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Abstract

Numerical simulations of fluid-structure interaction of a water-filled tube with a free surface
are conducted using an implicit partitioned coupling scheme. Abaqus and STAR-CCM+ are
used for the solid- and fluid domains respectively. This application has stability issues, with
the most severe turning out to be the added mass effect. Rayleigh β damping and grid flux
under-relaxation has been used to keep simulations stable and these parameters’ effect on the
solution and stability are investigated. A model problem consisting of a completely filled tube of
a linear elastic material and a potential flow is analysed with respect to stability, considering the
HHT time integration scheme used in Abaqus. A criterion for the displacement under-relaxation
factor ω is found, depending on the geometry, material parameters, β and time step. The impact
on stability of changing these parameters is discussed and the stability criterion is validated
against simulations. An effort is made to provide suitable settings and recommendations for
future simulations.

It is found that β damping is very effective in stabilising the algorithm, but changes the solu-
tion significantly. Grid flux under-relaxation also helps stabilise the solution, but the mechanism
is not clear and its effect on the solution is erratic. It turns out that smaller time steps have
a destabilising effect on the partitioned algorithm, and so do long tubes, thin, weak structures
and heavy fluids. The added mass effect can be mitigated by lowering ω, but at the cost of com-
putation time. The results of numerical experiments are in good agreement with the criterion
established by the model problem. Some additional factors influencing stability are discussed,
including viscosity, the effect of an obstructed flow, boundary conditions, a nonlinear finite ele-
ment formulation and a higher order time discretisation scheme.

Keywords: fluid-structure interaction, FSI, added mass effect, partitioned implicit scheme,
stability, Rayleigh damping, grid flux under-relaxation
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Chapter 1

Introduction

Tetra Pak is one of the world’s largest developers of food packaging technology, and as such simulations
of processes and products are essential to ensure a safe and reliable production. This thesis concerns
numerical investigations of the filling tube application, as shown in figure 1.1.

Figure 1.1: Visualisations of the filling tube, including the filling machine itself. Pic-
tures courtesy of Tetra Pak.

In the filling machine a tube is formed by joining a paper-like sheet with a seam. Packages are
then created by clamping and joining the tube below the fluid surface, sealing the liquid product
inside. The fill pipe is located inside the tube and is connected to a floater device measuring the fluid
level. This sealing process happens with a frequency of several packages per second, which gives rise
to complex phenomena stemming from the interaction between the thin paper walls and the heavy
fluid.

Frequently packaged fluids include milk, juice, yogurt, chocolate milk and many others. These fluids
differ in viscosity and density and some even behave in a non-Newtonian manner, for example choco-
late milk which may be described as a power-law fluid. There are also different packaging materials,
sizes and filling speeds depending on the product and application.
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1.1 Objective

In order to simulate the filling process Tetra Pak has developed computer models of the procedure,
but there are uncertainties concerning the numerics. The simulations are subject to stability issues,
and to counter these problems damping and grid flux under-relaxation has been employed. The
question is if this significantly affects the solution and if there are better ways to keep the simulations
stable. Therefore a geometrically simplified model of the tube has been implemented in order to save
computational time and focus on the basic numerical properties. This simplified model is used to
analyse the problem and to gain insight about the numerical issues affecting the original simulation.

The objective of this thesis is to investigate the effect of numerical parameters and schemes on the
solution and stability. An effort is made to provide recommendations for future simulations on the
full application in light of the obtained results.
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Chapter 2

Fluid-Structure Interaction

Problems concerning fluids interacting with solids can be found practically everywhere in nature, for
example the deflection of an air plane wing during flight or the bobbing motion of a boat. Therefore
they are an interesting object of study, but are generally difficult to handle analytically and, it turns
out, numerically as well.

Fluid-structure interaction is an example of a coupled system, a more general setting where two
physical systems interact with each other and neither one can be solved without solving the other.
A general definition of such problems has been provided by [1]

Coupled systems and formulations are those applicable to multiple domains and dependent variables
which usually (but not always) describe different physical phenomena and in which
(a) neither domain can be solved while separated from the other;
(b) neither set of dependent variables can be explicitly eliminated at the differential equation level.

2.1 The Harmonic Oscillator

In order to introduce the concept of fluid-structure interaction (FSI), consider the single degree-of-
freedom system in figure 2.1. A sphere of mass m is suspended on a spring of stiffness k, moving
in the z direction only. It is immersed in a fluid of density ρf under the assumption of inviscid,
incompressible, rotation-free flow. The equations of motion can be written

mz̈ + kz = f (2.1)

where f is an external force on the sphere. According to potential flow theory a sphere with accelera-
tion z̈ will accelerate some amount of fluid mass ma, and by Newton’s laws this will cause a reaction
force on the body. Therefore equation 2.1 can be written

mz̈ + kz = −maz̈ ⇔ (m+ma)z̈ + kz = 0. (2.2)

This is the equation for a harmonic oscillator with characteristic frequency
√

k
m+ma

. It can be shown

that the added mass for a sphere ma = 2
3ρfπr

3.

m

z

k

Figure 2.1: A mass suspended on a spring, free to move in the z direction
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In reality fluids are often viscous, and one could imagine a viscous reaction force f = −caż acting
on the sphere, dissipating energy as it oscillates. There are even situations where an added stiffness
f = −kaz could be considered, for example when a displacement changes hydrostatic pressure by
moving the level of a free surface.

For an arbitrary geometry the added mass is different depending on the direction of acceleration, and
has to be described by an added mass tensor mij describing the forces and moments caused by an
acceleration. [2]

For a more complex system, for example a system of equations obtained by the finite element method,
the added mass is described by a matrix. In this case the equations of motion in (2.2) would take the
form

Md̈ + Kd = −MAd̈. (2.3)

where MA is the added mass matrix. The dynamical equations for the tube wall will take this form
in the following analysis. The added mass matrix is generally not known in closed form, and therefore
fluid dynamics simulations have to be performed to find the forces on the solid. In real life cases one
is rarely interested in the simplified flow assumed above, so simulations are necessary anyway.

2.2 Numerical FSI

Numerical simulations of fluid-structure interaction can be done by either considering the coupled
problem as one system of equations where the flow- and displacement fields are solved simultaneously,
or by iteratively solving the solid- and fluid domain separately, transferring forces and displacements
between the calculations. The former approach is called monolithic and the second partitioned. A
monolithic treatment generally requires custom built software for highly specialised applications while
partitioned simulations can be carried out using general-purpose fluid- and solid mechanics solvers,
communicating via some protocol.

In the partitioned approach there are two main schemes: explicit and implicit. Common to these
is that the solid equations are solved, then the displacements are imported into the fluid dynamics
solver where a mesh morpher makes sure the mesh is still proper for the updated geometry, and a
flow field is obtained. The explicit method then takes a time step while the implicit runs this inner
loop until convergence, then takes a step.

Using a partitioned scheme the added mass effect can cause the algorithm to become unstable. This
problem can be mitigated by under-relaxing the displacements imported into the fluid solver, but
comes at the cost of slower convergence. [3]

Handling the added mass instability will turn out to be the main subject of this thesis, and some
useful results regarding stability are established. There is a very interesting connection between
the material parameters and geometry of the problem and the time step and displacement under-
relaxation factor. Light, weak structures interacting with heavy fluids turns out to worsen the added
mass instability, and so does smaller time steps. Thus, trying to make a partitioned FSI simulation
stable by decreasing the time step would be counter-productive.

4



Chapter 3

Problem Definitions

The equations governing this problem are the solid mechanics relations for a linearly elastic material in
the finite strain regime for the wall, and the Navier-Stokes equations in the fluid. These two domains
are connected by an interface Σ, best thought of as the wet surface on the wall. The boundary
conditions imposed by the FSI coupling are, in words: the fluid domain follows the motion of the
walls and the stress tensor from the solid- and fluid- equations are in balance on Σ. A conceptual
sketch of the information transfer over Σ is outlined in figure 3.1 where forces and displacements are
exchanged between the domains. Here p and τw denote the pressure at the wall and wall shear stress
respectively, which are imported as a stress tensor σ into the solid calculation, d is the displacement
of the wall which together with its derivatives becomes the boundary conditions for the velocity field
u in the fluid domain.

Solid

Σ

Fluid

p, τw

σ

d, ḋ, d̈

u|wall, u̇|wall

Figure 3.1: A sketch of the computational domains, including the interface Σ where
exchange of information between the solid- and fluid domains occurs.

This problem is discretised by the finite element method for the wall and the finite volume method
for the fluid, coupled via the implicit partitioned approach.

3.1 The Model

In order to reduce the complexity and to focus on the numerical aspects of the simulations a simplified
model was created. It consists of two parts: the CFD mesh of the fluid domain and the FEM mesh
of the tube wall. The tube is 0.753 m long and has a radius of 0.0267 m.

The model uses a fixed inlet pipe and floater and a continuous slit around the inlet pipe where there
were separate holes in the original CAD model, with the same area. This is in order to reduce the
number of cells needed while still hopefully capturing the relevant physical behaviour.
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3.1.1 The CFD Model

Pictured in figure 3.2 is a plane cut of the mesh in the fluid domain and a 3D model of the tube
slanted for perspective. The mesh is a trimmed 3D mesh with around 1.6 million cells, refined around
the corners and the boundary layers.

Figure 3.2: CFD mesh and 3D model. The outlet is to the left in this image, the fill
pipe outlet is directed towards the outlet, the thin disk is the pressure flange, and the
cylinder to the right is the floater.

The Navier-Stokes equations governing the flow are treated as URANS and discretised by the finite
volume method, implemented in STAR-CCM+.

Boundary conditions are non-slip walls on all surfaces except the fill pipe inlet, and the upper and
lower openings of the tube. On the lower boundary, here called outlet, the boundary condition is a
mass flow inlet as implemented in STAR-CCM+ with a time dependent flow profile specified by an
experimental measurement. The fill pipe inlet has a constant mass flow rate balancing the fluid level
over a period. There is a free surface about half-way up the floater, and the two-phase physics is
modelled by the Volume of Fluid (VOF) method, which is an Eulerian multiphase method suitable for
relatively large free surfaces between non-mixing fluids. [4] The upper boundary is set as a pressure
outlet for air with reference pressure 200 Pa. The tube wall moves in the negative y-direction with a
constant speed of about 0.5 m/s, implemented by setting the fluid velocity at the wall to match this
speed.

3.1.2 The FEM Model

On the solid side, an Abaqus case was set up using rectangular linear shell elements of size 2×2 mm.
The tube wall has a thickness of one third of a millimetre, and there is a seam running along the
length of the tube of double thickness, with a width chosen to be 5 mm. The boundary conditions
make sure the tube is fixed around the perimeter at the bottom, and permitted to move only in the
lengthwise y-direction at the top. There is also an applied load to account for the web tension applied
by the machine stretching the tube lengthwise, applied uniformly to the upper perimeter.

The material is an orthotropic elastic material. Young’s modulus in the axial direction is EMD = 5855
MPa, in the tangential direction about half of this ECD ≈ 0.5EMD, and the shear modulus between
these was chosen as G12 = 0.39

√
EMDECD as a heuristic criterion. Thus the material parameters can

be varied by changing EMD and the rest will scale in an appropriate and physically correct manner.

3.1.2.1 Finite Element Formulation

The equations of motion for a solid body under large deformations in a Lagrangian setting can be
written as
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∂Pij
∂xj

+ ρ0bi = ρ0ai (3.1)

where P is the first Piola-Kirchhof stress tensor, b the body forces, a the displacement field and ρ0

the density, all in the reference configuration.

These equations can be discretised using the Galerkin method to yield the matrix equation

Md̈ + Cḋ + Fint(d) = Fext(t) (3.2)

Here M is the usual mass matrix, consisting of the form functions integrated over the reference
configuration, C is a damping matrix, and Fint(d) is the inner force vector caused by the displace-
ment vector d. One can identify Fint(d) = Kd where K is the tangential stiffness matrix, i.e the
linearisation of the inner forces around the current displacement configuration. [5]

3.1.3 FSI Coupling

We seek a solution to the dynamical equations describing the flow field and solid displacement field.
These are physically coupled via the force exerted on the interface Σ by the fluid (pressure, wall shear
stress), and moving walls changing the fluxes and boundary conditions of the flow. Recall figure 3.1.

The two models are linked via Simulia’s co-simulation protocol allowing exchange of information
between the FEM- and CFD calculations.

Denote the flow field u, the wall displacement vector d, the flow solver F , the solid solver S. The
implicit solution scheme is described in algorithm 1.

Algorithm 1 Implicit FSI algorithm

u0
0 ← uinit . Initialisation

d0
0 ← dinit
n← 0 . Time step 0
while n < nmax do . Run until maximum time

k ← 0
while u or d not converged do . Check convergence. Loop only once: explicit scheme

d̃k+1
n ← S(ukn)

ũk+1
n ← F(dkn)

dk+1
n ← ωd̃k+1

n + (1− ω)dkn . Under-relax the displacement vector with 0 < ω ≤ 1
uk+1
n ← ũk+1

n

k + +
end while
u0
n+1 ← ũkn . Take time step

d0
n+1 ← d̃kn
n+ +

end while

The pressure on the walls is ramped up by a factor going from 0 to 1 during an initial period
0 ≤ t ≤ tramp, and so is the web tension in the Abaqus simulation. All simulations in this thesis use
a partitioned implicit coupling.

3.1.4 Mass Flow Profile

The bottom surface was modelled as a mass flow inlet with a flow profile adapted from experiments.
This can be seen in figure 3.3.
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Figure 3.3: The mass flow profile imposed at the bottom outlet for two load cycles.
Positive flow goes into the system, negative out.

Since some parameters are ramped up until tramp we will let each simulation run for the duration of
one whole load cycle tlc after this in order to study the unmodified behaviour for at least one cycle.
Total simulation time is thus tsim = tlc + tramp.

3.1.5 Turbulence Modelling

The flow will pass several contractions and impingements. This may seem unsuitable for turbulent
viscosity-based turbulence models, but experience indicates that this is not of critical importance.
Since the most pressing problem is stability we have opted for a Realisable k-ε model as opposed to
perhaps theoretically more suitable Reynolds Stress Models.

3.1.6 Compressible Fluid

The default liquid in these investigations is water, modelled as a compressible fluid with density
ρf = 1000 + p

c2 kg/m3. The physical speed of sound in water is cH2O ≈ 1500 m/s, but c = 600 m/s
has been used for these calculations before at Tetra Pak for numerical reasons, so this will be used
in the default case. The reasoning behind using a compressible equation of state for the liquid is to
reduce the stiffness of the numerical problem, hopefully improving the stability. In cases where air
bubbles are present in the liquid and flow in domains with flexible walls the actual speed of sound
will decrease drastically, however these effects will not be considered in this thesis. [6][7]

3.1.7 Volume Of Fluid Two-Phase Model

The two-phase interaction is modelled with the VOF method. The two phases are slightly compress-
ible water as defined above and compressible air, considered as an ideal gas. Experience indicates that
the default parameters in STAR-CCM+ gives a too diffuse surface, so the lower- and upper Courant
numbers were set high enough to stay in the HRIC scheme at all times: 500 and 1000 respectively.
[4] This way the water/air surface will tend to stay sharper. The surface tension is constant 0.074
N/m with contact angles 76◦ for plastic on the fill pipe, flange and floater and 88◦ on the paper
wall. Numerical damping was used to compensate for unphysical currents near the surface. This is

8



implemented as a numerical viscosity parameter which was set to the default value suggested by the
software.

3.1.8 Integration Schemes

One has the option to choose the discretisation schemes in both Abaqus and STAR-CCM+.

Time integration in STAR-CCM+ is implemented as a first- or second order implicit scheme. [4]{
u̇n+1 = un+1−un

∆t 1st order

u̇n+1 = 3un+1−4un+un−1

2∆t 2nd order
(3.3)

The convection terms are handled by first- or second order upwind schemes. For gradient calculations
we used exclusively the default second order Hybrid Gauss-LSQ method.

In Abaqus the time integration scheme was a second order Hilber-Hughes-Taylor (HHT) scheme with
parameters corresponding to the moderate dissipation option. This is a generalisation of the Newmark
scheme, adding a parameter α allowing for blending explicit and implicit terms. The scheme is defined
by the following relations. [8]


Md̈n+1 + (1− α)Cḋn+1 + αCḋn + (1− α)Kdn+1 + αKdn = (1− α)Fn+1 + αFn

dn+1 = dn + ∆tḋn + ∆t2(( 1
2 − υ)d̈n + υd̈n+1)

ḋn+1 = ḋn + ∆t((1− γ)d̈n + γd̈n+1)

(3.4)

with 0 ≤ α ≤ 1
2 , γ = 1

2 +α and υ = 1
4 (1 +α)2. Thus the scheme is determined by α, which measures

the amount of numerical damping. Moderate dissipation in Abaqus uses α = 0.41421. Note that α
has the opposite sign in Abaqus compared to the the notation used here, and we use υ instead of β
in order to avoid confusion with the damping coefficient introduced later.

3.1.9 Grid Flux

With a dynamically moving mesh one has to account for the volume of fluid swept by the cell faces in
each time step. This quantity is called the grid flux. STAR-CCM+ has numerical implementations to
calculate this, and automatically chooses the scheme with the same discretisation order as the chosen
time integration scheme. [4]

There is an option to set an under-relaxation factor on the grid flux which can help with convergence.
However this means some of the displaced fluid will be ignored in the simulation, and some physical
phenomena will be damped out and neglected or possibly amplified.

The convection term for the scalar transport equation at a face f is discretised as

[φρ(v · a−G)]f = φfṁf (3.5)

where ṁf is the mass flux at the cell face, and φf is the scalar value, which is computed by a first-
or second order upwind scheme. The general transport equation is handled equivalently.

The first order grid flux at a face is discretised as Gnf =
∆V n

f

∆t where ∆V nf is the volume swept by the

surface over time step n. Applying an under-relaxation δ sets the grid flux to Gnf = δ
∆V n

f

∆t + (1 −
δ)Gn−1

f .
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3.1.10 Displacement Under-Relaxation Factor

When mapping the calculated nodal displacements d̃ into the fluid solver in the implicit FSI algorithm
1 one has the option to set an under-relaxation factor ω on the displacement vectors, thereby setting
the displacements imported into the fluid solver to be dk+1 = ωd̃k+1 + (1 − ω)dk, where k is the
index of the coupling step. This can help the algorithm converge but setting ω low may require more
iterations to converge, slowing down the process.

3.1.11 Rayleigh Damping

The damping matrix C in equation 3.2 must be defined by the user according to the material prop-
erties or numerical requirements. A common method is to set C = αM + βK for some α, β. This
is called Rayleigh damping, and these two parameters can be related to damping ratios of certain
frequencies by the relation ξn = 1

2ωn
α+ ωn

2 β. A damping ratio of 1 corresponds to critical damping
of a certain frequency. [8] This relationship can be seen in figure 3.4.

ω

ξ

α damping

β damping

Total damping

Figure 3.4: The relation between α, β and total damping.

Stiffness damping is used throughout this thesis, i.e α = 0, since we would like to avoid damping
out low frequencies corresponding to large slow movements of the tube wall. Note that this is not
the same α as in the HHT scheme (3.4). Typically β = 0.004 has been used in these calculations at
Tetra Pak, which causes critical damping at 80 Hz, see figure 3.5. This has been added to improve
stability of the algorithm and is not motivated by theory or experiments. Most materials have some
sort of damping, but it is not known if β damping is a suitable model for this cardboard material.
Ideally one would like to remove this damping or at least decrease it to a level where it won’t affect
the solution significantly, and this will be one of the main topics for this thesis.

3.1.12 Contact Damping

Some simulations fail because the tube wall hits the pressure flange as a part of the dynamical
procedure or possibly nonlinear, local numerical instabilities. This causes the mesh morpher to create
cells with negative volume, and the fluid solver has to abort. In order to be able to get through these
situations, a contact formulation can be made in Abaqus. We opted for contact damping, acting as
a viscous force proportional to the wall velocity. A clearance distance c0 and a damping parameter
µ0 are introduced, and the viscous force acting on the wall can be written f = CAv where A is the
nodal area, v the relative velocity between the wall and the flange and C a damping coefficient. The
force starts to act on the wall c0 length units away from the flange, and C is ramped up from 0 to µ0

in that space. [8] c0 was set as one fourth of the distance between the wall and the pressure flange.
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Figure 3.5: The critical damping frequency as a function of β.

3.1.13 Convergence Criteria

The residuals measure the solution’s compliance to the Finite Volume equations, but in a complex
real-world case like this it’s hard to obtain very small residuals. If this is a problem of practical
importance or not is hard to say, but in this case we have opted to measure convergence of the coupled
FSI algorithm by asymptotic criteria on the total force acting on the wall and the incremental wall
displacement. Each time step is considered converged if the total force on the tube wall

∫
p dA

and the surface average of the incremental nodal displacement goes down to about one percent of the
typical incrementation size for 15 iterations, using 4 inner iterations between each Abaqus calculation.
These are heuristic criteria, but generally it seems to be a good compromise as the fluid residuals
usually level off at the same time. For reference other asymptotic criteria have been explored: the
lift coefficient on the bottom of the pressure flange and the surface integral of the magnitude of wall
shear stress, but these exhibit similar behaviour, levelling off at the same time as the total force. One
has to be careful as these types of integrated criteria do not guarantee convergence since one could
have an infinite number of states with the same value of the integrated quantities on the wall. The
Abaqus calculation has an internal convergence criterion, but the internal fluid convergence was not
strictly monitored or accounted for, apart from the total wall pressure.

11



Chapter 4

Numerical Investigations

In this chapter some initial simulations are described, giving an intuition for the encountered problems.
A method to investigate the identified critical parameters is defined. Then the general behaviour of
simulations is discussed and some results are presented.

4.1 Initial Simulations

Both the FEM- and CFD cases were run standalone in order to check that the models were properly
defined. Then some initial FSI calculations were made using single phase incompressible water and a
constant inlet mass flow rate from the fill pipe, with a solid wall at the bottom and a pressure outlet
at the top, with a time step of 5 ms and β = 0.004. This simple model behaved very well numerically
and did not seem to be affected by any convergence problems. After this the model case described
above was set up.

4.2 Convergence Issues

As a first candidate for a ”best possible” parameter set, all time- and convection schemes were set
to 2nd order, grid flux URF 1, nodal displacement URF 1, β = 0, incompressible water, and the
various fluid under-relaxation factors to reasonable values that work for the static wall case. The
time step was varied between 1-0.1 ms and the fluid URFs were tweaked, but all attempts failed
to converge. Generally these cases became unstable during the first time step. It seems that some
numerical compromises have to be made.

Next β was set to 0.004 while the time step was varied, but with no success.

Keeping these settings and introducing an adaptive displacement URF [0.2, 0.5] mitigated some
problems, and the simulation was able to last a few time steps. However doing the same with β = 0
caused instabilities.

Even cases increasing β to 0.008, letting the displacement URF be 0.3 and setting the grid flux URF
to 0.3 eventually became unstable after less than 0.02 s.

4.2.1 Base Case

Another case was defined using compressible water with sound of speed c=600 m/s, 1st order time
integration, grid flux URF 0.7, β = 0.004, displacement URF 0.3, ∆t = 0.5 ms and all convection
schemes 2nd order. This managed to run for the whole period of 0.5 s, which we will interpret as fully
convergent, and this became the base case for further investigations. The settings are summarised
in table 4.1.
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Time discretisation order 1
Convection discretisation order 2

∆t 0.5 ms
β 0.004

Displacement URF 0.3
Grid flux URF 0.7
Speed of sound 600 m/s

Table 4.1: The settings for the base case

Running the base case with β = 0 crashed, and all attempts to make it converge by decreasing
the displacement URF, filtering the mass flow profile, using a linear geometry in Abaqus and trying
c=200 and 1400 m/s failed.

This indicates that β is very important to the stability of the FSI coupling algorithm which brings
up some important questions: why does it become unstable, how does β affect the solution and how
low can we set β while maintaining convergence?

4.3 Investigative Method

In order to investigate the effect of a certain parameter, simulations were run starting from the
base case, varying the parameter in question. The STAR-CCM+ case has a number of probes and
measurements used for evaluating the results. The most important ones are the maximum overall
wall displacement and the displacements of the probe points shown in figure 4.1.

Figure 4.1: The locations of probe 2 and 3 on the tube wall.

4.4 General Behaviour

In a load cycle there are three main events happening, illustrated in figure 4.2.

• Tube Hit

Fluid is pushed into the system with a peak at tramp. This causes high pressure under the
pressure flange and bulging walls.

• Suction

Fluid is pushed out rapidly through the tube at two occasions, noted suction 1 and 2. This
causes the walls to contract and generally deform significantly.

Looking at a cross-section of the tube at the pressure flange one can identify a sinusoidal deformation
with three peaks of the cross-section during suction. See picture 4.3 where the displacements are
illustrated by a heavily magnified vector warp.
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Figure 4.2: A simulation period with main events marked.

Figure 4.3: Cross-sections at the pressure flange during suction 1 and 2 respectively.
The deformation profiles are very similar in shape and orientation.

During the tube hit the tube simply expands due to high pressure, primarily under the pressure
flange. See figure 4.4. The seam of double thickness is located to the right which may explain the
low displacements there.

The pressure around the pressure flange seems to have a sinusoidal behaviour in the tangential
direction. Take for example two instantaneous images, seen in figure 4.5, plotted as a function of
0 ≤ θ ≤ 2π where θ = 0 corresponds to the position of the seam on the tube. The most common
shape by far is the one with four peaks, seen in the first image. However at times one can also see
different shapes, like the one with three peaks shown in the second image in figure 4.5.
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Figure 4.4: Cross-section at the pressure flange during the tube hit.

Figure 4.5: Pressure profiles at the flange at different times. Vertical axis denotes pres-
sure, which is removed due to confidentiality. Horizontal is the tangential coordinate
0 ≤ θ ≤ 2π.

4.5 β Damping

Several simulations were made in order to investigate the effect of β on the solution. Using the
base case as a reference, β was set to 0.001, 0.003, 0.004 and 0.01, and the results can be seen in
figures 4.6-4.8, where the total displacement of each probe is plotted. Note that the simulation with
β = 0.001 crashed into the wall at suction 1 and β = 0.003 at suction 2. One can see that increasing
β has a damping effect on the solution, and especially with β = 0.01 the peaks at suction 1 and 2 are
almost completely damped out, but not the tube hit.
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Figure 4.7: The solutions for varying β measured at probe 3.
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4.6 Grid Flux

The grid flux was set to 0.3, 0.7 and 1 for the base case using first order time integration. The
solutions are available in figures 4.9-4.11. The maximum wall displacement is effectively unaffected,
but especially probe 3 shows a large difference. Surprisingly using both grid flux URF 0.3 and 1
there appears an extra peak towards the end in probe 3 (figure 4.10), which is not present or at least
heavily damped out with grid flux URF 0.7. The magnitude of these peaks does not follow any order,
with the largest for grid flux URF 1, the smallest for 0.7 and 0.3 in between.

Time
0

0.5

1

1.5

2

2.5

3

3.5

D
is

p
la

c
e

m
e

n
t 

(m
)

×10 -5 Probe 2

Grid Flux URF=0.3

Grid Flux URF=0.7

Grid Flux URF=1

Figure 4.9: The solutions for varying grid flux under-relaxation measured at probe 2.
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Figure 4.10: The solutions for varying grid flux under-relaxation measured at probe
3.
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Figure 4.11: The solutions for varying grid flux under-relaxation, maximum wall dis-
placement.

4.7 Time Discretisation Order

The time discretisation was set to second order, run with β = 0.004, using grid flux under-relaxation
0.7 and 1 respectively, and compared to the base case. Solutions are available in figures 4.12-4.14.
These solution histories don’t seem to differ very much, except for a small difference at the end of
figure 4.14.

The second order time integration does have an effect on the displacement which may be under-
estimated from the first three figures. The radial displacement in probe 3 can be seen in figure 4.15,
when using grid flux 1. One can see large differences in displacement and behaviour between the
first- and second order time integration schemes. It can be noted that the 1st order time integration
seems to have larger displacements than the second order towards the end, which may be surprising
since first order methods are generally more dissipative.
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Figure 4.12: The solutions for varying time discretisation order measured at probe 2.
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Figure 4.13: The solutions for varying time discretisation order measured at probe 3.
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Chapter 5

Stability Analysis

It has been known for some time that the added mass effect causes stability issues in partitioned FSI
simulations. Experience indicates that long tubes, weak structures and heavy fluids cause trouble
numerically, and to estimate the effect of these parameters some model problems can be considered.
In this section we will study some simplified problems using certain time integration schemes to better
understand the causes of the added mass instability, and to predict the onset of numerical difficulties.

5.1 A 2D Model

In order to investigate these effects Causin et al. studied the numerical stability of a simplified 2D
model of a blood vessel. [9] A sketch of the geometry can be seen in figure 5.1. The displacements
on the wall are radially symmetric and the governing equations for the radial displacement along the
length axis are

{
ρshsη̈ + aη − b∂

2η
∂x2 = f on ΩS ∀t ∈ [0, T ]

η = 0 on ∂Ωf ∀t ∈ [0, T ]
(5.1)

Figure 5.1: The simplified geometry of the 2D model problem with symmetry axis.

Here hs is the wall thickness, ρs the solid’s density, a = Ehs/[r
2(1 − ν2)] for Young’s modulus E,

radius r and Poisson’s ratio ν, b = κTGhs, κT being the Timoshenko shear correction factor and
G the shear stress modulus. This two-dimensional ”tube” is filled with a fluid of density ρf under
potential flow in the fluid domain Ωf . Thus the added mass effect can be written f = −MAη̈, where
MA is the added mass operator, i.e the continuous counterpart of the added mass matrix. The
authors of [9] analyse some time integration schemes, letting b = 0 in equation 5.1. The maximal
eigenvalue of the added mass matrix turns out to be important, and is denoted ρfµmax.
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5.1.1 Explicit Scheme

Consider using a first order implicit Euler scheme for the fluid velocities and a leap-frog scheme for the
structure, advancing in an explicit manner in time. It turns out that this scheme is unconditionally
unstable for

ρshs
ρfµmax

< 1. (5.2)

This means that if the structure has thin walls, is light compared to the fluid or has a large added
mass effect this scheme will not converge for any choice of time step.

In [10] it is shown that for every explicit coupling scheme where the fluid- and solid solvers work
implicitly internally, there is a criterion ρshs

ρfµmax
< C for some C depending on the scheme.

5.1.2 Implicit Scheme

Now consider a first-order backwards difference scheme for both the structure and the fluid solver,
using the partitioned implicit FSI algorithm. The following stability criterion for the displacement
under-relaxation ω was found (5.3)

0 < ω <
2(ρshs + a∆t2)

ρshs + a∆t2 + ρfµmax
. (5.3)

Another analysis using a generalised α method for time integration found similar criteria. [11]

The results of (5.3) and the generalised α methods corresponding to maximum and minimum numer-
ical damping respectively can be seen in figure 5.2, when using the parameters for the tube problem.
The stable region is under the graph. It is interesting to note that the three criteria are virtually
identical and that a smaller time step requires a smaller ω, contrary to common engineering intu-
ition. In the limit ∆t → 0 (5.3) becomes (5.4) where the density quota between the fluid and solid
determines the behaviour.

0 < ω <
2

1 +
ρfµmax

ρshs

. (5.4)

However for larger ∆t the term a∆t2 dominates, and it’s primarily the stiffness combined with the
time step that determines the condition on ω.

10 -4 10 -3 10 -2

∆ t (s)

0

0.5

1

1.5

2

ω

Figure 5.2: The criteria on ω for three different time integration schemes, overlaid on
top of each other. The area under the graph marks the stability region.
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5.2 Simplified Tube Problem

We will study a simplified mathematical model of the tube problem. Assume that the tube is made
of an isotropic linear elastic material with Young’s modulus EMD, free to move in the axial direction
in both ends, but supported and hinged in the radial and tangential directions. In reality there is
a web tension giving an inhomogeneous boundary condition of the lengthwise displacement, but we
will neglect that here, setting the normal force to 0 at the ends. The internal structures are neglected
and the tube is filled with fluid. Other dimensions and material parameters are the same as in the
numerical tube model.

The beam-like mode shapes of the tube can be classified by the indexes m and n where m is the axial
mode number and n the circumferential. These can be seen in figure 5.3.

Figure 5.3: The circumferential (a) and axial (b) modes of a cylinder.

The tube walls are assumed to move radially in the mode shapes

Un,m(x, θ) = sin(
mπx

L
) cos(nθ) (5.5)

where L is the tube length.

The governing equations for the tube walls was chosen to be the Love equations for cylindrical shells,
a linear model for thin plates. [12]


ρshsẄ − Eh

1−ν2

(
∂2W
∂x2 + 1−ν

2r2
∂2W
∂θ2 + 1+ν

2r
∂2V
∂θ∂x + ν

r
∂U
∂x

)
= px(θ, x; t)

ρshsV̈ − Eh
1−ν2

(
(1 +

h2
s

12r2 )( ∂2V
r2∂θ2 + 1−ν

2
∂2V
∂x2 ) + 1+ν

2r
∂2W
∂x∂θ + ∂U

r2∂θ −
h2
s

12r2 ( ∂3U
r2∂θ3 + ∂3U

∂x2∂θ )
)

= pθ(θ, x; t)

ρshsÜ + Eh
1−ν2

(
U
r2 +

h2
s

12r2 )( ∂4U
r2∂θ4 + 2 ∂4U

∂x2∂θ2 + r2 ∂4U
∂x4 ) + ν ∂Wr∂x + ∂V

r2∂θ −
h2
s

12r2 ( ∂3V
∂x2∂θ + ∂3V

r2∂θ3 )
)

= pr(θ, x; t)

(5.6)

W, V and U are the displacements in the axial, tangential and radial directions respectively. The
added mass effect is assumed to act in the radial direction only in the following analysis.

The flow in the tube is modelled as incompressible, inviscid and irrotational which may be expressed
by the linear equations 5.7.


ρf u̇ +∇p = 0 in Ωf

∇ · u = 0 in Ωf

p = p̄(t) x = 0, x = L

u · n = w on Σ

(5.7)

which can be reformulated as (5.8).
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
−∆p = 0 in Ωf

p = p̄(t) x = 0, x = L
∂p
∂n = −ρf ẇ on Σ

(5.8)

p̄ and w are arbitrary boundary conditions, and ρf is the fluid density. These two sets of equations
are then coupled by the conditions on the interface boundary Σ.

on Σ

{
u · n = w = U̇

pr = p
(5.9)

This may be used to reformulate the last line of equation 5.8 as

∂p

∂n
= −ρf Ü on Σ (5.10)

which means our systems of equations are fully coupled.

In order to investigate the solutions to this problem an added mass operator MA is defined as (pext
being a background pressure not generated by an acceleration of the walls)

p|Σ = pext −MAÜ .

The existence and uniqueness of the solution using this operator are proven in the paper [9].

The real tube is filled with liquid up to a certain level H, but to simplify the analysis we will study
the case where it is completely filled, i.e H=L.

We now seek the pressure p resulting from a radial acceleration of the wall Ü , and solve
equation 5.8 through separation of variables.

p(x, θ, r) = X(x)Θ(θ)R(r). (5.11)

The Laplacian in cylindrical coordinates is

∆p =
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂θ2
+
∂2p

∂x2
(5.12)

Which after insertion of 5.11 becomes

∆p = X(x)Θ(θ)R′′(r) +
1

r
X(x)Θ(θ)R′(r) +

1

r2
X(x)Θ′′(θ)R(r) +X ′′(x)Θ(θ)R(r) = 0. (5.13)

Which implies

R′′

R
+

1

r

R′

R
+

1

r2

Θ′′

Θ
+
X ′′

X
= 0. (5.14)

The eigenfunction Θ is by necessity the same as that of U , since it follows its movements. The
axial eigenfunction depends on the boundary condition for the pressure at the outlet and inlet. A
free surface or an ”open” end corresponds to p = 0, while a ”closed” boundary, i.e a solid bottom,
corresponds to ∂p

∂x = 0. [13]

Here both ends are assumed to be open and thus X(x) = sin(mπL x) and Θ(θ) = cos(nθ). This results
in

R′′ +
1

r
R′ −

(
1

r2
n2 +

m2π2

L2

)
R = 0 (5.15)
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which is known as the modified Bessel equation, and has solutions R(r) = aIn(mπL r) + bKn(mπL r)
where In and Kn are the first and second modified Bessel functions of order n respectively. Since
limr→0Kn(r)→∞ only In has to be considered. Thus p can be expanded as the function series

p(x, θ, r) =
∑
m,n

cm,n
In(mπL r)

In(mπL ro)
sin(

mπ

L
x) cos(nθ) (5.16)

where the radial part has been normalised to be 1 on the wall r = ro. Equation 5.10 implies

∂p

∂r

∣∣∣
r=ro

=
∑
m,n

cm,n
mπ

L

I ′n(mπL ro)

In(mπL ro)
sin(

mπ

L
x) cos(nθ) =

∑
i,j

−ρf q̈i,j sin(
iπ

L
x) cos(jθ) (5.17)

where qn,m is a modal coordinate dependent on time. The pressure on the wall is, due to normalisation
of the radial part

p
∣∣∣
r=ro

=
∑
m,n

cm,n sin(
mπ

L
x) cos(nθ) = −MAÜ = −

∑
i,j

Mi,j q̈i,j sin(
iπ

L
x) cos(jθ) (5.18)

per definition of the added mass operator MA. By orthogonality of the basis functions the added
mass operator is diagonal, so finding the added mass coefficients Mm,n is relatively easy. Otherwise
one would have to project the basis functions on each other which would create a coupled system of
equations with densely populated matrices. Together (5.17) and (5.18) imply

Mm,n =
ρfL

mπ

In(mπL ro)

I ′n(mπL ro)
(5.19)

which are the diagonal elements of MA.

5.3 Analysis of the HHT scheme

The HHT scheme (3.4) can be put in the following form by repeated insertion of the Newmark
predictors [14]

M

[
1

υ∆t2
(d̃k+1 − dn)− 1

υ∆t
ḋn −

1− 2υ

2υ
d̈n

]
+

C

[
γ(1− α)

υ∆t
(d̃k+1 − dn)− γ(1− α)− υ

υ
ḋn −

(γ − 2υ)(1− α)

2υ
∆td̈n

]
+

K
[
(1− α)d̃k+1 − αdn

]
= (1− α)Fext(tn+1) + αFext(tn)

(5.20)

This assumes the nonlinear relation Fint(d) is evaluated by the generalized midpoint rule, and is an
approximation suitable if the difference between the linearised K-matrices is small between two time
steps. If the damping matrix is nonlinear too, for example C = βK, the same argument applies.
According to the Abaqus manual it uses the trapezoidal rule for these approximations instead, like
what’s done here with Fext but for ease of analysis we will stick to the midpoint rule. We will see that
this distinction doesn’t matter in the following analysis, if K is taken as the matrix in the updated
state.

Since dk+1 = ωd̃k+1 + (1− ω)dk we can substitute the relaxed displacement for the predictor

d̃k+1 =
dk+1

ω
− 1− ω

ω
dk (5.21)

in (5.20).
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The fluid time integration is assumed to be a first order Euler scheme giving the acceleration u̇n+1 =
un+1−uk

∆t . Assuming first order Euler interpolation of velocity on the wall d̈n+1 = dn+1−2dn+dn−1

∆t2 =
u̇n+1. Thus we can approximate the added mass effect

Fk+1
ext = −MAu̇k = −MA

dk − 2dn + dn−1

∆t2
. (5.22)

Fk+1
ext is the force imported on step k+ 1 and therefore uses the latest available information from step

k, giving (5.22).

In order to write this relation on the form of a fix point iteration we are only interested in terms k+1
and k. The relations (5.20)-(5.22) can be compactly written in terms of the inner iteration variables
dk+1, dk only. Inserting the relevant terms into (5.20) yields

M
1

υ∆t2
d̃k+1 + C

γ(1− α)

υ∆t
d̃k+1 + K(1− α)d̃k+1 = (1− α)Fk+1

ext + Φ(dn,dn−1, . . .) (5.23)

which expands to

M
1

υ∆t2

[
dk+1

ω
− 1− ω

ω
dk
]

+ C
γ(1− α)

υ∆t

[
dk+1

ω
− 1− ω

ω
dk
]

+ K(1− α)

[
dk+1

ω
− 1− ω

ω
dk
]

= (1− α)

[
− 1

∆t2
MAdk

]
+ Φ(dn,dn−1, . . .)

(5.24)

Equation (5.24) can be written as a fix point iteration

[
M

1

∆t2
+ C

γ(1− α)

∆t
+ K(1− α)υ

]
dk+1 = (1− ω)

[
M

1

∆t2
+ C

γ(1− α)

∆t
+ K(1− α)υ − (1− α)ωυ

∆t2(1− ω)
MA

]
dk

+ Φ(dn,dn−1, . . .)
(5.25)

Assuming the operator on the left hand side is invertible this can be written (omitting the irrelevant
terms)

dk+1 = (1− ω)

[
I −

[
M

1

∆t2
+ C

γ(1− α)

∆t
+ K(1− α)υ

]−1
(1− α)ωυ

∆t2(1− ω)
MA

]
︸ ︷︷ ︸

J

dk
(5.26)

The inner iteration is asymptotically stable if and only if the absolute value of the maximal eigenvalue
of J < 1. Let (·)max symbolise the maximum eigenvalue, then (J )max < 1 which means

∣∣∣∣∣(1− ω)

[
1− (1− α)ωυ

∆t2(1− ω)

([
M

1

∆t2
+ C

γ(1− α)

∆t
+ K(1− α)υ

]−1

MA

)
max

]∣∣∣∣∣ < 1 (5.27)

Inserting γ = 1
2 + α and υ = 1

4 (1 + α)2 yields

(1− α)ωυ

∆t2(1− ω)

([
M

1

∆t2
+ C

γ(1− α)

∆t
+ K(1− α)υ

]−1

MA

)
=

ω

1− ω

([
M

4

(1− α)(1 + α)2
+ C

4∆t( 1
2 + α)

(1 + α)2
+ K∆t2

]−1

MA

) (5.28)
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And assuming C = βK we get

=
ω

1− ω

([
M

4

(1− α)(1 + α)2
+ K

(
4β

∆t( 1
2 + α)

(1 + α)2
+ ∆t2

)]−1

MA

)
.

Thus the condition on ω is

∣∣∣∣∣1− ω − ω
([

M
4

(1− α)(1 + α)2
+ K

(
4β

∆t( 1
2 + α)

(1 + α)2
+ ∆t2

)]−1

MA

)
max

∣∣∣∣∣ < 1. (5.29)

The mass matrix M is positive definite, MA positive (semi)-definite, and K is generally positive
semidefinite, unless severe nonlinearities occur, which we will neglect here. The criterion can be
written

0 < ω <
2

1 +

([
M 4

(1−α)(1+α)2 + K
(

4β
∆t( 1

2 +α)

(1+α)2 + ∆t2
)]−1

MA

)
max

(5.30)

5.4 Application to the Tube Problem

The tube is fixed but hinged in the radial- and tangential directions at both ends, but free to move in
the lengthwise direction at both ends. Therefore we assume the modes of the U, V,W -displacements
to be


Um,n = um,n sin(mπxL ) cos(nθ)

Vm,n = vm,n sin(mπxL ) sin(nθ)

Wm,n = wm,n cos(mπxL ) cos(nθ)

(5.31)

These mode shapes are motivated in [12]. Note that the mode shape for Wm,n is not really consistent
with physical reality since there can be no normal forces in the x-direction couteracting the web
tension under these assumptions. Nxx|x=0 ∝ (∂W∂x + ν( ∂Vr∂θ + U

r ))|x=0 ⇒ ∂W
∂x |x=0 = 0. However this

was part of the simplifications made in order to be able to treat the problem easily. Hopefully this
system can yield some insights into the physical behaviour. Projecting the mode shapes 5.31 on
Love’s equations yields the uncoupled system of equations (5.32) in modal coordinates. [12] This
is valid under the assumption that the pressure eigenfunctions are the same as the displacement
eigenfunctions, which is true in our case.

Ehs
1− ν2

K11 K12 K13

K21 K22 K23

K31 K32 K33

wm,nvm,n
um,n

+ ρshs

1 0 0
0 1 0
0 0 1

 ¨wm,nvm,n
um,n

 =

pxpθ
pr


m,n

(5.32)

where



K11 =
(
mπ
L

)2
+
(

1−ν
2

) (
n
r

)2
K22 = (1 +

h2
s

12r2

((
n
r

)2
+ 1−ν

2

(
mπ
L

)2)
K33 = 1

r2 + h2

12

((
n
r

)2
+
(
mπ
L

)2)2

K12 = K21 = − 1+ν
2

n
r
mπ
L

K13 = K31 = −νr
mπ
L

K23 = K32 = n
(

1
r2 +

h2
s

12r2

((
n
r

)2
+
(
mπ
L

)2))
(5.33)
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Assuming that the added mass effect only acts in the radial direction, the pressures can be written
in terms of added mass, again due to the orthogonality of the eigenfunctionspxpθ

pr


m,n

=

 0
0

−Mm,nüm,n

 (5.34)

The governing equations for the simplified problem can now be written


Km1,n1

0 . . . 0
0 Km1,n2

. . . 0
... 0

. . .
...

0 . . . 0
. . .



wm1,n1

vm1,n1

um1,n1

wm1,n2

...

+ρshsI

¨
wm1,n1

vm1,n1

um1,n1

wm1,n2

...

 =


0 0 0 . . . 0
0 0 0 . . . 0
... 0 −Mm1,n1

. . .
...

0 . . . 0
. . . 0


¨

wm1,n1

vm1,n1

um1,n1

wm1,n2

...

.
(5.35)

Adding a stiffness proportional β damping and discretising the problem in time with the HHT scheme,
the criterion 5.30 becomes

0 < ω < inf
m,n

2

1 +

[ρshsI 4
(1−α)(1+α)2 + Km,n

(
4β

∆t( 1
2 +α)

(1+α)2 + ∆t2
)]−1

0 0 0
0 0 0
0 0 Mm,n


max

(5.36)

Since the matrices in 5.35 are block diagonal, their inverses are also block diagonal, and the problem
can be transferred into finding the mode m,n that puts the greatest limitations on ω via (5.36).
This is utimately thanks to the possibility to associate a stiffness and added mass to each mode,
independent of other modes.

The critical ω for n ∈ [0, 2], m ∈ [1, 2] are plotted in figure 5.4. For reference, higher modes have been
left out since they are all in the upper part of the graph. See figure 5.5 for all modes n ∈ [0, 20], m ∈
[1, 20]. The area under the graph should be considered the domain of stable combinations of ∆t and
ω for the model problem, and the region over the graph unstable. In this case stability seems to be
limited by the added mass effect on the mode m = 1, n = 1.

5.5 Correspondence to the Numerical Case

5.5.1 Validation of the Stability Criterion

The model problem deviates from the full case on several points. Anisotropy and web tension is
neglected, there is no fill pipe or pressure flange and maybe the most striking is the free surface. In
order to investigate the validity of the criterion found for the model problem, the base case was run
with a filled tube. The results are seen in table 5.1 and a comparison to the results in the previous
section is available in figure 5.6. It was noted if the simulations became unstable and if so when. One
simulation crashed after running for a while, and this will be interpreted as being close to the critical
parameter ω and will be marked uncertain. The correspondence to the theoretical results in figure
5.4 seems to be good. Note that using a grid flux URF of 0.7 permitted running ∆t = 0.5 ms and
ω = 0.3, which should theoretically be unstable, and was also shown to be unstable when increasing
the grid flux URF to 1. This behaviour supports the anecdotal evidence and previous experiences
that grid flux under-relaxation helps stabilise the algorithm.

Running a filled tube case with ∆t = 2 ms and ω = 0.65 caused instabilities, just as the criterion
5.4 predicts. The behaviour just before the crash was a displacement of increasing amplitude in the
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Figure 5.4: The critical displacement under-relaxation factor for different modes m,n
in the base case, calculated from the parameters in the model problem (5.35).
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Figure 5.5: The critical displacement under-relaxation factor for all modes m,n ≤ 20.

mode m = 1, n = 1, and a magnified vector warp of the tube at the crash can be seen in figure 5.7.
This behaviour seems to confirm the theoretical prediction that it is the mode m = 1, n = 1 that is
sensitive to the added mass effect for these parameter choices.

The same behaviour was observed in other simulations, for example ∆t = 4 ms, ω = 0.85 and grid flux
1. The convergence criterion on the surface average incremental displacement was observed to first
go down nicely, then growing and diverging. See figure 5.8. A possible explanation for this behaviour
is that during the ramp-up period the pressure and thus the added mass effect suddenly became large
enough to start to amplify any errors in the mode n = 1,m = 1 in the fix point iteration, and this is
what we see in the picture.

In order to study the model problem’s applicability to the original half filled tube a number of
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∆t (ms) ω Grid Flux Behaviour Verdict
0.5 0.3 0.7 Ran up to 0.65 tsim, stopped manually Stable
0.5 0.3 1 Unstable after 0.95 tramp Unstable
0.5 0.15 1 Hit pressure flange at 0.65 tsim Stable
2 0.8 0.7 Unstable after 0.84 tramp Unstable
2 0.4 1 Hit pressure flange at 0.64 tsim Stable
2 0.65 1 Unstable after 0.82 tramp Unstable
4 0.95 1 Unstable after 0.76 tramp Unstable
4 0.85 1 Unstable after 0.8 tramp Unstable
4 0.7 1 Unstable very soon after tramp Unstable
4 0.6 1 Unstable after 0.25 tsim Uncertain
4 0.55 1 Hit pressure flange at suction 2 Stable

Table 5.1: The outcome of simulations with a filled tube.
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Figure 5.6: The simulations in table 5.1 compared to the theoretical stability domain
predicted by (5.36).

Figure 5.7: A magnified vector warp of the displacements just before a crash. The
mode m = 1, n = 1 can be identified.

simulations were run, starting from the base case with a free surface. These are listed in table 5.2
and plotted against the stability domain for the model problem in figure 5.9.

The condition on ω seems to be less strict with a free surface than for the filled tube, making the base
case more stable. Even though the cases in 5.2 use grid flux under-relaxation 0.7 the point ∆t = 2
ms, ω = 0.8 with grid flux under-relaxation 0.7 was unstable in 5.1 but not for the half-filled tube.

Considering that the parameters of the base case are completely arbitrary from the point of view
of the governing equations, the findings support the applicability of (5.36). The assumptions of

31



Figure 5.8: The surface average incremental displacement at a crash. The sudden
onset of instability is seen around iteration 1850.

∆t (ms) ω Behaviour Verdict
0.5 0.3 Finished tsim Stable
0.5 0.8 Unstable at 1st time step Unstable
1 0.8 Unstable after 0.3tsim Uncertain
1 0.5 Finished tsim Stable
2 0.8 Hit flange wall at 0.65tsim Stable
5 0.8 Hit flange wall at 0.65tsim Stable

Table 5.2: The outcome of simulations on the original problem with a free surface.
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Figure 5.9: The simulations on the original tube problem in table 5.2 compared to
the theoretical stability domain predicted by (5.36).

unconstrained potential flow in a tube of isotropic material of the higher Young’s modulus EMD

should under-predict the numerical difficulties. Note that the two-dimensional model can not pre-
dict instability as it would correspond to the modes n = 0. Neither can the simplification in [9]
of using only the maximal eigenvalue of the added mass matrix be employed, since in this case
(MA)max = Mn=0,m=1 ≈ 4200 but Mn=1,m=1 ≈ 26, and thus the added mass effect would be vastly
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over-estimated, giving an overly conservative criterion on ω. The point of this analysis is thus to
balance the stiffness and added mass effect for each mode to be able to account for deformations
and translations of the cross section of the tube. The analysis in [9] is valid when the modes n = 0
dominate the behaviour, as perhaps in the blood vessel the authors sought to model.

5.5.2 Spectral Analysis

In noting that equation 5.35 can be seen as a modal equation

1

ρshs
Km,n − ω2I = 0 (5.37)

the eigenfrequencies can be extracted, and the lowest frequency in vacuum for each mode is seen in
table 5.3, compared to the respective modes calculated from the Abaqus case.

m
n

0 1 2 3

1 1222 160 220 538
2 2444 586 290 547

(a) The eigenfrequencies of the model problem.

m
n

0 1 2 3

1 - 223 137 325
2 - 665 265 345

(b) The eigenfrequencies calculated in the numerical
case.

Table 5.3: The calculated eigenfrequencies f = ω/2π (Hz).

Identifying a modal stiffness coefficient km,n = ρshsω
2
m,n one could argue that higher frequencies

correspond to stiffer modes, allowing for higher displacement under-relaxation factors and vice versa.
Therefore it is important to note that the mode n = 1, m = 1 seems to be stiffer in the real case than
the model predicts, and n = 2, m = 1 is less stiff. These two are the most critical modes according
to the model problem 5.4, so the discrepancy may have an effect on the validity of conclusions drawn
from the model problem.

5.6 Numerical Calculations of The Stability Criteria

One can do numerically what was done analytically in the previous section, using the actual FEM
matrices, and finding the real added mass matrix for the geometry at hand, including the fill pipe,
pressure flange and free surface.

Denote K = K0+KP where K0 stands for the constant initial matrix in the finite element formulation,
and KP for the nonlinear contribution. Consider the linear problem

Md̈ + Cḋ + K0d = F.

A standard technique in linear structural dynamics is modal decomposition.

Let Φi be a solution to the generalized eigenvalue problem

ω2
iMd = K0d.

A change of basis to Φ1, Φ2 . . . turns the linear problem into

ΦTMΦq̈ + ΦTCΦq̇ + ΦTK0Φq = ΦTF (5.38)

where q = ΦTd are the modal coordinates, i.e q = (1, 0, 0 . . .)T is the coordinate of the first eigenmode
of the system and so on, and Φ is the matrix consisting of the normalised eigenvectors Φi as columns.
The matrices on the left hand side are all diagonal, allowing for easy manipulation, and Φ−1 = ΦT .
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The added mass matrix can be calculated by solving Laplace’s equation in the domain with boundary
conditions p = 0 at the surface, the walls above, the fill pipe, the outlet and the inlet, and ∂p

∂n = −ρfΦi
on the walls below. This can be done in any numerical PDE solver capable of solving the heat transfer
equations or electrostatics. This calculation can be done for a subset S of the eigenvectors Φi, where
the spanning matrix is ΦS . The pressure field obtained for different i can be gathered in a matrix Ψ
such that MAΦS = ΨS .

The system 5.38 can then be projected down on this subset of eigenvectors by multiplication from
the left and right.

ΦTSMΦSq̈S + ΦTSCΦSq̇S + ΦTSK0ΦSqS = −ΦTSMad̈S = −ΦTS (ΨSΦTS )(ΦSq̈S) = −ΦTSΨSq̈S (5.39)

If a suitable subset S of eigenmodes has been chosen one can expect the eigenvector corresponding
to the maximal eigenvalue of (5.30) to be close to a vector in the subspace. We can therefore seek
out the maximal eigenvalue in the subspace instead, and calculate([

ΦTSMΦS
4

(1− α)(1 + α)2
+ ΦTSKΦS(4β

∆t( 1
2 + α)

(1 + α)2
+ ∆t2)

]−1

ΦTSΨS

)
max

Note that this can be calculated over time while updating the K matrix to see if nonlinear effects of
the finite element formulation affect the stability.

5.6.1 An Easier Way

Given a certain simulation setting with a fixed β, ∆t etc, one could ramp up the pressure on the walls
linearly over a certain period 0 ≤ t ≤ tramp and note the fraction t/tramp = c when the simulation
becomes unstable, using an initial guess for the displacement URF ω0. Then the critical added mass
for that setting should be cMA. An estimate for ω is the solution to the system{

ω0 = 2
1+xc

ω = 2
1+x

(5.40)

which is

ω =
2ω0c

ω0(c− 1) + 2
.

Of course this is only an approximation, and it would be smart to set ω lower. The test should be
done with numerically difficult boundary conditions in order to avoid surprises later.
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Chapter 6

Discussion

In this section the effect of the added mass on the instability is discussed, and some other phenomena
that may affect the stability. An effort to find suitable parameters for future simulations is also made,
and the contact condition is discussed.

6.1 Numerical Results

6.1.1 β Damping

Increasing β successively damps out the dynamics of the solution, and it is clear from figures 4.6-4.8
that the solution using β = 0.004 will be very different from β = 0. The critical damping frequency
might provide some estimates for setting β to a value that will filter out high frequencies but not the
overall behaviour of the tube, according to figure 3.5. It may be surprising that the tube hit is barely
damped out while the suction peaks are, even though their periods are practically the same. Looking
at the maximum wall displacement one can see that the tube hit is much smaller than the suction
peaks, and this would mean that the overall velocity involved in the suction is higher than the tube
hit, causing larger damping forces.

6.1.2 Grid Flux

One can see that the grid flux under-relaxation definitely affects the solution, but it is surprising that
there does not seem to be a simple relation between the amount of under-relaxation and the damping
effect. In figures 4.9-4.11 this strange behaviour is demonstrated. The arbitrarily chosen grid flux
URF 0.7 for the base case caused us to miss a peak towards the end of the cycle, and due to the
erratic effect on the solution it seems next to impossible to estimate what goes missing for a certain
grid flux URF.

6.1.3 Time Discretisation Order

The time discretisation did not look like it affected the solution much in the first three plots 4.12-4.14,
but looking at the radial displacement a clear difference can be discerned in figure 4.15. The first
order scheme seems to have larger displacements in this probe point, which is a bit surprising as it is
normally more dissipative than the second order scheme. This may be a local effect. Otherwise the
solutions have roughly the same overall behaviour, with differences in the amplitude of peaks and
small oscillations.
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6.2 Parameter Variations

Denote the original quantities in the base case for the model problem L0, r0, ρs0 etc. These param-
eters will be varied in equation 5.36 and the corresponding ω plotted and compared to the base case
which is marked with grey dashed lines.
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Figure 6.1: Tube length L. To the left 1
2L0, to the right 2L0.
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Figure 6.2: Tube radius r. To the left 1
2r0, to the right 2r0.
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Figure 6.3: Wall thickness hs. To the left 1
2hs0, to the right 2hs0.
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Figure 6.4: Young’s modulus E. To the left 1
2E0, to the right 2E0.
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Figure 6.5: Fluid density ρf . To the left 1
2ρf0, to the right 2ρf0.

10 -4 10 -3 10 -2

∆ t (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω

n=0, m=1

n=0, m=2

n=1, m=1

n=1, m=2

n=2, m=1

n=2, m=2

10 -4 10 -3 10 -2

∆ t (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω

n=0, m=1

n=0, m=2

n=1, m=1

n=1, m=2

n=2, m=1

n=2, m=2

Figure 6.6: Solid density ρs. To the left 1
2ρs0, to the right 2ρs0.
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Figure 6.7: Rayleigh damping β. To the left β = 0, to the right β = 0.01.

10 -4 10 -3 10 -2

∆ t (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω

n=0, m=1

n=0, m=2

n=1, m=1

n=1, m=2

n=2, m=1

n=2, m=2

10 -4 10 -3 10 -2

∆ t (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω

n=0, m=1

n=0, m=2

n=1, m=1

n=1, m=2

n=2, m=1

n=2, m=2

Figure 6.8: Numerical dissipation α in the HHT scheme. To the left α = 0, to the
right α = 0.5.
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Clearly (5.36) predicts that the added mass instability gets worse for long or wide tubes, heavy
fluids, thin walls, and low Young’s modulus. The β damping seems to have a very beneficial effect
on the stability as experience indicates, especially for smaller time steps. The numerical dissipation
parameter α seems to have very little effect, and so does ρs, except for in the limit t→ 0 where high
material densities increase the minimum ω analogously to (5.4).

6.3 Effects of Water/Air Surface

The model problem assumes a filled tube which is not the case in the practical simulations. There are
some uncertainties surrounding the effect of the surface on stability. On the one hand less water is
displaced which should decrease the added mass effect, but there will be splashes and surface waves
giving rise to nonlinear and unpredictable phenomena.

The surface also changes the natural mode shapes. For example consider a partitioned system where
the canonical equation becomes[(

Kgg Kgl

Klg Kll

)
− ω2

(
Mgg Mgl

Mlg Mll +MA

)](
dg
dl

)
= 0 (6.1)

where index g stands for gas and l for liquid respectively. This system of equations does not generally
have the same solutions as the modal equations in vacuum MA = 0, depending on if the pressure
eigenfunctions are the same as the modes or not, which is generally not true in case of a surface. In
this case there will be cross-couplings of the eigenmodes of the pressure and the displacement, maybe
effectively increasing the added mass effect in some modes and decreasing it in others, also depending
on the current fluid level. Figures 5.6 and 5.9 indicate that the free surface case is more stable than
the filled tube.

6.4 Effects of Geometry

Päıdoussis [15] studies the fluid-structure coupling of infinitely long annular tubes conducting fluid in
the middle channel. In the case of an outer tube of radius Ro vibrating in the transversal mode n = 1,
with a fixed inner tube of radius Ri, the added mass force per unit length in this mode depends of
the ratio of the radii. The multiplication constant Cm can be seen in figure 6.9. As can be seen the
effect of a narrow gap is an enormous increase in added mass. In the tube case the fill pipe acts as
an inner cylinder, which gives a ratio Ro/Ri varying between approximately 1.01 ⇒ Cm ≈ 70 and
∞⇒ Cm ≈ 1. This introduces a lot of uncertainty in every estimate of the added mass matrix, and
it may introduce large local effects.

Additionally the movement of the walls will change the gap distance over time which gives the added
mass effect an extremely nonlinear behaviour locally. In the simulations of the full geometry the fill
pipe and floater are also allowed to move, which may have a synergistic effect on the added mass if
it should happen to oscillate in tune with the walls, in addition to making the fluid gap even smaller
at times. [15]

These kinds of effects may explain instabilities where the solution is stable for the whole ramp-up
period, runs for some time and then becomes unstable when the walls start to deform, closing the fluid
gap and increasing the local added mass effect, typically during suction. Cases where the walls run
into the pressure flange may be caused by this phenomenon rather than the walls hitting the flange
as part of a purely dynamical procedure. In that case, the β damping that reduces the displacement
will also reduce these effects, contributing further to the overall stability.

6.5 Effects of Viscosity

Just as there is an added mass, there may be an added viscous force related to the wall movements.
Päıdoussis goes on to derive an expression for the coupling force considering viscous flow. For a
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Figure 6.9: The added mass coefficient for the transversal motion of a vibrating tube
of radius Ro containing a fixed tube of radius Ri.

certain vibrational mode the viscous force can be written Fv = −CdΩρfAż where z is a coordinate, Ω
is an oscillation frequency and Cd is positive and given by a very complex expression. This constant
exhibits a behaviour similar to Cm with varying diameters. For the details, see section 2.2.4 in [15].

Since the viscosity will act as a reaction force analogous to the added mass one can expect highly
viscous flows to be harder to handle, and require lower ω. The force is proportional to the wall
velocity, and thus one can hypothesise that the added viscosity will act as an addition to (5.22) which
would consequently modify (5.30) where MA should be replaced by (MA + ∆tVA) for some added
viscosity operator VA, and the factor ∆t is due to the velocity dependence as opposed to the added
mass’ acceleration dependence. Thus viscous effects should be more severe for larger time steps,
which could explain the behaviour in figure 5.6 where larger time steps seem to be relatively difficult
compared to the predicted stability region.

6.6 Effects of Compressibility

There is a fundamental difference between the added mass concepts for compressible and incompress-
ible fluids. The added mass is a certain portion of the fluid pushing back on the wall as a reaction
force resulting from the wall accelerations. However, if we consider an acceleration of the wall at
time t0, this information spreads instantaneously throughout the whole domain in the incompressible
case, while for the compressible flow, the maximum radius of influence is c∆t, where c is the speed of
sound in the fluid, and ∆t the time interval. For small discrete time steps this yields a characteristic
length limiting the added mass to mf ∝ c∆tρf . [16]

This should be taken to be valid in the limit ∆t → 0. For example, with a speed of sound c = 600
m/s and a time step ∆t = 5 · 10−4 s the radius of influence is c∆t ≈ 0.3 m which is more than 10
times the radius of the tube and about half its length. However, considering an explicit scheme the
criterion ρshs

ρfµmax
< C outlined in [10] should reduce to ρshs

ρf c∆t
< C where C is generally on the order

of magnitude of unity. In this case we can see that a reasonable order of magnitude for the required
time step for an explicit scheme for the model problem is ∆t ≈ ρshs

ρf c
≈ 10−7 s. Compressibility could

allow for an explicit scheme even though this would have been impossible using an incompressible
fluid, though in this case the time scales are impractically small. Note that ρshs

ρfµmax
≈ 10−4, far below

the incompressible range for explicit simulations.
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6.7 Transient Divergence

The criterion 5.30 is a necessary criterion for asymptotic convergence, but what if the algorithm
takes a detour to get to the converged state? It has been proven that for a compressible, linear
fluid-structure interaction problem, the convergence in the fixed point iteration is not monotonous,
meaning that even though it converges asymptotically, the norm of the iteration operators ‖J n‖ are
not strictly smaller than one. In such cases any error will be amplified, and in the worst case the
simulations may crash. [17]

6.8 Incomplete Convergence

The fluid solver runs only 4 inner iterations between each coupling step, and this may make the force
field imported into the solid solver irregular, which should have an impact on the displacement field,
and may introduce difficulties as the solvers are iterated. Also especially using larger time steps, the
coupling algorithm may not be completely converged after a time step, as it often happened in the
simulations that a maximum number of inner iterations was reached. This means that the fluid- and
solid solvers will take a time step starting from slightly different fields which may negatively impact
stability, separate from the added mass effect.

6.9 Effects of Nonlinear Structure

The stiffness matrix K in the finite element formulation is nonlinear and depends on the configuration.
Its eigenvalues will vary with the displacement, and in extreme cases such as buckling these may even
turn negative. It is possible that such nonlinear effects contribute to a smaller overall stiffness, which
increases the maximal eigenvalue in (5.30). In this case all displacements are relatively small, a
fraction of a millimetre, and so the K matrix will probably remain relatively constant. However, if
actual package forming is to be simulated it is unclear how the extreme nonlinearities will impact
the structural stiffness and hence the stability. If there are bifurcations in the structural solution,
eigenvalues of the K matrix become negative, which would require ω to be very small or even negative
as well, unless the mass matrix is big enough to counteract it in the condition (5.30).

6.10 Time Discretisation Scheme

Apart from giving the errors in the fluid domain a more dispersive nature, the second order time
discretisation affects the algorithm stability through the added mass matrix. Using second order time
discretisation, equation 5.22 would have a leading term depending on the method of interpolating

the velocity of the wall. If using a first order implicit Euler method it would have the formMA
3dk

2∆t2 ,
in accordance with (3.3), thereby effectively amplifying the added mass effect by 3

2 . If using second
order interpolation the added mass effect would be amplified by 9

4 . Therefore it would likely require
a lower ω than a 1st order discretisation, depending on the finer details of solver implementation.

6.11 Boundary Conditions

In determining the appropriate eigenfunctions for the pressure for the model problem, it was assumed
that the outlet was ”open”, i.e. connected to an unconfined fluid. Had it been ”closed” we would
have required ∂p

∂x = 0 at the outlet instead, which would have complicated the analysis as other base
functions would have been needed. [13] The outlet is modelled by a mass flow inlet in STAR-CCM+,
and it is unclear which of the options this corresponds to, if any at all. If these calculations are to
be carried out in a setting with a simulated package forming, the conditions would likely correspond
to a closed outlet. It is unclear how this may affect the added mass instability.
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6.12 Parameter Choices

Simulations have been run using 2nd order time integration, full grid flux and β = 0. Some parameter
sets and their outcomes are available in table 6.1. The last two worked well until suction 1 where
possibly nonlinear effects caused a crash. The surface average incremental displacement and a picture
of the cross section of the crash for the uncertain case with ∆t = 2 ms from table 6.1 are available
in figure 6.10. It is possible that smaller ω or even larger ∆t may be needed when using β = 0 and
second order time integration. Another possibility is that there are destabilising effects of increasing
∆t due to viscosity or other phenomena that have not been explored in this thesis.

∆t (ms) ω Result Verdict
1 0.15 Unstable after 0.24 tsim Unstable
2 0.25 Unstable after 0.23 tsim Unstable
2 0.12 Hit wall at suction 1 Uncertain
4 0.15 Hit wall at suction 1 Uncertain

Table 6.1: Some parameter sets using β = 0, full grid flux and 2nd order time
integration.

Figure 6.10: The surface average displacement (left) and flange cross-section during
the crash for a case using ∆t = 2 ms, ω = 0.12, grid flux 1 and 2nd order time
integration.

In order to avoid collision with the pressure flange several different damping coefficients µ0 have been
tested. The damping coefficient is hard to estimate, but the Abaqus manual suggests setting it to
µo = F/v where F is an estimated force between the surfaces, and v is an estimated impact speed.
v was estimated to be around 10−2 m/s, but the contact force is hard to measure. Therefore it was
set to 1 N, giving µ0 = 100 kg/s. This caused the algorithm to crash, but it is unclear if it was due
to physical contact or numerical difficulties associated with high gradients introduced by the contact
formulation. Subsequently µ0 = 105 kg/s was tested and it failed in a similar way. This leads to the
suspicion that both are too large. The two last cases using second order time integration, β = 0 and
full grid flux in table 6.1 used µ0 = 1 kg/s for the 4 ms case and 10 kg/s for the 2 ms case, both
without success as the wall hit the pressure flange. Maybe the clearance distance should be increased
or another contact formulation could be considered, or maybe the time steps were too large for the
contact damping to work efficiently. For both cases marked Uncertain in table 6.1 it is likely that
the solution lost stability due to nonlinear effects, and the contact damping made the displacement
monitor at the crash look like it was slowly converging. The Abaqus output file indicated that the
contact condition was active at the time of the crash.
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Chapter 7

Conclusions

The cause of instabilities in the FSI coupling algorithm is primarily due to the added mass effect. In
order to make a simulation converge it is possible to decrease the under-relaxation factor ω, but in
some cases depending on the geometry and material parameters of the problem, this may be required
to be very low. Similarly the time step can be increased, but at the cost of numerical dissipation and
increased discretisation errors. However, as can be seen in figures 6.1-6.8, for many geometries and
cases the condition on ω are very reasonable. It seems that as a rule of thumb partitioned implicit
FSI problems can be stabilised by setting ω low enough, a valuable insight for the future.

The relation between ω and the time step ∆t is counter-intuitive as smaller time steps has a negative
effect on stability, counter to the usual reflex of decreasing the time step in order to keep a simulation
stable. Thus there is a weigh-off between using small time steps for physical accuracy and large ones
for stability and computational efficiency. There are of course other phenomena that limit the time
step, but the conditions on ω above can help with selecting a suitable ∆t for different applications.

Using β damping to keep the algorithm stable is effective as the criterion on ω gets much less severe,
but the solution is damped out substantially. Therefore β should be decreased or even set to 0. The
main effect of β on stability is on the smaller time steps, see figure 6.7, so using a larger time step
rather than trying to compensate with ω may be a good idea when setting β low.

The grid flux under-relaxation is similar in that it seems to permit running with higher ω but changes
the solution. Unlike β the solution does not seem to be monotonously damped out by setting the
grid flux URF lower and the changes can be unpredictable. It is recommended not to use grid flux
under-relaxation at all.

The time discretisation order in the fluid solver affects the solution as well, but will likely cause a
worse added mass effect. The most suitable time discretisation order probably varies from application
to application, and has to be weighed against increasing ∆t or decreasing ω.

The tube application was investigated analytically with respect to stability and a criteria on ω was
found depending on the tube length, radius, wall thickness, densities, Young’s modulus and β. It
seems the correspondence to the numerical application is good, and can indicate the onset of instability
and the effect of changes of parameters. Increasing length, radius, fluid density, decreasing wall
thickness, β and Young’s modulus will all negatively affect stability and require lower ω or larger ∆t.
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Chapter 8

Limitations and Suggestions for
Future Work

The effect of incompressibility hasn’t been investigated in this thesis. Since the theoretical derivation
of the stability criteria on ω assumes incompressible flow it would be very interesting to study if
compressibility has any effect on the algorithm stability. It would also be interesting to investigate
its effect on the solution.

Attempts were made to implement contact damping but no working parameter set has been found.
Either the parameters could be investigated further and fine tuned to values that work in some cases
or another contact formulation could be considered.

Further attempts to use β = 0, grid flux 1 and 2nd order time integration should be made. A good
starting point is the criterion on ω and ∆t imposed by the model problem for β = 0 in figure 6.7. The
free surface will lessen the added mass effect but second order time integration will make it worse.

The probe points 2 and 3, seen in figure 4.1, may not be suitable to represent the dynamical behaviour
of the system. No probe was placed right between the outlet and the pressure flange where perhaps
the most interesting behaviour takes place, and the tangential placement of probe 3 turned out to be
close to a node for the mode n = 3 which likely won’t show the full range of displacement behaviour
during suction.

Experience indicates that grid flux under-relaxation helps the solution converge, but it is unclear how
this enters into the stability criterion.

The anisotropic material in the tube was not accounted for in the stability criterion.

Other convergence criteria should be explored, in particular to make sure the fluid velocity field is
converged in each time step.

The number of inner iterations in STAR-CCM+ between FSI couplings has been set to 4 throughout
this thesis. The theoretical stability analysis assumes a fully converged flow field at each coupling
step and it not known how this discrepancy affects stability. Sometimes using larger time steps the
coupling between the fluid- and structural solvers may not be fully converged. this introduces error
which may have an impact on stability, and these effects should be investigated.

The model used in this thesis was reduced in order to save computational time, and it is possible
that the mesh didn’t resolve the domain sufficiently well. Especially the delicate dynamics around
the pressure flange might have changed if the mesh was refined in this area, and maybe it would even
solve the problem of the wall hitting the flange. In the future a mesh study could be performed.

Partitioned schemes using algorithm 1 are subject to added mass instability, but there are other
possibilities. For example a monolithic solution method could solve the stability problem, but is
difficult to implement. Another possibility is for the fluid- and structural solvers to communicate
more and implement more efficient and stable coupling schemes. See [18] for examples of schemes
that could be implemented by the software manufacturers.
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One stated goal is to simulate the whole package forming process, which might require an explicit
time integration method on the solid side. These numerical schemes have not been studied in this
thesis, and it is unclear if it is possible to couple an explicitly advancing Abaqus case with an implicit
FSI algorithm, or if it is at all possible to use an explicit FSI coupling. The effects on stability
of heavily non-linear structural behaviour during package forming remains unclear. The numerical
calculation method proposed in chapter 5.6 could be implemented to investigate if and how structural
non-linearity affects the stability. The possibility to run LES simulations for better accuracy should
be considered, and the numerics of this case investigated.
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[8] Dassault Systèmes. Abaqus 6.14 Documentation.

[9] P. Causin, J.F. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algo-
rithms for fluid–structure problems. Computer Methods in Applied Mechanics and Engineering,
194(42–44):4506 – 4527, 2005.

[10] Christiane Förster, Wolfgang A Wall, and Ekkehard Ramm. The artificial added mass effect
in sequential staggered fluid-structure interaction algorithms. In ECCOMAS CFD 2006: Pro-
ceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The
Netherlands, September 5-8, 2006. Delft University of Technology; European Community on
Computational Methods in Applied Sciences (ECCOMAS), 2006.

[11] Sherman C. P. Cheung Kelvin K. L. Wong, Pongpat Thavornpattanapong and Jiyuan Tu. Nu-
merical stability of partitioned approach in fluid-structure interaction for a deformable thin-
walled vessel. Computational and Mathematical Methods in Medicine, 2013, 2013.

[12] François Axisa and Philippe Trompette. Chapter 8 - bent and twisted arches and shells. In
François Axisa and Philippe Trompette, editors, Structural Elements, volume 2 of Modelling of
Mechanical Systems, pages 391 – 440. Butterworth-Heinemann, 2005.

[13] Michael P. Paidoussis. Chapter 7 - cylindrical shells containing or immersed in flow: Basic
dynamics. In Michael P. Paidoussis, editor, Fluid-Structure Interactions (Second Edition), pages
551 – 713. Academic Press, Oxford, second edition edition, 2014.

[14] Silvano Erlicher, Luca Bonaventura, and Oreste S Bursi. The analysis of the generalized-α
method for non-linear dynamic problems. Computational Mechanics, 28(2):83–104, 2002.

46



[15] Michael P. Paidoussis. Chapter 2 - concepts, definitions and methods in fluid-structure interac-
tions. In Michael P. Paidoussis, editor, Fluid-Structure Interactions (Second Edition), pages 7 –
62. Academic Press, Oxford, second edition edition, 2014.

[16] EH Van Brummelen. Added mass effects of compressible and incompressible flows in fluid-
structure interaction. Journal of Applied mechanics, 76(2):021206, 2009.
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