits.

The visual components where ranked in the following order, with number one being the

most important:

1. Current graph, it was ranked the most important because it show the most

recent status of the project.

2. Bug log and PinDown log, they were ranked the second most important

items as they are tied to the current graph.

3. Result graph, it is also an important component for showing trends, but it is

behind the current graph in terms of what needs to be emphasized.

4. Run history, this component does not need emphasis.

5. Recent commits, this component does not need emphasis.

When the emphasis hierarchy had been established we could start to try out different

layouts according to the emphasis regions discussed in 5.1.3. Because of the ease in trying

different layouts with paper mockups we could try a lot of different placements, while

always trying to fit according to the emphasis regions and the internal ranking. Some of the

layouts could be quickly discarded as they broke the hierarchy of what should be

emphasized or not. In the following we will discuss three sequential layouts and our

reasoning behind them, with the third layout being the one that progressed to a digital

mockup.

24

5.4.3 Project view mockups

Figure 5.4: Paper mockup of layout 1.

Layout 1: The current graph was placed in the middle of the dashboard. The result graph

was placed in the upper-left corner. Recent commits was placed in the upper-right corner

and run history was placed between the result graph and recent commits. The logs were

placed on each side of the current graph. See figure 5.4.

In layout 1 we placed the most important item, the current graph, in the center of the screen

as this is an area which is emphasized. However, when placing an item in this region it is

necessary to set it apart from what surrounds it by using for example white space (Few

2006, p. 114). This meant that when placing the other components, there would have to be

some space between them and the center. We placed the logs on either side of the current

graph, but because these logs have a strong connection to the current graph, we would have

them placed closer to the current graph than the other components, utilizing the principle of

proximity. In other words, the white space would originally be even around each side of the

current graph, then by moving the logs closer towards the current graph we would reduce

the whitespace between them thus making them appear as a unity, or group. With this

layout it became clear that the lower half of the emphasis hierarchy also had a connection

between them, as they all focused more on an overview rather than current events.

We discarded layout 1 mainly because of two crucial aspects. When placing the logs on

either side of the current graph, their width would be too small to show the average log

message without having to break it into new lines. And, because the upper-left corner also

is an area which is emphasized, this meant that the result graph could possibly be

distracting as its x-axis would enter the field of vision when scanning the y-axis of the

current graph. While the logs were ranked higher than the result graph, we’d argue that

placing the logs in areas of less emphasis than that of the result graph would work because

they would gain some emphasis from being connected to the current graph through the

principle of proximity. Still, having the graphs arranged diagonally of each other was a

bigger issue. If the current graph would have been placed in the upper-left corner instead,

25

with the result graph placed in the center, it could have worked better with two diagonally

placed graphs as this would aligned with the natural progression of going from left to right

and from current events to a summary, but then the placement of the logs wouldn’t make

any sense.

We decided that a grid layout would be a better option as this would neutralize the center

region. Also we were reminded of why we didn’t allow for two items to hold the highest

rank as it would be hard to optimize two areas of the dashboard with strong emphasis.

Figure 5.5: Paper mockup of layout 2.

Layout 2: The current graph was placed in the upper-left corner, the result graph was

placed in the upper-right corner. Run history was placed between the two graphs. The two

logs were placed in the lower-left corner, one on top of the other and drawn out as to fill up

space and to allow log messages to be displayed without breaking the sentence into two

lines. Recent commits was placed in the lower-right corner. See figure 5.5.

In layout 2 we would still have the current graph placed in a region appropriate to its rank

of most important component, and with the result graph in the upper-right corner the layout

became more sequential as the current graph pass on its end result to the result graph. We

had learned from the previous layout that this progression from one graph to the other also

meant that they had a connection to each other which would have to be considered.

This layout was also discarded. We didn’t think that we could properly use the principle of

proximity to connect the current graph with the logs as instead they were separated by the

principle of enclosure. The principle of enclosure says that things can be grouped together

by a border such as a line. While there was no visible line, the grid pattern itself organize

the components into rows which are a form of natural line, which became apparent as the

logs were drawn out. Also, because the logs were drawn out the upper log would enter the

center region, which we had tried to stay away from. And since it would be the second half

of the log that would be placed in the center region it would probably only be annoying as

the logs wouldn’t make any sense without reading the first part. Because we used paper

26

mockups it is hard to tell if this would have been a problem or not, but we argued that this

would most likely be distracting in one way or another.

Figure 5.6: Paper mockup of layout 3.

Layout 3: The current graph was placed in the upper-left corner, the two logs were placed

in the upper-right corner, one on top of the other. The result graph was placed in the lower-

left corner. Recent commits was placed in the lower-right corner and run history was placed

between the result graph and recent commits. See figure 5.6.

In layout 3 the grid pattern would work better because on the lower side of the screen there

weren’t any component that would get into the center region with enough whitespace to

make it stand out. As for the upper side, the lower log was now placed with its first half in

the center region, however since we could now make use of the principle of proximity

again and because it is the first half of the log that is first entering the field of vision, this

wouldn’t be a problem. Also, we could use the principle of similarity to connect the graphs

together, by using the same colors for example. The principle of enclosure also meant that

the upper and lower halves were separated, which seemed ideal since they represented

current events and an overview of previous runs respectively.

Once we had decided to place the components according to layout 3 we developed a digital

mockup. See appendix B, figure B1. Now that we could see the components on the screen

and interact with them in a more direct way, a few things became apparent. We wanted the

run history component to work as navigation through previous runs, which meant that

browsing through the run history would have to change the state of the current graph and

logs, as these would be used to show these previous runs. However, because this new

connection between the components was not supported by our design principles, it didn’t

feel intuitive. Another reason as to why it didn’t feel intuitive can be found in Usability

Testing Essentials (Barnum 2011, p. 86) where Barnum explains that for a website, users

expect to find “site search on the upper-right corner or near the upper-left corner” and we

found that this was true in our case as well. This meant that we would have to rearrange the

components so as to not go against our goal of ease of use.

27

The initial idea of the logs was to have a button for each log which when pressed would

expand the log so that it could be read without constantly having to scroll through it. This

meant that if the logs weren’t in their expanded state, they would be nearly useless. We

decided to change the layout again before implementing a prototype.

Figure 5.7: Layout 4.

Layout 4: The current graph was placed in the upper-left corner, the result graph was

placed to the right of it. Run history was placed on the right side of the screen and the logs,

together with recent commits were placed below the graphs, in a panel with a pane for each

component. Because changing the components on the screen was a simple task, we didn’t

feel the need to revisit the paper mockups. See figure 5.7.

Because the logs were only useful if they were expanded, it was decided that they should

always be expanded. Because of the size of the dashboard, this meant two things; the two

logs could not be expanded at the same time, and when expanded the two graphs could not

be both monitored easily at a glance. The decision was made to move the result graph to the

upper-half of the dashboard, and move down the logs. Then it made sense to merge recent

commits together with the logs and have them displayed as panes, and let the run history

expand over both halves. We still made use of the principle of similarity to connect the two

graphs.

28

5.5 Presenting the design

The placement of components is arguably the most important aspect of the design. It doesn't

matter how well each component in itself is designed, if the layout doesn't make any sense

or if the layout make it difficult to find information. That said, once the layout has been

determined, the design of the component becomes so important that poorly designed

components risk making a good layout inoperable.

In Information Dashboard Design (Few, 2006) Few expand on the principle of data-ink

ratio by saying that for the entire dashboard the non-data pixels should be reduced to a

minimum, within reason. Non-data pixels are pixels that doesn't display data, this does not

include a blank background. In order to reduce non-data pixels Few present two steps.

“

1. Eliminate all unnecessary non-data pixels.

2. De-emphasize and regularize the non-data pixels that remain.

“(Few 2006)

The first step is simple and self-explanatory, however knowing what counts as unnecessary

require some thinking and eventually it will lead to the second step of making sure that

non-data pixels aren't getting in the way of data pixels. Not all non-data pixels can be

eliminated without losing something valuable. In the graph example explaining the concept

of data-ink ratio in 5.3.1, losing the axis would mean losing structure as the axis are

fundamental to the way graphs are presented. What the second step imply is to keep the

axis but de-emphasize them, making them visible enough to work as axis without

interfering with the data pixels.

In our design there isn't much space of the dashboard not taken up by a component, making

the first step rather easy as there weren't many unnecessary non-data pixels to begin with.

As for the second step we found that for each component, except the graphs, there weren't

many non-data pixels that didn't directly support structure and organization. The graphs are

interesting because we decided to add non-data pixels to them instead of removing. We

used stacked area charts as they are useful for showing trends over time between the

attributes represented in the graph, in our case the relationship between passing and failing

tests. A problem with using areas in graphs is that they can be hard to read accurately

(Robbins 2005, p 61) and when the areas get close to each other in size it will become even

harder to distinguish between them, but for showing trends, we’d argue that it will suffice.

In order to more easily look up a value at a glance, we added grid lines to the background

of the graph, as well as changing the opacity, making the areas somewhat transparent. Also

the graphs are interactive, meaning that if you need to read a specific value you can do so

accurately by moving the mouse over the graph.

Both graphs show trends in form of passing and failing tests over time, however, they use

different time formats. By using the principle of similarity, using the same colors to present

the areas, we let the user know at a glance that they show the same type of data. The colors,

green for passing tests and red for failing, were chosen as they are considered standard

within the industry. As mentioned earlier in 5.2 when discussing accessibility, for this thesis

we didn’t consider colors that would be easier to distinguish for people with color

blindness.

29

6 Evaluation

To evaluate how well our design worked and to test our theories and design principles

against the five factors of usability given by Lauesen, see 3.2, we wanted to set up a series

of usability tests. Because Verifyter’s user base is located in the USA, it is not feasible to

run tests with users of the current system, however, we expected users to have a similar

background as we do and we therefore based some of our findings on our own experience

with the tool, and we set up a few tests that were completed by three students in computer

science.

We led them through a total of six task-based scenarios and then asked them a few

questions about the overall design and their thoughts of it. The reason we chose 3 test

subjects was based on the article Why you only need to test with 5 users (Nielsen, 2000) in

which Nielsen describe with a graph that the optimal number of users to test with is five,

however with three users you are likely to find as much as 65% of the usability problems.

Because of the small size of the test we argued that our three test subjects were likely to

find all of the most crucial usability problems.

Before we created our scenarios that would test the new GUI we first established a few test

goals based on Lauesen’s definition of usability. These goals would then help us with

writing the tasks, so that we knew what we wanted to test.

 Ease of learning: can a user without training complete the various tasks?

 Task efficiency: how long does it take to complete a task, is it within a reasonable

timeframe?

 Subjective satisfaction: was the experience satisfying or enjoyable?

 Understandability: is it hard for the users to grasp the context of the tasks they are

preforming?

We excluded one of the factors, ease of remembering, from our goals. The reason for this

was because PinDown is a dedicated tool, and it is no likely to have occasional users. Even

if there are occasional users, we would argue that they would be few enough for it to not be

worthwhile testing. Ease of learning, task efficiency and understandability could be

monitored as the test subject completed the tasks. The remaining factor, satisfaction, would

require us to ask the test subject a few questions after they had completed the tasks. Task

scenarios and follow-up questions can be found in Appendix C.

In this section we’ll go over each of the scenarios, summarize the result of the scenario and

discuss how this compared to our expected outcome. We’ll refer to the test subjects as TS1,

TS2 and TS3. In 6.3 we’ll further discuss what we learnt from each scenario and how we

made use of that knowledge.

30

6.1 Scenarios

Scenario 1: Exploring the overview and dashboard.

In the first scenario we asked the test subjects to explore the overview and dashboard. The

starting point was the overview. They were free to click on things but they were not

allowed to enter any data yet. The purpose of this scenario was for the test subject to get

familiar with the interface and to see what they thought the different views were and what

the information they could find was used for. We didn’t have an expected outcome for this

scenario as the questions that we asked were open for interpretation.

TS1 thought that the overview had something to do with different bugs, and that the

dashboard looked like a test system. Neither TS2 nor TS3 visited the dashboard, and both

of them thought the overview was used to show statistics for different tests. During this

scenario we noticed that each test subject had difficulties with going from the overview to

the dashboard.

Scenario 2: Creating a new project.

In this scenario the test subject was asked to create a new project and name it “project1”.

This project already existed and the purpose of this scenario was to try and see if the error

message displayed was clear enough. We expected the test subject to realize that project1

already existed.

TS1 managed to complete the task, however the error message that displayed was

ambiguous. TS2 and TS3 did not see any error messages at all. This was because when

creating a new project there are two fields that you can enter text into, project name and

project group, we only asked them to fill in the name of the project, but the error message

only displayed if both fields contained text.

Scenario 3: Visiting the project dashboard.
The purpose of this scenario was to see if the test subject could move from the overview to

the dashboard of a specific project. We asked them to find out more information about

project1. We expected them to find the project in the overview and click on it to enter the

dashboard.

All of the test subjects had difficulties with finding project1. It belonged to a project group

and to find it they first had to expand the group to view projects. Once they found the

project, TS1 had no problem with visiting the dashboard while TS2 and TS3 struggled at

first. To visit the dashboard you need to click on the name but it wasn’t made clear enough.

Scenario 4: Look up information in the graphs.

In this scenario we asked the test subjects to compare two results, the failing tests from the

last time someone ran the tool, with the failing tests from the run previous to that. This

scenario could be completed two ways, either by looking at the summary graph, which

shows the result of all the previous runs, or by first looking up the value in the current

graph, then navigate to the previous run in run history and then look up the value in the

current graph which would show the result of that run.

None of the test subjects used the summary graph, we later learnt that it wasn’t obvious to

them that this was actually a summary. Furthermore only TS1 got the correct answer of

number of fails, this was because TS2 and TS3 looked up the wrong dates in the run

history. As the dates were displayed in ascending order, we assume that they expected the

31

last run to be at the top. Despite that TS2 and TS3 picked wrong dates, none of them had

any trouble reading the graphs.

Scenario 5: Navigation.

In this scenario we asked the test subject to look up a specific date in the run history to see

the status of the project that day. This date had three runs, run at different times. We were

interested in seeing which run the test subject would pick. All tests subjects picked the last

run of that day.

Scenario 6: The bottom panel.

In this scenario we asked the test subject to find the most recent commit. We expected them

to browse to the right pane in the bottom panel to view the recent commits. All of the test

subjects managed to find the most recent commit without any difficulties.

6.2 Follow-up questions

After they completed the scenarios we asked them a few follow-up questions, the purpose

of these questions was to let them discuss the interface with their own words.

Question 1: What did you think of the overall design?

TS1 thought that the design was good except for some things being ambiguous, e.g. one of

the icons looked like a network symbol and not a bar chart meant to indicate a shortcut to

the dashboard. In the overview page it would be a good idea to let the user see names of

icons when they place the mouse over them, and that the mouse change into a hand symbol

when placed over a link to indicate that it can be pressed.

TS2 thought that the design was good but not very intuitive and would also like to know

what things can be used to navigate through the application without having to click on it,

i.e. to show names when placing mouse over icons.

TS3 thought the design was “stale” and would also like to not have to click on things to

find out what they are or lead to. TS3 also confused the dashboard shortcut icon to be

network settings.

Question 2: Was there any component that felt out of place? If yes, why?

TS1 thought that the button to expand projects felt out of place because of its colors. It

would have been better if it was only a plus sign without any background color to it.

TS2 thought that the bug log in the bottom panel felt out of place because there wasn’t any

connection between it and the graphs.

TS3 thought that the icon resembling a network symbol was confusing and therefore out of

place.

Question 3: Was it hard to find the information?

TS1 thought it was difficult to find information.

TS2 thought it was difficult to track information.

TS3 did not think it was difficult to find information.

32

Question 4: Was it hard to interpret the information?

TS1 thought it was somewhat difficult to interpret the information.

TS2 did not think it was difficult to interpret the information.

TS3 thought it was somewhat difficult to interpret the information.

Question 5: Did you understand the connection between the two graphs?

TS1 thought that the connection between the graphs could be made more obvious.

TS2 understood the connection between the graphs but thought that it wasn’t obvious at

first.

TS3 could also understand the connection but thought that it could have been emphasized

more.

Question 6: Did you miss any information?

TS1 would like the graphs to be more clear e.g. by adding axis labels and adding date to the

title above the graph.

TS2 would like to see a connection made between the graphs and bottom panel, perhaps by

adding date above the panel.

TS3 would like the start and stop button to be made more clear.

6.3 Improving the design

It is worth noting that in a real scenario the user will most likely complete labs first and

thus get some formal training in how to operate the interface. Even so it is important that

the interface is intuitive to use to make learning a faster experience. We think that the test

gave us a lot of valuable input. First we’ll address the things that we would like to improve

after the tests and after that we’ll discuss some usability issues found and why they’re not

necessarily going to be issues for the real user.

Mouse-over tooltips

We think that a tooltip on mouse-over to display icon names is a very good idea for the

initial learning phase, to save users from having to click around too much to figure out

where an icon lead them.

Error messages

The error messages were ambiguous because the message didn’t specify exactly what the

error was, and it was also displayed in a dark green color. TS1 pointed this out and added

that perhaps a red color would be better suited, to which we agree.

Expanding project groups

The button that expand the project groups into a tree structure was hard to find. The reason

for this was that it had a background color that made it hard to see that there was a plus

sign. TS1 thought that a plus sign would be enough to indicate that this button would

expand the project group.

33

Run history

It makes more sense to have the most recent run showed at the top of the list rather than at

the bottom, something that all of the test subjects pointed out and something that we agree

with.

Clarify connections

There was a few things that could be better explained within the dashboard e.g. the

connection between the graphs and date above graphs and logs.

Things that won’t be an issue

TS1 suggested that we switch places on the graphs to make it more obvious that navigation

in run history changes the data showed in the current graph. We don’t think that this is

necessary because the navigation will change the state of the whole dashboard, i.e. both the

current graph and logs will change to that run. Since navigation is something the user is

likely to do after a run has been completed, we think that our reasoning for placing the

graphs in order, current to summary, is still valid.

When creating a new project the user has to browse the menu in the upper-right corner. TS1

thought that it could be a good idea to have a shortcut to creating a new project visible in

the overview. We don’t think this will be necessary since the creation of new projects

happens infrequently.

The confusing icons will also not likely be an issue because they are placeholders for

Verifyter’s custom icons.

34

7 Conclusion

In the closing chapter we’ll present each of our questions and the result of answering them.

Then we’ll provide some ideas for future work.

7.1 Questions

Our conclusion is that the design met Verifyter’s needs and that the dashboard should

improve the usability of PinDown.

7.1.1 What are the pros and cons with the current implementation in
terms of usability?
The most obvious drawback with the current implementation is that it is not a dashboard.

This means that there will be a lot of switching views to achieve some tasks, and this lack

of unity means that tasks take longer to complete and in some sense they are also more

difficult than they have to be, to complete. With a dashboard you collect all the necessary

data in one area.

When evaluating the current implementation against five factors of usability it is important

to remember that these factors are balanced off each other. That means that while you

should consider all of them, sometimes you have to make compromises. A dashboard while

simple to use, might take more time to learn than the current implementation that has its

content divided over different panes. But once you’ve learnt the basics then you will want

to complete tasks at a faster phase. The dashboard is more equipped to allow users to

complete tasks faster, at the expense of needing a bit more training.

We found that current implementation is easy to learn, easy to remember and easy to

understand. This comes with the cost of being less task efficient and as consequence of this

also less subjectively satisfying. In our design of a new GUI we wanted to improve task

efficiency and subjective satisfying while maintain ease of learning, ease of remembering

and understandability. A way we did this was by trying to make the dashboard as intuitive

as possible.

7.1.2 What web frameworks are of interest, and how are they different
from each?
The frameworks that we researched in this thesis were Ruby on Rails, Django and Play

framework. We found that either of them could be used in our case. Both Ruby on Rails

and Django can be run on JVM with JRuby and Jython respectively. JRuby and Jython are

Java implementations of the two languages Ruby and Python. Our decision to use Play as

our web framework was based on our knowledge of the Java language, but also because the

current implementation of PinDown is Java based, which would mean an easier transition.

The main difference between the frameworks really is the language used. They all follow

the same pattern of an MVC architecture, however it is slightly different in Django.

35

7.1.3 What needs does Verifyter have when it comes to design and
functionality of the new GUI?
To answer this question we elicited requirements from Verifyter and worked with goals of

the dashboard. The goals were focused on responsiveness, accessibility and ease of use.

These goals concern both the design and the functionality. This was part of the first stage in

the development process we followed, suggested in Dashboard development guide (Staron,

2015). The next step is to find out which technology to use when realizing the design. In

our case this had already been done when answering the previous question, but we still used

the proposed dashboard selection model (Staron et al. 2015), however we used it as a way

to validate our choice.

The previous two questions progressed into this one and as a result we concluded that

Verifyter’s needs of the dashboard were:

 Backward compatibility.

 A design that is responsive, accessible and easy to learn and use.

 The functionality of the dashboard should improve task efficiency by removing

some of the usability issues in the current design.

7.1.4 How should the project dashboard be designed?
This question had two sub-questions to it: What are Verifyter’s needs? And, how will user

experience be improved? By answering the previous three questions we hoped to gain

knowledge to design the dashboard so that it met the requirements set by Verifyter and

improved the user’s experience. What we mean with improving user’s experience is an

assumption that with improved usability, the general experience will be improved. To

answer the question we worked with two different types of mockups, paper and digital, and

then we conducted a set of user tests to evaluate the design.

The user tests aimed towards usability and we learnt a lot from them. However, we think

that most of the usability problems found by our test subjects either had to do with bad

code, or quality of life changes. What we mean with quality of life changes in this context

is that the problems found didn’t force us to rework the design, but rather improve on it.

There is difference there which we think is worth pointing out. A rework would e.g. mean

to move components to new locations, while a quality of life change means to add or

remove something from existing components. The latter often being easier to fix. An

example of bad code was the error messages which only displayed when an error occurred

and both of the text fields in “Create project” were filled in.

7.2 Future work

Since the implementation of Pindown followed the MVC design pattern it facilitates further

development of the final product for future project. Further development can be

implementation of remaining functions and more thorough usability tests before the final

product is released. Due to the timeframe we were unable to make a second usability test to

verify that the design changes improved usability.

36

References

Barnum, C. (2011). Usability Testing Essentials. Morgan Kaufmann, Boston.

Bostock, M., Ogievetsky, V. Heer, J. Data-Driven Documents. IEEE Transactions On

Visualization And Computer Graphics [IEEE Trans Vis Comput Graph] 2011 Dec; Vol. 17

(12), pp. 2301-9.

Brikman, Y. (2014) The Ultimate Guide to Getting Started with the Play Framework.

Retrieved 2 March, 2016

URL: http://www.ybrikman.com/writing/2014/03/10/the-ultimate-guide-to-getting-started/

Few, S. (2006). Information Dashboard Design - The effective visual communication of

data. O’Reilly, Sebastopol, CA.

Flesch, B. (2014). Design, Development and Evaluation of a Big Data Analytics

Dashboard. Copenhagen Business School and University of Mannheim, Department of IT

of Management. URL:

http://studenttheses.cbs.dk/bitstream/handle/10417/4945/benjamin_flesch.pdf?sequence=1

Holovaty, A., Kaplan-Moss, J. (2009) The Django Book. Apress.

URL: http://www.djangobook.com/en/2.0/index.html

Krug, S. (2006). Don’t make me think! – A common sense approach to web usability. New

Riders, Berkeley, Calif.

Lauesen, S. (2002). Software Requirements – Styles and Techniques. Addison-Wesley,

Harlow.

Nielsen, J. (2000). Why you only need to test with 5 users. Retrieved 9 May, 2016

URL: https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

Nunes, D. (2014) Rails vs Django vs Play. Retrieved 29 February, 2016

URL: http://www.diogonunes.com/blog/rails-vs-django-vs-play-frameworks/

Robbins, N.B. (2005). Creating more effective graphs. Wiley-Interscience, Hoboken, N.J.

Staron, M. (2015). Dashboard Development Guide – How to build sustainable and useful

dashboards to support software development and maintenance. Research Reports in

Software Engineering and Management 2015:02 ISSN 1654-4870 Chalmers University of

technology and University of Gothenburg, Department of Computer Science and

Engineering.

Staron, M., Niesel, K., Meding, W. (2015). Selecting the Right Visualization of Indicators

and Measures – Dashboard Selection Model. University of Gothenburg, IT Faculty,

Department of Computer Science and Engineering. International Conference on Software

Measurement (Mensura). 01/01/2015

Todorovic, D. (2008) Gestalt principles. Retrieved 26 April, 2016

URL: http://www.scholarpedia.org/article/Gestalt_principles

javascript:__doLinkPostBack('','mdb~~cmedm%7C%7Cjdb~~cmedmjnh%7C%7Css~~JN%20%22IEEE%20transactions%20on%20visualization%20and%20computer%20graphics%20%5BIEEE%20Trans%20Vis%20Comput%20Graph%5D%20NLMUID%3A%209891704%22%7C%7Csl~~jh','');
javascript:__doLinkPostBack('','mdb~~cmedm%7C%7Cjdb~~cmedmjnh%7C%7Css~~JN%20%22IEEE%20transactions%20on%20visualization%20and%20computer%20graphics%20%5BIEEE%20Trans%20Vis%20Comput%20Graph%5D%20NLMUID%3A%209891704%22%7C%7Csl~~jh','');
http://www.ybrikman.com/writing/2014/03/10/the-ultimate-guide-to-getting-started/
http://www.djangobook.com/en/2.0/index.html
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.diogonunes.com/blog/rails-vs-django-vs-play-frameworks/
http://www.scholarpedia.org/article/Gestalt_principles

37

Tufte, E.R. (2001). The visual display of quantitative information. Graphics Press,

Cheshire, Conn.

Ware, C. (2000). Information Visualization – Perception for design. Morgan Kaufman, San

Francisco.

Links
Django: https://www.djangoproject.com/

Jython: http://www.jython.org/

Ruby on Rails: http://rubyonrails.org/

JRuby: http://jruby.org/

Play Framework: https://www.playframework.com/

D3.js: https://d3js.org/

Google charts: https://developers.google.com/chart/

VanCharts: http://www.vancharts.com/

NVD3: http://nvd3.org/

Bootstrap: http://getbootstrap.com/

JQuery: https://jquery.com/

https://www.djangoproject.com/
http://www.jython.org/
http://rubyonrails.org/
http://jruby.org/
https://www.playframework.com/
https://d3js.org/
https://developers.google.com/chart/
http://www.vancharts.com/
http://nvd3.org/
http://getbootstrap.com/
https://jquery.com/

38

Appendix

A. PinDown

Figure A1: Test pane of the current GUI.

Figure A2: Result pane of the current GUI.

39

Figure A3: Open Bugs pane of the current GUI.

Figure A4: Settings pane of the current GUI.

40

B. Mockup

Figure B1 Digital mockup of layout 3.

41

C. User tests

Scenario 1: Exploring the overview and dashboard.

You are free to click around and explore the GUI, but don’t enter any data yet. (The test

subject is presented with the overview)

 Can you tell us what you think that this view is? (The overview)

 Can you tell us what you think that this view is? (If the test subject explore the

dashboard)

 What do you think this information is used for?

Scenario 2: Creating a new project.

You’re working as a microchip designer in Silicon Valley. It is Monday morning and you

would like to create a new project. You want to name it project1.

Expected outcome: Because project1 already exist the test subject should realize this when

notified by the system.

Scenario 3: Visiting the project dashboard.

You found out that the project already existed. After creating a project with a different

name you would like know more about project1.

Expected outcome: After creating a new project with a different name, the test subject

should visit the dashboard of project1.

Scenario 4: Look up information in the graphs.

You would like to compare the number of failed tests from the last time someone ran the

tool, with the run prior to that.

 Can you tell us how many tests failed the last time?

 Can you tell us how many tests failed prior to that?

Expected outcome: There are two ways to answer this question. Either the test subject can

look in the summary graph for a quick analysis. Or the test subject can first look at the

current graph, then navigate to the previous run through run history.

Scenario 5: Navigation.

Today is the ninth of May. You called in sick last Thursday and would like to know the

status of the project at that time. (The fifth of May)

Expected outcome: The test subject should find the correct date in run history and click it.

Scenario 6: The bottom panel.

You are interested in knowing what commits where made recently.

Expected outcome: The test subject should browse to the right pane.

42

Follow-up questions:

 What did you think of the overall design?

 Was there any component that felt out of place? If yes, why?

 Was it hard to find the information?

 Was it hard to interpret the information?

 Did you understand the connection between the two graphs?

 Did you miss any information?

